
C29x CPU

Reference Guide

Literature Number: SPRUIY2A
NOVEMBER 2024 – REVISED MARCH 2025

https://www.ti.com/lit/pdf/SPRUIY2

Read This First...5
About This Manual... 5
Related Documentation from Texas Instruments... 5
Glossary... 5
Support Resources.. 6

1 Architecture Overview..7
1.1 Introduction to the CPU..8
1.2 Data Type...8
1.3 C29x CPU System Architecture... 9
1.4 Memory Map...11

2 Central Processing Unit (CPU).. 13
2.1 C29x CPU Architecture.. 14
2.2 CPU Registers... 15
2.3 Instruction Packing...21
2.4 Stacks.. 22

3 Interrupts... 27
3.1 CPU Interrupts Architecture Block Diagram...28
3.2 RESET, NMI, RTINT, and INT.. 29
3.3 Conditions Blocking Interrupts... 32
3.4 CPU Interrupt Control Registers.. 33
3.5 Interrupt Nesting...36
3.6 Security.. 37

4 Addressing Modes..39
4.1 Addressing Modes Overview... 40
4.2 Addressing Mode Fields...43
4.3 Alignment and Pipeline Considerations... 51
4.4 Types of Addressing Modes...52

5 Safety and Security Unit (SSU)..61
5.1 SSU Overview..62
5.2 Links and Task Isolation... 63
5.3 Sharing Data Outside Task Isolation Boundary..65
5.4 Protected Call and Return..66

6 Emulation...67
6.1 Overview of Emulation Features.. 68
6.2 Debug Terminology.. 68
6.3 Debug Interface..68
6.4 Execution Control Mode...69
6.5 Breakpoints, Watchpoints, and Counters...71

7 Revision History... 73

List of Figures
Figure 1-1. C29x CPU System Architecture.. 9
Figure 1-2. Memory Map..11
Figure 2-1. C29x CPU Block Diagram... 15
Figure 2-2. Address Reach of the Stack Pointer... 22
Figure 3-1. C29x CPU Interrupts Architecture Block Diagram...28
Figure 3-2. Interrupt Nesting Example Diagram.. 36
Figure 4-1. ADDR1 Field Replaced with a Stack Addressing Type... 40
Figure 4-2. ADDR1 Field Replaced with a Pointer Addressing With #Immediate Offset Type.. 40

Table of Contents

www.ti.com Table of Contents

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Figure 5-1. SSU Overview... 62
Figure 5-2. Concept of Links for Creating Task Isolation... 63
Figure 5-3. Concept of Access Protection to Memories and Peripherals.. 64
Figure 5-4. Concept of Sharing Data Across LINKS..65
Figure 5-5. Protected Call and Return... 66
Figure 6-1. JTAG Header to Interface a Target to the Scan Controller..68

List of Tables
Table 2-1. Addressing Registers (Ax/XAx)...16
Table 2-2. Fixed-Point Registers (Dx/XDx).. 16
Table 2-3. Floating-Point Registers (Mx/XMx)... 17
Table 2-4. Interrupt Status Register (ISTS)..18
Table 2-5. Decode Phase Status Register (DSTS)..19
Table 2-6. Execute Phase Status Register (ESTS)... 20
Table 2-7. Instruction Sizes and Encoding...21
Table 2-8. Rules of Code Execution Across STACKs..25
Table 3-1. CPU Registers Reset Values.. 29
Table 3-2. Conditions That Block Interrupts...32
Table 3-3. INTS - Interrupt Status Values.. 34
Table 3-4. C29x CPU Stack Types.. 35
Table 4-1. Available Addressing Modes...42
Table 4-2. ADDR1 Field Encodings... 44
Table 4-3. ADDR2 Field Encodings... 46
Table 4-4. ADDR3 Field Encodings... 47
Table 4-5. DIRM Field Encodings.. 48
Table 4-6. #n13imm Field Encoding.. 49
Table 4-7. #n8imm Field Encoding.. 50
Table 4-8. Bit Reversed Addressing Visualized... 59
Table 6-1. 14-Pin Header Signal Descriptions... 69
Table 6-2. Selecting Device Operating Modes By Using TRST, EMU0, and EMU1..69

Table of Contents www.ti.com

4 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

About This Manual
This manual describes the CPU architecture, interrupt, addressing modes, safety and security aspects of the
CPU. This manual also describes emulation features available on these devices. A summary of the chapters
follows.

Architectural Overview

This chapter introduces the CPU that is at the heart of each F29x device. The chapter includes a memory-map
and a high-level description of the memory interface that connects the core with memory and peripheral
devices.

Central Processing Unit

This chapter describes the architecture, registers, and primary functions of the CPU. The chapter includes
detailed descriptions of the flag and control bits in the most important CPU registers, status registers ISTS,
DSTS, and ESTS.

CPU Interrupts Architecture Overview

This chapter describes the interrupts and how the interrupts are handled by the CPU. The chapter also
explains the effects of a reset on the CPU and includes discussion of the automatic context save performed by
the CPU prior to servicing an interrupt.

Addressing Modes

This chapter explains the modes that the assembly language instructions accept data and access register
and memory locations. The chapter includes a description of how addressing-mode information is encoded in
opcodes.

Safety And Security Unit

This chapter describes safety and security approach adopted by F29x architecture. This chapters explains the
concepts of task isolation, LINK, STACK, and ZONE with examples.

Emulation Features

This chapter describes the F29x emulation features that can be used with only a JTAG port and two additional
emulation pins.

Related Documentation from Texas Instruments
For a complete listing of related documentation and development-support tools for these devices, visit the Texas
Instruments website at www.ti.com.

Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.

Preface
Read This First

www.ti.com Read This First

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLYZ022
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.

Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

Read This First www.ti.com

6 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://e2e.ti.com
https://www.ti.com/corp/docs/legal/termsofuse.shtml
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The C29x is a floating-point CPU in the C2000 family. This chapter provides an overview of the architectural
structure and components of the CPU.

1.1 Introduction to the CPU... 8
1.2 Data Type...8
1.3 C29x CPU System Architecture.. 9
1.4 Memory Map..11

Chapter 1
Architecture Overview

www.ti.com Architecture Overview

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

1.1 Introduction to the CPU
The C29x CPU is a VLIW (Very Long Instruction Word) architecture with a fully protected pipeline. The C29x
CPU supports multiple instruction sizes (16/32/48 bits), a variable instruction packet size which can contain
multiple instructions that execute in parallel. For example, the C29x CPU architecture can execute up to eight
instructions in parallel. This is enabled by multiple functional units inside the CPU that can execute concurrently.
A total of 64 working registers, broken into three different categories (Ax, Dx, and Mx register banks) to support
the parallel operations in the CPU. In addition to the working registers, the CPU contains multiple status registers
(DSTS, ESTS, and ISTS) that maintain different execution and interrupt context related information.

1.2 Data Type
The C29x CPU supports the following data types in memory:

Support 8, 16, 32, 64 Data Types: The CPU supports 8-, 16-, 32-, and 64-bit operations. The CPU can read
and write to memory 8-, 16-, 32-, and 64-bit sized data in a single operation (cycle).

Little-Endian Format: All data and registers use little-endian format.

Data Aligned to Word Size Boundaries: A 16-bit access needs to be aligned to a 16-bit word boundary
(Address Line 0 = 0). A 32-bit access needs to be aligned to a 32-bit word boundary (Address Lines 1,0 = 0,0). A
64-bit access needs to be aligned to a 64-bit word boundary (Address Lines 2,1,0 = 0,0,0).

32-bit and 64-bit Floating Point: The C29x CPU supports 32-bit and 64-bit floating-point operations using the
IEEE format. The values can be moved between fixed-point and floating-point registers without incurring memory
stalls.

C Compiler Data Type Compatibility:

Size C29x CPU Data Type Definitions
char 8 bits

short 16 bits

int 32 bits

long 32 bits

long long 64 bits

float 32 bits

double 64 bits

long double 64 bits

pointer 32 bits

Architecture Overview www.ti.com

8 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

1.3 C29x CPU System Architecture
The C29x CPU system architecture consists of the following main functional blocks as shown in Figure 1-1.

• C29x CPU Core: Responsible for generating data- and program-memory addresses; decoding and executing
instructions; performing arithmetic, logical, and shift operations; and controlling data transfers among CPU
registers, data memory, and program memory

• CPU Stacks: Manages the software, protected call and Realtime interrupt stacks in a secure environment.
• CPU Interface buses: Signals for interfacing with memory and peripherals, clocking and controlling the CPU

and the emulation logic
• Safety and Security Unit (SSU): Implements safety, memory management (MPU) and security as one

function in hardware.
• Peripheral Interrupt Priority Expansion (PIPE): Manages and prioritizes all peripheral interrupt sources.

See the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual for more details on
the PIPE.

• C29x CPU Debug Interface: Used for monitoring and controlling various parts and functionality of the MCU
and for testing device operation. Interfaces to Debug Sub-system (DebugSS) and Embedded Real-time
analysis and Diagnostics (ERAD) Units external to the CPU.

SSU Protected

SSU Protected

CPU Stacks

CPU

Debug

I/F

C29x CPU Core

PC (32)

RPC (32)

Program

Bus

(with ECC)

Program Bus

 (128 bits)

Data Read

Bus 1

(with ECC)

Data Read Bus 1

(64 bits)

Peripheral Interrupt

 Priority Expander (PIPE)

Program Control Regs
Status Registers

TRSTn

TCK

TMS

TDI
Data Write

Bus

(with ECC)

Data Read

Bus 2

(with ECC)

ERAD

(Breakpoints,

Watchpoints,

Analysis,

Data Logging,

Code Tracing)

(external

to CPU)

Mul�ple Levels

RTINT & NMI

(Save All CPU Registers)

ISTS (32)
DSTS (32)

ESTS (32)

Memory

&

Peripheral

Wrappers

Mul�ple Levels

(Save Return Addr,

RPC, DSTS[CLINK])

PSP (32)

MAXPSP (32)

WARNPSP (32)

Vector

DebugSS

(external

to CPU)
TDO

Log,

Trace

I/F

RTINT

INT

NMI

All

Peripheral

Interrupts

Protected Call Stack

Real�me Interrupt Stack

Tightly

Coupled

Interface

Closely Coupled

Interface

RTISP (Rd-only)
MAXRTISP (Rd-only)

WARNRTISP

Error Signaling Module (ESM)

Secure STACK Pointers

Xbar (256)

Debug Write Bus Debug Write Bus

Debug Read Bus Debug Read Bus

Floa�ng-Point Registers

(M0 – M31)

(32 x 32-bit)

Fixed-Point Registers

(D0 – D15)

(16 x 32-bit)

Addressing Registers

(A0 – A15)

(16 x 32-bit)

Program Bus

 (128 bits)

Data Read Bus 2

(64 bits)

Data Write Bus

(64 bits)

Safety & Security

Unit

(SSU)

Security ZONE

Passwords

LINK-STACK

Associa�on

Code Access

Protec�on Ranges

STACK-ZONE

Associa�on

Data Access

Protec�on Ranges

Data Read Bus 1

(64 bits)

Data Read Bus 2

(64 bits)

Data Write Bus

(64 bits)

Mul�ple Levels

Figure 1-1. C29x CPU System Architecture

www.ti.com Architecture Overview

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

1.3.1 Emulation Logic

The emulation logic includes the following features. For more details about these features, see Chapter 6 for
more details.

1. Code Execution control
• Ability to download code
• Support for breakpoints/watchpoint
• Run, Halt, single-stepping

2. System Visibility
• Access to System memory
• Access to Peripheral memory
• Real-time access to memory/peripherals without halting the CPU

3. Cross Triggering
• Mapping events from one CPU subsystem to another
• Event actions are handled in the respective CPU sub system

4. Security
• Access paths for security challenge response from the debugger to HSM module/SSU based on the

device security architecture
5. Profiling

• C29x CPU code profiling is done using ERAD
6. Trace

• C29x CPU trace is done using ERAD PC Discontinuity trace
7. Reset

• Capability for CPU and System reset using the debugger

1.3.2 CPU Interface Buses

The C29x CPU core access code, data and peripheral resources through the following buses:

Program Bus: Program bus is used to fetch instructions from memory subsystem. Data bus width of the
program bus is 128 bits. This bus can fetch 128-bits in a single cycle. The C29x CPU supports instruction
packets from 16 bits up to 128 bits. Each instruction fetch is ECC protected.

Data Read Bus 1: Data read bus 1 is used to read the data from the memory subsystem or peripherals. Data
bus width of the data read bus 1 is 64 bits. This bus can read 8-, 16-, 32-, and 64-bit data in a single cycle. There
are two data read buses on the C29x CPU. Data from memories can be simultaneously accessed using these
buses if the address falls into different physical memory banks (refer to the device-specific data sheet to identify
the physical memory banks). In case of simultaneous accesses to the same bank, accesses can be arbitrated or
serviced in any order. Refer to the device-specific data manual for details regarding physical banks. Data Read
Bus 1 is ECC protected.

Data Read Bus 2: Data read bus 2 is used to read the data from the memory subsystem or peripherals. Data
bus width of the data read bus 2 is 64 bits. This bus can read 8-, 16-, 32-, and 64-bit data in a single cycle. Data
Read Bus 2 is ECC protected.

Data Write Bus: Data write bus is used to write data to the memory subsystem or peripherals. Data bus width of
the data write bus is 64 bits. This can write 8-, 16-, 32-, 64-bit data in a single cycle.

Note
ECC Feature: The C29x CPU supports ECC granularity of 16/32/64 bits and has the capability for
single-bit error correction. Double-bit error detection causes the CPU to enter the FAULT state. When
correcting for single-bit error, the CPU stalls the PIPE for 1 cycle.

Architecture Overview www.ti.com

10 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Debug Data Read Bus: The C29x CPU has a dedicated debug data read bus similar to the data read bus. Data
bus width of the debug data read bus is 64 bits. This bus can read 8-, 16-, 32-, and 64-bit data in a single cycle.
The Safety and Security Unit (SSU) allows or blocks the debug accesses based on the security settings.

Debug Data Write Bus: The C29x CPU has a dedicated debug data write bus similar to the data write bus. Data
bus width of the debug data write bus is 64 bits. This bus can write 8-, 16-, 32-, and 64-bit data in a single cycle.
The Safety and Security Unit (SSU) allows or blocks the debug accesses based on the security settings.

Interrupt Bus: The C29x CPU interrupt bus handles Reset, NMI, RTINT, INT interrupt signals and the interrupt
vector.

ERAD Interface bus: Breakpoint and watchpoints are implemented from external to C29x CPU using the ERAD
(Real-Time Analysis and Diagnostics) module. This bus is used to interface the ERAD with the C29x CPU.

SSU Interface bus: Security implementation is tightly coupled to the C29x CPU using the SSU interface bus.

Error Interface bus: Program read errors, data read errors, and data write errors are interfaced to the Error
Aggregator/ESM using the error interface bus.

1.4 Memory Map
The C29x CPU has a dedicated stack pointer (SP = A15) that can access the full 32-bit address range of the
CPU.

The C29x CPU supports separate program, data read, and data write buses. The memory is unified with one
4GB image. On the C29x CPU, every peripheral instance is mapped within a 4KB address range.

ROM

(32MB)

PERIPHERALS

(32MB)

EMIF1

(3.75GB)

PC

A0 to A14

Stack = A15

(range 4GB)

C29 Memory Alloca�on Example

FLASH

(32MB)

RAM

(32MB)

EMIF0

(128MB)

RESET

On-Chip

Resources

(128 MB)

Block

Protec�on

Figure 1-2. Memory Map

www.ti.com Architecture Overview

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Block Protection: This feature protects the order of Read and Write operations to peripheral registers and
avoids pipeline effects.

Architecture Overview www.ti.com

12 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The central processing unit (CPU) is responsible for controlling the flow of a program and the processing of
instructions. CPU performs arithmetic, Boolean-logic, multiply, and shift operations. When performing signed
math, the CPU uses two's complement notation. This chapter describes the architecture, registers, and primary
functions of the CPU.

2.1 C29x CPU Architecture.. 14
2.2 CPU Registers...15
2.3 Instruction Packing.. 21
2.4 Stacks.. 22

Chapter 2
Central Processing Unit (CPU)

www.ti.com Central Processing Unit (CPU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.1 C29x CPU Architecture
The C29x CPU is a VLIW (Very Long Instruction Word) architecture with a fully protected pipeline. The CPU
supports multiple instruction sizes (16/32/48 bits). The CPU also supports variable instruction packet size, with
each packet able to contain up to eight instructions that execute in parallel. For example, the CPU architecture
can execute up to eight 16-bit instructions in parallel. This is enabled by multiple functional units inside the
CPU that can execute concurrently. A total of 64 working registers, divided into three different categories (Ax,
Dx, and Mx register banks) support the parallel operations in the CPU. In addition to the working registers, the
CPU contains multiple status registers (DSTS, ESTS, and ISTS) that maintain execution-related and interrupt
context-related information.

2.1.1 Features

Following is the list of C29x CPU major features:

• Ease of use:
– Byte addressable CPU.
– Linear and unified memory map with 4GB address range.
– Fully Protected Pipeline: 9 stage pipeline that prevents writes and reads from same location from

occurring out of order.
– Deterministic execution and maximum performance without cached memories.

• Improved parallelism:
– Execute from 1 to 8 instructions in parallel.
– Execute fixed-point, floating-point, and addressing operations in parallel.
– Multiple parallel functional units.
– Specialized operations to minimize discontinuities and accelerate decision making code (for example,

if-then-else statements and switch statements).
– Specialized operations targeting real-time control (for example, trigonometric operations and multiphase

vector translation operations).
• Improved bus throughput:

– Capable of fetching up to 128-bit instruction packet every cycle.
– Capable of performing 8/16/32/64-bit dual reads and single writes per cycle.
– Improved addressing modes reduce overhead in accessing memory and peripheral resources.
– Improved pipeline allows for additional 0-wait memory to be accessible to CPU for maximum performance.

