TMS320C54x DSP **Reference Set**

Volume 3: Algebraic Instruction Set

Literature Number: SPRU179C March 2001

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that products or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: <u>Standard Terms and Conditions of Sale for Semiconductor Products.</u> www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Preface

Read This First

About This Manual

The TMS320C54xTM DSP is a fixed-point digital signal processor (DSP) in the TMS320TM DSP family and it can use either of two forms of the instruction set: a mnemonic form or an algebraic form. This book is a reference for the algebraic form of the instruction set. It contains information about the instructions used for all types of operations (arithmetic, logical, load and store, conditional, and program control), the nomenclature used in describing the instruction operation, and supplemental information you may need, such as interrupt priorities and locations. For information about the mnemonic form of the instruction set, see *TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set*, literature number SPRU172.

How to Use This Manual

The following table summarizes the C54x[™] DSP information contained in this book:

If you are looking for information about:	Turn to:
Arithmetic operations	Chapter 2, Instruction Set Summary
Conditions for conditional instructions	Appendix A, Condition Codes
Control register layout	Appendix B, CPU Status and Control Registers
Example description of instruction	Chapter 1, Symbols and Abbreviations
Individual instruction descriptions	Chapter 4, Assembly Language Instructions
Instruction set abbreviations	Chapter 1, Symbols and Abbreviations
Instruction set classes	Chapter 3, Instruction Classes and Cycles

If you are looking for information about:	Turn to:
Instruction set symbols	Chapter 1, Symbols and Abbreviations
Load and store operations	Chapter 2, Instruction Set Summary
Logical operations	Chapter 2, Instruction Set Summary
Program control operations	Chapter 2, Instruction Set Summary
Status register layout	Appendix B, CPU Status and Control Registers
Summary of instructions	Chapter 2, Instruction Set Summary

Notational Conventions

This book uses the following conventions.

Program listings and program examples are shown in a special typeface.

Here is a segment of a program listing:

lms(*AR3+,*AR4+)

□ In syntax descriptions, the instruction is in a **bold typeface** and parameters are in an *italic typeface*. Portions of a syntax in **bold** must be entered as shown; portions of a syntax in *italics* describe the type of information that you specify. Here is an example of an instruction syntax:

Ims(Xmem, Ymem)

Ims is the instruction, and it has two parameters, *Xmem* and *Ymem*. When you use **Ims**, the parameters should be actual dual data-memory operand values. A comma and a space (optional) must separate the two values.

The term OR is used in the assembly language instructions to denote a Boolean operation. The term or is used to indicate selection. Here is an example of an instruction with OR and or:

Ik OR (src) \rightarrow src or [dst]

This instruction ORs the value of lk with the contents of src. Then, it stores the result in src or dst, depending on the syntax of the instruction.

□ Square brackets, [and], identify an optional parameter. If you use an optional parameter, specify the information within the brackets; do not type the brackets themselves.

Related Documentation From Texas Instruments

The following books describe the TMS320C54x[™] DSP and related support tools. To obtain a copy of any of these TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924. When ordering, please identify the book by its title and literature number. Many of these documents are located on the internet at http://www.ti.com.

- **TMS320C54x DSP Reference Set, Volume 1: CPU** (literature number SPRU131) describes the TMS320C54x[™] 16-bit fixed-point general-purpose digital signal processors. Covered are its architecture, internal register structure, data and program addressing, and the instruction pipeline. Also includes development support information, parts lists, and design considerations for using the XDS510[™] emulator.
- **TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set** (literature number SPRU172) describes the TMS320C54x[™] digital signal processor mnemonic instructions individually. Also includes a summary of instruction set classes and cycles.
- **TMS320C54x DSP Reference Set, Volume 3: Algebraic Instruction Set** (literature number SPRU179) describes the TMS320C54x[™] digital signal processor algebraic instructions individually. Also includes a summary of instruction set classes and cycles.
- **TMS320C54x DSP Reference Set, Volume 4: Applications Guide** (literature number SPRU173) describes software and hardware applications for the TMS320C54x[™] digital signal processor. Also includes development support information, parts lists, and design considerations for using the XDS510[™] emulator.
- TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals (literature number SPRU302) describes the enhanced peripherals available on the TMS320C54x[™] digital signal processors. Includes the multichannel buffered serial ports (McBSPs), direct memory access (DMA) controller, interprocessor communications, and the HPI-8 and HPI-16 host port interfaces.
- **TMS320C54x DSP Family Functional Overview** (literature number SPRU307) provides a functional overview of the devices included in the TMS320C54x[™] DSP generation of digital signal processors. Included are descriptions of the CPU architecture, bus structure, memory structure, on-chip peripherals, and instruction set.

- **TMS320C54x DSKplus User's Guide** (literature number SPRU191) describes the TMS320C54x[™] digital signal processor starter kit (DSK), which allows you to execute custom TMS320C54x DSP code in real time and debug it line by line. Covered are installation procedures, a description of the debugger and the assembler, customized applications, and initialization routines.
- *TMS320C54x Code Composer Studio Tutorial* (literature number SPRU327) introduces the Code Composer Studio integrated development environment and software tools for the TMS320C54x.
- *Code Composer User's Guide* (literature number SPRU328) explains how to use the Code Composer development environment to build and debug embedded real-time DSP applications.
- **TMS320C54x Assembly Language Tools User's Guide** (literature number SPRU102) describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C54x[™] generation of devices.
- **TMS320C54x Optimizing C Compiler User's Guide** (literature number SPRU103) describes the TMS320C54x[™] C compiler. This C compiler accepts ANSI standard C source code and produces assembly language source code for the TMS320C54x generation of devices.
- **TMS320C54x Simulator Getting Started** (literature number SPRU137) describes how to install the TMS320C54x[™] simulator and the C source debugger for the TMS320C54x DSP. The installation for MS-DOS[™], PC-DOS[™], SunOS[™], Solaris[™], and HP-UX[™] systems is covered.
- **TMS320C54x Evaluation Module Technical Reference** (literature number SPRU135) describes the TMS320C54x[™] evaluation module, its features, design details and external interfaces.
- **TMS320C54x Code Generation Tools Getting Started Guide** (literature number SPRU147) describes how to install the TMS320C54x[™] assembly language tools and the C compiler for the TMS320C54x devices. The installation for MS-DOS[™], OS/2[™], SunOS[™], Solaris[™], and HP-UX[™] 9.0x systems is covered.
- **TMS320C5xx C Source Debugger User's Guide** (literature number SPRU099) tells you how to invoke the TMS320C54x[™] emulator, evaluation module, and simulator versions of the C source debugger interface. This book discusses various aspects of the debugger interface, including window management, command entry, code execution, data management, and breakpoints. It also includes a tutorial that introduces basic debugger functionality.

- *TMS320C54x Simulator Addendum* (literature number SPRU170) tells you how to define and use a memory map to simulate ports for the TMS320C54x[™] DSP. This addendum to the *TMS320C5xx C Source Debugger User's Guide* discusses standard serial ports, buffered serial ports, and time division multiplexed (TDM) serial ports.
- Setting Up TMS320 DSP Interrupts in C Application Report (literature number SPRA036) describes methods of setting up interrupts for the TMS320[™] DSP family of processors in C programming language. Sample code segments are provided, along with complete examples of how to set up interrupt vectors.
- **TMS320VC5402 and TMS320UC5402 Bootloader** (literature number SPRA618) describes the features and operation of the TMS320VC5402 and TMS320UC5402 bootloader. Also discussed is the contents of the on-chip ROM.
- **TMS320C548/C549 Bootloader Technical Reference** (literature number SPRU288) describes the process the bootloader uses to transfer user code from an external source to the program memory at power up. (Presently available only on the internet.)
- TMS320 Third-Party Support Reference Guide (literature number SPRU052) alphabetically lists over 100 third parties that provide various products that serve the TMS320[™] DSP family. A myriad of products and applications are offered—software and hardware development tools, speech recognition, image processing, noise cancellation, modems, etc.

Trademarks

TMS320, TMS320C2x, TMS320C20x, TMS320C24x, TMS320C5x, TMS320C54x, C54x, 320 Hotline On-line, Micro Star, TI, XDS510, and XDS510WS are trademarks of Texas Instruments.

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS and Windows are trademarks of Microsoft Corporation.

OS/2 and PC-DOS are trademarks of International Business Machines Corporation.

PAL® is a registered trademark of Advanced Micro Devices, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc., but licensed exclusively to Sun Microsystems, Inc.

Contents

1	Lists a	ools and Abbreviations	1-1
	1.1 1.2	Instruction Set Symbols and Abbreviations	
2	Provie	uction Set Summary	
	2.1 2.2 2.3 2.4 2.5	Arithmetic Operations 2 Logical Operations 2 Program-Control Operations 2 Load and Store Operations 2 Repeating a Single Instruction 2	2-9 -12 -16
3		uction Classes and Cycles	3-1
4		mbly Language Instructions	4-1
Α		lition Codes	\-1
В		Status and Control Registers E vs the bit fields of the TMS320C54x CPU status and control registers.	3-1
С		sary	C-1

Figures

B–1	Processor Mode Status Register (PMST)	B-2
B–2	Status Register 0 (ST0)	B-2
B–3	Status Register 1 (ST1)	B-2

Tables

1–1	Instruction Set Symbols and Abbreviations	. 1-2
1–2	Opcode Symbols and Abbreviations	. 1-5
1–3	Instruction Set Notations	. 1-7
1–4	Operators Used in Instruction Set	. 1-8
2–1	Add Instructions	
2–2	Subtract Instructions	. 2-3
2–3	Multiply Instructions	
2–4	Multiply-Accumulate and Multiply-Subtract Instructions	. 2-5
2–5	Double (32-Bit Operand) Instructions	
2–6	Application-Specific Instructions	
2–7	AND Instructions	
2–8	OR Instructions	
2–9	XOR Instructions	
2–10	Shift Instructions	2-11
2–11	Test Instructions	2-11
2–12	Branch Instructions	2-12
2–13	Call Instructions	2-13
2–14	Interrupt Instructions	
2–15	Return Instructions	
2–16	Repeat Instructions	
2–17	Stack-Manipulating Instructions	
2–18	Miscellaneous Program-Control Instructions	
2–19	Load Instructions	2-16
2–20	Store Instructions	2-18
2–21	Conditional Store Instructions	2-18
2–22	Parallel Load and Store Instructions	2-19
2–23	Parallel Load and Multiply Instructions	2-19
2–24	Parallel Store and Add/Subtract Instructions	2-19
2–25	Parallel Store and Multiply Instructions	2-20
2–26	Miscellaneous Load-Type and Store-Type Instructions	
2–27	Multicycle Instructions That Become Single-Cycle Instructions When Repeated	2-22
2–28	Nonrepeatable Instructions	
A–1	Conditions for Conditional Instructions	. A-2
A–2	Groupings of Conditions	. A-3
B–1	Register Field Terms and Definitions	. B-1

Chapter 1

Symbols and Abbreviations

This chapter lists and defines the symbols and abbreviations used in the instruction set summary and in the individual instruction descriptions. It also provides an example description of an instruction.

