
TMS320F/C24x DSP Controllers
Reference Guide

CPU and Instruction Set

Literature Number: SPRU160C
June 1999

Printed on Recycled Paper



IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright   1999, Texas Instruments Incorporated



iii

Preface

Read This First

About This Manual

The purpose of this user’s guide is to assist you, the hardware or software en-
gineer, in developing applications using the TMS320F/C240,F/C24x digital
signal processors (DSPs). This book provides CPU, hardware, and instruction
set details for these devices, and explains the DSP core that is common to all
TMS320F/C24x DSP controllers; and consequently, is common to the devices
described in this manual.

Throughout this book, the TMS320F/C240,F/C24x devices are generally re-
ferred to as ’24x.

For information about ’24x peripherals, see TMS320F/C240 DSP Controllers,
Peripheral Library and Specific Devices (literature number SPRU161), or
TMS320F243/F241/C242 DSP Controllers System and Peripherals Refer-
ence Guide (literature number SPRU276).

Notational Conventions

This document uses the following conventions:

� Program listings and program examples are shown in a special type-
face .

Here is a segment of a program listing:

OUTPUT LDP #6 ;select data page 6
BLDD #300, 20h ;move data at address 300h to 320h
RET

� Hexadecimal numbers are represented with a lowercase letter h following
the number. For example, 7400h or 743Fh.

� In syntax descriptions, the instruction is in a bold typeface  and
parameters are in an italic typeface. Portions of a syntax in bold  must be
entered as shown; portions of a syntax in italics describe the type of
information that you specify. Here is an example of an instruction syntax:

BLDD  source, destination

BLDD  is the instruction and has two parameters, source and destination.
When you use BLDD , the first parameter must be an actual data memory



Information About Cautions

iv  

source address and the second parameter must be a destination address.
A comma and a space (optional) must separate the two addresses.

� Square brackets, [  ], identify an optional parameter. If you use an optional
parameter, specify the information within the brackets; do not type the
brackets themselves. When you specify more than one optional parame-
ter from a list, you separate them with a comma and a space. Here is a
sample syntax:

BLDD  source, destination [, ARn]

BLDD  is the instruction. The two required operands are source and
destination, and the optional operand is ARn. AR is bold and n is italic; if
you choose to use ARn, you must type the letters A and R and then supply
a chosen value for n (in this case, a value from 0 to 7). Here is an example:

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

Notational Conventions / Information About Cautions



Related Documentation from Texas Instruments

vRead This First

Related Documentation from Texas Instruments

The following books describe the ’C24x and related support tools. To obtain
a copy of any of these TI documents, call the Texas Instruments Literature
Response Center at (800) 477–8924. When ordering, please identify the book
by its title and literature number. Many of these documents are located on the
internet at http://www.ti.com.

TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices
Reference Guide  (literature number SPRU161) describes the
peripherals available on the TMS320F/C240 digital signal processor
controllers and their operation. Also described are specific device
configurations of the ’C24x family.

TMS320F243/F241/C242 DSP Controllers System and Peripherals
Reference Guide  (literature number SPRU276) describes the
architecture, system hardware, peripherals, and general operation of the
TMS320F243, ’F241, and ’C242 digital signal processor (DSP)
controllers.

TMS320C240, TMS320F240 DSP Controllers (literature number SPRS042)
data sheet contains the electrical and timing specifications for these
devices, as well as signal descriptions and pinouts for all of the available
packages.

TMS320F20x/F24x Embedded Flash Memory Technical Reference
(literature number SPRU282) Describes the operation of the embedded
flash EEPROM module on the TMS320F20x/F24x digital signal
processor (DSP) devices and provides sample code that you can use to
develop your own software.

TMS320C1x/C2x/C2xx/C5x Code Generation Tools Getting Started
Guide (literature number SPRU121) describes how to install the
TMS320C1x, TMS320C2x, TMS320C2xx, and TMS320C5x assembly
language tools and the C compiler for the ’C1x, ’C2x, ’C2xx, and ’C5x de-
vices. The installations for MS-DOS , OS/2 , SunOS , and Solaris
systems are covered.

TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User’s Guide  (lit-
erature number SPRU018) describes the assembly language tools (as-
sembler, linker, and other tools used to develop assembly language
code), assembler directives, macros, common object file format, and
symbolic debugging directives for the ’C1x, ’C2x, ’C2xx, and ’C5x gen-
erations of devices.



Related Documentation from Texas Instruments

vi  

TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide (literature
number SPRU024) describes the ’C2x/C2xx/C5x C compiler. This C
compiler accepts ANSI standard C source code and produces TMS320
assembly language source code for the ’C2x, ’C2xx, and ’C5x genera-
tions of devices.

TMS320C2xx C Source Debugger User’s Guide  (literature number
SPRU151) tells you how to invoke the ’C2xx emulator and simulator ver-
sions of the C source debugger interface. This book discusses various
aspects of the debugger interface, including window management, com-
mand entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

TMS320C2xx Simulator Getting Started (literature number SPRU137)
describes how to install the TMS320C2xx simulator and the C source
debugger for the ’C2xx. The installation for MS-DOS , PC-DOS ,
SunOS , Solaris , and HP-UX  systems is covered.

TMS320C2xx Emulator Getting Started Guide  (literature number
SPRU209) tells you how to install the Windows  3.1 and Windows  95
versions of the ’C2xx emulator and C source debugger interface.

XDS51x Emulator Installation Guide (literature number SPNU070)
describes the installation of the XDS510 , XDS510PP , and
XDS510WS  emulator controllers. The installation of the XDS511
emulator is also described.

XDS522/XDS522A Emulation System Installation Guide (literature num-
ber SPRU171) describes the installation of the emulation system.
Instructions include how to install the hardware and software for the
XDS522  and XDS522A .

XDS522A Emulation System User’s Guide (literature number SPRU169)
tells you how to use the XDS522A  emulation system. This book de-
scribes the operation of the breakpoint, tracing, and timing functionality
in the XDS522A emulation system. This book also discusses BTT
software interface and includes a tutorial that uses step-by-step
instructions to demonstrate how to use the XDS522A emulation system.

XDS522A Emulation System Online Help (literature number SPRC002) is
an online help file that provides descriptions of the BTT software user in-
terface, menus, and dialog boxes.

JTAG/MPSD Emulation Technical Reference (literature number SPDU079)
provides the design requirements of the XDS510  emulator controller,
discusses JTAG designs (based on the IEEE 1149.1 standard), and
modular port scan device (MPSD) designs.



Related Technical Articles

viiRead This First

TMS320 DSP Development Support Reference Guide  (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using ’C2x,
’C3x, ’C4x, ’C5x, and other TI DSPs.

TMS320 Third-Party Support Reference Guide  (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

Related Technical Articles

The following technical articles contain useful information regarding designs,
operations, and applications for signal-processing systems. These articles
supplement the material in this book.

“A Greener World Through DSP Controllers”, Panos Papamichalis, DSP &
Multimedia Technology, September 1994.

“A Single-Chip Multiprocessor DSP for Image Processing—TMS320C80”,
Dr. Ing. Dung Tu, Industrie Elektronik, Germany, March 1995.

“Application Guide with DSP Leading-Edge Technology”, Y. Nishikori,
M. Hattori, T. Fukuhara, R.Tanaka, M. Shimoda, I. Kudo, A.Yanagitani,
H. Miyaguchi, et al., Electronics Engineering,  November 1995.

“Approaching the No-Power Barrier”, Jon Bradley and Gene Frantz, Electronic
Design, January 9, 1995.

“Beware of BAT: DSPs Add Brilliance to New Weapons Systems”, Panos
Papamichalis, DSP & Multimedia Technology, October 1994.

“Choose DSPs for PC Signal Processing”, Panos Papamichalis, DSP &
Multimedia Technology, January/February 1995.

“Developing Nations Take Shine to Wireless”, Russell MacDonald, Kara
Schmidt and Kim Higden, EE Times, October 2, 1995.

Related Documentation from Texas Instruments / Related Technical Articles



Related Technical Articles

viii  

“Digital Signal Processing Solutions Target Vertical Application Markets”, Ron
Wages, ECN,  September 1995.

“Digital Signal Processors Boost Drive Performance”, Tim Adcock, Data
Storage, September/October 1995.

“DSP and Speech Recognition, An Origin of the Species”, Panos
Papamichalis, DSP & Multimedia Technology, July 1994.

“DSP Design Takes Top-Down Approach”, Andy Fritsch and Kim Asal, DSP
Series Part III, EE Times, July 17, 1995.

“DSPs Advance Low-Cost ‘Green’ Control”, Gregg Bennett, DSP Series Part
II, EE Times, April 17, 1995.

“DSPs Do Best on Multimedia Applications”, Doug Rasor, Asian Computer
World, October 9–16, 1995.

“DSPs: Speech Recognition Technology Enablers”, Gene Frantz and Gregg
Bennett, I&CS, May 1995.

“Easing JTAG Testing of Parallel-Processor Projects”, Tony Coomes, Andy
Fritsch, and Reid Tatge, Asian Electronics Engineer, Manila, Philippines,
November 1995.

“Fixed or Floating? A Pointed Question in DSPs”, Jim Larimer and Daniel
Chen, EDN, August 3, 1995.

“Function-Focused Chipsets: Up the DSP Integration Core”, Panos
Papamichalis, DSP & Multimedia Technology, March/April 1995.

“GSM: Standard, Strategien und Systemchips”, Edgar Auslander, Elektronik
Praxis, Germany, October 6, 1995.

“High Tech Copiers to Improve Images and Reduce Paperwork”, Karl Guttag,
Document Management, July/August 1995.

“Host-Enabled Multimedia:  Brought to You by DSP Solutions”, Panos
Papamichalis, DSP & Multimedia Technology, September/October 1995.

“Integration Shrinks Digital Cellular Telephone Designs”, Fred Cohen and
Mike McMahan, Wireless System Design, November 1994.

“On-Chip Multiprocessing Melds DSPs”, Karl Guttag and Doug Deao, DSP
Series Part III, EE Times, July 18, 1994.

“Real-Time Control”, Gregg Bennett, Appliance Manufacturer, May 1995.

“Speech Recognition”, P.K. Rajasekaran and Mike McMahan, Wireless
Design & Development, May 1995.



Trademarks

ixRead This First

“Telecom Future Driven by Reduced Milliwatts per DSP Function”, Panos
Papamichalis, DSP & Multimedia Technology, May/June 1995.

“The Digital Signal Processor Development Environment”, Greg Peake,
Embedded System Engineering, United Kingdom, February 1995.

“The Growing Spectrum of Custom DSPs”, Gene Frantz and Kun Lin, DSP
Series Part II, EE Times, April 18, 1994.

“The Wide World of DSPs, ” Jim Larimer, Design News, June 27, 1994.

“Third-Party Support Drives DSP Development for Uninitiated and Experts
Alike”, Panos Papamichalis, DSP & Multimedia Technology, December
1994/January 1995.

“Toward an Era of Economical DSPs”, John Cooper, DSP Series Part I, EE
Times, Jan. 23, 1995.

Trademarks

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

OS/2, PC, and PC-DOS are trademarks of International Business Machines
Corporation.

PAL  is a registered trademark of Advanced Micro Devices, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

320 Hotline On-line, TI, XDS510, XDS510PP, XDS510WS, XDS511, XDS522,
and XDS522A are trademarks of Texas Instruments Incorporated.

Related Technical Articles / Trademarks



Contents

xi

Contents

1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Summarizes the TMS320 family of products. Introduces the TMS320C24x DSP controller and
lists its key features.

1.1 TMS320 Family Overview 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 TMS320C24x Series of DSP Controllers 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 Architectural Overview 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Summarizes the TMS320C24x architecture and provides an overview of the CPU, address and
bus structure, program-control logic, on-chip peripherals, and scanning logic.

2.1 Architecture Summary 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 ’C24x CPU Internal Bus Structure 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3 Memory 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3.1 On-Chip Dual-Access RAM (DARAM) 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.2 Flash EEPROM 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.3 Flash Serial Loader 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.4 Factory-Masked ROM 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.5 External Memory Interface Module 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Central Processing Unit 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.4.1 Central Arithmetic Logic Unit (CALU) and Accumulator 2-8. . . . . . . . . . . . . . . . . . . 
2.4.2 Scaling Shifters 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.4.3 Multiplier 2-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.4.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers 2-9. . . . . . . . . . 

2.5 Program Control 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.6 Serial-Scan Emulation 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 Memory and I/O Spaces 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the TMS320C24x memory and I/O space configuration and operation. Includes pro-
gram and peripheral memory maps.

3.1 Overview of Memory and I/O Spaces 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 Program Memory 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2.1 Program Memory Configuration 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3 Data Memory 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3.1 Data Page 0 Address Map 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.2  Data Memory Configuration 3-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.4 Global Data Memory 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.5 I/O Space 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xii  

4 Central Processing Unit 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the TMS320C24x CPU. Includes information about the central arithmetic logic unit,
the accumulator, the shifters, the multiplier, and the auxiliary register arithmetic unit. Concludes
with a description of the status register bits.

4.1 Input Scaling Section 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2 Multiplication Section 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2.1 Multiplier 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.2 Product-Scaling Shifter 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Central Arithmetic Logic Section 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.1 Central Arithmetic Logic Unit (CALU) 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.2 Accumulator 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.3.3 Output Data-Scaling Shifter 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4 Auxiliary Register Arithmetic Unit (ARAU) 4-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4.1 ARAU Functions 4-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.4.2 Auxiliary Register Functions 4-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.5 Status Registers ST0 and ST1 4-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.6 External Memory Interface Operation 4-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 Program Control 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the TMS320C24x hardware and software features used to control program flow, in-
cluding program-address generation logic, pipeline operation, and branches, calls, and re-
turns.

5.1 Program-Address Generation 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.1 Program Counter (PC) 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.2 Stack 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1.3 Microstack (MSTACK) 5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Pipeline Operation 5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3 Branches, Calls, and Returns 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3.1 Unconditional Branches 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.2 Unconditional Calls 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.3 Unconditional Returns 5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Conditional Branches, Calls, and Returns 5-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4.1 Using Multiple Conditions 5-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4.2 Stabilization of Conditions 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4.3 Conditional Branches 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4.4 Conditional Calls 5-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.4.5 Conditional Returns 5-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.5 Repeating a Single Instruction 5-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.6 Interrupts 5-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.7 CPU Interrupt Registers 5-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.7.1 Interrupt Flag Register (IFR) 5-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.7.2 Interrupt Mask Register (IMR) 5-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xiiiContents

6 Addressing Modes 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the operation and use of the TMS320C24x data-memory addressing modes.

6.1 Immediate Addressing Mode 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2 Direct Addressing Mode 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2.1 Using Direct Addressing Mode 6-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.2 Examples of Direct Addressing 6-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Indirect Addressing Mode 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.1 Current Auxiliary Register 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.2 Indirect Addressing Options 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.3 Next Auxiliary Register 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.4 Indirect Addressing Opcode Format 6-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.5 Examples of Indirect Addressing 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3.6 Modifying Auxiliary Register Content 6-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7 Assembly Language Instructions 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the TMS320C24x assembly language instructions in alphabetical order. Begins with
a summary of the TMS320C24x instructions.

7.1 Instruction Set Summary 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2 How To Use the Instruction Descriptions 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2.1 Syntax 7-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.2 Operands 7-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.3 Opcode 7-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.4 Execution 7-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.5 Status Bits 7-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.6 Description 7-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.7 Words 7-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.8 Cycles 7-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.9 Examples 7-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.3 Instruction Descriptions 7-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A TMS320C1x/C2x/C20x/C5x Instruction Set Comparison A-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Discusses the compatibility of program code among the following devices: TMS320C1x,
TMS320C2x, TMS320C20x, and TMS320C5x.

A.1 Using the Instruction Set Comparison Table A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.1.1 An Example of a Table Entry A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.1.2 Symbols and Acronyms Used in the Table A-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A.2 Enhanced Instructions A-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.3 Instruction Set Comparison Table A-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B Submitting ROM Codes to TI B-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Explains the process for submitting custom program code to TI for designing masks for the on-
chip ROM on a TMS320 DSP.



Contents

xiv  

C Design Considerations for Using the XDS510 Emulator C-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Describes the JTAG emulator cable, how to construct a 14-pin connector on your target system,
and how to connect the target system to the emulator.

C.1 Designing Your Target System’s Emulator Connector (14-Pin Header) C-2. . . . . . . . . . . . . 
C.2 Bus Protocol C-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.3 Emulator Cable Pod C-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.4 Emulator Cable Pod Signal Timing C-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.5 Emulation Timing Calculations C-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.6 Connections Between the Emulator and the Target System C-10. . . . . . . . . . . . . . . . . . . . . 

C.6.1 Buffering Signals C-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.6.2 Using a Target-System Clock C-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.6.3 Configuring Multiple Processors C-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.7 Physical Dimensions for the 14-Pin Emulator Connector C-14. . . . . . . . . . . . . . . . . . . . . . . . 
C.8 Emulation Design Considerations C-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.8.1 Using Scan Path Linkers C-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL) C-18. . . . . . . . . . . . . 
C.8.3 Using Emulation Pins C-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C.8.4 Performing Diagnostic Applications C-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

D Glossary D-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Explains terms, abbreviations, and acronyms used throughout this book.

E Summary of Updates in This Document E-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Provides a summary of the updates in this version of the document.



Figures

xvContents

Figures

1–1. DSP Product Generation 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1–2. TMS320 Device Nomenclature 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–1. TMS320C24x DSP Controller Functional Block Diagram 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–2. ’C24x Address and Data Bus Structure 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2–3. ’C24x ROM Memory Map 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–1. Generic Memory Maps for ’C24x DSP Controllers 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2. Program Memory Map for ’C24x 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–3. Pages of Data Memory 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–4. GREG Register Set to Configure 8K for Global Data Memory 3-10. . . . . . . . . . . . . . . . . . . . . . 
3–5. Global and Local Data Memory for GREG = 11100000 3-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–6. I/O-Space Address Map for ’C24x 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–1. Block Diagram of the Input Scaling, Central Arithmetic Logic, and

Multiplication Sections of the CPU 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2. Block Diagram of the Input Scaling Section 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–3. Operation of the Input Shifter for SXM = 0 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–4. Operation of the Input Shifter for SXM = 1 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–5. Block Diagram of the Multiplication Section 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–6. Block Diagram of the Central Arithmetic Logic Section 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–7. Shifting and Storing the High Word of the Accumulator 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–8. Shifting and Storing the Low Word of the Accumulator 4-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–9. ARAU and Related Logic 4-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–10. Status Register ST0 4-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–11. Status Register ST1 4-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–12. External Interface Operation for Read-Read-Write (Zero Wait States) 4-18. . . . . . . . . . . . . . . 
4–13. External Interface Operation for Write-Write-Read (Zero Wait States) 4-20. . . . . . . . . . . . . . . 
4–14. External Interface Operation for Read-Write (One Wait State) 4-20. . . . . . . . . . . . . . . . . . . . . . 
5–1. Program-Address Generation Block Diagram 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2. A Push Operation 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–3. A Pop Operation 5-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–4. Four-Level Pipeline Operation 5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–5. Interrupt Flag Register (IFR) — Address 0006h 5-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–6. Interrupt Mask Register (IMR) — Address 0004h 5-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–1. Instruction Register Contents for Example 6–1 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2. Two Words Loaded Consecutively to the Instruction Register in Example 6–2 6-3. . . . . . . . . 
6–3. Pages of Data Memory 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–4. Instruction Register (IR) Contents in Direct Addressing Mode 6-5. . . . . . . . . . . . . . . . . . . . . . . 



Figures

xvi  

6–5. Generation of Data Addresses in Direct Addressing Mode 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . 
6–6. Instruction Register Content in Indirect Addressing 6-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–1. Bit Numbers and Their Corresponding Bit Codes for BIT Instruction 7-44. . . . . . . . . . . . . . . . 
7–2. Bit Numbers and Their Corresponding Bit Codes for BITT Instruction 7-46. . . . . . . . . . . . . . . 
7–3. LST #0 Operation 7-86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–4. LST #1 Operation 7-87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
B–1. TMS320 ROM Code Procedural Flow Chart B-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–1. 14-Pin Header Signals and Header Dimensions C-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–2. Emulator Cable Pod Interface C-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–3. Emulator Cable Pod Timings C-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–4. Emulator Connections Without Signal Buffering C-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–5. Emulator Connections With Signal Buffering C-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–6. Target-System-Generated Test Clock C-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–7. Multiprocessor Connections C-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–8. Pod/Connector Dimensions C-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–9. 14-Pin Connector Dimensions C-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–10. Connecting a Secondary JTAG Scan Path to a Scan Path Linker C-17. . . . . . . . . . . . . . . . . . . 
C–11. EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns C-21. . . . . . . . . . . . 
C–12. Suggested Timings for the EMU0 and EMU1 Signals C-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–13. EMU0/1 Configuration With Additional AND Gate to Meet Timing

Requirements of Greater Than 25 ns C-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–14. EMU0/1 Configuration Without Global Stop C-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–15. TBC Emulation Connections for n JTAG Scan Paths C-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

xviiContents

Tables

2–1. Where to Find Information About Program Control Features 2-10. . . . . . . . . . . . . . . . . . . . . . . 
3–1. Data Page 0 Address Map 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3–2. Global Data Memory Configurations 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–1. Product Shift Modes for the Product-Scaling Shifter 4-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2. Bit Fields of Status Registers ST0 and ST1 4-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–1. Program-Address Generation Summary 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–2. Address Loading to the Program Counter 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–3. Conditions for Conditional Calls and Returns 5-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–4. Groupings of Conditions 5-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5–5. ’C24x Interrupt Locations and Priorities 5-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–1. Indirect Addressing Operands 6-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2. Effects of the ARU Code on the Current Auxiliary Register 6-12. . . . . . . . . . . . . . . . . . . . . . . . . 
6–3. Field Bits and Notation for Indirect Addressing 6-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–1. Accumulator, Arithmetic, and Logic Instructions 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–2. Auxiliary Register Instructions 7-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–3. TREG, PREG, and Multiply Instructions 7-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–4. Branch Instructions 7-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–5. Control Instructions 7-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–6. I/O and Memory Instructions 7-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–7. Product Shift Modes 7-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7–8. Product Shift Modes 7-166. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A–1. Symbols and Acronyms Used in the Instruction Set Comparison Table A-3. . . . . . . . . . . . . . . 
A–2. Summary of Enhanced Instructions A-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–1. 14-Pin Header Signal Descriptions C-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
C–2. Emulator Cable Pod Timing Parameters C-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Examples

xviii  

Examples

6–1. RPT Instruction Using Short-Immediate Addressing 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–2. ADD Instruction Using Long-Immediate Addressing 6-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–3. Using Direct Addressing with ADD (Shift of 0 to 15) 6-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–4. Using Direct Addressing with ADD (Shift of 16) 6-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–5. Using Direct Addressing with ADDC 6-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–6. Selecting a New Current Auxiliary Register 6-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–7. Indirect Addressing—No Increment or Decrement 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–8. Indirect Addressing—Increment by 1 6-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–9. Indirect Addressing—Decrement by 1 6-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–10. Indirect Addressing—Increment by Index Amount 6-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–11. Indirect Addressing—Decrement by Index Amount 6-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6–12. Indirect Addressing—Increment by Index Amount With Reverse Carry Propagation 6-15. . . 
6–13. Indirect Addressing—Decrement by Index Amount With Reverse Carry Propagation 6-15. . 
C–1. Key Timing for a Single-Processor System Without Buffers C-8. . . . . . . . . . . . . . . . . . . . . . . . . 
C–2. Key Timing for a Single-Processor System Without Buffering (SPL) C-19. . . . . . . . . . . . . . . . . 



1-1Introduction

Introduction

The TMS320C24x is a member of the TMS320 family of digital signal proces-
sors (DSPs). The ’C24x is designed to meet a wide range of digital motor con-
trol (DMC) and embedded control applications. This chapter provides an over-
view of the current TMS320 family, and describes the background and benefits
of the ’C24x DSP controller products.

Topic Page

1.1 TMS320 Family Overview 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 TMS320C24x Series of DSP Controllers 1-5. . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 1



TMS320 Family Overview

 1-2

1.1 TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, multiprocessor digi-
tal signal processors (DSPs), and fixed-point DSP controllers. TMS320 DSPs
have an architecture designed specifically for real-time signal processing. The
’C24x series of DSP controllers combines this real-time processing capability
with controller peripherals to create an ideal solution for control system
applications. The following characteristics make the TMS320 family the right
choice for a wide range of processing applications:

� Very flexible instruction set
� Inherent operational flexibility
� High-speed performance
� Innovative parallel architecture
� Cost effectiveness

In 1982, Texas Instruments introduced the TMS32010, the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010 the title “Product of the Year”. Today, the
TMS320 family consists of the following generations shown in Figure 1–1:
’C1x, ’C2x, ’C24x, ’C5x, ’C54x, and ’C6x fixed-point DSPs; ’C3x and ’C4x float-
ing-point DSPs; and ’C8x multiprocessor DSPs. The ’C24x is considered part
of the ’C24x family of fixed-point DSPs, and a member of the ’C2000 platform.

Devices within a generation of the TMS320 family have the same CPU struc-
ture but different on-chip memory and peripheral configurations. Spin-off
devices use new combinations of on-chip memory and peripherals to satisfy
a wide range of needs in the worldwide electronics market. By integrating
memory and peripherals onto a single chip, TMS320 devices reduce system
costs and save circuit board space.



TMS320 Family Overview

1-3Introduction

Figure 1–1. DSP Product Generation

Control optimized

’C1/2x

’C2000
(’C20x, ’C24x)

performance
Power-efficient

’C5x
High performance

’C8x’C5000
(’C54x)

(’C62x, ’C67x)
’C6000

’C3x/4x



TMS320 Family Overview

 1-4

Figure 1–2. TMS320 Device Nomenclature

PREFIX TEMPERATURE RANGE (DEFAULT: 0 °C TO 70°C)

TMS 320  F 240 PGE (L)

TMX = experimental device
TMP = prototype device
TMS = qualified device

DEVICE FAMILY
320 = TMS320 Family

TECHNOLOGY

L = 0°C to 70°C
A = –40°C to 85°C
S = –40°C to 125°C
Q = –40°C to 125°C, Q 100 Fault Grading

PACKAGE TYPE †
PAG = 64-pin plastic TQFP
PGE= 144-pin plastic QFP
PZ = 100-pin plastic TQFP

C = CMOS
E = CMOS EPROM
F = Flash EEPROM
LC = Low-voltage CMOS (3.3 V)
LF = Flash EPROM (3.3 V)
VC= Low-voltage CMOS (3 V)

DEVICE
’20x DSP

203
206
209

’24x DSP
240
241
242
243

(B)

BOOT-LOADER OPTION

† PLCC = Plastic J-Leaded Chip Carrier
QFP = Quad Flatpack
TQFP = Thin Quad Flatpack



TMS320C24x Series of DSP Controllers

1-5Introduction

1.2 TMS320C24x Series of DSP Controllers

Designers have recognized the opportunity to redesign existing DMC systems
to use advanced algorithms that yield better performance and reduce system
component count. DSPs enable:

� Design of robust controllers for a new generation of inexpensive motors,
such as AC induction, DC permanent magnet, and switched-reluctance
motors

� Full variable-speed control of brushless motor types that have lower
manufacturing cost and higher reliability

� Energy savings through variable-speed control, saving up to 25% of the
energy used by fixed-speed controllers

� Increased fuel economy, improved performance, and elimination of
hydraulic fluid in automotive electronic power steering (EPS) systems

� Reduced manufacturing and maintenance costs by eliminating hydraulic
fluids in automotive electronic braking systems

� More efficient and quieter operation due to less generation of torque
ripple, resulting in less loss of power, lower vibration, and longer life

� Elimination or reduction of memory lookup tables through real-time poly-
nomial calculation, thereby reducing system cost

� Use of advanced algorithms that can reduce the number of sensors
required in a system

� Control of power switching inverters, along with control algorithm
processing

� Single-processor control of multimotor systems

The ’C24x DSP controllers are designed to meet the needs of control-based
applications. By integrating the high performance of a DSP core and the
on-chip peripherals of a microcontroller into a single-chip solution, the ’C24x
series yields a device that is an affordable alternative to traditional microcon-
troller units (MCUs) and expensive multichip designs. At 20 million instructions
per second (MIPS), the ’C24x DSP controllers offer significant performance
over traditional 16-bit microcontrollers and microprocessors. Future deriva-
tives of these devices will run at speeds higher than 20 MIPS.

The 16-bit, fixed-point DSP core of the ’C24x device provides analog design-
ers a digital solution that does not sacrifice the precision and performance of



TMS320C24x Series of DSP Controllers

 1-6

their systems. In fact, system performance can be enhanced through the use
of advanced control algorithms for techniques such as adaptive control,
Kalman filtering, and state control. The ’C24x DSP controllers offer reliability
and programmability. Analog control systems, on the other hand, are hard-
wired solutions and can experience performance degradation due to aging,
component tolerance, and drift.

The high-speed central processing unit (CPU) allows the digital designer to
process algorithms in real time rather than approximate results with look-up
tables. When the instruction set of these DSP controllers (which incorporates
both signal processing instructions and general-purpose control functions) is
coupled with the extensive development support available for the ’C24x de-
vices, it reduces development time and provides the same ease of use as tra-
ditional 8- and 16-bit microcontrollers. The instruction set also allows you to
retain your software investment when moving from other general-purpose
TMS320 fixed-point DSPs. It is source- and object-code compatible with the
other members of the ’C24x generation, source code compatible with the ’C2x
generation, and upwardly source code compatible with the ’C5x generation of
DSPs from Texas Instruments.

The ’C24x architecture is also well-suited for processing control signals. It
uses a 16-bit word length along with 32-bit registers for storing intermediate
results, and has two hardware shifters available to scale numbers indepen-
dently of the CPU. This combination minimizes quantization and truncation
errors, and increases processing power for additional functions. Two exam-
ples of these additional functions are: a notch filter that cancels mechanical
resonances in a system, and an estimation technique that eliminates state
sensors in a system.

The ’C24x DSP controllers take advantage of an existing set of peripheral
functions that allow Texas Instruments to quickly configure various series
members for different price/performance points or for application optimization.
This library of both digital and mixed-signal peripherals includes:

� Timers
� Serial communications ports (SCI, SPI)
� Analog-to-digital converters (ADC)
� Event manager
� System protection, such as watchdog timers
� CAN controller

The DSP controller peripheral library is continually growing and changing to
suit the needs of tomorrow’s embedded control marketplace.



2-1Architectural Overview

Architectural Overview

This chapter provides an overview of the architectural structure and compo-
nents of the ’C24x DSP CPU. The ’C24x DSP uses an advanced, modified
Harvard architecture that maximizes processing power by maintaining sepa-
rate bus structures for program memory and data memory.

Topic Page

2.1 Architecture Summary 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 ’C24x CPU Internal Bus Structure 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Memory 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Central Processing Unit 2-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.5 Program Control 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.6 Serial-Scan Emulation 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 2



Architecture Summary

2-2

2.1 Architecture Summary

A functional block diagram of the ’C24x DSP controller architecture is shown
in Figure 2–1 on page 2-3. The ’C24x DSP architecture is based on a modi-
fied Harvard architecture, which supports separate bus structures for program
space and data space. A third space, the input/output (I/O) space, is also avail-
able and is accessible through the external bus interface. To support a large
selection of peripherals, a peripheral bus is used. The peripheral bus is
mapped to the data space and interfaced to the data bus through a special sys-
tem module. Thus, all the instructions that operate on the data space also op-
erate on all the peripheral registers.

Separate program and data spaces allow simultaneous access to program
instructions and data. For example, while data is multiplied, a previous product
can be added to the accumulator, and at the same time, a new address can
be generated. Such parallelism supports a set of arithmetic, logic, and bit-ma-
nipulation operations that can all be performed in a single machine cycle. The
’C24x also includes control mechanisms to manage interrupts, repeated op-
erations, and function/subroutine calls.



Architecture Summary

2-3Architectural Overview

Figure 2–1. TMS320C24x DSP Controller Functional Block Diagram

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Á
Á
Á

24
Á
Á
Á

16
ÁÁ
ÁÁ

ÁÁ

PDPINTÁÁ

4

ÁÁÁ

ÁÁÁ
4

9

ÁÁÁ

Á

ÁÁÁ
41

7ÁÁ
ÁÁ

Á
Á

ÁÁ

ÁÁ

ÁÁ

Á
Á
Á
Á

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Quadrature
Encoder

Pulse (QEP)

Capture/

Units
Compare

Timers
Purpose
General-

Manager
Event

Generator

Wait-State
Software

Interface
Memory
External

Emulation
JTAG Test/

Peripheral Bus

ÁÁ
Á

ÁÁ
Á

ÁÁ
Á

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Watchdog

Interface
Communications

Serial-

Interface
Peripheral

Serial-

Converter
to-Digital
Analog-
10–Bit

Data Bus

Á
ÁÁ

Á
ÁÁ

Á
3

Á

Á

Reset

Digital Input/Output

Interrupts
20

4

ÁÁ
ÁÁ
Á
Á

Á

Á
Á
Á

ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Module
System-Interface

Module
Clock

Program Bus

Á
Á
ÁÁ

Á
Á

ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

B1/B2
DARAM

B0
DARAMROM or Flash

EEPROM†

Initialization

Interrupts

Control
Memory

Á
Á

Á
Á

ÁÁ
ÁÁ

Á
Á
Á

ÁÁ

Á

Controller
Program

CPU
’C2xx

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ

ÁÁ

Shifter
Product

PREG

TREG

Multiplier

Shifter
Output

Accumulator

ALU

Shifter
Input

Registers
Mapped

Memory-

Registers
Auxiliary

Registers
Control
Status/

ARAU

Register
Instruction

Á

Á
Á

† ’C24x devices contains ROM: ’F24x

devices contains Flash EEPROM.

Watchdog
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Á
Á

Á
Á

1 2Á Á

ÁÁÁÁCAN

ÁÁNote: The number of
PWMS/digital I/O, ADC
channels, and peripheral
modules are dependent
upon the device family.



’C24x CPU Internal Bus Structure

 2-4

2.2 ’C24x CPU Internal Bus Structure

The ’C24x DSP, a member of the TMS320 family of DSPs, includes a ’C2xx
DSP core designed using the ’2xLP ASIC core. The ’C2xx DSP core has an
internal data and program bus structure that is divided into six 16-bit buses
(see Figure 2–2). The six buses are:

� PAB.  The program address bus provides addresses for both reads from
and writes to program memory.

� DRAB. The data-read address bus provides addresses for reads from
data memory.

� DWAB. The data-write address bus provides addresses for writes to data
memory.

� PRDB. The program read bus carries instruction code and immediate op-
erands, as well as table information, from program memory to the CPU.

� DRDB. The data-read bus carries data from data memory to the central
arithmetic logic unit (CALU) and the auxiliary register arithmetic unit
(ARAU).

� DWEB. The data-write bus carries data to both program memory and data
memory.

Having separate address buses for data reads (DRAB) and data writes
(DWAB) allows the CPU to read and write in the same machine cycle.

Figure 2–2. ’C24x Address and Data Bus Structure

B0
DARAM

Flash/
ROM

B1, B2
DARAM

Memory-
mapped
registers

PAB

DRAB

DWAB

PRDB

DRDB

DWEB

Central processing unit (CPU)

External
address bus

External
data bus

System moduleExternal bus
interface



Memory

2-5Architectural Overview

2.3 Memory

The ’C24x contains the following types of on-chip memory:

� Dual-access RAM (DARAM)
� Flash EEPROM or ROM (masked)

The ’C24x memory is organized into four individually-selectable spaces:

� Program (64K words)
� Local data (64K words)
� Global data (32K words)
� Input/Output (64K words)

These spaces form an address range of 224K words.

2.3.1 On-Chip Dual-Access RAM (DARAM)

The ’C24x has 544 words of on-chip DARAM, which can be accessed twice
per machine cycle. This memory is primarily intended to hold data, but when
needed, can also be used to hold programs. The memory can be configured
in one of two ways, depending on the state of the CNF bit in status register ST1.

� When CNF = 0, all 544 words are configured as data memory.

� When CNF =  1, 288 words are configured as data memory and 256 words
are configured as program memory.

Because DARAM can be accessed twice per cycle, it improves the speed of
the CPU. The CPU operates within a 4-cycle pipeline. In this pipeline, the CPU
reads data on the third cycle and writes data on the fourth cycle. However, 
DARAM allows the CPU to write and read in one cycle; the CPU writes to
DARAM on the master phase of the cycle and reads from DARAM on the slave
phase. For example, suppose two instructions, A and B, store the accumulator
value to DARAM and load the accumulator with a new value from DARAM.
Instruction A stores the accumulator value during the master phase of the CPU
cycle, and instruction B loads the new value in the accumulator during the
slave phase. Because part of the dual-access operation is a write, it only
applies to RAM.



Memory

2-6

2.3.2 Flash EEPROM

Flash EEPROM provides an attractive alternative to masked program ROM.
Like ROM, flash is a nonvolatile memory type; however, it has the advantage
of in-target reprogrammability. The ’F24x incorporates one 16K/8K × 16-bit
flash EEPROM module in program space. This type of memory expands the
capabilities of the ’F24x in the areas of prototyping, early field testing, and
single-chip applications.

Unlike most discrete flash memory, the ’F24x flash does not require a dedi-
cated state machine because the algorithms for programming and erasing the
flash are executed by the DSP core. This enables several advantages, includ-
ing reduced chip size and sophisticated adaptive algorithms. For production
programming, the IEEE Standard 1149.1 (JTAG) scan port provides easy ac-
cess to on-chip RAM for downloading the algorithms and flash code. Other key
features of the flash include zero-wait-state access rate and single 5-V power
supply.

An erased bit in the ’24x flash is read as a logic one, and a programmed bit is
read as a logic zero. The flash requires a block-erase of the entire 16K/8K
module; however, any combination of bits can be programmed. The following
four algorithms are required for flash operations: clear, erase, flash-write, and
program. For an explanation of these algorithms and a complete description
of the flash EEPROM, see TMS320F20x/F24x DSPs Embedded Flash
Memory Technical Reference (Literature number SPRU282).

2.3.3 Flash Serial Loader

Most of the on-chip flash devices are shipped with a serial bootloader code
programmed at the following addresses: 0x0000 – 0x00FFh. All other flash ad-
dresses are in an erased state. The serial bootloader can be used to program
the on-chip flash memory with user’s code. During the flash programming se-
quence, the on-chip data RAM is used to load and execute the clear, erase,
and program algorithms.

2.3.4 Factory-Masked ROM

For large-volume applications consisting of stable software free of bugs, low-
cost, masked ROM is available and supported up to 16K or 4K words. If you
want a custom ROM, you can provide the code or data to be programmed into
the ROM in object-file format, and Texas Instruments will generate the ap-
propriate process mask to program the ROM. For details, see Appendix B,
Submitting ROM Codes to TI.

A small portion of the ROM (128 or 64 words) is reserved by Texas Instruments
for test purposes. These reserved locations are at addresses 0x3F80 or 3FC0
through 0x3FFF. This leaves about 16K words available for your code.



Memory

2-7Architectural Overview

Figure 2–3. ’C24x ROM Memory Map

3FFF

for code
Available

3F80/3FC0

3F7F

0000

Reserved
for test

2.3.5 External Memory Interface Module

In addition to full, on-chip memory support, some of the ’C24x devices provide
access to external memory by way of the External Memory Interface Module.
This interface provides 16 external address lines, 16 external data lines, and
relevant control signals to select data, program, and I/O spaces. An on-chip
wait-state generator allows interfacing with slower off-chip memory and pe-
ripherals.



Central Processing Unit

2-8

2.4 Central Processing Unit

The ’C24x is based on TI’s ’C2xx CPU. It contains:

� A 32-bit central arithmetic logic unit (CALU)
� A 32-bit accumulator
� Input and output data-scaling shifters for the CALU
� A 16-bit × 16-bit multiplier
� A product-scaling shifter
� Data-address generation logic, which includes eight auxiliary registers

and an auxiliary register arithmetic unit (ARAU)
� Program-address generation logic

2.4.1 Central Arithmetic Logic Unit (CALU) and Accumulator

The ’C24x performs 2s-complement arithmetic using the 32-bit CALU. The
CALU uses 16-bit words taken from data memory, derived from an immediate
instruction, or from the 32-bit multiplier result. In addition to arithmetic opera-
tions, the CALU can perform Boolean operations.

The accumulator stores the output from the CALU; it can also provide a second
input to the CALU. The accumulator is 32 bits wide and is divided into a high-
order word (bits 31 through 16) and a low-order word (bits 15 through 0).
Assembly language instructions are provided for storing the high- and low-
order accumulator words to data memory.

2.4.2 Scaling Shifters

The ’C24x has three 32-bit shifters that allow for scaling, bit extraction,
extended arithmetic, and overflow-prevention operations:

� Input data-scaling shifter (input shifter). This shifter left-shifts 16-bit in-
put data by 0 to 16 bits to align the data to the 32-bit input of the CALU.

� Output data-scaling shifter (output shifter). This shifter left-shift output
from the accumulator by 0 to 7 bits before the output is stored to data
memory. The content of the accumulator remains unchanged.

� Product-scaling shifter (product shifter) . The product register (PREG)
receives the output of the multiplier. The product shifter shifts the output
of the PREG before that output is sent to the input of the CALU. The prod-
uct shifter has four product shift modes (no shift, left shift by one bit, left
shift by four bits, and right shift by six bits), which are useful for performing
multiply/accumulate operations, performing fractional arithmetic, or justi-
fying fractional products.



Central Processing Unit

2-9Architectural Overview

2.4.3 Multiplier

The on-chip multiplier performs 16-bit × 16-bit 2s-complement multiplication
with a 32-bit result. In conjunction with the multiplier, the ’C24x uses the 16-bit
temporary register (TREG) and the 32-bit product register (PREG); TREG al-
ways supplies one of the values to be multiplied, and PREG receives the result
of each multiplication.

Using the multiplier, TREG, and PREG, the ’C24x efficiently performs funda-
mental DSP operations such as convolution, correlation, and filtering. The ef-
fective execution time of each multiplication instruction can be as short as one
CPU cycle.

2.4.4 Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indi-
rect addressing (see Chapter 6, Addressing Modes) to access data memory.
The ARAU is supported by eight auxiliary registers (AR0 through AR7), each
of which can be loaded with a 16-bit value from data memory or directly from
an instruction word. Each auxiliary register value can also be stored in data
memory. The auxiliary registers are referenced by a 3-bit auxiliary register
pointer (ARP) embedded in status register ST0.



Program Control

2-10

2.5 Program Control

Several hardware and software mechanisms provide program control:

� Program control logic decodes instructions, manages the 4-level pipeline,
stores the status of operations, and decodes conditional operations. Hard-
ware elements included in the program control logic are the program
counter, the status registers, the stack, and the address-generation logic.

� Software mechanisms used for program control include branches, calls,
conditional instructions, a repeat instruction, reset, interrupts, and power-
down modes.

Table 2–1 shows where you can find detailed information about these program
control features.

Table 2–1. Where to Find Information About Program Control Features

For information about See

Address-generation logic Chapter 5, Program Control

Address-generation data memory Chapter 6, Addressing Modes

Branches, calls, and returns Chapter 5, Program Control

Conditional operations Chapter 5, Program Control

Interrupts Chapter 5, Program Control

Pipeline Chapter 5, Program Control

Program counter Chapter 5, Program Control

Repeat instruction Chapter 5, Program Control

Reset Chapter 5, Program Control

Stack Chapter 5, Program Control

Status registers Chapter 4, Central Processing Unit

2.6 Serial-Scan Emulation

The ’C24x has seven pins dedicated to the serial scan emulation port (JTAG
port). This port allows for non-intrusive emulation of ’C24x devices, and is sup-
ported by Texas Instruments emulation tools and by many third party debugger
tools. For documentation on these emulation and debugger tools, see Related
Documentation From Texas Instruments in the preface section of this book,
and Design Considerations for Using XDS510 Emulator in Appendix C.



3-1Memory and I/O Spaces

Memory and I/O Spaces

The ’C24x has a 16-bit address line that accesses four individually selectable
spaces (224K words total):

� A 64K-word program space
� A 64K-word local data space
� A 32K-word global data space
� A 64K-word I/O space

This chapter describes these four spaces and shows memory maps for pro-
gram, data, and I/O spaces. It also describes available ’C24x memory 
configuration options.

Topic Page

3.1 Overview of Memory and I/O Spaces 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 Program Memory 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 Data Memory 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.4 Global Data Memory 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.5 I/O Space 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 3



Overview of Memory and I/O Spaces

3-2

3.1 Overview of Memory and I/O Spaces

The ’C24x design is based on an enhanced Harvard architecture. The ’C24x
has multiple memory spaces accessible on three parallel buses: a program
address bus (PAB), a data-read address bus (DRAB), and a data-write ad-
dress bus (DWAB). Each of the three buses access different memory spaces
for different phases of the device’s operation. Because the bus operations are
independent, it is possible to access both the program and data spaces simul-
taneously. Within a given machine cycle, the CALU can execute as many as
three concurrent memory operations.

The ’C24x address map is organized into four individually selectable spaces:

� Program memory  (64K words) contains the instructions to be executed,
as well as data used during program execution.

� Data memory (64K words) holds data used by the instructions.

� Global data memory  (32K words) shares data with other devices or
serves as additional data space.

� Input/output (I/O) space  (64K words) interfaces to external peripherals
and may contain on-chip registers.

These spaces provide a total address space of 224K words. The ’C24x in-
cludes on-chip memory to aid in system performance and integration, and nu-
merous addresses that can be used for external memory and I/O devices.

The advantages of operating from on-chip memory are:

� Higher performance than external memory (because the wait states re-
quired for slower external memories are avoided)

� Lower cost than external memory

� Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a
larger address space.

The memory maps shown in Figure 3–1 are generic for all ’C24x devices; how-
ever, each device has its own set of memory maps. ’C24x devices are avail-
able with different combinations of on-chip memory and peripherals. You
should refer to the appropriate data sheet for details about a specific device.



Overview of Memory and I/O Spaces

3-3Memory and I/O Spaces

Figure 3–1. Generic Memory Maps for ’C24x DSP Controllers

ÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄ

ÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄ

Reserved/
illegal

ÂÂÂÂÂÂ
ÂÂÂÂÂÂ
ÂÂÂÂÂÂ
ÂÂÂÂÂÂ

ÂÂÂÂÂÂ
ÂÂÂÂÂÂ

Reserved/
illegal

Reserved/
illegal

ÂÂÂÂÂÂ
ÂÂÂÂÂÂ

0000

005F
0060

01FF

02FF
0300

0200

03FF
0400

7000 Peripheral memory-
mapped registers
(system,WD, ADC,
SCI, SPI, CAN, I/O,

interrupts)73FF
7400

743F
7440

Data
Hex

007F
0080

8000

External

FFFF

7FFF

Memory-mapped
registers/reserved

addresses

On-chip
DARAM B2

On-chip DARAM
(B0)‡ (CNF = 0)

reserved (CNF = 1)

On-chip
DARAM (B1) §

6FFF

Peripheral
memory-mapped

registers
(event manager)

0000

003F
0040

FEFF

FDFF
FE00

Hex

External

On-chip DARAM
(B0)† (CNF = 1)

external (CNF = 0)

Program

FF00

FFFF

Illegal

Interrupt
vectors

Reserved †

 (CNF = 1)
external (CNF = 0)

On-chip
Flash/ROM

0000

External

FF0E

I/O
Hex

FFFF
Wait-state generator

control register
(on-chip)

Flash control
mode register

Reserved

FEFF
FF00

FF10

FFFE

FF0F

On-chip FLASH memory, (16K or 8K) if MP/MC  = 0
external program memory, if MP/MC  = 1

3FFF or 1FFF

4000 or 2000

† When CNF = 1, addresses FE00h–FEFFh and FF00h–FFFFh are mapped to the same physical block (B0) in program-memory
space. For example, a write to FE00h will have the same effect as a write to FF00h. For simplicity, addresses FE00h–FEFFh
are referred to as reserved when CNF = 1.

‡ When CNF = 0, addresses 0100h–01FFh and 0200h–02FFh are mapped to the same physical block (B0) in data-memory
space. For example, a write to 0100h will have the same effect as a write to 0200h. For simplicity, addresses 0100h–01FFh are
referred to as reserved.

§ Addresses 0300h–03FFh and 0400h–04FFh are mapped to the same physical block (B1) in data-memory space. For example,
a write to 0400h has the same effect as a write to 0300h. For simplicity, addresses 0400h–04FFh are referred to as reserved.



Program Memory

3-4

3.2 Program Memory

The program-memory space is where the application program code resides;
it can also hold table information and immediate operands. The program-
memory space addresses up to 64K 16-bit words. On the ’C24x device, these
words include on-chip DARAM and on-chip ROM/flash EEPROM. When the
’C24x generates an address outside the set of addresses configured to on-
chip program memory, the device automatically generates an external access,
asserting the appropriate control signals (if an external memory interface is
present). Figure 3–2 shows the ’C24x program memory map.

Figure 3–2. Program Memory Map for ’C24x

0000h

003Fh
0040h

FDFFh
FE00h

FFFF

0000h–0001h

0002h–0003h

0004h–0005h

0006h–0007h

0008h–0009h

000Ah–000Bh

000Ch–000Dh

000Eh–000Fh

0022h–0023h

0024h–0025h

Interrupt vectors and

Flash/ROM
16K/8K words

External

DARAM (B0)
256 words

Reset

Interrupt level 1

Interrupt level 2

Interrupt level 3

Interrupt level 4

Interrupt level 5

Interrupt level 6

TRAP

NMI

(CNF=1)

0010h–0021hSoftware interrupts

Software interrupts 0028h–003Fh

Reserved

Reserved 0026h–0027h

reserved addresses

(External if MP/MC = 1)

(External if CNF = 0)

Note: Flash/ROM memory includes the address range 0000h–003Fh.

3FFF
4000

FEFF
FF00

Reserved



Program Memory

3-5Memory and I/O Spaces

3.2.1 Program Memory Configuration

Depending on which types of memory are included in a particular ’C24x de-
vice, two factors contribute to the configuration of program memory:

� CNF bit.  The CNF bit (bit 12) of status register ST1 determines whether
the addresses for DARAM B0 are available for program space:

� CNF = 0. There is no addressable on-chip program DARAM.

� CNF = 1. The 256 words of DARAM B0 are configured for program
use. At reset, any words of program/data DARAM are mapped into lo-
cal data space (CNF = 0).

� MP/MC pin.  The level on the MP/MC pin determines whether program
instructions are read from on-chip ROM or flash EEPROM (if available) af-
ter reset:

� MP/MC = 0. The device is configured as a microcomputer. The on-
chip ROM/flash EEPROM is accessible. The device fetches the reset
vector from on-chip memory.

� MP/MC = 1. The device is configured as a microprocessor. The device
fetches the reset vector from external memory.

Regardless of the value of MP/MC, the ’C24x fetches its reset vector at
location 0000h of program memory.



Data Memory

3-6

3.3 Data Memory

Data-memory space addresses up to 64K 16-bit words. Each ’C24x device
has three on-chip DARAM blocks: B0, B1, and B2. Block B0 is configurable as
either data memory or program memory. Blocks B1 and B2 are available for
data memory only.

Data memory can be addressed with either of two addressing modes: direct-
addressing or indirect-addressing. Addressing modes are described in detail
in Chapter 6.

When direct addressing is used, data memory is addressed in blocks of 128
words called data pages. The entire 64K of data memory consists of 512 data
pages labeled 0 through 511. The current data page is determined by the value
in the 9-bit data page pointer (DP) in status register ST0. Each of the 128 words
on the current page is referenced by a 7-bit offset, which is taken from the
instruction that is using direct addressing. Therefore, when an instruction uses
direct addressing, you must specify both the data page (with a preceding
instruction) and the offset (in the instruction that accesses data memory).

Figure 3–3. Pages of Data Memory

Data Memory

Page 0: 0000h–007Fh

Page 1: 0080h–00FFh

Page 2: 0100h–017Fh

Page 511: FF80h–FFFFh

.

000 0000

OffsetDP Value

0000 0000 0

111 11110000 0000 0
0000 0000 1

0000 0000 1

1111 1111 1

1111 1111 1

000 0000

111 1111

000 0000

111 1111

0000 0001 0

000 0000

111 1111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.0000 0001 0

..

.

..

. ..
.

..

.

..

.

..

. ..
.



Data Memory

3-7Memory and I/O Spaces

3.3.1 Data Page 0 Address Map

The data memory also includes the device’s memory-mapped registers
(MMR), which reside at the top of data page 0 (addresses 0000h–007Fh).
Note the following:

� The three registers that can be accessed with zero wait states are:

� Interrupt mask register (IMR)
� Global memory allocation register (GREG)
� Interrupt flag register (IFR)

� The test/emulation reserved area is used by the test and emulation sys-
tems for special information transfers.

Do Not Write to Test/Emulation Addresses

Writing to the test/emulation addresses can cause the device to
change its operating mode and, therefore, affect the operation of
an application.

� The scratch-pad RAM block (B2) includes 32 words of DARAM that pro-
vide for variable storage without fragmenting the larger RAM blocks,
whether internal or external. This RAM block supports dual-access opera-
tions and can be addressed via any data-memory addressing mode.

Table 3–1 shows the address map of data page 0.

Table 3–1. Data Page 0 Address Map

Address Name Description

0000h–0003h – Reserved

0004h IMR Interrupt mask register

0005h GREG Global memory allocation register

0006h IFR Interrupt flag register

0023h–0027h – Reserved

002Bh–002Fh – Reserved for test/emulation

0060h–007Fh B2 Scratch-pad RAM (DARAM B2)



Data Memory

 3-8

3.3.2  Data Memory Configuration

The following contributes to the configuration of data memory:

� CNF bit.  The CNF bit (bit 12) of status register ST1 determines whether
the on-chip DARAM B0 is mapped into local data space or into program
space.

� CNF = 1. DARAM B0 is used for program space.

� CNF = 0. B0 is used for data space.

At reset, B0 is mapped into local data space (CNF = 0).



Global Data Memory

3-9Memory and I/O Spaces

3.4 Global Data Memory

Addresses in the upper 32K words (8000h–FFFFh) of local data memory can
be used for global data memory. The global memory allocation register
(GREG) determines the size of the global data-memory space, which is be-
tween 256 and 32K words. The GREG is connected to the eight LSBs of the
internal data bus and is memory-mapped to data-memory location 0005h.
Table 3–2 shows the allowable GREG values and shows the corresponding
address range set aside for global data memory. Any remaining addresses
within 8000h–FFFFh are available for local data memory.

Note:

Choose only the GREG values listed in Table 3–2. Other values lead to frag-
mented memory maps.