• Code efficiency:
– Supports variable length instruction set (16-bit, 32-bit, and 48-bit instructions).
– Rich instruction set optimizes the most common operations in smallest instructions.

• ASIL-D safety capability with code isolation in hardware:
– Lock step core capable of independent execution in split-lock mode (acting as a separate core) or lock

step execution (for redundancy).
– Integrated ECC logic
– Integrated memory management (MPU) and protection mechanisms in hardware to maximize MIPS.
– Separate code threads are fully isolated and protected (including software stacks).

• Multi-zone security in hardware:
– Run time content protection and IP protection of code.
– Individual passwords for each zone to control access.

• Enhanced debug and trace capabilities:
– Specialized data logging and code flow trace instructions.
– Trace data capable of being logged in on-chip RAM or exported through serial communication peripherals.

Central Processing Unit (CPU) www.ti.com

14 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.1.2 Block Diagram

Figure 2-1 shows a block diagram of the C29x CPU.

Code Pre-Fetch Unit + SECDEC

Safety & Security Unit (SSU)

Program Counter - PC (32 bits)
Return Program Counter - RPC (32 bits)

P
D

(1
2

8
)

D
R

D
2

(6
4

)

D
W

A
1

(3
2

)

D
W

D
1

(6
4

)

E
C

C
 B

it
s

Data Write Address Gen Unit 1

(8/16/32/64-bits) + ECC Support

E
C

C
 B

it
s

E
C

C
 B

it
s

P
A

(3
2

)

D
R

A
2

(3
2

)

Data Read Address Gen Unit 2

(8/16/32/64-bits) + SECDEC

D
R

D
1

(6
4

)

E
C

C
 B

it
s

D
R

A
1

(3
2

)

Data Read Address Gen Unit 1

(8/16/32/64-bits) + SECDEC

System Memory & Peripherals

64-bit Line Bu�er 64-bit Line Bu�er Write Bu�er (1 level)128-bit Pre-Fetch Bu�er

(4 levels)

Co

Processor

Interface

(CPI)

Interrupt Status Register – ISTS (32 bits)

Decode Status Register – DSTS (32 bits)

Execute Status Register – ESTS (32 bits)

Status Registers

Addressing Registers

A0 – A15 (16 × 32 bit registers)

(or)

XA0 – XA14 (8 × 64 bit registers)

Fixed-Point Registers

D0 – D15 (16 × 32 bit registers)

(or)

XD0 – XD14 (8 × 64 bit registers)

Floa�ng-Point Registers

M0 – M31 (32 × 32 bit registers)

(or)

XM0 – XM30 (16 × 64 bit registers)

Register Move

Ax<->Dx

XAx<->XDx

Register Move

Dx<->Mx

XDx<->XMx

Register Move

Ax<->Mx

XAx<->XMx

Addressing Func�onal Units

Logical Unit

Mul�plier Unit

Add / Sub Unit

Comparator Unit 1/2/3/4

Logical Unit 1/2

Mul�plier Unit

Add / Sub Unit 1/2

Comparator Unit 1/2/3/4

Fixed-Point Func�onal Units

Floa	ng-Point Func
onal Units

Mul�plier Unit 1/2

Add / Sub Unit 1/2/3

Comparator Unit 1/2

TMU

Figure 2-1. C29x CPU Block Diagram

2.2 CPU Registers
The C29x CPU core consists of following CPU registers:

• Addressing Register (Ax / XAx)
– Stack Pointer (A15 = SP) register

• Fixed-Point Registers (Dx / XDx)
• Floating-Point Registers (Mx / XMx)
• Program Counter (PC)
• Return Program Counter (RPC)
• Status Registers

– Interrupt Status Register (ISTS)
– Decode Status Register (DSTS)
– Execute Status Register (ESTS)

www.ti.com Central Processing Unit (CPU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.2.1 Addressing Registers (Ax/XAx)

Table 2-1. Addressing Registers (Ax/XAx)
Registers Size Description

A0 XA0 32 bits

Addressing Registers (16 ˟ Ax, 8 ˟ XAx):
• The Ax registers are primarily used for addressing operations. All addressing

modes operate on the Ax registers.
• There are 16 ˟ 32-bit addressing registers (A0-A15) or 8 ˟ 64-bit addressing

register pairs (XA0-XA14).
• The Ax registers can also be used to perform MPY, ADD, COMP, SHIFT, and

AND/OR/XOR operations. The registers are used to generate 32-bit addresses for
the C29x CPU memory space (4GB).

• The registers can be used as individual 32-bit registers or for 64-bit register pairs
as 64-bit load/store operations to and from memory or 64-bit register-to-register
moves (8 pairs, XA0, XA2, to XA14).

• Register A15 is dedicated as the Stack Pointer (A15 = SP) register.

Value after Reset : 0x0000 0000

A1 32 bits

A2 XA2 32 bits

A3 32 bits

A4 XA4 32 bits

A5 32 bits

A6 XA6 32 bits

A7 32 bits

A8 XA8 32 bits

A9 32 bits

A10 XA10 32 bits

A11 32 bits

A12 XA12 32 bits

A13 32 bits

A14 XA14 32 bits

A15 (SP) 32 bits

2.2.2 Fixed-Point Registers (Dx/XDx)

Table 2-2. Fixed-Point Registers (Dx/XDx)
Registers Size Description

D0 XD0 32 bits

Fixed-Point Registers (16 ˟ Dx, 8 ˟ XDx):
• The Dx registers are primarily used for performing fixed-point data operations.
• There are 16 ˟ 32-bit fixed-point registers (D0-D15) or 8 ˟ 64-bit fixed-point

registers pairs (XD0-XD14).
• The registers can be used as individual 32-bit registers (Dx) or for 64-bit register

pairs (XDx) as 64-bit operations, 64-bit load/store operations to and from memory
or 64-bit register-to-register moves (8 pairs, XD0, XD2, to X14).

Value after Reset : 0x0000 0000

D1 32 bits

D2 XD2 32 bits

D3 32 bits

D4 XD4 32 bits

D5 32 bits

D6 XD6 32 bits

D7 32 bits

D8 XD8 32 bits

D9 32 bits

D10 XD10 32 bits

D11 32 bits

D12 XD12 32 bits

D13 32 bits

D14 XD14 32 bits

D15 32 bits

Central Processing Unit (CPU) www.ti.com

16 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.2.3 Floating-Point Register (Mx/XMx)

Table 2-3. Floating-Point Registers (Mx/XMx)
Registers Size Description

M0 XM0 32 bits

Floating-Point Registers (32 ˟ Mx, 16 ˟ XMx):
• The Mx registers are primarily used for performing floating-point data operations.
• There are 32 ˟ 32-bit addressing registers (M0-M15) or 16 ˟ 64-bit addressing

register pairs (XM0-XM14).
• The registers can be used as individual 32-bit registers (Mx) or for 64-bit register

pairs (XMx) as 64-bit operations, 64-bit load/store operations to and from memory
or 64-bit register-to-register moves (32 pairs, XM0, XM2, to XM30).

Value after Reset : 0x0000 0000

M1 32 bits

M2 XM2 32 bits

M3 32 bits

M4 XM4 32 bits

M5 32 bits

M6 XM6 32 bits

M7 32 bits

M8 XM8 32 bits

M9 32 bits

M10 XM10 32 bits

M11 32 bits

M12 XM12 32 bits

M13 32 bits

M14 XM14 32 bits

M15 32 bits

M16 XM16 32 bits

M17 32 bits

M18 XM18 32 bits

M19 32 bits

M20 XM20 32 bits

M21 32 bits

M22 XM22 32 bits

M23 32 bits

M24 XM24 32 bits

M25 32 bits

M26 XM26 32 bits

M27 32 bits

M28 XM28 32 bits

M29 32 bits

M30 XM30 32 bits

M31 32 bits

www.ti.com Central Processing Unit (CPU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.2.4 Program Counter (PC)

When the pipeline is full, the 32-bit PC always points to the instruction that is currently being processed. The PC
increments from low to high memory and always points to the next executable instruction packet.

2.2.5 Return Program Counter (RPC)

This register holds the return address when performing a CALL or servicing a low-priority interrupt (INT). The
previous RPC value is saved on the stack. On a RET (return from a function) or RETI.INT (return from a
low-priority interrupt) operation, the return address is fetched from the RPC register and then RPC is restored
with the value that was saved on the stack as part CALL or INT operation.

2.2.6 Status Registers

The C29x CPU core supports three status registers: ISTS (Section 2.2.6.1), DSTS (Section 2.2.6.2), and ESTS
(Section 2.2.6.3) that contain flag and control bits. The ESTS and DSTS status registers are stored into and
loaded from data memory, enabling the status of the CPU to be saved and restored for subroutines.

2.2.6.1 Interrupt Status Register (ISTS)

Table 2-4. Interrupt Status Register (ISTS)
Bit Bitfield Reset Value Description
0 INTF 0h This flag gets set when PIPE generates INT interrupt

1 RTINTF 0h This flag gets set when PIPE generates RTINT interrupt

2 NMIF 0h This flag gets set when PIPE generates NMI interrupt

3-7 RESERVED 0h RESERVED

8-15 ATOMIC COUNTER 0h ATOMIC Counter: When the ATOMIC #N operation is executed, the counter
is loaded with the specified count value #N. The counter then starts
decrementing on every instruction packet execution. Interrupts are blocked
until the counter reaches zero. The maximum #N value supported is 64
packets.

16-19 CURRSP 0h Current Stack Pointer: The C29x CPU system supports multiple software
STACKs. This field reflects the current active STACK.

20-23 INTSP 0h Interrupt Stack Pointer: The INT interrupt can only be executed from
one selected STACK which is reflected by the INTSP field. This value is
programmed in the interrupt controller (PIPE). Reset value is determined the
value driven by PIPE.

24-26 RESERVED 0h RESERVED

27-30 CURRLINK 0h Current LINK: The C29x CPU security and safety system supports a concept
of LINKs (described in Chapter 5). This field reflects the current active LINK
value in the D2 phase.

31 RESERVED 0h RESERVED

Central Processing Unit (CPU) www.ti.com

18 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.2.6.2 Decode Phase Status Register (DSTS)

Table 2-5. Decode Phase Status Register (DSTS)
Bit Bitfield Reset Value Description
0 A.Z 0h Ax Register Operation Flags: These flags are set on fixed-point operations

involving the Ax registers. Tested conditions:
A.EQ : Equal To Zero
A.NEQ : Not Equal To Zero
A.GT : Greater Than Zero
A.GEQ : Greater Than Or Equal To Zero
A.LT : Lesser than Zero
A.LEQ : Lesser than (or) Equal to Zero
A.HI : Higher
A.HIS : Higher (or) Same
A.LO : Lower
A.LOS : Lower Or Same
A.EQANDNZ: Equal AND Not Zero(useful for character string searches)
A.NEQORZ : Not Equal OR Zero (useful for character string searches)

1 A.N 0h

2 A.C 0h

3 A.ZV 0h

4-5 RESERVED 0h RESERVED

6 DBGM 0h Debug Mask Bit , Enables or disables debug requests.

7-10 CLINK(1) 0h Used for indicating the origin of a protected CALL operation.

11 RESERVED 0h RESERVED

12 TA0 0h Ax Register Test Flags: These test flags can store multiple conditions by
testing the Ax operation Flags. These test flags can then be used to combine
multiple combinations of tested conditions. This enables the reduction of
multiple conditional branch operations. Tested conditions:
TAx.Z TAx Equal To Zero
TAx.NZ TAx Not Equal To Zero
TA.MAP(#x16ta) Test TAx FLAGS Using 4:1 LUT Combination

13 TA1 0h

14 TA2 0h

15 TA3 0h

16 INTE 0h Interrupt (INT) Enable Bit

17-18 INTS(2) 0h Interrupt Status: These bits indicate the current active interrupt
ISTS = 0 : Main code active
ISTS = 1 : INT active
ISTS = 2 : RTINT active
ISTS = 3 : NMI active

19-26 ISR PRIORITY(2) FFh The ISR PRIORITY level is between 0 (highest priority) to 255 (lowest priority).

27-30 RLINK (1) 0h Used for indicating the origin of a protected RET operation.

31 RESERVED 0h RESERVED

(1) CLINK and RLINK are only updated by the hardware. Load, Move and Mask operations does not change the state of these fields.
(2) INTS and ISR PRIORITY are only updated by the hardware and RETI.INT instruction. Any other Load, Move and Mask operations

does not change the state of these fields.

www.ti.com Central Processing Unit (CPU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.2.6.3 Execute Phase Status Register (ESTS)

Table 2-6. Execute Phase Status Register (ESTS)
Bit Bitfield Reset Value Description
0 D.Z 0h Dx Register Operation Flags: These flags are set on fixed-point operations

involving the Dx registers. Tested conditions:
D.EQ Equal To Zero
D.NEQ Not Equal To Zero
D.GT Greater Than Zero
D.GEQ Greater Than Or Equal To Zero
D.LT Less Than Zero
D.LEQ Less Than Or Equal To Zero
D.HI Higher
D.HIS Higher Or Same
D.LO Lower
D.LOS Lower Or Same
D.EQANDNZ Equal AND Not Zero (useful for character string searches)
D.NEQORZ Not Equal OR Zero (useful for character string searches)
D.OV Integer Overflow
D.OVNEG Integer Overflow Negative

1 D.N 0h

2 D.C 0h

3 D.ZV 0h

4 D.OV(1) (2) (3) 0h

5 D.OVNEG(1) (2) (3) 0h

6-7 RESERVED 0h

8 M.ZF 0h

9 M.NF

10 M.LUF(1) (2) 0h

11 M.LVF(1) (2)

12 TDM0 0h

13 TDM1

14 TDM2 0h

15 TDM3

16 RNDF32 0h

17 RNDF64

18 IDIV.Z 0h

19 IDIV.N

20 IDIV.TF 0h

21 FDIV.TF

22 FDIV.N 0h

23 TMU.TF

24-31 RESERVED 0h RESERVED

(1) On the C29x CPU, all flags (except D.OV, D.OVNEG, M.LUF, and M.LVF) are only affected by compare (CMP), test bit (TBIT), or test
flag (TFLG) type operations. Load/Store, MPY, ADD, SUB, SHIFT, AND, OR, and XOR type operations do not affect the flags.

(2) D.OV, D.OVNEG, M.LUF, and M.LVF are sticky flags, that is, once set, the flags remain set until cleared by software.
(3) D.OV and D.OVNEG get set as a pair. D.OVNEG is updated on first occurrence of D.OV, that is, if sequence of instructions updating

D.OV more than once, D.OVNEG captures overflow status on first D.OV occurrence.

Central Processing Unit (CPU) www.ti.com

20 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.3 Instruction Packing
The C29x CPU has a variable size instruction set. The supported instruction sizes are 16-bit, 32-bit, and 48-bit.
The VLIW architecture of the CPU allows multiple instructions to be issued in a single cycle. The number of
instructions that are executed in parallel is decided at build time and all the parallel instructions are packed
into a single instruction packet. This section explains the formation and structure of the instruction packets.
The maximum allowed instruction packet size is 128-bits. Hence, any combination of 16-bit, 32-bit, and 48-bit
instructions can form an instruction packet as long as the maximum packet size is not exceeded.

The following is a non-exhaustive list of examples of valid instruction combinations within an instruction packet:
• 8 ˟ 16-bit instructions.
• 4 ˟ 32-bit instructions.
• 2 ˟ 32-bit, 1 ˟ 48-bit, 1 ˟ 16-bit instructions.
• 3 ˟ 32-bit, 2 ˟ 16-bit instructions.

Table 2-7 shows the structure of the three possible instruction sizes.

Table 2-7. Instruction Sizes and Encoding
Instruction Size Word 0 (low address) Word 1 (next address) Word 2 (next address)

15 14 13 12:0 31:16 47:32
16 I_Link 1 opcode

32 I_Link 0 1 opcode 16-bit parameters

48 I_Link 0 0 opcode Low 16 bits of 32-bit parameters High 16 bits of 32-bit parameters

2.3.1 Standalone Instructions and Restrictions

Following are the restrictions:
• Discontinuity instructions cannot be included in delay slots. No hardware check. But, assembler shall flag this

error.
• IDLE instruction cannot be executed in delay slots.
• IDLE instruction cannot be placed in packets covered by XC
• IDLE instruction packet cannot be parallelized.
• PRESERVE instructions can only be executed in parallel to Protected call or Protected branch or Protected

return. No hardware check. But, assembler shall flag this error.
• EMUSTOP0 cannot be included in delay slots.
• XC packets consisting of more than one instruction packet are not allowed in delay slots.
• ECCSELFTEST cannot be parallelized and executed as standalone only.
• MOV Ax,RPC and LD.32 RPC, @MEM is not allowed in delay slot of CALL instruction. RPC load with Return

address in delay slot 3 is not protected.
• XC/XCP instructions cannot be executed in parallel to ISRn.PROT/ENTRYn.PROT/EXITn.PROT

2.3.2 Instruction Timeout

Instruction decode many not be able to form a legal packet due to packing errors or uncorrectable error or
incorrect #delay setting. In such cases, timeout logic is used by CPU enters FAULT state. Timeout counter resets
whenever new instruction enters pipeline (or) when HALT is entered. Timeout counter is incremented when no
instruction is in D2. If the timeout counter ever exceeds the specified timeout value then CPU is taken to FAULT
state.

www.ti.com Central Processing Unit (CPU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 21

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.4 Stacks
The C29x CPU contains following stacks:

1. Software Stack
2. Protected Call Stack
3. Real Time Interrupt Stack

2.4.1 Software Stack

Register A15 in the available addressing registers is dedicated as the stack pointer register (SP = A15). The A15
register can access the full 32-bit address range (4GB) of the CPU (see Figure 2-2).

0x0000 0000 -

0xFFFF FFFF

Range accessible

 by way of SP

Data Memory

Figure 2-2. Address Reach of the Stack Pointer

The operation of the stack is as follows:

• The stack grows from low memory address to high memory address.
• The stack pointer always points to the next empty location in the stack.
• At reset, the stack pointer is initialized to 0x0000 0000.
• The C29x stack pointer always aligned to a 64-bit word boundary.