TopicPage1.1Instruction Set Symbols and Abbreviations1-21.2Example Description of Instruction1-9

1.1 Instruction Set Symbols and Abbreviations

Table 1–1 through Table 1–4 list the symbols and abbreviations used in the instruction set summary (Chapter 2) and in the individual instruction descriptions (Chapter 4).

Table 1–1. Instruction Set Symbols and Abbreviations

Symbol	Meaning
А	Accumulator A
ALU	Arithmetic logic unit
AR	Auxiliary register, general usage
ARx	Designates a specific auxiliary register ($0 \le x \le 7$)
ARP	Auxiliary register pointer field in ST0; this 3-bit field points to the current auxiliary register (AR).
ASM	5-bit accumulator shift mode field in ST1 (-16 \leq ASM \leq 15)
В	Accumulator B
BRAF	Block-repeat active flag in ST1
BRC	Block-repeat counter
bit_code	4-bit value that determines which bit of a designated data memory value is tested by the test bit instruction ($0 \le bit_code \le 15$)
C16	Dual 16-bit/double-precision arithmetic mode bit in ST1
С	Carry bit in ST0
CC	2-bit condition code ($0 \le CC \le 3$)
CMPT	Compatibility mode bit in ST1
CPL	Compiler mode bit in ST1
cond	An operand representing a condition used by instructions that execute conditionally
[d]	Delay option
DAB	D address bus
DAR	DAB address register
dmad	16-bit immediate data-memory address ($0 \le dmad \le 65535$)
Dmem	Data-memory operand
DP	9-bit data-memory page pointer field in ST0 (0 \leq DP \leq 511)

Symbol	Meaning
dst	Destination accumulator (A or B)
dst_	Opposite destination accumulator:
	If $dst = A$, then $dst_{-} = B$
	If $dst = B$, then $dst_{-} = A$
EAB	E address bus
EAR	EAB address register
extpmad	23-bit immediate program-memory address
FRCT	Fractional mode bit in ST1
hi(A)	High part of accumulator A (bits 31–16)
HM	Hold mode bit in ST1
IFR	Interrupt flag register
INTM	Interrupt mode bit in ST1
К	Short-immediate value of less than 9 bits
k3	3-bit immediate value ($0 \le k3 \le 7$)
k5	5-bit immediate value (-16 \leq k5 \leq 15)
k9	9-bit immediate value ($0 \le k9 \le 511$)
lk	16-bit long-immediate value
Lmem	32-bit single data-memory operand using long-word addressing
mmr, MMR	Memory-mapped register
MMRx, MMRy	Memory-mapped register, AR0–AR7 or SP
n	Number of words following the execute conditionally instruction; $n = 1$ or 2
Ν	Designates the status register modified in the reset or set status register bit, and execute conditionally instructions:
	N = 0 Status register ST0
	N = 1 Status register ST1
OVA	Overflow flag for accumulator A in ST0
OVB	Overflow flag for accumulator B in ST0

Table 1–1. Instruction Set Symbols and Abbreviations (Continued)

Symbol	Meaning
OVdst	Overflow flag for the destination accumulator (A or B)
OVdst_	Overflow flag for the opposite destination accumulator (A or B)
OVsrc	Overflow flag for the source accumulator (A or B)
OVM	Overflow mode bit in ST1
PA	16-bit port immediate address (0 \leq PA \leq 65 535)
PAR	Program address register
PC	Program counter
pmad	16-bit immediate program-memory address ($0 \le pmad \le 65535$)
Pmem	Program-memory operand
PMST	Processor mode status register
prog	Program-memory operand
[R]	Rounding option
RC	Repeat counter
REA	Block-repeat end address register
rnd	Round
RSA	Block-repeat start address register
RTN	Fast-return register used in [d]return_fast instruction
SBIT	4-bit value that designates the status register bit number modified in the reset or set status register bit, and execute conditionally instructions ($0 \le SBIT \le 15$)
SHFT	4-bit shift value (0 \leq SHFT \leq 15)
SHIFT	5-bit shift value (-16 \leq SHIFT \leq 15)
Sind	Single data-memory operand using indirect addressing
Smem	16-bit single data-memory operand
SP	Stack pointer
src	Source accumulator (A or B)
ST0, ST1	Status register 0, status register 1
SXM	Sign-extension mode bit in ST1

Table 1–1. Instruction Set Symbols and Abbreviations (Continued)

Symbol	Meaning
Т	Temporary register
ТС	Test/control flag in ST0
TOS	Top of stack
TRN	Transition register
TS	Shift value specified by bits 5–0 of T (–16 \leq TS \leq 31)
uns	Unsigned
XF	External flag status bit in ST1
XPC	Program counter extension register
Xmem	16-bit dual data-memory operand used in dual-operand instructions and some single-operand instructions
Ymem	16-bit dual data-memory operand used in dual-operand instructions
– – SP	Stack pointer value is decremented by 1
+ + SP	Stack pointer value is incremented by 1
+ + PC	Program counter value is incremented by 1

Table 1–1. Instruction Set Symbols and Abbreviations (Continued)

Table 1–2. Opcode Symbols and Abbreviations

Symbol	Meaning
А	Data-memory address bit
ARX	3-bit value that designates the auxiliary register
BITC	4-bit bit code
CC	2-bit condition code
0000 0000	8-bit condition code
COND	4-bit condition code
D	Destination (dst) accumulator bit
	D = 0 Accumulator A
	D = 1 Accumulator B

Symbol	Meaning
I	Addressing mode bit
	I = 0 Direct addressing mode
	I = 1 Indirect addressing mode
К	Short-immediate value of less than 9 bits
MMRX	4-bit value that designates one of nine memory-mapped registers (0 \leq MMRX \leq 8)
MMRY	4-bit value that designates one of nine memory-mapped registers (0 \leq MMRY \leq 8)
Ν	Single bit
NN	2-bit value that determines the type of interrupt
R	Rounding (rnd) option bit
	R = 0 Execute instruction without rounding
	R = 1 Round the result
S	Source (src) accumulator bit
	S = 0 Accumulator A
	S = 1 Accumulator B
SBIT	4-bit status register bit number
SHFT	4-bit shift value (0 \leq SHFT \leq 15)
SHIFT	5-bit shift value (-16 \leq SHIFT \leq 15)
Х	Data-memory bit
Y	Data-memory bit
Z	Delay instruction bit
	Z = 0 Execute instruction without delay
	Z = 1 Execute instruction with delay

Table 1–2. Opcode Symbols and Abbreviation (Continued)

Symbol	Meaning
Boldface Characters	Boldface characters in an instruction syntax must be typed as shown. <i>Example:</i> For the syntax abdst (<i>Xmem, Ymem</i>), you can use a variety of values for <i>Xmem</i> and <i>Ymem</i> , but the word abdst must be typed as shown.
italic symbols	Italic symbols in an instruction syntax represent variables. <i>Example:</i> For the syntax abdst (<i>Xmem, Ymem</i>), you can use a variety of values for <i>Xmem</i> and <i>Ymem</i> .
[x]	Operands in square brackets are optional. <i>Example:</i> For the syntax <i>dst</i> = <i>src</i> + <i>Smem</i> [<< <i>SHIFT</i>], you must use a value for <i>Smem</i> and <i>src</i> ; however, <i>SHIFT</i> is optional.
#	Prefix of constants used in immediate addressing. For short- or long-immediate operands, # is used in instructions where there is ambiguity with other addressing modes that use immediate operands. For example:
	repeat #15 uses short immediate addressing. It causes the next instruction to be repeated 16 times.
	repeat 15 uses direct addressing. The number of times the next instruction repeats is determined by a value stored in memory.
	For instructions using immediate operands for which there is no ambiguity, # is accepted by the assembler. For example, RPTZ A, #15 and RPTZ A, 15 are equivalent.
(abc)	The content of a register or location abc.Example:(src) means the content of the source accumulator.
$X \to Y$	Value x is assigned to register or location y. <i>Example:</i> (Smem) \rightarrow dst means the content of the data-memory value is loaded into the des- tination accumulator.
r(n–m)	Bits n through m of register or location r. <i>Example:</i> src(15–0) means <i>bits 15 through 0 of the source accumulator</i> .
<< nn	Shift of nn bits left (negative or positive)
	Parallel instruction
\\	Rotate left
//	Rotate right
x	Logical inversion (1s complement) of x
x	Absolute value of x
AAh	Indicates that AA represents a hexadecimal number

Table 1–3. Instruction Set Notations

Symbols	Operators	Evaluation
+ - ~	Unary plus, minus, 1s complement	Right to left
* / %	Multiplication, division, modulo	Left to right
+ -	Addition, subtraction	Left to right
<< >>	Left shift, right shift	Left to right
< < <	Logical left shift	Left to right
< ≤	Less than, LT or equal	Left to right
> ≥	Greater than, GT or equal	Left to right
≠ !=	Not equal to	Left to right
&	Bitwise AND	Left to right
^	Bitwise exclusive OR	Left to right
I	Bitwise OR	Left to right

Table 1-4. Operators Used in Instruction Set

Note: Unary +, -, and * have higher precedence than the binary forms.