Table 3–2. Global Data Memory Configurations

GREG Value           Local Memory                   Global Memory

High Byte Low Byte Range Words Range Words

XXXX XXXX 0000 0000 0000h–FFFFh 65�536 – 0

XXXX XXXX 1000 0000 0000h–7FFFh 32�768 8000h–FFFFh 32�768

XXXX XXXX 1100 0000 0000h–BFFFh 49�152 C000h–FFFFh 16�384

XXXX XXXX 1110 0000 0000h–DFFFh 57�344 E000h–FFFFh 8�192

XXXX XXXX 1111 0000 0000h–EFFFh 61�440 F000h–FFFFh 4�096

XXXX XXXX 1111 1000 0000h–F7FFh 63�488 F800h–FFFFh 2�048

XXXX XXXX 1111 1100 0000h–FBFFh 64�512 FC00h–FFFFh 1�024

XXXX XXXX 1111 1110 0000h–FDFFh 65�024 FE00h–FFFFh 512

XXXX XXXX 1111 1111 0000h–FEFFh 65�280 FF00h–FFFFh 256

Note: X = Don’t care

When a program accesses any data address, the ’C24x drives the DS signal
low. If that address is within the range defined by the GREG as a global ad-
dress, BR signal is also asserted. Because BR differentiates local and global
accesses, the addresses configured by the GREG value are an additional data
space. The external data-address range is extended by the selected amount
of global space (up to 32K words).

Global memory is available only on devices with an external memory interface.
In other devices, this space and the GREG register are reserved.



Global Data Memory

3-10

As an example of configuring global memory, suppose you want to designate
8K data-memory addresses as global addresses. To do this, you write the 8-bit
value 11100000 to the GREG (see Figure 3–4). This designates addresses
E000h–FFFFh of data memory as global data addresses (see Figure 3–5).

Figure 3–4. GREG Register Set to Configure 8K for Global Data Memory

8 MSBs 8 LSBs

X X X X X X X X 1 1 1 0 0 0 0 0

(Don’t cares) Set for 8K of global data memory

Figure 3–5. Global and Local Data Memory for GREG = 11100000

Data memory map

FFFFh

8000h

0000h

Upper 32K × 16
(local and/or global)

7FFFh

Data memory

GREG = 11100000

Global (8K × 16)

Local (24K × 16)

E000h
DFFFh

8000h

FFFFh



I/O Space

3-11Memory and I/O Spaces

3.5 I/O Space

The I/O space memory addresses up to 64K 16-bit words. Figure 3–6 shows
the I/O-space address map for the ’C24x.

Figure 3–6. I/O-Space Address Map for ’C24x

FFFF

FFFE

FF10

FF0F

FF0E

FF00

FEFF

0000

register
generator control

Wait-state

Reserved

mode register
Flash control

Reserved

External

The I/O space is useful for mapping external peripherals and flash control reg-
isters. This I/O space is a generic space available for the ’C24x core. Depend-
ing on the specific device within the ’C24x family, the I/O space is partially avail-
able or disabled. You should refer to the specific data sheet for exact details.

External I/O space is available only in ’24x devices that have an external
memory interface; otherwise, this space is reserved.



4-1

Central Processing Unit

This chapter describes the ’C24x central processing unit (CPU) and its opera-
tions. Because of its parallel architectural design, the ’C24x CPU can perform
high-speed arithmetic operations within one instruction cycle.

Three fundamental sections of the CPU are presented (see Figure 4–1) along
with a description of the auxiliary register arithmetic unit (ARAU), which per-
forms arithmetic operations independently of the central arithmetic logic 
section. The chapter concludes with a description of status registers ST0 and
ST1. These registers contain bits for determining processor modes, address-
ing pointer values, and indicating various processor conditions and arithmetic
logic results.

Topic Page

4.1 Input Scaling Section 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 Multiplication Section 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Central Arithmetic Logic Section 4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.4 Auxiliary Register Arithmetic Unit (ARAU) 4-12. . . . . . . . . . . . . . . . . . . . . 

4.5 Status Registers ST0 and ST1 4-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.6 External Memory Interface Operation 4-18. . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4



4-2

Figure 4–1. Block Diagram of the Input Scaling, Central Arithmetic Logic, and
Multiplication Sections of the CPU

32

Input shifter (32 bits)

16

32

Output shifter (32 bits)

32

C Accumulator

CALU

32

32

MUX

32

16

MUX MUX

16 16

PREG

Multiplier
16 × 16

16

Data write bus (DWEB)

Data read bus (DRDB)

TREG

1616

Program read bus (PRDB)

16

16

Product shifter (32 bits)

16

Central arithmetic logic
section

Multiplication
section

31 016 15

32

Input scaling
section

Central Processing Unit



Input Scaling Section

4-3Central Processing Unit

4.1 Input Scaling Section

A 32-bit input data-scaling shifter (input shifter) aligns the 16-bit value from
memory to the 32-bit central arithmetic logic unit (CALU). This data alignment
is necessary for data-scaling arithmetic, as well as aligning masks for logical
operations. The input shifter operates as part of the data path between pro-
gram or data space and the CALU; and therefore, requires no cycle overhead.
Described below are the input, output, and shift count of the input shifter.
Figure 4–2, Block Diagram of the Input Scaling Section, can be used as a ref-
erence throughout the discussion.

Figure 4–2. Block Diagram of the Input Scaling Section

Input shifter (32 bits)

16

32

16

MUX

31 016 15

Input scaling
section

16

From data memory (DRDB)
From program memory (PRDB)

To CALU

Input . Bits 15 through 0 of the input shifter accept a 16-bit input from either of
two sources (see Figure 4–2):

� The data read bus (DRDB). This input is a value from a data memory loca-
tion referenced in an instruction operand.

� The program read bus (PRDB). This input is a constant value given as an
instruction operand.

Output . After a value has been accepted into bits 15 through 0, the input shifter
aligns the16-bit value to the 32-bit bus of the CALU as shown in Figure 4–2.
The shifter shifts the value left 0 to 16 bits and then sends the 32-bit result to
the CALU.

During the left shift, unused LSBs in the shifter are filled with 0s, and unused
MSBs in the shifter are either filled with 0s or sign extended, depending on the
value of the sign-extension mode bit (SXM) of status register ST1.



Input Scaling Section

 4-4

Shift count . The shifter can left shift a 16-bit value by 0 to 16 bits. The size
of the shift (or the shift count) is obtained from one of two sources:

� A constant embedded in the instruction word. Putting the shift count in the
instruction word allows you to use specific data-scaling or alignment op-
erations customized for your program code.

� The four LSBs of the temporary register (TREG). The TREG-based shift
allows the data-scaling factor to be determined dynamically so that it can
be adapted to the system’s performance.

Sign-extension mode bit.  For many (but not all) instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, the output of the input shifter is sign extended.
Figure 4–3 shows an example of an input value shifted left by eight bits for
SXM = 0. The MSBs of the value passed to the CALU are zero filled.
Figure 4–4 shows the same shift but with SXM = 1. The value is sign extended
during the shift.

Figure 4–3. Operation of the Input Shifter for SXM = 0

Output value
after left shift of 8

(SXM = 0)

X X X X A F 1 1

16

Input shifter
accepting the

value
32

0 0 A F 1 1 0 0

A F 1 1

Figure 4–4. Operation of the Input Shifter for SXM = 1

Output value
after left shift of 8

(SXM = 1)

X X X X A F 1 1
Input shifter

accepting the
value

32

F F A F 1 1 0 0

A F 1 1



Multiplication Section

4-5Central Processing Unit

4.2 Multiplication Section

The ’C24x uses a 16-bit × 16-bit hardware multiplier that can produce a signed
or unsigned 32-bit product in a single machine cycle. As shown in Figure 4–5,
the multiplication section consists of:

� The 16-bit temporary register (TREG), which holds one of the multipli-
cands

� The multiplier, which multiplies the TREG value by a second value from
data memory or program memory

� The 32-bit product register (PREG), which receives the result of the multi-
plication

� The product shifter, which scales the PREG value before passing it to the
CALU

Figure 4–5. Block Diagram of the Multiplication Section

32

MUX

PREG

Multiplier
16×16

16

TREG

Product shifter (32 bits)

Multiplication
section

From data memory

16

From data
memory

16

From program memory

16

To CALU

32

From data memory

16

16
To data memory

To high word
of PREG

4.2.1 Multiplier

The 16-bit × 16-bit hardware multiplier can produce a signed or unsigned
32-bit product in a single machine cycle. The two numbers being multiplied are
treated as 2s-complement numbers, except during unsigned multiplication
(MPYU instruction). Descriptions of the inputs to, and output of, the multiplier
follow.



Multiplication Section

4-6

Inputs . The multiplier accepts two 16-bit inputs:

� One input is always from the 16-bit temporary register (TREG). The TREG
is loaded before the multiplication with a data-value from the data read bus
(DRDB).

� The other input is one of the following:

� A data-memory value from the data read bus (DRDB)
� A program memory value from the program read bus (PRDB)

Output . After the two 16-bit inputs are multiplied, the 32-bit result is stored in
the product register (PREG). The output of the PREG is connected to the 32-bit
product-scaling shifter. Through this shifter, the product is transferred from the
PREG to the CALU or to data memory (by the SPH and SPL instructions).

4.2.2 Product-Scaling Shifter

The product-scaling shifter (product shifter) facilitates scaling of the product
register (PREG) value. The shifter has a 32-bit input connected to the output
of the PREG and a 32-bit output connected to the input of the CALU.

Input . The shifter has a 32-bit input connected to the output of the PREG.

Output . After the shifter completes the shift, all 32 bits of the result can be
passed to the CALU, or 16 bits of the result can be stored to data memory.

Shift Modes . This shifter uses one of four product shift modes, summarized
in Table 4–1. As shown in the table, these modes are determined by the prod-
uct shift mode (PM) bits of status register ST1. In the first shift mode (PM = 00),
the shifter does not shift the product at all before giving it to the CALU or to data
memory. The next two modes cause left shifts (of one or four), which are useful
for implementing fractional arithmetic or justifying products. The right-shift
mode shifts the product by six bits, enabling the execution of up to 128 consec-
utive multiply-and-accumulate operations without causing the accumulator to
overflow. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there.

Note:

The right shift in the product shifter is always sign extended, regardless of
the value of the sign-extension mode bit (SXM) of status register ST1.



Multiplication Section

4-7Central Processing Unit

Table 4–1. Product Shift Modes for the Product-Scaling Shifter

ÁÁ
ÁÁ

PMÁÁÁÁ
ÁÁÁÁ

Shift ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Comments †

ÁÁ
ÁÁ

00ÁÁÁÁ
ÁÁÁÁ

No shiftÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Product sent to CALU or data write bus (DWEB) with no shift
ÁÁ
ÁÁ
ÁÁ

01
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Left 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Removes the extra sign bit generated in a 2s-complement multiply
to produce a Q31 product

ÁÁ
ÁÁ
ÁÁ
ÁÁ

10c
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Left 4
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Removes the extra four sign bits generated in a 16-bit × 13-bit
2s-complement multiply to produce a Q31 product when multiplying
by a 13-bit constant

ÁÁ
ÁÁ
ÁÁ
ÁÁ

11ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Right 6ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Scales the product to allow up to 128 product accumulations without
overflowing the accumulator. The right shift is always sign extended,
regardless of the value of the sign-extension mode bit (SXM) of
status register ST1.

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† A Q31 number is a binary fraction in which there are 31 digits to the right of the binary point
(the base 2 equivalent of the base 10 decimal point).



Central Arithmetic Logic Section

 4-8

4.3 Central Arithmetic Logic Section

The main components of the central arithmetic logic section shown in
Figure 4–6 are:

� The central arithmetic logic unit (CALU), which implements a wide range
of arithmetic and logic functions

� The 32-bit accumulator (ACC), which receives the output of the CALU and
is capable of performing bit shifts on its contents with the help of the carry
bit (C). Figure 4–6 shows the accumulator’s high word (ACCH) and low
word (ACCL).

� The output shifter, which can shift a copy of either the high word or low
word of the accumulator before sending it to data memory for storage

Figure 4–6. Block Diagram of the Central Arithmetic Logic Section

ACCH

32

32

Output shifter (32 bits)

32

C ACCL

CALU

MUXCentral arithmetic logic
section

32

From product shifter
From input shifter

3232

To data memory

16



Central Arithmetic Logic Section

4-9Central Processing Unit

4.3.1 Central Arithmetic Logic Unit (CALU)

The CALU implements a wide range of arithmetic and logic functions, most of
which execute in a single clock cycle. These functions can be grouped into four
categories:

� 16-bit addition
� 16-bit subtraction
� Boolean logic operations
� Bit testing, shifting, and rotating

Because the CALU can perform Boolean operations, you can perform bit ma-
nipulation. For bit shifting and rotating, the CALU uses the accumulator. The
CALU is referred to as central because there is an independent arithmetic unit,
the auxiliary register arithmetic unit (ARAU), which is described in Section 4.4.
A description of the inputs, the output, and an associated status bit of the CALU
follows.

Inputs . The CALU has two inputs (see Figure 4–6):

� One input is always provided by the 32-bit accumulator.

� The other input is provided by one of the following:

� The product-scaling shifter (see section 4.2.2)
� The input data-scaling shifter (see Section 4.1)

Output . Once the CALU performs an operation, it transfers the result to the
32-bit accumulator, which is capable of performing bit shifts of its contents. The
output of the accumulator is connected to the 32-bit output data-scaling shifter.
Through the output shifter, the accumulator’s upper and lower 16-bit words
can be individually shifted and stored to data memory.

Sign-extension mode bit.  For many but not all instructions, the sign-exten-
sion mode bit (SXM), bit 10 of status register ST1, determines whether the
CALU uses sign extension during its calculations. If SXM = 0, sign extension
is suppressed. If SXM = 1, sign extension is enabled.

4.3.2 Accumulator

Once the CALU performs an operation, it transfers the result to the 32-bit accu-
mulator, which can then perform single-bit shifts or rotations on its contents.
Each of the accumulator’s upper and lower 16-bit words can be passed to the
output data-scaling shifter, where it can be shifted and then stored in data
memory. The following describes the status bits and branch instructions
associated with the accumulator.



Central Arithmetic Logic Section

 4-10

Status bits . Four status bits are associated with the accumulator:

� Carry bit (C). C (bit 9 of status register ST1) is affected during:

� Additions to and subtractions from the accumulator:

C = 0 When the result of a subtraction generates a borrow

When the result of an addition does not generate a carry
(Exception: When the ADD instruction is used with a shift
of 16 and no carry is generated, the ADD instruction has
no effect on C.)

C = 1 When the result of an addition generates a carry

When the result of a subtraction does not generate a bor-
row (Exception: When the SUB instruction is used with a
shift of 16 and no borrow is generated, the SUB instruction
has no effect on C.)

� Single-bit shifts and rotations of the accumulator value. During a left
shift or rotation, the MSB of the accumulator is passed to C; during a
right shift or rotation, the LSB is passed to C.

� Overflow mode bit (OVM). OVM (bit 11 of status register ST0) determines
how the accumulator reflects arithmetic overflows. When the processor is
in overflow mode (OVM = 1) and an overflow occurs, the accumulator is
filled with one of two specific values:

� If the overflow is in the positive direction, the accumulator is filled with
its most positive value (7FFF FFFFh).

� If the overflow is in the negative direction, the accumulator is filled with
its most negative value (8000 0000h).

� Overflow flag bit (OV). OV is bit 12 of status register ST0. When no accu-
mulator overflow is detected, OV is latched at 0. When overflow (positive
or negative) occurs, OV is set to 1 and latched.

� Test/control flag bit (TC). TC (bit 11 of status register ST1) is set to 0 or 1
depending on the value of a tested bit. In the case of the NORM instruction,
if the exclusive-OR of the two MSBs of the accumulator is true, TC is set
to 1.

A number of branch instructions are implemented, based on the status of bits
C, OV, and TC, and on the value in the accumulator (as compared to 0). For
more information about these instructions, see Section 5.4, Conditional
Branches, Calls, and Returns, on page 5-10.



Central Arithmetic Logic Section

4-11Central Processing Unit

4.3.3 Output Data-Scaling Shifter

The output data-scaling shifter (output shifter) has a 32-bit input connected to
the 32-bit output of the accumulator and a 16-bit output connected to the data
bus. The shifter copies all 32 bits of the accumulator and then performs a left
shift on its content; it can be shifted from zero to seven bits, as specified in the
corresponding store instruction. The upper word (SACH instruction) or lower
word (SACL instruction) of the shifter is then stored to data memory. The con-
tent of the accumulator remains unchanged.

When the output shifter performs the shift, the MSBs are lost and the LSBs are
zero filled. Figure 4–7 shows an example in which the accumulator value is
shifted left by four bits and the shifted high word is stored to data memory.
Figure 4–8 shows the same accumulator value shifted left by six bits and the
shifted low word stored.

Figure 4–7. Shifting and Storing the High Word of the Accumulator

Data-memory
location

0 0 F 0 F 0 A 1

0 F 0 F 0 A 1 0

32

Output shifter
(left shift by 4 bits)

Accumulator

16

0 F 0 F

Figure 4–8. Shifting and Storing the Low Word of the Accumulator

Data-memory
location

0 0 F 0 F 0 A 1

3 C 3 C 2 8 4 0

32

Output shifter
(left shift by 6 bits)

Accumulator

16

2 8 4 0



Auxiliary Register Arithmetic Unit (ARAU)

4-12

4.4 Auxiliary Register Arithmetic Unit (ARAU)

The CPU also contains the ARAU, an arithmetic unit independent of the CALU.
The main function of the ARAU is to perform arithmetic operations on eight
auxiliary registers (AR7 through AR0) in parallel with operations occurring in
the CALU. Figure 4–9 shows the ARAU and related logic.

Figure 4–9. ARAU and Related Logic

16

3

16

16

16

16

16

16

16

16

Data write bus (DWEB)

ARAU

ARB

3

8 LSBs

3 LSBs
Instruction register

MUX

Data read bus (DRDB)

MUX

ARP

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

16

16

3

Data-read address bus (DRAB)

Data-write address bus (DWAB)

16



Auxiliary Register Arithmetic Unit (ARAU)

4-13Central Processing Unit

The eight auxiliary registers (AR7–AR0) provide flexible and powerful indirect
addressing. Any location in the 64K data memory space can be accessed 
using a 16-bit address contained in an auxiliary register. For details of indirect
addressing, see Section 6.3 on page 6-9.

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register ST0 with a value from 0 through 7. The ARP can be
loaded as a primary operation by the MAR instruction (which only performs
modifications to the auxiliary registers and the ARP), or by the LST instruction
(which can load a data-memory value to ST0 by way of the data read bus,
DRDB). The ARP can be loaded as a secondary operation by any instruction
that supports indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rent auxiliary register is used as the address where the data-memory access
will take place. The ARAU passes this address to the data-read address bus
(DRAB) if the instruction requires a read from data memory; or, it passes the
address to the data-write address bus (DWAB) if the instruction requires a
write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the
ARAU, which implements unsigned 16-bit arithmetic.

4.4.1 ARAU Functions

The ARAU performs the following operations:

� Increments or decrements an auxiliary register value by 1 or by an index
amount (by way of any instruction that supports indirect addressing)

� Adds a constant value to an auxiliary register value (ADRK instruction) or
subtracts a constant value from an auxiliary register value (SBRK instruc-
tion). The constant is an 8-bit value taken from the eight LSBs of the
instruction word.

� Compares the content of AR0 with the content of the current AR and puts
the result in the test/control flag bit (TC) of status register ST1 (CMPR
instruction). The result is passed to TC by way of the data write bus
(DWEB).

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operations is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: During processing of the NORM
instruction, the auxiliary register and/or ARP modification is done during the
execute phase of the pipeline. For information on the operation of the pipeline,
see Section 5.2 on page 5-7.



Auxiliary Register Arithmetic Unit (ARAU)

 4-14

4.4.2 Auxiliary Register Functions

In addition to using the auxiliary registers to reference data-memory address-
es, you can use them for other purposes. For example, you can:

� Use the auxiliary registers to support conditional branches, calls, and re-
turns by using the CMPR instruction. This instruction compares the con-
tent of AR0 with the content of the current AR and puts the result in the
test/control flag bit (TC) of status register ST1.

� Use the auxiliary registers for temporary storage by using the LAR instruc-
tion to load values into the registers and the SAR instruction to store AR
values to data memory

� Use the auxiliary registers as software counters, incrementing or decre-
menting them as necessary



Status Registers ST0 and ST1

4-15Central Processing Unit

4.5 Status Registers ST0 and ST1

The ’C24x has two status registers, ST0 and ST1, which contain status and
control bits. These registers can be stored to, and loaded from, data memory.
This allows the status of the machine to be saved and restored for subroutines.

The LST (load status register) instruction writes to ST0 and ST1, and the SST
(store status register) instruction reads from ST0 and ST1 (with the exception
of the INTM bit, which is not affected by the LST instruction). Many of the indi-
vidual bits of these registers can be set and cleared using the SETC and CLRC
instructions. For example, the sign-extension mode is set with SETC SXM and
cleared with CLRC SXM.

Figure 4–10 and Figure 4–11 show the organization of status registers ST0
and ST1, respectively. Several bits in the status registers are reserved; they
are always read as logic 1s. The other bits are described in alphabetical order
in Table 4–2.

Figure 4–10. Status Register ST0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARP OV OVMÉÉÉ
ÉÉÉ

1† INTM DP

R/W–x R/W–0 R/W–x R/W–1 R/W–x

Note: R = Read access; W = Write access; value following dash (–) is value after reset (x means value not affected by reset).

† This reserved bit is always read as 1. Writes have no effect on it.

Figure 4–11. Status Register ST1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARB CNF TC SXM C ÉÉ
ÉÉ

1†ÉÉÉ
ÉÉÉ

1† ÉÉ
ÉÉ

1†ÉÉ
ÉÉ

1† XF ÉÉ
ÉÉ

1†ÉÉ
ÉÉ

1† PM

R/W–x R/W–0 R/W–x R/W–1 R/W–1 R/W–1 R/W–00

Note: R = Read access; W = Write access; value following dash (–) is value after reset (x means value not affected by reset).

† These reserved bits are always read as 1s. Writes have no effect on them.



Status Registers ST0 and ST1

 4-16

Table 4–2. Bit Fields of Status Registers ST0 and ST1 

Name Description

ARB Auxiliary register pointer buffer.  Whenever the auxiliary register pointer (ARP) is loaded, the
previous ARP value is copied to the ARB, except during an LST (load status register) instruction.
When the ARB is loaded by an LST instruction, the same value is also copied to the ARP.

ARP Auxiliary register pointer.  This 3-bit field selects which auxiliary register (AR) to use in indirect
addressing. When the ARP is loaded, the previous ARP value is copied to the ARB register, ex-
cept during an LST (load status register) instruction. The ARP may be modified by memory-refer-
ence instructions using indirect addressing, and by the MAR (modify auxiliary register) and LST
instructions. When the ARB is loaded by an LST instruction, the same value is also copied to the
ARP. For more details on the use of ARP in indirect addressing, see Section 6.3, Indirect Addres-
sing Mode, on page 6-9.

C Carry bit . This bit is set to 1 if the result of an addition generates a carry, or cleared to 0 if the result
of a subtraction generates a borrow. Otherwise, it is cleared after an addition or set after a subtrac-
tion, except if the instruction is ADD or SUB with a 16-bit shift. In these cases, ADD can only set
and SUB only clear the carry bit, but cannot affect it otherwise. The single-bit shift and rotate
instructions also affect this bit, as well as the SETC, CLRC, and LST instructions. The conditional
branch, call, and return instructions can execute, based on the status of C. C is set to 1 on reset.

CNF On-chip DARAM configuration bit . This bit determines whether reconfigurable dual-access
RAM blocks are mapped to data space or to program space. The CNF bit may be modified by the
SETC CNF, CLRC CNF, and LST instructions. Reset clears the CNF bit to 0. For more information
about CNF and the dual-access RAM blocks, see Chapter 3, Memory and I/O Spaces.

CNF = 0 Reconfigurable dual-access RAM blocks are mapped to data space.

CNF = 1 Reconfigurable dual-access RAM blocks are mapped to program space.

DP Data page pointer.  When an instruction uses direct addressing, the 9-bit DP field is concatenated
with the seven LSBs of the instruction word to form a full 16-bit data-memory address. For more
details, see Section 6.2, Direct Addressing Mode, on page 6-4. The LST and LDP (load DP)
instructions can modify the DP field.

INTM Interrupt mode bit . This bit enables or disables all maskable interrupts. INTM is set and cleared
by the SETC INTM and CLRC INTM instructions, respectively. INTM has no effect on the non-
maskable interrupts RS and NMI or on interrupts initiated by software. INTM is unaffected by the
LST (load status register) instruction. INTM is set to 1 when an interrupt trap is taken (except in
the case of the TRAP instruction) and at reset.

INTM = 0 All unmasked interrupts are enabled.

INTM = 1 All maskable interrupts are disabled.

OV Overflow flag bit.  This bit holds a latched value that indicates whether overflow has occurred in
the CALU. OV is set to 1 when an overflow occurs in the CALU. Once an overflow occurs, the OV
bit remains set until it is cleared by a reset, a conditional branch on overflow (OV) or no overflow
(NOV), or an LST instruction.



Status Registers ST0 and ST1

4-17Central Processing Unit

Table 4–2. Bit Fields of Status Registers ST0 and ST1 (Continued)

Name Description

OVM Overflow mode bit. OVM determines how overflows in the CALU are handled. The SETC and
CLRC instructions set and clear this bit, respectively. An LST instruction can also be used to
modify OVM.

OVM = 0 Results overflow normally in the accumulator.

OVM = 1 The accumulator is set to either its most positive or negative value upon encounter-
ing an overflow. (See subsection 4.3.2, Accumulator, on page 4-9.)

PM Product shift mode.  PM determines the amount that the PREG value is shifted on its way to the
CALU or to data memory. Note that the content of the PREG remains unchanged; the value is
copied to the product shifter and shifted there. PM is loaded by the SPM and LST instructions.
The PM bits are cleared by reset.

PM = 00 The multiplier’s 32-bit product is passed to the CALU or to data memory with no shift.

PM = 01 The output of the PREG is left shifted one place (with the LSBs zero filled) before
being passed to the CALU or to data memory.

PM = 10 The output of the PREG is left shifted four bits (with the LSBs zero filled) before being
passed to the CALU or to data memory.

PM = 11 This mode produces a right shift of six bits, sign extended.

SXM Sign-extension mode bit. SXM does not affect the basic operation of certain instructions. For
example, the ADDS instruction suppresses sign extension regardless of SXM. This bit is set by
the SETC SXM instruction, cleared by the CLRC SXM instruction, and may be loaded by the LST
instruction. SXM is set to 1 by reset.

SXM = 0 This mode suppresses sign extension.

SXM = 1 In this mode, data values that are shifted in the input shifter are sign extended before
they are passed to the CALU.

TC Test/control flag bit.  The TC bit is set to 1 if a bit tested by BIT or BITT is a 1, if a compare condi-
tion tested by CMPR exists between the current auxiliary register and AR0, or if the exclusive-OR
function of the two MSBs of the accumulator is true when tested by a NORM instruction. The
conditional branch, call, and return instructions can execute, based on the condition of the TC bit.
The TC bit is affected by the BIT, BITT, CMPR, LST, and NORM instructions.

XF XF pin status bit . This bit determines the state of the XF pin, which is a general-purpose output
pin. XF is set by the SETC XF instruction and cleared by the CLRC XF instruction. XF can also
be modified with an LST instruction. XF is set to 1 by reset.



External Memory Interface Operation

 4-18

4.6 External Memory Interface Operation

Some of the ’24x DSP controller devices have an external memory interface.
This section explains the behavior of the ’24x external memory timings based
on the PS, DS, IS, BR, STRB, RD, LR, and R/W signals.

All bus cycles comprise integral numbers of CLKOUT cycles. One CLKOUT
cycle is defined to be from one falling edge of CLKOUT to the next falling edge
of CLKOUT. For full-speed, 0-wait-state operation, reads require one cycle. A
write immediately preceded by a read or immediately followed by a read re-
quires three cycles. (Refer to Figure 4–12 on page 4-18, Figure 4–13 on page
4-20, and Figure 4–14 on page 4-20 for read and write timing cycles.) These
timing models explain CPU and external memory signal behavior during back-
to-back write, without wait state, and with one wait state. External READY tim-
ings in ’C24x devices can be satisfied only if internal wait state is at least one.
Refer to the respective datasheet  for specific timing values.

Figure 4–12. External Interface Operation for Read-Read-Write (Zero Wait States)

1-cycle read
1-cycle read

ReadRead

STRB

IS,DS,PS

WE

RD

R/W

DATA

ADDRESS

CLKOUT

3-cycle write

Write data

For read cycles, STRB goes low and ADDRESS becomes valid with the falling
edge of CLKOUT. For 0-wait-state read cycles, the RD� signal goes low with
the rising edge of CLKOUT and then goes high at the next falling edge of
CLKOUT. For 1-wait-state (multicycle) read cycles, the RD stays low but goes
high with the falling edge of CLKOUT before the next cycle, even if the cycles
are contiguous. Read data is sampled at the rising edge of RD.
† In some devices (F240), the external RD is replaced with an inverted R/W signal.



External Memory Interface Operation

4-19Central Processing Unit

The R/W signal goes high at least one-half cycle of CLKOUT before any read
cycle; for contiguous read cycles, STRB stays low. At the end of a read cycle
or sequence of reads, STRB and RD go high on the falling edge of CLKOUT.

Write cycles always have at least one inactive (pad) cycle of CLKOUT before
and after the actual write operation, including contiguous writes. This allows
a smooth transition between the write and any adjacent bus operations or oth-
er writes. For this pad cycle, STRB and WE are always high. The R/W signal
always changes state on the rising edge of CLKOUT during the pad cycle be-
fore and after a write or series of writes. This prevents bus contention during
a transition between read and write operations. Note that for a series of writes,
R/W stays low.

Timing of valid addresses for writes differs, depending on what activities occur
before and after the write. Between writes, and for the first and last write in a
series, ADDRESS becomes valid on the rising edge of CLKOUT. If a read im-
mediately follows a write or series of writes, ADDRESS becomes valid for that
read cycle one half-cycle of CLKOUT early — that is, on the rising edge, rather
than on the falling edge, of CLKOUT. This is an exception to the usual read
cycle address timing.

For the actual write operation, STRB and WE both go low on the falling edge
of CLKOUT and stay low until the next falling edge of CLKOUT (for 0-wait-state
write cycles). For 1-wait-state (multicycle) writes, STRB and WE remain low
but go high again on the falling edge of CLKOUT at the beginning of the pad
cycle. Write data is driven approximately at the falling edge of STRB and WE
and is held for approximately one half-cycle of CLKOUT after STRB and WE
go high (refer to the TMS320C24x data sheet for actual timing specifications).

Transitions on the external parallel interface control outputs (CLKOUT, STRB,
WE, and RD) are all initiated by the same internal clocks. Since these signals
also use the same output buffer circuitry, they all switch within close tolerances
of each other, as specified in the TMS320C24x data sheet.

Transitions on the address bus and other related outputs (IS, PS, DS, R/W, and
BR) are initiated by the same internal signals that cause transitions on the con-
trol outputs; however, the internal device logic that generates these outputs is
different from the circuitry used for the control outputs. Therefore, transitions
on the address bus and related outputs typically occur later than control-line
transitions.



External Memory Interface Operation

 4-20

Figure 4–13. External Interface Operation for Write-Write-Read (Zero Wait States)

STRB

IS,DS,PS

WE

RD

R/W

DATA

ADDRESS

CLKOUT

1-cycle read

Read

2-cycle write

3-cycle write

Write data Write data

Figure 4–14. External Interface Operation for Read-Write (One Wait State)

Read

2-cycle read with
one READY

generated wait
state

4-cycle write with
one READY

generated wait
state

STRB

IS,PS,DS

WE

RD

R/W

DATA

ADDRESS

CLKOUT

READY

Write data



5-1

Program Control

This chapter discusses the processes and features involved in controlling the
flow of a program on the ’C24x.

Program control involves controlling the order in which one or more blocks of
instructions are executed. Normally, the flow of a program is sequential; the
’C24x executes instructions at consecutive program-memory addresses. At
times, a program must branch to a nonsequential address and then execute
instructions sequentially at that new location. For this purpose, the ’C24x sup-
ports branches, calls, returns, repeats, and interrupts.

Topic Page

5.1 Program-Address Generation 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.2 Pipeline Operation 5-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3 Branches, Calls, and Returns 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Conditional Branches, Calls, and Returns 5-10. . . . . . . . . . . . . . . . . . . . . . 

5.5 Repeating a Single Instruction 5-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.6 Interrupts 5-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.7 CPU Interrupt Registers 5-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 5



Program-Address Generation

5-2

5.1 Program-Address Generation

Program flow requires the processor to generate the next program address
(sequential or nonsequential) while executing the current instruction. Pro-
gram-address generation is illustrated in Figure 5–1 and summarized in
Table 5–1.

Figure 5–1. Program-Address Generation Block Diagram

Interrupt,
branch, or call

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

MUX

Next program address
register (NPAR)

Program counter
(PC/NPAR + 1)

sequential operation

Program address
register (PAR)
dummy cycle

Micro stack
(MSTACK)

table/block move

MUX

Program read bus (PRDB)

Data read bus (DRDB)

Top of stack (TOS)

Program-address
stack

8 � 16

Program address bus (PAB)

Data write bus (DWEB)

PSHD
instruction

Return
from
subroutine

POPD
instruction

Program
control

BACC or CALA
instruction



Program-Address Generation

5-3Program Control

Table 5–1. Program-Address Generation Summary

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Operation ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Program-Address Source

Sequential operation PC (contains program address +1)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Dummy cycle
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

PAR (contains program address)

Return from subroutine Top of the stack (TOS)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Return from table move or block moveÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Microstack (MSTACK)

Branch or call to address specified in
instruction

Branch or call instruction by way of the
program read bus (PRDB)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Branch or call to address specified in
lower half of the accumulator

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Low accumulator by way of the data
read bus (DRDB)

Branch to interrupt service routine Interrupt vector location by way of the
program read bus (PRDB)

The ’C24x program-address generation logic uses the following hardware:

� Program counter (PC).  The ’C24x has a 16-bit program counter (PC) that
addresses internal and external program memory when fetching instruc-
tions.

� Program address register (PAR).  The PAR drives the program address
bus (PAB). The PAB is a 16-bit bus that provides program addresses for
both reads and writes.

� Stack.  The program-address generation logic includes a 16-bit-wide, 8-
level hardware stack for storing up to eight return addresses. In addition,
you can use the stack for temporary storage.

� Microstack (MSTACK).  Occasionally, the program-address generation
logic uses the 16-bit-wide, 1-level MSTACK to store one return address.

� Repeat counter (RPTC).  The 16-bit RPTC is used with the repeat (RPT)
instruction to determine how many times the instruction following RPT is
repeated.



Program-Address Generation

5-4

5.1.1 Program Counter (PC)

The program-address generation logic uses the 16-bit program counter (PC)
to address internal and external program memory. The PC holds the address
of the next instruction to be executed. Through the program address bus
(PAB), an instruction is fetched from that address in program memory and
loaded into the instruction register. When the instruction register is loaded, the
PC holds the next address.

The ’C24x can load the PC in a number of ways, to accommodate sequential
and nonsequential program flow. Table 5–2 shows what is loaded to the PC
according to the code operation performed.

Table 5–2. Address Loading to the Program Counter
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁCode Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁAddress Loaded to the PC

Sequential execution The PC is loaded with PC + 1 if the current instruction has
one word or PC + 2 if the current instruction has two words.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Branch
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with the long immediate value directly fol-
lowing the branch instruction.

Subroutine call and
return

For a call, the address of the next instruction is pushed from
the PC onto the stack, and then the PC is loaded with the
long immediate value directly following the call instruction.
A return instruction pops the return address back into the PC
to return to the calling sequence of code.

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Software or hardware
interrupt

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

The PC is loaded with the address of the appropriate inter-
rupt vector location. At this location is a branch instruction
that loads the PC with the address of the corresponding in-
terrupt service routine.

Computed GOTO The content of the lower 16 bits of the accumulator is loaded
into the PC. Computed GOTO operations can be performed
using the BACC (branch to address in accumulator) or
CALA (call subroutine at location specified by the accumula-
tor) instructions.

5.1.2 Stack

The ’C24x has a 16-bit-wide, 8-level-deep hardware stack. The program-ad-
dress generation logic uses the stack for storing return addresses when a sub-
routine call or interrupt occurs. When an instruction forces the CPU into a sub-
routine or an interrupt forces the CPU into an interrupt service routine, the re-
turn address is loaded to the top of the stack automatically, without the need
for additional cycles. When the subroutine or interrupt service routine is com-



Program-Address Generation

5-5Program Control

plete, a return instruction transfers the return address from the top of the stack
to the program counter.

When the eight levels are not used for return addresses, the stack may be used
for saving context data during a subroutine or interrupt service routine or for
other storage purposes.

You can access the stack with two sets of instructions:

� PUSH and POP.  The PUSH instruction copies the 16 LSBs of the accumu-
lator to the top of the stack. The POP instruction copies the value on the
top of the stack to the 16 LSBs of the accumulator.

� PSHD and POPD.  These instructions allow you to build a stack in data
memory for the nesting of subroutines or interrupts beyond eight levels.
The PSHD instruction pushes a data-memory value onto the top of the
stack. The POPD instruction pops a value from the top of the stack to data
memory.

Whenever a value is pushed onto the top of the stack (by an instruction or by
the address-generation logic), the content of each level is pushed down one
level, and the bottom (eighth) location of the stack is lost. Therefore, data is
lost (stack overflow occurs) if more than eight successive pushes occur before
a pop. Figure 5–2 shows a push operation.

Figure 5–2. A Push Operation
Before Instruction After Instruction

Accumulator Accumulator
or memory 7h or memory 7h

location location

 2h  7h

 5h  2h

Stack  3h Stack  5h

 0h  3h

12h  0h

86h 12h

54h 86h

3Fh 54h



Program-Address Generation

5-6

Pop operations are the reverse of push operations. A pop operation copies the
value at each level to the next higher level. Any pop after seven sequential
pops yields the value that was originally at the bottom of the stack because,
by then, the bottom value has been copied upward to all of the stack levels.
Figure 5–3 shows a pop operation.

Figure 5–3. A Pop Operation
Before Instruction After Instruction

Accumulator Accumulator
or memory 82h or memory 45h

location location

45h 16h

16h  7h

Stack  7h Stack 33h

33h 42h

42h 56h

56h 37h

37h 61h

61h 61h

5.1.3 Microstack (MSTACK)

The program-address generation logic uses the 16-bit-wide, 1-level-deep
MSTACK to store a return address before executing certain instructions.
These instructions use the program-address generation logic to provide a
second address in a 2-operand instruction. These instructions are: BLDD,
BLPD, MAC, MACD, TBLR, and TBLW. When repeated, these instructions
use the PC to increment the first operand address and can use the auxiliary
register arithmetic unit (ARAU) to generate the second operand address.
When these instructions are used, the return address (the address of the next
instruction to be fetched) is pushed onto the MSTACK. Upon completion of the
repeated instruction, the MSTACK value is popped back into the program-ad-
dress generation logic.

The MSTACK operations are not visible to you. Unlike the stack, the MSTACK
can be used only by the program-address generation logic; there are no
instructions that allow you to use the MSTACK for storage.



Pipeline Operation

5-7Program Control

5.2 Pipeline Operation

Instruction pipelining consists of a sequence of bus operations that occur dur-
ing the execution of an instruction. The ’C24x pipeline has four independent
stages: instruction-fetch, instruction-decode, operand-fetch, and instruction-
execute. Because the four stages are independent, these operations can
overlap. During any given cycle, one to four different instructions can be active,
each at a different stage of completion. Figure 5–4 shows the operation of the
4-level-deep pipeline for single-word, single-cycle instructions executing with
no wait states.

The pipeline is essentially invisible to you, except in the following cases:

� A single-word, single-cycle instruction immediately following a modifica-
tion of the global-memory allocation register (GREG) uses the previous
global map.

� The NORM instruction modifies the auxiliary register pointer (ARP) and
uses the current auxiliary register (the one pointed to by the ARP) during
the execute phase of the pipeline. If the next two instruction words change
the values in the current auxiliary register or the ARP, they will do so during
the instruction decode phase of the pipeline (before the execution of
NORM). This would cause NORM to use the wrong auxiliary register value
and the following instructions to use the wrong ARP value.

Figure 5–4. Four-Level Pipeline Operation

N – 2N – 3

N – 2

N – 1

N – 1

N

N N + 1

N + 1 N + 2NN – 1

N + 3N + 2N + 1N

Execute

Operand

Decode

Fetch

CLKOUT1

The CPU is implemented using 2-phase static logic. The 2-phase operation
of the ’C24x CPU consists of a master phase in which all commutation logic
is executed, and a slave phase in which results are latched. Therefore,
sequential operations require sequential master cycles. Although sequential
operations require a deeper pipeline, 2-phase operation provides more time
for the computational logic to execute. This allows the ’C24x to run at faster
clock rates, despite having a deeper pipeline that imposes a penalty on
branches and subroutine calls.



Branches, Calls, and Returns

5-8

5.3 Branches, Calls, and Returns

Branches, calls, and returns break the sequential flow of instructions by trans-
ferring control to another location in program memory. A branch only transfers
control to the new location. A call also saves the return address (the address
of the instruction following the call) to the top of the hardware stack. Every
called subroutine or interrupt service routine is concluded with a return instruc-
tion, which pops the return address off the stack and back into the program
counter (PC).

The ’C24x has two types of branches, calls, and returns:

� Unconditional.  An unconditional branch, call, or return is always
executed. The unconditional branch, call, and return instructions are de-
scribed in sections 5.3.1, 5.3.2, and 5.3.3, respectively.

� Conditional.  A conditional branch, call, or return is executed only if certain
specified conditions are met. The conditional branch, call, and return
instructions are described in detail in Section 5.4, Conditional Branches,
Calls, and Returns, on page 5-10.

5.3.1 Unconditional Branches

When an unconditional branch is encountered, it is always executed. During
the execution, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the branch instruction or the low-
er sixteen bits of the accumulator.

By the time the branch instruction reaches the execute phase of the pipeline,
the next two instruction words have already been fetched. These two instruc-
tion words are flushed from the pipeline so that they are not executed, and then
execution continues at the branched-to address. The unconditional branch
instructions are B (branch) and BACC (branch to location specified by accu-
mulator).

5.3.2 Unconditional Calls

When an unconditional call is encountered, it is always executed. When the
call is executed, the PC is loaded with the specified program-memory address
and program execution begins at that address. The address loaded into the
PC may come from either the second word of the call instruction or the lower
16 bits of the accumulator. Before the PC is loaded, the return address is saved
in the stack. After the subroutine or function is executed, a return instruction
loads the PC with the return address from the stack, and execution resumes
at the instruction following the call.



Branches, Calls, and Returns

5-9Program Control

By the time the unconditional call instruction reaches the execute phase of the
pipeline, the next two instruction words have already been fetched. These two
instruction words are flushed from the pipeline with the following results:

� They are not executed.

� The return address is stored to the stack.

� Execution continues at the beginning of the called function.

The unconditional call instructions are CALL and CALA (call subroutine at
location specified by accumulator).

5.3.3 Unconditional Returns

When an unconditional return (RET) instruction is encountered, it is always
executed. When the return is executed, the PC is loaded with the value at the
top of the stack, and execution resumes at that address.

By the time the unconditional return instruction reaches the execute phase of
the pipeline, the next two instruction words have already been fetched. The
two instruction words are flushed from the pipeline with the following results:

� They are not executed.

� The return address is taken from the stack.

� Execution continues in the calling function.



Conditional Branches, Calls, and Returns

 5-10

5.4 Conditional Branches, Calls, and Returns

The ’C24x provides branch, call, and return instructions that execute only if
one or more conditions are met. You specify the conditions as operands of the
conditional instruction. Table 5–3 lists the conditions that you can use with
these instructions and their corresponding operand symbols.

Table 5–3. Conditions for Conditional Calls and Returns

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Operand
Symbol

ÁÁÁÁÁ
ÁÁÁÁÁCondition

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁDescription

EQ ACC = 0 Accumulator equal to 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NEQ ÁÁÁÁÁ
ÁÁÁÁÁ

ACC ≠ 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator not equal to 0

LT ACC < 0 Accumulator less than 0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

LEQ
ÁÁÁÁÁ
ÁÁÁÁÁ

ACC � 0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator less than or equal to 0

GT ACC > 0 Accumulator greater than 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

GEQ ÁÁÁÁÁ
ÁÁÁÁÁ

ACC � 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Accumulator greater than or equal to 0

C C = 1 Carry bit set to 1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁNC

ÁÁÁÁÁ
ÁÁÁÁÁC = 0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁCarry bit cleared to 0

OV OV = 1 Accumulator overflow detected

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

NOV ÁÁÁÁÁ
ÁÁÁÁÁ

OV = 0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

No accumulator overflow detected

BIO BIO low BIO pin is low
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TC
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TC = 1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Test/control flag set to 1

NTC TC = 0 Test/control flag cleared to 0

5.4.1 Using Multiple Conditions

Multiple conditions can be listed as operands of the conditional instructions.
If multiple conditions are listed, all conditions must be met for the instruction
to execute. Note that only certain combinations of conditions are meaningful.
See Table 5–4 on page 5-11. For each combination, the conditions must be
selected from Group 1 and Group 2 as follows:

� Group 1.  You can select up to two conditions. Each of these conditions
must be from a different category (A or B); you cannot have two conditions
from the same category. For example, you can test EQ and OV at the same
time, but you cannot test GT and NEQ at the same time.



Conditional Branches, Calls, and Returns

5-11Program Control

� Group 2.  You can select up to three conditions. Each of these conditions
must be from a different category (A, B, or C); you cannot have two condi-
tions from the same category. For example, you can test TC, C, and BIO
at the same time, but you cannot test C and NC at the same time.

Table 5–4. Groupings of Conditions

Group 1 Group 2

Category A Category B Category A Category B Category C

EQ OV TC C BIO

NEQ NOV NTC NC

LT

LEQ

GT

GEQ

5.4.2 Stabilization of Conditions

A conditional instruction must be able to test the most recent values of the sta-
tus bits. Therefore, the conditions cannot be considered stable until the fourth,
or execution stage of the pipeline, one cycle after the previous instruction has
been executed. The pipeline controller stops the decoding of any instructions
following the conditional instruction until the conditions are stable.

5.4.3 Conditional Branches

A branch instruction transfers program control to any location in program
memory. Conditional branch instructions are executed only when one or more
user-specified conditions are met (see Table 5–3 on page 5-10). If all the
conditions are met, the PC is loaded with the second word of the branch
instruction, which contains the address to branch to, and execution continues
at this address.

By the time the conditions have been tested, the two instruction words follow-
ing the conditional branch instruction have already been fetched in the pipe-
line. If all the conditions are met, these two instruction words are flushed from
the pipeline so that they are not executed, and then execution continues at the
branched-to address. If the conditions are not met, the two instruction words
are executed instead of the branch. Because conditional branches use condi-
tions determined by the execution of the previous instructions, a conditional
branch takes one more cycle than an unconditional one.



Conditional Branches, Calls, and Returns

 5-12

The conditional branch instructions are BCND (branch conditionally) and
BANZ (branch if currently selected auxiliary register is not equal to 0). The
BANZ instruction is useful for implementing loops.

5.4.4 Conditional Calls

The conditional call (CC) instruction is executed only when the specified condi-
tion or conditions are met (see Table 5–3 on page 5-10). This allows your pro-
gram to choose among multiple subroutines based on the data being pro-
cessed. If all the conditions are met, the PC is loaded with the second word
of the call instruction, which contains the starting address of the subroutine.
Before branching to the subroutine, the processor stores the address of the
instruction following the call instruction (the return address) to the stack. The
function must end with a return instruction, which takes the return address off
the stack and forces the processor to resume execution of the calling program.

By the time the conditions of the conditional call instruction have been tested,
the two instruction words following the call instruction have already been
fetched in the pipeline. If all the conditions are met, these two instruction words
are flushed from the pipeline so that they are not executed, and then execution
continues at the beginning of the called function. If the conditions are not met,
the two instructions are executed instead of the call. Because there is a wait
cycle for conditions to become stable, the conditional call takes one more cycle
than the unconditional one.

5.4.5 Conditional Returns

Returns are used in conjunction with calls and interrupts. A call or interrupt
stores a return address to the stack and then transfers program control to a
new location in program memory. The called subroutine or the interrupt service
routine concludes with a return instruction, which pops the return address off
the top of the stack and into the program counter (PC).

The conditional return instruction (RETC) is executed only when one or more
conditions are met (see Table 5–3 on page 5-10). By using the RETC instruc-
tion, you can give a subroutine or interrupt service routine more than one pos-
sible return path. The path chosen then depends on the data being processed.
In addition, you can use a conditional return to avoid conditionally branching
to/around the return instruction at the end of the subroutine or interrupt service
routine.



Conditional Branches, Calls, and Returns

5-13Program Control

If all the conditions are met for execution of the RETC instruction, the proces-
sor loads the return address from the stack to the PC and resumes execution
of the calling or interrupted program.

RETC, like RET, is a single-word instruction. However, because of the poten-
tial PC discontinuity, it operates with the same effective execution time as the
conditional branch (BCND) and the conditional call (CC). By the time the condi-
tions of the conditional return instruction have been tested, the two instruction
words following the return instruction have already been fetched in the pipe-
line. If all the conditions are met, these two instruction words are flushed from
the pipeline so that they are not executed, and then execution of the calling
program continues. If the conditions are not met, the two instructions are
executed instead of the return. Because there is a wait cycle for conditions to
become stable, the conditional return takes one more cycle than the uncondi-
tional one.



Repeating a Single Instruction

5-14

5.5 Repeating a Single Instruction

The ’C24x repeat instruction (RPT) allows the execution of a single instruction
N + 1 times, where N is specified as an operand of the RPT instruction. When
RPT is executed, the repeat counter (RPTC) is loaded with N. RPTC is then
decremented every time the repeated instruction is executed, until RPTC
equals 0. RPTC can be used as a 16-bit counter when the count value is read
from a data-memory location; if the count value is specified as a constant oper-
and, it is in an 8-bit counter.

The repeat feature is useful with instructions such as NORM (normalize con-
tents of accumulator), MACD (multiply and accumulate with data move), and
SUBC (conditional subtract). When instructions are repeated, the address and
data buses for program memory are free to fetch a second operand in parallel
with the address and data buses for data memory. This allows instructions
such as MACD and BLPD to effectively execute in a single cycle when
repeated.



Interrupts

5-15Program Control

5.6 Interrupts

The ’C24x DSP supports both hardware and software interrupts. The hard-
ware interrupts INT1 – INT6, along with NMI, TRAP, and RS, provide a flexible
interrrupt scheme. The software interrupts offer flexibility to access interrupt
vectors using software instructions. Table 5–5, ’C24x Interrupt Locations and
Priorities, on page 5-15 shows the vectors supported by the DSP core. Since
most of the ’C24x DSPs come with multiple peripherals, the core interrupts
(INT1–IN6) are expanded using additional system or peripheral interrupt logic.
Although the core interrupts are the same, the peripheral interrupt structure
varies slightly among ’C240 and ’C24x class of DSP controllers. For details on
how these core interrupts are multiplexed to meet peripheral interrupt require-
ments, refer to TMS320F/C240 DSP Controllers, Peripheral Library and Spe-
cific Devices, (literature number SPRU161), and TMS320F241,C242,F243
DSP Controllers, System, and Peripherals, (literature number SPRU276).

The maskable core interrupt structure is supported by two registers, IFR and
IMR. The core interrupt logic has a global interrupt enable bit in the ST register.
Details of these registers are presented in the tables and sections that follow.

Table 5–5. ’C24x Interrupt Locations and Priorities 
ÁÁÁ
ÁÁÁ
ÁÁÁ

K†

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Vector
Location

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Name

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
Priority

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Function

0 0h RS 1 (highest) Hardware reset (nonmaskable)

1 2h INT1 4 Maskable interrupt level #1�

2 4h INT2 5 Maskable interrupt level #2�

3 6h INT3 6 Maskable interrupt level #3�

4 8h INT4 7 Maskable interrupt level #4�

5 Ah INT5 8 Maskable interrupt level #5�

6 Ch INT6 9 Maskable interrupt level #6�

7 Eh 10 Reserved

8 10h INT8 – User-defined software interrupt

† The K value is the operand used in an INTR instruction that branches to the corresponding inter-
rupt vector location.

‡ Maskable interrupts are customized for each ’C24x DSP device with additional interrupt
expansion logic.



Interrupts

5-16

Table 5–5. ’C24x Interrupt Locations and Priorities  (Continued)

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

K†
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Vector
Location

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Name
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Priority
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Function

9 12h INT9 – User-defined software interrupt

10 14h INT10 – User-defined software interrupt

11 16h INT11 – User-defined software interrupt

12 18h INT12 – User-defined software interrupt

13 1Ah INT13 – User-defined software interrupt

14 1Ch INT14 – User-defined software interrupt

15 1Eh INT15 – User-defined software interrupt

16 20h INT16 – User-defined software interrupt

17 22h TRAP – TRAP instruction vector

18 24h NMI 3 Nonmaskable interrupt

19 26h 2 Reserved

20 28h INT20 – User-defined software interrupt

21 2Ah INT21 – User-defined software interrupt

22 2Ch INT22 – User-defined software interrupt

23 2Eh INT23 – User-defined software interrupt

24 30h INT24 – User-defined software interrupt

25 32h INT25 – User-defined software interrupt

26 34h INT26 – User-defined software interrupt

27 36h INT27 – User-defined software interrupt

28 38h INT28 – User-defined software interrupt

29 3Ah INT29 – User-defined software interrupt

30 3Ch INT30 – User-defined software interrupt

31 3Eh INT31 – User-defined software interrupt

† The K value is the operand used in an INTR instruction that branches to the corresponding
interrupt vector location.



CPU Interrupt Registers

5-17Program Control

5.7 CPU Interrupt Registers

There are two CPU registers for controlling interrupts:

� The interrupt flag register (IFR) contains flag bits that indicate when mask-
able interrupt requests have reached the CPU on levels INT1 through
INT6.

� The interrupt mask register (IMR) contains mask bits that enable or dis-
able each of the interrupt levels (INT1 through INT6).

5.7.1 Interrupt Flag Register (IFR)

The interrupt flag register (IFR), a 16-bit, memory-mapped register at address
0006h in data-memory space, is used to identify and clear pending interrupts.
The IFR contains flag bits for all the maskable interrupts.

When a maskable interrupt is requested, the flag bit in the corresponding con-
trol register is set to 1. If the mask bit in that same control register is also 1, the
interrupt request is sent to the CPU, setting the corresponding flag in the IFR.
This indicates that the interrupt is pending, or waiting for, acknowledgement.

You can read the IFR to identify pending interrupts and write to the IFR to clear
pending interrupts. To clear a single interrupt, write a 1 to the corresponding
IFR bit. All pending interrupts can be cleared by writing the current contents
of the IFR back into the IFR. A device reset clears all IFR bits.

The following events also clear an IFR flag:

� The CPU acknowledges the interrupt.
� The ’C24x is reset.

Notes:

1) To clear an IFR bit, you must write a 1 to it, not a 0.

2) When a maskable interrupt is acknowledged, only the IFR bit is cleared
automatically. The flag bit in the corresponding control register is not
cleared. If an application requires that the control register flag be
cleared, the bit must be cleared by software.