Note
The C29x stack pointer (SP = A15) must always be aligned to a 64-bit word boundary. Any misaligned
stack causes CPU to enter FAULT state.

If passing parameters on the software stack is required, the assembly code structure looks as follows:

; Allocate Parameter Space On Stack:
ADD.U16 A15, A15, #PARAMETER_SPACE

;....pass parameters on stack…

;....pass parameters in registers…

CALL.PROT @func
; 32-bit RPC automacally pushed on stack
; A15 = A15 + 8 (stack pointer incremented by 8 bytes = 64-bits)
; There is a 32-bit hole in the stack that can be used to save

Central Processing Unit (CPU) www.ti.com

22 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

; De-allocate Parameter Space From Stack
SUB.U16 A15, A15, #PARAMETER_SPACE

www.ti.com Central Processing Unit (CPU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 23

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

If allocating local variables on the software stack is required, the code structure looks as follows:

func:
 ; Allocate Local Variable Space On Stack:
 ADD.U16 A15, A15, #PARAMETER_SPACE

 ; ... save on stack any registers used that need to be preserved across call..

 ; ... function code....

 ; ... restore from stack any registers used that need to be preserved across call..

 ; De-allocate Local Variable Space From Stack
 SUB.U16 A15, A15, #PARAMETER_SPACE

 RET.PROT
 ; 32-bit RPC automacally popped from stack
 ; A15 = A15 - 8 (stack pointer decremented by 8 bytes = 64 bits)

On normal function call: Return program counter (RPC, holds previous return address) register contents are
pushed on software stack pointed by stack pointer (SP = A15). Then RPC register is initialized with new return
address.

On normal function return: Return address is read from RPC register. Then RPC register is restored with value
on software stack.

For more details regarding the RPC, see Section 2.2

Central Processing Unit (CPU) www.ti.com

24 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.4.2 Protected Call Stack

The Protected Call Stack is a dedicated hardware stack used to make protected function call and return. This
stack is directly controlled by CPU and is inaccessible to user code. The basic protection concept of the C29x
CPU is based on LINKs, STACKs, and ZONEs. The protected function call and return is the method used to
make a function call by the current executing code to another function residing in a different STACK. The C29x
security architecture allows definition of legal callable function labels using the instructions ENTRY1.PROT and
ENTRY2.PROT. This makes sure that code from another STACK can only make function calls or branches to
labels with the instruction packet “ENTRY1.PROT || ENTRY2.PROT” present. This prevents malicious code from
randomly entering into code regions without permission. Nesting of protected calls is allowed up to the number of
levels supported by the protected call stack. Table 2-8 shows the rules of code execution across stack.

Protected call Stack Pointer (PSP) register: The PSP register keeps track of the utilization of protected call
stack and shows the current value of protected call stack pointer. This register is automatically incremented and
decremented by HW on a protected call (CALL.PROT) and protected return (RET. PROT) respectively.

Warning level for Protected call Stack Pointer (WARNPSP) register: This WARNPSP is a user configurable
register which allows early warning of protected stack overflow detection. When PSP register >= WARNPSP
register, error signal is generated to ESM.

Maximum Protected call Stack Pointer (MAXPSP) register: The MAXPSP register is not user configurable
register. When PSP register = MAXPSP register, CPU enters fault state as protected call stack is full.

Table 2-8. Rules of Code Execution Across STACKs
Program Flow Operation Comments and CPU Action

Linear code execution within the same LINK

Allowed without any restriction

Branches, calls and returns within the same LINK

Branches, calls and returns across different LINKs, but within the
same STACK

Protected function return (RET.PROT) where the return address is
on a different STACK compared to the current STACK

Protected function calls (CALL.PROT @label/Ax) where source and
destination are on same STACK

Protected function return (RET.PROT) where the return address is
on a same STACK

Linear code execution crossing LINK, but within the same STACK

Not allowed, CPU enters FAULT state.

Branches where source and destination are on different STACKs

Function calls (CALL{D} @label/Ax) where source and destination
are on different STACKs

Execution of a function return instruction (RET{D} /RET{D} <addr1>)
where the return address is on a different STACK compared to the
current STACK

Realtime Interrupt (RTINT) and NMI This is handled in the hardware and does not need any consideration
in the user code. The Interrupt service routine can reside in the same

or a different LINK/STACK/ZONE.

Interrupts (INT) ISR must be on the same stack. If not, CPU enters FAULT state.

www.ti.com Central Processing Unit (CPU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 25

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

2.4.3 Real Time Interrupt / NMI Stack

The Realtime Interrupt Stack (RTINT) is a dedicated hardware stack used by the Realtime Interrupt (RTINT)
and the Non Maskable Interrupt (NMI). For details on the differences between the various interrupt types, see
Chapter 3. When either of these interrupts are triggered, all C29x CPU working registers (Ax, Dx, Mx, RPC,
DSTS, and ESTS) and return address are saved on the RTINT stack within 8 cycles and restored in 8 cycles
when the RETI.RTINT instruction is executed. Nesting of RTINT is allowed up to the number of levels supported
by the Realtime Interrupt Stack minus 1 level, with the NMI interrupt always having one reserved level.

Real Time Interrupt stack pointer (RTISP) register: The RTISP register keeps track of the utilization of stack
and shows the current value of Real Time Interrupt stack pointer. This register is automatically incremented by
hardware when Real Time Interrupt or NMI interrupt is triggered and decremented when RETI.RTINT instruction
is executed.

Warning level for Real Time Interrupt stack pointer (WARNISP) register: This WARNISP is a user
configurable register which allows early warning of real time interrupt stack overflow detection, when RTISP
register is greater than or equal to WARNISP register value.

Maximum Real Time Interrupt Stack Pointer (MAXISP) register: The MAXISP register is not user
configurable register. When ISP register equals to MAXISP register, CPU enters fault state as real time interrupt
stack is full.

For more details on registers related to the Real Time Interrupt stack, see Section 3.4.3.

Note
Real Time Interrupt Stack Pointer (ISP) register, Warning level for Real Time Interrupt Stack Pointer
(WARNISP) register, and Maximum Real Time Interrupt Stack Pointer (MAXISP) register are registers
in PIPE (Peripheral Interrupt Priority and Expansion).

Central Processing Unit (CPU) www.ti.com

26 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

What are Interrupts?

Interrupts are hardware- or software-driven signals that cause the CPU to suspend current program sequence
and execute a subroutine. Typically, interrupts are generated by peripherals or hardware devices that need to
give data to or take data from the C29x CPU (for example ADC, DAC, EPWM, and other processors). Interrupts
can also signal that a particular event has taken place (for example, a timer has finished counting).

C29x CPU Interrupts

On the C29x CPU, there are four types of interrupt lines in the system. These are listed here from highest priority
to lowest priority:

• RESET
• NMI (non-maskable interrupts)
• RTINT (real-time interrupts, maskable)
• INT (low-priority interrupts, maskable, disableable)

These four interrupt lines handle all interrupts and exceptions on the device. All C29x devices come with a PIPE
(Peripheral Interrupt Priority and Expansion) module that provides additional prioritization and arbitration of the
RTINT and INT lines. Details regarding the PIPE module are provided in the F29H85x and F29P58x Real-Time
Microcontrollers Technical Reference Manual.

3.1 CPU Interrupts Architecture Block Diagram..28
3.2 RESET, NMI, RTINT, and INT.. 29
3.3 Conditions Blocking Interrupts...32
3.4 CPU Interrupt Control Registers... 33
3.5 Interrupt Nesting...36
3.6 Security... 37

Chapter 3
Interrupts

www.ti.com Interrupts

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 27

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.1 CPU Interrupts Architecture Block Diagram
Figure 3-1 shows a block diagram of the C29x CPU interrupt architecture.

Pipeline

Controller

and

Interrupt

Processing

Logic

Private

Interrupt

Stack

RAM

16/32/64 Levels

CPU

Registers

Interrupt Stack Management

Registers

ISP

C29 CPU

MAXRTISP

Error

Signaling

Module

(ESM)

INTSP

WARNRTISP

Vector addresses for RESETn, NMI, RTINT, INT

Peripheral

Interrupts

&

Other Interrupt

Sources

NMI Sources

Peripheral

Interrupt

Priority and

Expansion

Module

(PIPE)

ISTS.RTINTF

RTINT Flag

INT,

IGN_INTE
Flag

DSTS.INTE

ISTS.INTF

Fault conditions

RESETn

NMI Flag

ISTS.NMIF

NMI and

Fault Conditions

Figure 3-1. C29x CPU Interrupts Architecture Block Diagram

Interrupts www.ti.com

28 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.2 RESET, NMI, RTINT, and INT
This section explains the four interrupt lines available in the C29x CPU architecture.

3.2.1 RESET (CPU reset)

The CPU Reset is the highest-priority interrupt line, and occurs when the RESETn line receives an active-low
signal. This causes the CPU to undergo a hardware reset internally. This cannot be aborted or nested-in.

All current and pending operations in the pipeline are aborted, and the pipeline is flushed during reset.

All CPU registers are reset to the reset value (all 0) as indicated in Table 3-1.

Table 3-1. CPU Registers Reset Values
Registers Reset Value

A0 through A15 0x0000 0000

D0 through D15 0x0000 0000

M0 through M31 0x0000 0000

DSTS 0x07F8 0000

ESTS 0x0000 0000

RPC 0x0000 0000

ISTS 0x0000 0000

3.2.1.1 Required Instructions (RESET)

NMI and RTINT interrupts can potentially have the respective interrupt service routines (ISRs) residing in a
different LINK/STACK. Therefore, NMI and RTINT ISRs require that the first instruction packet of every vector
address contain the (ISR1.PROT || ISR2.PROT) instructions. The CPU pipeline control hardware checks for
these required instructions and generates a FAULT, if these instructions are not the first instruction packet of the
ISR. These required instructions are inserted automatically by the compiler, but must be configured to do so for
the appropriate vectors within a separate security settings file. See Section 3.6 for more details.

ISR1.PROT also initializes the stack pointer (A15) to the appropriate STACK by performing the following
operation: A15 = SECSPn (where n is the current STACK indicated by ISTS.CURRSP).

For more details on the security implications of the LINK/STACK/ZONE and memory space for CPU interrupts,
see Section 3.6.

3.2.2 NMI (Non-Maskable Interrupt)

The NMI (non-maskable interrupt) is the second highest-priority interrupt line, and receives system exception
interrupts.

This NMI input line is used for any device-level critical condition and various faults either inside or outside the
CPU that needs immediate attention.

3.2.2.1 Blocking and Masking (NMI)

NMIs cannot be masked or blocked in the CPU. There is no global enable/disable bit for the NMI line in the CPU.
Because of this, any interrupts that are received on the NMI line are directly passed to the CPU for prioritization.
Priority is then decided amongst the interrupt types (NMI, RTINT, and INT lines). NMI always has highest priority
and asserts within any RTINT or INT currently executing. ATOMIC instructions in RTINT or INT ISRs cannot
block or prevent NMI from asserting. ATOMIC instructions have no effect on NMI.

www.ti.com Interrupts

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 29

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.2.2.2 Signal Propagation (NMI)

The NMIn input to the CPU is typically generated from an Error Signaling Module (ESM) unit located outside
the CPU. Such a unit allows for aggregation and prioritization of system faults. Even fault conditions that occur
internal to the CPU propagates the fault information to a common device level aggregator unit, which then
generates an NMI back to the CPU.

The NMIn input latches inside the CPU, and is handled with higher priority than all other interrupt types (except
Reset events).

3.2.2.3 Stack (NMI)

This interrupt line uses the protected Real Time Interrupt Stack for context save and restore. This SSU-protected
(Safety and Security Unit) stack has protection features to prevent stack overflow during nesting, when nesting is
requested by the PIPE module. The WARNRTISP and MAXRTISP CPU registers serve this purpose in the C29x
CPU system.

This protection limits nesting of RTINT up to the number of levels supported by the RTINT Stack minus one level
(which is always reserved for NMI interrupt).

For security, the SSU protection of the RTINT Stack are designed so that the contents of the stack are not
visible. Registers are also zeroed to prevent visibility into what was happening before the interrupt was serviced.

See Section 2.4 for details on stack overflow protection using the WARNRTISP and MAXRTISP registers.

3.2.2.4 Required Instructions (NMI)

NMI and RTINT interrupts can potentially have the respective interrupt service routines (ISRs) residing in a
different LINK/STACK. Therefore, NMI and RTINT ISRs require that the first instruction packet of every vector
address contain the (ISR1.PROT || ISR2.PROT) instructions. The CPU pipeline control hardware checks for
these required instructions and generates a FAULT, if these instructions are not the first instruction packet of the
ISR. These required instructions are inserted automatically by the compiler, but must be configured to do so for
the appropriate vectors within a separate security settings file. See Section 3.6 for more details.

ISR1.PROT also initializes the stack pointer (A15) to the appropriate STACK by performing the following
operation: A15 = SECSPn (where n is the current STACK indicated by ISTS.CURRSP).

For more details on the security implications of the LINK/STACK/ZONE and memory space for CPU interrupts,
see Section 3.6.

3.2.3 RTINT (Real-Time Interrupt)

The RTINT (real-time interrupt) is the third highest-priority interrupt line, and receives signals driven by an
interrupt expansion and aggregation unit (the PIPE module for most C29x CPU systems).

3.2.3.1 Blocking and Masking (RTINT)

RTINT sources are able to be masked, but the actual RTINT line connected to the CPU can never be blocked/
disabled by user code. There is no global enable/disable bit for the RTINT line in the CPU. Because of this, any
interrupts that are received on the RTINT line are directly passed to the CPU for prioritization. Priority is then
decided among any interrupts on the NMI or INT lines. The RTINT signal line can only be stopped from nesting
within INTs by using the ATOMIC instruction within the INT ISR, and only for a finite number of instruction
packets. However, interrupts ISRs can be prioritized/blocked before the interrupts reach the RTINT line using the
external PIPE module.

3.2.3.2 Signal Propagation (RTINT)

The PIPE module provides external interrupt aggregation and arbitration for the RTINT and INT lines. This
allows for many signals to be categorized as real-time interrupts (RTINT) or low-priority interrupts (INT), and then
prioritized before passing to the CPUs RTINT or INT interrupt line.

The PIPE effectively multiplexes the single RTINT CPU interrupt line to be able to receive from multiple incoming
RTINT interrupts in the appropriate order.

Interrupts www.ti.com

30 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The module allows for enabling and disabling of RTINT signals before the signals reach the RTINT line of
the CPU. The module also allows nesting capability amongst other interrupts categorized as RTINT. See the
F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual for details on the PIPE module
features.

3.2.3.3 Stack (RTINT)

This interrupt line uses the protected Real Time Interrupt Stack for context save and restore. This SSU-protected
(Safety and Security Unit) stack has protection features to prevent stack overflow during nesting, when nesting is
requested by the PIPE module. The WARNRTISP and MAXRTISP CPU registers serve this purpose in the C29x
CPU system.

This protection limits nesting of RTINT up to the number of levels supported by the RTINT Stack minus one level
(which is always reserved for NMI interrupt).

For security, the SSU protection of the RTINT Stack are designed so that the contents of the stack are not
visible. Registers are also zeroed to prevent visibility into what was happening before the interrupt was serviced.

See Section 2.4 for details on stack overflow protection using the WARNRTISP and MAXRTISP registers.

3.2.3.4 Required Instructions (RTINT)

NMI and RTINT interrupts can potentially have the respective interrupt service routines (ISRs) residing in a
different LINK/STACK. Therefore, NMI and RTINT ISRs require that the first instruction packet of every vector
address contain the (ISR1.PROT || ISR2.PROT) instructions. The CPU pipeline control hardware checks for
these required instructions and generates a FAULT, if these instructions are not the first instruction packet of the
ISR. These required instructions are inserted automatically by the compiler, but must be configured to do so for
the appropriate vectors within a separate security settings file. See Section 3.6 for more details.

ISR1.PROT also initializes the stack pointer (A15) to the appropriate STACK by performing the following
operation: A15 = SECSPn (where n is the current STACK indicated by ISTS.CURRSP).

For more details on the security implications of the LINK/STACK/ZONE and memory space for CPU interrupts,
see Section 3.6.

3.2.4 INT (Low-Priority Interrupt)

The INT (low-priority interrupt) is the lowest-priority interrupt line, and receives signals driven by an interrupt
expansion and aggregation unit (the PIPE module for most C29x CPU systems). This interrupt line is typically
used for lower priority operations and task schedulers.

3.2.4.1 Blocking and Masking (INT)

INT sources are able to be masked, and the INT line can also be blocked/disabled by user code using the
DSTS.INTE enable bit. If DSTS.INTE is enabled, then any interrupts received on the INT line are directly passed
to the CPU for prioritization. Priority is then decided among the interrupts on the NMI or RTINT lines. To prevent
an RTINT interrupt from nesting within a INT interrupt, the ATOMIC instruction can be used for a finite number of
instruction packets.

On entering a INT ISR, further INTs are automatically disabled using the DSTS.INTE bit. To allow nesting, enable
interrupts using the ENINT instruction. There also exists a DISINT instruction for disabling the INT line again.

The C29x CPU also provides a special INT called as Supervisor Interrupt. Supervisor Interrupt is essentially an
INT which can override the DSTS.INTE setting. For example, Supervisor Interrupt can be a certain task monitor
interrupt which requires the interrupt to not get blocked by erroneous setting of the DSTS.INTE.

3.2.4.2 Signal Propagation (INT)

The PIPE module provides external interrupt aggregation and arbitration for the RTINT and INT lines. This
allows for many signals to be categorized as real-time interrupts (RTINT) or low-priority interrupts (INT), and then
prioritized before passing to the CPU's RTINT or INT interrupt line.

www.ti.com Interrupts

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 31

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The PIPE effectively multiplexes the single INT CPU interrupt line to be able to receive from multiple incoming
INT interrupts in the appropriate order.