1.2 Example Description of Instruction

This example of a typical instruction description is provided to familiarize you with the format of the instruction descriptions and to explain what is described under each heading. Each instruction description in Chapter 4 presents the following information:

- Assembler syntax
- Operands
- Opcode
- Execution
- Status Bits
- Description
- □ Words
- Cycles
- □ Classes
- Examples

Each instruction description begins with an assembly syntax expression. Labels may be placed either before the instruction on the same line or on the preceding line in the first column. An optional comment field may conclude the syntax expression. Spaces are required between the fields:

- Label
- Command and operands
- Comment

Syntax	 src = src + Smem src += Smem src = src + Smem << TS src += Smem << TS dst = src + Smem << 16 dst += Smem << 16 dst = src + Smem [<< SHIFT] dst += Smem [<< SHIFT] Each instruction description begins with an assembly syntax expression. See Section 1.1 on page 1-2 for definitions of symbols in the syntax.
Operands	Smem:Single data-memory operandsrc, dst:A (accumulator A) $-16 \leq SHIFT \leq 15$ B (accumulator B)
	Operands may be constants or assembly-time expressions that refer to memory, I/O ports, register addresses, pointers, and a variety of other constants. This section also gives the range of acceptable values for the operand types.
Opcode	
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	x x
Execution	1: $(Smem) + (src) \rightarrow src$ 2: $(Smem) \ll (TS) + (src) \rightarrow src$ 3: $(Smem) \ll 16 + (src) \rightarrow dst$ 4: $(Smem) [\iff SHIFT] + (src) \rightarrow dst$
	The execution section describes the processing that takes place when the instruction is executed. The example executions are numbered to correspond to the numbered syntaxes. See Section 1.1 on page 1-2 for definitions of symbols in the execution.
Status Bits	An instruction's execution may be affected by the state of the fields in the status registers; also it may affect the state of the status register fields. Both the effects <i>on</i> and the effects <i>of</i> the status register fields are listed in this section.
Description	This section describes the instruction execution and its effect on the rest of the processor or on memory contents. Any constraints on the operands imposed by the processor or the assembler are discussed. The description parallels and supplements the information given symbolically in the execution section.

Words	This field specifies the number of memory words required to store the instruc- tion and its extension words. For instructions operating in single-addressing mode, the number of words given is for all modifiers except for long-offset modifiers, which require one additional word.
Cycles	This field specifies the number of cycles required for a given C54x DSP instruc- tion to execute as a single instruction with data accesses in DARAM and program accesses from ROM. Additional details on the number of cycles required for other memory configurations and repeat modes are given in Chapter 3, <i>Instruction Classes and Cycles</i> .
Classes	This field specifies the instruction class for each syntax of the instruction. See Chapter 3, <i>Instruction Classes and Cycles</i> , for a description of each class.
Example	Example code is included for each instruction. The effect of the code on memory and/or registers is summarized when appropriate.

Chapter 2

Instruction Set Summary

The TMS320C54x[™] DSP instruction set can be divided into four basic types of operations:

- Arithmetic operations
- Logical operations
- Program-control operations
- Load and store operations

In this chapter, each of the types of operations is divided into smaller groups of instructions with similar functions. With each instruction listing, you will find the best possible numbers for word count and cycle time, and the instruction class. You will also find a page number that directs you to the appropriate place in the instruction set of Chapter 4. Also included is information on repeating a single instruction and a list of nonrepeatable instructions.

TopicPage2.1Arithmetic Operations2-22.2Logical Operations2-92.3Program-Control Operations2-122.4Load and Store Operations2-162.5Repeating a Single Instruction2-22

2.1 Arithmetic Operations

This section summarizes the arithmetic operation instructions. Table 2–1 through Table 2–6 list the instructions within the following functional groups:

- □ Add instructions (Table 2–1)
- □ Subtract instructions (Table 2–2 on page 2-3)
- □ Multiply instructions (Table 2–3 on page 2-4)
- □ Multiply-accumulate instructions (Table 2–4 on page 2-5)
- □ Multiply-subtract instructions (Table 2–4 on page 2-5)
- Double (32-bit operand) instructions (Table 2–5 on page 2-7)
- Application-specific instructions (Table 2–6 on page 2-8)

Table 2–1. Add Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
src = src + Smem src + = Smem	src = src + Smem	1	1	3A, 3B	4-4
src = src + Smem << TS src + = Smem << TS	src = src + Smem << TS	1	1	3A, 3B	4-4
<i>dst</i> = <i>src</i> + <i>Smem</i> << 16 <i>dst</i> + = <i>Smem</i> << 16	dst = src + Smem << 16	1	1	3A, 3B	4-4
dst = src + Smem [<< SHIFT] dst + = Smem [<< SHIFT]	dst = src + Smem << SHIFT	2	2	4A, 4B	4-4
src = src + Xmem << SHFT src + = Xmem << SHFT	src = src + Xmem << SHFT	1	1	3A	4-4
<i>dst</i> = <i>Xmem</i> << 16 + <i>Ymem</i> << 16	dst = Xmem << 16 + Ymem << 16	1	1	7	4-4
dst = src + #lk [<< SHFT] dst + = #lk [<< SHFT]	dst = src + #lk << SHFT	2	2	2	4-4
<i>dst</i> = <i>src</i> + # <i>lk</i> << 16 <i>dst</i> + = # <i>lk</i> << 16	dst = src + #lk << 16	2	2	2	4-4
dst = dst + src [<< SHIFT] dst + = src [<< SHIFT]	dst = dst + src << SHIFT	1	1	1	4-4
dst = dst + src << ASM dst + = src << ASM	dst = dst + src << ASM	1	1	1	4-4
src = src + Smem + CARRY src + = Smem + CARRY	src = src + Smem + C	1	1	3A, 3B	4-8

Table 2–1.	Add	Instructions	(Continued)
------------	-----	--------------	-------------

Syntax	Expression	W †	Cycles [†]	Class	Page
Smem = Smem + #lk Smem + = #lk	Smem = Smem + #lk	2	2	18A, 18B	4-9
<i>src</i> = <i>src</i> + uns(<i>Smem</i>) <i>src</i> + = uns(<i>Smem</i>)	src = src + uns(Smem)	1	1	3A, 3B	4-10

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Smem*.

Table 2–2. Subtract Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
src = src – Smem src – = Smem	src = src – Smem	1	1	3A, 3B	4-191
<i>src</i> = <i>src</i> – <i>Smem</i> << TS <i>src</i> – = <i>Smem</i> << TS	src = src - Smem << TS	1	1	3A, 3B	4-191
<i>dst</i> = <i>src</i> – <i>Smem</i> << 16 <i>dst</i> – = <i>Smem</i> << 16	dst = src - Smem << 16	1	1	3A, 3B	4-191
dst = src – Smem [<< SHIFT] dst – = Smem [<< SHIFT]	dst = src - Smem << SHIFT	2	2	4A, 4B	4-191
src = src – Xmem << SHFT src – = Xmem << SHFT	src = src - Xmem << SHFT	1	1	3A	4-191
<i>dst</i> = <i>Xmem</i> << 16 – <i>Ymem</i> << 16	dst = Xmem << 16 - Ymem << 16	1	1	7	4-191
dst = src - #lk [<< SHFT] dst - = #lk [<< SHFT]	dst = src – #lk << SHFT	2	2	2	4-191
<i>dst</i> = <i>src</i> - # <i>lk</i> << 16 <i>dst</i> - = # <i>lk</i> << 16	dst = src - #lk << 16	2	2	2	4-191
dst = dst – src << SHIFT dst – = src << SHIFT	dst = dst – src << SHIFT	1	1	1	4-191
dst = dst - src << ASM dst - = src << ASM	dst = dst - src << ASM	1	1	1	4-191
src = src – Smem – BORROW src – = Smem – BORROW	$src = src - Smem - \overline{C}$	1	1	3A, 3B	4-195

Syntax	Expression	W †	Cycles [†]	Class	Page
subc(<i>Smem</i> , <i>src</i>)	$\begin{array}{l} \mbox{If } (src-Smem<<15) \geq 0 \\ src = (src-Smem<<15) <<1+1 \\ \mbox{Else} \\ src = src <<1 \end{array}$	1	1	3A, 3B	4-196
<i>src</i> = <i>src</i> – uns(<i>Smem</i>) <i>src</i> – = uns(<i>Smem</i>)	src = src - uns(Smem)	1	1	3A, 3B	4-198

Table 2–2. Subtract Instructions (Continued)

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Smem*.

Table 2–3. Multiply Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
dst = T * Smem	dst = T * Smem	1	1	3A, 3B	4-103
<i>dst</i> = rnd(T * <i>Smem</i>)	dst = rnd(T * Smem)	1	1	3A, 3B	4-103
dst = Xmem * Ymem [, T = Xmem]	dst = Xmem * Ymem, T = Xmem	1	1	7	4-103
dst = Smem * #lk [, T = Smem]	dst = Smem * #lk , T = Smem	2	2	6A, 6B	4-103
<i>dst</i> = T * # <i>lk</i>	dst = T * #lk	2	2	2	4-103
dst = T * hi(A)	dst = T * A(32–16)	1	1	1	4-106
B = Smem * hi(A) [, T = Smem]	B = Smem * A(32–16), T = Smem	1	1	3A, 3B	4-106
dst = T * uns(Smem)	dst = uns(T) * uns(Smem)	1	1	3A, 3B	4-108
dst = Smem * Smem [, T = Smem] dst = square(Smem) [, T = Smem]	dst = Smem * Smem, T = Smem	1	1	3A, 3B	4-163
dst = hi(A) * hi(A) dst = square(hi(A))	dst = A(32–16) * A(32–16)	1	1	1	4-163

Syntax	Expression	W †	Cycles [†]	Class	Page
src = src + T * Smem src += T * Smem	src = src + T * Smem	1	1	3A, 3B	4-83
dst = src + Xmem * Ymem [, T = Xmem] dst + = Xmem * Ymem [, T = Xmem]	dst = src + Xmem * Ymem, T = Xmem	1	1	7	4-83
dst = src + T * #lk dst + = T * #lk	dst = src + T * #lk	2	2	2	4-83
dst = src + Smem * #lk [, T = Smem] dst + = Smem * #lk [, T = Smem]	dst = src + Smem * #lk, T = Smem	2	2	6A, 6B	4-83
<pre>src = rnd(src + T * Smem)</pre>	<pre>src = rnd(src + T * Smem)</pre>	1	1	3A, 3B	4-83
dst = rnd(src + Xmem * Ymem) [, T = Xmem]	dst = rnd(src + Xmem * Ymem), T = Xmem	1	1	7	4-83
B = B + Smem * hi(A) [, T = Smem] B + = Smem * hi(A) [, T = Smem]	B = B + Smem * A(32–16), T = Smem	1	1	3A, 3B	4-87
dst = src + T * hi(A) dst + = T * hi(A)	dst = src + T * A(32–16)	1	1	1	4-87
B = rnd(B + <i>Smem</i> * hi(A)) [, <i>T</i> = <i>Smem</i>]	B = rnd(B + Smem * A(32–16)), T = Smem	1	1	3A, 3B	4-87
<i>dst</i> = rnd(<i>src</i> + T * hi(A))	dst = rnd(src + T * A(32–16))	1	1	1	4-87
macd(<i>Smem</i> , <i>pmad</i> , <i>src</i>)	src = src + Smem * pmad, T = Smem, (Smem + 1) = Smem	2	3	23A, 23B	4-89
macp(<i>Smem</i> , <i>pmad</i> , <i>src</i>)	src = src + Smem * pmad, T = Smem	2	3	22A, 22B	4-91
<pre>src = src + uns(Xmem) * Ymem [, T = Xmem] src + = uns(Xmem) * Ymem [, T = Xmem]</pre>	src = src + uns(Xmem) * Ymem, T = Xmem	1	1	7	4-93