3) When an interrupt is requested by an INTR instruction and the corre-
sponding IFR bit is set, the CPU does not clear the bit automatically. If
an application requires that the IFR bit be cleared, the bit must be cleared
by software.

The IFR is shown in Figure 5–5; descriptions of the bits follow the figure.



CPU Interrupt Registers

 5-18

Figure 5–5. Interrupt Flag Register (IFR) — Address 0006h

15–6 5 4 3 2 1 0

Reserved INT6 INT5 INT4 INT3 INT2 INT1

0 R/W–x R/W1C–x R/W1C–x R/W1C–x R/W1C–x R/W1C–x

Note: 0 = Always read as zeros, R  = Read access, W1C = Write 1 to this bit to clear it, –n = Value after reset, x = Value un-
changed by reset

Bits 15–6  Reserved . These bits are always read as 0s.

Bit 5  INT6. Interrupt 6 flag. This bit is the flag for interrupts connected to interrupt
level INT6.

0 =No INT6 interrupt is pending.
1 =At least one INT6 interrupt is pending. Write a 1 to this bit to clear it to

0 and clear the interrupt request.

Bit 4  INT5. Interrupt 5 flag. This bit is the flag for interrupts connected to interrupt
level INT5.

0 =No INT5 interrupt is pending.
1 =At least one INT5 interrupt is pending. Write a 1 to this bit to clear it to

0 and clear the interrupt request.

Bit 3  INT4. Interrupt 4 flag. This bit is the flag for interrupts connected to interrupt
level INT4. 

0 =No INT4 interrupt is pending.
1 =At least one INT4 interrupt is pending. Write a 1 to this bit to clear it to

0 and clear the interrupt request.

Bit 2  INT3. Interrupt 3 flag. This bit is the flag for interrupts connected to interrupt
level INT3.

0 =No INT3 interrupt is pending.
1 =At least one INT3 interrupt is pending. Write a 1 to this bit to clear it to

0 and clear the interrupt request.

Bit 1  INT2. Interrupt 2 flag. This bit is the flag for interrupts connected to interrupt
level INT2.

0 =No INT2 interrupt is pending.
1 =At least one INT2 interrupt is pending. Write a 1 to this bit to clear it to

0 and clear the interrupt request.



CPU Interrupt Registers

5-19Program Control

Bit 0  INT1. Interrupt 1 flag. This bit is the flag for interrupts connected to interrupt
level INT1.

0 =No INT1 interrupt is pending.
1 =At least one INT1 interrupt is pending. Write a 1 to this bit to clear it to

0 and clear the interrupt request.

5.7.2 Interrupt Mask Register (IMR)

The IMR is a 16-bit, memory-mapped register located at address 0004h in
data memory space. The IMR contains mask bits for all the maskable interrupt
levels (INT1–INT6). Neither NMI nor RS is included in the IMR; thus, IMR has
no effect on these interrupts.

You can read the IMR to identify masked or unmasked interrupt levels, and you
can write to the IMR to mask or unmask interrupt levels. To unmask an interrupt
level, set its corresponding IMR bit to 1. To mask an interrupt level, set its corre-
sponding IMR bit to 0. When an interrupt is masked, it is not acknowledged,
regardless of the value of the INTM bit. When an interrupt is unmasked, it is
acknowledged if the corresponding IFR bit is 1 and the INTM bit is 0. At reset,
the IMR bits are all set to 0, masking all the maskable interrupts.

The IMR is shown in Figure 5–6, Interrupt Mask Register (IMR) on page 5-20.
Bit descriptions follow the figure.



CPU Interrupt Registers

 5-20

Figure 5–6. Interrupt Mask Register (IMR) — Address 0004h

15–6 5 4 3 2 1 0

Reserved INT6 INT5 INT4 INT3 INT2 INT1

0 R/W–x R/W–x R/W–x R/W–x R/W–x R/W–x

Note: 0 = Always read as zeros, R  = Read access, W = Write access, –n = Value after reset, x = value unchanged by reset

Bits 15–6  Reserved . These bits are always read as 0s.

Bit 5  INT6. Interrupt 6 mask. This bit masks or unmasks interrupt level INT6.

0 =Level INT6 is masked.
1 =Level INT6 is unmasked.

Bit 4  INT5. Interrupt 5 mask. This bit masks or unmasks interrupt level INT5.

0 =Level INT5 is masked.
1 =Level INT5 is unmasked.

Bit 3  INT4. Interrupt 4 mask. This bit masks or unmasks interrupt level INT4.

0 =Level INT4 is masked.
1 =Level INT4 is unmasked.

Bit 2  INT3. Interrupt 3 mask. This bit masks or unmasks interrupt level INT3.

0 =Level INT3 is masked.
1 =Level INT3 is unmasked.

Bit 1  INT2. Interrupt 2 mask. This bit masks or unmasks interrupt level INT2.

0 =Level INT2 is masked.
1 =Level INT2 is unmasked.

Bit 0  INT1. Interrupt 1 mask. This bit masks or unmasks interrupt level INT1.

0 =Level INT1 is masked.
1 =Level INT1 is unmasked.



6-1Addressing Modes

Addressing Modes

This chapter explains the three basic memory addressing modes used by the
’C24x instruction set. The three modes are:

� Immediate addressing mode
� Direct addressing mode
� Indirect addressing mode

In the immediate addressing mode, a constant to be manipulated by the
instruction is supplied directly as an operand of that instruction. The ’C24x sup-
ports two types of immediate addressing, long and short, described in section
6.1, Immediate Addressing Mode, on page 6-2.

When you need to access data memory, you can use the direct or indirect ad-
dressing mode. Direct addressing concatenates seven bits of the instruction
word with the nine bits of the data-memory page pointer (DP) to form a 16-bit
data memory address. Indirect addressing accesses data memory through
one of eight 16-bit auxiliary registers.

Topic Page

6.1 Immediate Addressing Mode 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2 Direct Addressing Mode 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 Indirect Addressing Mode 6-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 6



Immediate Addressing Mode

6-2

6.1 Immediate Addressing Mode

In the immediate addressing mode, the instruction word contains a constant
to be manipulated by the instruction. The two types of immediate addressing
modes are:

� Short-immediate addressing.  Instructions that use short-immediate ad-
dressing have an 8-bit, 9-bit, or 13-bit constant as an operand. Short-im-
mediate instructions require a single instruction word, with the constant
embedded in that word.

� Long-immediate addressing.  Instructions that use long-immediate ad-
dressing have a 16-bit constant as an operand and require two instruction
words. The constant is sent as the second instruction word. This 16-bit val-
ue can be used as an absolute constant or as a 2s-complement value.

In Example 6–1, the immediate operand is contained as a part of the RPT
instruction word. For this RPT instruction, the instruction register will be loaded
with the value shown in Figure 6–1. Immediate operands are preceded by the
symbol #.

Example 6–1. RPT Instruction Using Short-Immediate Addressing

RPT #99 ;Execute the instruction that follows RPT
;100 times.

Figure 6–1. Instruction Register Contents for Example 6–1

0123456789101112131415

1100011011011101

8-bit constant = 99RPT opcode for immediate addressing



Immediate Addressing Mode

6-3Addressing Modes

In Example 6–2, the immediate operand is contained in the second instruction
word. The instruction register receives, consecutively, the two 16-bit values
shown in Figure 6–2.

Example 6–2. ADD Instruction Using Long-Immediate Addressing

ADD #16384,2 ;Shift the value 16384 left by two bits
;and add the result to the accumulator.

Figure 6–2. Two Words Loaded Consecutively to the Instruction Register in Example 6–2

0123456789101112131415

100111111101

shift = 2

16-bit constant = 16�384 = 4000h

First instruction word:

Second instruction word:

0100

ADD opcode for long-immediate addressing

000000000010 0000

0123456789101112131415



Direct Addressing Mode

6-4

6.2 Direct Addressing Mode

In the direct addressing mode, data memory is addressed in blocks of 128
words called data pages. The entire 64K of data memory consists of 512 data
pages labeled 0 through 511, as shown in Figure 6–3. The current data page
is determined by the value in the 9-bit data page pointer (DP) in status register
ST0. For example, if the DP value is 0 0000 00002, the current data page is
0. If the DP value is 0 0000 00102, the current data page is 2.

Figure 6–3. Pages of Data Memory

1111 1111 1

0000 0000 1

0000 0001 0

0000 0001 0

0000 0000 0

Data Memory

Page 0: 0000h–007Fh

Page 1: 0080h–00FFh

Page 2: 0100h–017Fh

Page 511: FF80h–FFFFh

.

000 0000

OffsetDP Value

0000 0000 0

111 1111
0000 0000 1

1111 1111 1

000 0000

111 1111

000 0000

111 1111

000 0000

111 1111

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

. ..
.

..

.

..

.

..

. ..
.

In addition to the data page, the processor must know the particular word being
referenced on that page. This is determined by a 7-bit offset (see Figure 6–3).
The offset is supplied by the seven least significant bits (LSBs) of the IR regis-
ter shown in Figure 6–4, Instruction Register (IR) Contents in Direct Address-
ing Mode instruction register, on page 6-5, which holds the opcode for the
next instruction to be executed. In direct addressing mode, the contents of the
instruction register has the format.



Direct Addressing Mode

6-5Addressing Modes

Figure 6–4. Instruction Register (IR) Contents in Direct Addressing Mode

0123456789101112131415

7 LSBs08 MSBs

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
ADD) and also contain any information regarding a shift of
the data value to be accessed by the instruction.

0 Direct/indirect indicator.  Bit 7 contains a 0 to define the ad-
dressing mode as direct.

7 LSBs Bits 6 through 0 indicate the offset for the data-memory ad-
dress referenced by the instruction.

To form a complete 16-bit address, the processor concatenates the DP value
and the seven LSBs of the instruction register, as shown in Figure 6–5. The
DP supplies the nine most significant bits (MSBs) of the address (the page
number), and the seven LSBs of the instruction register supply the seven LSBs
of the address (the offset). For example, to access data address 003Fh, you
specify data page 0 (DP = 0000 0000 0) and an offset of 011 1111. Concatenat-
ing the DP and the offset produces the 16-bit address 0000 0000 0011 1111,
which is 003Fh or decimal 63.

Figure 6–5. Generation of Data Addresses in Direct Addressing Mode

7 LSBs from IR

16-bit data-memory address

All 9 bits from DP

Data page pointer (DP)

Page (9 MSBs) Offset (7 LSBs)

Instruction register (IR)

8 MSBs 7 LSBs9 bits 0

Initialize the DP in All Programs

It is critical that all programs initialize the DP. The DP is not
initialized by reset and is undefined after power up. The ’C24x
development tools use default values for many parameters,
including the DP. However, programs that do not explicitly initialize
the DP can execute improperly, depending on whether they are
executed on a ’C24x device or with a development tool.



Direct Addressing Mode

 6-6

6.2.1 Using Direct Addressing Mode

When you use direct addressing mode, the processor uses the DP to find the
data page and uses the seven LSBs of the instruction register to find a particu-
lar address on that page. Always do the following:

1) Set the data page.  Load the appropriate value (from 0 to 511) into the DP.
The DP register can be loaded by the LDP instruction or by any instruction
that can load a value to ST0. The LDP instruction loads the DP directly
without affecting the other bits of ST0, and it clearly indicates the value
loaded into the DP. For example, to set the current data page to 32 (ad-
dresses 1000h–107Fh), you can use:

LDP #32 ;Initialize data page pointer

2) Specify the offset.  Supply the 7-bit offset as an operand of the instruction.
For example, if you want the ADD instruction to use the value at the second
address of the current data page, you would write:

ADD 1h ;Add to accumulator the value in the current
;data page, offset of 1.

You do not have to set the data page prior to every instruction that uses direct
addressing. If all the instructions in a block of code access the same data page,
you can simply load the DP at the front of the block. However, if various data
pages are being accessed throughout the block of code, be sure the DP is
changed whenever a new data page should be accessed.

6.2.2 Examples of Direct Addressing

In Example 6–3, the first instruction loads the DP with 0 0000 01002 to set the
current data page to 4. The ADD instruction then references a data memory
address that is generated as shown following the program code. Before the
ADD instruction is executed, the opcode is loaded into the instruction register.
Together, the DP and the seven LSBs of the instruction register form the com-
plete 16-bit address, 0000 0010 0000 10012 (0209h).



Direct Addressing Mode

6-7Addressing Modes

Example 6–3. Using Direct Addressing with ADD (Shift of 0 to 15)

LDP #4 ;Set data page to 4 (addresses 0200h–027Fh).
ADD 9h,5 ;The contents of data address 0209h are

;left shifted 5 bits and added to the
;contents of the accumulator.

7 LSBs from IR

16-bit data address 0209h

All 9 bits from DP

DP = 4 Instruction register (IR)

0 0 1 0 0 0 0   1 0 0 10 0 0 0   0 0 1 0   0 00 0 1 0

ADD
opcode

Shift of 5

0 0 0 0   0 0 1 0   0 0 0 0   1 0 0 1

9h

In Example 6–4, the ADD instruction references a data memory address that
is generated as shown following the program code. For any instruction that
performs a shift of 16, the shift value is not embedded directly in the instruction
word; instead, all eight MSBs contain an opcode that not only indicates the
instruction type, but also a shift of 16. The eight MSBs of the instruction word
indicate an ADD with a shift of 16.

Example 6–4. Using Direct Addressing with ADD (Shift of 16)

LDP #5 ;Set data page to 5 (addresses 0280h–02FFh).
ADD 9h,16 ;The contents of data address 0289h are

;left shifted 16 bits and added to the
;contents of the accumulator.

7 LSBs from IR

16-bit data address 0289h

All 9 bits from DP

DP = 5 Instruction register (IR)

0 0 0   1 0 0 10 0 0 0   0 0 1 0   1 0

ADD with shift of 16
opcode

0 0 0 0   0 0 1 0   1 0 0 0   1 0 0 1

9h

0 1 1 0   0 0 0 1



Direct Addressing Mode

6-8

In Example 6–5, the ADDC instruction references a data memory address that
is generated as shown following the program code. You should note that if an
instruction does not perform shifts (such as the ADDC instruction), all eight
MSBs of the instruction contain the opcode for the instruction type.

Example 6–5. Using Direct Addressing with ADDC

LDP #500 ;Set data page to 500 (addresses FA00h–FA7Fh).
ADDC 6h ;The contents of data address FA06h
 ;and the value of the carry bit (C) are

;added to the contents of the accumulator.

7 LSBs from IR

16-bit data address FA06h

All 9 bits from DP

DP = 500 Instruction register (IR)

0 0 0   0 1 1 01 1 1 1   1 0 1 0   0 0

ADDC opcode

1 1 1 1   1 0 1 0   0 0 0 0   0 1 1 0

6h

0 1 1 0   0 0 0 0



Indirect Addressing Mode

6-9Addressing Modes

6.3 Indirect Addressing Mode

Eight auxiliary registers (AR0–AR7) provide flexible and powerful indirect
addressing. Any location in the 64K data memory space can be accessed
using a 16-bit address contained in an auxiliary register.

6.3.1 Current Auxiliary Register

To select a specific auxiliary register, load the 3-bit auxiliary register pointer
(ARP) of status register ST0 with a value from 0 to 7. The ARP can be loaded
as a primary operation by the MAR instruction or by the LST instruction. The
ARP can be loaded as a secondary operation by any instruction that supports
indirect addressing.

The register pointed to by the ARP is referred to as the current auxiliary register
or current AR. During the processing of an instruction, the content of the cur-
rent auxiliary register is used as the address at which the data-memory access
occurs. The ARAU passes this address to the data-read address bus (DRAB)
if the instruction requires a read from data memory, or it passes the address
to the data-write address bus (DWAB) if the instruction requires a write to data
memory. After the instruction uses the data value, the contents of the current
auxiliary register can be incremented or decremented by the ARAU, which im-
plements unsigned 16-bit arithmetic.

Normally, the ARAU performs its arithmetic operations in the decode phase of
the pipeline (when the instruction specifying the operations is being decoded).
This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: during processing of the NORM
instruction, the auxiliary register and/or ARP modification is done during the
execute phase of the pipeline. For information on the pipeline operation, see
Chapter 5, Section 5.2, Pipeline Operation, on page 5-7.

6.3.2 Indirect Addressing Options

The ’C24x provides four types of indirect addressing options:

� No increment or decrement.  The instruction uses the content of the cur-
rent auxiliary register as the data memory address but neither increments
nor decrements the content of the current auxiliary register.

� Increment or decrement by 1.  The instruction uses the content of the
current auxiliary register as the data memory address and then incre-
ments or decrements the content of the current auxiliary register by one.

� Increment or decrement by an index amount.  The value in AR0 is the
index amount. The instruction uses the content of the current auxiliary reg-
ister as the data memory address and then increments or decrements the
content of the current auxiliary register by the index amount.



Indirect Addressing Mode

 6-10

� Increment or decrement by an index amount using reverse carry. The
value in AR0 is the index amount. After the instruction uses the content of
the current auxiliary register as the data-memory address, that content is
incremented or decremented by the index amount. The addition and sub-
traction process is accomplished with the carry propagation reversed for
fast Fourier transforms (FFTs).

These four option types provide the seven indirect addressing options listed
in Table 6–1. The table also shows the instruction operand that corresponds
to each indirect addressing option and gives an example of how each option
is used.

Table 6–1. Indirect Addressing Operands

Operand Option Example

* No increment or decrement LT * loads the temporary register (TREG) with the content of the
data memory address referenced by the current AR.

*+ Increment by 1 LT *+ loads the temporary register (TREG) with the content of
the data memory address referenced by the current AR and
then adds 1 to the content of the current AR.

*– Decrement by 1 LT *– loads the temporary register (TREG) with the content of
the data memory address referenced by the current AR and
then subtracts 1 from the content of the current AR.

*0+ Increment by index amount LT *0+ loads the temporary register (TREG) with the content of
the data memory address referenced by the current AR and
then adds the content of AR0 to the content of the current AR.

*0– Decrement by index amount LT *0– loads the temporary register (TREG) with the content of
the data memory address referenced by the current AR and
then subtracts the content of AR0 from the content of the
current AR.

*BR0+ Increment by index amount,
adding with reverse carry

LT *BR0+  loads the temporary register (TREG) with the con-
tent of the data memory address referenced by the current AR
and then adds the content of AR0 to the content of the current
AR, adding with reverse carry propagation.

*BR0– Decrement by index amount,
subtracting with reverse carry

LT *BR0–  loads the temporary register (TREG) with the con-
tent of the data memory address referenced by the current AR
and then subtracts the content of AR0 from the content of the
current AR, subtracting with bit reverse carry propagation.



Indirect Addressing Mode

6-11Addressing Modes

All increments or decrements are performed by the auxiliary register arithmetic
unit (ARAU) in the same cycle during which the instruction is being decoded
in the pipeline.

The bit-reversed indexed addressing allows efficient I/O operations by
resequencing the data points in a radix-2 FFT program. The direction of carry
propagation in the ARAU is reversed when the address is selected, and AR0
is added to or subtracted from the current auxiliary register. A typical use of this
addressing mode requires that AR0 be set initially to a value corresponding
to half of the array’s size, and further, that the current AR value be set to the
base address of the data (the first data point).

6.3.3 Next Auxiliary Register

In addition to updating the current auxiliary register, a number of instructions
can also specify the next auxiliary register or next AR. This register will be the
current auxiliary register when the instruction execution is complete. The
instructions that allow you to specify the next auxiliary register load the ARP
with a new value. When the ARP is loaded with that value, the previous ARP
value is loaded into the auxiliary register pointer buffer (ARB).

Example 6–6 illustrates the selection of a next auxiliary register and other indi-
rect addressing features.

Example 6–6. Selecting a New Current Auxiliary Register

MAR*,AR1 ;Load the ARP with 1 to make AR1 the
;current auxiliary register.

LT *+,AR2 ;AR2 is the next auxiliary register.
;Load the TREG with the content of the
;address referenced by AR1, add one to
;the content of AR1, then make AR2 the
;current auxiliary register.

MPY* ;Multiply TREG by content of address
;referenced by AR2.



Indirect Addressing Mode

6-12

6.3.4 Indirect Addressing Opcode Format

Figure 6–6 shows the format of the instruction word loaded into the instruction
register when you use indirect addressing. The opcode fields are described
following Figure 6–6.

Figure 6–6. Instruction Register Content in Indirect Addressing
0123456789101112131415

NARNARU18 MSBs

8 MSBs Bits 15 through 8 indicate the instruction type (for example,
LT) and also contain any information regarding data shifts.

1 Direct/indirect indicator.  Bit 7 contains a 1 to define the ad-
dressing mode as indirect.

ARU Auxiliary register update code.  Bits 6 through 4 determine
whether and how the current auxiliary register is increm-
ented or decremented. See Table 6–2 below.

N Next auxiliary register indicator. Bit 3 specifies whether
the instruction changes the ARP value.

N = 0 The content of the ARP remains unchanged.

N = 1 The content of NAR is loaded into the ARP, and
the old ARP value is loaded into the auxiliary
register buffer (ARB) of status register ST1.

NAR Next auxiliary register value.  Bits 2 through 0 contain the
value of the next auxiliary register. NAR is loaded into the
ARP if N = 1.

Table 6–2. Effects of the ARU Code on the Current Auxiliary Register

ARU Code

6 5 4 Arithmetic Operation Performed on Current AR

0 0 0 No operation on current AR

0 0 1 Current AR – 1 → current AR

0 1 0 Current AR + 1 → current AR

0 1 1 Reserved

1 0 0 Current AR – AR0 → current AR [reverse carry propagation]

1 0 1 Current AR – AR0 → current AR

1 1 0 Current AR + AR0 → current AR

1 1 1 Current AR + AR0 → current AR [reverse carry propagation]



Indirect Addressing Mode

6-13Addressing Modes

Table 6–3 shows the opcode field bits and the notation used for indirect
addressing. It also shows the corresponding operations performed on the
current auxiliary register and the ARP.

Table 6–3. Field Bits and Notation for Indirect Addressing

Instruction Opcode Bits

15     – 8 7 6 5 4 3 2 1 0 Operand(s) Operation

←     8 MSBs → 1 0 0 0 0 ←NAR→ * No manipulation of current AR

←     8 MSBs → 1 0 0 0 1 ←NAR→ *,ARn NAR → ARP

←     8 MSBs → 1 0 0 1 0 ←NAR→ *– Current AR – 1 → current AR

←     8 MSBs → 1 0 0 1 1 ←NAR→ *–,ARn Current AR – 1 → current AR
NAR → ARP

←     8 MSBs → 1 0 1 0 0 ←NAR→ *+ Current AR + 1 → current AR

←     8 MSBs → 1 0 1 0 1 ←NAR→ *+,ARn Current AR + 1 → current AR
NAR → ARP

←     8 MSBs → 1 1 0 0 0 ←NAR→ *BR0– Current AR – rcAR0 → current AR †

←     8 MSBs → 1 1 0 0 1 ←NAR→ *BR0–,ARn Current AR – rcAR0 → current AR
NAR → ARP †

←     8 MSBs → 1 1 0 1 0 ←NAR→ *0– Current AR – AR0 → current AR

←     8 MSBs → 1 1 0 1 1 ←NAR→ *0–,ARn Current AR – AR0 → current AR
NAR → ARP

←     8 MSBs → 1 1 1 0 0 ←NAR→ *0+ Current AR + AR0 → current AR

←     8 MSBs → 1 1 1 0 1 ←NAR→ *0+,ARn Current AR + AR0 → current AR
NAR → ARP

←     8 MSBs → 1 1 1 1 0 ←NAR→ *BR0+ Current AR + rcAR0 → current AR †

←     8 MSBs → 1 1 1 1 1 ←NAR→ *BR0+,ARn Current AR + rcAR0 → current AR
NAR → ARP †

† Bit-reversed addressing mode

Legend: rc Reverse carry propagation
NAR Next AR
n 0, 1, 2, ..., or 7
8 MSBs Eight bits determined by instruction type and (sometimes) shift information
→ Is loaded into



Indirect Addressing Mode

6-14

6.3.5 Examples of Indirect Addressing

Example 6–7 illustrates how the instruction register is loaded with the value
shown when the ADD instruction is fetched from program memory.

Example 6–7. Indirect Addressing—No Increment or Decrement

ADD *,8 ;Add to the accumulator the content of the
;data-memory address referenced by the
;current auxiliary register. The data
;is left shifted 8 bits before being added.

0123456789101112131415

N = No next AR specified

ARU = No operation on current AR

1

Shift = 8

0 0 0 0 X X X

ADD opcode

0 0 1 0 1 0 0 0

Addressing mode = indirect

NAR = don’t cares

Example 6–8, illustrates how the instruction register is loaded with the value
shown when the ADD instruction is fetched from program memory.

Example 6–8. Indirect Addressing—Increment by 1

ADD *+,8,AR4 ;Operates as in Example 6–7, but
;in addition, the current auxiliary
;register is incremented by one, and
;AR4 is chosen as the next auxiliary
;register.

0123456789101112131415

NAR = 4

N = next AR specified

ARU = increment current AR by 1

1

Shift = 8

0 1 0 0 1 0 0

ADD opcode

0 0 1 0 1 0 0 0

Addressing mode = indirect



Indirect Addressing Mode

6-15Addressing Modes

Example 6–9. Indirect Addressing—Decrement by 1

ADD *–,8 ;Operates as in Example 6–7, but in
;addition, the current auxiliary register
;is decremented by one.

Example 6–10. Indirect Addressing—Increment by Index Amount

ADD *0+,8 ;Operates as in Example 6–7, but in
;addition, the content of register AR0
;is added to the current auxiliary
;register.

Example 6–11. Indirect Addressing—Decrement by Index Amount

ADD *0–,8 ;Operates as in Example 6–7, but in
;addition, the content of register AR0
;is subtracted from the current auxiliary
;register.

Example 6–12. Indirect Addressing—Increment by Index Amount With Reverse Carry
Propagation

ADD *BR0+,8 ;Operates as in Example 6–10, except that
;the content of register AR0 is added to
;the current auxiliary register with
;reverse carry propagation.

Example 6–13. Indirect Addressing—Decrement by Index Amount With Reverse Carry
Propagation

ADD *BR0–,8 ;Operates as in Example 6–11, except that
;the content of register AR0 is subtracted
;from the current auxiliary register with
;reverse carry propagation.



Indirect Addressing Mode

6-16

6.3.6 Modifying Auxiliary Register Content

The LAR, ADRK, SBRK, and MAR instructions are specialized instructions for
changing the content of an auxiliary register (AR):

� The LAR instruction loads an AR.

� The ADRK instruction adds an immediate value to an AR; SBRK subtracts
an immediate value.

� The MAR instruction can increment or decrement an AR value by 1 or by
an index amount.

When modifying auxiliary register content, you are not limited to these four
instructions. Auxiliary registers can be modified by any instruction that sup-
ports indirect addressing operands. (Indirect addressing can be used with all
instructions except those that have immediate operands or no operands.)



7-1Assembly Language Instructions

Assembly Language Instructions

Note:

The instruction set for the TMS320C24x is identical to that of the
TMS320C2xx core.

This chapter describes the ’C24x assembly language instructions. This
instruction set supports numerically intensive signal-processing operations as
well as general-purpose applications, such as multiprocessing and high-
speed control. The ’C24x instruction set is compatible with the ’C2x instruction
set; code written for the ’C2x can be reassembled to run on the ’C24x. The ’C5x
instruction set is a superset of that of the ’C24x; thus, code written for the ’C24x
can be upgraded to run on a ’C5x.

Topic Page

7.1 Instruction Set Summary 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2 How To Use the Instruction Descriptions 7-12. . . . . . . . . . . . . . . . . . . . . . . 

7.3 Instruction Descriptions 7-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 7



Instruction Set Summary

7-2

7.1 Instruction Set Summary

This section provides six tables (Table 7–1 to Table 7–6) that summarize the
instruction set according to the following functional headings:

� Accumulator, arithmetic, and logic instructions (see Table 7–1 on page
7-5)

� Auxiliary register and data page pointer instructions (see Table 7–2 on
page 7-7)

� TREG, PREG, and multiply instructions (see Table 7–3 on page 7-8)

� Branch instructions (see Table 7–4 on page 7-9)

� Control instructions (see Table 7–5 on page 7-10)

� I/O and memory operations (see Table 7–6 on page 7-11)

Within each table, the instructions are arranged alphabetically. The number of
words that an instruction occupies in program memory is specified in column
three of each table; the number of cycles that an instruction requires to execute
is in column four. All instructions are assumed to be executed from internal
program memory (RAM) and internal data dual-access memory. The cycle
timings are for single-instruction execution, not for repeat mode. Additional
information about each instruction is presented in the individual instruction
descriptions in Section 7.2 on page 7-12.

For your reference, here are the definitions of the symbols used in the six
summary tables:

ACC The accumulator

AR The auxiliary register

ARX A 3-bit value used in the LAR and SAR instructions to desig-
nate which auxiliary register will be loaded (LAR) or have its
contents stored (SAR)

BITX A 4-bit value (called the bit code) that determines which bit of
a designated data memory value will be tested by the BIT
instruction

CM A 2-bit value. The CMPR instruction performs a comparison
specified by the value of CM:

If CM = 00, test whether current AR = AR0
If CM = 01, test whether current AR < AR0
If CM = 10, test whether current AR > AR0
If CM = 11, test whether current AR ≠ AR0



Instruction Set Summary

7-3Assembly Language Instructions

IAAA AAAA (One I followed by seven As) The I at the left represents a bit
that reflects whether direct addressing (I = 0) or indirect ad-
dressing (I = 1) is being used. When direct addressing is used,
the seven As are the seven least significant bits (LSBs) of a
data memory address. For indirect addressing, the seven As
are bits that control auxiliary register manipulation (see Sec-
tion 6.3, Indirect Addressing Mode, on page 6-9).

IIII IIII (Eight Is) An 8-bit constant used in short immediate addres-
sing

I IIII IIII (Nine Is) A 9-bit constant used in short immediate addressing
for the LDP instruction

I IIII IIII IIII (Thirteen Is) A 13-bit constant used in short immediate
addressing for the MPY instruction

I NTR# A 5-bit value representing a number from 0 to 31. The INTR
instruction uses this number to change program control to one
of the 32 interrupt vector addresses.

PM A 2-bit value copied into the PM bits of status register ST1 by
the SPM instruction

SHF A 3-bit left-shift value

SHFT A 4-bit left-shift value

TP A 2-bit value used by the conditional execution instructions to
represent four conditions:

BIO pin low TP = 00
TC bit =1 TP = 01
TC bit = 0 TP = 10
No condition TP = 11



Instruction Set Summary

7-4

ZLVC ZLVC Two 4-bit fields — each representing the following conditions:

ACC = 0 Z
ACC < 0 L
Overflow V
Carry C

A conditional instruction contains two of these 4-bit fields. The
4-LSB field of the instruction is a mask field. A 1 in the corre-
sponding mask bit indicates that condition is being tested. For
example, to test for ACC ≥ 0, the Z and L fields are set, and
the V and C fields are not set. The Z field is set to test the condi-
tion ACC = 0, and the L field is reset to test the condition
ACC ≥ 0.The second 4-bit field (bits 4 – 7) indicates the state
of the conditions to test. The conditions possible with these
eight bits are shown in the descriptions for the BCND, CC, and
RETC instructions.

+ 1 word The second word of a 2-word opcode. This second word
contains a 16-bit constant. Depending on the instruction, this
constant is a long immediate value, a program memory ad-
dress, or an address for an I/O port or an I/O-mapped register.



Instruction Set Summary

7-5Assembly Language Instructions

Table 7–1. Accumulator, Arithmetic, and Logic Instructions 

Mnemonic Description Words Cycles Opcode

ABS Absolute value of ACC 1 1 1011 1110 0000 0000

ADD Add to ACC with shift of 0 to 15, direct or indirect 1 1 0010 SHFT IAAA AAAA

Add to ACC with shift 0 to 15, long immediate 2 2 1011 1111 1001 SHFT
+ 1 word

Add to ACC with shift of 16, direct or indirect 1 1 0110 0001 IAAA AAAA

Add to ACC, short immediate 1 1 1011 1000 IIII IIII

ADDC Add to ACC with carry, direct or indirect 1 1 0110 0000 IAAA AAAA

ADDS Add to low ACC with sign-extension suppressed,
direct or indirect

1 1 0110 0010 IAAA AAAA

ADDT Add to ACC with shift (0 to 15) specified by TREG,
direct or indirect

1 1 0110 0011 IAAA AAAA

AND AND ACC with data value, direct or indirect 1 1 0110 1110 IAAA AAAA

AND with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1011 SHFT
+ 1 word

AND with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0001
+ 1 word

CMPL Complement ACC 1 1 1011 1110 0000 0001

LACC Load ACC with shift of 0 to 15, direct or indirect 1 1 0001 SHFT IAAA AAAA

Load ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1000 SHFT
+ 1 word

Load ACC with shift of 16, direct or indirect 1 1 0110 1010 IAAA AAAA

LACL Load low word of ACC, direct or indirect 1 1 0110 1001 IAAA AAAA

Load low word of ACC, short immediate 1 1 1011 1001 IIII IIII

LACT Load ACC with shift (0 to 15) specified by TREG,
direct or indirect

1 1 0110 1011 IAAA AAAA

NEG Negate ACC 1 1 1011 1110 0000 0010

NORM Normalize the contents of ACC, indirect 1 1 1010 0000 IAAA AAAA



Instruction Set Summary

 7-6

Table 7–1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic OpcodeCyclesWordsDescription

OR OR ACC with data value, direct or indirect 1 1 0110 1101 IAAA AAAA

OR with ACC with shift of 0 to 15, long immediate 2 2 1011 1111 1100 SHFT
+ 1 word

OR with ACC with shift of 16, long immediate 2 2 1011 1110 1000 0010
+ 1 word

ROL Rotate ACC left 1 1 1011 1110 0000 1100

ROR Rotate ACC right 1 1 1011 1110 0000 1101

SACH Store high ACC with shift of 0 to 7,
direct or indirect

1 1 1001 1SHF IAAA AAAA

SACL Store low ACC with shift of 0 to 7,
direct or indirect

1 1 1001 0SHF IAAA AAAA

SFL Shift ACC left 1 1 1011 1110 0000 1001

SFR Shift ACC right 1 1 1011 1110 0000 1010

SUB Subtract from ACC with shift of 0 to 15,
direct or indirect

1 1 0011 SHFT IAAA AAAA

Subtract from ACC with shift of 0 to 15,
long immediate

2 2 1011 1111 1010 SHFT
+ 1 word

Subtract from ACC with shift of 16,
direct or indirect

1 1 0110 0101 IAAA AAAA

Subtract from ACC, short immediate 1 1 1011 1010 IIII IIII

SUBB Subtract from ACC with borrow, direct or indirect 1 1 0110 0100 IAAA AAAA

SUBC Conditional subtract, direct or indirect 1 1 0000 1010 IAAA AAAA

SUBS Subtract from ACC with sign-extension
suppressed, direct or indirect

1 1 0110 0110 IAAA AAAA

SUBT Subtract from ACC with shift (0 to 15) specified
by TREG, direct or indirect

1 1 0110 0111 IAAA AAAA



Instruction Set Summary

7-7Assembly Language Instructions

Table 7–1. Accumulator, Arithmetic, and Logic Instructions (Continued)

Mnemonic OpcodeCyclesWordsDescription

XOR Exclusive OR ACC with data value, direct or indirect 1 1 0110 1100 IAAA AAAA

Exclusive OR with ACC with shift of 0 to 15,
long immediate

2 2 1011 1111 1101 SHFT
+ 1 word

Exclusive OR with ACC with shift of 16, long
immediate

2 2 1011 1110 1000 0011
+ 1 word

ZALR Zero low ACC and load high ACC with rounding,
direct or indirect

1 1 0110 1000 IAAA AAAA

Table 7–2. Auxiliary Register Instructions

Mnemonic Description Words Cycles Opcode

ADRK Add constant to current AR,
short immediate

1 1 0111 1000 IIII IIII

BANZ Branch on current AR not 0,
indirect

2 4 (condition true)
2 (condition false)

0111 1011 1AAA AAAA
+ 1 word

CMPR Compare current AR with AR0 1 1 1011 1111 0100 01CM

LAR Load specified AR from
specified data location,
direct or indirect

1 2 0000 0ARX IAAA AAAA

Load specified AR with
constant, short immediate

1 2 1011 0ARX IIII IIII

Load specified AR with
constant, long immediate

2 2 1011 1111 0000 1ARX
+ 1 word

MAR Modify current AR and/or ARP,
indirect (performs no operation
when direct)

1 1 1000 1011 IAAA AAAA

SAR Store specified AR to specified
data location, direct or indirect

1 1 1000 0ARX IAAA AAAA

SBRK Subtract constant from current
AR, short immediate

1 1 0111 1100 IIII IIII



Instruction Set Summary

7-8

Table 7–3. TREG, PREG, and Multiply Instructions 

Mnemonic Description Words Cycles Opcode

APAC Add PREG to ACC 1 1 1011 1110 0000 0100

LPH Load high PREG, direct or indirect 1 1 0111 0101 IAAA AAAA

LT Load TREG, direct or indirect 1 1 0111 0011 IAAA AAAA

LTA Load TREG and accumulate previous product,
direct or indirect

1 1 0111 0000 IAAA AAAA

LTD Load TREG, accumulate previous product,
and move data, direct or indirect

1 1 0111 0010 IAAA AAAA

LTP Load TREG and store PREG in accumulator,
direct or indirect

1 1 0111 0001 IAAA AAAA

LTS Load TREG and subtract previous product,
direct or indirect

1 1 0111 0100 IAAA AAAA

MAC Multiply and accumulate, direct or indirect 2 3 1010 0010 IAAA AAAA
+ 1 word

MACD Multiply and accumulate with data move, direct or
indirect

2 3 1010 0011 IAAA AAAA
+ 1 word

MPY Multiply TREG by data value, direct or indirect 1 1 0101 0100 IAAA AAAA

Multiply TREG by 13-bit constant, short immediate 1 1 110I IIII IIII IIII

MPYA Multiply and accumulate previous product, direct or
indirect

1 1 0101 0000 IAAA AAAA

MPYS Multiply and subtract previous product, direct or in-
direct

1 1 0101 0001 IAAA AAAA

MPYU Multiply unsigned, direct or indirect 1 1 0101 0101 IAAA AAAA

PAC Load ACC with PREG 1 1 1011 1110 0000 0011

SPAC Subtract PREG from ACC 1 1 1011 1110 0000 0101

SPH Store high PREG, direct or indirect 1 1 1000 1101 IAAA AAAA

SPL Store low PREG, direct or indirect 1 1 1000 1100 IAAA AAAA

SPM Set product shift mode 1 1 1011 1111 0000 00PM

SQRA Square and accumulate previous product, direct or
indirect

1 1 0101 0010 IAAA AAAA

SQRS Square and subtract previous product, direct or
indirect

1 1 0101 0011 IAAA AAAA



Instruction Set Summary

7-9Assembly Language Instructions

Table 7–4. Branch Instructions 

Mnemonic Description Words Cycles Opcode

B Branch unconditionally, indirect 2 4 0111 1001 1AAA AAAA
+ 1 word

BACC Branch to address specified by
ACC

1 4 1011 1110 0010 0000

BANZ Branch on current AR not 0,
indirect

2 4 (condition true)
2 (condition false)

0111 1011 1AAA AAAA
+ 1 word

BCND Branch conditionally 2 4 (conditions true)
2 (any condition false)

1110 00TP ZLVC ZLVC
+ 1 word

CALA Call subroutine at location
specified by ACC

1 4 1011 1110 0011 0000

CALL Call subroutine, indirect 2 4 0111 1010 1AAA AAAA
+ 1 word

CC Call conditionally 2 4 (conditions true)
2 (any condition false)

1110 10TP ZLVC ZLVC
+ 1 word

INTR Soft interrupt 1 4 1011 1110 011I NTR#

NMI Nonmaskable interrupt 1 4 1011 1110 0101 0010

RET Return from subroutine 1 4 1110 1111 0000 0000

RETC Return conditionally 1 4 (conditions true)
2 (any condition false)

1110 11TP ZLVC ZLVC

TRAP Software interrupt 1 4 1011 1110 0101 0001



Instruction Set Summary

7-10

Table 7–5. Control Instructions 

Mnemonic Description Words Cycles Opcode

BIT Test bit, direct or indirect 1 1 0100 BITX IAAA AAAA

BITT Test bit specified by TREG, direct or indirect 1 1 0110 1111 IAAA AAAA

CLRC Clear C bit 1 1 1011 1110 0100 1110

Clear CNF bit 1 1 1011 1110 0100 0100

Clear INTM bit 1 1 1011 1110 0100 0000

Clear OVM bit 1 1 1011 1110 0100 0010

Clear SXM bit 1 1 1011 1110 0100 0110

Clear TC bit 1 1 1011 1110 0100 1010

Clear XF bit 1 1 1011 1110 0100 1100

IDLE Idle until interrupt 1 1 1011 1110 0010 0010

LDP Load data page pointer,
direct or indirect

1 2 0000 1101 IAAA AAAA

Load data page pointer,
short immediate

1 2 1011 110I IIII IIII

LST Load status register ST0, direct or indirect 1 2 0000 1110 IAAA AAAA

Load status register ST1, direct or indirect 1 2 0000 1111 IAAA AAAA

NOP No operation 1 1 1000 1011 0000 0000

POP Pop top of stack to low ACC 1 1 1011 1110 0011 0010

POPD Pop top of stack to data memory, direct or indirect 1 1 1000 1010 IAAA AAAA

PSHD Push data memory value on stack, direct or
indirect

1 1 0111 0110 IAAA AAAA

PUSH Push low ACC onto stack 1 1 1011 1110 0011 1100

RPT Repeat next instruction, direct or indirect 1 1 0000 1011 IAAA AAAA

Repeat next instruction, short immediate 1 1 1011 1011 IIII IIII

SETC Set C bit 1 1 1011 1110 0100 1111

Set CNF bit 1 1 1011 1110 0100 0101

Set INTM bit 1 1 1011 1110 0100 0001

Set OVM bit 1 1 1011 1110 0100 0011

Set SXM bit 1 1 1011 1110 0100 0111

Set TC bit 1 1 1011 1110 0100 1011

Set XF bit 1 1 1011 1110 0100 1101

SPM Set product shift mode 1 1 1011 1111 0000 00PM

SST Store status register ST0, direct or indirect 1 1 1000 1110 IAAA AAAA

Store status register ST1, direct or indirect 1 1 1000 1111 IAAA AAAA



Instruction Set Summary

7-11Assembly Language Instructions

Table 7–6. I/O and Memory Instructions 

Mnemonic Description Words Cycles Opcode

BLDD Block move from data memory to data memory,
direct/indirect with long immediate source

2 3 1010 1000 IAAA AAAA
+ 1 word

Block move from data memory to data memory,
direct/indirect with long immediate destination

2 3 1010 1001 IAAA AAAA
+ 1 word

BLPD Block move from program memory to data memory,
direct/indirect with long immediate source

2 3 1010 0101 IAAA AAAA
+ 1 word

DMOV Data move in data memory, direct or indirect 1 1 0111 0111 IAAA AAAA

IN Input data from I/O location, direct or indirect 2 2 1010 1111 IAAA AAAA
+ 1 word

OUT Output data to port, direct or indirect 2 3 0000 1100 IAAA AAAA
+ 1 word

SPLK Store long immediate to data memory location,
direct or indirect

2 2 1010 1110 IAAA AAAA
+ 1 word

TBLR Table read, direct or indirect 1 3 1010 0110 IAAA AAAA

TBLW Table write, direct or indirect 1 3 1010 0111 IAAA AAAA



How To Use the Instruction Descriptions

7-12

7.2 How To Use the Instruction Descriptions

Section 7.3 contains detailed information on the instruction set. The descrip-
tion for each instruction presents the following categories of information:

� Syntax
� Operands
� Opcode
� Execution
� Status Bits
� Description
� Words
� Cycles
� Examples

7.2.1 Syntax

Each instruction begins with a list of the available assembler syntax expres-
sions and the addressing mode type(s) for each expression. For example, the
description for the ADD instruction begins with:

ADD dma [ , shift ] Direct addressing
ADD dma, 16 Direct with left shift of 16
ADD ind [ , shift  [ , ARn]] Indirect addressing
ADD ind, 16 [ , ARn] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [ , shift ] Long immediate addressing

These are the notations used in the syntax expressions:

italic
symbols

Italic symbols in an instruction syntax represent variables.
Example: For the syntax

ADD dma
you may use a variety of values for dma.
Samples with this syntax follow:
ADD DAT

ADD 15

boldface
characters

Boldface characters in an instruction syntax must be typed as
shown.
Example: For the syntax

ADD dma, 16
you may use a variety of values for dma, but the
word ADD and the number 16 must be typed
as shown. Samples with this syntax follow:
ADD 7h, 16

ADD X, 16



How To Use the Instruction Descriptions

7-13Assembly Language Instructions

[, x] Operand x is optional.
Example: For the syntax

ADD dma, [, shift]
you must supply dma, as in the instruction:
ADD 7h

and you have the option of adding a shift value,
as in the instruction:
ADD 7h, 5

[, x1 [, x2]] Operands x1 and x2 are optional, but you cannot include x2
without also including x1.
Example: For the syntax

ADD ind, [, shift [, ARn]]
you must supply ind, as in the instruction:
ADD *+

You have the option of including shift,
as in the instruction:
ADD *+, 5

If you wish to include ARn, you must also
include shift, as in:
ADD *+, 0, AR2

# The # symbol is a prefix for constants used in immediate
addressing. For short- or long- immediate operands, it is
used in instructions where there is ambiguity with other
addressing modes.
Example: RPT #15  uses short immediate addressing. It

causes the next instruction to be repeated
16 times. But RPT 15  uses direct addressing.
The number of times the next instruction
repeats is determined by a value stored in
memory.

Finally, consider this code example:

MoveData BLDD DAT5, #310h ;move data at address
;referenced by DAT5 to address
;310h.

Note the optional MoveData label is used as a reference in front of the instruc-
tion mnemonic. Place labels either before the instruction mnemonic on the
same line or on the preceding line in the first column. (Be sure there are no
spaces in your labels.) An optional comment field can conclude the syntax
expression. At least one space is required between fields (label, mnemonic,
operand, and comment).



How To Use the Instruction Descriptions

 7-14

7.2.2 Operands

Operands can be constants, or assembly-time expressions referring to
memory, I/O ports, register addresses, pointers, shift counts, and a variety of
other constants. The operands category for each instruction description de-
fines the variables used for and/or within operands in the syntax expressions.
For example, for the ADD instruction, the syntax category gives these syntax
expressions:

ADD dma [ , shift ] Direct addressing
ADD dma, 16 Direct with left shift of 16
ADD ind [ , shift  [ , ARn]] Indirect addressing
ADD ind, 16 [ , ARn] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [ , shift ] Long immediate addressing

The operands category defines the variables dma, shift, ind, n, k, and lk. For
ind, an indirect addressing variable, you supply one of the following seven
symbols:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

These symbols are defined in subsection 6.3.2, Indirect Addressing Options,
on page 6-9.

7.2.3 Opcode

The opcode category breaks down the various bit fields that make up each
instruction word. When one of the fields contains a constant value derived
directly from an operand, it has the same name as that operand. The contents
of fields that do not directly relate to operands have other names; the opcode
category either explains these names directly or refers you to a section of this
book that explains them in detail. For example, these opcodes are given for
the ADDC instruction:

ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 dma

ADDC ind [,�ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in Section 6.3, Indirect Addressing Mode (page 6-9).



How To Use the Instruction Descriptions

7-15Assembly Language Instructions

The field called dma contains the value dma, which is defined in the operands
category. The contents of the fields ARU, N, and NAR are derived from the op-
erands ind and n but do not directly correspond to those operands; therefore,
a note directs you to the appropriate section for more details.

7.2.4 Execution

The execution category presents an instruction operation sequence that de-
scribes the processing that takes place when the instruction is executed. If the
execution event or events depend on the addressing mode used, the execu-
tion category specifies which events are associated with which addressing
modes. Here are notations used in the execution category:

(r) The content of register or location r.
Example: (ACC) represents the value in the accumulator.

x → y Value x is assigned to register or location y.
Example: (data-memory address) → ACC means:

The content of the specified data-memory
address is put into the accumulator.

r(n:m) Bits n through m of register or location r.
Example: ACC(15:0) represents bits 15 through 0 of the

accumulator.

(r(n:m)) The content of bits n through m of register or location r.
Example: (ACC(31:16)) represents the content of bits 31

through 16 of the accumulator.

nnh Indicates that nn represents a hexadecimal number.

7.2.5 Status Bits

The bits in status registers ST0 and ST1 affect the operation of certain instruc-
tions and are affected by certain instructions. The status bits category of each
instruction description states which of the bits (if any) affect the execution of
the instruction and which of the bits (if any) are affected by the instruction.

7.2.6 Description

The description category explains what happens during instruction execution
and its effect on the rest of the processor or on memory contents. It also dis-
cusses any constraints on the operands imposed by the processor or the as-
sembler. This description parallels and supplements the information given in
the execution category.



How To Use the Instruction Descriptions

 7-16

7.2.7 Words

The words category specifies the number of memory words required to store
the instruction (one or two). When the number of words depends on the ad-
dressing mode used for an instruction, the words category specifies which ad-
dressing modes require one word and which require two words.

7.2.8 Cycles

The cycles category of each instruction description contains tables showing
the number of processor machine cycles (CLKOUT1 periods) required for the
instruction to execute in a given memory configuration when executed as a
single instruction or when repeated with the RPT instruction. For example:

Cycles for a Single Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1 1+p

External 1+d 1+d 1+d 2+d+p

Cycles for a Repeat (RPT) Execution of an Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n n+p

External n+nd n+nd n+nd n+1+p+nd

The column headings in these tables indicate the program source location,
defined as follows:

ROM The instruction executes from internal program ROM.

DARAM The instruction executes from internal dual-access program
RAM.

SARAM The instruction executes from internal single-access program
RAM.

External The instruction executes from external program memory.



How To Use the Instruction Descriptions

7-17Assembly Language Instructions

If an instruction requires memory operand(s), the rows in the table indicate the
location(s) of the operand(s), as defined here:

DARAM The operand is in internal dual-access RAM.

SARAM The operand is in internal single-access RAM.

External The operand is in external memory.

For the RPT mode execution, n indicates the number of times a given instruc-
tion is repeated by an RPT instruction. Additional cycles (wait states) can be
generated for program-memory, data-memory, and I/O accesses by the wait-
state generator or by the external READY signal. These additional wait states
are represented in the tables by the following variables:

p Program-memory wait states. Represents the number of addition-
al clock cycles the device waits for external program memory to
respond to a single access.

d Data-memory wait states. Represents the number of additional
clock cycles the device waits for external data memory to respond
to a single access.

io I/O wait states. Represents the number of additional clock cycles
the device waits for an external I/O device to respond to a single
access.

n Number of repetitions (where n > 2 to fill the pipeline). Represents
the number of times a repeated instruction is executed.

If there are multiple accesses to one of the spaces, the variable is preceded
by the appropriate integer multiple. For example, two accesses to external pro-
gram memory would require 2p wait states. The above variables may also use
the subscripts src, dst, and code to indicate source, destination, and code,
respectively.

The internal single-access memory on each ’C240 processor is divided into
2K-word blocks contiguous in address space. All ’C240 processors support
parallel accesses to these internal single-access RAM blocks. Furthermore,
one single access block allows only one access per cycle. Thus, the processor
can read/write on single-access RAM block while accessing another single-
access RAM block at the same time.



How To Use the Instruction Descriptions

 7-18

All external reads take at least one machine cycle while all external writes take
at least two machine cycles. However, if an external write is immediately fol-
lowed or preceded by an external read cycle, then the external write requires
three cycles. If the wait state generator or the READY pin is used to add m
(m > 0) wait states to an external access, then external reads require m + 1
cycles, and external write accesses require m + 2 cycles.

The instruction-cycle timings are based on the following assumptions:

� At least the next four instructions are fetched from the same memory sec-
tion (internal or external) that was used to fetch the current instruction (ex-
cept in the case of PC discontinuity instructions, such as B, CALL, etc.)

� In the single-execution mode, there is no pipeline conflict between the cur-
rent instruction and the instructions immediately preceding or following
that instruction. The only exception is the conflict between the fetch phase
of the pipeline and the memory read/write (if any) access of the instruction
under consideration. See Section 5.2, Pipeline Operation, on page 5-7 for
more information about pipeline operations.

� In the repeat execution mode, all conflicts caused by the pipelined execu-
tion of an instruction are considered.

7.2.9 Examples

Example code is included for each instruction. The effect of the code on
memory and/or registers is summarized. Consider this example of the ADD
instruction:

ADD*+,0,AR0
Before Instruction After Instruction

ARP 4 ARP 0

AR4 0302h AR4 0303h

Data Memory Data Memory
302h 2h 302h 2h

ACC X 2h ACC 0 04h

C C

Here are the facts and events represented in this example:

� The auxiliary register pointer (ARP) points to the current auxiliary register.
Because ARP = 4, the current auxiliary register is AR4.

� When the addition takes place, the CPU follows AR4 to data-memory
address 0302h. The content of that address, 2h, is added to the content
of the accumulator, also 2h. The result (4h) is placed in the accumulator.
(Because the second operand of the instruction specifies a left shift of 0,
the data-memory value is not shifted before being added to the accumula-
tor value.)



Instruction Descriptions

7-19Assembly Language Instructions

� The instruction specifies an increment of 1 for the contents of the current
auxiliary register (*+); therefore, after the addition is performed, the con-
tent of AR4 is incremented to 0303h.

� The instruction also specifies that AR0 is the next auxiliary register; there-
fore, after the instruction ARP = 0.

� Because no carry is generated during the addition, the carry bit (C) is
cleared to 0.

7.3 Instruction Descriptions

This section contains detailed information on the instruction set for the ’C240.
A summary of the instruction set is shown in Section 7.1 on page 7-2. The
instructions are presented alphabetically, and the description for each instruc-
tion presents the following categories of information:

� Syntax
� Operands
� Opcode
� Execution
� Status Bits
� Description
� Words
� Cycles
� Examples

For a description of how to use each of these categories, see Section 7.2 on
page 7-12.

How To Use the Instruction Descriptions / Instruction Descriptions



ABS Absolute Value of Accumulator

7-20

Syntax ABS

Operands None

Opcode 0123456789101112131415
0000000001111101

Execution Increment PC, then ...
|(ACC)| → ACC; 0 → C

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM

Description If the contents of the accumulator are greater than or equal to zero, the accu-
mulator is unchanged by the execution of ABS. If the contents of the accumula-
tor are less than zero, the accumulator is replaced by its 2s-complement value.
The carry bit (C) on the ’C20x is always reset to zero by the execution of this
instruction.

Note that 8000 0000h is a special case. When the overflow mode is not set
(OVM = 0), the ABS of 8000 0000h is 8000 0000h. When the overflow mode
is set (OVM = 1), the ABS of 8000 0000h is 7FFF FFFFh. In either case, the
OV status bit is set.