The module allows for enabling and disabling of INT signals before the signals reach the INT line of the CPU.
The module also allows nesting capability amongst other interrupts categorized as INT or RTINT. See the
F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual for details on the PIPE module
features.

3.2.4.3 Stack (INT)

Unlike the NMI or RTINT interrupt lines, the INT line uses the standard software stack for context save and
restore. Only one of the multiple available CPU stacks can be used for INT. This is configured by the INTSP
register in the external PIPE module. If an INT vector points to the wrong LINK which is associated with a
different STACK (security-assigned stack), then an NMI fault is generated.

If the current stack pointer is not pointing to the INTSP, then any pending INT remains pending until the stack
pointer points to the selected INTSP stack.

3.3 Conditions Blocking Interrupts
There are certain CPU pipeline conditions that cause an uninteruptible boundary for the CPU. These conditions
prevent entry of interrupts until the conditions are over, effectively blocking interrupts during the hold time. Table
3-2 explains these situations:

Table 3-2. Conditions That Block Interrupts
Condition Description INT

Blocked
RTINT

Blocked
NMI

Blocked
Conditional instructions in packet not all completed

Yes

Discontinuity instruction delay slot not completed

Multicycle instructions like branch, call, return not completed

For CALL.PROT instruction: first instruction at the call destination not executed

For RET.PROT instruction: first instruction of the return address not executed

The first instruction of the previous asserted interrupt has entered the D2 stage

CPU "pipeline ready" not asserted

CPU pipeline stalled due to memory RD/WR access

CPU pipeline stalled due to no instruction in the instruction buffer

Instruction packet stalled in D2 phase of pipeline due to pipeline hazard, but the packet is not
ready to move to R1 phase of pipeline.

LP Interrupt is disabled in DSTS.INTE Yes NO
ATOMIC instruction counter not completed Yes NO

Interrupts www.ti.com

32 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.3.1 ATOMIC Counter

The C29x CPU supports an instruction “ATOMIC.REG #u8” that loads an internal counter (ISTS.ATOMIC
COUNTER) with an 8-bit value. This counter decrements once for each instruction packet executed. As long as
this atomic counter is not zero, an interrupt (RTINT or INT) cannot enter the CPU pipeline. Hence, this instruction
allows the user code to block interrupts for up to 256 instruction packets.

Restrictions on the use of ATOMIC instruction:

• The ATOMIC instruction cannot be in the delay slot of any discontinuity instruction or executed in parallel to a
branch instruction.

• The ATOMIC instruction cannot be in parallel to any discontinuity instruction.
• Executing ATOMIC instructions back to back cannot be used to block interrupts beyond the maximum count.
• Executing an ATOMIC instruction when the ATOMIC count is not zero resets the ATOMIC counter.
• Protected calls and returns reset the ATOMIC counter.
• The ATOMIC instruction or counter CANNOT block NMI. Anytime the ISTS.NMIF flag is set (indicating that a

NMI event has been registered), the NMI is taken and the ATOMIC counter is reset.

3.4 CPU Interrupt Control Registers
This section covers the three types of CPU registers that control interrupt-related functionality.

3.4.1 Interrupt Status Register (ISTS)

The Interrupt Status Register (ISTS) contains status information of various interrupt flags, stack pointers, current
link, and various counters.

- CURRLINK - INTSP CURRSP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ATOMIC {counter} - - - - - NMIF RTINTF INTF
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current LINK (CURRLINK): All resources including memory, peripherals, stacks are associated with LINK ID.
Links divide the boundaries of context in which the CPU is operating. Hence the code source address of the
instruction packet in the D2 pipeline stage is resolved to the corresponding code's LINK. This information is
critical to validate, update and access permissions in the interrupt vector table. The information is also critical
to configuration settings associated with each interrupt. Therefore, the CURRLINK register provides the current
LINK.

Stack pointers (CURRSP, INTSP): The C29x CPU, with embedded virtualization, has multiple stacks. The user
can assign a particular stack for INT, but RTINT and NMI use the RTINT Stack. The current stack pointer, which
points to the current STACK in use by the CPU, is represented by the CURRSP field. The STACK that is chosen
to be used by low-priority interrupts (INTs) is represented by the INTSP field. INTs do not enter the pipeline until
the INTSP matches the CURRSP.

ATOMIC counter (ATOMIC): The CPU allows up-to 256 instruction packets executed at one stretch without
being interrupted by RTINT or INT. The number of remaining instruction packets of ATOMIC execution is
reflected in the ATOMIC counter. Interrupts are not picked up for processing by the CPU, if the ATOMIC counter
is ticking. NMI is not affected by the ATOMIC counter, and operation is stopped and the counter is reset if an NMI
is received. See Section 3.3.1 for more details on the ATOMIC counter.

Interrupt flags (INTF, RTINTF, NMIF): Independent interrupt flags are registered including INTF, RTINTF, and
NMIF. These flags are set whenever a corresponding interrupt is asserted to the CPU and cleared upon exiting
the corresponding ISR. If there are multiple nested interrupts that are taken by CPU, then all corresponding flags
are set and those are cleared only upon servicing all interrupts in the respective category.

www.ti.com Interrupts

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 33

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.4.2 Decode Phase Status Register (DSTS)

The Decode Phase Status Register (DSTS) contains information regarding the interrupt and link status of the
CPU. The following table highlights fields related to interrupt operation. This information is used by software for
building predictable priority and security behavior.

- RLINK ISR_PRIORITY INTS INTE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TA3 TA2 TA1 TA0 - CLINK DBGM - - A.ZV A.C A.N A.Z
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return Link (RLINK): This represents the LINK of the origin from where the protected return was executed.

ISR Priority (ISR_PRIORITY): If CPU is servicing an interrupt and INTS is either INT or RTINT, then the priority
level of the interrupt is reflected in this field. This is an 8 bit register field.

Interrupt status (INTS): This field tracks the status of CPU execution, specifying whether the execution is in the
main loop, in an NMI ISR, in an RTINT ISR, or in an INT ISR. This field is also used by the external PIPE module
to track the present phase of CPU to decide when the next ready RTINT or INT interrupt can be forwarded to
CPU. See Table 3-3 for details on the status values of the INTS field.

Table 3-3. INTS - Interrupt Status Values
INTS[1] INTS[0] CPU State Comment

0 0 Main code Not in any task, interrupt or exception

0 1 INT Handler In a normal interrupt service routine

1 0 RTINT Handler In a real-time interrupt service routine

1 1 NMI Handler In a NMI handler routine

INT Enable (INTE): The INT enable bit reflects whether an INT interrupt can be accepted by the CPU or not.
This bit needs to be 1 to allow the next higher priority INT to be accepted in the CPU (which allows nesting of
INTs). Upon accepting INT, this bit gets automatically set to 0 and so ISR code needs to explicitly set this back to
1 to enable INT interrupt nesting.

Caller Link (CLINK): The CLINK field represents the LINK of the origin which made a call to execute the
function. This includes execution calls from ISRs.

To enhance security, the CLINK field can be checked within a given ISR (or function) to determine if the CLINK
field matches a predefined Link. The ISR (or function) can then exit automatically, if the Link does not match.

Interrupts www.ti.com

34 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.4.3 Interrupt-Related Stack Registers

The C29x CPU has three types of stacks, with related pointers for each. These are outlined in Table 3-4 as a
high-level overview. The section that follows provides details on the pointers of the interrupt-related High-Priority
Interrupt Stack.

Table 3-4. C29x CPU Stack Types
Stack Type Related Pointers

Normal Software Stack SECSPx, where x = 0 to 15

Protected Call Stack PSP, WARNPSP, MAXPSP

RTINT Stack ISP, WARNRTISP, MAXRTISP

RTISP (RTINT Stack Pointer): This points to the stack that is used by NMI and RTINT interrupt lines. This stack
is SSU-protected. See the Stack subsection of Section 3.2.3 for more details on the RTINT Stack.

WARNRTISP level: This level is pre-programmed by secure software code. If the ISP from CPU meets this level
then the external PIPE module stops sending RTINTs to the CPU. This is to slow down stack progression or
excessive nesting that can lead to a stack overflow. WARNRTISP level can be updated by the user meeting the
required software security checks. Modification of WARNRTISP level is typically done after reset.

MAXRTISP level: This is a fixed-level equal to the total of number of nestings allowed by the High Priority
Interrupt Stack minus one. This is to allow one reserved interrupt stack space for an NMI to trigger, to prevent
stack overflow. The PIPE raises a fault when this level is reached, which in turn generates an NMI to resolve this
critical condition.

www.ti.com Interrupts

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 35

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.5 Interrupt Nesting
Nesting is supported at the hardware level in the C29x CPU. At the CPU interrupt level, nesting is possible
amongst the three non-reset interrupt lines (NMIn, RTINTn, INTn). Interrupt lines can nest inside the ISR of
lower priority interrupt lines. So an NMI can nest within RTINT or INT. RTINT can nest within INT. INT cannot
nest in other interrupt lines. However, additional nesting within interrupt types RTINT and INT is possible using
the PIPE module.

A detailed look at the nesting available on the C29x CPU is explained below (along with the expanded abilities
afforded by the PIPE module).

NMI: No interrupt (including other NMIs) can nest within an NMI that is currently running. Anytime the ISTS.NMIF
flag is set (indicating that a NMI event has been registered), the NMI is taken and the ATOMIC counter is reset.

RTINT: NMIs always nest within RTINT. This nesting cannot be stopped with the ATOMIC instruction. Using the
PIPE module, higher priority RTINTs can nest within lower priority RTINTs. The ATOMIC instruction can delay
entry of a nested RTINT until the ATOMIC counter expires.

INT: NMIs always nest within INT. This nesting cannot be stopped with the ATOMIC instruction. RTINTs always
nest within INT, but the ATOMIC instruction can delay entry of a nested RTINT until the ATOMIC counter expires.
Using the PIPE module, higher priority INTs can nest within lower priority INTs. The ATOMIC instruction can
delay entry of a nested INT (or RTINT) until the ATOMIC counter expires.

3.5.1 Interrupt Nesting Example Diagram

Main

Program
INT ISR RTINT ISR NMI ISR RTINT ISR INT ISR

Main

Program

Main Program

INT Occurs

INT ISR

RTINT Occurs

NMI Occurs

RTINT ISR

NMI ISR

NMI handler may not return

to caller depending on cause

CPU Execution Timeline

Figure 3-2. Interrupt Nesting Example Diagram

Interrupts www.ti.com

36 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.6 Security
The C29x CPU security features extend into the interrupts domain to make sure of software security. This
section covers security features related to the CPU interrupts architecture. See Chapter 5 for further details on
the C29x CPU security architecture and SSU (Safety and Security Unit) features.

3.6.1 Overview

Central to the security architecture of C29x CPU is the concept of LINKS, STACKS, and ZONES. For a detailed
overview of how each of these work, see Chapter 5. The following sections provide details on how the CPU
interrupts utilize each of these security features.

3.6.2 LINK

A LINK is a unique collection of ownerships and access permissions tagged together by ID which is used for
resource allocation and sharing. Link ID binds CPU resources like stack, memory regions, peripheral instance
accesses, interrupt source and vectors, DMA channels and permissions, and more. This prevents resources
from being accessed from a hacker (or erroneous code) running from another Link. Of particular interest to this
chapter is the access provided by a LINK to particular interrupt sources and vectors.

The following provides the types of links utilized for interrupt operation.

1. Owner link: every interrupt line and associated interrupt vector has an owner link.
• This link has related resources of the source events like peripheral, GPIO or error mechanism.
• Owner link has access to memory, DMA or other resources needed to service the specific event.
• Owner link has access to control and status register to read flag, enable/disable an interrupt line, clear

the flag or force the flag high. As well has permissions to read and clear the overflow flag.
• The Current Link ID provided by the CPU is compared against owner link for Interrupt operational

registers.

2. Boot link: boot link handles device boot and initialization including that of interrupts.
• User Boot Link: User boot links do not have special privileges to access PIPE or interrupt registers.

3. Secure root Link: This is the root of trust for security code of the device and shall have access to PIPE
configuration registers and vector table. Configuration registers hold information like the owner link, caller
link, priority, vector address of the interrupt line.

4. Caller Link: Caller links are used to share common code libraries across multiple links.
• The owner link of an interrupt line (like RTINTn) can call a common code function (from another link) in an

ISR. In such a case, it is checked whether the caller link is the owner link.
• Configuration registers like priority can only be updated by the “secure root link”. In this case, the owner

link can be the caller link of a “Secure Root Link” function.

www.ti.com Interrupts

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 37

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

3.6.3 STACK

The C29x CPU uses multiple STACKs to make sure integrity and separation between different processes. Every
LINK shall have an associated STACK mapped at device initialization. Multiple LINKs can share a STACK but
multiple STACKs do not share a LINK. The following lists the stacks related to PIPE and interrupts, and the
corresponding safety features:

• INT Stack: The user can choose and allocate a single stack for all INTs. This stack is one of the normal
software stacks available on the device. The INT asserted to CPU remains in the pending state until the CPU
returns to this stack. Normally this is expected to be the stack of main process.

• RTINT Stack: This is dedicated stack is used for context save and restore of RTINT and NMI. This stack is
not accessible or visible to any user code for security, and incorporates ECC (error correction code) along
with registers. Registers are zeroed to prevent visibility into what was happening before the interrupt was
serviced. Features available on the High Priority Interrupt Stack include:
– WARNRTISP level: : This level is pre-programmed by secure software code. If the ISP from CPU meets

this level then the external PIPE module stops sending RTINTs to the CPU. This is to slow down stack
progression or excessive nesting that can lead to a stack overflow. WARNRTISP level can be updated
by the user meeting the required software security checks. Modification of WARNRTISP level is typically
done after reset.

– MAXRTISP level: : This is a fixed-level equal to the total of number of nestings allowed by the High Priority
Interrupt Stack minus one. This is to allow one reserved interrupt stack space for an NMI to trigger, to
prevent stack overflow. The PIPE raises a fault when this level is reached, which in turn generates an NMI
to resolve this critical condition.

3.6.4 ZONE

Multiple STACKs and corresponding LINKs can be combined to make a ZONE. The items that make up this
ZONE can be reflected through the configuration of LINKs and STACKs. Zone association is used for debug
permissions.

Interrupts www.ti.com

38 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

This chapter describes the addressing modes of the C29x CPU and provides examples.

4.1 Addressing Modes Overview.. 40
4.2 Addressing Mode Fields.. 43
4.3 Alignment and Pipeline Considerations...51
4.4 Types of Addressing Modes..52

Chapter 4
Addressing Modes

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 39

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.1 Addressing Modes Overview
The C29x CPU supports several addressing modes to provide faster execution and smaller code size.

4.1.1 Documentation and Implementation

Throughout the documentation, instructions that utilize addressing modes are written in a manner similar to the
following: "LD.32 Dx,ADDR1".

In actual assembly code implementation, the field "ADDR1" is replaced with an actual addressing mode with
the parameters substituted. For example: "*(Ax+#8)".

These addressing modes are categorized into different types. For example, *(Ax+#8) is of the type "Pointer
Addressing With #Immediate Offset".

The following figures show a visual explanation of how the fields, addressing modes, and types work together
in the documentation and implementation. Both images use the same field (ADDR1), but have different
addressing modes and addressing mode types:

In Figure 4-1, ADDR1 is replaced with the specific addressing mode *(A15++#u8imm), which is one of several
addressing modes available in the Stack Addressing type of addressing mode.

LD.32 Dx,ADDR1

Field

Field replaced with an Addressing Mode

LD.32 Dx,*(A15++#u8imm)

Addressing Mode

LD.32 Dx,*(A15++#7)

Assembly Code

Addressing Mode parameters substituted for Assembly Code

Figure 4-1. ADDR1 Field Replaced with a Stack Addressing Type

In Figure 4-2, ADDR1 is replaced with the specific addressing mode *(Ax+#u10imm), which is one of several
addressing modes available in the Pointer Addressing With #Immediate Offset type of addressing mode.

LD.32 Dx,ADDR1

Field

Field replaced with an Addressing Mode

LD.32 Dx,*(Ax+#u10imm)

Addressing Mode

LD.32 Dx,*(A2+#8)

Assembly Code

Addressing Mode parameters substituted for Assembly Code

Figure 4-2. ADDR1 Field Replaced with a Pointer Addressing With #Immediate Offset Type

Addressing Modes www.ti.com

40 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.1.2 List of Addressing Mode Types

The following lists the types of addressing modes available natively in the device. For more details on each of
these addressing modes, see Section 4.4.

1. Direct Addressing: direct read or write access to any location in the 32-bit memory space with the
immediate address provided in the instruction.

2. Pointer Addressing with #Immediate Offset: indirect read or write access to any location in the 32-bit
memory space with the pointer address from one of the addressing registers, A0 to A14, and an optional
immediate offset provided in the instruction.

3. Pointer Addressing with Pointer Offset: indirect read or write access to any location in the 32-bit memory
space with the pointer address (base address register) from one of the addressing registers, A0 to A14, and
an offset provided by an additional pointer (index register) in the instruction.

4. Pointer Addressing with #Immediate Increment/Decrement: indirect read or write access to any location
in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14. An
immediate pre or post increment or decrement of the register is applied.

5. Pointer Addressing with Pointer Increment/Decrement: indirect read or write access to any location in
the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14, and a
pre or post increment or decrement of the register is applied using the value located in an additional pointer
register.

6. Stack Addressing: indirect read or write access to any location in the stack space with the address
provided in addressing register A15, which is the dedicated Stack Pointer (SP).

The types of addressing modes can be implemented using different combinations of offsets and shifts. All
available addressing modes are provided as rows in Section 4.1.3.

Note
Addressing register A15 is the dedicated Stack Pointer (SP). Any references to the "Stack Pointer" or
"SP" in this document are referring to addressing register A15.