Table 2–4. Multiply-Accumulate and Multiply-Subtract Instructions

Syntax	Expression	W†	Cycles [†]	Class	Page
src = src – T * Smem src – = T * Smem	src = src – T * Smem	1	1	3A, 3B	4-96
<pre>src = rnd(src - T * Smem)</pre>	src = rnd(src – T * Smem)	1	1	3A, 3B	4-96
dst = src – Xmem * Ymem [, T = Xmem] dst – = Xmem * Ymem [, T = Xmem]	dst = src – Xmem * Ymem, T = Xmem	1	1	7	4-96
dst = rnd(src – Xmem * Ymem) [, T = Xmem]	dst = rnd(src – Xmem * Ymem), T = Xmem	1	1	7	4-96
B = B – <i>Smem</i> * hi(A) [, <i>T</i> = <i>Smem</i>] B – = <i>Smem</i> * hi(A) [, <i>T</i> = <i>Smem</i>]	B = B – Smem * A(32–16), T = Smem	1	1	3A, 3B	4-99
dst = src - T * hi(A) $dst - = T * hi(A)$	dst = src – T * A(32–16)	1	1	1	4-99
dst = rnd(src - T * hi(A))	dst = rnd(src - T * A(32–16))	1	1	1	4-99
src = src + square(Smem) [, $T = Smem$] src + = square(Smem) [, $T = Smem$] src = src + Smem * Smem [, $T = Smem$] src + = Smem * Smem [, $T = Smem$]	src = src + Smem * Smem, T = Smem	1	1	3A, 3B	4-165
src = src - square(Smem) [, $T = Smem$] src - = square(Smem) [, $T = Smem$] src = src - Smem * Smem [, $T = Smem$] src - = Smem * Smem [, $T = Smem$]	src = src – Smem * Smem, T = Smem	1	1	3A, 3B	4-167

Table 2–4.	Multiply-Accur	nulate and Multi	iplv-Subtract	Instructions	(Continued)
10010 L 1.	manipiy / looun	nalato ana man	pry Castract		containaca)

Syntax	Expression	W †	Cycles [†]	Class	Page
dst = src + dbl(Lmem) dst + = dbl(Lmem) dst = src + dual(Lmem) dst + = dual(Lmem)	If C16 = 0 dst = Lmem + src If C16 = 1 dst(39-16) = Lmem(31-16) + src(31-16) dst(15-0) = Lmem(15-0) + src(15-0)	1	1	9A, 9B	4-37
<i>dst</i> = dadst(<i>Lmem</i> , T)	If C16 = 0 dst = Lmem + (T << 16 + T) If C16 = 1 dst(39-16) = Lmem(31-16) + T dst(15-0) = Lmem(15-0) - T	1	1	9A, 9B	4-39
src = dbl(<i>Lmem</i>) – src src = dual(<i>Lmem</i>) – src	If C16 = 0 src = Lmem - src If C16 = 1 src(39-16) = Lmem(31-16) - src(31-16) src(15-0) = Lmem(15-0) - src(15-0)	1	1	9A, 9B	4-44
<i>dst</i> = dsadt(<i>Lmem</i> , T)	If C16 = 0 dst = Lmem - (T << 16 + T) If C16 = 1 dst(39-16) = Lmem(31-16) - T dst(15-0) = Lmem(15-0) + T	1	1	9A, 9B	4-46
src = src - dbl(Lmem) src - = dbl(Lmem) src = src - dual(Lmem) src - = dual(Lmem)	If C16 = 0 src = src - Lmem If C16 = 1 src $(39-16) = src(31-16) - Lmem(31-16)$ src $(15-0) = src(15-0) - Lmem(15-0)$	1	1	9A, 9B	4-49
<i>dst</i> = dbl(<i>Lmem</i>) − T <i>dst</i> = dual(<i>Lmem</i>) − T	If C16 = 0 dst = Lmem - (T << 16 + T) If C16 = 1 dst(39-16) = Lmem(31-16) - T dst(15-0) = Lmem(15-0) - T	1	1	9A, 9B	4-51

Table 2–5. Double (32-Bit Operand) Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
abdst (<i>Xmem</i> , <i>Ymem</i>)	B = B + A(32–16) A = (Xmem – Ymem) << 16	1	1	7	4-2
dst = src	dst = src	1	1	1	4-3
dst = ~src	dst = ~src	1	1	1	4-32
delay(<i>Smem</i>)	(Smem + 1) = Smem	1	1	24A, 24B	4-41
T = exp(src)	T = number of sign bits (src) – 8	1	1	1	4-53
firs(Xmem, Ymem, pmad)	B = B + A * pmad A = (Xmem + Ymem) << 16	2	3	8	4-60
lms(Xmem, Ymem)	B = B + Xmem * Ymem A = A + Xmem << 16 + 2 ¹⁵	1	1	7	4-81
dst = max(A, B)	dst = max(A, B)	1	1	1	4-101
dst = min(A, B)	dst = min(A, B)	1	1	1	4-102
dst = -src	dst = -src	1	1	1	4-121
<i>dst</i> = <i>src</i> << TS <i>dst</i> = norm(<i>src</i> , TS)	dst = src << TS dst = norm(src, TS)	1	1	1	4-124
poly(<i>Smem</i>)	B = Smem << 16 A = rnd(A(32–16) * T + B)	1	1	3A, 3B	4-128
<i>dst</i> = rnd(<i>src</i>)	$dst = src + 2^{15}$	1	1	1	4-144
saturate(src)	saturate(src)	1	1	1	4-156
sqdst(Xmem, Ymem)	B = B + A(32–16) * A(32–16) A = (Xmem – Ymem) << 16	1	1	7	4-162

Table 2–6. Application-Specific Instructions

2.2 Logical Operations

This section summarizes the logical operation instructions. Table 2–7 through Table 2–11 list the instructions within the following functional groups:

- □ AND instructions (Table 2–7)
- OR instructions (Table 2–8 on page 2-10)
- □ XOR instructions (Table 2–9 on page 2-10)
- □ Shift instructions (Table 2–10 on page 2-11)
- □ Test instructions (Table 2–11 on page 2-11)

Table 2–7. AND Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
src = src & Smem src &= Smem	src = src & Smem	1	1	3A, 3B	4-11
dst = src & #lk [<< SHFT] dst &= #lk [<< SHFT]	dst = src & #lk << SHFT	2	2	2	4-11
<i>dst</i> = <i>src</i> & # <i>lk</i> << 16 <i>dst</i> &= # <i>lk</i> << 16	dst = src & #lk << 16	2	2	2	4-11
dst = dst & src [<< SHIFT] dst &= src [<< SHIFT]	dst = dst & src << SHIFT	1	1	1	4-11
Smem = Smem & #lk Smem &= #lk	Smem = Smem & #lk	2	2	18A, 18B	4-13

Table 2-8. OR Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
src = src Smem src = Smem	src = src Smem	1	1	3A, 3B	4-125
dst = src #lk [<< SHFT] dst = #lk [<< SHFT]	dst = src #lk << SHFT	2	2	2	4-125
<i>dst</i> = <i>src</i> <i>#lk</i> << 16 <i>dst</i> = <i>#lk</i> << 16	dst = src #lk << 16	2	2	2	4-125
dst = dst src [<< SHIFT] dst = src [<< SHIFT]	dst = dst src << SHIFT	1	1	1	4-125
Smem = Smem #lk Smem = #lk	Smem = Smem #lk	2	2	18A, 18B	4-127

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Smem*.

Table 2–9. XOR Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
src = src ^ Smem src ^= Smem	src = src ^ Smem	1	1	3A, 3B	4-205
dst = src ^ #lk [<< SHFT] dst ^= #lk [<< SHFT]	dst = src ^ #lk << SHFT	2	2	2	4-205
<i>dst</i> = <i>src</i> ^ # <i>lk</i> << 16 <i>dst</i> ^= # <i>lk</i> << 16	dst = src ^ #lk << 16	2	2	2	4-205
dst = dst ^ src [<< SHIFT] dst ^= src [<< SHIFT]	dst = dst ^ src << SHIFT	1	1	1	4-205
Smem = Smem ^ #lk Smem ^= #lk	Smem = Smem ^ #lk	2	2	18A, 18B	4-207

Syntax	Expression	W †	Cycles [†]	Class	Page
<i>src</i> = <i>src</i> \\ CARRY	Rotate left with carry in	1	1	1	4-145
roltc(src)	Rotate left with TC in	1	1	1	4-146
<i>src</i> = <i>src</i> // CARRY	Rotate right with carry in	1	1	1	4-147
dst = src < <c shift<="" td=""><td>dst = src << SHIFT {arithmetic shift}</td><td>1</td><td>1</td><td>1</td><td>4-157</td></c>	dst = src << SHIFT {arithmetic shift}	1	1	1	4-157
shiftc(<i>src</i>)	if $src(31) = src(30)$ then $src = src \ll 1$	1	1	1	4-159
dst = src <<< SHIFT	dst = src << SHIFT {logical shift}	1	1	1	4-160

Table 2–10. Shift Instructions

[†] Values for words (W) and cycles assume the use of DARAM for data.