Words 1

Cycles for a Single ABS Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ABS Instruction

ROM DARAM SARAM External

n n n n+p

Cycles



 Absolute Value of Accumulator ABS

7-21 Assembly Language Instructions

Example 1 ABS

Before Instruction After Instruction

 ACC X 1234h ACC 0 1234h

C C

Example 2 ABS

Before Instruction After Instruction

ACC X 0FFFFFFFFh ACC 0 1h

C C

Example 3 ABS ;(OVM = 1)

Before Instruction After Instruction

ACC X 80000000h ACC 0 7FFFFFFFh

C C

X 1

OV OV

Example 4 ABS ;(OVM = 0)

Before Instruction After Instruction

ACC X 80000000h ACC 0 80000000h

C C

X 1

OV OV



ADD Add to Accumulator

7-22

Syntax ADD  dma [ , shift ] Direct addressing
ADD dma, 16 Direct with left shift of 16
ADD ind [ , shift  [ , ARn]] Indirect addressing
ADD ind, 16 [ , ARn] Indirect with left shift of 16
ADD #k Short immediate addressing
ADD #lk [ , shift ] Long immediate addressing

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

ADD dma [ , shift ]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 shift 0 dma

ADD dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 0 dma

ADD ind [�, shift �[�, ARn�]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

ADD ind, 16 [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

ADD #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0 k

ADD #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 0 1 shift

lk

Opcode



 Add to Accumulator ADD

7-23 Assembly Language Instructions

Execution Increment PC, then ...
Event Addressing mode
(ACC) + (�(data-memory address) � 2shift ) → ACC Direct or indirect

(ACC) + (�(data-memory address) � 216 ) → ACC Direct or indirect
(shift of 16)

(ACC) + k → ACC Short immediate

(ACC) + lk � 2shift → ACC Long immediate

Status Bits Affected by Affects Addressing mode
SXM and OVM C and OV Direct or indirect

OVM C and OV Short immediate

SXM and OVM C and OV Long immediate

Description The content of the addressed data memory location or an immediate constant
is left-shifted and added to the accumulator. During shifting, low-order bits are
zero filled. High-order bits are sign extended if SXM = 1 and zero filled if
SXM = 0. The result is stored in the accumulator. When short immediate ad-
dressing is used, the addition is unaffected by SXM and is not repeatable.

If you are using indirect addressing and update the ARP, you must specify a
shift operand. However, if you do not want a shift to occur, enter a 0 for this
operand. For example:

ADD *+,0,AR2

Normally, the carry bit is set (C = 1) if the result of the addition generates a carry
and is cleared (C = 0) if it does not generate a carry. However, when adding
with a shift of 16, the carry bit is set if a carry is generated but otherwise, the
carry bit is unaffected. This allows the accumulator to generate the proper
single carry when adding a 32-bit number to the accumulator.

Words Words Addressing mode
1 Direct, indirect, or

short immediate
2 Long immediate



ADD Add to Accumulator

7-24

Cycles for a Single ADD Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an ADD Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single ADD Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Single ADD Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Example 1 ADD 1,1  ;(DP = 6)
Before Instruction After Instruction

Data Memory Data Memory
301h 1h 301h 1h

ACC X 2h ACC 0 04h

C C

Example 2 ADD *+,0,AR0
Before Instruction After Instruction

ARP 4 ARP 0

AR4 0302h AR4 0303h

Data Memory Data Memory
302h 2h 302h 2h

ACC X 2h ACC 0 04h

C C

Cycles



 Add to Accumulator ADD

7-25 Assembly Language Instructions

Example 3 ADD #1h ;Add short immediate
Before Instruction After Instruction

ACC X 2h ACC 0 03h

C C

Example 4 ADD #1111h,1 ;Add long immediate with shift of 1

Before Instruction After Instruction

ACC X 2h ACC 0 2224h

C C



ADDC Add to Accumulator With Carry

7-26

Syntax ADDC dma Direct addressing
ADDC ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

ADDC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 0 dma

ADDC ind [,�ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) + (C) → ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the addressed data-memory location and the value of the
carry bit are added to the accumulator with sign extension suppressed. The
carry bit is then affected in the normal manner: the carry bit is set (C = 1) if the
result of the addition generates a carry and is cleared (C = 0) if it does not gen-
erate a carry.

The ADDC instruction can be used in performing multiple-precision arithmetic.

Words 1

Cycles for a Single ADDC Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Add to Accumulator With Carry ADDC

7-27 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an ADDC Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDC DAT300 ;(DP = 6: addresses 0300h–037Fh;
;DAT300 is a label for 300h)

Before Instruction After Instruction

Data Memory Data Memory
300h 04h 300h 04h

ACC 1 13h ACC 0 18h

C C

Example 2 ADDC *–,AR4 ;(OVM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 300h AR0 299h

Data Memory Data Memory
300h 0h 300h 0h

ACC 1 0FFFFFFFFh ACC 1 0h

C C

X 0

OV OV



ADDS Add to Accumulator With Sign Extension Suppressed

7-28

Syntax ADDS  dma Direct addressing
ADDS ind [,�ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

ADDS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 0 dma

ADDS ind [,�ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + (data-memory address) → ACC

Status Bits Affected by Affects
OVM C and OV

This instruction is not affected by SXM.

Description The contents of the specified data-memory location are added to the accumu-
lator with sign extension suppressed. The data is treated as an unsigned 16-bit
number, regardless of SXM. The accumulator contents are treated as a signed
number. Note that ADDS produces the same results as an ADD instruction
with SXM = 0 and a shift count of 0.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

Words 1

Cycles for a Single ADDS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Add to Accumulator With Sign Extension Suppressed ADDS

7-29 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an ADDS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDS 0 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
300h 0F006h 300h 0F006h

ACC X 00000003h ACC 0 0000F009h

C C

Example 2 ADDS *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0300h AR0 0300h

Data Memory Data Memory
300h 0FFFFh 300h 0FFFFh

ACC X 7FFF0000h ACC 0 7FFFFFFFh

C C



ADDT Add to Accumulator With Shift Specified by TREG

7-30

Syntax ADDT  dma Direct addressing
ADDT ind [,�ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

ADDT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1 0 dma

ADDT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + [(data-memory address) � 2(TREG(3:0))] → (ACC)

Status Bits Affected by Affects
SXM and OVM C and OV

Description The data-memory value is left shifted and added to the accumulator, and the
result replaces the accumulator contents. The left shift is defined by the four
LSBs of the TREG, resulting in shift options from 0 to 15 bits. Sign extension
on the data-memory value is controlled by SXM. The carry bit (C) is set when
a carry is generated out of the MSB of the accumulator; if no carry is generated,
the carry bit is cleared.

Words 1

Cycles for a Single ADDT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Opcode

Cycles



 Add to Accumulator With Shift Specified by TREG ADDT

7-31 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an ADDT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ADDT 127 ;(DP = 4: addresses 0200h–027Fh,
;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG 0FF94h TREG 0FF94h

ACC X 0F715h ACC 0 0F7A5h

C C

Example 2 ADDT *–,AR4 ;(SXM = 0)

Before Instruction After Instruction

ARP 0 ARP 4

AR0 027Fh AR0 027Eh

Data Memory Data Memory
027Fh 09h 027Fh 09h

TREG 0FF94h TREG 0FF94h

ACC X 0F715h ACC 0 0F7A5h

C C



ADRK Add Short-Immediate Value to Auxiliary Register

7-32

Syntax ADRK  #k Short immediate addressing

Operands k: 8-bit short immediate value

ADRK  #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0 k

Execution Increment PC, then ...
(current AR) + 8-bit positive constant → current AR

Status Bits None

Description The 8-bit immediate value is added, right justified, to the current auxiliary regis-
ter (the one specified by the current ARP value) and the result replaces the
auxiliary register contents. The addition takes place in the ARAU, with the im-
mediate value treated as an 8-bit positive integer. All arithmetic operations on
the auxiliary registers are unsigned.

Words 1

Cycles for a Single ADRK Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example ADRK #80h

Before Instruction After Instruction

ARP 5 ARP 5

AR5 4321h AR5 43A1h

Opcode

Cycles



 AND With Accumulator AND

7-33 Assembly Language Instructions

Syntax AND  dma Direct addressing
AND ind [,�ARn] Indirect addressing
AND #lk [,�shift] Long immediate addressing
AND #lk,�16 Long immediate with left 

shift of 16

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

AND dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 0 dma

AND ind [,�ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

AND #lk [,�shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 1 1 shift

lk

AND #lk,�16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 1

lk

Execution Increment PC, then ...
Event(s) Addressing mode
(ACC(15:0)) AND (data-memory address) → ACC(15:0) Direct or indirect
0 → ACC(31:16)

(ACC(31:0)) AND lk � 2shift → ACC Long immediate

(ACC(31:0)) AND lk � 216→ ACC Long immediate
with left shift of 16

Opcode



AND AND With Accumulator

7-34  

Status Bits None

This instruction is not affected by SXM.

Description If direct or indirect addressing is used, the low word of the accumulator is
ANDed with a data-memory value, and the result is placed in the low word posi-
tion in the accumulator. The high word of the accumulator is zeroed. If immedi-
ate addressing is used, the long-immediate constant can be shifted. During the
shift, low-order and high-order bits not filled by the shifted value are zeroed.
The resulting value is ANDed with the accumulator contents.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single AND Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an AND Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single AND Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles



 AND With Accumulator AND

7-35 Assembly Language Instructions

Example 1 AND 16 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

Data Memory Data Memory
0210h 00FFh 0210h 00FFh

ACC 12345678h ACC 00000078h

Example 2 AND *

Before Instruction After Instruction

ARP 0 ARP 0

AR0 0301h AR0 0301h

Data Memory Data Memory
0301h 0FF00h 0301h 0FF00h

ACC 12345678h ACC 00005600h

Example 3 AND #00FFh,4

Before Instruction After Instruction

ACC 12345678h ACC 00000670h



APAC Add PREG to Accumulator

7-36

Syntax APAC

Operands None

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0

Execution Increment PC, then ...
(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

This instruction is not affected by SXM.

Description The contents of PREG are shifted as defined by the PM status bits of the ST1
register (see Table 7–7) and added to the contents of the accumulator. The re-
sult is placed in the accumulator. APAC is not affected by the SXM bit of the
status register. PREG is always sign extended. The task of the APAC instruc-
tion is also performed as a subtask of the LTA, LTD, MAC, MACD, MPYA, and
SQRA instructions.

Table 7–7. Product Shift Modes

PM Bits

Bit 1 Bit 0 Resulting Shift

0 0 No shift

0 1 Left shift of 1 bit

1 0 Left shift of 4 bits

1 1 Right shift of 6 bits

Words 1

Cycles for a Single APAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an APAC Instruction

ROM DARAM SARAM External

n n n n+p

Opcode

Cycles



 Add PREG to Accumulator APAC

7-37 Assembly Language Instructions

Example APAC ;(PM = 01)

Before Instruction After Instruction

PREG 40h PREG 40h

ACC X 20h ACC 0 A0h

C C



B Branch Unconditionally

7-38

Syntax B  pma [, ind [,�ARn]�] Indirect addressing

Operands pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

B pma [, ind [,�ARn]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution pma → PC
Modify (current AR) and (ARP) as specified.

Status Bits None

Description The current auxiliary register and ARP contents are modified as specified, and
control is passed to the designated program-memory address (pma). The pma
can be either a symbolic or numeric address.

Words 2

Cycles for a Single B Instruction

ROM DARAM SARAM External

4 4 4 4+4p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example B 191,*+,AR1

The value 191 is loaded into the program counter, and the program continues
to execute from that location. The current auxiliary register is incremented by
1, and ARP is set to point to auxiliary register 1 (AR1).

Opcode

Cycles



 Branch to Location Specified by Accumulator BACC

7-39 Assembly Language Instructions

Syntax BACC

Operands None

Opcode 0123456789101112131415
0000010001111101

Execution ACC(15:0) → PC

Status Bits None

Description Control is passed to the 16-bit address residing in the lower half of the accumu-
lator.

Words 1

Cycles for a Single BACC Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example BACC ;(ACC contains the value 191)

The value 191 is loaded into the program counter, and the program continues
to execute from that location.

Cycles



BANZ Branch on Auxiliary Register Not Zero

7-40

Syntax BANZ  pma [, ind [, ARn]�] Indirect addressing

Operands pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

BANZ  pma [, ind [,ARn]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution If (current AR) ≠ 0
Then pma → PC
Else (PC) + 2 → PC

Modify (current AR) and (ARP) as specified

Status Bits None

Description Control is passed to the designated program-memory address (pma) if the
contents of the current auxiliary register are not zero. Otherwise, control
passes to the next instruction.The default modification to the current AR is a
decrement by one. N loop iterations can be executed by initializing an auxiliary
register (as a loop counter) to N–1 prior to loop entry. The pma can be either
a symbolic or a numeric address.

Words 2

Cycles for a Single BANZ Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The ’C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Opcode

Cycles



 Branch on Auxiliary Register Not Zero BANZ

7-41 Assembly Language Instructions

Example 1 BANZ PGM0 ;(PGM0 labels program address 0)

Before Instruction After Instruction

ARP 0 ARP 0

AR0 5h AR0 4h

Because the content of AR0 is not zero, the program address denoted by
PGM0 is loaded into the program counter (PC), and the program continues ex-
ecuting from that location. The default auxiliary register operation is a decre-
ment of the current auxiliary register content; thus, AR0 contains 4h at the end
of the execution.

or
Before Instruction After Instruction

ARP 0 ARP 0

AR0 0h AR0 FFFFh

Because the content of AR0 is zero, the branch is not executed; instead, the
PC is incremented by 2, and execution continues with the instruction following
the BANZ instruction. Because of the default decrement, AR0 is decremented
by 1, becoming –1.

Example 2 MAR *,AR0 ;Set ARP to point to AR0.
LAR AR1,#3 ;Load AR1 with 3.
LAR AR0,#60h ;Load AR0 with 60h.

PGM191 ADD *+,AR1 ;Loop: While AR1 not zero,
BANZ PGM191,*–AR0 ;add data referenced by AR0

;to accumulator and increment
;AR0 value.

The contents of data-memory locations 60h–63h are added to the accumula-
tor.



BCND Branch Conditionally

7-42

Syntax BCND  pma, cond�1 [,cond�2] [,...]

Operands pma: 16-bit program-memory address

cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C = 1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

Opcode 0123456789101112131415

ZLVCZLVCTP000111
pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

Execution If cond�1 AND cond�2 AND ...
Then pma → PC
Else increment PC

Status Bits None

Description A branch is taken to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC.

Words 2

Cycles for a Single BCND Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The ’C20x performs speculative fetching by reading two additional instruction words. If
the PC discontinuity is taken, these two instruction words are discarded.

Cycles



 Branch Conditionally BCND

7-43 Assembly Language Instructions

Example BCND PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, program address 191 is loaded into the program counter, and the program
continues to execute from that location. If these conditions do not hold, execu-
tion continues from location PC + 2.



BIT Test Bit

7-44

Syntax BIT  dma, bit code Direct addressing
BIT ind, bit code [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
bit code: Value from 0 to 15 indicating which bit to test (see Figure 7–1)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

BIT dma, bit code
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 bit code 0 dma

BIT ind, bit code �[�,ARn�]�
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 bit code 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 – bit code)) → TC

Status Bits Affects
TC

Description The BIT instruction copies the specified bit of the data-memory value to the TC
bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bit in ST1. A bit code value is specified that
corresponds to a certain bit number of the data-memory value, as shown in
Figure 7–1. For example, if you want to copy bit 6, you specify the bit code as
9, which is 15 minus six (15–6).

Figure 7–1. Bit Numbers and Their Corresponding Bit Codes for BIT Instruction

Bit code 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LSB

Words 1

Opcode



 Test Bit BIT

7-45 Assembly Language Instructions

Cycles for a Single BIT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BIT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BIT 0h,15 ;(DP = 6). Test LSB at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TC 0 TC 0

Example 2 BIT *,0,AR1 ;Test MSB at 310h, then set ARP = 1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 310h AR0 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TC 0 TC 1

Cycles



BITT Test Bit Specified by TREG

7-46

Syntax BITT  dma Direct addressing
BITT ind [,  ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

BITT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1 0 dma

BITT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data bit number (15 –TREG(3:0))) → TC

Status Bits Affects
TC

Description The BITT instruction copies the specified bit of the data-memory value to the
TC bit of status register ST1. Note that the BITT, CMPR, LST #1, and NORM
instructions also affect the TC bit in status register ST1. The bit number is spe-
cified by a bit code value contained in the four LSBs of the TREG, as shown
in Figure 7–2.

Figure 7–2. Bit Numbers and Their Corresponding Bit Codes for BITT Instruction

Bit code (in 4 LSBs of
TREG)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB Data-memory value LSB

Words 1

Opcode



 Test Bit Specified by TREG BITT

7-47 Assembly Language Instructions

Cycles for a Single BITT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an BITT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 BITT 00h ;(DP = 6) Test bit 14 of data
;at 300h

Before Instruction After Instruction

Data Memory Data Memory
300h 4DC8h 300h 4DC8h

TREG 1h TREG 1h

TC 0 TC 1

Example 2 BITT * ;Test bit 1 of data at 310h

Before Instruction After Instruction

ARP 1 ARP 1

AR1 310h AR1 310h

Data Memory Data Memory
310h 8000h 310h 8000h

TREG 0Eh TREG 0Eh

TC 0 TC 0

Cycles



BLDD Block Move From Data Memory to Data Memory

7-48

Syntax General syntax: BLDD source, destination

BLDD  #lk,  dma Direct with long immediate
source

BLDD  #lk, ind [, ARn] Indirect with long
immediate source

BLDD  dma, #lk Direct with long immediate
destination

BLDD  ind, #lk [, ARn] Indirect with long immediate
destination

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

BLDD # lk, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0 0 dma

lk

BLDD  #lk, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

BLDD  dma, #lk
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 0 dma

lk

BLDD  ind, #lk [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 1 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Opcode



 Block Move From Data Memory to Data Memory BLDD

7-49 Assembly Language Instructions

Execution Increment PC, then ...
(PC) → MSTACK
lk → PC
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0:
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter

(MSTACK) → PC

Status Bits None

Description The word in data memory pointed to by source is copied to a data-memory
space pointed to by destination. The word of the source and/or destination
space can be pointed to with a long-immediate value or by a data-memory ad-
dress. Note that not all source/destination combinations of pointer types are
valid.

Note:

BLDD will not work with memory-mapped registers.

RPT can be used with the BLDD instruction to move consecutive words in data
memory. The number of words to be moved is one greater than the number
contained in the repeat counter (RPTC) at the beginning of the instruction.
When the BLDD instruction is repeated, the source (destination) address spe-
cified by the long immediate constant is stored to the PC. Because the PC is
incremented by 1 during each repetition, it is possible to access a series of
source (destination) addresses. If you use indirect addressing to specify the
destination (source) address, a new destination (source) address can be ac-
cessed during each repetition. If you use the direct addressing mode, the spe-
cified destination (source) address is a constant; it will not be modified during
each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a BLDD operation used with the RPT instruction.
When used with RPT, BLDD becomes a single-cycle instruction once the RPT
pipeline is started.

Words 2



BLDD Block Move From Data Memory to Data Memory

7-50  

Cycles

Cycles for a Single BLDD Instruction 

Operand ROM DARAM SARAM External

Source: DARAM
Destination: DARAM

3 3 3 3+2p

Source: SARAM
Destination: DARAM

3 3 3 3+2p

Source: External
Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+2p

Source: DARAM
Destination: SARAM

3 3 3
4†

3+2p

Source: SARAM
Destination: SARAM

3 3 3
4†

3+2p

Source: External
Destination: SARAM

3+dsrc 3+dsrc 3+dsrc
4+dsrc†

3+dsrc+2p

Source: DARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2p

Source: External
Destination: External

4+dsrc+ddst 4+dsrc+ddst 4+dsrc+ddst 6+dsrc+ddst+2p

† If the destination operand and the code are in the same SARAM block.



 Block Move From Data Memory to Data Memory BLDD

7-51 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of a BLDD Instruction

Operand ROM DARAM SARAM External

Source: DARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2p

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2p

Source: External
Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc+2p

Source: DARAM
Destination: SARAM

n+2 n+2 n+2
n+4†

n+2+2p

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

n+4†

2n+2§

n+2+2p
2n+2p‡

Source: External
Destination: SARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc
n+4+ndsrc†

n+2+ndsrc+2p

Source: DARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2p

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2p

Source: External
Destination: External

4n+ndsrc+nddst‡ 4n+ndsrc+nddst 4n+ndsrc+nddst 4n+2+ndsrc+nddst+2p

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block



BLDD Block Move From Data Memory to Data Memory

7-52

Example 1 BLDD #300h,20h ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
300h 0h 300h 0h

320h 0Fh 320h 0h

Example 2 BLDD *+,#321h,AR3

Before Instruction After Instruction

ARP 2 ARP 3

AR2 301h AR2 302h

Data Memory Data Memory
301h 01h 301h 01h

321h 0Fh 321h 01h



 Block Move From Program Memory to Data Memory BLPD

7-53 Assembly Language Instructions

Syntax General syntax: BLPD  source, destination

BLPD  #pma, dma Direct with long immediate
source                           

BLPD  #pma, ind [, ARn] Indirect with long immediate
source

Operands pma: 16-bit program-memory address
dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

BLPD #pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1 0 dma

pma

BLPD #pma, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 0 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(PC) → MSTACK
pma → PC
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0:
(source) → destination
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter

(MSTACK) → PC

Status Bits None

Opcode



BLPD Block Move From Program Memory to Data Memory

7-54

Description A word in program memory pointed to by the source is copied to data-memory
space pointed to by destination. The first word of the source space is pointed
to by a long-immediate value. The data-memory destination space is pointed
to by a data-memory address or auxiliary register pointer. Not all source/des-
tination combinations of pointer types are valid.

RPT can be used with the BLPD instruction to move consecutive words. The
number of words to be moved is one greater than the number contained in the
repeat counter (RPTC) at the beginning of the instruction. When the BLPD in-
struction is repeated, the source (program-memory) address specified by the
long immediate constant is stored to the PC. Because the PC is incremented
by 1 during each repetition, it is possible to access a series of program-
memory addresses. If you use indirect addressing to specify the destination
(data-memory) address, a new data-memory address can be accessed during
each repetition. If you use the direct addressing mode, the specified data-
memory address is a constant; it will not be modified during each repetition.

The source and destination blocks do not have to be entirely on chip or off chip.
Interrupts are inhibited during a repeated BLPD instruction. When used with
RPT, BLPD becomes a single-cycle instruction once the RPT pipeline is
started.

Words 2



 Block Move From Program Memory to Data Memory BLPD

7-55 Assembly Language Instructions

Cycles

Cycles for a Single BLPD Instruction

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+2pcode

Source: SARAM
Destination: DARAM

3 3 3 3+2pcode

Source: External
Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+2pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3
4†

3+2pcode

Source: SARAM
Destination: SARAM

3 3 3
4†

3+2pcode

Source: External
Destination: SARAM

3+psrc 3+psrc 3+psrc
4+psrc†

3+psrc+2pcode

Source: DARAM/ROM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+2pcode

Source: External
Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+2pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a BLPD Instruction 

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+2pcode

Source: External
Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+2pcode

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2
n+4†

n+2+2pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block



BLPD Block Move From Program Memory to Data Memory

7-56

Cycles for a Repeat (RPT) Execution of a BLPD Instruction (Continued)

Operand ExternalSARAMDARAMROM

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

n+4†

2n+2§

n+2+2pcode
2n+2pcode‡

Source: External
Destination: SARAM

n+2+npsrc† n+2+npsrc n+2+npsrc
n+4+npsrc†

n+2+npsrc+2pcode

Source: DARAM/ROM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+2+nddst+2pcode

Source: External
Destination: External

4n+npsrc+nddst‡ 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst+
2pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 BLPD #800h,00h ;(DP=6)

Before Instruction After Instruction

Program Memory Program Memory
800h 0Fh 800h 0Fh

Data Memory Data Memory
300h 0h 300h 0Fh

Example 2 BLPD #800h,*,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 310h AR0 310h

Program Memory Program Memory
800h 1111h 800h 1111h

Data Memory Data Memory
310h 0100h 310h 1111h



 Call Subroutine at Location Specified by Accumulator CALA

7-57 Assembly Language Instructions

Syntax CALA

Operands None

Opcode 0123456789101112131415
0000110001111101

Execution PC + 1 → TOS
ACC(15:0) → PC

Status Bits None

Description The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the lower half of the accumulator are
loaded into the PC. Execution continues at this address.

The CALA instruction is used to perform computed subroutine calls.

Words 1

Cycles for a Single CALA Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example CALA

Before Instruction After Instruction

PC 25h PC 83h

ACC 83h ACC 83h

TOS 100h TOS 26h

Cycles



CALL Call Unconditionally

7-58

Syntax CALL  pma [, ind [, ARn]�] Indirect addressing

Operands pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

CALL pma [, ind [, ARn]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution PC + 2 → TOS
pma → PC
Modify (current AR) and (ARP) as specified.

Status Bits None

Description The current program counter (PC) is incremented and pushed onto the top of
the stack (TOS). Then, the contents of the pma, either a symbolic or numeric
address, are loaded into the PC. Execution continues at this address. The cur-
rent auxiliary register and ARP contents are modified as specified.

Words 2

Cycles for a Single CALL Instruction

ROM DARAM SARAM External

4 4 4 4+4p†

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example CALL 191,*+,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 05h AR1 06h

PC 30h PC 0BFh

TOS 100h TOS 32h

Program address 0BFh (191) is loaded into the program counter, and the pro-
gram continues executing from that location.

Opcode

Cycles



 Call Conditionally CC

7-59 Assembly Language Instructions

Syntax CC  pma, cond�1 [,cond�2] [,...]

Operands pma: 16-bit program-memory address
cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C = 1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

Opcode 0123456789101112131415
ZLVCZLVCTP010111

pma

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

Execution If cond�1 AND cond�2 AND ...
Then

PC + 2 → TOS
pma → PC

Else
Increment PC

Status Bits None

Description Control is passed to the specified program-memory address (pma) if the speci-
fied conditions are met. Not all combinations of conditions are meaningful. For
example, testing for LT and GT is contradictory. In addition, testing BIO is mu-
tually exclusive to testing TC. The CC instruction operates like the CALL in-
struction if all conditions are true.

Words 2

Cycles for a Single CC Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p†

False 2 2 2 2+2p

† The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken these two instruction words are discarded.

Cycles



CC Call Conditionally

7-60

Example CC PGM191,LEQ,C

If the accumulator contents are less than or equal to zero and the carry bit is
set, 0BFh (191) is loaded into the program counter, and the program continues
to execute from that location. If the conditions are not met, execution continues
at the instruction following the CC instruction.



 Clear Control Bit CLRC

7-61 Assembly Language Instructions

Syntax CLRC  control bit

Operands control bit: Select one of the following control bits:
C Carry bit of status register ST1
CNF RAM configuration control bit of status register ST1
INTM Interrupt mode bit of status register ST0
OVM Overflow mode bit of status register ST0
SXM Sign-extension mode bit of status register ST1
TC Test/control flag bit of status register ST1
XF XF pin status bit of status register ST1

CLRC C
0123456789101112131415
0111001001111101

CLRC CNF
0123456789101112131415
0010001001111101

CLRC INTM
0123456789101112131415
0000001001111101

CLRC OVM
0123456789101112131415
0100001001111101

CLRC SXM
0123456789101112131415
0110001001111101

CLRC TC
0123456789101112131415
0101001001111101

CLRC XF
0123456789101112131415
0011001001111101

Execution Increment PC, then ...
0 → control bit

Status Bits None

Description The specified control bit is cleared to 0. Note that the LST instruction can also
be used to load ST0 and ST1. See section 4.5, Status Registers ST0 and ST1
on page 4-15, for more information on each of these control bits.

Opcode



CLRC Clear Control Bit

7-62

Words 1

Cycles for a Single CLRC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a CLRC Instruction

ROM DARAM SARAM External

n n n n+p

Example CLRC TC ;(TC is bit 11 of ST1)

Before Instruction After Instruction

ST1 x9xxh ST1 x1xxh

Cycles



 Complement Accumulator CMPL

7-63 Assembly Language Instructions

Syntax CMPL

Operands None

Opcode 0123456789101112131415
1000000001111101

Execution Increment PC, then ...
(ACC) → ACC

Status Bits None

Description The contents of the accumulator are replaced with its logical inversion (1s
complement). The carry bit is unaffected.

Words 1

Cycles for a Single CMPL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an CMPL Instruction

ROM DARAM SARAM External

n n n n+p

Example CMPL

Before Instruction After Instruction

ACC X 0F7982513h ACC X 0867DAECh

C C

Cycles



CMPR Compare Auxiliary Register With AR0

7-64

Syntax CMPR  CM

Operands CM: Value from 0 to 3

Opcode 0123456789101112131415
CM10001011111101

Execution Increment PC, then ...
Compare (current AR) to (AR0) and place the result in the TC bit of status
register ST1.

Status Bits Affects
TC

This instruction is not affected by SXM. It does not affect SXM.

Description The CMPR instruction performs a comparison specified by the value of CM:

If CM = 00, test whether (current AR) = (AR0)
If CM = 01, test whether (current AR) < (AR0)
If CM = 10, test whether (current AR) > (AR0)
If CM = 11, test whether (current AR) ≠  (AR0)

If the condition is true, the TC bit is set to 1. If the condition is false, the TC bit
is cleared to 0.

Note that the auxiliary register values are treated as unsigned integers in the
comparisons.

Words 1

Cycles for a Single CMPR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an CMPR Instruction

ROM DARAM SARAM External

n n n n+p

Example CMPR 2 ;(current AR) > (AR0)?

Before Instruction After Instruction

ARP 4 ARP 4

AR0 0FFFFh AR0 0FFFFh

AR4 7FFFh AR4 7FFFh

TC 1 TC 0

Cycles



 Data Move in Data Memory DMOV

7-65 Assembly Language Instructions

Syntax DMOV  dma Direct addressing
DMOV ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

DMOV dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 0 dma

DMOV ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → data-memory address + 1

Status Bits Affected by
CNF

Description The contents of the specified data-memory address are copied into the con-
tents of the next higher address. When data is copied from the addressed loca-
tion to the next higher location, the contents of the addressed location remain
unaltered.

DMOV works only within on-chip data DARAM blocks. It works within any con-
figurable RAM block if that block is configured as data memory. In addition, the
data move function is continuous across block boundaries. The data move
function cannot be performed on external data memory. If the instruction spec-
ifies an external memory address, DMOV reads the specified memory location
but performs no operations.

The data move function is useful in implementing the z–1 delay encountered
in digital signal processing. The DMOV function is a subtask of the LTD and
MACD instructions (see the LTD and MACD instructions for more information).

Words 1

Opcode



DMOV Data Move in Data Memory

7-66

Cycles for a Single DMOV Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External‡ 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block
‡ If used on external memory, DMOV reads the specified memory location but performs no

operations.

Cycles for a Repeat (RPT) Execution of a DMOV Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2, 2n+1† 2n–2+p

External‡ 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block
‡ If used on external memory, DMOV reads the specified memory location but performs no

operations.

Example 1 DMOV DAT8 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
308h 43h 308h 43h

Data Memory Data Memory
309h 2h 309h 43h

Example 2 DMOV *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 30Ah AR0 30Ah

Data Memory Data Memory
30Ah 40h 30Ah 40h

Data Memory Data Memory
30Bh 41h 30Bh 40h

Cycles



 Idle Until Interrupt IDLE

7-67 Assembly Language Instructions

Syntax IDLE

Operands None

Opcode 0123456789101112131415
0100010001111101

Execution Increment PC, then wait for unmasked or nonmaskable hardware interrupt.

Status Bits Affected by 
INTM

Description The IDLE instruction forces the program being executed to halt until the CPU
receives a request from an unmasked hardware interrupt (external or internal),
NMI, or reset. Execution of the IDLE instruction causes the ’C24x/’C20x to en-
ter a power-down mode. The PC is incremented once before the ’C24x/ ’C20x
enters power down; it is not incremented during the idle state. On-chip periph-
erals remain active; thus, their interrupts are among those that can wake the
processor.

The idle state is exited by an unmasked interrupt even if INTM is 1. (INTM, the
interrupt mode bit of status register ST0, normally disables maskable inter-
rupts when it is set to 1.) When the idle state is exited by an unmasked inter-
rupt, the CPU’s next action, however, depends on INTM:

� If INTM is 0, the program branches to the corresponding interrupt service
routine.

� If INTM is 1, the program continues executing at the instruction following
the IDLE.

NMI and reset are not maskable; therefore, if the idle state is exited by NMI or
reset, the corresponding interrupt service routine will be executed, regardless
of INTM.

Words 1

Cycles for a Single IDLE Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example IDLE ;The processor idles until a hardware reset,
;a hardware NMI, or an unmasked interrupt
;occurs.

Cycles



IN Input Data From Port

7-68

Syntax IN  dma, PA Direct addressing
IN ind, PA [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
PA: 16-bit I/O port or I/O-mapped register address
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

IN dma , PA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 0 dma

PA

IN ind ,PA [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 1 1 ARU N NAR

PA

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
PA → address bus lines A15–A0
Data bus lines D15–D0 → data-memory address
(PA) → data-memory address

Status Bits None

Description The IN instruction reads a 16-bit value from an I/O location into the specified
data-memory location. The IS line goes low to indicate an I/O access. The
STRB, RD, and READY timings are the same as for an external data-memory
read.

The repeat (RPT) instruction can be used with the IN instruction to read in con-
secutive words from I/O space to data space.

Words 2

Opcode



 Input Data From Port IN

7-69 Assembly Language Instructions

Cycles for a Single IN Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 2+iosrc 2+iosrc 2+iosrc 3+iosrc+2pcode

Destination: SARAM 2+iosrc 2+iosrc 2+iosrc
3+iosrc†

3+iosrc+2pcode

Destination: External 3+ddst+iosrc 3+ddst+iosrc 3+ddst+iosrc 6+ddst+iosrc+2pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an IN Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 2n+niosrc 2n+niosrc 2n+niosrc 2n+1+niosrc+2pcode

Destination: SARAM 2n+niosrc 2n+niosrc 2n+niosrc
2n+2+niosrc†

2n+1+niosrc+2pcode

Destination: External 4n–1+nddst+
niosrc

4n–1+nddst+niosrc 4n–1+nddst+niosrc 4n+2+nddst+niosrc+
2pcode

† If the operand and the code are in the same SARAM block

Example 1 IN 7,1000h ;Read in word from peripheral on
;port address 1000h. Store word in
;data memory location 307h (DP=6).

Example 2 IN *,5h ;Read in word from peripheral on
;port address 5h. Store word in
;data memory location specified by
;current auxiliary register.

Cycles



INTR Software Interrupt

7-70

Syntax INTR  K

Operands K: Value from 0 to 31 that indicates the interrupt vector location
to branch to

Opcode 0123456789101112131415
K11001111101

Execution (PC) + 1 → stack
corresponding interrupt vector location → PC

Status Bits Affects
INTM

This instruction is not affected by INTM.

Description The processor has locations for 32 interrupt vectors; each location is repre-
sented by a value K from 0 to 31. The INTR instruction is a software interrupt
that transfers program control to the program-memory address specified by
K. The vector at that address then leads to the corresponding interrupt service
routine. Thus, the instruction allows any one of the interrupt service routines
to be executed from your software. For a list of interrupts and their correspond-
ing K values, see Table 5–5 on page 5-15. During execution of the instruction,
the value PC + 1 (the return address) is pushed onto the stack. Neither the
INTM bit nor the interrupt masks affect the INTR instruction. An INTR for the
external interrupts looks exactly like an external interrupt (an interrupt ac-
knowledge is generated, and maskable interrupts are globally disabled by set-
ting INTM = 1).

Words 1

Cycles for a Single INTR Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken, these two instruction words are discarded.

Example INTR 3 ;PC + 1 is pushed onto the stack.
;Then control is passed to program
;memory location 6h.

Cycles



 Load Accumulator With Shift LACC

7-71 Assembly Language Instructions

Syntax LACC  dma [, shift] Direct addressing
LACC  dma, 16 Direct with left shift of 16
LACC  ind [, shift [, ARn]�] Indirect addressing
LACC  ind, 16[, ARn] Indirect with left shift of 16
LACC  #lk [, shift] Long immediate addressing

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LACC  dma [ , shift ]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 shift 0 dma

LACC  dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 0 0 dma

LACC  ind [�, shift�[�, ARn�]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACC  ind, 16[, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACC  #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 0 0 0 shift

lk

Opcode



LACC Load Accumulator With Shift

7-72  

Execution Increment PC, then ...
Event Addressing mode
(data-memory address) × 2shift → ACC Direct or indirect

(data-memory address) × 216 → ACC Direct or indirect (shift of 16)

lk × 2shift → ACC Long immediate

Status Bits Affected by
SXM

Description The contents of the specified data-memory address or a 16-bit constant are
left shifted and loaded into the accumulator. During shifting, low-order bits are
zero filled. High-order bits are sign extended if SXM = 1 and zeroed if SXM = 0.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single LACC Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACC Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single LACC Instruction (Using Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles



 Load Accumulator With Shift LACC

7-73 Assembly Language Instructions

Example 1 LACC 6,4 ;(DP = 8: addresses 0400h–047Fh,
;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
406h 01h 406h 01h

ACC X 012345678h ACC X 10h

C C

Example 2 LACC *,4 ;(SXM = 0)

Before Instruction After Instruction

ARP 2 ARP 2

AR2 0300h AR2 0300h

Data Memory Data Memory
300h 0FFh 300h 0FFh

ACC X 12345678h ACC X 0FF0h

C C

Example 3 LACC #0F000h,1 ;(SXM = 1)

Before Instruction After Instruction

ACC X 012345678h ACC X FFFFE000h

C C



LACL Load Low Accumulator and Clear High Accumulator

7-74  

Syntax LACL  dma Direct addressing
LACL  ind [, ARn] Indirect addressing
LACL  #k Short immediate

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LACL  dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 0 dma

LACL  ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LACL  #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 1 k

Execution Increment PC, then ...
Events Addressing mode
0 → ACC(31:16) Direct or indirect
(data-memory address) → ACC(15:0)

0 → ACC(31:8) Short immediate
k → ACC(7:0)

Status Bits This instruction is not affected by SXM.

Description The contents of the addressed data-memory location or a zero-extended 8-bit
constant are loaded into the 16 low-order bits of the accumulator. The upper
half of the accumulator is zeroed. The data is treated as an unsigned 16-bit
number rather than a 2s-complement number. There is no sign extension of
the operand with this instruction, regardless of the state of SXM.

Words 1

Opcode



 Load Low Accumulator and Clear High Accumulator LACL

7-75 Assembly Language Instructions

Cycles for a Single LACL Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACL Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single LACL Instruction (Using Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 LACL 1 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
301h 0h 301h 0h

ACC X 7FFFFFFFh ACC X 0h

C C

Example 2 LACL *–,AR4

Before Instruction After Instruction

ARP 0 ARP 4

AR0 401h AR0 400h

Data Memory Data Memory
401h 00FFh 401h 00FFh

ACC X 7FFFFFFFh ACC X 0FFh

C C

Cycles



LACL Load Low Accumulator and Clear High Accumulator

7-76  

Example 3 LACL #10h

Before Instruction After Instruction

ACC X 7FFFFFFFh ACC X 010h

C C



 Load Accumulator With Shift Specified by TREG LACT

7-77 Assembly Language Instructions

Syntax LACT  dma Direct addressing
LACT  ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LACT  dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1 0 dma

LACT  ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) × 2(TREG(3:0)) → ACC

If SXM = 1:
Then (data-memory address) is sign extended.

If SXM = 0:
Then (data-memory address) is not sign extended.

Status Bits Affected by
SXM

Description The LACT instruction loads the accumulator with a data-memory value that
has been left shifted. The left shift is specified by the four LSBs of the TREG,
resulting in shift options from 0 to 15 bits. Using the four LSBs of the TREG as
a shift code provides a dynamic shift mechanism. During shifting, the high-or-
der bits are sign extended if SXM = 1 and zeroed if SXM = 0.

LACT may be used to denormalize a floating-point number if the actual expo-
nent is placed in the four LSBs of the TREG register and the mantissa is refer-
enced by the data-memory address. This method of denormalization can be
used only when the magnitude of the exponent has four bits or less.

Words 1

Opcode



LACT Load Accumulator With Shift Specified by TREG

7-78  

Cycles for a Single LACT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LACT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LACT 1 ;(DP = 6: addresses 0300h–037Fh,
;SXM = 0)

Before Instruction After Instruction

Data Memory Data Memory
301h 1376h 301h 1376h

TREG 14h TREG 14h

ACC X 98F7EC83h ACC X 13760h

C C

Example 2 LACT *–,AR3 ;(SXM = 1)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 310h AR1 30Fh

Data Memory Data Memory
310h 0FF00h 310h 0FF00h

TREG 11h TREG 11h

ACC X 098F7EC83h ACC X 0FFFFFE00h

C C

Cycles



 Load Auxiliary Register LAR

7-79 Assembly Language Instructions

Syntax LAR  ARx, dma Direct addressing
LAR  ARx, ind [, ARn] Indirect addressing
LAR  ARx, #k Short immediate addressing
LAR  ARx,  #lk Long immediate addressing

Operands x: Value from 0 to 7 designating the auxiliary register to be loaded
dma: 7 LSBs of the data-memory address
k: 8-bit short immediate value
lk: 16-bit long immediate value
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LAR AR x, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 x 0 dma

LAR AR x, ind [�, ARn�]�
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 x 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LAR AR x, #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 x k

LAR AR x, #lk
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 1 x

lk

Execution Increment PC, then ...
Event Addressing mode
(data-memory address) → ARx Direct or indirect

k → ARx Short immediate

lk → ARx Long immediate

Status Bits None

Opcode



LAR Load Auxiliary Register

7-80  

Description The contents of the specified data-memory address or an 8-bit or 16-bit
constant are loaded into the specified auxiliary register (ARx). The specified
constant is treated as an unsigned integer, regardless of the value of SXM.

The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If an
auxiliary register is not being used for indirect addressing, LAR and SAR
enable the register to be used as an additional storage register, especially for
swapping values between data-memory locations without affecting the
contents of the accumulator.

Words Words Addressing mode
1 Direct, indirect or

short immediate
2 Long immediate

Cycles for a Single LAR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LAR Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrcpcode

† If the operand and the code are in the same SARAM block

Cycles for a Single LAR Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+pcode

Cycles for a Single LAR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles



 Load Auxiliary Register LAR

7-81 Assembly Language Instructions

Example 1 LAR AR0,16 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

Data Memory Data Memory
310h 18h 310h 18h

AR0 6h AR0 18h

Example 2 LAR AR4,*–

Before Instruction After Instruction

ARP 4 ARP 4

Data Memory Data Memory
300h 32h 300h 32h

AR4 300h AR4 32h

Note:

LAR in the indirect addressing mode ignores any AR modifications if the AR
specified by the instruction is the same as that pointed to by the ARP. There-
fore, in Example 2, AR4 is not decremented after the LAR instruction.

Example 3 LAR AR4,#01h

Before Instruction After Instruction

AR4 0FF09h AR4 01h

Example 4 LAR AR6,#3FFFh

Before Instruction After Instruction

AR6 0h AR6 3FFFh



LDP Load Data Page Pointer

7-82  

Syntax LDP  dma Direct addressing
LDP ind [, ARn] Indirect addressing
LDP #k Short immediate

addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 9-bit short immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LDP dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 dma

LDP ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LDP #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 k

Execution Increment PC, then ...
Event Addressing mode
Nine LSBs of (data-memory address) → DP Direct or indirect

k → DP Short immediate

Status Bits Affects
DP

Description The nine LSBs of the contents of the addressed data-memory location or a
9-bit immediate value is loaded into the data page pointer (DP) of status regis-
ter ST0. The DP can also be loaded by the LST instruction.

In direct addressing, the 9-bit DP and the 7-bit value specified in the instruction
(dma) are concatenated to form the 16-bit data-memory address accessed by
the instruction. The DP provides the 9 MSBs, and dma provides the 7 LSBs.

Words 1

Opcode



 Load Data Page Pointer LDP

7-83 Assembly Language Instructions

Cycles for a Single LDP Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an LDP Instruction (Using Direct and
Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrcpcode

† If the operand and the code are in the same SARAM block

Cycles for a Single LDP Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+pcode

Example 1 LDP 127 ;(DP = 511: addresses FF80h–FFFFh)

Before Instruction After Instruction

Data Memory Data Memory
FFFFh FEDCh FFFFh FEDCh

DP 1FFh DP 0DCh

Example 2 LDP #0h

Before Instruction After Instruction

DP 1FFh DP 0h

Example 3 LDP *,AR5

Before Instruction After Instruction

ARP 4 ARP 5

AR4 300h AR4 300h

Data Memory Data Memory
300h 06h 300h 06h

DP 1FFh DP 06h

Cycles



LPH Load Product Register High Word

7-84  

Syntax LPH  dma Direct addressing
LPH ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LPH dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 1 0 dma

LPH ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → PREG (31:16)

Status Bits None

Description The 16 high-order bits of the PREG are loaded with the content of the specified
data-memory address. The low-order PREG bits are unaffected.

The LPH instruction can be used for restoring the high-order bits of the PREG
after interrupts and subroutine calls.

Words 1

Cycles for a Single LPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Load Product Register High Word LPH

7-85 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an LPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LPH DAT0 ;(DP = 4)

Before Instruction After Instruction

Data Memory Data Memory
200h 0F79Ch 200h 0F79Ch

PREG 30079844h PREG 0F79C9844h

Example 2 LPH *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 200h AR5 200h

Data Memory Data Memory
200h 0F79Ch 200h 0F79Ch

PREG 30079844h PREG 0F79C9844h



LST Load Status Register

7-86  

Syntax LST  #m, dma Direct addressing
LST #m, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
m: Select one of the following:

0 Indicates that ST0 will be loaded
1 Indicates that ST1 will be loaded

ind: Select one of the following seven options:
*     *+     *–     *0+     *0–     *BR0+     *BR0–

LST #0, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 0 dma

LST #0, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

LST #1, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 dma

LST #1, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → status register STm

For details about the differences between an LST #0 operation and an LST #1
operation, see Figure 7–3, Figure 7–4, and the description category below.

Figure 7–3. LST #0 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST0 ARP OV OVM 1 INTM DP

Opcode



 Load Status Register LST

7-87 Assembly Language Instructions

Figure 7–4. LST #1 Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST0 ARP OV OVM 1 INTM DP

↑ ↑ ↑
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST1 ARB CNF TC SXM C 1 1 1 1 XF 1 1 PM

Status Bits Affects 
ARB, ARP, OV, OVM, DP, CNF, TC, SXM, C, XF, and PM

This instruction does not affect INTM.

Description The specified status register (ST0 or ST1) is loaded with the addressed data-
memory value. Note the following points:

� The LST #0 operation does not affect the ARB field in the ST1 register,
even though a new ARP is loaded.

� During the LST #1 operation, the value loaded into ARB is also loaded into
ARP.

� If a next AR value is specified as an operand in the indirect addressing
mode, this operand is ignored. ARP is loaded with the three MSBs of the
value contained in the addressed data-memory location.

� Reserved bit values in the status registers are always read as 1s. Writes
to these bits have no effect.

The LST instruction can be used for restoring the status registers after subrou-
tine calls and interrupts.

Words 1

Cycles for a Single LST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+pcode

SARAM 2 2 2, 3† 2+pcode

External 2+dsrc 2+dsrc 2+dsrc 3+dsrc+pcode

† If the operand and the code are in the same SARAM block

Cycles



LST Load Status Register

7-88  

Cycles for a Repeat (RPT) Execution of an LST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2n 2n 2n 2n+pcode

SARAM 2n 2n 2n, 2n+1† 2n+pcode

External 2n+ndsrc 2n+ndsrc 2n+ndsrc 2n+1+ndsrc+pcode

† If the operand and the code are in the same SARAM block

Example 1 MAR *,AR0
LST #0,*,AR1 ;The data memory word addressed by the

;contents of auxiliary register AR0 is
;loaded into status register ST0,except
;for the INTM bit. Note that even
;though a next ARP value is specified,
;that value is ignored. Also note that
;the old ARP is not loaded into the
;ARB.

Example 2 LST #0,60h ;(DP = 0)

Before Instruction After Instruction

Data Memory Data Memory
60h 2404h 60h 2404h

ST0 6E00h ST0 2604h

ST1 05ECh ST1 05ECh

Example 3 LST #0,*–,AR1

Before Instruction After Instruction

ARP 4 ARP 7

AR4 3FFh AR4 3FEh

Data Memory Data Memory
3FFh EE04h 3FFh EE04h

ST0 EE00h ST0 EE04h

ST1 F7ECh ST1 F7ECh



 Load Status Register LST

7-89 Assembly Language Instructions

Example 4 LST #1,00h ;(DP = 6)
;Note that the ARB is loaded with
;the new ARP value.

Before Instruction After Instruction

Data Memory Data Memory
300h E1BCh 300h E1BCh

ST0 0406h ST0 E406h

ST1 09ECh ST1 E1FCh



LT Load TREG

7-90  

Syntax LT  dma Direct addressing
LT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 0 dma

LT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG

Status Bits None

Description TREG is loaded with the contents of the specified data-memory address. The
LT instruction may be used to load TREG in preparation for multiplication. See
also the LTA, LTD, LTP, LTS, MPY, MPYA, MPYS, and MPYU instructions.

Words 1

Cycles for a Single LT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Load TREG LT

7-91 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an LT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LT 24 ;(DP = 8: addresses 0400h–047Fh)

Before Instruction After Instruction

Data Memory Data Memory
418h 62h 418h 62h

TREG 3h TREG 62h

Example 2 LT *,AR3

Before Instruction After Instruction

ARP 2 ARP 3

AR2 418h AR2 418h

Data Memory Data Memory
418h 62h 418h 62h

TREG 3h TREG 62h



LTA Load TREG and Accumulate Previous Product

7-92  

Syntax LTA  dma Direct addressing
LTA  ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LTA  dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 0 dma

LTA  ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

Description TREG is loaded with the contents of the specified data-memory address. The
contents of the product register, shifted as defined by the PM status bits, are
added to the accumulator, and the result is placed in the accumulator.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

The function of the LTA instruction is a subtask of the LTD instruction.

Words 1

Cycles for a Single LTA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Load TREG and Accumulate Previous Product LTA

7-93 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an LTA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTA 36 ;(DP = 6: addresses 0300h–037Fh,
;PM =0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Example 2 LTA *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 324h AR4 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C



LTD Load TREG, Accumulate Previous Product, and Move Data

7-94  

Syntax LTD  dma Direct addressing
LTD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LTD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 0 0 dma

LTD ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
(data-memory address) → data-memory address + 1 
(ACC) + shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

Description TREG is loaded with the contents of the specified data-memory address. The
contents of the PREG, shifted as defined by the PM status bits, are added to
the accumulator, and the result is placed in the accumulator. The contents of
the specified data-memory address are also copied to the next higher data-
memory address.

This instruction is valid for all blocks of on-chip RAM configured as data
memory. The data move function is continuous across the boundaries of con-
tiguous blocks of memory but cannot be used with external data memory or
memory-mapped registers. The data move function is described under the in-
struction DMOV.

Note:

If LTD is used with external data memory, its function is identical to that of
LTA; that is, the previous product will be accumulated, and the TREG will be
loaded from external data memory, but the data move will not occur.

The carry bit is set (C = 1) if the result of the addition generates a carry and
is cleared (C = 0) if it does not generate a carry.

Opcode



 Load TREG, Accumulate Previous Product, and Move Data LTD

7-95 Assembly Language Instructions

Words 1

Cycles for a Single LTD Instruction

Program

Operand ROM DARAM SARAM External ‡

DARAM 1 1 1 1+p

SARAM 1 1 1, 3† 1+p

External 2+2d 2+2d 2+2d 5+2d+p

† If the operand and the code are in the same SARAM block
‡ If the LTD instruction is used with external memory, the data move will not occur. (The previous

product will be accumulated, and the TREG will be loaded.)

Cycles for a Repeat (RPT) Execution of an LTD Instruction

Program

Operand ROM DARAM SARAM External ‡

DARAM n n n n+p

SARAM 2n–2 2n–2 2n–2, 2n+1† 2n–2+p

External 4n–2+2nd 4n–2+2nd 4n–2+2nd 4n+1+2nd+p

† If the operand and the code are in the same SARAM block
‡ If the LTD instruction is used with external memory, the data move will not occur. (The previous

product will be accumulated, and the TREG will be loaded.)

Example 1 LTD 126 ;(DP = 7: addresses 0380h–03FFh,
;PM = 0: no shift of product).

Before Instruction After Instruction

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Cycles



LTD Load TREG, Accumulate Previous Product, and Move Data

7-96  

Example 2 LTD *,AR3 ;(PM = 0)

Before Instruction After Instruction

ARP 1 ARP 3

AR1 3FEh AR1 3FEh

Data Memory Data Memory
3FEh 62h 3FEh 62h

Data Memory Data Memory
3FFh 0h 3FFh 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC 0 14h

C C

Note: The data move function for LTD can occur only within on-chip data memory RAM blocks.



 Load TREG and Store PREG in Accumulator LTP

7-97 Assembly Language Instructions

Syntax LTP  dma Direct addressing
LTP ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LTP dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 0 dma

LTP ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
shifted (PREG) → ACC

Status Bits Affected by
PM

Description The TREG is loaded with the content of the addressed data-memory location,
and the PREG value is stored in the accumulator. The shift at the output of the
PREG is controlled by the PM status bits.

Words 1

Cycles for a Single LTP Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



LTP Load TREG and Store PREG in Accumulator

7-98  

Cycles for a Repeat (RPT) Execution of an LTP Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTP 36 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C

Example 2 LTP *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 2 ARP 5

AR2 324h AR2 324h

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 5h ACC X 0Fh

C C



 Load TREG and Subtract Previous Product LTS

7-99 Assembly Language Instructions

Syntax LTS  dma Direct addressing
LTS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

LTS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 0 dma

LTS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TREG
ACC – shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

Description TREG is loaded with the contents of the addressed data-memory location. The
contents of the product register, shifted as defined by the contents of the PM
status bits, are subtracted from the accumulator. The result is placed in the
accumulator.

The carry bit is cleared (C = 0) if the result of the subtraction generates a
borrow, and is set (C = 1) if it does not generate a borrow.

Words 1

Cycles for a Single LTS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode



LTS Load TREG and Subtract Previous Product

7-100  

Cycles for a Repeat (RPT) Execution of an LTS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 LTS DAT36 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 0FFFFFFF6h

C C

Example 2 LTS *,AR2 ;(PM = 0)

Before Instruction After Instruction

ARP 1 ARP 2

AR1 324h AR1 324h

324h 62h 324h 62h

TREG 3h TREG 62h

PREG 0Fh PREG 0Fh

ACC X 05h ACC 0 0FFFFFFF6h

C C



 Multiply and Accumulate MAC

7-101 Assembly Language Instructions

Syntax MAC  pma, dma Direct addressing
MAC pma, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

MAC pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 0 0 dma

pma

MAC pma, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 0 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then . . .
(PC) → MSTACK
pma → PC
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0:
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) – 1 → repeat counter

(MSTACK) → PC

Status Bits Affected by Affects
PM and OVM C and OV

Opcode



MAC Multiply and Accumulate

7-102  

Description The MAC instruction:

� Adds the previous product, shifted as defined by the PM status bits, to the
accumulator. The carry bit is set (C = 1) if the result of the addition gener-
ates a carry and is cleared (C = 0) if it does not generate a carry.