4.1.2.1 Additional Types of Addressing

There two are additional types of addressing that can be implemented using instructions dedicated for the
task. These instructions are used to take an address, and modify/compare the address while accessing the
address. This allows for operations that normally require multiple instructions to occur in a single instruction.
This eliminates the need for a dedicated addressing mode for such functionality. There is no performance impact
when comparing native addressing-mode support to these instructions.

1. Circular Addressing: Circular pointers typically used for implementing finite impulse response (FIR), least
mean squares (LMS), or convolution filters.

2. Bit-Reversed Addressing: Reverse addressing typically used to re-order data for Fast Fourier Transform
(FFT) and similar algorithms.

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 41

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.1.3 Addressing Modes Summarized

Table 4-1 summarizes all supported addressing modes and the various forms.

Table 4-1. Available Addressing Modes
Opcode
Field

Mnemonic Shorthand Address Generation

Direct Addressing
DIRM *(0:#u32imm) @u32imm addr = #u32imm

Pointer Addressing with #Immediate Offset: (Ax = A0 to A14 2 , Az = A4 to A7)
DIRM *(Ax+#u28imm) *Ax[#u28imm] addr = Ax + #u28imm (#u28imm = 0 to 256MB range)

ADDR1 *(Ax+#u10imm) *Ax[#u10imm] addr = Ax + #u10imm (#u10imm = 0 to 1KB range)

ADDR1 *(Ax+#u10imm<<2) *Ax[#u10imm] addr = Ax + #u10imm<<2 (#u10imm << 2 = 0 to 4KB range, 4B steps)

ADDR3 *(Ax+#u8imm<<2) *Ax[#u8imm] addr = Ax + #u8imm<<2 (#u8imm << 2 = 0 to 1KB range, 4B steps)

ADDR2 *Az *Az addr = Az

Pointer Addressing with Pointer Offset: (Ax = A0 to A14 2 , Aj = A0 to A14, Ak = A0 to A3, Az = A4 to A7)
ADDR1 *(Ax+Ak<<#u2imm) *Ax[Ak] addr = Ax + Ak << #u2imm (#u2imm = 0, 1, 2, 3)

ADDR1 *(Aj=(Ax+Ak<<#u2imm)) *Aj=Ax[Ak] addr = Ax + Ak << #u2imm, Aj = addr (#u2imm = 0, 1, 2, 3)

ADDR2 *(Az+A0<<#scale) *Az[A0] addr = Az + A0 << (0/1/2/3) 1

ADDR2 *(Az+A1<<#scale) *Az[A1] addr = Az + A1 << (0/1/2/3) 1

Pointer Addressing with #Immediate Increment/Decrement: (Ax = A0 to A14 2 , Az = A4 to A7)
ADDR1 *(Ax++#u8imm) *Ax++[#u8imm] addr = Ax, Ax = Ax + #u8imm (#u8imm = 0 to 255 range)

ADDR1 *(Ax--#n8imm) *Ax--[#n8imm] addr = Ax, Ax = Ax - #n8imm (#n8imm = 1 to 256 range)

ADDR1 *(Ax-=#n8imm) *Ax-=[#n8imm] Ax = Ax - #n8imm, addr = Ax (#n8imm = 1 to 256 range)

ADDR2 *(Az++#size) *Az++ addr = Az, Az = Az + (1/2/4/8) (#size = 1,2,4,8) 1

ADDR2 *(Az--#size) *Az-- addr = Az, Az = Az – (1/2/4/8) (#size = 1,2,4,8) 1

ADDR2 *(Az-=#size) *--Az Az = Az – (1/2/4/8), addr = Az (#size = 1,2,4,8) 1

Pointer Addressing with Pointer Increment/Decrement: (Ax = A0 to A14 2 , Ak = A0 to A3, Az = A4 to A7)
ADDR1 *(Ax+#u7imm)++Ak *Ax[#u7imm]++Ak addr = Ax + #u7imm, Ax = Ax + Ak (#u7imm = 0 to 128)

ADDR2 *(Az++A0) *Az++A0 addr = Az, Az = Az + A0

ADDR2 *(Az++A1) *Az++A1 addr = Az, Az = Az + A1

Stack Addressing: (A15 = SP)
ADDR1 *(A15-#n13imm) *A15-[#n13imm] addr = A15 - #n13imm (#n13imm = 1 to 8192)

ADDR1 *(A15++#u8imm) *A15++[#u8imm] addr = A15, A15 = A15 + #u8imm (#u8imm = 0 to 255)

ADDR1 *(A15-=#n8imm) *A15-=[#n8imm] A15 = A15 - #n8imm, addr = A15 (#n8imm = 1 to 256)

(1) The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount ("#scale"). This is automatically
performed by the CPU hardware based on the word size being accessed by the instruction. See Section 4.2 for more details.

(2) The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the
addressing modes, the operation is not valid for the SP and hence the addressing mode can not be used

Addressing Modes www.ti.com

42 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.2 Addressing Mode Fields
This section explains how the various addressing modes are represented in each instruction.

Explanation of Terminology

For instructions that use addressing modes, this document uses four different "fields":

• ADDR1
• ADDR2
• ADDR3
• DIRM

These four fields are placeholders for actual addressing modes. The four fields are separated based on the
number of bits required to encode them in the instruction (for example ADDR1 uses 16 bits and ADDR2 uses 5
bits).

In actual assembly code, the user or compiler must substitute fields for the desired addressing mode. For
example, in the documentation, the "field" name ADDR1 is used. But in assembly code, ADDR1 can be replaced
with a real addressing mode.

"LD.32 Ax,ADDR1" (field)

becomes

"LD.32 A8,*(A4+#0x4)" (addressing mode).

This is only one possible way to convert the 16 bits available in the ADDR1 field into an actual addressing mode
("Pointer Addressing With #Immediate Offset" type of addressing mode).

The following subsections explain each of the four fields, the available addressing modes, and the encodings of
these addressing modes. There is also a section explaining some additional fields used with addressing modes.

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 43

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.2.1 ADDR1 Field

This is a 16-bit field for indirect encoding of addresses that can be used in all "Pointer Addressing" and "Stack Addressing" modes.

Table 4-2 shows the various ways the 16 bits can be used to encode the address.

Table 4-2. ADDR1 Field Encodings
ADDR1 Field: (Ax = A0 to A14, Aj = A0 to A14, Ak = A0 to A3)

Mnemonic 2 Shorthand Address Generation 47 46 45 43 42 41 40 39 38 37 36 35 34 33 32 31

Mnemonic Shorthand Address Generation 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

*(Ax+#u10imm) *Ax[#u10imm] addr = Ax + #u10imm (#u10imm = 0 to 1KB range) 0 0 #u10imm Ax[0-14] 1

*(Ax+#u10imm<<2) *Ax[#u10imm] addr = Ax + #u10imm<<2 (#u10imm << 2 = 0 to 4KB range, 4B steps) 0 1 #u10imm Ax[0-14] 1

*(Ax+#u7imm)++Ak *Ax[#u7imm]++Ak addr = Ax + #u7imm, Ax = Ax + Ak (#u7imm = 0 to 128) 1 0 0 #u7imm Ak[0-3] Ax[0-14] 1

*(A15-#n13imm) *A15-[#n13imm] addr = A15 - #n13imm (#n13imm = 1 to 8192) 1 0 1 #n13imm

*(Ax++#u8imm) *Ax++[#u8imm] addr = Ax, Ax = Ax + #u8imm (#u8imm = 0 to 255 range) 1 1 0 0 #u8imm Ax[0-14] 1

*(Ax--#n8imm) *Ax--[#n8imm] addr = Ax, Ax = Ax - #n8imm (#n8imm = 1 to 256 range) 1 1 0 1 #n8imm Ax[0-14] 1

*(Ax-=#n8imm) *Ax-=[#n8imm] Ax = Ax - #n8imm, addr = Ax (#n8imm = 1 to 256 range) 1 1 1 0 #n8imm Ax[0-14] 1

*(Ax+Ak<<#u2imm) *Ax[Ak] addr = Ax + Ak << #u2imm (#u2imm = 0, 1, 2, 3) 1 1 1 1 #u2imm 1 1 1 1 Ak[0-3] Ax[0-14] 1

*(Aj=(Ax+Ak<<#u2imm)) *Aj=Ax[Ak] addr = Ax + Ak << #u2imm, Aj = addr (#u2imm = 0, 1, 2, 3) 1 1 1 1 #u2imm Aj[0-14] Ak[0-3] Ax[0-14] 1

(1) The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the addressing modes, the operation is not valid for the SP and
hence the addressing mode can not be used.

(2) Data Move operations have two ADDR1 fields, all other operations only have one ADDR1 field. Except for Data Move operations, the ADDR1 field is located in bits [31:16] of the
instruction opcode.

The following are the instructions that can use the ADDR1 field:

ADD.32, ADD.S16, ADD.S8, AND.16, AND.8, AND.U16, AND.U8, ANDOR.B0, ANDOR.W0, LD.32, LD.64, LD.B0, LD.B1, LD.B2, LD.B3, LD.S16, LD.S8,
LD.U16, LD.U8, LD.W0, LD.W1, MV.16, MV.32, MV.64, MV.8, MV.U16, MV.U8, OR.16, OR.8, RET{D}, S16TOF, ST.16, ST.32, ST.64, ST.8, ST.B0, ST.B1,
ST.B2, ST.B3, ST.W0, ST.W1, SUB.32, SUB.S16, SUB.S8, SUBR.32, SUBR.S16, SUBR.S8, U16TOF, XOR.16, XOR.8

Addressing Modes www.ti.com

44 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Examples:

; Load the 32-bit value in ADDR1 into Mx, using a base address + offset
; (#u7imm) and then post increment by Ak (Ak is number of bytes to increment)
; NOTE: make sure 32-bit alignment of base address (Ax) and offset
LD.32 Mx,ADDR1 ; field
LD.32 Mx,*(Ax+#u7imm)++Ak ; addressing mode
LD.32 M1,*(A14+#100)++A2 ; actual assembly code

; OR #x16 with the address pointed to by ADDR1, and store the result
; into the location pointed to by ADDR1. Then post decrement the Ax register
; by the #n8imm value
; NOTE: make sure 16-bit alignment of base address (Ax) and offset
OR.16 ADDR1,#x16 ; field
OR.16 *Ax--[#n8imm],#x16 ; addressing mode
OR.16 *A3--[#70],#50110 ; actual assembly code

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 45

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.2.2 ADDR2 Field

This is a 5-bit field for indirect encoding of addresses that can be used in all "Pointer Addressing" modes.

Table 4-3 shows the various ways the 5 bits can be used to encode the address.

Table 4-3. ADDR2 Field Encodings
ADDR2 Field: (Az = A4 to A7)

Mnemonic Shorthand Address Generation 4 3 2 1 0

*(Az++A0) *Az++A0 addr = Az, Az = Az + A0 0 0 0 Az[4-7]

*(Az++A1) *Az++A1 addr = Az, Az = Az + A1 0 0 1 Az[4-7]

*(Az+A0<<#scale) *Az[A0] addr = Az + A0 << (0/1/2/3) (1) 0 1 0 Az[4-7]

*(Az+A1<<#scale) *Az[A1] addr = Az + A1 << (0/1/2/3) (1) 0 1 1 Az[4-7]

*Az *Az addr = Az 1 0 0 Az[4-7]

*(Az++#size) *Az++ addr = Az, Az = Az + (1/2/4/8) (#size = 1,2,4,8) (1) 1 0 1 Az[4-7]

*(Az--#size) *Az-- addr = Az, Az = Az – (1/2/4/8) (#size = 1,2,4,8) (1) 1 1 0 Az[4-7]

*(Az-=#size) *--Az Az = Az – (1/2/4/8), addr = Az (#size = 1,2,4,8) (1) 1 1 1 Az[4-7]

Note
The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount
("#scale"). This is automatically performed by the CPU hardware based on the word size being
accessed by the instruction.
• Byte access increments/decrements by #size=1, or scales by #scale=0 (multiply by 1)
• 16-bit access increments/decrements by #size=2, or scales by #scale=1 (multiply by 2)
• 32-bit access increments/decrements by #size=4, or scales by #scale=2 (multiply by 4)
• 64-bit access increments/decrements by #size=8, or scales by #scale=3 (multiply by 8)

The following are the instructions that can use the ADDR2 field:

AND.32, ANDOR, LD.32, LD.64, MV.16, MV.32, MV.64, MV.8, OR.32, ST.16, ST.32, ST.64, ST.8, XOR.32

Examples:

; Register XMx is loaded with the 64-bit word at the memory location
; addressed using the ADDR2 addressing mode. This address is fetched from Az.
LD.64 XMx,ADDR2 ; field
LD.64 XMx,*Az ; addressing mode
LD.64 XM4,*A4 ; actual assembly code

; The 8-bit immediate value specified is stored at the memory location
; addressed using the ADDR2 addressing mode. The address is fetched from Az,
; which is then post-decremented by the amount in #size. The #size is
; automatically chosen by the CPU to be 1 since the word size accessed by
; this instruction is 8-bit.
ST.8 ADDR2,#0x0B ; field
ST.8 *(Az--#size),#0x0B ; addressing mode
ST.8 *(Az--#1),#0x0B ; actual assembly

Addressing Modes www.ti.com

46 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.2.3 ADDR3 Field

This is a 12-bit field for indirect encoding of addresses used only for "Pointer Addressing with #Immediate
Offset."

Table 4-4 shows the various ways the 12 bits can be used to encode the address.

Table 4-4. ADDR3 Field Encodings
ADDR3 Field: (Ax = A0 to A14)

Mnemonic Shorthand Address Generation 11 10 9 8 7 6 5 4 3 2 1 0

*(Ax+#u8imm<<2) *Ax[#u8imm] addr = Ax + #u8imm<<2 (#u8imm << 2 = 0 to 1KB range, 4B steps) Ax[0-14] 1 #u8imm

(1) The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the
addressing modes, the operation is not valid for the SP and hence the addressing mode can not be used.

The following are the instructions that can use the ADDR3 field:

MV.32

Example:

; The 32-bit content at the memory location addressed using the ADDR3
; addressing mode, ADDR3_x, is copied to the memory location addressed using
; the ADDR3 addressing mode, ADDR3_y. Both ADDR3 fields use the same
; addressing mode "*(Ax+#u8imm<<2)", which calculates the address using a
; base pointer added with an 8-bit immediate (#u8imm) that is multiplied by 4
; (#u8imm<<2). NOTE: The base address must be 32-bit aligned.
MV.32 ADDR3_y,ADDR3_x ; field
MV.32 *(Ax+#u8imm<<2),*(Ax+#u8imm<<2) ; addressing mode
MV.32 *(A0+#4<<2),*(A1+#8<<2) ; actual assembly

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 47

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.2.4 DIRM Field

DIRM Field

This is a 33-bit encoding used for direct and indirect encoding of addresses used only for "Direct Addressing" and “Pointer Addressing With #Immediate
Offset.”

Table 4-5 shows the various ways the 12 bits can be used to encode the address.

Table 4-5. DIRM Field Encodings
DIRM Field: (Ax = A0 to A14)

Mnemonic Address Generation 0 31:20 19:16 47:32

*(0:#u32imm) @u32imm addr = #u32imm 0 #u32imm

*(Ax+#u28imm) *Ax[#u28imm] addr = Ax + #u28imm (#u28imm = 0 to 256MB range) 1 #u28imm (lower 12-bits) Ax[0-14] 1 #u28imm (upper 16-bits)

(1) The Ax[0-14] addressing field can support the A15 register, however this is the stack pointer (SP) register and for some of the addressing modes, the operation is not valid for the SP and
hence the addressing mode can not be used.

The following are the instructions that can use the DIRM field:

LD.32, LD.64, LD.B0, LD.B1, LD.B2, LD.B3, LD.S16, LD.S8, LD.U16, LD.U8, LD.W0, LD.W1, S16TOF, ST.32, ST.64, ST.B0, ST.B1, ST.B2, ST.B3,
ST.W0, ST.W1, U16TOF

Examples:

; Bits [7:0] of register Ax are loaded with the 8-bit value at the memory
; location addressed using the DIRM addressing mode. DIRM is supplied with a
; 32-bit unsigned immediate value found in parklSine:
; parklSine = 0x00008000
LD.B0 Ax,DIRM ; field
LD.B0 Ax,@u32imm ; addressing mode
LD.B0 A8,@parklSine ; actual assembly

; The upper 16-bit content of register Ax is stored at the memory location
; addressed using the DIRM addressing mode. The DIRM field is replaced with
; the "*(Ax+#u28imm)" addressing mode, where the address is found using
; base pointer Ax and the #u28imm immediate value.
ST.W1 DIRM,Ax ; field
ST.W1 *(Ax+#u28imm),A10 ; addressing mode
ST.W1 *(A3+#0x4),A10 ; actual assembly

Addressing Modes www.ti.com

48 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.2.5 Additional Fields

In addition to the addressing mode fields, there are #immediate fields that are used within the actual addressing
modes, such as "#u10imm" in the "*(Ax+#u10imm)" addressing mode. Most of these #immediate fields (also
called constants) are self explanatory (for example, #u10imm is an unsigned 10-bit immediate).

However, there are two negative #immediate fields that are explained in further detail using a table for clarity:

#n13imm Field

The #n13imm field is a 13-bit negative offset #immediate used in the "*(A15-#n13imm)" addressing mode. This
addressing mode is one of the available ADDR1 fields (requires 16 bits for encoding) and is of type "Stack
Addressing".

A negative 13-bit value is provided using this #immediate, and bits 13 to 31 are padded with 1s to create the
32-bit negative offset constant.

Note
Bits 13 to 31 are padded with 1s to create a 32-bit negative offset constant that is then added to the
addressing register.

Table 4-6. #n13imm Field Encoding
12 11 10 9 8 7 6 5 4 3 2 1 0 Encoded Value Sign-extended Value
1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1 0 2 -2

...

1 0 0 0 0 0 0 0 0 0 0 0 1 4095 -4095

1 0 0 0 0 0 0 0 0 0 0 0 0 4096 -4096

0 1 1 1 1 1 1 1 1 1 1 1 1 4097 -4097

...