Table 2–11. Test Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
TC = bit(<i>Xmem, bit_code</i>)	TC = Xmem(15 - bit_code)	1	1	ЗA	4-21
TC = bitf(<i>Smem</i> , # <i>lk</i>)	TC = (Smem && #lk)	2	2	6A, 6B	4-22
TC = bitt(<i>Smem</i>)	TC = Smem(15 – T(3–0))	1	1	3A, 3B	4-23
TC = (<i>Smem</i> == # <i>lk</i>)	TC = (Smem == #lk)	2	2	6A, 6B	4-33
TC = (AR0 == ARx) $TC = (AR0 > ARx)$ $TC = (AR0 < ARx)$ $TC = (AR0 != ARx)$	Compare ARx with AR0	1	1	1	4-34

2.3 Program-Control Operations

This section summarizes the program-control instructions. Table 2–12 through Table 2–18 list the instructions within the following functional groups:

- Branch instructions (Table 2–12)
- □ Call instructions (Table 2–13 on page 2-13)
- □ Interrupt instructions (Table 2–14 on page 2-13)
- Return instructions (Table 2–15 on page 2-14)
- Repeat instructions (Table 2–16 on page 2-14)
- □ Stack-manipulating instructions (Table 2–17 on page 2-15)
- □ Miscellaneous program-control instructions (Table 2–18 on page 2-15)

Table 2–12. Branch Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
goto <i>pmad</i> dgoto <i>pmad</i>	PC = pmad(15–0)	2	4/[2¶]	29A	4-14
goto <i>src</i> dgoto <i>src</i>	PC = src(15–0)	1	6/[4¶]	30A	4-15
if (<i>Sind</i> != 0) goto <i>pmad</i> if (<i>Sind</i> != 0) dgoto <i>pmad</i>	if (Sind \neq 0) then PC = pmad(15–0)	2	4‡/2§/ [2¶]	29A	4-16
if (cond [, cond [, cond]]) goto pmad if (cond [, cond [, cond]]) dgoto pmad	if (cond(s)) then PC = pmad(15–0)	2	5‡/3§/ [3¶]	31A	4-18
far goto <i>extpmad</i> far dgoto <i>extpmad</i>	PC = pmad(15–0), XPC = pmad(22–16)	2	4/[2¶]	29A	4-54
far goto <i>src</i> far dgoto <i>src</i>	PC = src(15–0), XPC = src(22–16)	1	6/[4¶]	30A	4-55

[†] Values for words (W) and cycles assume the use of DARAM for data.

[‡]Conditions true

§ Condition false

¶ Delayed instruction

Table 2–13. Call Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
call <i>src</i> dcall <i>src</i>	− −SP, PC + 1[3¶] = TOS, PC = src(15–0)	1	6/[4¶]	30B	4-25
call <i>pmad</i> dcall <i>pmad</i>	− −SP, PC + 2[4¶] = TOS, PC = pmad(15–0)	2	4/[2§]	29B	4-27
if (cond [, cond [, cond]]) call pmad if (cond [, cond [, cond]]) dcall pmad	if (cond(s)) then – –SP, PC + 2[4¶] = TOS, PC = pmad(15–0)	2	5‡/3§/ [3¶]	31B	4-29
far call <i>src</i> far dcall <i>src</i>	− −SP, PC + 1[3¶] = TOS, PC = src(15–0), XPC = src(22–16)	1	6/[4¶]	30B	4-56
far call <i>extpmad</i> far dcall <i>extpmad</i>	– –SP, PC + 2[4¶] = TOS, PC = pmad(15–0), XPC = pmad(22–16)	2	4/[2¶]	29B	4-58

[†] Values for words (W) and cycles assume the use of DARAM for data. [‡] Conditions true § Condition false

¶ Delayed instruction

Table 2–14.	Interrupt Instructions
-------------	------------------------

Syntax	Expression	W †	Cycles [†]	Class	Page
int(K)	– –SP, ++ PC = TOS, PC = IPTR(15–7) + K << 2, INTM = 1	1	3	35	4-66
trap(<i>K</i>)	– –SP, ++ PC = TOS, PC = IPTR(15–7) + K << 2	1	3	35	4-199

[†] Values for words (W) and cycles assume the use of DARAM for data.

Syntax	Expression	W †	Cycles [†]	Class	Page
far return far dreturn	XPC = TOS, ++ SP, PC = TOS, ++SP	1	6/[4¶]	34	4-62
far return_enable far dreturn_enable	XPC = TOS, ++ SP, PC = TOS, ++SP, INTM = 0	1	6/[4¶]	34	4-63
if (<i>cond</i> [, <i>cond</i> [, <i>cond</i>]]) return if (<i>cond</i> [, <i>cond</i> [, <i>cond</i>]]) dreturn	if (cond(s)) then PC = TOS, ++SP	1	5‡/3§/[3¶]	32	4-135
return dreturn	PC = TOS, ++SP	1	5/[3¶]	32	4-141
return_enable dreturn_enable	PC = TOS, ++SP, INTM = 0	1	5/[3¶]	32	4-142
return_fast dreturn_fast	PC = RTN, ++SP, INTM = 0	1	3/[1¶]	33	4-143

Table 2–15. Return Instructions

[†] Values for words (W) and cycles assume the use of DARAM for data. [‡] Conditions true

§ Condition false

¶ Delayed instruction

Table 2–16.	Repeat	Instructions
-------------	--------	--------------

Syntax	Expression	W †	Cycles [†]	Class	Page
repeat(Smem)	Repeat single, RC = Smem	1	3	5A, 5B	4-148
repeat(#K)	Repeat single, RC = #K	1	1	1	4-148
repeat(# <i>lk</i>)	Repeat single, RC = #lk	2	2	2	4-148
blockrepeat(<i>pmad</i>) dblockrepeat(<i>pmad</i>)	Repeat block, RSA = PC + 2[4¶], REA = pmad, BRAF = 1	2	4/[2¶]	29A	4-150
repeat(# <i>lk</i>), <i>dst</i> = 0	Repeat single, RC = #lk, dst = 0	2	2	2	4-152

Syntax	Expression	W †	Cycles [†]	Class	Page
SP = SP + K $SP + = K$	SP = SP + K	1	1	1	4-61
Smem = pop()	Smem = TOS, ++SP	1	1	17A, 17B	4-129
<i>MMR</i> = pop() mmr(<i>MMR</i>) = pop()	MMR = TOS, ++SP	1	1	17A	4-130
push(<i>Smem</i>)	– –SP, Smem = TOS	1	1	16A, 16B	4-133
push(<i>MMR</i>) push(mmr(<i>MMR</i>))	– –SP, MMR = TOS	1	1	16A	4-134

Table 2–17. Stack-Manipulating Instructions

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Smem*.

Syntax	Expression	W †	Cycles [†]	Class	Page
idle(K)	idle(K)	1	4	36	4-64
mar(<i>Smem</i>)	If CMPT = 0, then modify ARx If CMPT = 1 and ARx \neq AR0, then modify ARx, ARP = x If CMPT = 1 and ARx = AR0, then modify AR(ARP)	1	1	1, 2	4-94
nop	no operation	1	1	1	4-123
reset	software reset	1	3	35	4-140
SBIT = 0 ST(<i>N</i> , <i>SBIT</i>) = 0	STN (SBIT) = 0	1	1	1	4-153
<i>SBIT</i> = 1 <i>S</i> T(<i>N</i> , <i>SBIT</i>) = 1	STN (SBIT) = 1	1	1	1	4-170
if (cond [, cond [, cond]]) execute(n)	If (cond(s)) then execute the next n instructions; n = 1 or 2	1	1	1	4-202

Table 2–18.	Miscellaneous	Program-Control	Instructions
-------------	---------------	-----------------	--------------
2.4 Load and Store Operations

This section summarizes the load and store instructions. Table 2–19 through Table 2–26 list the instructions within the following functional groups:

- □ Load instructions (Table 2–19)
- Store instructions (Table 2–20 on page 2-18)
- □ Conditional store instructions (Table 2–21 on page 2-18)
- □ Parallel load and store instructions (Table 2–22 on page 2-19)
- □ Parallel load and multiply instructions (Table 2–23 on page 2-19)
- Parallel store and add/subtract instructions (Table 2–24 on page 2-19)
- □ Parallel store and multiply instructions (Table 2–25 on page 2-20)
- Miscellaneous load-type and store-type instructions (Table 2–26 on page 2-21)

Table 2–19. Load Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
dst = dbl(<i>Lmem</i>) dst = dual(<i>Lmem</i>)	dst = Lmem	1	1	9A, 9B	4-42
dst = Smem	dst = Smem	1	1	3A, 3B	4-67
<i>dst</i> = <i>Smem</i> << TS	dst = Smem << TS	1	1	3A, 3B	4-67
<i>dst</i> = <i>Smem</i> << 16	dst = Smem << 16	1	1	3A, 3B	4-67
dst = Smem [<< SHIFT]	dst = Smem << SHIFT	2	2	4A, 4B	4-67
dst = Xmem [<< SHFT]	dst = Xmem << SHFT	1	1	ЗA	4-67
dst = #K	dst = #K	1	1	1	4-67
dst = #lk [<< SHFT]	dst = #lk << SHFT	2	2	2	4-67
<i>dst</i> = # <i>lk</i> << 16	dst = #lk << 16	2	2	2	4-67
dst = src << ASM	dst = src << ASM	1	1	1	4-67
dst = src [<< SHIFT]	dst = src << SHIFT	1	1	1	4-67
T = Smem	T = Smem	1	1	3A, 3B	4-71
DP = Smem	DP = Smem(8–0)	1	3	5A, 5B	4-71

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Lmem* or *Smem*.

Syntax	Expression	W †	Cycles [†]	Class	Page
DP = # <i>k9</i>	DP = #k9	1	1	1	4-71
ASM = # <i>k5</i>	ASM = #k5	1	1	1	4-71
ARP = # <i>k3</i>	ARP = #k3	1	1	1	4-71
ASM = Smem	ASM = Smem(4–0)	1	1	3A, 3B	4-71
dst = MMR dst = mmr(MMR)	dst = MMR	1	1	3A	4-74
<i>dst</i> = rnd(<i>Smem</i>)	dst = rnd(Smem)	1	1	3A, 3B	4-79
<i>dst</i> = uns(<i>Smem</i>)	dst = uns(Smem)	1	1	3A, 3B	4-80
Itd(Smem)	T = Smem, (Smem + 1) = Smem	1	1	24A, 24B	4-82

Table 2–19. Load Instructions (Continued)

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Lmem* or *Smem*.