� Loads the TREG with the content of the specified data-memory address.

� Multiplies the data-memory value in the TREG by the contents of the spe-
cified program-memory address.

The data and program memory locations on the ’C20x may be any nonre-
served on-chip or off-chip memory locations. If the program memory is block
B0 of on-chip RAM, the CNF bit must be set to 1.

When the MAC instruction is repeated, the program-memory address con-
tained in the PC is incremented by 1 during each repetition. This makes it pos-
sible to access a series of operands in program memory. If you use indirect
addressing to specify the data-memory address, a new data-memory address
can be accessed during each repetition. If you use the direct addressing mode,
the specified data-memory address is a constant; it will not be modified during
each repetition.

MAC is useful for long sum-of-products operations because, when repeated,
it becomes a single-cycle instruction once the RPT pipeline is started.

Words 2



 Multiply and Accumulate MAC

7-103 Assembly Language Instructions

Cycles

Cycles for a Single MAC Instruction

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: External
Operand 2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: SARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: SARAM

3
4†

3
4†

3
4†

3+2pcode
4+2pcode†

Operand 1: External
Operand 2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: SARAM
Operand 2: External

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: External
Operand 2: External

4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

† If both operands are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MAC Instruction 

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: External
Operand 2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

† If both operands are in the same SARAM block



MAC Multiply and Accumulate

7-104  

Cycles for a Repeat (RPT) Execution of an MAC Instruction (Continued)

Operand ExternalSARAMDARAMROM

Operand 1: DARAM/
ROM
Operand 2: SARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM
Operand 2: SARAM

n+2
2n+2†

n+2
2n+2†

n+2
2n+2†

n+2+2pcode
2n+2†

Operand 1: External
Operand 2: SARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: SARAM
Operand 2: External

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: External
Operand 2: External

2n+2+npop1+
ndop2

2n+2+npop1+ndop2 2n+2+npop1+ndop2 2n+2+npop1+ndop2+
2pcode

† If both operands are in the same SARAM block

Example 1 MAC 0FF00h,02h ;(DP = 6, PM = 0, CNF = 1)

Before Instruction After Instruction

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 08Ch

ACC X 723EC41h ACC 0 76975B3h

C C

Example 2 MAC 0FF00h,*,AR5 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 302h AR4 302h

Data Memory Data Memory
302h 23h 302h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C



 Multiply and Accumulate With Data Move MACD

7-105 Assembly Language Instructions

Syntax MACD  pma, dma Direct addressing
MACD pma, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
pma: 16-bit program-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

MACD pma, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1 0 dma

pma

MACD pma, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 1 1 1 ARU N NAR

pma

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then . . .
(PC) → MSTACK
pma → PC
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(data-memory address) → data-memory address + 1

While (repeat counter) ≠ 0:
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(data-memory address) × (pma) → PREG
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(data-memory address) → data-memory address + 1
(repeat counter) – 1 → repeat counter

(MSTACK) → PC

Opcode



MACD Multiply and Accumulate With Data Move

7-106  

Status Bits Affected by Affects
PM and OVM C and OV

Description The MACD instruction:

� Adds the previous product, shifted as defined by the PM status bits, to the
accumulator. The carry bit is set (C = 1) if the result of the addition gener-
ates a carry and is cleared (C = 0) if it does not generate a carry.

� Loads the TREG with the content of the specified data-memory address.

� Multiplies the data-memory value in the TREG by the contents of the spe-
cified program-memory address.

� Copies the contents of the specified data-memory address to the next
higher data-memory address.

The data- and program-memory locations on the ’C20x may be any nonre-
served, on-chip or off-chip memory locations. If the program memory is block
B0 of on-chip RAM, the CNF bit must be set to 1. If MACD addresses one of
the memory-mapped registers or external memory as a data-memory location,
the effect of the instruction is that of a MAC instruction; the data move will not
occur (see the DMOV instruction description).

When the MACD instruction is repeated, the program-memory address con-
tained in the PC is incremented by 1 during each repetition. This makes it pos-
sible to access a series of operands in program memory. If you use indirect
addressing to specify the data-memory address, a new data-memory address
can be accessed during each repetition. If you use the direct addressing mode,
the specified data-memory address is a constant; it will not be modified during
each repetition.

MACD functions in the same manner as MAC, with the addition of a data move
for on-chip RAM blocks. This feature makes MACD useful for applications
such as convolution and transversal filtering. When used with RPT, MACD be-
comes a single-cycle instruction once the RPT pipeline is started.

Words 2

Cycles



 Multiply and Accumulate With Data Move MACD

7-107 Assembly Language Instructions

Cycles for a Single MACD Instruction 

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: DARAM

3 3 3 3+2pcode

Operand 1: External
Operand 2: DARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: SARAM

3 3 3 3+2pcode

Operand 1: SARAM
Operand 2: SARAM

3 3 3
4†

5‡

3+2pcode
4+2pcode†

Operand 1: External
Operand 2: SARAM

3+pop1 3+pop1 3+pop1 3+pop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External§

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: SARAM
Operand 2: External§

3+dop2 3+dop2 3+dop2 3+dop2+2pcode

Operand 1: External
Operand 2: External§

4+pop1+dop2 4+pop1+dop2 4+pop1+dop2 4+pop1+dop2+2pcode

† If both operands are in the same SARAM block
‡ If both operands and code are in the same SARAM block
§ Data move operation is not performed when operand2 is in external data memory.

Cycles for a Repeat (RPT) Execution of an MACD Instruction 

Operand ROM DARAM SARAM External

Operand 1: DARAM/
ROM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

Operand 1: SARAM
Operand 2: DARAM

n+2 n+2 n+2 n+2+2pcode

† If operand 2 and code are in the same SARAM block
‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.



MACD Multiply and Accumulate With Data Move

7-108  

Cycles for a Repeat (RPT) Execution of an MACD Instruction (Continued)

Operand ExternalSARAMDARAMROM

Operand 1: External
Operand 2: DARAM

n+2+npop1 n+2+npop1 n+2+npop1 n+2+npop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: SARAM

2n 2n 2n
2n+2†

2n+2pcode

Operand 1: SARAM
Operand 2: SARAM

2n
3n‡

2n
3n‡

2n
2n+2†

3n‡

3n+2§

2n+2pcode
3n‡

Operand 1: External
Operand 2: SARAM

2n+npop1 2n+npop1 2n+npop1
2n+2+npop1†

2n+npop1+2pcode

Operand 1: DARAM/
ROM
Operand 2: External¶

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: SARAM
Operand 2: External¶

n+2+ndop2 n+2+ndop2 n+2+ndop2 n+2+ndop2+2pcode

Operand 1: External
Operand 2: External¶

2n+2+npop1+
ndop2

2n+2+npop1+ndop2 2n+2+npop1+ndop2 2n+2+npop1+ndop2+
2pcode

† If operand 2 and code are in the same SARAM block
‡ If both operands are in the same SARAM block
§ If both operands and code are in the same SARAM block
¶ Data move operation is not performed when operand2 is in external data memory.

Example 1 MACD 0FF00h,08h ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product,
;CNF = 1: RAM B0 configured to
;program memory).

Before Instruction After Instruction

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C



 Multiply and Accumulate With Data Move MACD

7-109 Assembly Language Instructions

Example 2 MACD 0FF00h,*,AR6 ;(PM = 0, CNF = 1)

Before Instruction After Instruction

ARP 5 ARP 6

AR5 308h AR5 308h

Data Memory Data Memory
308h 23h 308h 23h

Data Memory Data Memory
309h 18h 309h 23h

Program Memory Program Memory
FF00h 4h FF00h 4h

TREG 45h TREG 23h

PREG 458972h PREG 8Ch

ACC X 723EC41h ACC 0 76975B3h

C C

Note: The data move function for MACD can occur only within on-chip data memory RAM
blocks.



MAR Modify Auxiliary Register

7-110  

Syntax MAR  dma Direct addressing
MAR ind [, ARn] Indirect addressing

Operands n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

MAR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 1 0 dma

MAR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Event(s) Addressing mode
Increment PC Direct

Increment PC Indirect
Modify (current AR) and (ARP) as specified

Status Bits Affects Addressing mode
None Direct

ARP and ARB Indirect

Description In the direct addressing mode, the MAR instruction acts as a NOP instruction.

In the indirect addressing mode, an auxiliary register value and the ARP value
can be modified; however, the memory being referenced is not used. When
MAR modifies the ARP value, the old ARP value is copied to the ARB field of
ST1. Any operation that MAR performs with indirect addressing can also be
performed with any instruction that supports indirect addressing. The ARP can
also be loaded by an LST instruction.

The LARP instruction from the ’C25 instruction set is a subset of MAR. For ex-
ample, MAR *, AR4 performs the same function as LARP 4, which loads the
ARP with 4.

For loading an auxiliary register, see the description for the LAR instruction.
For storing an auxiliary register value to data memory, see the SAR instruction.

Opcode



 Modify Auxiliary Register MAR

7-111 Assembly Language Instructions

Words 1

Cycles for a Single MAR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an MAR Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 MAR *,AR1 ;Load the ARP with 1.

Before Instruction After Instruction

ARP 0 ARP 1

ARB 7 ARB 0

Example 2 MAR *+,AR5 ;Increment current auxiliary
;register (AR1) and load ARP
;with 5.

Before Instruction After Instruction

AR1 34h AR1 35h

ARP 1 ARP 5

ARB 0 ARB 1

Cycles



MPY Multiply

7-112  

Syntax MPY  dma Direct addressing
MPY ind [, ARn] Indirect addressing
MPY #k Short immediate addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 13-bit short immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

MPY dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 0 dma

MPY ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

MPY #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 k

Execution Increment PC, then ...
Event Addressing mode
(TREG) × (data-memory address) → PREG Direct or indirect

(TREG) × k → PREG Short immediate

Status Bits None

Description The contents of TREG are multiplied by the contents of the addressed data
memory location. The result is placed in the product register (PREG). With
short immediate addressing, TREG is multiplied by a signed 13-bit constant.
The short-immediate value is right justified and sign extended before the multi-
plication, regardless of SXM.

Words 1

Opcode



 Multiply MPY

7-113 Assembly Language Instructions

Cycles for a Single MPY Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPY Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single MPY Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 MPY DAT13 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Dh 7h 40Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

Cycles



MPY Multiply

7-114  

Example 2 MPY *,AR2

Before Instruction After Instruction

ARP 1 ARP 2

AR1 40Dh AR1 40Dh

Data Memory Data Memory 
40Dh 7h 40Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

Example 3 MPY #031h

Before Instruction After Instruction

TREG 2h TREG 2h

PREG 36h PREG 62h



 Multiply and Accumulate Previous Product MPYA

7-115 Assembly Language Instructions

Syntax MPYA  dma Direct addressing
MPYA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

MPYA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 0 dma

MPYA ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + shifted (PREG) → ACC
(TREG) × (data-memory address) → PREG

Status Bits Affected by Affects
PM and OVM C and OV

Description The contents of TREG are multiplied by the contents of the addressed data
memory location. The result is placed in the product register (PREG). The pre-
vious product, shifted as defined by the PM status bits, is also added to the
accumulator.

Words 1

Cycles for a Single MPYA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



MPYA Multiply and Accumulate Previous Product

7-116  

Cycles for a Repeat (RPT) Execution of an MPYA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYA DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C

Example 2 MPYA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 30Dh AR3 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 0 8Ah

C C



 Multiply and Subtract Previous Product MPYS

7-117 Assembly Language Instructions

Syntax MPYS  dma Direct addressing
MPYS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

MPYS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 0 dma

MPYS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – shifted (PREG) → ACC
(TREG) × (data-memory address) → PREG

Status Bits Affected by Affects
PM and OVM C and OV

Description The contents of TREG are multiplied by the contents of the addressed data
memory location. The result is placed in the product register (PREG). The pre-
vious product, shifted as defined by the PM status bits, is also subtracted from
the accumulator, and the result is placed in the accumulator.

Words 1

Cycles for a Single MPYS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



MPYS Multiply and Subtract Previous Product

7-118  

Cycles for a Repeat (RPT) Execution of an MPYS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYS DAT13 ;(DP = 6, PM = 0)

Before Instruction After Instruction

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C

Example 2 MPYS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 4 ARP 5

AR4 30Dh AR4 30Dh

Data Memory Data Memory
30Dh 7h 30Dh 7h

TREG 6h TREG 6h

PREG 36h PREG 2Ah

ACC X 54h ACC 1 1Eh

C C



 Multiply Unsigned MPYU

7-119 Assembly Language Instructions

Syntax MPYU  dma Direct addressing
MPYU ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

MPYU dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 0 dma

MPYU ind [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
Unsigned (TREG) × unsigned (data-memory address) → PREG

Status Bits None

This instruction is not affected by SXM.

Description The unsigned contents of TREG are multiplied by the unsigned contents of the
addressed data-memory location. The result is placed in the product register
(PREG). The multiplier acts as a signed 17 × 17-bit multiplier for this instruc-
tion, with the MSB of both operands forced to 0.

When another instruction passes the resulting PREG value to data memory
or to the CALU, the value passes first through the product shifter at the output
of the PREG. This shifter always invokes sign extension on the PREG value
when PM = 3 (right-shift-by-6 mode). Therefore, this shift mode should not be
used if unsigned products are desired.

The MPYU instruction is particularly useful for computing multiple-precision
products, such as when multiplying two 32-bit numbers to yield a 64-bit prod-
uct.

Words 1

Opcode



MPYU Multiply Unsigned

7-120  

Cycles for a Single MPYU Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an MPYU Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 MPYU 16 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

Data Memory Data Memory
210h 0FFFFh 210h 0FFFFh

TREG 0FFFFh TREG 0FFFFh

PREG 1h PREG 0FFFE0001h

Example 2 MPYU *,AR6

Before Instruction After Instruction

ARP 5 ARP 6

AR5 210h AR5 210h

Data Memory Data Memory
210h 0FFFFh 210h 0FFFFh

TREG 0FFFFh TREG 0FFFFh

PREG 1h PREG 0FFFE0001h

Cycles



 Negate Accumulator NEG

7-121 Assembly Language Instructions

Syntax NEG

Operands None

Opcode 0123456789101112131415
0100000001111101

Execution Increment PC, then ...
(ACC) × –1 → ACC

Status Bits Affected by Affects
OVM C and OV

Description The content of the accumulator is replaced with its arithmetic complement (2s
complement). The OV bit is set when taking the NEG of 8000 0000h. If OVM
= 1, the accumulator content is replaced with 7FFF FFFFh. If OVM = 0, the
result is 8000 0000h. The carry bit (C) is cleared to 0 by this instruction for all
nonzero values of the accumulator, and is set to 1 if the accumulator equals
zero.

Words 1

Cycles for a Single NEG Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an NEG Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 NEG ;(OVM = X) Convert –3544 to +3544

Before Instruction After Instruction

ACC X 0FFFFF228h ACC 0 0DD8h

C C

X X

OV OV

Example 2 NEG ;(OVM = 0)

Before Instruction After Instruction

ACC X 080000000h ACC 0 080000000h

C C

X 1

OV OV

Cycles



NEG Negate Accumulator

7-122  

Example 3 NEG ;(OVM = 1)

Before Instruction After Instruction

ACC X 080000000h ACC 0 7FFFFFFFh

C C

X 1

OV OV



 Nonmaskable Interrupt NMI

7-123 Assembly Language Instructions

Syntax NMI

Operands None

Opcode 0123456789101112131415
0100101001111101

Execution (PC) + 1 → stack
24h → PC
1 → INTM

Status Bits Affects
INTM

This instruction is not affected by INTM.

Description The NMI instruction forces the program counter to the nonmaskable interrupt
vector located at 24h. This instruction has the same effect as the hardware
nonmaskable interrupt NMI.

Words 1

Cycles for a Single NMI Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The ’C20x performs speculative fetching by reading two additional instruction words. If the PC
discontinuity is taken, these two instruction words are discarded.

Example NMI ;PC + 1 is pushed onto the stack, and then
;control is passed to program memory location
;24h.

Cycles



NOP No Operation

7-124  

Syntax NOP

Operands None

Opcode 0123456789101112131415
0000000011010001

Execution Increment PC

Status Bits None

Description No operation is performed. The NOP instruction affects only the PC. The NOP
instruction is useful for creating pipeline and execution delays.

Words 1

Cycles for a Single NOP Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an NOP Instruction

ROM DARAM SARAM External

n n n n+p

Example NOP ;No operation is performed.

Cycles



 Normalize Contents of Accumulator NORM

7-125 Assembly Language Instructions

Syntax NORM  ind Indirect addressing

Operands ind: Select one of the following seven options:
*     *+     *–     *0+     *0–     *BR0+     *BR0–

NORM ind
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...

If (ACC) = 0:
Then TC → 1;

Else, if (ACC(31)) XOR (ACC(30)) = 0:
Then TC → 0,

(ACC) × 2 → ACC
Modify (current AR) as specified;

Else TC → 1.

Status Bits Affects
TC

Description The NORM instruction normalizes a signed number that is contained in the ac-
cumulator. Normalizing a fixed-point number separates it into a mantissa and
an exponent by finding the magnitude of the sign-extended number. An exclu-
sive-OR operation is performed on accumulator bits 31 and 30 to determine
if bit 30 is part of the magnitude or part of the sign extension. If they are the
same, they are both sign bits, and the accumulator is left shifted to eliminate
the extra sign bit.

The current AR is modified as specified to generate the magnitude of the expo-
nent. It is assumed that the current AR is initialized before normalization be-
gins. The default modification of the current AR is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the accumulator. Although using NORM with
RPT does not cause execution of NORM to fall out of the repeat loop automati-
cally when the normalization is complete, no operation is performed for the re-
mainder of the repeat loop. NORM functions on both positive and negative 2s-
complement numbers.

Opcode



NORM Normalize Contents of Accumulator

7-126  

Notes:

For the NORM instruction, the auxiliary register operations are executed dur-
ing the fourth phase of the pipeline, the execution phase. For other instruc-
tions, the auxiliary register operations take place in the second phase of the
pipeline, in the decode phase. Therefore:

1) The auxiliary register values should not be modified by the two
instruction words following NORM.  If the auxiliary register used in the
NORM instruction is to be affected by either of the next two instruction
words, the auxiliary register value will be modified by the other instruc-
tions before it is modified by the NORM instruction.

2) The value in the auxiliary register pointer (ARP) should not be mo-
dified by the two instruction words following NORM.  If either of the
next two instruction words specify a change in the ARP value, the ARP
value will be changed before NORM is executed; the ARP will not be
pointing at the correct auxiliary register when NORM is executed.

Words 1

Cycles for a Single NORM Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a NORM Instruction

ROM DARAM SARAM External

n n n n+p

Example 1 NORM *+

Before Instruction After Instruction

ARP 2 ARP 2

AR2 00h AR2 01h

ACC X 0FFFFF001h ACC X 0FFFE002h

C C

X 0

TC TC

Example 2 31-Bit Normalization:

MAR *,AR1 ;Use AR1 to store the exponent.
LAR AR1,#0h ;Clear out exponent counter.

LOOP NORM *+ ;One bit is normalized.
BCND LOOP,NTC ;If TC = 0, magnitude not found yet.

Cycles



 Normalize Contents of Accumulator NORM

7-127 Assembly Language Instructions

Example 3 15-Bit Normalization:

MAR *,AR1 ;Use AR1 to store the exponent.
LAR AR1,#0Fh ;Initialize exponent counter.
RPT #14 ;15-bit normalization specified (yielding

;a 4-bit exponent and 16-bit mantissa).
NORM *– ;NORM automatically stops shifting when first

;significant magnitude bit is found,
;performing NOPs for the remainder of the
;repeat loops.

The method used in Example 2 normalizes a 32-bit number and yields a 5-bit
exponent magnitude. The method used in Example 3 normalizes a 16-bit num-
ber and yields a 4-bit magnitude. If the number requires only a small amount
of normalization, the Example 2 method may be preferable to the Example 3
method because the loop in Example 2 runs only until normalization is com-
plete. Example 3 always executes all 15 cycles of the repeat loop. Specifically,
Example 2 is more efficient if the number requires three or fewer shifts. If the
number requires six or more shifts, Example 3 is more efficient.



OR OR With Accumulator

7-128  

Syntax OR  dma Direct addressing
OR ind [, ARn] Indirect addressing
OR #lk [, shift] Long immediate addressing
OR #lk, 16 Long immediate with left 

shift of 16

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

OR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 1 0 dma

OR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

OR #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 0 0 shift

lk

OR #lk [, 16]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0

lk

Execution Increment PC, then ...
Event(s) Addressing mode
(ACC(15:0)) OR (data-memory address) → ACC(15:0) Direct or indirect
(ACC(31:16)) → ACC(31:16)

(ACC) OR lk � 2shift → ACC Long immediate

(ACC) OR lk � 216 → ACC Long immediate
with left shift of 16

Opcode



 OR With Accumulator OR

7-129 Assembly Language Instructions

Status Bits None
This instruction is not affected by SXM.

Description An OR operation is performed on the contents of the accumulator and the con-
tents of the addressed data-memory location or a long-immediate value. The
long-immediate value may be shifted before the OR operation. The result re-
mains in the accumulator. All bit positions unoccupied by the data operand are
zero filled, regardless of the value of the SXM status bit. Thus, the high word
of the accumulator is unaffected by this instruction if direct or indirect address-
ing is used, or if immediate addressing is used with a shift of 0. Zeros are
shifted into the least significant bits of the operand if immediate addressing is
used with a nonzero shift count.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single OR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OR Instruction (Using Direct and
Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single OR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles



OR OR With Accumulator

7-130  

Example 1 OR DAT8 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
408h 0F000h 408h 0F000h

ACC X 100002h ACC X 10F002h

C C

Example 2 OR *,AR0

Before Instruction After Instruction

ARP 1 ARP 0

AR1 300h AR1 300h

Data Memory Data Memory
300h 1111h 300h 1111h

ACC X 222h ACC X 1333h

C C

Example 3 OR #08111h,8

Before Instruction After Instruction

ACC X 0FF0000h ACC X 0FF1100h

C C



 Output Data to Port OUT

7-131 Assembly Language Instructions

Syntax OUT  dma, PA Direct addressing
OUT ind, PA [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
PA: 16-bit I/O address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

OUT dma, PA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 dma

PA

OUT ind, PA [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1 ARU N NAR

PA

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
PA → address bus A15–A0
(data-memory address) → data bus D15–D0
(data-memory address) → PA

Status Bits None

Description The OUT instruction writes a 16-bit value from a data-memory location to the
specified I/O location. The IS line goes low to indicate an I/O access. The
STRB, R/W, and READY timings are the same as for an external data-memory
write.

RPT can be used with the OUT instruction to write consecutive words from
data memory to I/O space.

Words 2

Opcode



OUT Output Data to Port

7-132  

Cycles

Cycles for a Single OUT Instruction

Program

Operand ROM DARAM SARAM External

Source: DARAM 3+iodst 3+iodst 3+iodst 5+iodst+2pcode

Source: SARAM 3+iodst 3+iodst 3+iodst
4+iodst†

5+iodst+2pcode

Source: External 3+dsrc+iodst 3+dsrc+iodst 3+dsrc+iodst 6+dsrc+iodst+2pcode

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an OUT Instruction

Program

Operand ROM DARAM SARAM External

Destination: DARAM 3n+niodst 3n+niodst 3n+niodst 3n+3+niodst+2pcode

Destination: SARAM 3n+niodst 3n+niodst 3n+niodst
3n+1+niodst†

3n+3+niodst+2pcode

Destination: External 5n–2+ndsrc+
niodst

5n–2+ndsrc+niodst 5n–2+ndsrc+niodst 5n+1+ndsrc+niodst+
2pcode

† If the operand and the code are in the same SARAM block

Example 1 OUT DAT0,100h ;(DP = 4) Write data word stored in
;data memory location 200h to
;peripheral at I/O port address
;100h.

Example 2 OUT *,100h ;Write data word referenced by
;current auxiliary register to
;peripheral at I/O port address
;100h.



 Load Accumulator With Product Register PAC

7-133 Assembly Language Instructions

Syntax PAC

Operands None

Opcode 0123456789101112131415
1100000001111101

Execution Increment PC, then ...
shifted (PREG) → ACC

Status Bits Affected by
PM

Description The content of PREG, shifted as specified by the PM status bits, is loaded into
the accumulator.

Words 1

Cycles for a Single PAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a PAC Instruction

ROM DARAM SARAM External

n n n n+p

Example PAC ;(PM = 0: no shift of product)

Before Instruction After Instruction

PREG 144h PREG 144h

ACC X 23h ACC X 144h

C C

Cycles



POP Pop Top of Stack to Low Accumulator

7-134  

Syntax POP

Operands None

Opcode 0123456789101112131415
0100110001111101

Execution Increment PC, then ...
(TOS) → ACC(15:0)
0 → ACC(31:16)
Pop stack one level

Status Bits None

Description The content of the top of the stack (TOS) is copied to the low accumulator, and
then the stack values move up one level. The upper half of the accumulator
is set to all zeros.

The hardware stack functions as a last-in, first-out stack with eight locations.
Any time a pop occurs, every stack value is copied to the next higher stack lo-
cation, and the top value is removed from the stack. After a pop, the bottom
two stack words will have the same value. Because each stack value is copied,
if more than seven stack pops (using the POP, POPD, RETC, or RET instruc-
tions) occur before any pushes occur, all levels of the stack will contain the
same value. No provision exists to check stack underflow.

Words 1

Cycles for a Single POP Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a POP Instruction

ROM DARAM SARAM External

n n n n+p

Cycles



 Pop Top of Stack to Low Accumulator POP

7-135 Assembly Language Instructions

Example POP

Before Instruction After Instruction

ACC X 82h ACC X 45h

C C

Stack 45h Stack 16h

16h  7h

  7h 33h

33h 42h

42h 56h

56h 37h

37h 61h

61h 61h



POPD Pop Top of Stack to Data Memory

7-136  

Syntax POPD  dma Direct addressing
POPD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

POPD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0 0 dma

POPD ind [,ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(TOS) → data-memory address
Pop stack one level

Status Bits None

Description The value from the top of the stack is transferred into the data-memory location
specified by the instruction. In the lower seven locations of the stack, the val-
ues are copied up one level. The stack operation is explained in the description
for the POP instruction. No provision exists to check stack underflow.

Words 1

Cycles for a Single POPD Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Pop Top of Stack to Data Memory POPD

7-137 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of a POPD Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 POPD DAT10 ;(DP = 8)

Before Instruction After Instruction

Data Memory Data Memory
40Ah 55h 40Ah 92h

Stack 92h Stack 72h

72h  8h

 8h 44h

44h 81h

81h 75h

75h 32h

32h 0AAh

0AAh 0AAh

Example 2 POPD *+,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 301h

Data Memory Data Memory
300h 55h 300h 92h

Stack 92h Stack 72h

72h  8h

 8h 44h

44h 81h

81h 75h

75h 32h

32h 0AAh

0AAh 0AAh



PSHD Push Data-Memory Value Onto Stack

7-138  

Syntax PSHD  dma Direct addressing
PSHD ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

PSHD dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 0 dma

PSHD ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → TOS
Push all stack locations down one level

Status Bits None

Description The value from the data-memory location specified by the instruction is trans-
ferred to the top of the stack. In the lower seven locations of the stack, the val-
ues are also copied one level down, as explained in the description for the
PUSH instruction. The value in the lowest stack location is lost.

Words 1

Cycles for a Single PSHD Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Push Data-Memory Value Onto Stack PSHD

7-139 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of a PSHD Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+nd+p

† If the operand and the code are in the same SARAM block

Example 1 PSHD 127 ;(DP = 3: addresses 0180–01FFh)

Before Instruction After Instruction

Data Memory Data Memory
1FFh 65h 1FFh 65h

Stack  2h Stack 65h

33h  2h

78h 33h

99h 78h

42h 99h

50h 42h

 0h 50h

 0h  0h

Example 2 PSHD *,AR1

Before Instruction After Instruction

ARP 0 ARP 1

AR0 1FFh AR0 1FFh

Data Memory Data Memory
1FFh 12h 1FFh 12h

Stack  2h Stack 12h

33h  2h

78h 33h

99h 78h

42h 99h

50h 42h

 0h 50h

 0h  0h



PUSH Push Low Accumulator Onto Stack

7-140  

Syntax PUSH

Operands None

Opcode 0123456789101112131415
0011110001111101

Execution Increment PC, then...
Push all stack locations down one level
ACC(15:0) → TOS

Status Bits None

Description The stack values move down one level. Then, the content of the lower half of
the accumulator is copied onto the top of the hardware stack.

The hardware stack operates as a last-in, first-out stack with eight locations.
If more than eight pushes (due to a CALA, CALL, CC, PSHD, PUSH, TRAP,
INTR, or NMI instruction) occur before a pop, the first data values written are
lost with each succeeding push.

Words 1

Cycles for a Single PUSH Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of a PUSH Instruction

ROM DARAM SARAM External

n n n n+p

Example PUSH

Before Instruction After Instruction

ACC X  7h ACC X  7h

C C

Stack  2h Stack  7h

 5h  2h

 3h  5h

 0h  3h

12h  0h

86h 12h

54h 86h

3Fh 54h

Cycles



 Return From Subroutine RET

7-141 Assembly Language Instructions

Syntax RET

Operands None

Opcode 0123456789101112131415
0000000011110111

Execution (TOS) → PC
Pop stack one level.

Status Bits None

Description The contents of the top stack register are copied into the program counter. The
remaining stack values are then copied up one level. RET concludes subrou-
tines and interrupt service routines to return program control to the calling or
interrupted program sequence.

Words 1

Cycles for a Single RET Instruction

ROM DARAM SARAM External

4 4 4 4+3p

Note: When this instruction reaches the execute phase of the pipeline, two additional instruc-
tion words have entered the pipeline. When the PC discontinuity is taken, these two
instruction words are discarded.

Example RET

Before Instruction After Instruction

PC 96h PC 37h

Stack 37h Stack 45h

45h 75h

75h 21h

21h 3Fh

3Fh 45h

45h 6Eh

6Eh 6Eh

6Eh 6Eh

Cycles



RETC Return Conditionally

7-142  

Syntax RETC  cond�1 [, cond�2] [,...]

Operands cond Condition
EQ ACC = 0
NEQ ACC ≠ 0
LT ACC < 0
LEQ ACC ≤ 0
GT ACC > 0
GEQ ACC ≥ 0
NC C = 0
C C =1
NOV OV = 0
OV OV = 1
BIO BIO low
NTC TC = 0
TC TC = 1
UNC Unconditionally

‡

Opcode 0123456789101112131415
ZLVCZLVCTP110111

Note: The TP and ZLVC fields are defined on pages 7-3 and 7-4.

Execution If cond�1 AND cond�2 AND ...
(TOS) → PC
Pop stack one level

Else, continue

Status Bits None

Description If the specified condition or conditions are met, a standard return is executed
(see the description for the RET instruction). Note that not all combinations of
conditions are meaningful. For example, testing for LT and GT is contradictory.
In addition, testing BIO is mutually exclusive to testing TC.

Words 1

Cycles for a Single RETC Instruction

Condition ROM DARAM SARAM External

True 4 4 4 4+4p

False 2 2 2 2+2p

Note: The processor performs speculative fetching by reading two additional instruction
words. If the PC discontinuity is taken, these two instruction words are discarded.

Example RETC GEQ,NOV ;A return is executed if the
;accumulator content is positive
;or zero and if the OV (overflow)
;-bit is zero.

Cycles



 Rotate Accumulator Left ROL

7-143 Assembly Language Instructions

Syntax ROL

Operands None

Opcode 0123456789101112131415
0011000001111101

Execution Increment PC, then ...
C → ACC(0)
(ACC(31)) → C
(ACC(30:0)) → ACC(31:1)

Status Bits Affects 
C

This instruction is not affected by SXM.

Description The ROL instruction rotates the accumulator left one bit. The value of the carry
bit is shifted into the LSB, then the MSB is shifted into the carry bit.

Words 1

Cycles for a Single ROL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ROL Instruction

ROM DARAM SARAM External

n n n n+p

Example ROL

Before Instruction After Instruction

ACC 0 B0001234h ACC 1 60002468h

C C

Cycles



ROR Rotate Accumulator Right

7-144  

Syntax ROR

Operands None

Opcode 0123456789101112131415
1011000001111101

Execution Increment PC, then ...
C → ACC(31)
(ACC(0)) → C
(ACC(31:1)) → ACC(30:0)

Status Bits Affects
C

This instruction is not affected by SXM.

Description The ROR instruction rotates the accumulator right one bit. The value of the
carry bit is shifted into the MSB of the accumulator, then the LSB of the accu-
mulator is shifted into the carry bit.

Words 1

Cycles for a Single ROR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an ROR Instruction

ROM DARAM SARAM External

n n n n+p

Example ROR

Before Instruction After Instruction

ACC 0 B0001235h ACC 1 5800091Ah

C C

Cycles



 Repeat Next Instruction RPT

7-145 Assembly Language Instructions

Syntax RPT  dma Direct addressing
RPT ind [, ARn] Indirect addressing
RPT #k Short immediate

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

RPT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 dma

RPT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

RPT #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 1 k

Execution Increment PC, then ...
Event Addressing mode
(data-memory address) → RPTC Direct or indirect

k → RPTC Short immediate

Status Bits None

Description The repeat counter (RPTC) is loaded with the content of the addressed data-
memory location if direct or indirect addressing is used; it is loaded with an 8-bit
immediate value if short immediate addressing is used. The instruction follow-
ing the RPT is repeated n times, where n is the initial value of the RPTC plus
1. Since the RPTC cannot be saved during a context switch, repeat loops are
regarded as multicycle instructions and are not interruptible. The RPTC is
cleared to 0 on a device reset.

RPT is especially useful for block moves, multiply/accumulates, and normal-
ization. The repeat instruction itself is not repeatable.

Words 1

Opcode



RPT Repeat Next Instruction

7-146  

Cycles for a Single RPT Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Single RPT Instruction (Using Short Immediate
Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Example 1 RPT DAT127 ;(DP = 31: addresses 0F80h–0FFFh)
;Repeat next instruction 13 times.

Before Instruction After Instruction

Data Memory Data Memory
0FFFh 0Ch 0FFFh 0Ch

RPTC 0h RPTC 0Ch

Example 2 RPT *,AR1 ;Repeat next instruction 4096 times.

Before Instruction After Instruction

ARP 0 ARP 1

AR0 300h AR0 300h

Data Memory Data Memory
300h 0FFFh 300h 0FFFh

RPTC 0h RPTC 0FFFh

Example 3 RPT #1 ;Repeat next instruction two times.

Before Instruction After Instruction

RPTC 0h RPTC 1h

Cycles



 Store High Accumulator With Shift SACH

7-147 Assembly Language Instructions

Syntax SACH  dma [, shift2 ] Direct addressing
SACH ind [, shift2 [, ARn]�] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
shift2: Left shift value from 0 to 7 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SACH dma [ , shift2]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 shift2 0 dma

SACH ind [�, shift��[�, ARn�]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 shift2 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 MSBs of ((ACC) � 2shift2 ) → data-memory address

Status Bits This instruction is not affected by SXM

Description The SACH instruction copies the entire accumulator into the output shifter,
where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the
upper 16 bits of the shifted value into data memory. During the shift, the low-or-
der bits are filled with zeros, and the high-order bits are lost. The accumulator
itself remains unaffected.

Words 1

Cycles for a Single SACH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



SACH Store High Accumulator With Shift

7-148  

Cycles for a Repeat (RPT) Execution of an SACH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SACH DAT10,1 ;(DP = 4: addresses 0200h–027Fh,
;left shift of 1)

Before Instruction After Instruction

ACC X 4208001h ACC X 4208001h

C C

Data Memory Data Memory
20Ah 0h 20Ah 0841h

Example 2 SACH *+,0,AR2 ;(No shift)

Before Instruction After Instruction

ARP 1 ARP 2

AR1 300h AR1 301h

ACC X 4208001h ACC X 4208001h

C C

Data Memory Data Memory
300h 0h 300h 0420h



 Store Low Accumulator With Shift SACL

7-149 Assembly Language Instructions

Syntax SACL  dma [, shift2 ] Direct addressing
SACL  ind [, shift2 [, ARn]�] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
shift2: Left shift value from 0 to 7 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SACL  dma [ , shift2]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 shift2 0 dma

SACL  ind [�, shift�2�[�, ARn�]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 shift2 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 LSBs of ((ACC) � 2shift2) → data-memory address

Status Bits This instruction is not affected by SXM.

Description The SACL instruction copies the entire accumulator into the output shifter,
where it left shifts the entire 32-bit number from 0 to 7 bits. It then copies the
lower 16 bits of the shifted value into data memory. During the shift, the
low-order bits are filled with zeros, and the high-order bits are lost. The
accumulator itself remains unaffected.

Words 1

Cycles for a Single SACL Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block.

Opcode

Cycles



SACL Store Low Accumulator With Shift

7-150  

Cycles for a Repeat (RPT) Execution of an SACL Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block.

Example 1 SACL DAT11,1 ;(DP = 4: addresses 0200h–027Fh,
;left shift of 1)

Before Instruction After Instruction

ACC X 7C63 8421 ACC X 7C63 8421h

C C

Data Memory Data Memory
20Bh 05h 20Bh 0842h

Example 2 SACL *,0,AR7 ;(No shift)

Before Instruction After Instruction

ARP 6 ARP 7

AR6 300h AR6 300h

ACC X 00FF 8421h ACC X 00FF 8421h

C C

Data Memory Data Memory
300h 05h 300h 8421h



 Store Auxiliary Register SAR

7-151 Assembly Language Instructions

Syntax SAR  ARx, dma Direct addressing
SAR ARx, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
x: Value from 0 to 7 designating the auxiliary register value to be

stored
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SAR ARx, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 x 0 dma

SAR ARx, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 x 0 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ARx) → data-memory address

Status Bits None

Description The content of the designated auxiliary register (ARx) is stored in the specified
data-memory location. When the content of the designated auxiliary register
is also modified by the instruction (in indirect addressing mode), SAR copies
the auxiliary register value to data memory before it increments or decrements
the contents of the auxiliary register.

Words 1

Cycles for a Single SAR Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



SAR Store Auxiliary Register

7-152  

Cycles for a Repeat (RPT) Execution of an SAR Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SAR AR0,DAT30 ;(DP = 6: addresses 0300h–037Fh)

Before Instruction After Instruction

AR0 37h AR0 37h

Data Memory Data Memory
31Eh 18h 31Eh 37h

Example 2 SAR AR0,*+

Before Instruction After Instruction

ARP 0 ARP 0

AR0 401h AR0 402h

Data Memory Data Memory
401h 0h 401h 401h



 Subtract Short-Immediate Value From Auxiliary Register SBRK

7-153 Assembly Language Instructions

Syntax SBRK  #k Short immediate addressing

Operands k: 8-bit positive short immediate value

SBRK  #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 k

Execution Increment PC, then ...
(current AR) – k → current AR

Note that k is an 8-bit positive constant.

Status Bits None

Description The 8-bit immediate value is subtracted, right justified, from the content of the
current auxiliary register (the one pointed to by the ARP) and the result re-
places the contents of the auxiliary register. The subtraction takes place in the
auxiliary register arithmetic unit (ARAU), with the immediate value treated as
an 8-bit positive integer. All arithmetic operations on the auxiliary registers are
unsigned.

Words 1

Cycles for a Single SBRK Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example SBRK #0FFh

Before Instruction After Instruction

ARP 7 ARP 7

AR7 0h AR7 FF01h

Opcode

Cycles



SETC Set Control Bit

7-154  

Syntax SETC control bit

Operands control bit: Select one of the following control bits:
C Carry bit of status register ST1
CNF RAM configuration control bit of status register ST1
INTM Interrupt mode bit of status register ST0
OVM Overflow mode bit of status register ST0
SXM Sign-extension mode bit of status register ST1
TC Test/control flag bit of status register ST1
XF XF pin status bit of status register ST1

SETC C
0123456789101112131415
1111001001111101

SETC CNF
0123456789101112131415
1010001001111101

SETC INTM
0123456789101112131415
1000001001111101

SETC OVM
0123456789101112131415
1100001001111101

SETC SXM
0123456789101112131415
1110001001111101

SETC TC
0123456789101112131415
1101001001111101

SETC XF
0123456789101112131415
1011001001111101

Execution Increment PC, then ...
1 → control bit

Status Bits None

Description The specified control bit is set to 1. Note that LST may also be used to load
ST0 and ST1. See section 4.5, Status and Control Registers, on page 4-15 for
more information on each control bit.

Opcode



 Set Control Bit SETC

7-155 Assembly Language Instructions

Words 1

Cycles for a Single SETC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SETC Instruction

ROM DARAM SARAM External

n n n n+p

Example SETC TC ;TC is bit 11 of ST1

Before Instruction After Instruction

ST1 x1xxh ST1 x9xxh

Cycles



SFL Shift Accumulator Left

7-156  

Syntax SFL

Operands None

Opcode 0123456789101112131415
1001000001111101

Execution Increment PC, then ...
(ACC(31)) → C
(ACC(30:0)) → ACC(31:1)
0 → ACC(0)

Status Bits Affects
C

This instruction is not affected by SXM.

Description The SFL instruction shifts the entire accumulator left one bit. The least signifi-
cant bit is filled with a 0, and the most significant bit is shifted into the carry bit
(C). SFL, unlike SFR, is unaffected by SXM.

Words 1

Cycles for a Single SFL Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SFL Instruction

ROM DARAM SARAM External

n n n n+p

Example SFL

Before Instruction After Instruction

ACC X B0001234h ACC 1 60002468h

C C

Cycles



 Shift Accumulator Right SFR

7-157 Assembly Language Instructions

Syntax SFR

Operands None

Opcode 0123456789101112131415
0101000001111101

Execution Increment PC, then ...
If SXM = 0

Then 0 → ACC(31).
If SXM = 1

Then (ACC(31)) → ACC(31)

(ACC(31:1)) → ACC(30:0) 
(ACC(0)) → C

Status Bits Affected by Affects
SXM C

Description The SFR instruction shifts the accumulator right one bit.

� If SXM = 1, the instruction produces an arithmetic right shift. The sign bit
(MSB) is unchanged and is also copied into bit 30. Bit 0 is shifted into the
carry bit (C).

� If SXM = 0, the instruction produces a logic right shift. All of the accumula-
tor bits are shifted right by one bit. The least significant bit is shifted into
the carry bit, and the most significant bit is filled with a 0.

Words 1

Cycles for a Single SFR Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SFR Instruction

ROM DARAM SARAM External

n n n n+p

Cycles



SFR Shift Accumulator Right

7-158  

Example 1 SFR ;(SXM = 0: no sign extension)

Before Instruction After Instruction

ACC X B0001234h ACC 0 5800091Ah

C C

Example 2 SFR ;(SXM = 1: sign extend)

Before Instruction After Instruction

ACC X B0001234h ACC 0 D800091Ah

C C



 Subtract PREG From Accumulator SPAC

7-159 Assembly Language Instructions

Syntax SPAC

Operands None

Opcode 0123456789101112131415
1010000001111101

Execution Increment PC, then ...
(ACC) – shifted (PREG) → ACC

Status Bits Affected by Affects
PM and OVM C and OV

This instruction is not affected by SXM.

Description The content of PREG, shifted as defined by the PM status bits, is subtracted
from the content of the accumulator. The result is stored in the accumulator.
SPAC is not affected by SXM, and the PREG value is always sign extended.

The function of the SPAC instruction is a subtask of the LTS, MPYS, and SQRS
instructions.

Words 1

Cycles for a Single SPAC Instruction

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Repeat (RPT) Execution of an SPAC Instruction

ROM DARAM SARAM External

n n n n+p

Example SPAC ;(PM = 0)

Before Instruction After Instruction

PREG 10000000h PREG 10000000h

ACC X 70000000h ACC 1 60000000h

C C

Cycles



SPH Store High PREG

7-160  

Syntax SPH  dma Direct addressing
SPH ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SPH dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 0 dma

SPH ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 MSBs of shifted (PREG) → data-memory address

Status Bits Affected by
PM

Description The 16 high-order bits of the PREG, shifted as specified by the PM bits, are
stored in data memory. First, the 32-bit PREG value is copied into the product
shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6
mode is selected, the high-order bits are sign extended and the low-order bits
are lost. If a left shift is selected, the high-order bits are lost and the low-order
bits are zero filled. If PM = 00, no shift occurs. Then the 16 MSBs of the shifted
value are stored in data memory. Neither the PREG value nor the accumulator
value is modified by this instruction.

Words 1

Cycles for a Single SPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Store High PREG SPH

7-161 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SPH Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SPH DAT3 ;(DP = 4: addresses 0200h–027Fh,
;PM = 0: no shift)

Before Instruction After Instruction

PREG FE079844h PREG FE079844h

Data Memory Data Memory
203h 4567h 203h FE07h

Example 2 SPH *,AR7 ;(PM = 2: left shift of four)

Before Instruction After Instruction

ARP 6 ARP 7

AR6 203h AR6 203h

PREG FE079844h PREG FE079844h

Data Memory Data Memory
203h 4567h 203h E079h



SPL Store Low PREG

7-162  

Syntax SPL  dma Direct addressing
SPL ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SPL dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 0 dma

SPL ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
16 LSBs of shifted (PREG) → data-memory address

Status Bits Affected by
PM

Description The 16 low-order bits of the PREG, shifted as specified by the PM bits, are
stored in data memory. First, the 32-bit PREG value is copied into the product
shifter, where it is shifted as specified by the PM bits. If the right-shift-by-6
mode is selected, the high-order bits are sign extended and the low-order bits
are lost. If a left shift is selected, the high-order bits are lost and the low-order
bits are zero filled. If PM = 00, no shift occurs. Then the 16 LSBs of the shifted
value are stored in data memory. Neither the PREG value nor the accumulator
value is modified by this instruction.

Words 1

Cycles for a Single SPL Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



 Store Low PREG SPL

7-163 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of an SPL Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SPL DAT5 ;(DP = 4: addresses 0200h–027Fh,
;PM = 2: left shift of four)

Before Instruction After Instruction

PREG 0FE079844h PREG 0FE079844h

Data Memory Data Memory
205h 4567h 205h 08440h

Example 2 SPL *,AR3 ;(PM = 0: no shift)

Before Instruction After Instruction

ARP 2 ARP 3

AR2 205h AR2 205h

PREG 0FE079844h PREG 0FE079844h

Data Memory Data Memory
205h 4567h 205h 09844h



SPLK Store Long-Immediate Value to Data Memory

7-164  

Syntax SPLK  #lk, dma Direct addressing
SPLK  #lk,  ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SPLK #lk, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 0 0 dma

lk

SPLK #lk, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 1 1 0 1 ARU N NAR

lk

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
lk → data-memory address

Status Bits None

Description The SPLK instruction allows a full 16-bit pattern to be written into any data
memory location.

Words 2

Cycles for a Single SPLK Instruction

Program

Operand ROM DARAM SARAM External

DARAM 2 2 2 2+2p

SARAM 2 2 2, 3† 2+2p

External 3+d 3+d 3+d 5+d+2p

† If the operand and the code are in the same SARAM block

Example 1 SPLK #7FFFh,DAT3 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
303h FE07h 303h 7FFFh

Opcode

Cycles



 Store Long-Immediate Value to Data Memory SPLK

7-165 Assembly Language Instructions

Example 2 SPLK #1111h,*+,AR4

Before Instruction After Instruction

ARP 0 ARP 4

AR0 300h AR0 301h

Data Memory Data Memory
300h 07h 300h 1111h



SPM Set PREG Output Shift Mode

7-166  

Syntax SPM  constant

Operands constant: Value from 0 to 3 that determines the product shift mode

Opcode
constant00000011111101

0123456789101112131415

Execution Increment PC, then ...
constant → product shift mode (PM) bits

Status Bits Affects
PM

This instruction is not affected by SXM.

Description The two LSBs of the instruction word are copied into the product shift mode
(PM) bits of status register ST1 (bits 1 and 0 of ST1). The PM bits control the
mode of the shifter at the output of the PREG. This shifter can shift the PREG
output either one or four bits to the left or six bits to the right. The possible PM
bit combinations and their meanings are shown in Table 7–8. When an instruc-
tion accesses the PREG value, the value first passes through the shifter,
where it is shifted by the specified amount.

Table 7–8. Product Shift Modes

PM Field Specified Product Shift

00 No shift of PREG output

01 PREG output to be left shifted 1 place

10 PREG output to be left shifted 4 places

11 PREG output to be right shifted 6 places and sign extended

The left shifts allow the product to be justified for fractional arithmetic. The
right-shift-by-six mode allows up to 128 multiply accumulate processes with-
out the possibility of overflow occurring. PM may also be loaded by an LST #1
instruction.

Words 1

Cycles for a Single SPM Instruction

ROM DARAM SARAM External

1 1 1 1+p

Example SPM 3 ;Product register shift mode 3 (PM = 11)
;is selected causing all subsequent
;transfers from the product register (PREG)
;to be shifted to the right six places.

Cycles



 Square Value and Accumulate Previous Product SQRA

7-167 Assembly Language Instructions

Syntax SQRA  dma Direct addressing
SQRA ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SQRA dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 0 0 dma

SQRA ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) + shifted (PREG) → ACC
(data-memory address) → TREG
(TREG) � (data-memory address) → PREG

Status Bits Affected by Affects
OVM and PM OV and C

Description The content of the PREG, shifted as defined by the PM status bits, is added
to the accumulator. Then the addressed data-memory value is loaded into the
TREG, squared, and stored in the PREG.

Words 1

Cycles for a Single SQRA Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



SQRA Square Value and Accumulate Previous Product

7-168  

Cycles for a Repeat (RPT) Execution of an SQRA Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRA DAT30 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory

31Eh 0Fh 31Eh 0Fh

TREG 3h TREG 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C

Example 2 SQRA *,AR4 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 4

AR3 31Eh AR3 31Eh

Data Memory Data Memory
31Eh 0Fh 31Eh 0Fh

TREG 3h TREG 0Fh

PREG 12Ch PREG 0E1h

ACC X 1F4h ACC 0 320h

C C



 Square Value and Subtract Previous Product SQRS

7-169 Assembly Language Instructions

Syntax SQRS  dma Direct addressing
SQRS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SQRS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 0 dma

SQRS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – shifted (PREG) → ACC
(data-memory address) → TREG
(TREG) � (data-memory address) → PREG

Status Bits Affected by Affects
OVM and PM OV and C

Description The content of the PREG, shifted as defined by the PM status bits, is sub-
tracted from the accumulator. Then the addressed data-memory value is
loaded into the TREG, squared, and stored in the PREG.

Words 1

Cycles for a Single SQRS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



SQRS Square Value and Subtract Previous Product

7-170  

Cycles for a Repeat (RPT) Execution of an SQRS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SQRS DAT9 ;(DP = 6: addresses 0300h–037Fh,
;PM = 0: no shift of product)

Before Instruction After Instruction

Data Memory Data Memory
309h 08h 309h 08h

TREG 1124h TREG 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C

Example 2 SQRS *,AR5 ;(PM = 0)

Before Instruction After Instruction

ARP 3 ARP 5

AR3 309h AR3 309h

Data Memory Data Memory
309h 08h 309h 08h

TREG 1124h TREG 08h

PREG 190h PREG 40h

ACC X 1450h ACC 1 12C0h

C C



 Store Status Register SST

7-171 Assembly Language Instructions

Syntax SST  #m, dma Direct addressing
SST #m, ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
m: Select one of the following:

0 Indicates that ST0 will be stored
1 Indicates that ST1 will be stored

ind: Select one of the following seven options:
*     *+     *–     *0+     *0–     *BR0+     *BR0–

SST #0, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 0 0 dma

SST #0, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SST #1, dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 0 dma

SST #1, ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(status register STm) → data-memory address

Status Bits None

Description Status register ST0 or ST1 (whichever is specified) is stored in data memory.

In direct addressing mode, the specified status register is always stored in data
page 0, regardless of the value of the data page pointer (DP) in ST0. Although
the processor automatically accesses page 0, the DP is not physically
modified; this allows the DP value to be stored unchanged when ST0 is stored.

In indirect addressing mode, the storage address is obtained from the auxiliary
register selected; thus, the specified status register contents can be stored to
an address on any page in data memory.

Opcode



SST Store Status Register

7-172  

Status registers ST0 and ST1 are defined in section 4.5, Status Registers ST0
and ST1, on page 4-15.

Words 1

Cycles for a Single SST Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 2+d 2+d 2+d 4+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SST Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+2† n+p

External 2n+nd 2n+nd 2n+nd 2n+2+nd+p

† If the operand and the code are in the same SARAM block

Example 1 SST #0,96 ;Direct addressing: data page 0
;accessed automatically

Before Instruction After Instruction

ST0 0A408h ST0 0A408h

Data Memory Data Memory
60h 0Ah 60h 0A408h

Example 2 SST #1,*,AR7 ;Indirect addressing

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ST1 2580h ST1  2580h

Data Memory Data Memory
300h 0h 300h 2580h

Cycles



 Subtract From Accumulator SUB

7-173 Assembly Language Instructions

Syntax SUB  dma [, shift ] Direct addressing
SUB dma,16 Direct with left shift of 16
SUB ind [,shift [, ARn]�] Indirect addressing
SUB ind,16[ , ARn] Indirect with left shift of 16
SUB #k Short immediate
SUB #lk [,shift ] Long immediate

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
k: 8-bit short immediate value
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SUB dma [ ,shift ]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 shift 0 dma

SUB dma, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 0 dma

SUB ind [�, shift �[�, ARn�]�]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 shift 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SUB ind,16 [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 0 1 0 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

SUB #k
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 0 1 0 k

SUB #lk [, shift ]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 1 1 1 1 1 1 0 1 0 shift

lk

Opcode



SUB Subtract From Accumulator

7-174  

Execution Increment PC, then ...
Event Addressing mode
(ACC) – ((data-memory address) � 2shift ) → ACC Direct or indirect

(ACC) – (�(data-memory address) � 216 ) → ACC Direct or indirect
(shift of 16)

(ACC) – k → ACC Short immediate

(ACC) – lk � 2shift → ACC Long immediate

Status Bits Affected by Affects Addressing mode
OVM and SXM OV and C Direct or indirect

OVM OV and C Short immediate

OVM and SXM OV and C Long immediate

Description In direct, indirect, and long immediate addressing, the content of the ad-
dressed data-memory location or a 16-bit constant are left shifted and sub-
tracted from the accumulator. During shifting, low-order bits are zero filled.
High-order bits are sign extended if SXM = 1 and zero filled if SXM = 0. The
result is then stored in the accumulator.

If short immediate addressing is used, an 8-bit positive constant is subtracted
from the accumulator. In this case, no shift value may be specified, the subtrac-
tion is unaffected by SXM, and the instruction is not repeatable.