0 0 0 0 0 0 0 0 0 0 0 0 1 8191 -8191

0 0 0 0 0 0 0 0 0 0 0 0 0 8192 -8192

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 49

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

#n8imm Field

The #n8imm field is a 8-bit negative offset #immediate used in the following addressing modes:

• n
• *(Ax--#n8imm), which is addressing mode type "Pointer Addressing With #Immediate Increment/Decrement"
• *(Ax-=#n8imm), which is addressing mode type "Pointer Addressing With #Immediate Increment/Decrement"
• *(A15-=#n8imm), which is addressing mode type "Stack Addressing"

These addressing modes are all part of the available ADDR1 fields (all require 16 bits for encoding).

A negative 8-bit value is provided using this #immediate, and bits 8 to 31 are padded with 1s to create the 32-bit
negative offset constant.

Note
Bits 8 to 31 are padded with 1s to create a 32-bit negative offset constant that is then added to
addressing register.

Table 4-7. #n8imm Field Encoding
7 6 5 4 3 2 1 0 Encoded Value Sign-extended Value
1 1 1 1 1 1 1 1 1 -1

1 1 1 1 1 1 1 0 2 -2

...

1 0 0 0 0 0 0 1 127 -127

1 0 0 0 0 0 0 0 128 -128

0 1 1 1 1 1 1 1 129 -129

...

0 0 0 0 0 0 0 1 255 -255

0 0 0 0 0 0 0 0 256 -256

Addressing Modes www.ti.com

50 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.3 Alignment and Pipeline Considerations
This section covers the requirements for addressing alignment and pipeline considerations for addressing
modes.

4.3.1 Alignment

All data accesses are aligned to the nearest word size. This is enforced by the memory or peripheral being
accessed.

This means that the following are required for all data accesses:

• The base pointer address must be aligned to the data word width.
• Any offsets or increment/decrement sizes must be a multiple of the data size.
• The final address (base pointer with any offsets or increment/decrements applied) must be aligned to the

data word width.

CAUTION
The compiler automatically takes care of appropriate offset indexing and scaling based on the word
size. However, if the base pointer was loaded from a memory location, the compiler assumes that
the contents are properly aligned. If the contents are not aligned, then a CPU addressing fault is
generated if the generated address for that particular word size is not aligned.

An example regarding the base address: The base pointer address must be aligned to the data word width. So
if a 64-bit (8-byte) data instruction like "LD.64" is used, the base address must be aligned to the 64-bit word
boundary. Therefore, the last three digits of the address in binary must be 0, since that means the value is
divisible by 8. "LD.32 D2,*(0:#0xF8)" can therefore be valid (because in binary, this is 0b1111 1000), but "LD.32
D2,*(0:#0xF9)" can not be valid (because in binary, this is 0b1111 1001).

An example regarding the offsets: Any offset value used (which is in bytes) must be a multiple of the instruction's
data size. So if a 32-bit (4-byte) data instruction like "LD.32" is used, the offset must be a multiple of 4. "LD.32
D2,*(A2 + #4)" can therefore be valid, but "LD.32 D2,*(A2 + #5)" can not be valid. Alignment of the base pointer
is also required for these instructions.

Some additional examples of correct and incorrect alignment are provided here:

MV.32 A2,#ArrayX ; Assume that the array is aligned
 ; to a 64-bit word boundary for this example.
; CORRECT Examples:
; Pointer Addressing With #Immediate Offset Examples
LD.B0 D0,*(A2+#9) ; Byte offset can be any value
LD.U16 D1,*(A2+#10) ; 16-bit offset can only be a multiple of 2 bytes
LD.32 D2,*(A2+#4) ; 32-bit offset can only be a multiple of 4 bytes
LD.64 XD4,*(A2+#16) ; 64-bit offset can only be a multiple of 8 bytes
; Scaled values (left shift or multiplied values)
LD.U16 D1,*(A2+#1<<1) ; 16-bit offset can only be a multiple of 2 bytes
LD.U16 D1,*(A2+#3<<1) ; 16-bit offset can only be a multiple of 2 bytes
LD.64 XD4,*(A2+#2<<3) ; 64-bit offset can only be a multiple of 8 bytes
; Pointer Addressing with #Immediate Increment/Decrement Examples
LD.B0 D0,*(A2++#9) ; Byte offset can be any value
LD.U16 D1,*(A2++#10) ; 16-bit offset can only be a multiple of 2 bytes
LD.32 D2,*(A2++#4) ; 32-bit offset can only be a multiple of 4 bytes
LD.64 XD4,*(A2++#24) ; 64-bit offset can only be a multiple of 8 bytes

; INCORRECT Examples:
LD.U16 D1,*(A2++#5) ; INCORRECT: offset can only be a multiple of 2
LD.U16 D1,*(A2+#3<<0) ; INCORRECT: offset can only be a multiple of 2
LD.64 XD4,*(A2+#10) ; INCORRECT: offset can only be a multiple of 8
; If ArrayX is not aligned to a 32-bit boundary and LD.32 is called,
; then a CPU addressing fault is generated.

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 51

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Note
The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount
("#scale"). This is automatically performed by the CPU hardware based on the word size being
accessed by the instruction.
• Byte access increments/decrements by #size=1, or scales by #scale=0 (multiply by 1)
• 16-bit access increments/decrements by #size=2, or scales by #scale=1 (multiply by 2)
• 32-bit access increments/decrements by #size=4, or scales by #scale=2 (multiply by 4)
• 64-bit access increments/decrements by #size=8, or scales by #scale=3 (multiply by 8)

4.3.2 Pipeline Considerations

While the C29x CPU implements a fully protected pipeline, there are some considerations required:

• Up to two loads and one store can occur in parallel within an instruction packet. This can include modifying
the Ax addressing registers. One Ax register can be read multiple times in parallel, but the register cannot be
written to more than once in parallel in a single packet.

• The assembly language tools flag if any assembly code has more than one instruction modifying the same
destination register within the same instruction packet.

An example of valid code is provided with two loads and one store in a single packet:

LD.32 D0,*A2+A0 ; Use A0 as an index from A2
||LD.32 D1,*A2+A1 ; Use A1 as an index from A2
||ST.32 *(A2-=#4),D3 ; Pre-Decrement A2
||ADD A0,A0,#6 ; Add #6 to A0 register
||SUB A1,A1,#10 ; Sub #10 from A1 register
; each Ax register is only modified once here.

4.4 Types of Addressing Modes
This section provides details on each of the types of addressing modes available in the C29x CPU.

4.4.1 Direct Addressing

The Direct Addressing type allows direct read or write access to any location in the 32-bit memory space with the
immediate address provided in the instruction.

The typical use case is for accessing fixed address locations (such as peripheral registers) or variables that are
at fixed memory locations (at build time).

Drawbacks of the type include that this addressing mode is only available on 48-bit instructions and so code that
extensively uses this type of addressing mode uses more space.

Benefits of the type include that this addressing mode does not require any addressing pointer. If the values
being accessed are few and randomly dispersed in the user program, this type of addressing mode can be more
efficient than trying to initialize a pointer and use pointer addressing.

Examples

LD.U16 D0,@ADC2.ResultReg5 ; Load register D0 with the location of
 ; ADC2 peripheral result register 5

Addressing Modes www.ti.com

52 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.4.2 Pointer Addressing

4.4.2.1 Pointer Addressing with #Immediate Offset

The Pointer Addressing with #Immediate Offset type allows indirect read or write access to any location in the
32-bit memory space with the pointer address from one of the addressing registers, A0 to A14, and an optional
immediate offset provided in the instruction.

The immediate offset is added to the base register using a full 32-bit unsigned ADD operation. If the value
overflows, the value wraps around.

The typical use case is for indexing into a given data array, or a peripheral, in any random order multiple times.
Each addressing mode within this type is tailored to a specific use:

*(Ax+#u28imm) For implementing position independent code, or when accessing very large data arrays.

*(Ax+#u10imm) For accessing data arrays of 1KB or less.

*(Ax+#u10imm<<2) For accessing peripheral registers (peripherals have register ranges of 4KB, or multiples of 4KB,
and are aligned on 32-bit word boundary).

*(Ax+#u8imm<<2) For moving multiple data entries between two 32-bit data arrays of less than 1KB. Used only in one
data move instruction, which enables this functionality to in a compact 32-bit instruction.

Note
All data accesses must be aligned to the nearest word size. See Section 4.3.1 for more details and
cautions regarding alignment.

4.4.2.2 Pointer Addressing with Pointer Offset

The Pointer Addressing with Pointer Offset type allows indirect read or write access to any location in the 32-bit
memory space with the pointer address (base address register) from one of the addressing registers, A0 to A14,
and an offset provided by an additional pointer (index register) in the instruction.

This structure allows for easy data array access using a variable index. An example of this can be demonstrated
with a 32-bit integer array. If the eighth int in the array is needed, the element can be accessed as follows:

; Because the array is of type int, each element is 4 bytes (32 bits) long.
; So the index must be multiplied by 4 (which is the same as <<2)
; Starting parameters:
; int arr[7] = 12
; A2 = arr (base address)
; A0 = i (index) = 7 (the eigth int in the array)

LD.32 D0,*(A2+A0<<2) ; D0 = arr + (7<<2 byte offset)

; Result:
; D0 = 12

• 8-bit accesses do not need the index "i" to be multiplied (no shift needed). 16-bit accesses require "i" to be
multiplied by 2 (<<1) for 2-byte alignment.

• 32-bit accesses require "i" to be multiplied by 4 (<<2) for 4-byte alignment.
• 64-bit accesses require "i" to be multiplied by 8 (<<3) for 8-byte alignment.

The offset provided from the register and shift is added to the base register using a full 32-bit unsigned ADD
operation. If the value overflows, the value wraps around.

This allows for negative index values to wrap around:

; Starting parameters:
; A2 = arr = 8 = 0x0000 0008 (base address at 8th byte in memory space)
; A0 = i = -1 = 0xFFFF FFFF (index at -1)
*(A2+A0) = 8 + (-1) = 7th byte in memory space

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 53

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Note
All data accesses must be aligned to the nearest word size. See Section 4.3.1 for more details and
cautions regarding alignment.

4.4.2.3 Pointer Addressing with #Immediate Increment/Decrement

The Pointer Addressing with #Immediate Increment/Decrement type allows indirect read or write access to any
location in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14. An
immediate pre or post increment or decrement of the register is applied.

The increment offset size provided from the #Immediate value and is added to the base register using a full
32-bit unsigned ADD operation. If the value overflows, the value wraps around.

The decrement offset size provided from the #Immediate value and is added to the base register using a full
32-bit unsigned SUB operation. If the value underflows, the value wraps around.

Note
All data accesses must be aligned to the nearest word size. See Section 4.3.1 for more details and
cautions regarding alignment.

Note
The ADDR2 opcode field modes do not specify the increment step size ("#size") or scale amount
("#scale"). This is automatically performed by the CPU hardware based on the word size being
accessed by the instruction.
• Byte access increments/decrements by #size=1, or scales by #scale=0 (multiply by 1)
• 16-bit access increments/decrements by #size=2, or scales by #scale=1 (multiply by 2)
• 32-bit access increments/decrements by #size=4, or scales by #scale=2 (multiply by 4)
• 64-bit access increments/decrements by #size=8, or scales by #scale=3 (multiply by 8)

4.4.2.4 Pointer Addressing with Pointer Increment/Decrement

The Pointer Addressing with #Immediate Increment/Decrement type allows indirect read or write access to any
location in the 32-bit memory space with the pointer address from one of the addressing registers, A0 to A14,
and a pre or post increment or decrement of the register is applied using the value located in an additional
pointer register.

One of the addressing modes in this type, "*(Ax+#u7imm)++Ak", allows for a pointer increment/decrement along
with an offset. This is useful in code where values are accessed close to a variable index. An example of this can
be seen in the C and resultant assembly code:

C code:

For (i=0; i<N; i++)
{
 ArrayY[i] = ArrayX[i] + ArrayX[i+1];
 ArrayY[i+1] = ArrayX[i] - ArrayX[i+1];
}

Addressing Modes www.ti.com

54 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Resultant assembly code:

; Initialize ArrayX and ArrayY Pointers and i:
MV A0,#4 ; A0 = i = 4 = increment step size
MV A2,#ArrayX ; A2 = ArrayX base address
MV A3,#ArrayY ; A3 = ArrayY base address
...
; This code is repeated N times:
LD.32 D0,*(A2 + #0) ; D0 = ArrayX[i]
||LD.32 D1,*(A2 + #1*4)++A0 ; D1 = ArrayX[i+1], A2 = A2 + A0
ADD D2,D1,D0 ; D2 = ArrayX[i] + ArrayX[i+1];
||SUB D3,D1,D0 ; D3 = ArrayX[i] - ArrayX[i+1];
ST.32 *(A3 + #0),D2 ; ArrayY[i] = D2
ST.32 *(A3 + #1*4)++A0 ; ArrayY[i+1] = D3, A3 = A3 + A0

The increment offset size provided from the #Immediate value and is added to the base register using a full
32-bit unsigned ADD operation. If the value overflows, the value wraps around.

This wrap around can be used to implement a decrementing index. For example:

; Starting parameters:
; A2 = arr = 8 = 0x0000 0008 (base address at 8th byte in memory space)
; A0 = i = -1 = 0xFFFF FFFF (index at -1)
*(A2+A0) = 8 + (-1) = 7th byte in memory space

Note
All data accesses must be aligned to the nearest word size. See Section 4.3.1 for more details and
cautions regarding alignment.

4.4.3 Stack Addressing

The Stack Addressing type allows read or write access to any location in the stack space with the address
provided in addressing register A15, which is the dedicated Stack Pointer (SP).

Following is a list of key information regarding the stack pointer that helps in understanding these addressing
modes:

• Addressing register A15 is the dedicated stack pointer.
• The stack grows from low address to high address.
• The stack pointer always points to the next empty location at the top of the stack.
• The stack pointer must always be aligned to a 64-bit word boundary. Interrupts, Call, and Return operations

generate a fault, if the stack pointer is not aligned.
• If a stack pointer is not aligned to the word size being accessed, this also generates a fault.

When allocating stack space and accessing values on the stack, the recommended procedure is as follows:

• Allocate stack space in increments of 8-bytes (64-bits)
• Access the stack contents using the *(A15-#n13imm) addressing mode (all accesses must be aligned to the

word size being accessed)
• When done, de-allocate stack space (in decrements of 8-bytes)

For example: The program needs to allocate space for:

• 1* 64-bit value
• 3 * 32-bit values
• 1 * 16-bit value
• 3 * 8-bit values (bytes)

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 55

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The total number of bytes to allocate, taking into account the alignment can be 32 (which is the nearest 64-bit
address above the required 25 bytes):

64-bit +8 8 bytes total requires 8 bytes allocated
32-bit +4 12 bytes total requires 16 bytes allocated
32-bit +4 16 bytes total
32-bit +4 20 bytes total requires 24 bytes allocated
16-bit +2 22 bytes total
8-bit +1 23 bytes total
8-bit +1 24 bytes total
8-bit +1 25 bytes total requires 32 bytes allocated

Total Used = 25 bytes
Allocated = 32 bytes (closest multiple of 8-bytes [64-bits])

4.4.3.1 Allocating and De-allocating Stack Space

Stack space can be allocated and de-allocated as shown in the following examples:

Allocate 32-bytes (must be a multiple of 8-bytes):

ADD.U16 A15,A15,#32 ; SP = SP + 32

De-allocate 32-bytes (must be a multiple of 8-bytes):

SUB.U16 A15,A15,#32 ; SP = SP - 32

The compiler automatically allocates and de-allocates stack space and forces alignment to the 64-bit word
boundary.

It is also possible to use the *(A15++#u8imm) addressing mode to push something on the stack and also
allocate additional stack space if required and if the stack size is less than 256 bytes. For example:

ST.64 *(A15++#32),XD0 ; Push 64-bit XD0 value on stack, then allocate
 ; 32 bytes on stack (SP = SP + 32)

Similarly you can de-allocate and pop something from the stack using the *(A15 -= #n8imm) addressing mode.
For example:

LD.64 XD0,*(A15-=#32) ; De-allocate 32-bytes from stack (SP = SP - 32),
 ; and pop 64-bit value from stack into XD0

If required to access a value on the stack that is a distance greater than 8192 bytes, an addressing pointer
needs to be used to access the value. For example: to access a 32-bit value that is 8216 bytes away from top of
stack:

SUB.U16 A0,A15,#8216 ; A0 = SP - #8216
LD.32 D0,*A0 ; D0 = contents of stack at SP-8216

Typically, for large stacks, the compiler allocates one of the Ax addressing mode registers as a frame pointer and
can use the available pointer addressing modes to index into the stack.

The above approach can also be used to initialize pointers within the stack for situations where local variables
located on stack need to be accessed frequently or if required to use pointer increment/decrement operations on
the data.

Addressing Modes www.ti.com

56 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Note that regardless of the addressing mode used, any stack memory access must be aligned to the accessed
word size and any non-aligned access generates a fault. The compiler takes care of alignment of any data on
the stack space.

Note
1. If a pointer is used to access the stack contents, assume that the value is appropriately aligned to

the right word access size. If the value gets corrupted, it can cause an access fault.
2. The CALL operations automatically push the RPC (return PC) value on the stack and increment

the stack pointer by 8, hence always keeping stack alignment. The 32-bit RPC is stored in the
lower 32-bits of the 64-bit word. Similarly, a RET operation pops the RPC value from the stack
and decrements the SP by 8 maintaining stack alignment. If the stack pointer is not aligned when
exexcuting the CALL or RET operation, a fault is generated.

4.4.4 Circular Addressing Instruction

The C29x CPU does not support a native addressing mode for circular addressing like on the C28x CPU.
However, the functional parallelism present in the C29x CPU architecture makes sure that there is no
performance impact for the lack of native circular addressing mode.