Syntax	Expression	W †	Cycles [†]	Class	Page
dbl(<i>Lmem</i>) = <i>src</i> dual(<i>Lmem</i>) = <i>src</i>	Lmem = src	1	2	13A, 13B	4-48
Smem = T	Smem = T	1	1	10A, 10B	4-171
Smem = TRN	Smem = TRN	1	1	10A, 10B	4-171
Smem = #lk	Smem = #lk	2	2	12A, 12B	4-171
Smem = hi(src)	Smem = src << -16	1	1	10A, 10B	4-173
Smem = hi(src) << ASM	Smem = src << (ASM - 16)	1	1	10A, 10B	4-173
<i>Xmem</i> = hi(<i>src</i>) << <i>SHFT</i>	Xmem = src << (SHFT – 16)	1	1	10A	4-173
<i>Smem</i> = hi(<i>src</i>) << <i>SHIFT</i>	Smem = src << (SHIFT – 16)	2	2	11A, 11B	4-173
Smem = src	Smem = src	1	1	10A, 10B	4-176
Smem = src << ASM	Smem = src << ASM	1	1	10A, 10B	4-176
Xmem = src << SHFT	Xmem = src << SHFT	1	1	10A, 10B	4-176
Smem = src << SHIFT	Smem = src << SHIFT	2	2	11A, 11B	4-176
<i>MMR</i> = <i>src</i> mmr(<i>MMR</i>) = <i>src</i>	MMR = src	1	1	10A	4-179
<i>MMR</i> = # <i>lk</i> mmr(<i>MMR</i>) = # <i>lk</i>	MMR = #lk	2	2	12A	4-180

Table 2–20. Store Instructions

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Lmem* or *Smem*.

Table 2–21. Conditional Store Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
cmps(<i>src, Smem</i>)	If $src(31-16) > src(15-0)$ then Smem = $src(31-16)$ If $src(31-16) \le src(15-0)$ then Smem = $src(15-0)$	1	1	10A, 10B	4-35
if (<i>cond</i>) <i>Xmem</i> = hi(<i>src</i>) << ASM	If (cond) Xmem = src << (ASM – 16)	1	1	15	4-154
if (cond) Xmem = BRC	If (cond) Xmem = BRC	1	1	15	4-169
if (<i>cond</i>) Xmem = T	If (cond) Xmem = T	1	1	15	4-190

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Smem*.

Syntax	Expression	w †	Cycles [†]	Class	Page
Ymem = hi(<i>src</i>) [<< <i>ASM</i>] <i>dst</i> = <i>Xmem</i> << 16	Ymem = src << (ASM - 16) dst = Xmem << 16	1	1	14	4-182
Ymem = hi(<i>src</i>) [<< <i>ASM</i>] T = <i>Xmem</i>	Ymem = src << (ASM – 16) T = Xmem	1	1	14	4-182

Table 2–22. Parallel Load and Store Instructions

 † Values for words (W) and cycles assume the use of DARAM for data.

Table 2–23. Parallel Load and Multiply Instructions

Syntax	Expression	W †	Cycles [†]	Class	Page
dst = Xmem [<< 16] dst_ = dst_ + T * Ymem dst = Xmem [<< 16] dst_ + = T * Ymem	dst = Xmem << 16 dst_ = dst_ + T * Ymem	1	1	7	4-75
dst = Xmem [<< 16] dst_ = rnd(dst_ + T * Ymem)	dst = Xmem << 16 dst_ = rnd(dst_ + T * Ymem)	1	1	7	4-75
dst = Xmem [<< 16] dst_ = dst T * Ymem dst = Xmem [<< 16] dst = T * Ymem	dst = Xmem << 16 dst_ = dst T * Ymem	1	1	7	4-77
dst = Xmem [<< 16] dst_ = rnd(dst_ – T * Ymem)	dst = Xmem << 16 dst_ = rnd(dst T * Ymem)	1	1	7	4-77

 $\ensuremath{^\dagger}\xspace$ Values for words (W) and cycles assume the use of DARAM for data.

Table 2–24. Parallel Store and Add/Subtract Instructions	Table 2–24.	Parallel Store and Add/Subtract Instructions
--	-------------	--

Syntax	Expression	w †	Cycles [†]	Class	Page
Ymem = hi(src) [<< ASM] dst = dst_ + Xmem << 16	Ymem = src << (ASM - 16) dst = dst_ + Xmem << 16	1	1	14	4-181
Ymem = hi(src) [<< ASM] dst = Xmem << 16 - dst_	Ymem = src << (ASM – 16) dst = (Xmem << 16) – dst_	1	1	14	4-189

 $\ensuremath{^\dagger}\xspace$ Values for words (W) and cycles assume the use of DARAM for data.

Syntax	Expression	W †	Cycles [†]	Class	Page
Ymem = hi(src) [<< ASM] dst = dst + T * Xmem Ymem = hi(src) [<< ASM] dst + = T * Xmem	Ymem = src << (ASM – 16) dst = dst + T * Xmem	1	1	14	4-184
Ymem = hi(src) [<< ASM] dst = rnd(dst + T * Xmem)	Ymem = src << (ASM – 16) dst = rnd(dst + T * Xmem)	1	1	14	4-184
Ymem = hi(src) [<< ASM] dst = dst – T * Xmem Ymem = hi(src) [<< ASM] dst – = T * Xmem	Ymem = src << (ASM – 16) dst = dst – T * Xmem	1	1	14	4-186
Ymem = hi(src) [<< ASM] dst = rnd(dst – T * Xmem)	Ymem = src << (ASM – 16) dst = rnd(dst – T * Xmem)	1	1	14	4-186
Ymem = hi(src) [<< ASM] dst = T * Xmem	Ymem = src << (ASM – 16) dst = T * Xmem	1	1	14	4-188

Table 2–25. Parallel Store and Multiply Instructions

[†] Values for words (W) and cycles assume the use of DARAM for data.

Syntax	Expression	W †	Cycles [†]	Class	Page
Ymem = Xmem	Ymem = Xmem	1	1	14	4-109
data(<i>dmad</i>) = Smem	dmad = Smem	2	2	19A, 19B	4-110
<i>MMR</i> = data(<i>dmad</i>) mmr(<i>MMR</i>) = data(<i>dmad</i>)	MMR = dmad	2	2	19A	4-112
prog(<i>pmad</i>) = Smem	pmad = Smem	2	4	20A, 20B	4-113
Smem = data(dmad)	Smem = dmad	2	2	19A, 19B	4-115
data(<i>dmad</i>) = <i>MMR</i> data(<i>dmad</i>) = mmr(<i>MMR</i>)	dmad = MMR	2	2	19A	4-117
<i>MMRy</i> = <i>MMRx</i> mmr(<i>MMRy</i>) = mmr(<i>MMRx</i>)	MMRy = MMRx	1	1	1	4-118
Smem = prog(pmad)	Smem = pmad	2	3	21A, 21B	4-119
Smem = port(PA)	Smem = PA	2	2	27A, 27B	4-131
port(PA) = Smem	PA = Smem	2	2	28A, 28B	4-132
Smem = prog(A)	Smem = A	1	5	25A, 25B	4-138
prog(A) = Smem	A = Smem	1	5	26A, 26B	4-200

Table 2–26. Miscellaneous Load-Type and Store-Type Instructions

[†] Values for words (W) and cycles assume the use of DARAM for data. Add 1 word and 1 cycle when using long-offset indirect addressing or absolute addressing with an *Smem*.

2.5 Repeating a Single Instruction

The TMS320C54x[™] DSP includes repeat instructions that cause the next instruction to be repeated. The number of times for the instruction to be repeated is obtained from an operand of the instruction and is equal to this operand + 1. This value is stored in the 16-bit repeat counter (RC) register. You cannot program the value in the RC register; it is loaded by the repeat instructions only. The maximum number of executions of a given instruction is 65 536. An absolute program or data address is automatically incremented when the single-repeat feature is used.

Once a repeat instruction is decoded, all interrupts, including $\overline{\text{NMI}}$ but not $\overline{\text{RS}}$, are disabled until the completion of the repeat loop. However, the C54xTM DSP does respond to the $\overline{\text{HOLD}}$ signal while executing a repeat loop—the response depends on the value of the HM bit of status register 1 (ST1).

The repeat function can be used with some instructions, such as multiply/ accumulate and block moves, to increase the execution speed of these instructions. These multicycle instructions (Table 2–27) effectively become single-cycle instructions after the first iteration of a repeat instruction.

Instruction	Description	# Cycles†
firs	Symmetrical FIR filter	3
macd	Multiply and move result in accumulator with delay	3
macp	Multiply and move result in accumulator	3
data(<i>dmad</i>) = Smem	Data-to-data move	2
MMR = data(dmad)	Data-to-MMR move	2
prog(<i>pmad</i>) = Smem	Data-to-program move	4
Smem = data(dmad)	Data-to-data move	2
data(<i>dmad</i>) = MMR	MMR-to-data move	2
Smem = prog(pmad)	Program-to-data move	3
Smem = prog(A)	Read from program-memory to data memory	5
prog(A) = Smem	Write data memory to program memory	5

Table 2–27. Multicycle Instructions That Become Single-Cycle Instructions When Repeated

[†]Number of cycles when instruction is not repeated

Single data-memory operand instructions cannot be repeated if a long offset modifier or an absolute address is used (for example, *ARn(lk), *+ARn(lk), *+ARn(lk)% and *(lk)). Instructions listed in Table 2–28 cannot be repeated using repeat instructions.