Normally, the carry bit is cleared (C = 0) if the result of the subtraction gener-
ates a borrow; it is set (C = 1) if it does not generate a borrow. However, if a
16-bit shift is specified with the subtraction, the instruction will clear the carry
bit if a borrow is generated but will not affect the carry bit otherwise.

Words Words Addressing mode
1 Direct, indirect

or short immediate
2 Long immediate



 Subtract From Accumulator SUB

7-175 Assembly Language Instructions

Cycles for a Single SUB Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUB Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block.

Cycles for a Single SUB Instruction (Using Short Immediate Addressing)

ROM DARAM SARAM External

1 1 1 1+p

Cycles for a Single SUB Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Example 1 SUB DAT80 ;(DP = 8: addresses 0400h–047Fh

Before Instruction After Instruction

Data Memory Data Memory
450h 11h 450h 11h

ACC X 24h ACC 1 13h

C C

Example 2 SUB *–,1,AR0 ;(Left shift by 1, SXM = 0)

Cycles



SUB Subtract From Accumulator

7-176  

Before Instruction After Instruction

ARP 7 ARP 0

AR7 301h AR7 300h

Data Memory Data Memory
301h 04h 301h 04h

ACC X 09h ACC 1 01h

C C

Example 3 SUB #8h

Before Instruction After Instruction

ACC X 07h ACC 0 FFFFFFFFh

C C

Example 4 SUB #0FFFh,4 ;(Left shift by four, SXM = 0)

Before Instruction After Instruction

ACC X 0FFFFh ACC 1 0Fh

C C



 Subtract From Accumulator With Borrow SUBB

7-177 Assembly Language Instructions

Syntax SUBB  dma Direct addressing
SUBB  ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SUBB  dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 0 dma

SUBB  ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – (data-memory address) – (logical inversion of C�) → ACC

Status Bits Affected by Affects
OVM OV and C

This instruction is not affected by SXM.

Description The content of the addressed data-memory location and the logical inversion
of the carry bit is subtracted from the accumulator with sign extension sup-
pressed. The carry bit is then affected in the normal manner: the carry bit is
cleared (C = 0) if the result of the subtraction generates a borrow;  it is set
(C = 1) if it does not generate a borrow.

The SUBB instruction can be used in performing multiple-precision arithmetic.

Words 1

Cycles for a Single SUBB Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



SUBB Subtract From Accumulator With Borrow

7-178  

Cycles for a Repeat (RPT) Execution of an SUBB Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBB DAT5 ;(DP = 8: addresses 0400h–047Fh)

Before Instruction After Instruction

Data Memory Data Memory
405h 06h 405h 06h

ACC 0 06h ACC 0 0FFFFFFFFh

C C

Example 2 SUBB *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 301h AR6 301h

Data Memory Data Memory
301h 02h 301h 02h

ACC 1 04h ACC 1 02h

C C

In the first example, C is originally zeroed, presumably from the result of a pre-
vious subtract instruction that performed a borrow. The effective operation per-
formed was 6 – 6 – (0–) = –1, generating another borrow (resetting carry) in
the process. In the second example, no borrow was previously generated (C
= 1), and the result from the subtract instruction does not generate a borrow.



 Conditional Subtract SUBC

7-179 Assembly Language Instructions

Syntax SUBC  dma Direct addressing
SUBC ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SUBC dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 dma

SUBC ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution For (ACC) ≥ 0 and (data-memory address) ≥ 0:

Increment PC, then ...
(ACC) – [(data-memory address) × 215] → ALU output

If ALU output ≥ 0
Then (ALU output) × 2 + 1 → ACC
Else (ACC) × 2 → ACC

Status Bits Affects
OV and C

Description The SUBC instruction performs conditional subtraction, which can be used for
division as follows: Place a positive 16-bit dividend in the low accumulator and
clear the high accumulator. Place a 16-bit positive divisor in data memory.
Execute SUBC 16 times. After completion of the last SUBC, the quotient of the
division is in the lower-order 16 bits of the accumulator, and the remainder is
in the higher-order 16 bits of the accumulator. For negative accumulator and/or
data-memory values, SUBC cannot be used for division.

If the 16-bit dividend contains fewer than 16 significant bits, the dividend may
be placed in the accumulator and left shifted by the number of leading nonsig-
nificant 0s. The number of executions of SUBC is reduced from 16 by that num-
ber. One leading 0 is always significant.

SUBC operations performed as stated above are not affected by the sign-ex-
tension mode bit (SXM).

Opcode



SUBC Conditional Subtract

7-180  

SUBC affects OV but is not affected by OVM; therefore, the accumulator does
not saturate upon positive or negative overflows when executing this instruc-
tion. The carry bit is affected in the normal manner during this instruction: the
carry bit is cleared (C = 0) if the result of the subtraction generates a borrow
and is set (C = 1) if it does not generate a borrow.

Words 1

Cycles for a Single SUBC Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an SUBC Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBC DAT2 ;(DP = 6)

Before Instruction After Instruction

Data Memory Data Memory
302h 01h 302h 01h

ACC X 04h ACC 0 08h

C C

Example 2 RPT #15
SUBC *

Before Instruction After Instruction

ARP 3 ARP 3

AR3 1000h AR3 1000h

Data Memory Data Memory
1000h 07h 1000h 07h

ACC X 41h ACC 1 20009h

C C

Cycles



 Subtract  From Accumulator With Sign Extension Suppressed SUBS

7-181 Assembly Language Instructions

Syntax SUBS  dma Direct addressing
SUBS ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SUBS dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 0 dma

SUBS ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – (data-memory address) → ACC

Status Bits Affected by Affects
OVM OV and C

This instruction is not affected by SXM.

Description The content of the specified data-memory location is subtracted from the accu-
mulator with sign extension suppressed. The data is treated as a 16-bit un-
signed number, regardless of SXM. The accumulator behaves as a signed
number. SUBS produces the same results as a SUB instruction with SXM =
0 and a shift count of 0.

The carry bit is cleared (C = 0) if the result of the subtraction generates a bor-
row and is set (C = 1) if it does not generate a borrow.

Words 1

Cycles for a Single SUBS Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



SUBS Subtract  From Accumulator With Sign Extension Suppressed

7-182  

Cycles for a Repeat (RPT) Execution of an SUBS Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 SUBS DAT2 ;(DP = 16, SXM = 1)

Before Instruction After Instruction

Data Memory Data Memory
802h 0F003h 802h 0F003h

ACC X 0F105h ACC 1 102h

C C

Example 2 SUBS * ;(SXM = 1)

Before Instruction After Instruction

ARP 0 ARP 0

AR0 310h AR0 310h

Data Memory Data Memory
310h 0F003h 310h 0F003h

ACC X 0FFFF105h ACC 1 0FFF0102h

C C



 Subtract From Accumulator With Shift Specified by TREG SUBT

7-183 Assembly Language Instructions

Syntax SUBT  dma Direct addressing
SUBT ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

SUBT dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 1 0 dma

SUBT ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(ACC) – [(data-memory address) � 2(TREG(3:0))] → (ACC)

If SXM = 1
Then (data-memory address) is sign-extended.

If SXM = 0
Then (data-memory address) is not sign-extended.

Status Bits Affected by Affects
OVM and SXM OV and C

Description The data-memory value is left shifted and subtracted from the accumulator.
The left shift is defined by the four LSBs of TREG, resulting in shift options from
0 to 15 bits. The result replaces the accumulator contents. Sign extension on
the data-memory value is controlled by the SXM status bit.

The carry bit is cleared (C = 0) if the result of the subtraction generates a bor-
row and is set (C = 1) if it does not generate a borrow.

Words 1

Opcode



SUBT Subtract  From Accumulator With Shift Specified by TREG

7-184  

Cycles for a Single SUBT Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block.

Cycles for a Repeat (RPT) Execution of an SUBT Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block.

Example 1 SUBT DAT127 ;(DP = 5: addresses 0280h–02FFh)

Before Instruction After Instruction

Data Memory Data Memory
2FFh 06h 2FFh  06h

TREG 08h TREG  08h

ACC X 0FDA5h ACC 1  0F7A5h

C C

Example 2 SUBT *

Before Instruction After Instruction

ARP 1 ARP  1

AR1 800h AR1  800h

Data Memory Data Memory
800h 01h 800h  01h

TREG 08h TREG  08h

ACC X 0h ACC 0  FFFFFF00h

C C

Cycles



 Table Read TBLR

7-185 Assembly Language Instructions

Syntax TBLR  dma Direct addressing
TBLR  ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

TBLR  dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 0 0 dma

TBLR  ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...

(PC) → MSTACK
(ACC(15:0)) → PC
(pma) → data-memory address
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0
(pma) → data-memory address
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter.

(MSTACK) → PC

Status Bits None

Description The TBLR instruction transfers a word from a location in program memory to
a data-memory location specified by the instruction. The program-memory ad-
dress is defined by the low-order 16 bits of the accumulator. For this operation,
a read from program memory is performed, followed by a write to data memory.
When repeated with the repeat (RPT) instruction, TBLR effectively becomes
a single-cycle instruction, and the program counter that was loaded with
(ACC(15:0)) is incremented once each cycle.

Words 1

Opcode



TBLR Table Read

7-186  

Cycles

Cycles for a Single TBLR Instruction 

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+pcode

Source: SARAM
Destination: DARAM

3 3 3 3+pcode

Source: External
Destination: DARAM

3+psrc 3+psrc 3+psrc 3+psrc+pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3
4†

3+pcode

Source: SARAM
Destination: SARAM

3 3 3
4†

3+pcode

Source: External
Destination: SARAM

3+psrc 3+psrc 3+psrc
4+psrc†

3+psrc+pcode

Source: DARAM/ROM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: SARAM
Destination: External

4+ddst 4+ddst 4+ddst 6+ddst+pcode

Source: External
Destination: External

4+psrc+ddst 4+psrc+ddst 4+psrc+ddst 6+psrc+ddst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a TBLR Instruction 

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External
Destination: DARAM

n+2+npsrc n+2+npsrc n+2+npsrc n+2+npsrc+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block



 Table Read TBLR

7-187 Assembly Language Instructions

Cycles for a Repeat (RPT) Execution of a TBLR Instruction (Continued)

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2
n+4†

n+2+pcode

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

2n+2§

n+2+pcode
2n‡

Source: External
Destination: SARAM

n+2+npsrc n+2+npsrc n+2+npsrc
n+4+npsrc†

n+2+npsrc+pcode

Source: DARAM/ROM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: SARAM
Destination: External

2n+2+nddst 2n+2+nddst 2n+2+nddst 2n+4+nddst+pcode

Source: External
Destination: External

4n+npsrc+nddst 4n+npsrc+nddst 4n+npsrc+nddst 4n+2+npsrc+nddst+
pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLR DAT6 ;(DP = 4: addresses 0200h–027Fh)

Before Instruction After Instruction

ACC 23h ACC 23h

Program Memory Program Memory
23h 306h 23h 306h

Data Memory Data Memory
206h 75h 206h 306h

Example 2 TBLR *,AR7

Before Instruction After Instruction

ARP 0 ARP 7

AR0 300h AR0 300h

ACC 24h ACC 24h

Program Memory Program Memory
24h 307h 24h 307h

Data Memory Data Memory
300h 75h 300h 307h



TBLW Table Write

7-188  

Syntax TBLW  dma Direct addressing
TBLW  ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

TBLW  dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 0 dma

TBLW  ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 1 1 1 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(PC+1) → MSTACK
(ACC(15:0)) → PC+1
(data-memory address) → pma,
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC

While (repeat counter) ≠ 0
(data-memory address) → pma,
For indirect, modify (current AR) and (ARP) as specified
(PC) + 1 → PC
(repeat counter) –1 → repeat counter.

(MSTACK) → PC+1

Status Bits None

Description The TBLW instruction transfers a word in data memory to program memory.
The data-memory address is specified by the instruction, and the program-
memory address is specified by the lower 16 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete the
instruction. When repeated with the repeat (RPT) instruction, TBLW effectively
becomes a single-cycle instruction, and the program counter that was loaded
with (ACC(15:0)) is incremented once each cycle.

Words 1

Opcode



 Table Write TBLW

7-189 Assembly Language Instructions

Cycles

Cycles for a Single TBLW Instruction 

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

3 3 3 3+pcode

Source: SARAM
Destination: DARAM

3 3 3 3+pcode

Source: External
Destination: DARAM

3+dsrc 3+dsrc 3+dsrc 3+dsrc+pcode

Source: DARAM/ROM
Destination: SARAM

3 3 3
4†

3+pcode

Source: SARAM
Destination: SARAM

3 3 3
4†

3+pcode

Source: External
Destination: SARAM

3+dsrc 3+dsrc 3+dsrc
4+dsrc†

3+dsrc+pcode

Source: DARAM/ROM
Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: SARAM
Destination: External

4+pdst 4+pdst 4+pdst 5+pdst+pcode

Source: External
Destination: External

4+dsrc+pdst 4+dsrc+pdst 4+dsrc+pdst 5+dsrc+pdst+pcode

† If the destination operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of a TBLW Instruction 

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: SARAM
Destination: DARAM

n+2 n+2 n+2 n+2+pcode

Source: External
Destination: DARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc n+2+ndsrc+pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block



TBLW Table Write

7-190  

Cycles for a Repeat (RPT) Execution of a TBLW Instruction (Continued)

Program

Operand ROM DARAM SARAM External

Source: DARAM/ROM
Destination: SARAM

n+2 n+2 n+2
n+3†

n+2+pcode

Source: SARAM
Destination: SARAM

n+2
2n‡

n+2
2n‡

n+2
2n‡

2n+1§

n+2+pcode
2n‡

Source: External
Destination: SARAM

n+2+ndsrc n+2+ndsrc n+2+ndsrc
n+3+ndsrc†

n+2+ndsrc+pcode

Source: DARAM/ROM
Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: SARAM
Destination: External

2n+2+npdst 2n+2+npdst 2n+2+npdst 2n+3+npdst+pcode

Source: External
Destination: External

4n+ndsrc+npdst 4n+ndsrc+npdst 4n+ndsrc+npdst 4n+1+ndsrc+npdst+
pcode

† If the destination operand and the code are in the same SARAM block
‡ If both the source and the destination operands are in the same SARAM block
§ If both operands and the code are in the same SARAM block

Example 1 TBLW DAT5 ;(DP = 32: addresses 1000h–107Fh)

Before Instruction After Instruction

ACC 257h ACC 257h

Data Memory Data Memory
1005h 4339h 1005h 4339h

Program Memory Program Memory
257h 306h 257h 4399h

Example 2 TBLW *

Before Instruction After Instruction

ARP 6 ARP 6

AR6 1006h AR6 1006h

ACC 258h ACC 258h

Data Memory Data Memory
1006h 4340h 1006h 4340h

Program Memory Program Memory
258h 307h 258h 4340h



 Software Interrupt TRAP

7-191 Assembly Language Instructions

Syntax TRAP

Operands None

Opcode 0123456789101112131415
1000101001111101

Execution (PC) + 1 → stack
22h → PC

Status Bits Not affected by INTM; does not affect INTM.

Description The TRAP instruction is a software interrupt that transfers program control to
program-memory location 22h and pushes the program counter (PC) plus 1
onto the hardware stack. The instruction at location 22h may contain a branch
instruction to transfer control to the TRAP routine. Putting (PC + 1) onto the
stack enables a return instruction to pop the return address (which points to
the instruction after TRAP) from the stack. The TRAP instruction is not mask-
able.

Words 1

Cycles for a Single TRAP Instruction

ROM DARAM SARAM External

4 4 4 4+3p†

† The processor performs speculative fetching by reading two additional instruction words. If the
PC discontinuity is taken, these two instruction words are discarded.

Example TRAP ;PC + 1 is pushed onto the stack, and then
;control is passed to program memory location
;22h.

Cycles



XOR Exclusive OR With Accumulator

7-192  

Syntax XOR  dma Direct addressing
XOR ind [, ARn] Indirect addressing
XOR #lk [, shift ] Long immediate addressing
XOR #lk,16 Long immediate with left 

shift of 16

Operands dma: 7 LSBs of the data-memory address
shift: Left shift value from 0 to 15 (defaults to 0)
n: Value from 0 to 7 designating the next auxiliary register
lk: 16-bit long immediate value
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

XOR dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 0 dma

XOR ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

XOR #lk [, shift]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 0 1 shift

lk

XOR #lk, 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1

lk

Execution Increment PC, then ...
Event(s) Addressing mode
(ACC(15:0)) XOR (data-memory address) → ACC(15:0) Direct or indirect
(ACC(31:16)) → ACC(31:16)

(ACC(31:0)) XOR lk � 2shift → ACC(31:0) Long immediate

(ACC(31:0)) XOR lk � 216→ ACC(31:0) Long immediate
with left shift of 16

Opcode



 Exclusive OR With Accumulator XOR

7-193 Assembly Language Instructions

Status Bits None

Description With direct or indirect addressing, the low half of the accumulator value is
exclusive ORed with the content of the addressed data memory location, and
the result replaces the low half of the accumulator value; the upper half of the
accumulator value is unaffected. With immediate addressing, the long imme-
diate constant is shifted and zero filled on both ends and exclusive ORed with
the entire content of the accumulator. The carry bit (C) is unaffected by XOR.

Words Words Addressing mode
1 Direct or indirect

2 Long immediate

Cycles for a Single XOR Instruction (Using Direct and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Cycles for a Repeat (RPT) Execution of an XOR Instruction (Using Direct
and Indirect Addressing)

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Cycles for a Single XOR Instruction (Using Long Immediate Addressing)

ROM DARAM SARAM External

2 2 2 2+2p

Cycles



XOR Exclusive OR With Accumulator

7-194  

Example 1 XOR DAT127 ;(DP = 511: addresses FF80h–FFFFh)

Before Instruction After Instruction

Data Memory Data Memory
0FFFFh 0F0F0h 0FFFFh 0F0F0h

ACC X 12345678h ACC X 1234A688h

C C

Example 2 XOR *+,AR0

Before Instruction After Instruction

ARP 7 ARP 0

AR7 300h AR7 301h

Data Memory Data Memory
300h 0FFFFh 300h 0FFFFh

ACC X 1234F0F0h ACC X 12340F0Fh

C C

Example 3 XOR #0F0F0h,4 ;(First shift data value left by
;four)

Before Instruction After Instruction

ACC X 11111010h ACC X 111E1F10h

C C



 Zero Low Accumulator and Load High Accumulator With Rounding ZALR

7-195 Assembly Language Instructions

Syntax ZALR  dma Direct addressing
ZALR  ind [, ARn] Indirect addressing

Operands dma: 7 LSBs of the data-memory address
n: Value from 0 to 7 designating the next auxiliary register
ind: Select one of the following seven options:

*     *+     *–     *0+     *0–     *BR0+     *BR0–

ZALR  dma
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 0 dma

ZALR  ind [, ARn]
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 0 1 ARU N NAR

Note: ARU, N, and NAR are defined in section 6.3, Indirect Addressing Mode (page 6-9).

Execution Increment PC, then ...
(data-memory address) → ACC(31:16)
8000h → ACC(15:0)

Status Bits None

Description The ZALR instruction loads a 16-bit data-memory value into the high word of
the accumulator. The instruction rounds the value by adding half of the value
of the LSB: bit 15 of the accumulator is set, and bits 14 are cleared.

Words 1

Cycles for a Single ZALR Instruction

Program

Operand ROM DARAM SARAM External

DARAM 1 1 1 1+p

SARAM 1 1 1, 2† 1+p

External 1+d 1+d 1+d 2+d+p

† If the operand and the code are in the same SARAM block

Opcode

Cycles



ZALR Zero Low Accumulator and Load High Accumulator With Rounding

7-196  

Cycles for a Repeat (RPT) Execution of a ZALR Instruction

Program

Operand ROM DARAM SARAM External

DARAM n n n n+p

SARAM n n n, n+1† n+p

External n+nd n+nd n+nd n+1+p+nd

† If the operand and the code are in the same SARAM block

Example 1 ZALR DAT3 ;(DP = 32: addresses 1000h–107Fh)

Before Instruction After Instruction

Data Memory Data Memory
1003h 3F01h 1003h  3F01h

ACC X 77FFFFh ACC X  3F018000h

C C

Example 2 ZALR *–,AR4

Before Instruction After Instruction

ARP 7 ARP  4

AR7 0FF00h AR7  0FEFFh

Data Memory Data Memory
0FF00h 0E0E0h 0FF00h  0E0E0h

ACC X 107777h ACC X  0E0E08000h

C C



A-1

Appendix A

TMS320C1x/C2x/C20x/C5x
Instruction Set Comparison

This appendix contains a table that compares the TMS320C1x, TMS320C2x,
TMS320C20x, and TMS320C5x instructions alphabetically. Each table entry
shows the syntax for the instruction, indicates which devices support the
instruction, and describes the operation of the instruction. Section A.1 shows
a sample table entry and describes the symbols and abbreviations used in the
table.

The TMS320C2x, TMS320C20x, and TMS320C5x devices have enhanced
instructions; enhanced instructions are single mnemonics that perform the
functions of several similar instructions. Section A.2 summarizes the
enhanced instructions.

This appendix does not cover topics such as opcodes, instruction timing, or
addressing modes; in addition to this book, the following documents cover
such topics in detail:

TMS320C1x User’s Guide (literature number SPRU013)

TMS320C2x User’s Guide (literature number SPRU014)

TMS320C5x User’s Guide (literature number SPRU056)

Topic Page

A.1 Using the Instruction Set Comparison Table A-2. . . . . . . . . . . . . . . . . . . . . 

A.2 Enhanced Instructions A-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A.3 Instruction Set Comparison Table A-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix A



Using the Instruction Set Comparison Table

 A-2

A.1 Using the Instruction Set Comparison Table

To help you read the comparison table, this section provides an example of a
table entry and a list of acronyms.

A.1.1 An Example of a Table Entry

In cases where more than one syntax is used, the first syntax is usually for di-
rect addressing and the second is usually for indirect addressing. Where three
or more syntaxes are used, the syntaxes are normally specific to a device.

This is how the AND instruction appears in the table:

Syntax 1x 2x 2xx 5x Description

AND dma

AND {ind} [ , next ARP]

AND #lk [ , shift]

√

√

√

√

√

√

√

√

√

√

AND With Accumulator

TMS320C1x and TMS320C2x devices: AND the
contents of the addressed data-memory location with
the 16 LSBs of the accumulator. The 16 MSBs of the
accumulator are ANDed with 0s.

TMS320C20x and TMS320C5x devices: AND the
contents of the addressed data-memory location or a
16-bit immediate value with the contents of the
accumulator. The 16 MSBs of the accumulator are
ANDed with 0s. If a shift is specified, left shift the
constant before the AND. Low-order bits below and
high-order bits above the shifted value are treated as
0s.

The first column, Syntax, states the mnemonic and the syntaxes for the AND
instruction.

The checks in the second through the fifth columns, 1x, 2x, 2xx, and 5x, indi-
cate the devices that can be used with each of the syntaxes.

1x refers to the TMS320C1x devices
2x refers to the TMS320C2x devices, including TMS320C25
2xx refers to the TMS320C20x devices
5x refers to the TMS320C5x devices

In this example, you can use the first two syntaxes with TMS320C1x,
TMS320C2x, TMS320C20x, and TMS320C5x devices, but you can use the
last syntax only with TMS320C20x and TMS320C5x devices.

The sixth column, Description, briefly describes how the instruction functions.
Often, an instruction functions slightly differently for the different devices: read
the entire description before using the instruction.



Using the Instruction Set Comparison Table

A-3TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

A.1.2 Symbols and Acronyms Used in the Table

The following table lists the instruction set symbols and acronyms used
throughout this chapter:

Table A–1. Symbols and Acronyms Used in the Instruction Set Comparison Table

Symbol Description Symbol Description

 lk 16-bit immediate value INTM interrupt mask bit

k 8-bit immediate value INTR interrupt mode bit

{ind} indirect address OV overflow bit

ACC accumulator P program bus

ACCB accumulator buffer PA port address

AR auxiliary register PC program counter

ARCR auxiliary register compare PM product shifter mode

ARP auxiliary register pointer pma program-memory address

BMAR block move address register RPTC repeat counter

BRCR block repeat count register shift, shiftn shift value

C carry bit src source address

DBMR dynamic bit manipulation register ST status register

dma data-memory address SXM sign-extension mode bit

DP data-memory page pointer TC test/control bit

dst destination address T temporary register

FO format status list TREGn TMS320C5x temporary register (0–2)

FSX external framing pulse TXM transmit mode status register

IMR interrupt mask register XF XF pin status bit



Using the Instruction Set Comparison Table

 A-4

Based on the device, this is how the indirect addressing operand {ind} is
interpreted:

{ind} ’C1x : { * | *+ | *– }
’C2x : { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }
’C20x : { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }
’C5x: { * | *+ | *– | *0+| *0– | *BR0+ | *BR0– }

where the possible options are separated by vertical bars (|). For example:

ADD { ind }

is interpreted as:

’C1x  devices ADD { * | *+ | *– }
’C2x  devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }
’C20x  devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }
’C5x  devices ADD { * | *+ | *– | *0+ | *0– | *BR0+ | *BR0– }

Based on the device, these are the sets of values for shift, shift1, and shift2:

shift ’C1x : 0–15 (shift of 0–15 bits)
’C2x : 0–15 (shift of 0–15 bits)
’C20x : 0–16 (shift of 0–16 bits)
’C5x: 0–16 (shift of 0–16 bits)

shift1 ’C1x : n/a
’C2x : 0–15 (shift of 0–15 bits)
’C20x : 0–16 (shift of 0–16 bits)
’C5x: 0–16 (shift of 0–16 bits)

shift2 ’C1x : n/a
’C2x : n/a
’C20x : 0–15 (shift of 0–15 bits)
’C5x: 0–15 (shift of 0–15 bits)

In some cases, the sets are smaller; in these cases, the valid sets are given
in the Description column of the table.



Enhanced Instructions

A-5TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

A.2 Enhanced Instructions

An enhanced instruction is a single mnemonic that performs the functions of
several similar instructions. For example, the enhanced instruction ADD
performs the ADD, ADDH, ADDK, and ADLK functions and replaces any of
these other instructions at assembly time. For example, when a program using
ADDH is assembled for the ’C20x or ’C5x, ADDH is replaced by an ADD
instruction that performs the same function. These enhanced instructions are
valid for TMS320C2x, TMS320C20x, and TMS320C5x devices (not
TMS320C1x).

Table A–2 below summarizes the enhanced instructions and the functions that
the enhanced instructions perform (based on TMS320C1x/2x mnemonics).

Table A–2. Summary of Enhanced Instructions

Enhanced
Instruction Includes These Operations

ADD ADD, ADDH, ADDK, ADLK

AND AND, ANDK

BCND BBNZ, BBZ, BC, BCND, BGEZ, BGZ, BIOZ, BLEZ, BLZ,
BNC, BNV, BNZ, BV, BZ

BLDD BLDD, BLKD

BLDP BLDP, BLKP

CLRC CLRC, CNFD, EINT, RC, RHM, ROVM, RSXM, RTC,
RXF

LACC LAC, LACC, LALK, ZALH

LACL LACK, LACL, ZAC, ZALS

LAR LAR, LARK, LRLK

LDP LDP, LDPK

LST LST, LST1

MAR LARP, MAR

MPY MPY, MPYK

OR OR, ORK

RPT RPT, RPTK

SETC CNFP, DINT, SC, SETC, SHM, SOVM, SSXM, STC, SXF

SUB SUB, SUBH, SUBK



Instruction Set Comparison Table

 A-6

A.3 Instruction Set Comparison Table

Syntax 1x 2x 2xx 5x Description

ABS √ √ √ √ Absolute Value of Accumulator

If the contents of the accumulator are less than zero,
replace the contents with the 2s complement of the
contents. If the contents are ≥ 0, the accumulator is not
affected.

ADCB √ Add ACCB to Accumulator With Carry

Add the contents of the ACCB and the value of the
carry bit to the accumulator. If the result of the addition
generates a carry from the accumulator’s MSB, the
carry bit is set to 1.

ADD dma [, shift]

ADD {ind} [, shift [, next ARP] ]

ADD # k

ADD # lk  [, shift2]

√

√

√

√

√

√

√

√

√

√

√

√

Add to Accumulator With Shift

TMS320C1x and TMS320C2x devices: Add the
contents of the addressed data-memory location to the
accumulator; if a shift is specified, left shift the contents
of the location before the add. During shifting,
low-order bits are zero filled, and high-order bits are
sign extended.

TMS320C20x and TMS320C5x devices: Add the
contents of the addressed data-memory location or an
immediate value to the accumulator; if a shift is
specified, left shift the data before the add. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

ADDB √ Add ACCB to Accumulator

Add the contents of the ACCB to the accumulator.

ADDC dma

ADDC {ind} [, next ARP]

√

√

√

√

√

√

Add to Accumulator With Carry

Add the contents of the addressed data-memory
location and the carry bit to the accumulator.

ADDH dma

ADDH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Add High to Accumulator

Add the contents of the addressed data-memory
location to the 16 MSBs of the accumulator. The LSBs
are not affected. If the result of the addition generates
a carry, the carry bit is set to 1.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: If the result of the addition generates a carry
from the accumulator’s MSB, the carry bit is set to 1.



Instruction Set Comparison Table

A-7TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

ADDK #k √ √ √ Add to Accumulator Short Immediate

TMS320C1x devices: Add an 8-bit immediate value to
the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Add an 8-bit immediate value, right justified,
to the accumulator with the result replacing the
accumulator contents. The immediate value is treated
as an 8-bit positive number; sign extension is
suppressed.

ADDS dma

ADDS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Add to Accumulator With Sign Extension 
Suppressed

Add the contents of the addressed data-memory
location to the accumulator. The value is treated as a
16-bit unsigned number; sign extension is suppressed.

ADDT dma

ADDT {ind} [, next ARP]

√

√

√

√

√

√

Add to Accumulator With Shift Specified by T
Register

Left shift the contents of the addressed data-memory
location by the value in the 4 LSBs of the T register; add
the result to the accumulator. If a shift is specified, left
shift the data before the add. During shifting, low-order
bits are zero filled, and high-order bits are sign
extended if SXM = 1.

TMS320C20x and TMS320C5x devices: If the result of
the addition generates a carry from the accumulator’s
MSB, the carry bit is set to 1.

ADLK # lk [, shift] √ √ √ Add to Accumulator Long Immediate With Shift

Add a 16-bit immediate value to the accumulator; if a
shift is specified, left shift the value before the add.
During shifting, low-order bits are zero filled, and
high-order bits are sign extended if SXM = 1.

ADRK #k √ √ √ Add to Auxiliary Register Short Immediate

Add an 8-bit immediate value to the current auxiliary
register.



Instruction Set Comparison Table

 A-8

Syntax Description5x2xx2x1x

AND dma

AND {ind} [, next ARP]

AND #lk [, shift]

√

√

√

√

√

√

√

√

√

√

AND With Accumulator

TMS320C1x and TMS320C2x devices: AND the
contents of the addressed data-memory location with
the 16 LSBs of the accumulator. The 16 MSBs of the
accumulator are ANDed with 0s.

TMS320C20x and TMS320C5x devices: AND the
contents of the addressed data-memory location or a
16-bit immediate value with the contents of the
accumulator. The 16 MSBs of the accumulator are
ANDed with 0s. If a shift is specified, left shift the
constant before the AND. Low-order bits below and
high-order bits above the shifted value are treated as
0s.

ANDB √ AND ACCB to Accumulator

AND the contents of the ACCB to the accumulator.

ANDK # lk [, shift] √ √ √ AND Immediate With Accumulator With Shift

AND a 16-bit immediate value with the contents of the
accumulator; if a shift is specified, left shift the constant
before the AND.

APAC √ √ √ √ Add P Register to Accumulator

Add the contents of the P register to the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, left shift the contents of the P
register as defined by the PM status bits.

APL [#lk] ,dma

APL [#lk, ] {ind} [, next ARP]

√

√

AND Data-Memory Value With DBMR or Long
Constant

AND the data-memory value with the contents of the
DBMR or a long constant. If a long constant is
specified, it is ANDed with the contents of the
data-memory location. The result is written back into
the data-memory location previously holding the first
operand. If the result is 0, the TC bit is set to 1;
otherwise, the TC bit is cleared.

B pma

B pma [, {ind} [, next ARP] ]

√

√ √

Branch Unconditionally

Branch to the specified program-memory address.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP as specified.



Instruction Set Comparison Table

A-9TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

B[D] pma [, {ind} [, next ARP] ] √ Branch Unconditionally With Optional Delay

Modify the current auxiliary register and ARP as
specified and pass control to the designated
program-memory address. If you specify a delayed
branch (BD), the next two instruction words (two
1-word instructions or one 2-word instruction) are
fetched and executed before branching.

BACC √ √ Branch to Address Specified by Accumulator

Branch to the location specified by the 16 LSBs of the
accumulator.

BACC [D] √ Branch to Address Specified by Accumulator
With Optional Delay

Branch to the location specified by the 16 LSBs of the
accumulator.

If you specify a delayed branch (BACCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.

BANZ pma

BANZ pma [, {ind} [, next ARP] ]

√

√ √

Branch on Auxiliary Register Not Zero

If the contents of the 9 LSBs of the current auxiliary
register (TMS320C1x) or the contents of the entire
current auxiliary register (TMS320C2x) are ≠ 0, branch
to the specified program-memory address.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP (if specified) or decrement the
current AR (default). TMS320C1x devices: Decrement
the current AR.

BANZ [D] pma [, {ind} [, next
ARP] ]

√ Branch on Auxiliary Register Not Zero With 
Optional Delay

If the contents of the current auxiliary register are ≠ 0,
branch to the specified program-memory address.
Modify the current AR and ARP as specified, or
decrement the current AR.

If you specify a delayed branch (BANZD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.



Instruction Set Comparison Table

 A-10

Syntax Description5x2xx2x1x

BBNZ  pma [, {ind} [, next ARP] ] √ √ √ Branch on Bit ≠ Zero

If the TC bit = 1, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: If the –p
porting switch is used, modify the current AR and ARP
as specified.

BBZ pma [, {ind} [, next ARP ] ]

BBZ pma

√ √ √

√

Branch on Bit = Zero

If the TC bit = 0, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BC pma [, {ind} [, next ARP ] ]

BC pma

√

√

√

√

Branch on Carry

If the C bit = 1, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BCND pma, cond1 [, cond2] [, ...] √ Branch Conditionally

Branch to the program-memory address if the
specified conditions are met. Not all combinations of
conditions are meaningful.

BCND[D] pma, cond1
[, cond2] [, ...]

√ Branch Conditionally With Optional Delay

Branch to the program-memory address if the
specified conditions are met. Not all combinations of
conditions are meaningful.

If you specify a delayed branch (BCNDD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
branching.



Instruction Set Comparison Table

A-11TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

BGEZ pma

BGEZ pma [, {ind} [, next ARP] ]

√

√

√ √

√

Branch if Accumulator ≥ Zero

If the contents of the accumulator ≥ 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BGZ pma

BGZ pma [, {ind} [, next ARP] ]

√

√

√ √

√

Branch if Accumulator > Zero

If the contents of the accumulator are > 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BIOZ pma

BIOZ pma [, {ind} [, next ARP] ]

√

√

√ √

√

Branch on I/O Status = Zero

If the BIO pin is low, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BIT dma, bit code

BIT {ind}, bit code [, next ARP]

√

√

√

√

√

√

Test Bit

Copy the specified bit of the data-memory value to the
TC bit in ST1.

BITT dma

BITT {ind} [, next ARP]

√

√

√

√

√

√

Test Bit Specified by T Register

TMS320C2x and TMS320C20x devices: Copy the
specified bit of the data-memory value to the TC bit in
ST1. The 4 LSBs of the T register specify which bit is
copied.

TMS320C5x devices: Copy the specified bit of the
data-memory value to the TC bit in ST1. The 4 LSBs
of the TREG2 specify which bit is copied.



Instruction Set Comparison Table

 A-12

Syntax Description5x2xx2x1x

BLDD # lk, dma

BLDD # lk, {ind} [, next ARP]

BLDD dma, #lk

BLDD {ind}, #lk [, next ARP]

BLDD BMAR, dma

BLDD BMAR, {ind} [, next ARP]

BLDD dma BMAR

BLDD {ind}, BMAR [, next ARP]

√

√

√

√

√

√

√

√

√

√

√

√

Block Move From Data Memory to Data Memory

Copy a block of data memory into data memory. The
block of data memory is pointed to by src, and the
destination block of data memory is pointed to by dst.

TMS320C20x devices: The word of the source and/or
the destination space can be pointed to with a long
immediate value or a data-memory address. You can
use the RPT instruction with BLDD to move
consecutive words, pointed to indirectly in data
memory, to a contiguous program-memory space. The
number of words to be moved is 1 greater than the
number contained in the RPTC at the beginning of the
instruction.

TMS320C5x devices: The word of the source and/or
the destination space can be pointed to with a long
immediate value, the contents of the BMAR, or a
data-memory address. You can use the RPT
instruction with BLDD to move consecutive words,
pointed to indirectly in data memory, to a contiguous
program-memory space. The number of words to be
moved is 1 greater than the number contained in the
RPTC at the beginning of the instruction.

BLDP dma

BLDP {ind} [, next ARP]

√

√

Block Move From Data Memory to Program 
Memory

Copy a block of data memory into program memory
pointed to by the BMAR. You can use the RPT
instruction with BLDP to move consecutive words,
indirectly pointed to in data memory, to a contiguous
program-memory space pointed to by the BMAR.

BLEZ pma

BLEZ pma [, {ind} [, next ARP] ]

√

√

√

√

√

√

Branch if Accumulator ≤ Zero

If the contents of the accumulator are ≤ 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.



Instruction Set Comparison Table

A-13TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

BLKD dma1, dma2

BLKD dma1, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Data Memory to Data Memory

Move a block of words from one location in data
memory to another location in data memory. Modify the
current AR and ARP as specified. RPT or RPTK must
be used with BLKD, in the indirect addressing mode,
if more than one word is to be moved. The number of
words to be moved is 1 greater than the number
contained in RPTC at the beginning of the instruction.

BLKP pma, dma

BLKP pma, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Program Memory to Data
Memory

Move a block of words from a location in program
memory to a location in data memory. Modify the
current AR and ARP as specified. RPT or RPTK must
be used with BLKD, in the indirect addressing mode,
if more than one word is to be moved. The number of
words to be moved is 1 greater than the number
contained in RPTC at the beginning of the instruction.

BLPD†#pma, dma

BLPD†#pma, {ind} [, next ARP]

BLPD† BMAR, dma

BLPD†BMAR, {ind} [, next ARP]

√

√

√

√

√

√

Block Move From Program Memory to Data 
Memory

Copy a block of program memory into data memory.
The block of program memory is pointed to by src, and
the destination block of data memory is pointed to by
dst.

TMS320C20x devices: The word of the source space
can be pointed to with a long immediate value. You can
use the RPT instruction with BLPD to move
consecutive words that are pointed at indirectly in data
memory to a contiguous program-memory space.

TMS320C5x devices: The word of the source space
can be pointed to with a long immediate value or the
contents of the BMAR. You can use the RPT instruction
with BLPD to move consecutive words that are pointed
at indirectly in data memory to a contiguous
program-memory space.

BLZ pma

BLZ pma [, {ind} [, next ARP] ]

√

√

√

√

√ Branch if Accumulator < Zero

If the contents of the accumulator are < 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

† BLDD and BLPD are TMS320C5x and TMS320C20x instructions for the BLKD and BLKP instructions in the TMS320C2x and
TMS320C1 devices. The assembler converts TMS320C2x code to BLKB and BLKP.



Instruction Set Comparison Table

 A-14

Syntax 1x 2x 2xx 5x Description

BNC pma [, {ind} [, next ARP] ] √ √ √ Branch on No Carry

If the C bit = 0, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BNV pma [, {ind} [, next ARP] ] √ √ √ Branch if No Overflow

If the OV flag is clear, branch to the specified
program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BNZ pma

BNZ pma [, {ind} [, next ARP] ]

√

√ √ √

Branch if Accumulator ≠ Zero

If the contents of the accumulator ≠ 0, branch to the
specified program-memory address.

TMS320C2x devices: Modify the current AR and ARP
as specified.

TMS320C20x and TMS320C5x devices: Modify the
current AR and ARP as specified when the –p porting
switch is used.

BSAR [shift] √ Barrel Shift

In a single cycle, execute a 1- to 16-bit right arithmetic
barrel shift of the accumulator. The sign extension is
determined by the sign-extension mode bit in ST1.

BV pma

BV pma [, {ind} [, next ARP] ]

√

√ √ √

Branch on Overflow

If the OV flag is set, branch to the specified
program-memory address and clear the OV flag.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Modify the current AR and ARP as specified.

TMS320C20x and TMS320C5x devices: To modify the
AR and ARP, use the –p porting switch.



Instruction Set Comparison Table

A-15TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

BZ pma

BZ pma [, {ind} [, next ARP]]

√

√

√ √ Branch if Accumulator = Zero

If the contents of the accumulator = 0, branch to the
specified program-memory address.

TMS320C2x, TMS320C20x and TMS320C5x
devices: Modify the current AR and ARP as specified.

TMS320C20x and TMS320C5x devices: To modify the
AR and ARP, use the –p porting switch.

CALA √ √ √ Call Subroutine Indirect

The contents of the accumulator specify the address
of a subroutine. Increment the PC, push the PC onto
the stack, then load the 12 (TMS320C1x) or 16
(TMS320C2x/C20x) LSBs of the accumulator into the
PC.

CALA [D] √ Call Subroutine Indirect With Optional Delay

The contents of the accumulator specify the address
of a subroutine. Increment the PC and push it onto the
stack; then load the 16 LSBs of the accumulator into
the PC.

If you specify a delayed branch (CALAD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

CALL pma

CALL pma [,{ind} [, next ARP] ]

√

√ √

Call Subroutine

The contents of the addressed program-memory
location specify the address of a subroutine. Increment
the PC by 2, push the PC onto the stack, then load the
specified program-memory address into the PC.

TMS320C2x and TMS320C20x devices: Modify the
current AR and ARP as specified.

CALL [D] pma [, {ind} [, next
ARP] ]

√ Call Unconditionally With Optional Delay

The contents of the addressed program-memory
location specify the address of a subroutine. Increment
the PC and push the PC onto the stack; then load the
specified program-memory address (symbolic or
numeric) into the PC. Modify the current AR and ARP
as specified.

If you specify a delayed branch (CALLD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.



Instruction Set Comparison Table

 A-16

Syntax Description5x2xx2x1x

CC pma, cond1 [, cond2] [, ...] √ Call Conditionally

If the specified conditions are met, control is passed to
the pma. Not all combinations of conditions are
meaningful.

CC[D] pma, cond1 [, cond2] [, ...] √ Call Conditionally With Optional Delay

If the specified conditions are met, control is passed to
the pma. Not all combinations of conditions are
meaningful.

If you specify a delayed branch (CCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the call.

CLRC control bit √ √ Clear Control Bit

Set the specified control bit to a logic 0. Maskable
interrupts are enabled immediately after the CLRC
instruction executes.

CMPL √ √ √ Complement Accumulator

Complement the contents of the accumulator (1s
complement).

CMPR CM √ √ √ Compare Auxiliary Register With AR0

Compare the contents of the current auxiliary register
to AR0, based on the following cases:

If CM = 002, test whether AR(ARP) = AR0.

If CM = 012, test whether AR(ARP) < AR0.

If CM = 102, test whether AR(ARP) > AR0.

If CM = 112, test whether AR(ARP) ≠ AR0.

If the result is true, load a 1 into the TC status bit;
otherwise, load a 0 into the TC bit. The comparison
does not affect the tested registers.

TMS320C5x devices: Compare the contents of the
auxiliary register with the ARCR.

CNFD √ √ √ Configure Block as Data Memory

Configure on-chip RAM block B0 as data memory.
Block B0 is mapped into data-memory locations
512h–767h.

TMS320C5x devices: Block B0 is mapped into
data-memory locations 512h–1023h.



Instruction Set Comparison Table

A-17TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

CNFP √ √ √ Configure Block as Program Memory

Configure on-chip RAM block B0 as program memory.
Block B0 is mapped into program-memory locations
65280h–65535h.

TMS320C5x devices: Block B0 is mapped into
data-memory locations 65024h–65535h.

CONF 2-bit constant √ Configure Block as Program Memory

Configure on-chip RAM block B0/B1/B2/B3 as
program memory. For information on the memory
mapping of B0/B1/B2/B3, see the TMS320C2x User’s
Guide.

CPL [ #lk,] dma

CPL [ #lk,] {ind} [, next ARP]

√

√

Compare DBMR or Immediate With Data Value

Compare two quantities: If the two quantities are
equal, set the TC bit to 1; otherwise, clear the TC bit.

CRGT √ Test for ACC > ACCB

Compare the contents of the ACC with the contents of
the ACCB, then load the larger signed value into both
registers and modify the carry bit according to the
comparison result. If the contents of ACC are greater
than or equal to the contents of ACCB, set the carry bit
to 1.

CRLT √ Test for ACC < ACCB

Compare the contents of the ACC with the contents of
the ACCB, then load the smaller signed value into both
registers and modify the carry bit according to the
comparison result. If the contents of ACC are less than
the contents of ACCB, clear the carry bit.

DINT √ √ √ √ Disable Interrupts

Disable all interrupts; set the INTM to 1. Maskable
interrupts are disabled immediately after the DINT
instruction executes. DINT does not disable the
unmaskable interrupt RS; DINT does not affect the
IMR.

DMOV dma

DMOV {ind} [, next ARP]

√

√

√

√

√

√

√

√

Data Move in Data Memory

Copy the contents of the addressed data-memory
location into the next higher address. DMOV moves
data only within on-chip RAM blocks.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: The on-chip RAM blocks are B0 (when
configured as data memory), B1, and B2.



Instruction Set Comparison Table

 A-18

Syntax Description5x2xx2x1x

EINT √ √ √ √ Enable Interrupts

Enable all interrupts; clear the INTM to 0. Maskable
interrupts are enabled immediately after the EINT
instruction executes.

EXAR √ Exchange ACCB With ACC

Exchange the contents of the ACC with the contents
of the ACCB.

FORT 1-bit constant √ Format Serial Port Registers

Load the FO with a 0 or a 1. If FO = 0, the registers are
configured to receive/transmit 16-bit words. If FO = 1,
the registers are configured to receive/transmit 8-bit
bytes.

IDLE √ √ √ Idle Until Interrupt

Forces an executing program to halt execution and
wait until it receives a reset or an interrupt. The device
remains in an idle state until it is interrupted.

IDLE2 √ Idle Until Interrupt—Low-Power Mode

Removes the functional clock input from the internal
device; this allows for an extremely low-power mode.
The IDLE2 instruction forces an executing program to
halt execution and wait until it receives a reset or
unmasked interrupt.

IN dma, PA

IN {ind}, PA [, next ARP]

√

√

√

√

√

√

√

√

Input Data From Port

Read a 16-bit value from one of the external I/O ports
into the addressed data-memory location.

TMS320C1x devices: This is a 2-cycle instruction.
During the first cycle, the port address is sent to
address lines A2/PA2–A0/PA0; DEN goes low,
strobing in the data that the addressed peripheral
places on data bus D15–D0.

TMS320C2x devices: The IS line goes low to indicate
an I/O access, and the STRB, R/W, and READY
timings are the same as for an external data-memory
read.

TMS320C20x and TMS320C5x devices: The IS line
goes low to indicate an I/O access, and the STRB, RD,
and READY timings are the same as for an external
data-memory read.



Instruction Set Comparison Table

A-19TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

INTR K √ √ Soft Interrupt

Transfer program control to the program-memory
address specified by K (an integer from 0 to 31). This
instruction allows you to use your software to execute
any interrupt service routine. The interrupt vector
locations are spaced apart by two addresses (0h, 2h,
4h, ... , 3Eh), allowing a two-word branch instruction to
be placed at each location.

LAC dma [, shift]

LAC {ind} [, shift [, next ARP] ]

√

√

√

√

√

√

√

√

Load Accumulator With Shift

Load the contents of the addressed data-memory
location into the accumulator. If a shift is specified, left
shift the value before loading it into the accumulator.
During shifting, low-order bits are zero filled, and
high-order bits are sign extended if SXM = 1.

LACB √ Load Accumulator With ACCB

Load the contents of the accumulator buffer into the
accumulator.

LACC dma [, shift1]

LACC {ind} [, shift1 [, next ARP]�]

LACC # lk [, shift2]

√

√

√

√

√

√

√

√

√

Load Accumulator With Shift

Load the contents of the addressed data-memory
location or the 16-bit constant into the accumulator. If
a shift is specified, left shift the value before loading it
into the accumulator. During shifting, low-order bits are
zero filled, and high-order bits are sign extended if
SXM = 1.

LACK 8-bit constant √ √ √ √ Load Accumulator Immediate Short

Load an 8-bit constant into the accumulator. The 24
MSBs of the accumulator are zeroed.

LACL dma

LACL {ind} [, next ARP]

LACL # k

√

√

√

√

√

√

Load Low Accumulator and Clear High
Accumulator

Load the contents of the addressed data-memory
location or zero-extended 8-bit constant into the 16
LSBs of the accumulator. The MSBs of the
accumulator are zeroed. The data is treated as a 16-bit
unsigned number.

TMS320C20x: A constant of 0 clears the contents of
the accumulator to 0 with no sign extension.



Instruction Set Comparison Table

 A-20

Syntax Description5x2xx2x1x

LACT dma

LACT {ind} [, next ARP]

√

√

√

√

√

√

Load Accumulator With Shift Specified by T
Register

Left shift the contents of the addressed data-memory
location by the value specified in the 4 LSBs of the T
register; load the result into the accumulator. If a shift
is specified, left shift the value before loading it into the
accumulator. During shifting, low-order bits are zero
filled, and high-order bits are sign extended if SXM = 1.

LALK # lk [,  shift] √ √ √ Load Accumulator Long Immediate With Shift

Load a 16-bit immediate value into the accumulator. If
a shift is specified, left shift the constant before loading
it into the accumulator. During shifting, low-order bits
are zero filled, and high-order bits are sign extended if
SXM = 1.

LAMM dma

LAMM {ind} [, next ARP]

√

√

Load Accumulator With Memory-Mapped
Register

Load the contents of the addressed memory-mapped
register into the low word of the accumulator. The 9
MSBs of the data-memory address are cleared,
regardless of the current value of DP or the 9 MSBs of
AR (ARP).

LAR AR, dma

LAR AR, {ind} [, next ARP]

LAR AR, #k

LAR AR, #lk

√

√

√

√

√

√

√

√

√

√

√

√

Load Auxiliary Register

TMS320C1x and TMS320C2x devices: Load the
contents of the addressed data-memory location into
the designated auxiliary register.

TMS320C25, TMS320C20x, and TMS320C5x
devices: Load the contents of the addressed
data-memory location or an 8-bit or 16-bit immediate
value into the designated auxiliary register.

LARK AR, 8-bit constant √ √ √ √ Load Auxiliary Register Immediate Short

Load an 8-bit positive constant into the designated
auxiliary register.

LARP 1-bit constant

LARP 3-bit constant

√

√ √ √

Load Auxiliary Register Pointer

TMS320C1x devices: Load a 1-bit constant into the
auxiliary register pointer (specifying AR0 or AR1).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load a 3-bit constant into the auxiliary
register pointer (specifying AR0–AR7).



Instruction Set Comparison Table

A-21TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

LDP dma

LDP {ind} [, next ARP]

LDP #k

√

√

√

√

√

√

√

√

√

√

Load Data-Memory Page Pointer

TMS320C1x devices: Load the LSB of the contents of
the addressed data-memory location into the DP
register. All high-order bits are ignored. DP = 0 defines
page 0 (words 0–127), and DP = 1 defines page 1
(words 128–143/255).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load the 9 LSBs of the addressed
data-memory location or a 9-bit immediate value into
the DP register. The DP and 7-bit data-memory
address are concatenated to form 16-bit data-memory
addresses.

LDPK 1-bit constant

LDPK 9-bit constant

√

√ √ √

Load Data-Memory Page Pointer Immediate

TMS320C1x devices: Load a 1-bit immediate value
into the DP register. DP = 0 defines page 0 (words
0–127), and DP = 1 defines page 1 (words
128–143/255).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Load a 9-bit immediate into the DP register.
The DP and 7-bit data-memory address are
concatenated to form 16-bit data-memory addresses.
DP � 8 specifies external data memory. DP = 4
through 7 specifies on-chip RAM blocks B0 or B1.
Block B2 is located in the upper 32 words of page 0.

LMMR dma, #lk

LMMR {ind}, #lk [, next ARP]

√

√

Load Memory-Mapped Register

Load the contents of the memory-mapped register
pointed at by the 7 LSBs of the direct or indirect
data-memory value into the long immediate addressed
data-memory location. The 9 MSBs of the
data-memory address are cleared, regardless of the
current value of DP or the 9 MSBs of AR (ARP).

LPH dma

LPH {ind} [, next ARP]

√

√

√

√

√

√

Load High P Register

Load the contents of the addressed data-memory
location into the 16 MSBs of the P register; the LSBs
are not affected.

LRLK AR, lk √ √ √ Load Auxiliary Register Long Immediate

Load a 16-bit immediate value into the designated
auxiliary register.

LST dma

LST {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load Status Register

Load the contents of the addressed data-memory
location into the ST (TMS320C1x) or into ST0
(TMS320C2x/2xx/5x).



Instruction Set Comparison Table

 A-22

Syntax Description5x2xx2x1x

LST #n, dma

LST #n, {ind} [, next ARP]

√

√

√

√

√

√

Load Status Register n

Load the contents of the addressed data-memory
location into STn.

LST1 dma

LST1 {ind} [, next ARP]

√

√

√

√

√

√

Load ST1

Load the contents of the addressed data-memory
location into ST1.

LT dma

LT {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x).

LTA dma

LTA {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register and Accumulate Previous 
Product

Load the contents of the addressed data-memory
location into T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x) and add the contents of the P
register to the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, shift the contents of the P
register as specified by the PM status bits.

LTD dma

LTD {ind} [, next ARP]

√

√

√

√

√

√

√

√

Load T Register, Accumulate Previous Product,
and Move Data

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x), add the contents of the P
register to the accumulator, and copy the contents of
the specified location into the next higher address
(both data-memory locations must reside in on-chip
data RAM).

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the add, shift the contents of the P
register as specified by the PM status bits.

LTP dma

LTP {ind} [, next ARP]

√

√

√

√

√

√

Load T Register, Store P Register in Accumulator

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x). Store the contents of the
product register into the accumulator.

LTS dma

LTS {ind} [, next ARP]

√

√

√

√

√

√

Load T Register, Subtract Previous Product

Load the contents of the addressed data-memory
location into the T register (TMS320C1x/2x/2xx) or
TREG0 (TMS320C5x). Shift the contents of the
product register as specified by the PM status bits, and
subtract the result from the accumulator.



Instruction Set Comparison Table

A-23TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

MAC pma, dma

MAC pma, {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as
specified by the PM status bits) to the accumulator.

MACD dma, pma

MACD pma, {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate With Data Move

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as
specified by the PM status bits) to the accumulator. If
the data-memory address is in on-chip RAM block B0,
B1, or B2, copy the contents of the address to the next
higher address.