Circular addressing is performed by instructions that modify the addressing registers in a circular fashion. These
are 16-bit instructions that require 1 cycle to execute. The instructions supported are:

INC.CIRC Ay,Ax:

Increment Ay until the limit (Ax) is reached, then reset the value to 0.

if (Ay >= Ax) Ay = 0
else Ay = Ay + 1
; where Ay = A0 to A3
; and Ax = A0 to A14

DEC.CIRC Ay,Ax:

Decrement Ay until the limit (0) is reached, then reset the value to Ax.

if (Ay <= 0) Ay = Ax
else Ay = Ay – 1
; where Ay = A0 to A3
; and Ax = A0 to A14

This type of addressing mode is typically used for implementing finite impulse response (FIR), least mean
squares (LMS), or convolution filters.

A typical FIR filter algorithm in C:

sum = 0;
circ_index = save_circ_index;
for(i=0; i < N_taps; i++)
{
 sum += Data[circ_index] * Coef[i];
 circ_index++;
 if(circ_index >= N_taps)
 circ_index = 0;
}
save_circ_index = circ_index;

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 57

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The main kernel for the filter can be coded as follows (example for a 7-tap FIR):

LD.32 A0,@save_circ_index ; A0 = circ_index
MV A6,#N-1 ; A6 = filter taps, N = 7
MV A4,#Data ; A4 -> Data Array
MV A5,#Coef ; A5 -> Coef Array
LD.32 M0,*(A4+A0) ; Read Data From Current Index
||LD.32 M1,*A5++ ; Read Coef, Increment Coef Pointer
||INC.CIRC A0,A6 ; if(A0 >= A6) A0 = 0 else A0 = A0 + 1
SMPYF M4,M0,M1
||LD.32 M0,*(A4+A0) ; Read Data From Current Index
||LD.32 M1,*A5++ ; Read Coef, Increment Coef Pointer
||INC.CIRC A0,A6 ; if(A0 >= A6) A0 = 0 else A0 = A0 + 1
SMPYF M5,M0,M1
||LD.32 M0,*(A4+A0) ; Read Data From Current Index
||LD.32 M1,*A5++ ; Read Coef, Increment Coef Pointer
||INC.CIRC A0,A6 ; if(A0 >= A6) A0 = 0 else A0 = A0 + 1
SMPYF M6,M0,M1
||LD.32 M0,*(A4+A0) ; Read Data From Current Index
||LD.32 M1,*A5++ ; Read Coef, Increment Coef Pointer
||INC.CIRC A0,A6 ; if(A0 >= A6) A0 = 0 else A0 = A0 + 1
SMPYF M7,M0,M1
||LD.32 M0,*(A4+A0) ; Read Data From Current Index
||LD.32 M1,*A5++ ; Read Coef, Increment Coef Pointer
||INC.CIRC A0,A6 ; if(A0 >= A6) A0 = 0 else A0 = A0 + 1
SMPYF M4,M0,M1
||SADDF M6,M6,M4
||LD.32 M0,*(A4+A0) ; Read Data From Current Index
||LD.32 M1,*A5++ ; Read Coef, Increment Coef Pointer
||INC.CIRC A0,A6 ; if(A0 >= A6) A0 = 0 else A0 = A0 + 1
SMPYF M5,M0,M1
||SADDF M7,M7,M5
||LD.32 M0,*(A4+A0) ; Read Data From Current Index
||LD.32 M1,*A5++ ; Read Coef, Increment Coef Pointer
||INC.CIRC A0,A6 ; if(A0 >= A6) A0 = 0 else A0 = A0 + 1
SMPYF M4,M0,M1
||SADDF M6,M6,M4
ADDF M7,M7,M5
ADDF M6,M6,M4
ST.32 @save_circ_index,A0 ; Save current circ index position
ADDF M7,M7,M6 ; final sum = M7

Addressing Modes www.ti.com

58 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

4.4.5 Bit Reversed Addressing Instruction

The C29x CPU does not support a native bit reversed addressing mode like on the C28x CPU. However, the
functional parallelism present in the C29x CPU architecture makes sure that there is no performance impact for
the lack of native bit reversed addressing mode.

Bit reversed addressing is performed by an instruction that modifies the addressing registers in a bit reversed
fashion and is typically used for re-ordering data for Fast-Fourier Transform (FFT) type algorithms.

Table 4-8. Bit Reversed Addressing Visualized
Address Value Bit Reversed Address Bit Reversed Value

0000 0 0000 0

0001 1 1000 8

0010 2 0100 4

0011 3 1100 12

0100 4 0010 2

0101 5 1010 10

0110 6 0110 6

0111 7 1110 14

1000 8 0001 1

1001 9 1001 9

1010 10 0101 5

...

The supported instruction for bit reversed addressing is:

ADD.BITREV Az,Ay,Ax

Perform the ADD operation, but add the bits from left to right (unlike a standard ADD that is from right to left). An
example is:

; Ax = 0011 1001
; Ay = 0000 1000
; Az = 0011 0101 (after a bit reversed add):
ADD Az,Ay,Ax ; Normal Add: Az = 0100 0001
ADD.BITREV Az,Ay,Ax ; Bit Reversed Add: Az = 0011 0101

The following example shows how this operation is used to reverse an array of Data in bit reversed order:

BitReversedIndex = 0;
BitReversedIncrement = N/2;
for(i=0; i < N; i++)
{
 BitReversedDataArray[BitReversedIndex] = NormalDataArray[i];
 BitReversedIndex = BitReversedAdd(BitReversedIndex+BitReversedIncrement);
}

Typically, when bit reversing data, the data array is a multiple of 2 in size (N = 16, 32, 64, 128, and so on).

The BitReversedIncrement then needs to be set to half the array size (N/2) to increment by 1 in bit reversed
order.

www.ti.com Addressing Modes

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 59

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The assembly code for the previous operation is:

MV A0,#0 ; A0 = BitReversedIndex = 0
MV A8,#N/2 ; A8 = Increment Step = N/2
MV A4,#NormalDataArray ; A4 = Stating Address Of
 ; NormalDataArray
MV A5,#BitReversedDataArray ; A5 = Stating Address Of
 ; BitReversedDataArray

; Repeat N times:
LD.32 D0,*A4++ ; Read From NormalDataArray
ST.32 *(A5+A0),D0 ; Write To BitReversedDataArray
||ADD.BITREV A0,A0,A8 ; Increment BitReversedIndex
LD.32 D0,*A4++ ; Read From NormalDataArray
ST.32 *(A5+A0),D0 ; Write To BitReversedDataArray
||ADD.BITREV A0,A0,A8 ; Increment BitReversedIndex
....
LD.32 D0,*A4++ ; Read From NormalDataArray
ST.32 *(A5+A0),D0 ; Write To BitReversedDataArray
||ADD.BITREV A0,A0,A8 ; Increment BitReversedIndex

Addressing Modes www.ti.com

60 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The Safety and Security Unit (SSU) implements safety, memory management (MPU) and security as one
function. This chapter provides a brief overview of the SSU module. Details regarding the SSU are provided in
the F29H85x and F29P58x Real-Time Microcontrollers Technical Reference Manual.

5.1 SSU Overview... 62
5.2 Links and Task Isolation.. 63
5.3 Sharing Data Outside Task Isolation Boundary...65
5.4 Protected Call and Return..66

Chapter 5
Safety and Security Unit (SSU)

www.ti.com Safety and Security Unit (SSU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 61

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/spruj79
https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

5.1 SSU Overview
The SSU acts as a filter or firewall between the CPU, memory and peripherals and enforces the user protection
policy as the CPU attempts to access peripherals and memory on the chip. All device resources such as Flash,
ROM, RAM, and peripherals need to be assigned to Access Protection (AP) ranges. Any code running on the
C29x CPU is associated with a LINK through an APx region. This LINK is then associated with a STACK, which
is in turn associated with a specific ZONE.

SECSP0LINK0

Z0
LINK1 SECSP1

Z1

LINK2

SECSP2

LINK3

LINK4 SECSP4

LINK5 SECSP5 Z2

APxLINKn

Start Addr

End Addr

EXE

APx

LINK0

Start Addr

End Addr

R?

W?

LINKn
R?

W?

LINK1
R?

W?

Rules For LINKs, STACKs, ZONEs:

��Mul�ple LINKs Can Point To The Same STACK

��LINKs Cannot Point To More Than One STACK

��Mul�ple STACKs Can Point To The Same ZONE

��STACKs Cannot Point To More Than One ZONE

��Must Use CALL.PROT/RET.PROT When Crossing STACKs

��Must Use CALL.PROT/RET.PROT When Crossing ZONEs

If Access Protec�on (APx) is con�gured for EXE (code execu�on), then it �es the selected address range to a

LINK

Address ranges CANNOT overlap (see NOTE)

CODE

DATA

(variables, tables,

constants)

&

SW STACKs

&

PERIPHERALS

Read & Write Permission Can Be Assigned On A Per LINK Basis

Mul�ple LINKs can be associated for the same address range, each with their own Read & Write Permission

Address ranges CANNOT overlap (see NOTE)

The CLINK feature, if enabled, allows the selected region to be accessed only by CALLS from the selected LINKs

and it is typically used for passing parameteres to common code func�ons that can be shared across mul�ple

tasks (LINKs)

CCLINKE

CCLINK

CALL.PROT/RET.PROT

CALL.PROT/RET.PROT

LINK STACK ZONE

CALL/RET

CALL/RET

Figure 5-1. SSU Overview

Note
• Standard CALL/RET operations can be used to jump between LINKS, as long as the operations do

not jump between STACKs.
• CALL.PROT/RET.PROT can be used even without crossing STACKs, which can be beneficial

when initially segmenting code before allocating each function to different STACKs.
• Rules which apply for CALL.PROT applies for LB.PROT
• For a system containing multiple C29x CPUs, each CPU has LINKs, STACKs, and AP regions,

while ZONEs are shared across the device.

Safety and Security Unit (SSU) www.ti.com

62 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

5.2 Links and Task Isolation
The Safety and Security approach is based on the concept of task isolation. For this section, the example of
two distinct tasks (a control task and a communication task) is used. Tasks are unable to view or corrupt the
unique program memory, data memory, software stack, and peripheral access of other tasks. From a debugging
perspective, each secure zone (ZONE1, ZONE2) has a security password which can only be accessed by
enabling the zone for debug with a matching password. Each task has an associated secure Stack Pointer
(SECSP2, SECSP3) that is copied into the CPU stack pointer SP = A15 when entering the respective task.
When exiting the task, the current contents of the CPU stack pointer is copied into the respective Stack Pointer
(SECSP2, SECSP3).

The C29x CPU utilizes the concept of a LINK to tie execution code to a specific task. For example, LINK2 is
associated with SECSP2 and ZONE1. Similarly, LINK3 is associated with SECSP3 and ZONE2 as shown in
Figure 5-2.

Data RAMProg Code RAM

Prog Code FLASH

Data Tables ROM

Control

Task

PC

Ax

Instruction

Control

Variables

Comms

Task

Prog Code ROM

Data Tables

FLASH

LINK2

LINK2

LINK2

Prog Code RAM

Prog Code FLASH

PC Instruction

Prog Code ROM

LINK3

LINK3

LINK3

Data RAM

Character

Array

Data Tables ROM

Ax

Data Tables

FLASH

Software Stack

SP

Passed Paramters

Return Address

Local variables

Stack Empty

A15

SECSP2

Peripherals

Ax
ADC Regs

PWM Regs
Ax

Software Stack

SP

Passed Paramters

Return Address

Local variables

Stack Empty

A15

SECSP3

Peripherals

UART Regs

SPI Regs

Ax

Ax

Figure 5-2. Concept of Links for Creating Task Isolation

www.ti.com Safety and Security Unit (SSU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 63

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Control

Task

Comms

Task

AP2

AP1

Data RAMProg Code

RAM

Prog Code

FLASH

Data Tables

ROM

Instruction

Control

Variables

Prog Code

ROM

Data Tables

FLASHLINK2

LINK2

Start Addr

End Addr

AP0LINK2

Start Addr

End Addr

End Addr

Start Addr

AP3

Start Addr

End Addr

LINK2

AP4LINK2

Start Addr

End Addr

AP5LINK2

Start Addr

End Addr

W

R

REXE

EXE

EXE

SW Stack

SP

Passed

Parameters

Return Addr

Local

variables

Empty

A15

SECSP2

LINK2

AP6

LINK2

Start Addr

End Addr

W

AP7

Peripherals

ADC Regs

PWM Regs

LINK2

Start Addr

End Addr

AP8LINK2

Start Addr

End Addr

W

W

AP11

AP10

Data RAMProg Code

RAM

Prog Code

FLASH

Data Tables

ROM

Instruction

Prog Code

ROM

Data Tables

FLASHLINK3

LINK3

Start Addr

End Addr

AP9LINK3

Start Addr

End Addr

End Addr

Start Addr

AP12

Start Addr

End Addr

LINK3

AP13LINK3

Start Addr

End Addr

AP14LINK3

Start Addr

End Addr

W

R

REXE

EXE

EXE Character

Array

SW Stack

SP

Passed

Parameters

Return Addr

Local

variables

Empty

A15

SECSP3

LINK3

AP15

LINK3

Start Addr

End Addr

W

AP16

Peripherals

LINK3

Start Addr

End Addr

AP17LINK3

Start Addr

End Addr

W

W

UART Regs

SPI Regs

Figure 5-3. Concept of Access Protection to Memories and Peripherals

Note
The minimum address granularity for all Access Protection (AP) regions is 4KB.

Safety and Security Unit (SSU) www.ti.com

64 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

5.3 Sharing Data Outside Task Isolation Boundary
When Control Task (LINK2) needs to share data with Communication Task (LINK3), a shared RAM (with AP18)
needs to be used with LINK2 having WRITE attribute and LINK3 having READ attribute. In the same way, when
Communication Task (LINK3) wants to share data with Control Task (LINK2), another shared RAM (with AP19)
needs to be used with LINK3 having WRITE attribute and LINK2 having READ attribute. Similarly, ADC2 Result
registers (with AP20) are assigned to LINK2 and LINK3 with READ attribute. This allows both communication
and control task to read ADC2 result registers.

Secure

 Zone 2 (Z2)

Secure

 Zone 1 (Z1)

AP7

AP2

AP1

Data RAMProg Code

RAM

Peripherals

Prog Code

FLASH

Data Tables

ROM

SW Stack

Control

Task

SP

Passed

Parameters
Return Addr

Local

variables

Empty

Instruc�on

ADC1

Result

 Regs

PWM Regs

Control

Variables

Comms

Task

A15

SECSP2

Prog Code

ROM

Data Tables

FLASHLINK2

LINK2

LINK2

LINK2

Start Addr

End Addr

AP0LINK2

Start Addr

End Addr

End Addr

Start Addr

AP3

Start Addr

End Addr

LINK2

AP4LINK2

Start Addr

End Addr

AP5LINK2

Start Addr

End Addr

AP6

LINK2

Start Addr

End Addr

Start Addr

End Addr

AP8LINK2

Start Addr

End Addr

W

R

R

W

EXE

EXE

EXE

W

W

AP16

AP11

AP10

Data RAMProg Code

RAM

Peripherals

Prog Code

FLASH

Data Tables

ROM

SW Stack

SP

Passed

Parameters
Return Addr

Local

variables

Empty

Instruc�on

A15

SECSP3

Prog Code

ROM

Data Tables

FLASHLINK3

LINK3

LINK3

LINK3

Start Addr

End Addr

AP9LINK3

Start Addr

End Addr

End Addr

Start Addr

AP12

Start Addr

End Addr

LINK3

AP13LINK3

Start Addr

End Addr

AP14LINK3

Start Addr

End Addr

AP15

LINK3

Start Addr

End Addr

Start Addr

End Addr

AP17LINK3

Start Addr

End Addr

W

R

R

W

EXE

EXE

EXE

W

W

UART Regs

SPI Regs

Character

Array

Shared

RAM

Control

to

Comm

AP18
LINK2

Start Addr

End Addr

W

LINK3 R

Shared

RAM

Comm

to

Control

AP19
LINK2

Start Addr

End Addr

R

LINK3 W

AP20

ADC2

Result

Regs

LINK2

Start Addr

End Addr

R

LINK3 R

Figure 5-4. Concept of Sharing Data Across LINKS

www.ti.com Safety and Security Unit (SSU)

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 65

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

5.4 Protected Call and Return
The CALL.PROT operation is permitted to cross STACKs. When arriving at the destination address of the
CALL.PROT, the ENTRY1.PROT and ENTRY2.PROT instructions must be the first instructions executed. If
these instructions are not present, the CPU enters the FAULT state. Upon returning from the CALL.PROT
operation, the very first instruction at the return address must be the EXIT.PROT instruction. If the EXIT.PROT
instruction is not present, the CPU enters the FAULT state. These ENTRY and EXIT instructions control the
entry and exit points of the code when security boundaries are crossed and enable user code to check any
passed parameters or data before being used.

Secure

 Zone 2 (Z2)

Secure

 Zone 1 (Z1)

AP1

Prog Code

FLASH

SW Stack

Control

Task

SP

Empty

Comms

Task

A15

SECSP2

LINK2

LINK2
Start Addr

End Addr

AP6

LINK2

Start Addr

End Addr

WEXE

AP10

Prog Code

FLASH

SW Stack

SP

Empty

A15

SECSP3

LINK3

LINK3Start Addr

End Addr

AP15

LINK3

Start Addr

End Addr

W

EXE

ControlFunc:

 ENTRY1.PROT

 ||ENTRY2.PROT

 user code....

 RET.PROT

CALL.PROT @ControlFunc

 EXIT.PROT

On ENTRY1.PROT

SECSP2 copied to A15

On RET.PROT

A15 copied to SECSP2

On CALL.PROT

A15 copied to SECSP3

On EXIT.PROT

SECSP3 copied to A15

Figure 5-5. Protected Call and Return

Safety and Security Unit (SSU) www.ti.com

66 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

The debug controller in the CPU contains hardware extensions for advanced emulation features that can
assist you in the development of your application system (software and hardware). This chapter describes the
emulation features that are available on all F29x devices using only the JTAG port (with TI extensions).