Table 2–28. Nonrepeatable Instructions

Instruction	Description
Smem = Smem + #lk	Add long constant to data memory
Smem = Smem & #lk	AND data memory with long constant
[d]goto pmad	Unconditional branch
[d]goto <i>src</i>	Branch to accumulator address
if (Sind != 0) [d]goto pmad	Branch on auxiliary register not 0
if (cond[, cond[, cond]]) [d]goto pmad	Conditional branch
[d]call <i>src</i>	Call to accumulator address
[d]call <i>pmad</i>	Unconditional call
if (cond[, cond[, cond]]) [d]call pmad	Conditional call
TC = (ARx == AR0) TC = (ARx < AR0) TC = (ARx > AR0) TC = (ARx != AR0)	Compare with auxiliary register
dbl(<i>Lmem</i>) = <i>src</i>	Long word (32-bit) store
far [d]goto extpmad	Far branch unconditionally
far [d]goto <i>src</i>	Far branch to location specified by accumulator
far [d]call <i>src</i>	Far call subroutine at location specified by accumulator
far [d]call extpmad	Far call unconditionally
far [d]return	Far return
far [d]return_enable	Enable interrupts and far return from interrupt
idle(<i>K</i>)	Idle instructions
int(<i>K</i>)	Interrupt trap
ARP = # <i>k3</i>	Load auxiliary register pointer (ARP)
DP = <i>Smem</i> DP = # <i>k9</i>	Load data page pointer (DP)

Instruction	Description
MMRy = MMRx	Move memory-mapped register (MMR) to another MMR
Smem = Smem #lk	OR data memory with long constant
if (cond[, cond[, cond]]) [d]return	Conditional return
reset	Software reset
[d]return	Unconditional return
[d]return_enable	Return from interrupt
[d]return_fast	Fast return from interrupt
<i>dst</i> = rnd(<i>src</i>)	Round accumulator
repeat(Smem)	Repeat next instruction
[d]blockrepeat(pmad)	Block repeat
repeat(# lk), $dst = 0$	Repeat next instruction and clear accumulator
SBIT = 0	Reset status register bit
<i>SBIT</i> = 1	Set status register bit
trap(<i>K</i>)	Software trap
<pre>if (cond[, cond[, cond]]) execute(n)</pre>	Conditional execute
Smem = Smem ^ #lk	XOR data memory with long constant

Table 2–28. Nonrepeatable Instructions (Continued)

Instruction Classes and Cycles

Instructions are classified into several categories, or classes, according to cycles required. This chapter describes the instruction classes. Because a single instruction can have multiple syntaxes and types of execution, it can appear in multiple classes.

The tables in this chapter show the number of cycles required for a given TMS320C54x[™] DSP instruction to execute in a given memory configuration when executed as a single instruction and when executed in the repeat mode. Tables are also provided for a single data-memory operand access used with a long constant. The column headings in the tables indicate the program source location. These headings are defined as follows:

- **ROM** The instruction executes from internal program ROM.
- **SARAM** The instruction executes from internal single-access RAM.
- **DARAM** The instruction executes from internal dual-access RAM.

External The instruction executes from external program memory.

If a class of instructions requires memory operand(s), the row divisions in the tables indicate the location(s) of the operand(s). These locations are defined as follows:

- **DARAM** The operand is in internal dual-access RAM.
- **SARAM** The operand is in internal single-access RAM.
- **DROM** The operand is in internal data ROM.
- **PROM** The operand is in internal program ROM.
- **External** The operand is in external memory.
- **MMR** The operand is a memory-mapped register.

The number of cycles required for each instruction is given in terms of the processor machine cycles (the CLKOUT period). The additional wait states for program/data memory accesses and I/O accesses are defined as follows:

d Data-memory wait states—the number of additional clock cycles the device waits for external data-memory to respond to an access.

- io I/O wait states—the number of additional clock cycles the device waits for an external I/O to respond to an access.
- **n** Repetitions—the number of times a repeated instruction is executed.
- **nd** Data-memory wait states repeated n times.
- **np** Program-memory wait states repeated n times.
- **npd** Program-memory wait states repeated n times.
- **p** Program-memory wait states—the number of additional clock cycles the device waits for external program memory to respond to an access.
- **pd** Program-memory wait states—the number of additional clock cycles the device waits for external program memory to respond to an access as a program data operand.

These variables can also use the subscripts src, dst, and code to indicate source, destination, and code, respectively.

All reads from external memory take at least one instruction cycle to complete, and all writes to external memory take at least two instruction cycles to complete. These external accesses take longer if additional wait-state cycles are added using the software wait-state generator or the external READY input. However, internal to the CPU all writes to external memory take only one cycle as long as no other access to the external memory is in process at the same time. This is possible because the instruction pipeline takes only one cycle to request an external write access, and the external bus interface unit completes the write access independently.

The instruction cycles are based on the following assumptions:

- ☐ At least five instructions following the current instruction are fetched from the same memory section (internal or external) as the current instruction, except in instructions that cause a program counter (PC) discontinuity, such as a branch or call.
- ☐ When executing a single instruction, there is no pipeline or bus conflict between the current instruction and any other instruction in the pipeline. The only exception is the conflict between the instruction fetch and the memory read/write access (if any) of the instruction under consideration.
- In single-instruction repeat mode, all conflicts caused by the pipelined execution of that instruction are considered.

Class 1 1 word, 1 cycle. No operand, or short-immediate or register operands and no memory operands.

Syntaxes

- *dst* = |*src*|
- dst = dst + src [<< SHIFT]
 dst = dst + src << ASM</pre>
- *dst* = *dst* & *src* [<< *SHIFT*]
- dst = ~src
- TC = (AR0 == ARx) TC = (AR0 > ARx) TC = (AR0 < ARx) TC = (AR0 != ARx)
- T = exp(*src*)
- SP = SP + K
- dst = #K
 dst = src << ASM
 dst = src [<< SHIFT]</pre>
- DP = #k9
 ASM = #k5
 ARP = #k3
- dst = src + T * hi(A)
 dst = rnd(src + T * hi(A))
- mar(Smem)
- dst = src T * hi(A)
 dst = rnd(src T * hi(A))
- dst = max(A, B)
- dst = min(A, B)
- dst = T * hi(A)
- MMRy = MMRx mmr(MMRy) = mmr(MMRx)

- dst = -src
- nop
- dst = src << TS dst = norm(src, TS)
- dst = dst | src [<< SHIFT]
- dst = rnd(src)
- *src* = *src* \\ CARRY
- roitc(src)
- src = src // CARRY
- repeat(#K)
- SBIT = 0
 ST (N, SBIT) = 0
- saturate(*src*)
- dst = src <<C SHIFT
- shiftc(src)
- dst = src <<< SHIFT</p>
- dst = hi(A) * hi(A) dst = square(hi(A))
- SBIT = 1
 ST (N, SBIT) = 1
- dst = dst src << SHIFT dst = dst - src << ASM</p>
- if (cond [, cond [, cond]]) execute(n)
- *dst* = *dst* ^ *src* [<< *SHIFT*]

Cycles

Cycles for a Single Execution

	Program	
ROM/SARAM	DARAM	External
1	1	1+p

Cycles for a Repeat Execution Program ROM/SARAM DARAM External n n n+p

Class 2 2 words, 2 cycles. Long-immediate operand and no memory operands.

Syntaxes

- dst = src + #lk [<< SHFT] dst = src + #lk << 16</p>
- dst = src & #lk [<< SHFT] dst = src & #lk << 16</p>
- dst = #lk [<< SHFT] dst = #lk << 16</p>
- dst = src + T * #lk
- mar(Smem)
- *dst* = T * #*lk*

- dst = src | #lk [<< SHFT] dst = src | #lk << 16</p>
- repeat(#lk)
- repeat(#lk), dst = 0
- dst = src #lk [<< SHFT] dst = src - #lk << 16</p>
- dst = src ^ #lk [<< SHFT] dst = src ^ #lk << 16</p>

Cycles

Cycles for a Single Execution			
Program			
ROM/SARAM DARAM External			
2 2 2+2p			

Cycles for a Repeat Execution			
Program			
ROM/SARAM DARAM External			
n+1 n+1+2p			

Class 3A 1 word, 1 cycle. Single data-memory (Smem or Xmem) read operand or MMR read operand.

Syntaxes

- src = src + Smem
 src = src + Smem << TS
 dst = src + Smem << 16
 src = src + Xmem << SHFT</pre>
- *src* = *src* + *Smem* + CARRY
- src = src + uns(Smem)
- src = src & Smem

- TC = bit(*Xmem*, *bit_code*)
- TC = bitt(Smem)
- dst = Smem
 dst = Smem << TS
 dst = Smem << 16
 dst = Xmem [<< SHFT]
- T = Smem
 ASM = Smem
- dst = MMR
 dst = mmr(MMR)
- dst = rnd(Smem)
- dst = uns(Smem)
- src = src + T * Smem
 src = rnd(src + T * Smem)
- B = B + Smem * hi(A) [, T = Smem]
 B = rnd(B + Smem * hi(A))
 [, T = Smem]
- src = src T * Smem
 src = rnd(src T * Smem)

- B = B *Smem* * hi(A) [, *T* = *Smem*]
- dst = T * Smem dst = rnd(T * Smem)
- B = Smem * hi(A) [, T = Smem]
- dst = T * uns(Smem)
- src = src | Smem
- poly(Smem)
- dst = Smem * Smem [, T = Smem] dst = square(Smem) [, T = Smem]
- src = src + square(Smem)
 [, T = Smem]
 src = src + Smem * Smem
 [, T = Smem]
- src = src square(Smem)
 [, T = Smem]
 src = src Smem * Smem
 [, T = Smem]
- src = src Smem
 src = src Smem << TS
 dst = src Smem << 16
 src = src Xmem << SHFT</pre>
- src = src Smem BORROW
- subc(*Smem*, *src*)
- src = src uns(Smem)
- src = src ^ Smem

Cycles

Cycles for a Single Execution			
Operand		Program	
Smem	ROM/SARAM	DARAM	External
DARAM	1	1, 2†	1+p
SARAM	1, 2†	1	1+p
DROM	1, 2†	1	1+p
External	1+d	1+d	2+d+p
MMR◊	1	1	1+p

[†] Operand and code in same memory block [◊] Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution			
Operand		Program	
Smem	ROM/SARAM	DARAM	External
DARAM	n	n, n+1†	n+p
SARAM	n, n+1†	n	n+p
DROM	n, n+1†	n	n+p
External	n+nd	n+nd	n+1+nd+p
MMR◊	n	n	n+p

[†] Operand and code in same memory block [◊] Add n cycles for peripheral memory-mapped access.