MADD dma

MADD {ind} [, next ARP]

√

√

Multiply and Accumulate With Data Move and
Dynamic Addressing

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as defined
by the PM status bits) into the accumulator. The
program-memory address is contained in the BMAR;
this allows for dynamic addressing of coefficient
tables.

MADD functions the same as MADS, with the addition
of data move for on-chip RAM blocks.

MADS dma

MADS {ind} [, next ARP]

√

√

Multiply and Accumulate With Dynamic
Addressing

Multiply a data-memory value by a program-memory
value and add the previous product (shifted as defined
by the PM status bits) into the accumulator. The
program-memory address is contained in the BMAR;
this allows for dynamic addressing of coefficient
tables.

MAR dma

MAR {ind} [, next ARP]

√

√

√

√

√

√

√

√

Modify Auxiliary Register

Modify the current AR or ARP as specified. MAR acts
as NOP in indirect addressing mode.

MPY dma

MPY {ind} [, next ARP]

MPY #k

MPY #lk

√

√

√

√

√

√

√

√

√

√

√

√

Multiply

TMS320C1x and TMS320C2x devices: Multiply the
contents of the T register by the contents of the
addressed data-memory location; place the result in
the P register.

TMS320C20x and TMS320C5x devices: Multiply the
contents of the T register (TMS320C20x) or TREG0
(TMS320C5x) by the contents of the addressed
data-memory location or a 13-bit or 16-bit immediate
value; place the result in the P register.



Instruction Set Comparison Table

 A-24

Syntax Description5x2xx2x1x

MPYA dma

MPYA {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Accumulate Previous Product

Multiply the contents of the T register (TMS320C2x/
2xx) or TREG0 (TMS320C5x) by the contents of the
addressed data-memory location; place the result in
the P register. Add the previous product (shifted as
specified by the PM status bits) to the accumulator.

MPYK 13-bit constant √ √ √ √ Multiply Immediate

Multiply the contents of the T register (TMS320C2x/
2xx) or TREG0 (TMS320C5x) by a signed 13-bit
constant; place the result in the P register.

MPYS dma

MPYS {ind} [, next ARP]

√

√

√

√

√

√

Multiply and Subtract Previous Product

Multiply the contents of the T register (TMS320C2x/
2xx) or TREG0 (TMS320C5x) by the contents of the
addressed data-memory location; place the result in
the P register. Subtract the previous product (shifted
as specified by the PM status bits) from the
accumulator.

MPYU dma

MPYU {ind} [, next ARP]

√

√

√

√

√

√

Multiply Unsigned

Multiply the unsigned contents of the T register
(TMS320C2x/2xx) or TREG0 (TMS320C5x) by the
unsigned contents of the addressed data-memory
location; place the result in the P register.

NEG √ √ √ Negate Accumulator

Negate (2s complement) the contents of the
accumulator.

NMI √ √ Nonmaskable Interrupt

Force the program counter to the nonmaskable
interrupt vector location 24h. NMI has the same effect
as a hardware nonmaskable interrupt.

NOP √ √ √ √ No Operation

Perform no operation.

NORM

NORM {ind}

√

√

√

√

√

√

Normalize Contents of Accumulator

Normalize a signed number in the accumulator.

OPL [#lk,] dma

OPL [#lk,] {ind} [, next ARP]

√

√

OR With DBMR or Long Immediate

If a long immediate is specified, OR it with the value at
the specified data-memory location; otherwise, the
second operand of the OR operation is the contents of
the DBMR. The result is written back into the
data-memory location previously holding the first
operand.



Instruction Set Comparison Table

A-25TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

OR dma

OR {ind} [, next ARP]

OR #lk [, shift]

√

√

√

√

√

√

√

√

√

√

OR With Accumulator

TMS320C1x and TMS320C2x devices: OR the 16
LSBs of the accumulator with the contents of the
addressed data-memory location. The 16 MSBs of the
accumulator are ORed with 0s.

TMS320C20x and TMS320C5x devices: OR the 16
LSBs of the accumulator or a 16-bit immediate value
with the contents of the addressed data-memory
location. If a shift is specified, left-shift before ORing.
Low-order bits below and high-order bits above the
shifted value are treated as 0s.

ORB √ OR ACCB With Accumulator

OR the contents of the ACCB with the contents of the
accumulator. ORB places the result in the
accumulator.

ORK #lk [, shift] √ √ √ OR Immediate With Accumulator with Shift

OR a 16-bit immediate value with the contents of the
accumulator. If a shift is specified, left-shift the
constant before ORing. Low-order bits below and
high-order bits above the shifted value are treated as
0s.

OUT dma, PA

OUT {ind}, PA [, next ARP]

√

√

√

√

√

√

√

√

Output Data to Port

Write a 16-bit value from a data-memory location to the
specified I/O port.

TMS320C1x devices: The first cycle of this instruction
places the port address onto address lines
A2/PA2–A0/PA0. During the same cycle, WE goes low
and the data word is placed on the data bus D15–D0.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: The IS line goes low to indicate an I/O access;
the STRB, R/W, and READY timings are the same as
for an external data-memory write.

PAC √ √ √ √ Load Accumulator With P Register

Load the contents of the P register into the
accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the load, shift the P register as
specified by the PM status bits.



Instruction Set Comparison Table

 A-26

Syntax Description5x2xx2x1x

POP √ √ √ √ Pop Top of Stack to Low Accumulator

Copy the contents of the top of the stack into the 12
(TMS320C1x) or 16 (TMS320C2x/2xx/5x) LSBs of the
accumulator and then pop the stack one level. The
MSBs of the accumulator are zeroed.

POPD dma

POPD {ind} [, next ARP]

√

√

√

√

√

√

Pop Top of Stack to Data Memory

Transfer the value on the top of the stack into the
addressed data-memory location and then pop the
stack one level.

PSHD dma

PSHD {ind} [, next ARP]

√

√

√

√

√

√

Push Data-Memory Value Onto Stack

Copy the addressed data-memory location onto the
top of the stack. The stack is pushed down one level
before the value is copied.

PUSH √ √ √ √ Push Low Accumulator Onto Stack

Copy the contents of the 12 (TMS320C1x) or 16
(TMS320C2x/2xx/5x) LSBs of the accumulator onto
the top of the hardware stack. The stack is pushed
down one level before the value is copied.

RC √ √ √ Reset Carry Bit

Reset the C status bit to 0.

RET √ √ √ Return From Subroutine

Copy the contents of the top of the stack into the PC
and pop the stack one level.

RET[D] √ Return From Subroutine With Optional Delay

Copy the contents of the top of the stack into the PC
and pop the stack one level.

If you specify a delayed branch (RETD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the return.

RETC cond1 [, cond2] [, ...] √ Return Conditionally

If the specified conditions are met, RETC performs a
standard return. Not all combinations of conditions are
meaningful.



Instruction Set Comparison Table

A-27TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

RETC[D] cond1 [, cond2] [, ...] √ Return Conditionally With Optional Delay

If the specified conditions are met, RETC performs a
standard return. Not all combinations of conditions are
meaningful.

If you specify a delayed branch (RETCD), the next two
instruction words (two 1-word instructions or one
2-word instruction) are fetched and executed before
the return.

RETE √ Enable Interrupts and Return From Interrupt

Copy the contents of the top of the stack into the PC
and pop the stack one level. RETE automatically
clears the global interrupt enable bit and pops the
shadow registers (stored when the interrupt was
taken) back into their corresponding strategic
registers. The following registers are shadowed: ACC,
ACCB, PREG, ST0, ST1, PMST, ARCR, INDX,
TREG0, TREG1, TREG2.

RETI √ Return From Interrupt

Copy the contents of the top of the stack into the PC
and pop the stack one level. RETI also pops the values
in the shadow registers (stored when the interrupt was
taken) back into their corresponding strategic
registers. The following registers are shadowed: ACC,
ACCB, PREG, ST0, ST1, PMST, ARCR, INDX,
TREG0, TREG1, TREG2.

RFSM √ Reset Serial Port Frame Synchronization Mode

Reset the FSM status bit to 0.

RHM √ √ Reset Hold Mode

Reset the HM status bit to 0.

ROL √ √ √ Rotate Accumulator Left

Rotate the accumulator left one bit.

ROLB √ Rotate ACCB and Accumulator Left

Rotate the ACCB and the accumulator left by one bit;
this results in a 65-bit rotation.

ROR √ √ √ Rotate Accumulator Right

Rotate the accumulator right one bit.

RORB √ Rotate ACCB and Accumulator Right

Rotate the ACCB and the accumulator right one bit;
this results in a 65-bit rotation.



Instruction Set Comparison Table

 A-28

Syntax Description5x2xx2x1x

ROVM √ √ √ √ Reset Overflow Mode

Reset the OVM status bit to 0; this disables overflow
mode.

RPT dma

RPT {ind} [, next ARP]

RPT #k

RPT #lk

√

√

√

√

√

√

√

√

√

√

Repeat Next Instruction

TMS320C2x devices: Load the 8 LSBs of the
addressed value into the RPTC; the instruction
following RPT is executed the number of times
indicated by RPTC + 1.

TMS320C20x and TMS320C5x devices: Load the 8
LSBs of the addressed value or an 8-bit or 16-bit
immediate value into the RPTC; the instruction
following RPT is repeated n times, where n is RPTC+1.

RPTB pma √ Repeat Block

RPTB repeats a block of instructions the number of
times specified by the memory-mapped BRCR without
any penalty for looping. The BRCR must be loaded
before RPTB is executed.

RPTK #k √ √ √ Repeat Instruction as Specified by Immediate
Value

Load the 8-bit immediate value into the RPTC; the
instruction following RPTK is executed the number of
times indicated by RPTC + 1.

RPTZ #lk √ Repeat Preceded by Clearing the Accumulator
and P Register

Clear the accumulator and product register and repeat
the instruction following RPTZ n times, where n = lk +1.

RSXM √ √ √ Reset Sign-Extension Mode

Reset the SXM status bit to 0; this suppresses sign
extension on shifted data values for the following
arithmetic instructions: ADD, ADDT, ADLK, LAC,
LACT, LALK, SBLK, SUB, and SUBT.

RTC √ √ √ Reset Test/Control Flag

Reset the TC status bit to 0.

RTXM √ Reset Serial Port Transmit Mode

Reset the TXM status bit to 0; this configures the serial
port transmit section in a mode where it is controlled by
an FSX.

RXF √ √ √ Reset External Flag

Reset XF pin and the XF status bit to 0.



Instruction Set Comparison Table

A-29TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

SACB √ Store Accumulator in ACCB

Copy the contents of the accumulator into the ACCB.

SACH dma [, shift]

SACH {ind} [, shift [, next ARP] ]

√

√

√

√

√

√

√

√

Store High Accumulator With Shift

Copy the contents of the accumulator into a shifter.
Shift the entire contents 0, 1, or 4 bits (TMS320C1x) or
from 0 to 7 bits (TMS320C2x/2xx/5x), and then copy
the 16 MSBs of the shifted value into the addressed
data-memory location. The accumulator is not
affected.

SACL dma

SACL dma [, shift]

SACL {ind} [, shift [, next ARP] ]

√

√ √

√

√

√

√

√

Store Low Accumulator With Shift

TMS320C1x devices: Store the 16 LSBs of the
accumulator into the addressed data-memory
location. A shift value of 0 must be specified if the ARP
is to be changed.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Store the 16 LSBs of the accumulator into the
addressed data-memory location. If a shift is specified,
shift the contents of the accumulator before storing.
Shift values are 0, 1, or 4 bits (TMS320C20) or from 0
to 7 bits (TMS320C2x/2xx/5x).

SAMM dma

SAMM {ind} [, next ARP]

√

√

Store Accumulator in Memory-Mapped Register

Store the low word of the accumulator in the addressed
memory-mapped register. The upper 9 bits of the data
address are cleared, regardless of the current value of
DP or the 9 MSBs of AR (ARP).

SAR AR, dma

SAR AR, {ind} [, next ARP]

√

√

√

√

√

√

√

√

Store Auxiliary Register

Store the contents of the specified auxiliary register in
the addressed data-memory location.

SATH √ Barrel-Shift Accumulator as Specified 
by T Register 1

If bit 4 of TREG1 is a 1, barrel-shift the accumulator
right by 16 bits; otherwise, the accumulator is
unaffected.

SATL √ Barrel-Shift Low Accumulator as Specified 
by T Register 1

Barrel-shift the accumulator right by the value
specified in the 4 LSBs of TREG1.

SBB √ Subtract ACCB From Accumulator

Subtract the contents of the ACCB from the
accumulator. The result is stored in the accumulator;
the accumulator buffer is not affected.



Instruction Set Comparison Table

 A-30

Syntax Description5x2xx2x1x

SBBB √ Subtract ACCB From Accumulator With Borrow

Subtract the contents of the ACCB and the logical
inversion of the carry bit from the accumulator. The
result is stored in the accumulator; the accumulator
buffer is not affected. Clear the carry bit if the result
generates a borrow.

SBLK # lk [, shift] √ √ √ Subtract From Accumulator Long Immediate
With Shift

Subtract the immediate value from the accumulator. If
a shift is specified, left shift the value before
subtracting. During shifting, low-order bits are zero
filled, and high-order bits are sign extended if SXM =
1.

SBRK #k √ √ √ Subtract From Auxiliary Register Short
Immediate

Subtract the 8-bit immediate value from the
designated auxiliary register.

SC √ √ √ Set Carry Bit

Set the C status bit to 1.

SETC control bit √ √ Set Control Bit

Set the specified control bit to a logic 1. Maskable
interrupts are disabled immediately after the SETC
instruction executes.

SFL √ √ √ Shift Accumulator Left

Shift the contents of the accumulator left one bit.

SFLB √ Shift ACCB and Accumulator Left

Shift the concatenation of the accumulator and the
ACCB left one bit. The LSB of the ACCB is cleared to
0, and the MSB of the ACCB is shifted into the carry bit.

SFR √ √ √ Shift Accumulator Right

Shift the contents of the accumulator right one bit. If
SXM = 1, SFR produces an arithmetic right shift. If
SXM = 0, SFR produces a logic right shift.

SFRB √ Shift ACCB and Accumulator Right

Shift the concatenation of the accumulator and the
ACCB right 1 bit. The LSB of the ACCB is shifted into
the carry bit. If SXM = 1, SFRB produces an arithmetic
right shift. If SXM = 0, SFRB produces a logic right shift.

SFSM √ Set Serial Port Frame Synchronization Mode

Set the FSM status bit to 1.



Instruction Set Comparison Table

A-31TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

SHM √ √ Set Hold Mode

Set the HM status bit to 1.

SMMR dma, #lk

SMMR {ind}, #lk [, next ARP]

√

√

Store Memory-Mapped Register

Store the memory-mapped register value, pointed at
by the 7 LSBs of the data-memory address, into the
long immediate addressed data-memory location. The
9 MSBs of the data-memory address of the
memory-mapped register are cleared, regardless of
the current value of DP or the upper 9 bits of AR(ARP).

SOVM √ √ √ √ Set Overflow Mode

Set the OVM status bit to 1; this enables overflow
mode. (The ROVM instruction clears OVM.)

SPAC √ √ √ √ Subtract P Register From Accumulator

Subtract the contents of the P register from the
contents of the accumulator.

TMS320C2x, TMS320C20x, and TMS320C5x
devices: Before the subtraction, shift the contents of
the P register as specified by the PM status bits.

SPH dma

SPH {ind} [, next ARP]

√

√

√

√

√

√

Store High P Register

Store the high-order bits of the P register (shifted as
specified by the PM status bits) at the addressed
data-memory location.

SPL dma

SPL {ind} [, next ARP]

√

√

√

√

√

√

Store Low P Register

Store the low-order bits of the P register (shifted as
specified by the PM status bits) at the addressed
data-memory location.

SPLK # lk, dma

SPLK # lk, {ind} [, next ARP]

√ √

√

Store Parallel Long Immediate

Write a full 16-bit pattern into a memory location. The
parallel logic unit (PLU) supports this bit manipulation
independently of the ALU, so the accumulator is
unaffected.

SPM 2-bit constant √ √ √ Set P Register Output Shift Mode

Copy a 2-bit immediate value into the PM field of ST1.
This controls shifting of the P register as shown below:

PM = 002 Multiplier output is not shifted.
PM = 012 Multiplier output is left shifted one place

and zero filled.
PM = 102 Multiplier output is left shifted four places
 and zero filled.
PM = 112 Multiplier output is right shifted six places

and sign extended; the LSBs are lost.



Instruction Set Comparison Table

 A-32

Syntax Description5x2xx2x1x

SQRA dma

SQRA {ind} [, next ARP]

√

√

√

√

√

√

Square and Accumulate Previous Product

Add the contents of the P register (shifted as specified
by the PM status bits) to the accumulator. Then load
the contents of the addressed data-memory location
into the T register (TMS320C2x/2xx) or TREG0
(TMS320C5x), square the value, and store the result
in the P register.

SQRS dma

SQRS {ind} [, next ARP]

√

√

√

√

√

√

Square and Subtract Previous Product

Subtract the contents of the P register (shifted as
specified by the PM status bits) to the accumulator.
Then load the contents of the addressed data-memory
location into the T register (TMS320C2x/2xx) or
TREG0 (TMS320C5x), square the value, and store the
result in the P register.

SST dma

SST {ind} [, next ARP]

√

√

√

√

√

√

√

√

Store Status Register

Store the contents of the ST (TMS320C1x) or ST0
(TMS320C2x/2xx/5x) in the addressed data-memory
location.

SST #n, dma

SST #n, {ind} [, next ARP]

√

√

√

√

Store Status Register n

Store STn in data memory.

SST1 dma

SST1 {ind} [, next ARP]

√

√

√

√

√

√

Store Status Register ST1

Store the contents of ST1 in the addressed
data-memory location.

SSXM √ √ √ Set Sign-Extension Mode

Set the SXM status bit to 1; this enables sign
extension.

STC √ √ √ Set Test/Control Flag

Set the TC flag to 1.

STXM √ Set Serial Port Transmit Mode

Set the TXM status bit to 1.



Instruction Set Comparison Table

A-33TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

SUB dma [, shift]

SUB {ind} [, shift [, next ARP] ]

SUB #k

SUB #lk [, shift2]

√

√

√

√

√

√

√

√

√

√

√

√

Subtract From Accumulator With Shift

TMS320C1x and TMS320C2x devices: Subtract the
contents of the addressed data-memory location from
the accumulator. If a shift is specified, left shift the
value before subtracting. During shifting, low-order
bits are zero filled, and high-order bits are sign
extended if SXM = 1.

TMS320C20x and TMS320C5x devices: Subtract the
contents of the addressed data-memory location or an
8- or 16-bit constant from the accumulator. If a shift is
specified, left shift the data before subtracting. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

SUBB dma

SUBB {ind} [, next ARP]

√

√

√

√

√

√

Subtract From Accumulator With Borrow

Subtract the contents of the addressed data-memory
location and the value of the carry bit from the
accumulator. The carry bit is affected in the normal
manner.

SUBC dma

SUBC {ind} [, next ARP]

√

√

√

√

√

√

√

√

Conditional Subtract

Perform conditional subtraction. SUBC can be used
for division.

SUBH dma

SUBH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Subtract From High Accumulator

Subtract the contents of the addressed data-memory
location from the 16 MSBs of the accumulator. The 16
LSBs of the accumulator are not affected.

SUBK #k √ √ √ Subtract From Accumulator Short Immediate

Subtract an 8-bit immediate value from the
accumulator. The data is treated as an 8-bit positive
number; sign extension is suppressed.

SUBS dma

SUBS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Subtract From Low Accumulator With Sign
Extension Suppressed

Subtract the contents of the addressed data-memory
location from the accumulator. The data is treated as
a 16-bit unsigned number; sign extension is
suppressed.



Instruction Set Comparison Table

 A-34

Syntax Description5x2xx2x1x

SUBT dma

SUBT {ind} [, next ARP]

√

√

√

√

√

√

Subtract From Accumulator With Shift Specified
by T Register

Left shift the data-memory value as specified by the 4
LSBs of the T register (TMS320C2x/2xx) or TREG1
(TMS320C5x), and subtract the result from the
accumulator. If a shift is specified, left shift the
data-memory value before subtracting. During
shifting, low-order bits are zero filled, and high-order
bits are sign extended if SXM = 1.

SXF √ √ √ Set External Flag

Set the XF pin and the XF status bit to 1.

TBLR dma

TBLR {ind} [, next ARP]

√

√

√

√

√

√

√

√

Table Read

Transfer a word from program memory to a
data-memory location. The program-memory address
is in the 12 (TMS320C1x) or 16 (TMS320C2x/2xx/5x)
LSBs of the accumulator.

TBLW dma

TBLW {ind} [, next ARP]

√

√

√

√

√

√

√

√

Table Write

Transfer a word from data-memory to a
program-memory location. The program-memory
address is in the 12 (TMS320C1x) or 16
(TMS320C2x/2xx/5x) LSBs of the accumulator.

TRAP √ √ √ Software Interrupt

The TRAP instruction is a software interrupt that
transfers program control to program-memory
address 30h (TMS320C2x) or 22h (TMS320C20x/5x)
and pushes the PC + 1 onto the hardware stack. The
instruction at address 30h or 22h may contain a branch
instruction to transfer control to the TRAP routine.
Putting the PC + 1 on the stack enables an RET
instruction to pop the return PC.

XC n, cond1 [, cond2] [, ...] √ Execute Conditionally

Execute conditionally the next n instruction words
where 1 ≤ n ≤ 2. Not all combinations of conditions are
meaningful.



Instruction Set Comparison Table

A-35TMS320C1x/C2x/C20x/C5x Instruction Set Comparison

Syntax Description5x2xx2x1x

XOR dma

XOR {ind} [, next ARP]

XOR #lk [, shift]

√

√

√

√

√

√

√

√

√

√

Exclusive-OR With Accumulator

TMS320C1x and TMS320C2x devices: Exclusive-OR
the contents of the addressed data-memory location
with 16 LSBs of the accumulator. The MSBs are not
affected.

TMS320C20x and TMS320C5x devices:
Exclusive-OR the contents of the addressed
data-memory location or a 16-bit immediate value with
the accumulator. If a shift is specified, left shift the
value before performing the exclusive-OR operation.
Low-order bits below and high-order bits above the
shifted value are treated as 0s.

XORB √ Exclusive-OR of ACCB With Accumulator

Exclusive-OR the contents of the accumulator with the
contents of the ACCB. The results are placed in the
accumulator.

XORK #lk [, shift] √ √ √ Exclusive-OR Immediate With Accumulator With
Shift

Exclusive-OR a 16-bit immediate value with the
accumulator. If a shift is specified, left shift the value
before peforming the exclusive-OR operation.
Low-order bits below and high-order bits above the
shifted value are treated as 0s.

XPL [#lk,]  dma

XPL [#lk , ]  {ind} [, next ARP]

√

√

Exclusive-OR of Long Immediate or DBMR 
With Addressed Data-Memory Value

If a long immediate value is specified, exclusive OR it
with the addressed data-memory value; otherwise,
exclusive OR the DBMR with the addressed
data-memory value. Write the result back to the
data-memory location. The accumulator is not
affected.

ZAC √ √ √ √ Zero Accumulator

Clear the contents of the accumulator to 0.

ZALH dma

ZALH {ind} [, next ARP]

√

√

√

√

√

√

√

√

Zero Low Accumulator and Load High 
Accumulator

Clear the 16 LSBs of the accumulator to 0 and load the
contents of the addressed data-memory location into
the 16 MSBs of the accumulator.



Instruction Set Comparison Table

 A-36

Syntax Description5x2xx2x1x

ZALR dma

ZALR {ind} [, next ARP]

√

√

√

√

√

√

Zero Low Accumulator, Load High Accumulator
With Rounding

Load the contents of the addressed data-memory
location into the 16 MSBs of the accumulator. The
value is rounded by 1/2 LSB; that is, the 15 LSBs of the
accumulator (0–14) are cleared and bit 15 is set to 1.

ZALS dma

ZALS {ind} [, next ARP]

√

√

√

√

√

√

√

√

Zero Accumulator, Load Low Accumulator With
Sign Extension Suppressed

Load the contents of the addressed data-memory
location into the 16 LSBs of the accumulator. The 16
MSBs are zeroed. The data is treated as a 16-bit
unsigned number.

ZAP √ Zero the Accumulator and Product Register

The accumulator and product register are zeroed. The
ZAP instruction speeds up the preparation for a repeat
multiply/accumulate.

ZPR √ Zero the Product Register

The product register is cleared.



B-1

Appendix A

Submitting ROM Codes to TI

The size of a printed circuit board is a consideration in many DSP applications.
To make full use of the board space, Texas Instruments offers a ROM code
option that reduces the chip count and provides a single-chip solution. This
option allows you to use a code-customized processor for a specific applica-
tion while taking advantage of:

� Greater memory expansion
� Lower system cost
� Less hardware and wiring
� Smaller PCB

If a routine or algorithm is used often, it can be programmed into the on-chip
ROM of a TMS320 DSP. TMS320 programs can also be expanded by using
external memory; this reduces chip count and allows for a more flexible pro-
gram memory. Multiple functions are easily implemented by a single device,
thus enhancing system capabilities.

TMS320 development tools are used to develop, test, refine, and finalize the
algorithms. The microprocessor/microcomputer (MP/MC) mode is available
on some ROM-coded TMS320 DSP devices when accesses to either on-chip
or off-chip memory are required. The microprocessor mode is used to develop,
test, and refine a system application. In this mode of operation, the TMS320
acts as a standard microprocessor by using external program memory. When
the algorithm has been finalized, the code can be submitted to Texas Instru-
ments for masking into the on-chip program ROM. At that time, the TMS320
becomes a microcomputer that executes customized programs from the on-
chip ROM. Should the code need changing or upgrading, the TMS320 can
once again be used in the microprocessor mode. This shortens the field-
upgrade time and prevents the possibility of inventory obsolescence.

Figure B–1 illustrates the procedural flow for developing and ordering
TMS320 masked parts. When ordering, there is a one-time, nonrefundable
charge for mask tooling. A minimum production order per year is required for
any masked-ROM device. ROM codes will be deleted from the TI system one
year after the final delivery.

Appendix B



Submitting ROM Codes to TI

 B-2

Figure B–1. TMS320 ROM Code Procedural Flow Chart

Customer TMS320 Design

Customer submits:
— TMS320 New Code Release Form
— Print Evaluation and Acceptance Form (PEAF)
— Purchase order for mask prototypes
— TMS320 code

Texas Instruments responds:
— Customer code input into TI system
— Code sent back to customer for verification

Customer
approves
algorithm

TI produces prototypes

Customer
approves

prototypes (minimum
production order

required)

TMS320 production

Yes

Yes

No

No



Submitting ROM Codes to TI

B-3Submitting ROM Codes to TI

The TMS320 ROM code may be submitted in one of the following forms:

� Attachment to e–mail

� 3-1/2-in floppy: COFF format from macro-assembler/linker

When code is submitted to TI for masking, the code is reformatted to accom-
modate the TI mask-generation system. System-level verification by the cus-
tomer is, therefore, necessary to ensure the reformatting remains transparent
and does not affect the execution of the algorithm. The formatting changes
involve the removal of address-relocation information (the code address
begins at the base address of the ROM in the TMS320 device and progresses
without gaps to the last address of the ROM) and the addition of data in the
reserved locations of the ROM for device ROM test. Because these changes
have been made, a checksum comparison is not a valid means of verification.

With each masked-device order, the customer must sign a disclaimer that
states:

The units to be shipped against this order were assembled, for expe-
diency purposes, on a prototype (that is, nonproduction qualified)
manufacturing line, the reliability of which is not fully characterized.
Therefore, the anticipated inherent reliability of these prototype units
cannot be expressly defined.

and a release that states:

Any masked ROM device may be resymbolized as TI standard
product and resold as though it were an unprogrammed version of
the device, at the convenience of Texas Instruments.

The use of the ROM-protect feature does not hold for this release statement.
Additional risk and charges are involved when the ROM-protect feature is
selected. Contact the nearest TI Field Sales Office for more information on
procedures, leadtimes, and cost associated with the ROM-protect feature.



C-1

Appendix A

Design Considerations for
Using the XDS510 Emulator

This appendix assists you in meeting the design requirements of the Texas
Instruments XDS510� emulator for IEEE-1149.1 designs and discusses the
XDS510 cable (manufacturing part number 2617698-0001). This cable is
identified by a label on the cable pod marked JTAG 3/5V and supports both
standard 3-V and 5-V target system power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which
is based on the IEEE 1149.1 standard.

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada
(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667         Telex:       833233

Topic Page

C.1 Designing Your Target System’s Emulator Connector
(14-Pin Header) C-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.2 Bus Protocol C-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.3 Emulator Cable Pod C-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.4 Emulator Cable Pod Signal Timing C-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.5 Emulation Timing Calculations C-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.6 Connections Between the Emulator and the Target System C-10. . . . . . 

C.7 Physical Dimensions for the 14-Pin Emulator Connector C-14. . . . . . . . 

C.8 Emulation Design Considerations C-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix C



Designing Your Target System’s Emulator Connector (14-Pin Header)

 C-2

C.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
JTAG target devices support emulation through a dedicated emulation port.
This port is accessed directly by the emulator and provides emulation func-
tions that are a superset of those specified by IEEE 1149.1. To communicate
with the emulator, your target system must have a 14-pin header (two rows of
seven pins) with the connections that are shown in Figure C–1. Table C–1
describes the emulation signals.

Although you can use other headers, the recommended unshrouded, straight
header has these DuPont connector systems part numbers:

� 65610–114
� 65611–114
� 67996–114
� 67997–114

Figure C–1. 14-Pin Header Signals and Header Dimensions

TDI 3 4 GND

TDO 7 8 GND

TMS 1 2 TRST

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1
† While the corresponding female position on the cable connector is plugged to prevent improper

connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the
schematics and wiring diagrams in this appendix.



Designing Your Target System’s Emulator Connector (14-Pin Header)

C-3Design Considerations for Using the XDS510 Emulator

Table C–1. 14-Pin Header Signal Descriptions

Signal Description
Emulator †

State
Target †

State

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

GND Ground

PD(VCC) Presence detect. Indicates that the emulation
cable is connected and that the target is
powered up. PD must be tied to VCC in the tar-
get system.

I O

TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod. This
signal can be used to drive the system test
clock.

O I

TCK_RET Test clock return. Test clock input to the emu-
lator. May be a buffered or unbuffered version
of TCK.

I O

TDI Test data input O I

TDO Test data output I O

TMS Test mode select O I

TRST‡ Test reset O I

† I = input; O = output
‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)



Bus Protocol

 C-4

C.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS and TDI inputs are sampled on the rising edge of the TCK signal
of the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup time before the next device’s TDI signal.
This timing scheme minimizes race conditions that would occur if both TDO
and TDI were timed from the same TCK edge. The penalty for this timing
scheme is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that the device expects a bus master to provide
bus slave compatible timings. The XDS510 provides timings that meet the bus
slave rules.



Emulator Cable Pod

C-5Design Considerations for Using the XDS510 Emulator

C.3 Emulator Cable Pod

Figure C–2 shows a portion of the emulator cable pod. The functional features
of the pod are:

� TDO and TCK_RET can be parallel-terminated inside the pod if required
by the application. By default, these signals are not terminated.

� TCK is driven with a 74LVT240 device. Because of the high-current drive
(32-mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied to
TCK_RET, you can use the parallel terminator in the pod.

� TMS and TDI can be generated from the falling edge of TCK_RET, accord-
ing to the IEEE 1149.1 bus slave device timing rules.

� TMS and TDI are series terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You can also provide your
own test clock for greater flexibility.

Figure C–2. Emulator Cable Pod Interface

100 Ω

TL7705A
RESIN

270 Ω

JP2

180 Ω

TCK_RET (pin 9)�

EMU1 (pin 14)

EMU0 (pin 13)
74AS1034

GND (pins 4,6,8,10,12)

TRST (pin 2)

TCK (pin 11)�

10.368 MHz

33 Ω

33 Ω

TDI (pin 3)

TMS (pin 1)

TDO (pin 7)

74LVT240

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD(VCC) (pin 5)

5 V

5 V

74AS1004

Y

Y

Y

Y

A

† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an
optional target system test clock source.



Emulator Cable Pod Signal Timing

 C-6

C.4 Emulator Cable Pod Signal Timing

Figure C–3 shows the signal timings for the emulator cable pod. Table C–2
defines the timing parameters illustrated in the figure. These timing parame-
ters are calculated from values specified in the standard data sheets for the
emulator and cable pod and are for reference only. Texas Instruments does
not test or guarantee these timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure C–3. Emulator Cable Pod Timings

TDO

TMS, TDI

TCK_RET

6
5

4

3
2

1

Table C–2. Emulator Cable Pod Timing Parameters

No. Parameter Description Min Max Unit

1 tc(TCK) Cycle time, TCK_RET 35 200 ns

2 tw(TCKH) Pulse duration, TCK_RET high 15 ns

3 tw(TCKL) Pulse duration, TCK_RET low 15 ns

4 td(TMS) Delay time, TMS or TDI valid for TCK_RET low 6 20 ns

5 tsu(TDO) Setup time, TDO to TCK_RET high 3 ns

6 th(TDO) Hold time, TDO from TCK_RET high 12 ns



Emulation Timing Calculations

C-7Design Considerations for Using the XDS510 Emulator

C.5 Emulation Timing Calculations

The examples in this section help you calculate emulation timings in your sys-
tem. For actual target timing parameters, see the appropriate data sheet for
the device you are emulating.

The examples use the following assumptions:

tsu(TTMS) Setup time, target TMS or TDI to TCK
high 10 ns

td(TTDO) Delay time, target TDO from TCK low 15 ns

td(bufmax) Delay time, target buffer maximum 10 ns

td(bufmin) Delay time, target buffer minimum 1 ns

tbufskew Skew time, target buffer between two de-
vices in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

tTCKfactor Duty cycle, assume a 40/60% duty cycle
clock

0.4
(40%)

Also, the examples use the following values from Table C–2 on page C-6:

td(TMSmax) Delay time, emulator TMS or TDI from
TCK_RET low, maximum

20 ns

tsu(TDOmin) Setup time, TDO to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS or TDI path, called tpd(TCK_RET-TMS/TDI) (propaga-
tion delay time)

� The TCK_RET-to-TDO path, called tpd(TCK_RET-TDO)

In the examples, the worst-case path delay is calculated to determine the
maximum system test clock frequency.



Emulation Timing Calculations

 C-8

Example C–1. Key Timing for a Single-Processor System Without Buffers

� The following example calculates key timing for a single-processor system
without buffers.

t
pd �TCK_RET-TMS�TDI� �

�td �TMSmax� � tsu �TTMS��
tTCKfactor

�
(20 ns � 10 ns)

0.4
� 75 ns, or 13.3 MHz

tpd �TCK_RET–TDO� �
�td �TTDO� � tsu �TDOmin��

tTCKfactor

�
(15 ns � 3 ns)

0.4
� 45 ns, or 22.2 MHz

In the preceding example, the TCK_RET-to-TMS/TDI path is the limiting factor
because it requires more time to complete.

� The following example calculates key timing for a single- or multiple-pro-
cessor system with buffered input and output:

tpd (TCK_RET-TMS�TDI) �
�td (TMSmax)

� tsu (TTMS)
� t bufskew

�
tTCKfactor

�
(20 ns � 10 ns � 1.35 ns)

0.4

� 78.4 ns, or 12.7 MHz

tpd (TCK_RET–TDO) �
�td (TTDO)

� tsu (TDOmin) � td (bufmax)
�

t TCKfactor

� 70 ns, or 14.3 MHz

�
(15 ns � 3 ns � 10 ns)

0.4

In the preceding example, the TCK_RET-to-TMS/TDI path is the limiting factor
becaise it requires more time to complete.



Emulation Timing Calculations

C-9Design Considerations for Using the XDS510 Emulator

In a multiprocessor application, it is necessary to ensure that the EMU0 and
EMU1 lines can go from a logic-low level to a logic-high level in less than 10 µs,
this parameter is called rise time, tr. This can be calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� × 16 × 15 pF)

= 5(4.7 × 103 � × 16 × 15 = no –12 F) 

= 5(1128 × 10 –9��

= 5.64 µs



Connections Between the Emulator and the Target System

 C-10

C.6 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the JTAG target system. You must supply the correct signal buffering, test
clock inputs, and multiple processor interconnections to ensure proper emula-
tor and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can
be either input or output. In general, these two pins are used as both input and
output in multiprocessor systems to handle global run/stop operations. EMU0
and EMU1 signals are applied only as inputs to the XDS510 emulator header.

C.6.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than 6 inches, the emulation signals must be buffered. If the distance
is less than 6 inches, no buffering is necessary. Figure C–4 shows the simpler,
no-buffering situation.

The distance between the header and the JTAG target device must be no more
than 6 inches. The EMU0 and EMU1 signals must have pullup resistors con-
nected to VCC to provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor
is suggested for most applications. 

Figure C–4. Emulator Connections Without Signal Buffering

VCC

Emulator header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 inches or less

Figure C–5 shows the connections necessary for buffered transmission sig-
nals. The distance between the emulation header and the processor is greater
than 6 inches. Emulation signals TMS, TDI, TDO, and TCK_RET are buffered
through the same device package.



Connections Between the Emulator and the Target System

C-11Design Considerations for Using the XDS510 Emulator

Figure C–5. Emulator Connections With Signal Buffering

VCC

Emulator header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater than
6 inches

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to
provide a signal rise time of less than 10 µs. A 4.7-kΩ resistor is suggested for
most applications.

The input buffers for TMS and TDI should have pullup resistors connected to
VCC to hold these signals at a known value when the emulator is not con-
nected. A resistor value of 4.7 kΩ or greater is suggested.

To have high-quality signals (especially the processor TCK and the emulator
TCK_RET signals), you may have to employ special care when routing the
printed wiring board trace. You also may have to use termination resistors to
match the trace impedance. The emulator pod provides optional internal paral-
lel terminators on the TCK_RET and TDO. TMS and TDI provide fixed series
termination.

Because TRST is an asynchronous signal, it should be buffered as needed to
ensure sufficient current to all target devices.



Connections Between the Emulator and the Target System

 C-12

C.6.2 Using a Target-System Clock

Figure C–6 shows an application with the system test clock generated in the
target system. In this application, the emulator’s TCK signal is left
unconnected.

Figure C–6. Target-System-Generated Test Clock

NC

System test clock

VCC

Emulator header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater than
6 inches

VCC

Note: When the TMS and TDI lines are buffered, pullup resistors must be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits in generating the test clock in the target system:

� The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

� In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.



Connections Between the Emulator and the Target System

C-13Design Considerations for Using the XDS510 Emulator

C.6.3 Configuring Multiple Processors

Figure C–7 shows a typical daisy-chained multiprocessor configuration that
meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals are buffered to isolate the processors from the emulator and
provide adequate signal drive for the target system. One of the benefits of this
interface is that you can slow down the test clock to eliminate timing problems.
Follow these guidelines for multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals must be buffered through
the same physical device package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK must have pullup resistors con-
nected to VCC to hold these signals at a known value when the emulator
is not connected. A resistor value of 4.7 kΩ or greater is suggested.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO.

Figure C–7. Multiprocessor Connections

TDITDI TDOTDO

JTAG deviceJTAG device

VCC

Emulator header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1 VCC



Physical Dimensions for the 14-Pin Emulator Connector

 C-14

C.7 Physical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable
that connects to the emulator, an active cable pod, and a short section of jack-
eted cable that connects to the target system. The overall cable length is
approximately 3 feet 10 inches. Figure C–8 and Figure C–9 show the physical
dimensions for the target cable pod and short cable. The cable pod box is non-
conductive plastic with four recessed metal screws.

Figure C–8. Pod/Connector Dimensions

0.90

2.70

4.50

9.50

See Figure C–9

Emulator cable pod

Short, jacketed cable

Connector

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified. Pin-to-pin spacing on the connec-
tor is 0.100 inches in both the X and Y planes.



Physical Dimensions for the 14-Pin Emulator Connector

C-15Design Considerations for Using the XDS510 Emulator

Figure C–9. 14-Pin Connector Dimensions

0.100
(pin spacing)

Key, pin 6

0.100
(pin spacing)

0.87

0.66

0.20

Cable

Connector, side view

Connector, front view

Cable

1

3

5

7

9

11

13

2

4

6

8

10

12

14

2 rows of pins

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.
Pin-to-pin spacing on the connector is 0.100 inches in both the X and Y planes.



Emulation Design Considerations

 C-16

C.8 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),
which can simultaneously add all four secondary JTAG scan paths to the main
scan path. It also describes the use of the emulation pins and the configuration
of multiple processors.

C.8.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices. As described in the Advanced Logic and Bus Interface Logic Data
Book, the SPL is compatible with the JTAG emulation scanning. The SPL is
capable of adding any combination of its four secondary scan paths into the
main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
and isolation than a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of
processors.

TI emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL). However, you can
have multiple SPLs on the main scan path.

Scan path selectors are not supported by this emulation system. The TI
ACT8999 scan path selector is similar to the SPL, but it can add only one of
its secondary scan paths at a time to the main JTAG scan path. Thus, global
emulation operations are not assured with the scan path selector.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure C–10 shows how to connect a secondary
scan path to an SPL.



Emulation Design Considerations

C-17Design Considerations for Using the XDS510 Emulator

Figure C–10. Connecting a Secondary JTAG Scan Path to a Scan Path Linker

TDI

TCK

TDO

TRST

TMS

TDO

TRST

TCK

TMS

TDI

DTDI0

DTMS0

DTDO0

DTCK

TDO

TRST

TCK

TMS

TDI

SPL

JTAG 0

JTAG n
DTDI1

DTMS1

DTDO1

DTDI2

DTMS2

DTDO2

DTDI3

DTMS3

DTDO3

. .
 .

The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL. The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL’s DTCK signal. The
TMS signal on each device on the secondary scan path is driven by the respec-
tive DTMS signals on the SPL.

DTDO0 on the SPL is connected to the TDI signal of the first device on the sec-
ondary scan path. DTDI0 on the SPL is connected to the TDO signal of the last
device in the secondary scan path. Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it. If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although degradation is less likely for DTMSn signals, you may
also need to buffer them for the same reasons.



Emulation Design Considerations

 C-18

C.8.2 Emulation Timing Calculations for a Scan Path Linker (SPL) 

The examples in this section help you to calculate the key emulation timings
in the SPL secondary scan path of your system. For actual target timing pa-
rameters, see the appropriate device data sheet for your target device.

The examples use the following assumptions:

tsu(TTMS) Setup time, target TMS/TDI to TCK high 10 ns

td(TTDO) Delay time, target TDO from TCK low 15 ns

td(bufmax) Delay time, target buffer, maximum 10 ns

td(bufmin) Delay time, target buffer, minimum 1 ns

t(bufskew) Skew time, target buffer, between two
devices in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Duty cycle, TCK assume a 40/60% clock 0.4
(40%)

Also, the examples use the following values from the SPL data sheet:

td(DTMSmax) Delay time, SPL DTMS/DTDO from TCK
low, maximum

31 ns

tsu(DTDLmin) Setup time, DTDI to SPL TCK high,
minimum

7 ns

td(DTCKHmin) Delay time, SPL DTCK from TCK high,
minimum

2 ns

td(DTCKLmax) Delay time, SPL DTCK from TCK low,
maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK-DTMS)
� The TCK-to-DTDI path, called tpd(TCK-DTDI)



Emulation Design Considerations

C-19Design Considerations for Using the XDS510 Emulator

In the following two examples, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Example C–2. Key Timing for a Single-Processor System Without Buffering (SPL)

� The following example calculates key timing for a single-processor system
without buffering (SPL):

tpd �TCK-DTMS� �
�td �DTMSmax� � td �DTCKHmin� � tsu �TTMS��

tTCKfactor

�
(31 ns � 2 ns � 10 ns)

0.4

� 107.5 ns, or 9.3 MHz

t
pd �TCK-DTDI��

�t
d �TTDO�� t

d �DTCKLmax�� t
su �DTDLmin��

tTCKfactor

�
(15 ns � 16 ns � 7 ns)

0.4

� 9.5 ns, or 10.5 MHz

In the preceding example, the TCK-to-DTMS/DTDL path is the limiting factor.

� The following example calculates key timing for a single- or multiprocessor-
system with buffered input and output (SPL):

tpd (TCK-TDMS) �
�td (DTMSmax) � t�DTCKHmin� � tsu (TTMS) � t(bufskew)�

tTCKfactor

�
(31 ns � 2 ns � 10 ns � 1.35 ns)

0.4

� 110.9 ns, or 9.0 MHz

tpd (TCK–DTDI) �
�td (TTDO) � td �DTCKLmax� � tsu (DTDLmin)

� td (bufskew)�
tTCKfactor

� 120 ns, or 8.3 MHz

�
(15 ns � 15 ns � 7 ns � 10 ns)

0.4

In the preceding example, the TCK-to-DTDI path is the limiting factor.



Emulation Design Considerations

 C-20

C.8.3 Using Emulation Pins 

The EMU0/1 pins of TI devices are bidirectional, 3-state output pins. When in
an inactive state, these pins are at high impedance. When the pins are active,
they provide one of two types of output:

� Signal event. The EMU0/1 pins can be configured via software to signal
internal events. In this mode, driving one of these pins low can cause
devices to signal such events. To enable this operation, the EMU0/1 pins
function as open-collector sources. External devices such as logic analyz-
ers can also be connected to the EMU0/1 signals in this manner. If such
an external source is used, it must also be connected via an open-collector
source.

� External count. The EMU0/1 pins can be configured via software as totem-
pole outputs for driving an external counter. If the output of more than one
device is configured for totem-pole operation, then these devices can be
damaged. The emulation software detects and prevents this condition.
However, the emulation software has no control over external sources on
the EMU0/1 signal. Therefore, all external sources must be inactive when
any device is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1
pins are driven low. This feature combined with the signal event output, allows
one TI device to halt all other TI devices on a given event for system-level de-
bugging.

If you route the EMU0/1 signals between multiple boards, they require special
handling because they are more complex than normal emulation signals.
Figure C–11 shows an example configuration that allows any processor in the
system to stop any other processor in the system. Do not tie the EMU0/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is
used.



Emulation Design Considerations

C-21Design Considerations for Using the XDS510 Emulator

Figure C–11. EMU0/1 Configuration to Meet Timing Requirements of Less Than 25 ns

Open-
collector
drivers

EMU0/1-IN

Backplane

Target board m

TCK

XCNT_ENABLE

To emulator EMU0

PAL
Pullup
resistor

Open-
collector
drivers

Target board 1

EMU0/1

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Pullup
resistor

Pullup
resistor

Notes: 1) The low time on EMU0/1-IN must be at least one TCK cycle and less than 10 �s. Software sets the EMU0/1-OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall times of less than 25 ns, the modifi-
cation shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false edges
during the RUNB command or when the external counter selected from the debugger analysis menu is used.

These seven important points apply to the circuitry shown in Figure C–11 and
the timing shown in Figure C–12:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied
together on each board.

� At the board edge, the EMU0/1 signals are split to provide both input and
output connections. This is required to prevent the open-collector drivers
from acting as latches that can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors must
be installed as required.



Emulation Design Considerations

 C-22

� The bused EMU0/1 signals go into a programmable logic array device
PAL�, whose function is to generate a low pulse on the EMU0/1-IN signal
when a low level is detected on the EMU0/1-OUT signal. This pulse must
be longer than one TCK period to affect the devices but less than 10 µs
to avoid possible conflicts or retriggering once the emulation software
clears the device’s pins.

� During a RUNB debugger command or other external analysis count, the
EMU0/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMU0 becomes a proces-
sor-halted signal. During a RUNB or other external analysis count, the
EMU0/1-IN signal to all boards must remain in the high (disabled) state.
You must provide some type of external input (XCNT_ENABLE) to the
PAL� to disable the PAL� from driving EMU0/1-IN to a low state.

� If you use sources other than TI processors (such as logic analyzers) to
drive EMU0/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or
directly to a test bus controller.

Figure C–12. Suggested Timings for the EMU0 and EMU1 Signals

EMU0/1-IN

EMU0/1-OUT

TCK



Emulation Design Considerations

C-23Design Considerations for Using the XDS510 Emulator

Figure C–13. EMU0/1 Configuration With Additional AND Gate to Meet Timing
Requirements of Greater Than 25 ns

Open-
collector
drivers

EMU0/1-IN

Backplane

Target board m

TCK

XCNT_ENABLE

To emulator EMU0

PAL
Pullup
resistor

Open-
collector
drivers

Target board 1

EMU0/1

EMU1 signal from other boards

EMU1AND

To emulator EMU1

Circuitry required for >25-ns rise/
fall time modification

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Up to
m boards

Pullup
resistor

Pullup
resistor

Notes: 1) The low time on EMU0/1-IN must be at least one TCK cycle and less than 10 �s. Software sets the EMU0/1-OUT pin
to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rise/fall time of greater than 25 ns, the
modification shown in this figure is suggested. Rise times of more than 25 ns can cause the emulator to detect false
edges during the RUNB command or when the external counter selected from the debugger analysis menu is used.



Emulation Design Considerations

 C-24

You do not need to have devices on one target board stop devices on another
target board using the EMU0/1 signals (see the circuit in Figure C–14). In this
configuration, the global-stop capability is lost. It is important not to overload
EMU0/1 with more than 16 devices.

Figure C–14. EMU0/1 Configuration Without Global Stop

EMU0/1

To emulator

. . .

EMU0/1

. . .Device Device

EMU0/1

. . .

. . .

. . .

1 n

Device Device
1 n

. . .

Target board m

Target board 1

Pullup
resistor

Pullup
resistor

Pullup
resistor

Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rise/fall times of less than 25 ns. Rise times
of more than 25 ns can cause the emulator to detect false edges during the RUNB command or when the external counter
selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1 signals from the
individual boards must be ANDed together (as shown in Figure C–14) to produce an EMU0/1 signal for the emulator.

C.8.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header. The TBC is described in the Texas Instruments
Advanced Logic and Bus Interface Logic Data Book. Figure C–15 shows the
scan path connections of n devices to the TBC.



Emulation Design Considerations

C-25Design Considerations for Using the XDS510 Emulator

Figure C–15. TBC Emulation Connections for n JTAG Scan Paths

JTAG 0

JTAG nTDI

EMU1

TMS

TDO

EMU0

TRST

TCK

TDO

TCK

TRST

EMU1

EMU0

TMS

TDI

Clock

TDI1

TDI0

TCKO

TMS5/EVNT3

TMS4/EVNT2

TMS3/EVNT1

TMS2/EVNT0

TMS1

TMS0

TDO

TCKI

VCC

TBC

In the system design shown in Figure C–15, the TBC emulation signals TCKI,
TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target
devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-
tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.
The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the
main JTAG scan path is driven by the TBC’s TCKO pin.

On the TBC, the TMS0 pin drives the TMS pins on each device on the main
JTAG scan path. TDO on the TBC connects to TDI on the first device on the
main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path. Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC’s
TMS5/EVNT3 signal for software control or by logic on the board itself. 



D-1

Appendix A

Glossary

A
A0–A15: Collectively, the external address bus; the 16 pins are used in par-

allel to address external data memory, program memory, or I/O space.

ACC:  See accumulator.

ACCH: Accumulator high word. The upper 16 bits of the accumulator. See
also accumulator.

ACCL: Accumulator low word. The lower 16 bits of the accumulator. See
also accumulator.

accumulator: A 32-bit register that stores the results of operations in the
central arithmetic logic unit (CALU) and provides an input for subsequent
CALU operations. The accumulator also performs shift and rotate opera-
tions.

address:  The location of program code or data stored in memory.

addressing mode: A method by which an instruction interprets its operands
to acquire the data it needs. See also direct addressing; immediate
addressing; indirect addressing.

analog-to-digital (A/D) converter: A circuit that translates an analog signal
to a digital signal.

AR: See auxiliary register.

AR0–AR7: Auxiliary registers 0 through 7. See auxiliary register.

ARAU: See auxiliary register arithmetic unit (ARAU).

ARB: See auxiliary register pointer buffer (ARB).

ARP:  See auxiliary register pointer (ARP).

auxiliary register: One of eight 16-bit registers (AR7–AR0) used as point-
ers to addresses in data space. The registers are operated on by the aux-
iliary register arithmetic unit (ARAU) and are selected by the auxiliary
register pointer (ARP).

Appendix D



Glossary

D-2

auxiliary register arithmetic unit (ARAU): A 16-bit arithmetic unit used to
increment, decrement, or compare the contents of the auxiliary registers.
Its primary function is manipulating auxiliary register values for indirect
addressing.

auxiliary register pointer (ARP): A 3-bit field in status register ST0 that
points to the current auxiliary register.

auxiliary register pointer buffer (ARB): A 3-bit field in status register ST1
that holds the previous value of the auxiliary register pointer (ARP).

B

B0: An on-chip block of dual-access RAM that can be configured as either
data memory or program memory, depending on the value of the CNF
bit in status register ST1.

B1: An on-chip block of dual-access RAM available for data memory.

B2: An on-chip block of dual-access RAM available for data memory.

BIO pin : A general-purpose input pin that can be tested by conditional
instructions that cause a branch when an external device drives BIO low.

bit-reversed indexed addressing : A method of indirect addressing that
allows efficient I/O operations by resequencing the data points in a
radix-2 fast Fourier transform (FFT) program. The direction of carry
propagation in the ARAU is reversed.

boot loader: A built-in segment of code that transfers code from an external
source to a 16-bit external program destination at reset.

BR: Bus request pin. This pin is tied to the BR signal, which is asserted when
a global data memory access is initiated.

branch: A switching of program control to a nonsequential program-
memory address.



Glossary

D-3Glossary

C

C bit: See carry bit.

CALU: See central arithmetic logic unit (CALU).

carry bit: Bit 9 of status register ST1; used by the CALU for extended
arithmetic operations and accumulator shifts and rotates. The carry bit
can be tested by conditional instructions.

central arithmetic logic unit (CALU): The 32-bit wide main arithmetic logic
unit for the ’C24x CPU that performs arithmetic and logic operations. It
accepts 32-bit values for operations, and its 32-bit output is held in the
accumulator.

CLKIN: Input clock signal. A clock source signal supplied to the on-chip
clock generator at the CLKIN/X2 pin or generated internally by the
on-chip oscillator. The clock generator divides or multiplies CLKIN to
produce the CPU clock signal, CLKOUT1.

CLKOUT: Master clock output signal. The output signal of the on-chip clock
generator. The CLKOUT1 high pulse signifies the CPU’s logic phase
(when internal values are changed), and the CLKOUT1 low pulse
signifies the CPU’s latch phase (when the values are held constant).

clock mode (clock generator): One of the modes which sets the internal
CPU clock frequency to a fraction or multiple of the frequency of the input
clock signal CLKIN.

CNF bit: DARAM configuration bit. Bit 12 in status register ST1. CNF is used
to determine whether the on-chip RAM block B0 is mapped to program
space or data space.

codec: A device that codes in one direction of transmission and decodes in
another direction of transmission.