6.1 Overview of Emulation Features...68
6.2 Debug Terminology.. 68
6.3 Debug Interface...68
6.4 Execution Control Mode.. 69
6.5 Breakpoints, Watchpoints, and Counters.. 71

Chapter 6
Emulation

www.ti.com Emulation

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 67

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

6.1 Overview of Emulation Features
The CPU’s hardware extensions for advanced emulation features provide simple, inexpensive, and speed
independent access to the CPU for sophisticated debugging and economical system development, without
requiring the costly cabling and access to processor pins required by traditional emulator systems.

This access is provided without intruding on system resources. The on-chip development interface provides:

• Minimally intrusive access to internal and external memory
• Minimally intrusive access to CPU and peripheral registers
• Control of the execution of code:

– Break on a software breakpoint instruction (instruction replacement)
– Break on a specified program or data access without requiring instruction replacement
– Break on external attention request from debug host or additional hardware
– Break after the execution of a single instruction (single-stepping)
– Control over the execution of code from device power up

• Nonintrusive determination of device status:
– Detection of a system reset, emulation/test-logic reset, or power-down occurrence
– Detection of the absence of a system clock or memory-ready signal
– Determination of whether global interrupts are enabled
– Determination of why debug accesses can be blocked

• A cycle counter for performance benchmarking.

6.2 Debug Terminology
The following definitions aid in understanding the information in this chapter:

• Debug-halt state.: The state in which the device does not execute code.
• Debug event: An action, such as the decoding of a software breakpoint instruction, the occurrence of a

breakpoint/watchpoint, external system trigger, or a request from a host processor that can result in special
debug behavior, such as halting the device.

• Break event: A debug event that causes the device to enter the debug-halt state.

6.3 Debug Interface
The target-level TI debug interface uses the five standard IEEE 1149.1 (JTAG) signals (TRST, TCK, TMS, TDI,
and TDO) and the two TI extensions (EMU0 and EMU1). Figure 6-1 shows the 14-pin JTAG header that is
used to interface the target to a scan controller, and Table 6-1 defines the pins. As listed in Table 6-1, the
header requires more than the five JTAG signals and the TI extensions. The header also requires a test clock
return signal (TCK_RET), the target supply (VCC), and ground (GND). TCK_RET is a test clock out of the scan
controller and into the target system. The target system uses TCK_RET, if the target system does not supply a
test clock (in which case TCK can not be used). In many target systems, TCK_RET is connected to TCK and
used as the test clock.

Interface a Target

TMS 1 2 TRST

TDI 3 4 GND

PD(VCC) 5 6 No pin (key)

TDO 7 8 GND

TCK_RET 9 10 GND

TCK 11 12 GND

EMU0 13 14 EMU1

Header dimensions:
Pin-to-pin spacing: 0.100 in. (X,Y)
Pin width: 0.025- in. square post

Figure 6-1. JTAG Header to Interface a Target to the Scan Controller

Emulation www.ti.com

68 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Table 6-1. 14-Pin Header Signal Descriptions
Signal Description Emulator

State(1)
Target
State(1)

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

GND Ground

PD (VCC) Presence detect. Indicates that the emulation cable is connected and that the target is powered up.
PD must be tied to VCC in the target system. I O

TCK Test clock. TCK is a clock source from the emulation cable pod. This signal can be used to drive the
system test clock. O I

TCK_RET Test clock return. Test clock input to the emulator. Can be a buffered or unbuffered version of TCK. I O

TDI Test data input O I

TDO Test data output I O

TMS Test mode select O I

TRST (2) Test reset O I

(1) I = input; O = output
(2) Do not use pull-up resistors on TRST: an internal pull-down resistor is on the device. In a low-noise environment, TRST can be left

floating. In a high-noise environment, an additional pull-down resistor can be needed. (The size of this resistor can be based on
electrical current considerations.)

The state of the TRST, EMU0, and EMU1 signals at device power up determines the operating mode of the
device. The operating mode takes effect as soon as the device has sufficient power to operate. If the TRST
signal rises, the EMU0 and EMU1 signals are sampled on the rising edge and the operating mode is latched.
Some of these modes are reserved for test purposes, but those that can be of use in a target system are
detailed in Table 6-2. A target system is not required to support any mode other than normal mode.

Table 6-2. Selecting Device Operating Modes By Using TRST, EMU0, and EMU1
TRST EMU1 EMU0 Device Operating Mode JTAG Cable

Active?
Low Low Low Peripheral mode. Disables the CPU and memory portions of the C29x CPU.

Another processor treats the C29x CPU as a peripheral.
No

Low Low High Reserved for testing No

Low High Low Wait-in-reset mode. Prolongs the device’s reset until released by external means.
This allows a C29x CPU to power up in reset, provided external hardware holds
EMU0 low only while power-up reset is active.

Yes

Low High High Normal mode with emulation disabled. This is the setting that must be used on
target systems when a scan controller (such as the XDS510) is not attached. TRST
is pulled down and EMU1 and EMU0 pulled up within the C29x CPU; this is the
default mode.

No

High Low or High Low or High Normal mode with emulation enabled. This is the setting to use on target
systems when a scan controller is attached (the scan controller controls TRST).
TRST must not be high during device power-up.

Yes

6.4 Execution Control Mode
The C29x CPU supports stop mode debug execution control mode. Stop mode provides complete control of
program execution, allowing for the disabling of all interrupts. In this execution mode program execution is
suspended at break events, such as occurrence of software breakpoint instructions or specified program-space
or data-space accesses.

Stop mode causes break events, such as breakpoints and watchpoints, to suspend program execution at
the next interrupt boundary (which is usually identical to the next instruction boundary). When execution is
suspended, all interrupts (including NMI and RS) are ignored until the CPU receives a directive to run code
again.

www.ti.com Emulation

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 69

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

In stop mode, the CPU can operate in the following execution states:

• Debug-halt state: In the stop mode debug-halt state, the CPU is halted. This state is entered when the CPU
is running with debug enabled and encounters a break event such as a breakpoint or watchpoint, hardware
trigger or user initiated halt request.
– User Halt: User issues a Debug-halt request from the debugger.
– Hardware Breakpoint : ERAD can be setup to generate hardware breakpoints on a specified Program

Address. This causes the CPU to go to a halted condition, if the instruction packet at the designated
address is about to enter the Decode2 phase of the CPU pipeline.

– Software breakpoint : This is setup by the debugger by putting the EMUSTOP0 instruction at a desired
program address. This causes the CPU to go to a halted condition, if the EMUSTOP0 is about to enter the
Decode2 phase of the CPU pipeline.

– Watchpoint : ERAD can be configured to generate a watchpoint when the CPU makes a designated
data memory access or some other system condition or a combination of these. Once this defined event
occurs, ERAD generates a Watchpoint request to the Debug controller that can cause the CPU to halt.

– External Triggers: Triggers at the device level coming from various sources outside the CPU can be
configured to make a HALT request to the CPU and can also cause the CPU to HALT. This is typically
used when halting of one CPU requires triggering the halt of another CPU when multiple CPUs are being
controlled by the Debugger.

In the debug-halt state, since the CPU is halted, the CPU cannot service any interrupts, including NMI and
RS (reset). When multiple instances of the same interrupt occur without the first instance being serviced
when the CPU is in halted debug state, the later instances are lost.

• Single-Step state: This state is entered when the user indicates to the debugger to execute a single
instruction packet. The CPU executes the single instruction packet pointed to by the PC and then returns
to the debug-halt state (the CPU executes from one interrupt boundary to the next). The CPU is only in the
single-instruction state until that single instruction is done. If an interrupt occurs in this state, the command
used to enter this state determines whether that interrupt can be serviced. If DINT is set, the CPU can service
the interrupt;.if DINT is not set, the CPU can not service interrupts even if the interrupt is NMI or RS.

• Run state: This state is entered from a halted condition when user issues a run command from the debugger
interface while stop debug mode is enabled. The CPU executes instructions until a debugger command or a
debug event returns the CPU to the debug-halt state. The CPU can service all interrupts in this state. When
an interrupt occurs simultaneously with a debug event, the debug event has priority; however, if interrupt
processing began before the debug event occurred, the debug event cannot be processed until the interrupt
service routine begins.

• Free-run: This state is entered from a halted condition when user issues a run command from the debugger
interface after disabling stop mode debug mode. The CPU resumes execution and ignores further debug
events like breakpoints, watchpoints and triggers and continues execution as if the debugger is no longer
connected.

• Synchronous Run: This is merely an extension of the basic run state. Based on the configuration, the debug
controller can be configured to receive a run request such that the CPU starts the actual run only on a certain
global synchronization signal going active. This method is used when starting execution simultaneously on
multiple CPUs being controlled by the debugger.

Emulation www.ti.com

70 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

6.5 Breakpoints, Watchpoints, and Counters

6.5.1 Software Breakpoint

The CPU supports the ESTOP instruction that can be used to trigger a halt when executed by the CPU while the
debugger is connected. When the debugger is not connected, this instruction is executed as a NOP.

6.5.2 Hardware Debugging Resources

Each C29x CPU-based system has an ERAD (Embedded Real-time analysis and Diagnostics) module that aids
with debug and system analysis capabilities. These capabilities can be used either with the debugger connected
or as part of real-time application too. The two main components are the Enhanced bus comparator block (EBC)
and the System event counter block (SEC), with an optional PC trace module. The number of instances of the
EBC and SEC are device dependent.

6.5.2.1 Hardware Breakpoint

The ERAD Enhanced bus comparator (EBC) module is a scalable module that consists of many identical bus
comparator units. These units can generate hardware breakpoints. A hardware breakpoint, acts just like a
software breakpoint instruction (in this case, the ESTOP0 instruction) but does not require a modification to the
application software. Hardware breakpoints allow masking of address bits. Additionally hardware breakpoints
allow masking of address bits allowing a breakpoint to be triggered over an address range with just one
EBC resource. A hardware breakpoint triggers a debug event and this halts the CPU before the instruction is
executed. A bus comparator watches the program address bus, comparing the contents against a reference
address and a bit mask value.

6.5.2.2 Hardware Watchpoint

The ERAD Enhanced bus comparator (EBC) module bus comparator units that generate hardware watch points
to the CPU by monitoring either the data read address bus or data write address bus.

A hardware watchpoint triggers a debug event when either an address or an address and data match a compare
value. The address portion is compared against a reference address and bit mask, and the data portion is
compared against a reference data value and a bit mask.

When comparing two addresses, you can set two watchpoints. When comparing an address and a data value,
you can set only one watchpoint. When performing a read watchpoint, the address is available a few cycles
earlier than the data; the watchpoint logic accounts for this.

The point where execution stops depends on whether the watchpoint was a read or write watchpoint, and
whether the watchpoint was an address or an address/data read watchpoint. In the following example, a read
address watchpoint occurs when the address X is accessed, and the CPU stops with the instruction counter (IC)
pointing three instructions after that point.

For a read watchpoint that requires both an address and data match, the CPU stops with the IC pointing six
instructions after that point.

In the following example, a write address watchpoint occurs when the address Y is accessed, and the CPU
stops with the IC pointing six instructions after that point.

www.ti.com Emulation

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 71

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

6.5.2.3 Benchmark Counters

The System event counter module consists of many identical counter units. The number of units available is
device specific. These units can be used for various types of system scenarios like:

1. Using counter as a simple system timer
2. Counting of system events (like interrupts, critical system events etc.)
3. Generating interrupts/events based on counter threshold
4. Profiling code segments
5. Measuring number of wait states in code segments
6. Counting duration between system events
7. Counting duration between specified memory reads and writes
8. Counting duration between specified memory reads/writes and system events
9. Measuring minimum and maximum time taken between a pair of events measured over multiple iterations
10. Chaining counters to either link events or to create a larger counter.

This module is accessible both by the debugger and the application software. The access to application software
enables the use of the debug and profiling abilities even in the absence of the debugger. This is essential in
many real-time systems since it is not always possible to connect a debugger and perform intrusive debug.
Under such situations, the user code sets up and controls these modules and is still able to debug and profile the
system without disturbing the end application.

6.5.3 PC Trace

This ERAD module has an optional Program Counter trace block which helps keep track of PC discontinuity/
jumps, which can in turn help track the complete sequence of software that got executed at any given point
of time. The module only tracks the discontinuity in the instruction fetches/execution (non-sequential), the
sequential code execution can be easily reconstructed using software. Once a trace is completed/stopped, the
trace data can be read out using the debugger to reconstruct the code execution sequence. There are multiple
trace modes to control when to enable tracing and when to disable tracing based on events generated by ERAD
EBC events or some critical system level events.

Trace data is stored in a ram space which can be read at any time with additional status information on trace
validity that can be used for reconstructing the code execution sequence. For every discontinuity, two PC values
are stored, that is, the source of discontinuity and the destination.

Emulation www.ti.com

72 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from November 7, 2024 to March 31, 2025 (from Revision * (November 2024) to
Revision A (March 2025)) Page
• Removed design-specific information...5

www.ti.com Revision History

SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

C29x CPU 73

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

Revision History www.ti.com

74 C29x CPU SPRUIY2A – NOVEMBER 2024 – REVISED MARCH 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

This page intentionally left blank.

https://www.ti.com
https://www.ti.com/lit/pdf/SPRUIY2
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRUIY2A&partnum=F29x

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Read This First
	About This Manual
	Related Documentation from Texas Instruments
	Glossary
	Support Resources
	Trademarks

	1 Architecture Overview
	1.1 Introduction to the CPU
	1.2 Data Type
	1.3 C29x CPU System Architecture
	1.3.1 Emulation Logic
	1.3.2 CPU Interface Buses

	1.4 Memory Map

	2 Central Processing Unit (CPU)
	2.1 C29x CPU Architecture
	2.1.1 Features
	2.1.2 Block Diagram

	2.2 CPU Registers
	2.2.1 Addressing Registers (Ax/XAx)
	2.2.2 Fixed-Point Registers (Dx/XDx)
	2.2.3 Floating-Point Register (Mx/XMx)
	2.2.4 Program Counter (PC)
	2.2.5 Return Program Counter (RPC)
	2.2.6 Status Registers
	2.2.6.1 Interrupt Status Register (ISTS)
	2.2.6.2 Decode Phase Status Register (DSTS)
	2.2.6.3 Execute Phase Status Register (ESTS)

	2.3 Instruction Packing
	2.3.1 Standalone Instructions and Restrictions
	2.3.2 Instruction Timeout

	2.4 Stacks
	2.4.1 Software Stack
	2.4.2 Protected Call Stack
	2.4.3 Real Time Interrupt / NMI Stack

	3 Interrupts
	3.1 CPU Interrupts Architecture Block Diagram
	3.2 RESET, NMI, RTINT, and INT
	3.2.1 RESET (CPU reset)
	3.2.1.1 Required Instructions (RESET)

	3.2.2 NMI (Non-Maskable Interrupt)
	3.2.2.1 Blocking and Masking (NMI)
	3.2.2.2 Signal Propagation (NMI)
	3.2.2.3 Stack (NMI)
	3.2.2.4 Required Instructions (NMI)

	3.2.3 RTINT (Real-Time Interrupt)
	3.2.3.1 Blocking and Masking (RTINT)
	3.2.3.2 Signal Propagation (RTINT)
	3.2.3.3 Stack (RTINT)
	3.2.3.4 Required Instructions (RTINT)

	3.2.4 INT (Low-Priority Interrupt)
	3.2.4.1 Blocking and Masking (INT)
	3.2.4.2 Signal Propagation (INT)
	3.2.4.3 Stack (INT)

	3.3 Conditions Blocking Interrupts
	3.3.1 ATOMIC Counter

	3.4 CPU Interrupt Control Registers
	3.4.1 Interrupt Status Register (ISTS)
	3.4.2 Decode Phase Status Register (DSTS)
	3.4.3 Interrupt-Related Stack Registers

	3.5 Interrupt Nesting
	3.5.1 Interrupt Nesting Example Diagram

	3.6 Security
	3.6.1 Overview
	3.6.2 LINK
	3.6.3 STACK
	3.6.4 ZONE

	4 Addressing Modes
	4.1 Addressing Modes Overview
	4.1.1 Documentation and Implementation
	4.1.2 List of Addressing Mode Types
	4.1.2.1 Additional Types of Addressing

	4.1.3 Addressing Modes Summarized

	4.2 Addressing Mode Fields
	4.2.1 ADDR1 Field
	4.2.2 ADDR2 Field
	4.2.3 ADDR3 Field
	4.2.4 DIRM Field
	4.2.5 Additional Fields

	4.3 Alignment and Pipeline Considerations
	4.3.1 Alignment
	4.3.2 Pipeline Considerations

	4.4 Types of Addressing Modes
	4.4.1 Direct Addressing
	4.4.2 Pointer Addressing
	4.4.2.1 Pointer Addressing with #Immediate Offset
	4.4.2.2 Pointer Addressing with Pointer Offset
	4.4.2.3 Pointer Addressing with #Immediate Increment/Decrement
	4.4.2.4 Pointer Addressing with Pointer Increment/Decrement

	4.4.3 Stack Addressing
	4.4.3.1 Allocating and De-allocating Stack Space

	4.4.4 Circular Addressing Instruction
	4.4.5 Bit Reversed Addressing Instruction

	5 Safety and Security Unit (SSU)
	5.1 SSU Overview
	5.2 Links and Task Isolation
	5.3 Sharing Data Outside Task Isolation Boundary
	5.4 Protected Call and Return

	6 Emulation
	6.1 Overview of Emulation Features
	6.2 Debug Terminology
	6.3 Debug Interface
	6.4 Execution Control Mode
	6.5 Breakpoints, Watchpoints, and Counters
	6.5.1 Software Breakpoint
	6.5.2 Hardware Debugging Resources
	6.5.2.1 Hardware Breakpoint
	6.5.2.2 Hardware Watchpoint
	6.5.2.3 Benchmark Counters

	6.5.3 PC Trace

	7 Revision History