COFF: Common object file format. A system of files configured according to
a standard developed by AT&T. These files are relocatable in memory
space.

context saving/restoring : Saving the system status when the device
enters a subroutine (such as an interrupt service routine) and restoring
the system status when exiting the subroutine. On the ’C24x, only the
program counter value is saved and restored automatically; other
context saving and restoring must be performed by the subroutine.



Glossary

D-4

CPU: Central processing unit. The ’C24x CPU is the portion of the processor
involved in arithmetic, shifting, and Boolean logic operations, as well as
the generation of data- and program-memory addresses. The CPU
includes the central arithmetic logic unit (CALU), the multiplier, and the
auxiliary register arithmetic unit (ARAU).

CPU cycle: The time required for the CPU to go through one logic phase
(during which internal values are changed) and one latch phase (during
which the values are held constant).

current AR: See current auxiliary register.

current auxiliary register: The auxiliary register pointed to by the auxiliary
register pointer (ARP). The auxiliary registers are AR0 (ARP = 0)
through AR7 (ARP = 7). See also auxiliary register; next auxiliary
register.

current data page: The data page indicated by the content of the data page
pointer (DP). See also data page; DP.

D

D0–D15: Collectively, the external data bus; the 16 pins are used in parallel
to transfer data between the ’C24x and external data memory, program
memory, or I/O space.

DARAM: Dual-access RAM. RAM that can be accessed twice in a single
CPU clock cycle. For example, your code can read from and write to
DARAM in the same clock cycle.

DARAM configuration bit (CNF):  See CNF bit.

data-address generation logic: Logic circuitry that generates the address-
es for data memory reads and writes. This circuitry, which includes the
auxiliary registers and the ARAU, can generate one address per
machine cycle. See also program-address generation logic.

data page: One block of 128 words in data memory. Data memory contains
512 data pages. Data page 0 is the first page of data memory (addresses
0000h–007Fh); data page 511 is the last page (addresses
FF80h–FFFFh). See also data page pointer (DP); direct addressing.

data page 0: Addresses 0000h–007Fh in data memory; contains the
memory-mapped registers, a reserved test/emulation area for special
information transfers, and the scratch-pad RAM block (B2).



Glossary

D-5Glossary

data page pointer (DP): A 9-bit field in status register ST0 that specifies
which of the 512 data pages is currently selected for direct address
generation. When an instruction uses direct addressing to access a data-
memory value, the DP provides the nine MSBs of the data-memory
address, and the instruction provides the seven LSBs.

data-read address bus (DRAB): A 16-bit internal bus that carries the
address for each read from data memory.

data read bus (DRDB): A 16-bit internal bus that carries data from data
memory to the CALU and the ARAU.

data-write address bus (DWAB): A 16-bit internal bus that carries the
address for each write to data memory.

data write bus (DWEB): A 16-bit internal bus that carries data to both
program memory and data memory.

decode phase: The phase of the pipeline in which the instruction is
decoded. See also pipeline; instruction-fetch phase; operand-fetch
phase; instruction-execute phase.

direct addressing: One of the methods used by an instruction to address
data-memory. In direct addressing, the data-page pointer (DP) holds the
nine MSBs of the address (the current data page), and the instruction
word provides the seven LSBs of the address (the offset). See also
indirect addressing.

DP: See data page pointer (DP).

DRAB: See data-read address bus (DRAB).

DRDB: See data read bus (DRDB).

DS: Data memory select pin. The ’C24x asserts DS to indicate an access to
external data memory (local or global).

DSWS: Data-space wait-state bit(s). A value in the wait-state generator
control register (WSGR) that determines the number of wait states
applied to reads from and writes to off-chip data space.

dual-access RAM : See DARAM.

dummy cycle: A CPU cycle in which the CPU intentionally reloads the
program counter with the same address.

DWAB: See data-write address bus (DWAB).

DWEB: See data write bus (DWEB).



Glossary

D-6

E

execute phase: The fourth phase of the pipeline; the phase in which the
instruction is executed. See also pipeline; instruction-fetch phase;
instruction-decode phase; operand-fetch phase.

external interrupt: A hardware interrupt triggered by an external event
sending an input through an interrupt pin.

F

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is
stored and then retrieved in the same order in which it was stored. The
synchronous serial port has two four-word-deep FIFO buffers: one for its
transmit operation and one for its receive operation.

flash memory: Electronically erasable and programmable, nonvolatile
(read-only) memory.

G

general-purpose input/output pins: Pins that can be used to accept input
signals or send output signals. These pins are the input pin BIO, the out-
put pin XF, and the GPIO pins.

global data space : One of the four ’C24x address spaces. The global data
space can be used to share data with other processors within a system
and can serve as additional data space. See also local data space.

GREG: Global memory allocation register. A memory-mapped register
used for specifying the size of the global data memory. Addresses not
allocated by the GREG for global data memory are available for local
data memory.

H

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.



Glossary

D-7Glossary

I
immediate addressing: One of the methods for obtaining data values used

by an instruction; the data value is a constant embedded directly into the
instruction word; data memory is not accessed.

immediate operand/immediate value: A constant given as an operand in
an instruction that is using immediate addressing.

IMR: See interrupt mask register (IMR).

indirect addressing: One of the methods for obtaining data values used by
an instruction. When an instruction uses indirect addressing, data
memory is addressed by the current auxiliary register. See also direct
addressing.

input clock signal: See CLKIN.

input shifter: A 16- to 32-bit left barrel shifter that shifts incoming 16-bit data
from 0 to 16 positions left relative to the 32-bit output.

instruction-decode phase: The second phase of the pipeline; the phase in
which the instruction is decoded. See also pipeline; instruction-fetch
phase; operand-fetch phase; instruction-execute phase.

instruction-execute phase: The fourth phase of the pipeline; the phase in
which the instruction is executed. See also pipeline; instruction-fetch
phase; instruction-decode phase; operand-fetch phase.

instruction-fetch phase: The first phase of the pipeline; the phase in which
the instruction is fetched from program-memory.  See also pipeline;
instruction-decode phase; operand-fetch phase; instruction-execute
phase.

instruction register (IR): A 16-bit register that contains the instruction
being executed.

instruction word: A 16-bit value representing all or half of an instruction. An
instruction that is fully represented by 16 bits uses one instruction word.
An instruction that must be represented by 32 bits uses two instruction
words (the second word is a constant).

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

interrupt: A signal sent to the CPU that (when not masked or disabled)
forces the CPU into a subroutine called an interrupt service routine (ISR).
This signal can be triggered by an external device, an on-chip peripheral,
or an instruction (INTR, NMI, or TRAP).



Glossary

 D-8

interrupt acknowledge signal (IACK ):  A signal that indicates an interrupt
has been received and that the program counter is fetching the interrupt
vector that will force the processor into the appropriate interrupt service
routine.

interrupt flag register (IFR):  A 16-bit memory-mapped register that indi-
cates pending interrupts. Read the IFR to identify pending interrupts and
write to the IFR to clear selected interrupts. Writing a 1 to any IFR flag
bit clears that bit to 0.

interrupt latency:  The delay between the time an interrupt request is made
and the time it is serviced.

interrupt mask register (IMR): A 16-bit memory-mapped register used to
mask external and internal interrupts. Writing a 1 to any IMR bit position
enables the corresponding interrupt (when INTM = 0).

interrupt mode bit (INTM): Bit 9 in status register ST0; either enables all
maskable interrupts that are not masked by the IMR or disables all mask-
able interrupts.

interrupt service routine (ISR) : A module of code that is executed in
response to a hardware or software interrupt.

interrupt trap: See interrupt service routine (ISR).

interrupt vector: A branch instruction that leads the CPU to an interrupt
service routine (ISR).

interrupt vector location: An address in program memory where an inter-
rupt vector resides. When an interrupt is acknowledged, the CPU
branches to the interrupt vector location and fetches the interrupt vector.

INTM bit: See interrupt mode bit (INTM).

I/O-mapped register: One of the on-chip registers mapped to addresses in
I/O (input/output) space. These registers, which include the registers for
the on-chip peripherals, must be accessed with the IN and OUT instruc-
tions. See also memory-mapped register.

IR: See instruction register (IR).

IS: I/O space select pin. The ’C24x asserts IS to indicate an access to exter-
nal I/O space.

ISR: See interrupt service routine (ISR).

ISWS: I/O-space wait-state bit(s). A value in the wait-state generator control
register (WSGR) that determines the number of wait states applied to
reads from and writes to off-chip I/O space.



Glossary

D-9Glossary

L

latch phase: The phase of a CPU cycle during which internal values are held
constant. See also logic phase; CLKOUT1.

local data space: The portion of data-memory addresses that are not allo-
cated as global by the global memory allocation register (GREG). If none
of the data-memory addresses are allocated for global use, all of data
space is local. See also global data space.

logic phase: The phase of a CPU cycle during which internal values are
changed. See also latch phase; CLKOUT1.

long-immediate value: A 16-bit constant given as an operand of an
instruction that is using immediate addressing.

LSB : Least significant bit. The lowest order bit in a word. When used in plural
form (LSBs), refers to a specified number of low-order bits, beginning
with the lowest order bit and counting to the left. For example, the four
LSBs of a 16-bit value are bits 0 through 3. See also MSB.

M

machine cycle: See CPU cycle.

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software. See also nonmaskable interrupt.

master clock output signal: See CLKOUT1.

master phase: See logic phase.

memory-mapped register: One of the on-chip registers mapped to
addresses in data memory. See also I/O-mapped register.

microcomputer mode: A mode in which the on-chip ROM or flash memory
is enabled. This mode is selected with the MP/MC pin. See also MP/MC
pin; microprocessor mode.

microprocessor mode: A mode in which the on-chip ROM or flash memory
is disabled. This mode is selected with the MP/MC pin. See also MP/MC
pin; microcomputer mode.

microstack (MSTACK): A register used for temporary storage of the
program counter (PC) value when an instruction needs to use the PC to
address a second operand.



Glossary

D-10

MIPS: Million instructions per second.

MP/MC pin : A pin that indicates whether the processor is operating in micro-
processor mode or microcomputer mode. MP/MC high selects micropro-
cessor mode; MP/MC low selects microcomputer mode.

MSB: Most significant bit. The highest order bit in a word. When used in
plural form (MSBs), refers to a specified number of high-order bits, begin-
ning with the highest order bit and counting to the right. For example, the
eight MSBs of a 16-bit value are bits 15 through 8. See also LSB.

MSTACK: See microstack.

multiplier: A part of the CPU that performs 16-bit × 16-bit multiplication and
generates a 32-bit product. The multiplier operates using either signed
or unsigned 2s-complement arithmetic.

N
next AR: See next auxiliary register.

next auxiliary register: The register that is pointed to by the auxiliary regis-
ter pointer (ARP) when an instruction that modifies ARP is finished
executing. See also auxiliary register; current auxiliary register.

NMI: A hardware interrupt that uses the same logic as the maskable inter-
rupts but cannot be masked. It is often used as a soft reset. See also
maskable interrupt; nonmaskable interrupt.

nonmaskable interrupt: An interrupt that can be neither masked by the
interrupt mask register (IMR) nor disabled by the INTM bit of status
register ST0.

NPAR: Next program address register. Part of the program-address genera-
tion logic. This register provides the address of the next instruction to the
program counter (PC), the program address register (PAR), the micro
stack (MSTACK), or the stack.

O
operand: A value to be used or manipulated by an instruction; specified in

the instruction.

operand-fetch phase: The third phase of the pipeline; the phase in which
an operand or operands are fetched from memory. See also pipeline;
instruction-fetch phase; instruction-decode phase; instruction-execute
phase.



Glossary

D-11Glossary

output shifter: 32- to 16-bit barrel left shifter. Shifts the 32-bit accumulator
output from 0 to 7 bits left for quantization management, and outputs
either the 16-bit high or low half of the shifted 32-bit data to the data write
bus (DWEB).

OV bit: Overflow flag bit. Bit 12 of status register ST0; indicates whether the
result of an arithmetic operation has exceeded the capacity of the
accumulator.

overflow (in a register): A condition in which the result of an arithmetic
operation exceeds the capacity of the register used to hold that result.

overflow mode: The mode in which an overflow in the accumulator causes
the accumulator to be loaded with a preset value. If the overflow is in the
positive direction, the accumulator is loaded with its most positive
number. If the overflow is in the negative direction, the accumulator is
filled with its most negative number.

OVM bit: Overflow mode bit. Bit 11 of status register ST0; enables or
disables overflow mode. See also overflow mode.

P

PAB: See program address bus (PAB).

PAR: Program address register. A register that holds the address currently
being driven on the program address bus for as many cycles as it takes
to complete all memory operations scheduled for the current machine
cycle.

PC: See program counter (PC).

PCB: Printed circuit board.

pending interrupt: A maskable interrupt that has been successfully
requested but is awaiting acknowledgement by the CPU.

pipeline : A method of executing instructions in an assembly line fashion.
The ’C24x pipeline has four independent phases. During a given CPU
cycle, four different instructions can be active, each at a different stage
of completion. See also instruction-fetch phase; instruction-decode
phase; operand-fetch phase; instruction-execute phase.

PLL: Phase lock loop circuit.

PM bits: See product shift mode bits (PM).



Glossary

 D-12

power-down mode: The mode in which the processor enters a dormant
state and dissipates considerably less power than during normal opera-
tion. This mode is initiated by the execution of an IDLE instruction. During
a power-down mode, all internal contents are maintained so that opera-
tion continues unaltered when the power-down mode is terminated. The
contents of all on-chip RAM also remains unchanged.

PRDB: See program read bus (PRDB).

PREG: See product register (PREG).

product register (PREG): A 32-bit register that holds the results of a multi-
ply operation.

product shifter: A 32-bit shifter that performs a 0-, 1-, or 4-bit left shift, or
a 6-bit right shift of the multiplier product based on the value of the
product shift mode bits (PM).

product shift mode: One of four modes (no-shift, shift-left-by-one, shift-left-
by-four, or shift-right-by-six) used by the product shifter.

product shift mode bits (PM): Bits 0 and 1 of status register ST1; they iden-
tify which of four shift modes (no-shift, left-shift-by-one, left-shift-by-four,
or right-shift-by-six) will be used by the product shifter.

program address bus (PAB): A 16-bit internal bus that provides the
addresses for program-memory reads and writes.

program-address generation logic: Logic circuitry that generates the
addresses for program memory reads and writes, and an operand
address in instructions that require two registers to address operands.
This circuitry can generate one address per machine cycle. See also
data-address generation logic.

program control logic: Logic circuitry that decodes instructions, manages
the pipeline, stores status of operations, and decodes conditional
operations.

program counter (PC): A register that indicates the location of the next
instruction to be executed.

program read bus (PRDB): A 16-bit internal bus that carries instruction
code and immediate operands, as well as table information, from
program memory to the CPU.

PS: Program select pin. The ’C24x asserts PS to indicate an access to exter-
nal program memory.



Glossary

D-13Glossary

PSLWS: Lower program-space wait-state bits. A value in the wait-state
generator control register (WSGR) that determines the number of wait
states applied to reads from and writes to off-chip lower program space
(addresses 0000h–7FFFh). See also PSUWS.

PSUWS: Upper program-space wait-state bits. A value in the wait-state
generator control register (WSGR) that determines the number of wait
states applied to reads from and writes to off-chip upper program space
(addresses 8000h–FFFFh). See also PSLWS.

R

RD: Read select pin. The ’C24x asserts RD to request a read from external
program, data, or I/O space. RD can be connected directly to the output
enable pin of an external device.

READY: External device ready pin. Used to create wait states externally.
When this pin is driven low, the ’C24x waits one CPU cycle and then tests
READY again. After READY is driven low, the ’C24x does not continue
processing until READY is driven high.

repeat counter (RPTC): A 16-bit register that counts the number of times
a single instruction is repeated. RPTC is loaded by an RPT instruction.

reset: A way to bring the processor to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at address 0000h.

reset pin (RS ): A pin that causes a reset.

reset vector: The interrupt vector for reset.

return address: The address of the instruction to be executed when the
CPU returns from a subroutine or interrupt service routine.

RPTC: See repeat counter (RPTC).

RS: Reset pin. When driven low, causes a reset on any ’C24x device.

R/W: Read/write pin. Indicates the direction of transfer between the ’C24x
and external program, data, or I/O space.

S

SARAM: Single-access RAM. RAM that can be accessed (read from or writ-
ten to) once in a single CPU cycle.



Glossary

 D-14

scratch-pad RAM: Another name for DARAM block B2 in data space
(32 words).

short-immediate value: An 8-, 9-, or 13-bit constant given as an operand
of an instruction that is using immediate addressing.

sign bit: The MSB of a value when it is seen by the CPU to indicate the sign
(negative or positive) of the value.

sign extend: Fill the unused high order bits of a register with copies of the
sign bit in that register.

sign-extension mode (SXM) bit :  Bit 10 of status register ST1; enables or
disables sign extension in the input shifter. It also differentiates between
logic and arithmetic shifts of the accumulator.

single-access RAM:  See SARAM.

slave phase: See latch phase.

software interrupt: An interrupt caused by the execution of an INTR, NMI,
or TRAP instruction.

software stack: A program control feature that allows you to extend the
hardware stack into data memory with the PSHD and POPD instructions.
The stack can be directly stored and recovered from data memory, one
word at time. This feature is useful for deep subroutine nesting or protec-
tion against stack overflow.

ST0 and ST1:  See status registers ST0 and ST1.

stack: A block of memory reserved for storing return addresses for subrou-
tines and interrupt service routines. The ’C24x stack is 16 bits wide and
eight levels deep.

status registers ST0 and ST1: Two 16-bit registers that contain bits for
determining processor modes, addressing pointer values, and indicating
various processor conditions and arithmetic logic results. These regis-
ters can be stored into and loaded from data memory, allowing the status
of the machine to be saved and restored for subroutines.

STRB: External access active strobe. The ’C24x asserts STRB during ac-
cesses to external program, data, or I/O space.

SXM bit: See sign-extension mode bit (SXM).



Glossary

D-15Glossary

T

TC bit: Test/control flag bit. Bit 11 of status register ST1; stores the results
of test operations done in the central arithmetic logic unit (CALU) or the
auxiliary register arithmetic unit (ARAU). The TC bit can be tested by
conditional instructions.

temporary register (TREG):  A 16-bit register that holds one of the oper-
ands for a multiply operation; the dynamic shift count for the LACT,
ADDT, and SUBT instructions; or the dynamic bit position for the BITT
instruction.

TOS: Top of stack. Top level of the 8-level last-in, first-out hardware stack.

TREG: See temporary register (TREG).

TTL: Transistor-to-transistor logic.

V

vector: See interrupt vector.

vector location: See interrupt vector location.

W

wait state : A CLKOUT1 cycle during which the CPU waits when reading
from or writing to slower external memory.

wait-state generator : An on-chip peripheral that generates a limited
number of wait states for a given off-chip memory space (program, data,
or I/O). Wait states are set in the wait-state generator control register
(WSGR).

WE: Write enable pin. The ’C24x asserts WE to request a write to external
program, data, or I/O space.

WSGR: Wait-state generator control register. This register, which is mapped
to I/O memory, controls the wait-state generator.

X

XF bit: XF-pin status bit. Bit 4 of status register ST1 that is used to read or
change the logic level on the XF pin.



Glossary

D-16

XF pin: External flag pin. A general-purpose output pin whose status can be
read or changed by way of the XF bit in status register ST1.

Z

zero fill: A way to fill the unused low or high order bits in a register by insert-
ing 0s.



Summary of Updates in This Document

E-1Summary of Updates in This Document

Appendix A

Summary of Updates in This Document

This appendix provides a summary of the updates in this version of the docu-
ment. Updates within paragraphs appear in a bold typeface .

Rev. B Rev. C Change or Add:
Page: Page

– – – –  – – – – Changed the title on the cover and title page to:

TMS320F/C24x DSP Controllers, CPU and Instruction Set Reference Guide.

In addition to being revised, this version has been reorganized, and hence, differs
significantly from the previous version (SPRU160B). Only major reorganizational
changes are noted in this appendix.

3–1 3–1 Chapter 3 in revision B was Central Processing Unit. Chapter 3 in revision C is
now Memory and I/O Spaces.

4–1 4–1 Chapter 4 in revision B was Memory and I/O Spaces. Chapter 4 in revision C is
now Central Processing Unit.

6–1 6–1 Chapter 6 in revision B was System Functions. Chapter 6 in revision C is now
Addressing Modes.

7–1 7–1 Chapter 7 in revision B was Addressing Modes. Chapter 7 in revision C is now
Assembly Language Instructions.

8–1 8–1 Chapter 8 in revision B was Assembly Language Instructions. There is no Chap-
ter 8 in revision C.

Appendix E



Index

Index-1

Index

* operand 6-10

*+ operand 6-10

*– operand 6-10

*0+ operand 6-10

*0– operand 6-10

*BR0+ operand 6-10

*BR0– operand 6-10

14-pin connector, dimensions C-15

14-pin header
header signals C-2
JTAG C-2

4-level pipeline operation 5-7

A
ABS instruction 7-20

absolute value (ABS instruction) 7-20

accumulator 2-8
definition D-1
description 4-9
shifting and storing high and low words,

diagrams 4-11

accumulator instructions
absolute value of accumulator (ABS) 7-20
add PREG to accumulator (APAC) 7-36
add PREG to accumulator and load TREG

(LTA) 7-92
add PREG to accumulator and multiply

(MPYA) 7-115
add PREG to accumulator and square specified

value (SQRA) 7-167
add PREG to accumulator, load TREG, and

move data (LTD) 7-94
add PREG to accumulator, load TREG, and

multiply (MAC) 7-101
add PREG to accumulator, load TREG, multiply,

and move data (MACD) 7-105

accumulator instructions (continued)
add value plus carry to accumulator

(ADDC) 7-26
add value to accumulator (ADD) 7-22
add value to accumulator with shift specified by

TREG (ADDT) 7-30
add value to accumulator with sign extension

suppressed (ADDS) 7-28
AND accumulator with value (AND) 7-33
branch to location specified by accumulator

(BACC) 7-39
call subroutine at location specified by

accumulator (CALA) 7-57
complement accumulator (CMPL) 7-63
divide using accumulator (SUBC) 7-179
load accumulator (LACC) 7-71
load accumulator using shift specified by TREG

(LACT) 7-77
load accumulator with PREG (PAC) 7-133
load accumulator with PREG and load TREG

(LTP) 7-97
load high bits of accumulator with rounding

(ZALR) 7-195
load low bits and clear high bits of accumulator

(LACL) 7-74
negate accumulator (NEG) 7-121
normalize accumulator (NORM) 7-125
OR accumulator with value (OR) 7-128
pop top of stack to low accumulator bits

(POP) 7-134
push low accumulator bits onto stack

(PUSH) 7-140
rotate accumulator left by one bit (ROL) 7-143
rotate accumulator right by one bit (ROR) 7-144
shift accumulator left by one bit (SFL) 7-156
shift accumulator right by one bit (SFR) 7-157
store high byte of accumulator to data memory

(SACH) 7-147
store low byte of accumulator to data memory

(SACL) 7-149



Index

Index-2  

accumulator instructions (continued)
subtract conditionally from accumulator

(SUBC) 7-179
subtract PREG from accumulator (SPAC) 7-159
subtract PREG from accumulator and load TREG

(LTS) 7-99
subtract PREG from accumulator and multiply

(MPYS) 7-117
subtract PREG from accumulator and square

specified value (SQRS) 7-169
subtract value and logical inversion of carry bit

from accumulator (SUBB) 7-177
subtract value from accumulator (SUB) 7-173
subtract value from accumulator with shift

specified by TREG (SUBT) 7-183
subtract value from accumulator with sign

extension suppressed (SUBS) 7-181
XOR accumulator with data value (XOR) 7-192

ADD instruction 7-22

ADDC instruction 7-26

address generation
data memory

direct addressing 6-4
immediate addressing 6-2
indirect addressing 6-9

program memory 5-2
hardware 5-3

address map, data memory, data page 0 3-7

addressing, bit-reversed indexed 6-10, D-2

addressing modes
definition D-1
direct

description 6-4
examples 6-6
figure 6-5
opcode format 6-5 to 6-7
role of data page pointer (DP) 6-4

immediate 6-2
indirect

description 6-9
effects on auxiliary register pointer

(ARP) 6-13 to 6-15
effects on current auxiliary register 6-13 to

6-15
examples 6-14
modifying auxiliary register content 6-16
opcode format 6-12 to 6-14
operands 6-9

addressing modes, indirect (continued)
operation types 6-13 to 6-15
options 6-9
possible opcodes 6-13 to 6-15

overview 6-1

ADDS instruction 7-28

ADDT instruction 7-30

ADRK instruction 7-32

AND instruction 7-33

APAC instruction 7-36

ARAU (auxiliary register arithmetic unit) 2-9, 4-12

ARAU and related logic, block diagram 4-12

ARB (auxiliary register pointer buffer) 4-16

architecture, internal memory 2-5 to 2-7

arithmetic logic unit, central (CALU) 4-9

ARP (auxiliary register pointer) 4-16

auxiliary register arithmetic unit (ARAU),
description 4-12

auxiliary register functions 4-14

auxiliary register instructions
add short immediate value to current auxiliary

register (ADRK) 7-32
branch if current auxiliary register not zero

(BANZ) 7-40
compare current auxiliary register with AR0

(CMPR) 7-64
load specified auxiliary register (LAR) 7-79
modify auxiliary register pointer (MAR) 7-110
modify current auxiliary register (MAR) 7-110
store specified auxiliary register (SAR) 7-151
subtract short immediate value from current

auxiliary register (SBRK) 7-153

auxiliary register pointer (ARP) 4-16, D-2

auxiliary register pointer buffer (ARB) 4-16, D-2

auxiliary register update (ARU) code 6-12

auxiliary registers 2-9

auxiliary registers (AR0–AR7)
block diagram 4-12
current auxiliary register 6-9

role in indirect addressing 6-9 to 6-16
update code (ARU) 6-12

description 4-12 to 4-14
general uses for 4-14
instructions that modify content 6-16
next auxiliary register 6-11
used in indirect addressing 4-12



Index

Index-3

B
B instruction 7-38
BACC instruction 7-39
BANZ instruction 7-40
BCND instruction 7-42
BIT instruction 7-44
bit-reversed indexed addressing 6-10, D-2
BITT instruction 7-46
BLDD instruction 7-48
block diagrams

ARAU and related logic 4-12
arithmetic logic section of CPU 4-8
auxiliary registers (AR0–AR7) and ARAU 4-12
CPU (selected sections) 4-2
input scaling section of CPU 4-3
multiplication section of CPU 4-5
program-address generation 5-2

block move instructions
block move from data memory to data memory

(BLDD) 7-48
block move from program memory to data

memory (BLPD) 7-53
BLPD instruction 7-53
Boolean logic instructions

AND 7-33
CMPL (complement/NOT) 7-63
OR 7-128
XOR (exclusive OR) 7-192

BR signal 4-18
branch instructions

branch conditionally (BCND) 7-42
branch if current auxiliary register not zero

(BANZ) 7-40
branch to location specified by accumulator

(BACC) 7-39
branch to NMI interrupt vector location

(NMI) 7-123
branch to specified interrupt vector location

(INTR) 7-70
branch to TRAP interrupt vector location

(TRAP) 7-191
branch unconditionally (B) 7-38
call subroutine at location specified by

accumulator (CALA) 7-57
call subroutine conditionally (CC) 7-59
call subroutine unconditionally (CALL) 7-58
conditional, overview 5-11

branch instructions (continued)
return conditionally from subroutine

(RETC) 7-142
return unconditionally from subroutine

(RET) 7-141
unconditional, overview 5-8

branches, calls, and returns 5-8
buffered signals, JTAG C-10
buffering C-10
bus devices C-4
bus protocol in emulator system C-4
buses

data read bus (DRDB) 2-4
data write bus (DWEB) 2-4
data-read address bus (DRAB) 2-4
data-write address bus (DWAB) 2-4
program address bus (PAB) 2-4

used in program-memory address
generation 5-3

program read bus (PRDB) 2-4

C
’C24x, features, emulation 2-10
C (carry bit)

affected during SFL and SFR instructions 7-156
to 7-158

definition 4-16
involved in accumulator events 4-10
used during ROL and ROR instructions 7-143

to 7-145
cable, target system to emulator C-1 to C-25
cable pod C-5, C-6
CALA instruction 7-57
CALL instruction 7-58
call instructions

call subroutine at location specified by
accumulator (CALA) 7-57

call subroutine conditionally (CC) 7-59
call subroutine unconditionally (CALL) 7-58
conditional, overview 5-12
unconditional, overview 5-8

CALU (central arithmetic logic unit)
definition D-3
description 4-9

CALU (central atithmetic logic unit) 2-8
carry bit (C)

affected during SFL and SFR instructions 7-156
to 7-158



Index

Index-4  

carry bit (C) (continued)
definition 4-16
involved in accumulator events 4-10
used during ROL and ROR instructions 7-143

to 7-145

CC instruction 7-59

central arithmetic logic section of CPU 4-8

CHAR LEN2–0 bits 5-18, 5-19

character length 5-18, 5-19

CLKOUT1 signal, definition D-3

CLRC instruction 7-61

CMPL instruction 7-63

CMPR instruction 7-64

CNF (DARAM configuration bit) 3-5, 4-16

codec, definition D-3

conditional instructions 5-10 to 5-13
conditional branch 5-11 to 5-13
conditional call 5-12 to 5-13
conditional return 5-12 to 5-13
conditions that may be tested 5-10
stabilization of conditions 5-11
using multiple conditions 5-10

configuration
global data memory 3-9
multiprocessor C-13
program memory 3-5

connector
14-pin header C-2
dimensions, mechanical C-14
DuPont C-2

control bits
CHAR LEN2–0 5-18, 5-19
PARITY ENABLE 5-18
STOP BITS 5-18

CPU
accumulator 4-9
arithmetic logic section 4-8
auxiliary register arithmetic unit (ARAU) 4-12
block diagram (partial) 4-2
CALU (central arithmetic logic unit) 4-9
central arithmetic logic unit (CALU) 4-9
definition D-4
input scaling section/input shifter 4-3
multiplication section 4-5
output shifter 4-11
overview 2-8

CPU (continued)
product shifter 4-6

product shift modes 4-7
program control 2-10
status registers ST0 and ST1 4-15

CPU interrupt registers 5-17

current auxiliary register 6-9
add short immediate value to (ADRK

instruction) 7-32
branch if not zero (BANZ instruction) 7-40
compare with AR0 (CMPR instruction) 7-64
increment or decrement (MAR

instruction) 7-110
role in indirect addressing 6-9 to 6-16
subtract short immediate value from (SBRK

instruction) 7-153
update code (ARU) 6-12

D
D0–D15 (external data bus), definition D-4

DARAM 2-5

DARAM configuration bit (CNF) 4-16

data memory 3-2
data page pointer (DP) 4-16
global data memory 3-9
local data memory 3-6
off-chip 3-8
on-chip 3-8
on-chip registers 3-7

data page 0
address map 3-7
on-chip registers 3-7
RAM block B2 (scratch-pad RAM) 3-7

data page pointer (DP)
caution about initializing DP 6-5
definition 4-16
load (LDP instruction) 7-82
role in direct addressing 6-4

data read bus (DRDB) 2-4

data write bus (DWEB) 2-4

data-read address bus (DRAB) 2-4

data-scaling shifter
at input of CALU 4-3
at output of CALU 4-11

data-write address bus (DWAB) 2-4

diagnostic applications C-24



Index

Index-5

dimensions
12-pin header C-20
14-pin header C-14
mechanical, 14-pin header C-14

direct addressing
description 6-4
examples 6-6
figure 6-5
opcode format 6-5 to 6-7
role of data page pointer (DP) 6-4

divide (SUBC instruction) 7-179

DMOV instruction 7-65

DP (data page pointer)
caution about initializing DP 6-5
definition 4-16
load (LDP instruction) 7-82
role in direct addressing 6-4

DRAB (data-read address bus) 2-4

DRDB (data read bus) 2-4

DS signal 4-18

dual-access RAM 2-5

dual-access RAM (DARAM) D-4

DuPont connector C-2

DWAB (data-write address bus) 2-4

DWEB (data write bus) 2-4

E
EMU0/1

configuration C-21, C-23, C-24
emulation pins C-20
IN signals C-21
rising edge modification C-22

EMU0/1 signals C-2, C-3, C-6, C-7, C-13, C-18

emulation
configuring multiple processors C-13
JTAG cable C-1
pins C-20
serial-scan 2-10
timing calculations C-7 to C-9, C-18 to C-26
using scan path linkers C-16

emulation timing C-7

emulator
cable pod C-5
connection to target system, JTAG mechanical

dimensions C-14 to C-25
designing the JTAG cable C-1

emulator (continued)
emulation pins C-20
pod interface C-5
pod timings C-6
signal buffering C-10 to C-13
target cable, header design C-2 to C-3

enabling, parity 5-18
enhanced instructions A-5
external memory interface module 2-7
external memory interface timings 4-18

F
features, emulation 2-10
flow charts, TMS320 ROM code procedural B-2

G
global data memory 3-2, 3-9

configuration 3-9
global memory allocation register (GREG) 3-9

global memory allocation register (GREG) 3-7, 3-9
GREG 3-7, 3-9

H
header

14-pin C-2
dimensions, 14-pin C-2

I
I/O space, instructions

transfer data from data memory to I/O space
(OUT) 7-131

transfer data from I/O space to data memory
(IN) 7-68

I/O space memory 3-11
IDLE instruction 7-67
IEEE 1149.1 specification, bus slave device

rules C-4
IFR 3-7, 5-17 to 5-20
immediate addressing 6-2
IMR 3-7, 5-19 to 5-20
IN instruction 7-68
indirect addressing

description 6-9
effects on auxiliary register pointer (ARP) 6-13

to 6-15



Index

Index-6  

indirect addressing (continued)
effects on current auxiliary register 6-13 to 6-15
examples 6-14
modifying auxiliary register content 6-16
opcode format 6-12 to 6-14
operands 6-10
operation types 6-13 to 6-15
options 6-9
possible opcodes 6-13 to 6-15

input scaling section of CPU 4-3
input shifter 2-8, 4-3
input/output (I/O) space 3-2
instruction register (IR), definition D-7
instructions 7-1 to 7-19

Boolean logic
AND 7-33
CMPL (complement/NOT) 7-63
OR 7-128
XOR (exclusive OR) 7-192

compared with those of other TMS320
devices A-1 to A-36

conditional 5-10 to 5-13
branch (BCND) 7-42
call (CC) 7-59
conditions that may be tested 5-10
return (RETC) 7-142
stabilization of conditions 5-11
using multiple conditions 5-10

CPU halt until hardware interrupt (IDLE) 7-67
delay/no operation (NOP) 7-124
descriptions 7-19

how to use 7-12
enhanced A-5
idle until hardware interrupt (IDLE) 7-67
interrupt

branch to NMI interrupt vector location
(NMI) 7-123

branch to specified interrupt vector location
(INTR) 7-70

branch to TRAP interrupt vector location
(TRAP) 7-191

negate accumulator (NEG) 7-121
no operation (NOP) 7-124
normalize (NORM) 7-125
OR 7-128
power down until hardware interrupt

(IDLE) 7-67
repeat next instruction n times

description (RPT) 7-145
introduction 5-14

instructions (continued)
stack

pop top of stack to data memory
(POPD) 7-136

pop top of stack to low accumulator bits
(POP) 7-134

push data memory value onto stack
(PSHD) 7-138

push low accumulator bits onto stack
(PUSH) 7-140

status registers ST0 and ST1
clear control bit (CLRC) 7-61
load (LST) 7-86
load data page pointer (LDP) 7-82
modify auxiliary register pointer (MAR) 7-110
set control bit (SETC) 7-154
set product shift mode (SPM) 7-166
store (SST) 7-171

summary 7-2 to 7-11
test bit specified by TREG (BITT) 7-46
test specified bit (BIT) 7-44

INT1 interrupt
priority 5-15
vector location 5-15

INT10 interrupt, vector location 5-16
INT11 interrupt, vector location 5-16
INT12 interrupt, vector location 5-16
INT13 interrupt, vector location 5-16
INT14 interrupt, vector location 5-16
INT15 interrupt, vector location 5-16
INT16 interrupt, vector location 5-16
INT2 interrupt

priority 5-15
vector location 5-15

INT20 interrupt, vector location 5-16
INT21 interrupt, vector location 5-16
INT22 interrupt, vector location 5-16
INT23 interrupt, vector location 5-16
INT24 interrupt, vector location 5-16
INT25 interrupt, vector location 5-16
INT26 interrupt, vector location 5-16
INT27 interrupt, vector location 5-16
INT28 interrupt, vector location 5-16
INT29 interrupt, vector location 5-16
INT3 interrupt

priority 5-15
vector location 5-15

INT30 interrupt, vector location 5-16



Index

Index-7

INT31 interrupt, vector location 5-16

INT8 interrupt, vector location 5-15 to 5-17

INT9 interrupt, vector location 5-16

internal memory
dual-access RAM 2-5
organization 2-5

interrupt
definitions D-7
interrupt mode bit (INTM) 4-16
maskable interrupt, interrupt mode bit

(INTM) 4-16

interrupt flag register (IFR) 3-7, 5-17 to 5-20

interrupt latency, definition D-8

interrupt mask register (IMR) 3-7, 5-19 to 5-20

interrupt mode bit (INTM) 4-16

interrupt service routines (ISRs), definition D-8

interrupts 5-15
hardware, priorities, ’C24x 5-15, 5-16
IMR register 5-19
interrupt mask register 5-19
masking, interrupt mask register (IMR) 5-19 to

5-20
pending, interrupt flag register (IFR) 5-17 to

5-20

INTM (interrupt mode bit) 4-16

INTR instruction 7-70

introduction
accumulator 2-8
ARAU (auxiliary register arithmetic unit) 2-9
auxiliary registers 2-9
CALU (central arithmetic logic unit) 2-8
multiplier 2-9
registers 2-9
scaling shifters 2-8
shifters 2-8

IR (instruction register), definition D-7

IS signal 4-18

ISR (interrupt service routine), definition D-8

J
JTAG C-16

JTAG emulator
buffered signals C-10
connection to target system C-1 to C-25
no signal buffering C-10

L
LACC instruction 7-71
LACL instruction 7-74
LACT instruction 7-77
LAR instruction 7-79
latch phase of CPU cycle D-9
LDP instruction 7-82
local data memory 3-6
logic instructions

AND 7-33
CMPL (complement/NOT) 7-63
OR 7-128
XOR (exclusive OR) 7-192

logic phase of CPU cycle D-9
long immediate addressing 6-2
LPH instruction 7-84
LR signal 4-18
LST instruction 7-86
LT instruction 7-90
LTA instruction 7-92
LTD instruction 7-94
LTP instruction 7-97
LTS instruction 7-99

M
MAC instruction 7-101
MACD instruction 7-105
MAR instruction 7-110
memory

address map, data page 0 3-7
buses 3-2
configuration

data 3-8
global data memory 3-9 to 3-10
off-chip data memory 3-8
on-chip data memory 3-8

data page pointer (DP) 4-16
dual-access RAM 2-5
external memory interface timings 4-18
global data memory 3-9 to 3-10

address generation 3-11
I/O space 3-11
local data 3-6 to 3-8
on-chip, advantages 3-2
organization 2-5, 3-2



Index

Index-8  

memory (continued)
program 3-4 to 3-5
program memory

address generation logic 5-2
address sources 5-3

segments 3-2
total address range 3-1

memory instructions
block move from data memory to data memory

(BLDD) 7-48
block move from program memory to data

memory (BLPD) 7-53
move data after add PREG to accumulator, load

TREG, and multiply (MACD) 7-105
move data to next higher address in data

memory (DMOV) 7-65
move data, load TREG, and add PREG to

accumulator (LTD) 7-94
store long immediate value to data memory

(SPLK) 7-164
table read (TBLR) 7-185
table write (TBLW) 7-188
transfer data from data memory to I/O space

(OUT) 7-131
transfer data from I/O space to data memory

(IN) 7-68
transfer word from data memory to program

memory (TBLW) 7-188
transfer word from program memory to data

memory (TBLR) 7-185

memory maps for ’C24x controllers 3-3

microstack (MSTACK) 5-3, 5-6

MP/MC pin 3-5

MPY instruction 7-112

MPYA instruction 7-115

MPYS instruction 7-117

MPYU instruction 7-119

MSTACK (microstack) 5-3, 5-6

multiplication section of CPU 4-5

multiplier 2-9
description 4-5

multiply instructions
multiply (include load to TREG) and accumulate

previous product (MAC) 7-101
multiply (include load to TREG), accumulate

previous product, and move data
(MACD) 7-105

multiply (MPY) 7-112

multiply instructions (continued)
multiply and accumulate previous product

(MPYA) 7-115
multiply and subtract previous product

(MPYS) 7-117
multiply unsigned (MPYU) 7-119
square specified value after accumulating

previous product (SQRA) 7-167
square specified value after subtracting previous

product from accumulator (SQRS) 7-169

N
NEG instruction 7-121

next auxiliary register 6-11

next program address register (NPAR)
definition D-10
shown in figure 5-2

NMI instruction 7-123
vector location 5-16

NMI interrupt, vector location 5-16

NOP instruction 7-124

NORM instruction 7-125

NPAR (next program address register)
definition D-10
shown in figure 5-2

O
off-chip memory, configuration, data 3-8

on-chip memory
advantages 3-2
configuration 3-8

on-chip RAM, dual-access 2-5

on-chip ROM B-1

opcode format
direct addressing 6-5
immediate addressing 6-2
indirect addressing 6-12

OR instruction 7-128

OUT instruction 7-131

output modes
external count C-20
signal event C-20

output shifter 2-8, 4-11

OV (overflow flag bit) 4-16



Index

Index-9

overflow in accumulator
detecting (OV bit) 4-16
enabling/disabling overflow mode (OVM

bit) 4-17

overflow mode bit (OVM) 4-17
effects on accumulator 4-10

P
PAB (program address bus) 2-4

used in program-memory address
generation 5-3

PAC instruction 7-133

pages of data memory, figure 6-4

PAL C-21, C-22, C-24

PAR (program address register)
definition D-11
shown in figure 5-2

PARITY ENABLE bit 5-18

PC (program counter) 5-4
description 5-4
loading 5-4
shown in figure 5-2

pipeline, operation 5-7

PM (product shift mode bits) 4-17

POP 5-5

POP instruction 7-134

pop operation (diagram) 5-6

POPD 5-5

POPD instruction 7-136

PRDB (program read bus) 2-4

PREG (product register) 2-9, 4-6

PREG instructions
add PREG to accumulator (APAC) 7-36
add PREG to accumulator and load TREG

(LTA) 7-92
add PREG to accumulator and multiply

(MPYA) 7-115
add PREG to accumulator and square specified

value (SQRA) 7-167
add PREG to accumulator, load TREG, and

move data (LTD) 7-94
add PREG to accumulator, load TREG, and

multiply (MAC) 7-101
add PREG to accumulator, load TREG, multiply,

and move data (MACD) 7-105

PREG instructions (continued)
load high bits of PREG (LPH) 7-84
set PREG output shift mode (SPM) 7-166
store high word of PREG to data memory

(SPH) 7-160
store low word of PREG to data memory

(SPL) 7-162
store PREG to accumulator (PAC

instruction) 7-133
store PREG to accumulator and load TREG

(LTP) 7-97
subtract PREG from accumulator (SPAC) 7-159
subtract PREG from accumulator and load TREG

(LTS) 7-99
subtract PREG from accumulator and multiply

(MPYS) 7-117
subtract PREG from accumulator and square

specified value (SQRS) 7-169

product register (PREG) 4-6

product shift mode bits (PM) 4-17

product shift modes 4-7

product shifter 2-8, 4-6

program address bus (PAB) 2-4
used in program-memory address

generation 5-3

program address register (PAR)
definition D-11
shown in figure 5-2

program control 2-10

program control features
address generation, program memory 5-2
branch instructions

conditional 5-11
unconditional 5-8

call instructions
conditional 5-12
unconditional 5-8

conditional instructions 5-10 to 5-13
conditions that may be tested 5-10 to 5-13
stabilization of conditions 5-11 to 5-13
using multiple conditions 5-10

pipeline operation 5-7
program counter (PC) 5-4

loading 5-4
repeating a single instruction 5-14
return instructions

conditional 5-12
unconditional 5-9



Index

Index-10  

program control features (continued)
stack 5-4
status registers ST0 and ST1 4-15

bits 4-15
program counter (PC) 5-3, 5-4

description 5-4
loading 5-4
shown in figure 5-2

program memory 3-2, 3-4
address generation logic 5-2

microstack (MSTACK) 5-6
program counter (PC) 5-4
stack 5-4

address sources 5-3
configuration 3-5

program memory maps for ’C24x 3-4
program read bus (PRDB) 2-4
program-address generation (diagram) 5-2
protocol, bus, in emulator system C-4
PS signal 4-18
PSHD 5-5
PSHD instruction 7-138
PUSH 5-5
PUSH instruction 7-140
push operation (diagram) 5-5

R
R/W pin 4-19
R/W signal 4-18
RAM, dual-access on-chip 2-5
RD signal 4-18
read/write timings 4-18
registers

auxiliary registers 2-9
current auxiliary register 6-12

auxiliary registers (AR0–AR7)
current auxiliary register 6-9
next auxiliary register 6-11

interrupt flag register (IFR) 5-17 to 5-20
interrupt mask register (IMR) 5-19 to 5-20
mapped to data page 0 3-7
status registers ST0 and ST1 4-15

repeat (RPT) instruction
description 7-145
introduction 5-14

repeat counter (RPTC) 5-3, 5-14

repeating a single instruction 5-14
reset

priority 5-15
vector location 5-15

RET instruction 7-141
RETC instruction 7-142
return instructions

conditional, overview 5-12
return conditionally from subroutine

(RETC) 7-142
return unconditionally from subroutine

(RET) 7-141
unconditional, overview 5-9

ROL instruction 7-143
ROM, customized B-1 to B-4
ROM codes, submitting to Texas Instruments B-1

to B-4
ROR instruction 7-144
RPT instruction 7-145
RPTC (repeat counter) 5-3, 5-14
RS

priority 5-15
vector location 5-15

run/stop operation C-10
RUNB, debugger command C-20 to C-24
RUNB_ENABLE, input C-22

S
SACH instruction 7-147
SACL instruction 7-149
SAR instruction 7-151
SARAM (single-access RAM), definition D-13
SBRK instruction 7-153
scaling shifters 2-8

input shifter 4-3
output shifter 4-11
product shifter 4-6

product shift modes 4-7
scan path linkers C-16

secondary JTAG scan chain to an SPL C-17
suggested timings C-22
usage C-16

scan paths, TBC emulation connections for JTAG
scan paths C-25

serial-scan emulation 2-10
SETC instruction 7-154



Index

Index-11

SFL instruction 7-156

SFR instruction 7-157

shifters 2-8
input shifter 4-3
output shifter 4-11
product shifter 4-6

product shift modes 4-7

short immediate addressing 6-2

signal descriptions, 14-pin header C-3

signals
buffered C-10
buffering for emulator connections C-10 to C-13
description, 14-pin header C-3
timing C-6

sign-extension mode bit (SXM)
definition 4-17
effect on CALU (central arithmetic logic

unit) 4-9
effect on input shifter 4-4

single-access RAM (SARAM), definition D-13

slave devices C-4

SPAC instruction 7-159

SPH instruction 7-160

SPL instruction 7-162

SPLK instruction 7-164

SPM instruction 7-166

SQRA instruction 7-167

SQRS instruction 7-169

SST instruction 7-171

stack 5-3, 5-4
pop top of stack to data memory (POPD

instruction) 7-136
pop top of stack to low accumulator bits (POP

instruction) 7-134
push data memory value onto stack (PSHD

instruction) 7-138
push low accumulator bits onto stack (PUSH

instruction) 7-140

status registers ST0 and ST1
bits 4-15
clear control bit (CLRC instruction) 7-61
introduction 4-15
load (LST instruction) 7-86
load data page pointer (LDP instruction) 7-82
modify auxiliary register pointer (MAR

instruction) 7-110

status registers ST0 and ST1 (continued)
set control bit (SETC instruction) 7-154
set product shift mode (SPM instruction) 7-166
store (SST instruction) 7-171

stop bits (1 or 2) 5-18
STRB signal 4-18
SUB instruction 7-173
SUBB instruction 7-177
SUBC instruction 7-179
SUBS instruction 7-181
SUBT instruction 7-183
SXM (sign-extension mode bit)

definition 4-17
effect on CALU (central arithmetic logic

unit) 4-9
effect on input shifter 4-4

T
target cable C-14
target system, connection to emulator C-1 to C-25
target system emulator connector, designing C-2
target-system clock C-12
TBLR instruction 7-185
TBLW instruction 7-188
TC (test/control flag bit) 4-17

response to accumulator event 4-10
response to auxiliary register compare 4-14

TCK signal C-2 to C-7, C-13, C-17, C-18, C-25
TDI signal C-2 to C-8, C-13, C-18
TDO signal C-4, C-5, C-8, C-19, C-25
temporary register (TREG) 4-6
test bus controller C-22, C-24
test clock C-12

diagram C-12
test/control flag bit (TC) 4-17

response to accumulator event 4-10
response to auxiliary register compare 4-14

timing, external memory interface 4-18
timing calculations C-7 to C-9, C-18 to C-26
TMS signal C-2 to C-8, C-13, C-17 to C-19, C-25
TMS/TDI inputs C-4
TMS320 family 1-2 to 1-6

advantages 1-2
development 1-2
history 1-2
overview 1-2



Index

Index-12  

TMS320 ROM code procedure, flow chart B-2

TMS320C1x/C2x/C2xx/C5x instruction set
comparisons A-1 to A-36

TMS320C24x, features, emulation 2-10

TRAP instruction 7-191
vector location 5-16

TREG (temporary register) 2-9, 4-6

TREG instructions
load accumulator using shift specified by TREG

(LACT) 7-77
load TREG (LT) 7-90
load TREG and add PREG to accumulator

(LTA) 7-92
load TREG and store PREG to accumulator

(LTP) 7-97
load TREG and subtract PREG from accumulator

(LTS) 7-99
load TREG, add PREG to accumulator, and

move data (LTD) 7-94
load TREG, add PREG to accumulator, and

multiply (MAC) 7-101
load TREG, add PREG to accumulator, multiply,

and move data (MACD) 7-105

TRST signal C-2, C-3, C-6, C-7, C-13, C-17, C-18,
C-25

U
unconditional instructions

unconditional branch 5-8
unconditional call 5-8
unconditional return 5-9

W
wait states, definition D-15

X
XF bit (XF pin status bit) 4-17
XOR instruction 7-192

Z
ZALR instruction 7-195


	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Information About Cautions
	Related Documentation from Texas Instruments
	Related Technical Articles
	Trademarks

	Contents
	Figures
	Tables
	Examples
	Introduction
	TMS320 Family Overview
	TMS320C24x Series of DSP Controllers

	Architectural Overview
	Architecture Summary
	'C24x CPU Internal Bus Structure
	Memory
	On-Chip Dual-Access RAM (DARAM)
	Flash EEPROM
	Flash Serial Loader
	Factory-Masked ROM
	External Memory Interface Module

	Central Processing Unit
	Central Arithmetic Logic Unit (CALU) and Accumulator
	Scaling Shifters
	Multiplier
	Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

	Program Control
	Serial-Scan Emulation

	Memory and I/O Spaces
	Overview of Memory and I/O Spaces
	Program Memory
	Program Memory Configuration

	Data Memory
	Data Page 0 Address Map
	Data Memory Configuration

	Global Data Memory
	I/O Space

	Central Processing Unit
	Input Scaling Section
	Multiplication Section
	Multiplier
	Product-Scaling Shifter

	Central Arithmetic Logic Section
	Central Arithmetic Logic Unit (CALU)
	Accumulator
	Output Data-Scaling Shifter

	Auxiliary Register Arithmetic Unit (ARAU)
	ARAU Functions
	Auxiliary Register Functions

	Status Registers ST0 and ST1
	External Memory Interface Operation

	Program Control
	Program-Address Generation
	Program Counter (PC)
	Stack
	Microstack (MSTACK)

	Pipeline Operation
	Branches, Calls, and Returns
	Unconditional Branches
	Unconditional Calls
	Unconditional Returns

	Conditional Branches, Calls, and Returns
	Using Multiple Conditions
	Stabilization of Conditions
	Conditional Branches
	Conditional Calls
	Conditional Returns

	Repeating a Single Instruction
	Interrupts
	CPU Interrupt Registers
	Interrupt Flag Register (IFR)
	Interrupt Mask Register (IMR)


	Addressing Modes
	Immediate Addressing Mode
	Direct Addressing Mode
	Using Direct Addressing Mode
	Examples of Direct Addressing

	Indirect Addressing Mode
	Current Auxiliary Register
	Indirect Addressing Options
	Next Auxiliary Register
	Indirect Addressing Opcode Format
	Examples of Indirect Addressing
	Modifying Auxiliary Register Content


	Assembly Language Instructions
	Instruction Set Summary
	How To Use the Instruction Descriptions
	Syntax
	Operands
	Opcode
	Execution
	Status Bits
	Description
	Words
	Cycles
	Examples

	Instruction Descriptions
	ABS
	ADD
	ADDC
	ADDS
	ADDT
	ADRK
	AND
	APAC
	B
	BACC
	BANZ
	BCND
	BIT
	BITT
	BLDD
	BLPD
	CALA
	CALL
	CC
	CLRC
	CMPL
	CMPR
	DMOV
	IDLE
	IN
	INTR
	LACC
	LACL
	LACT
	LAR
	LDP
	LPH
	LST
	LT
	LTA
	LTD
	LTP
	LTS
	MAC
	MACD
	MAR
	MPY
	MPYA
	MPYS
	MPYU
	NEG
	NMI
	NOP
	NORM
	OR
	OUT
	PAC
	POP
	POPD
	PSHD
	PUSH
	RET
	RETC
	ROL
	ROR
	RPT
	SACH
	SACL
	SAR
	SBRK
	SETC
	SFL
	SFR
	SPAC
	SPH
	SPL
	SPLK
	SPM
	SQRA
	SQRS
	SST
	SUB
	SUBB
	SUBC
	SUBS
	SUBT
	TBLR
	TBLW
	TRAP
	XOR
	ZALR


	TMS320C1x/C2x/C20x/C5x Instruction Set Comparison
	Using the Instruction Set Comparison Table
	An Example of a Table Entry
	Symbols and Acronyms Used in the Table

	Enhanced Instructions
	Instruction Set Comparison Table

	Submitting ROM Codes to TI
	Design Considerations for Using the XDS510 Emulator
	Designing Your Target Systemós Emulator Connector (14-Pin Header)
	Bus Protocol
	Emulator Cable Pod
	Emulator Cable Pod Signal Timing
	Emulation Timing Calculations
	Connections Between the Emulator and the Target System
	Buffering Signals
	Using a Target-System Clock
	Configuring Multiple Processors

	Physical Dimensions for the 14-Pin Emulator Connector
	Emulation Design Considerations
	Using Scan Path Linkers
	Emulation Timing Calculations for a Scan Path Linker (SPL) 
	Using Emulation Pins 
	Performing Diagnostic Applications


	Glossary
	Summary of Updates in This Document
	Index