Class 3B	2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing.
Syntaxes	src = src + Smem $src = src + Smem << 16$ $dst = T * Smem$ $dst = rnd(T * Smem)$ $src = src + Smem << 16$ $B = Smem * hi(A) [, T = Smem]$ $src = src + Smem + CARRY$ $dst = T * uns (Smem)$ $src = src + uns(Smem)$ $src = src Smem$ $src = src & Smem$ $poly(Smem)$ $TC = bitt(Smem)$ $dst = Smem * Smem [, T = Smem]$ $dst = Smem << TS$ $dst = Smem << 16$ $src = src + square(Smem)$ $[, T = Smem]$ $T = Smem$ $ASM = Smem$ $src = src + Smem * Smem$ $[, T = Smem]$
	 $dst = rnd(Smem)$ $dst = uns(Smem)$ $src = src + T * Smem$ $src = src + T * Smem$ $src = src + T * Smem$ $src = src - Smem * Smem$ $[, T = Smem]$ $src = src - Smem * Smem$ $src = src - Smem * Smem$ $[, T = Smem]$ $src = src - Smem < < TS$ $dst = src - Smem < < TS$ $dst = src - Smem < < 16$ $src = src - Smem - BORROW$ $src = src - T * Smem$ $src = src - Smem - BORROW$ $src = src - T * Smem$ $src = src - uns(Smem)$ $src = src - uns(Smem)$ $src = src - Smem$
Cycles	Cycles for a Single Execution With Long-Offset Modifier

cycles

Cycles for a Single Execution With Long-Offset Modifier

Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	2	2, 3†	2+2p
SARAM	2, 3†	2	2+2p
DROM	2, 3†	2	2+2p
External	2+d	2+d	3+d+2p
MMR◊	2	2	2+2p

[†] Operand and code in same memory block [◊] Add one cycle for peripheral memory-mapped access.

Class 4A 2 words, 2 cycles. Single data-memory (Smem) read operand.

Syntaxes

- dst = src + Smem [<< SHIFT]
- dst = src Smem [<< SHIFT]
- dst = Smem [<< SHIFT]

Cycles

Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	2	2, 3†	2+2p
SARAM	2, 3†	2	2+2p
DROM	2, 3†	2	2+2p
External	2+d	2+d	3+d+2p
MMR◊	2	2	2+2p

- -- -

[†] Operand and code in same memory block [◊] Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution			
Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	n+1	n+1, n+2†	n+1+2p
SARAM	n+1, n+2†	n+1	n+1+2p
DROM	n+1, n+2†	n+1	n+1+2p
External	n+1+nd	n+1+nd	n+2+nd+2p
MMR◊	n+1	n+1	n+1+2p

 † Operand and code in same memory block $^{\Diamond}$ Add n cycles for peripheral memory-mapped access.

Class 4B 3 words, 3 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing.

Syntaxes

dst = src + Smem [<< SHIFT] dst = src - Smem [<< SHIFT]

dst = Smem [<< SHIFT]

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	3	3, 4†	3+3p
SARAM	3, 4†	3	3+3p
DROM	3, 4†	3	3+3p
External	3+d	3+d	4+d+3p
MMR◊	3	3	3+3p

[†] Operand and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

- *Class 5A* 1 word, 3 cycles. Single data-memory (Smem) read operand (with DP destination for load instruction).
- *Syntaxes* DP = *Smem* repeat(*Smem*)

Cycles

Cycles for a Single Execution			
Operand			
Smem	ROM/SARAM	DARAM	External
DARAM	3	3	3+р
SARAM	3	3	3+р
DROM	3	3	3+р
External	3+d	3+d	3+d+p
MMR [◊]	3	3	3+р

⁽⁾ Add one cycle for peripheral memory-mapped access.

- *Class 5B* 2 words, 4 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing (with DP destination for load instruction).
 - DP = Smem
 repeat(Smem)

Cycles

Syntaxes

Cycles for a Single Execution With Long-Offset Modifier Operand Program **ROM/SARAM** DARAM Smem External DARAM 4 4 4+2p SARAM 4 4 4+2p DROM 4 4 4+2p External 4+d 4+d 4+d+2p MMR◊ 4 4 4+2p

 $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

Class 6A 2 words, 2 cycles. Single data-memory (Smem) read operand and single long-immediate operand.

Syntaxes

- TC = bitf(*Smem*, *#lk*)
- *dst* = *src* + *Smem* * #*lk* [, *T* = *Smem*]
- TC = (*Smem* == #*lk*)
- *dst* = *Smem* * #*lk* [, *T* = *Smem*]

Cycles

	Cycles for a Single Execution						
Operand		Program					
Smem	ROM/SARAM	DARAM	External				
DARAM	2	2, 3†	2+2p				
SARAM	2, 3†	2	2+2p				
DROM	2, 3†	2	2+2p				
External	2+d	2+d	3+d+2p				
MMR◊	2	2	2+2p				

[†] Operand and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

	Cycles for a Rep					
Operand		Program				
Smem	ROM/SARAM	DARAM	External			
DARAM	n+1	n+1, n+2†	n+1+2p			
SARAM	n+1, n+2†	n+1	n+1+2p			
DROM	n+1, n+2†	n+1	n+1+2p			
External	n+1+nd	n+1+nd	n+2+nd+2p			
MMR◊	n+1	n+1	n+1+2p			

Cycles for a Repeat Execution

[†] Operand and code in same memory block

◊ Add n cycles for peripheral memory-mapped access.

Class 6B 3 words, 3 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing and single long-immediate operand.

Syntaxes TC = bitf(Smem, #lk) TC = (Smem == #lk)

 $dst = src + Smem^* #lk[, T = Smem]$ dst = Smem * #lk[, T = Smem]

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Operand		Program				
Smem	ROM/SARAM	DARAM	External			
DARAM	3	3, 4†	3+3p			
SARAM	3, 4†	3	3+3p			
DROM	3, 4†	3	3+3p			
External	3+d	3+d	4+d+3p			
MMR◊	3	3	3+3p			

[†]Operand and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

Class **7** 1 word, 1 cycle. Dual data-memory (Xmem and Ymem) read operands.

Syntaxes

abdst (Xmem, Ymem)

- *dst* = *Xmem* << 16 + *Ymem* << 16
- dst = Xmem [<< 16]
 || dst_ = dst_ + T * Ymem
 dst = Xmem [<< 16]
 || dst_ = rnd(dst_ + T * Ymem)
- dst = Xmem [<< 16]
 || dst_ = dst_ T * Ymem
 dst = Xmem [<< 16]
 || dst_ = rnd(dst_ T * Ymem)
- Ims(Xmem, Ymem)
- dst = src + Xmem * Ymem

 T = Xmem]
 dst = rnd(src + Xmem * Ymem)
 T = Xmem]

- src = src + uns(Xmem) * Ymem
 [, T = Xmem]
- dst = src Xmem * Ymem

 T = Xmem]
 dst = rnd(src Xmem * Ymem)
 [, T = Xmem]
- dst = Xmem * Ymem [, T = Xmem]
- sqdst(Xmem, Ymem)
- *dst* = *Xmem* << 16 − *Ymem* << 16

Cycles

Cycles for a Single Execution					
Ор	erand		Program		
Xmem	Ymem	ROM/SARAM	DARAM	External	
DARAM	DARAM	1	1, 2†	1+p	
	SARAM	1, 2†	1, 2†	1+p	
	DROM	1, 2†	1, 2†	1+p	
	External	1+d	1+d, 2	2+d+p	
SARAM	DARAM	1, 2†	1	1+p	
	SARAM	1, 2†, 3‡	1, 2†	1+p, 2 [☆]	
	DROM	1, 2†	1	1+p	
	External	1+d, 2	1+d	2+d+p	
DROM	DARAM	1, 2†	1	1+p	
	SARAM	1, 2†	1, 2†	1+p, 2 [☆]	
	DROM	1, 2†, 3‡	1, 2†	1+p, 2 [☆]	
	External	1+d, 2	1+d	2+d+p	
External	DARAM	1+d	1+d	2+d+p	
	SARAM	1+d, 2	1+d	2+d+p	
	DROM	1+d, 2	1+d	2+d+p	
	External	2+2d	2+2d	3+2d+p	
MMR◊	DARAM	1	1	1+p	
	SARAM	1, 2†	1	1+p	
	DROM	1, 2†	1	1+p	
	External	1+d	1+d	2+d+p	

[†]Operand and code in same memory block [‡]Two operands and code in same memory

p = 0

block || One operand and code in same memory block when d = 0

p = 0 \Diamond Add one cycle for peripheral memorymapped access.

* Two operands in same memory block when

		Cycles for a Repe		
Оре	rand		Program	
Xmem	Ymem	ROM/SARAM	DARAM	External
DARAM	DARAM	n	n, n+1†	n+p
	SARAM	n, n+1†	n, n+1†	n+p
	DROM	n, n+1†	n, n+1†	n+p
	External	n+nd	n+nd, 1+n	n+1+nd+p
SARAM	DARAM	n, n+1†	n	n+p
	SARAM	n, n+1 [†] , 2n [#] , 2n+1‡	n, 2n [#]	n+p, 2n (p = 0) [#] , 2n−1+p (p ≥ 1) [#]
	DROM	n, n+1†	n	n+p
	External	n+nd, n+1	n+nd	n+1+nd+p
DROM	DARAM	n, n+1†	n	n+p
	SARAM	n, n+1†	n	n+p
	DROM	n, n+1†, 2n#, 2n+1‡	n, 2n#	n+p, 2n (p = 0)#, 2n–1+p (p ≥ 1)#
	External	n+nd, n+1	n+nd	n+1+nd+p
External	DARAM	n+nd	n+nd	n+1+nd+p
	SARAM	n+nd, n+1	n+nd	n+1+nd+p
	DROM	n+nd, n+1	n+nd	n+1+nd+p
	External	2n+2nd	2n+2nd	2n+1+2nd+p
MMR◊	DARAM	n	n	n+p
	SARAM	n, n+1†	n	n+p
	DROM	n, n+1†	n	n+p
	External	n+nd	n+nd	n+1+nd+p

Cyc	les	for	а	Re	peat	Execution
-----	-----	-----	---	----	------	-----------

[†] Operand and code in same memory block [‡] Two operands and code in same memory

|| One operand and code in same memory

block when d = 0

♦ Add n cycles for peripheral memory-mapped access.

block

- 2 words, 3 cycles. Dual data-memory (Xmem and Ymem) read operands and a single Class 8 program-memory (pmad) operand.
- Syntaxes firs(Xmem, Ymem, pmad)

Cycles

Cycles for a Single Execution					
Operand				Program	
pmad	Xmem	Ymem	ROM/SARAM	DARAM	External
DARAM	DARAM	DARAM	3, 4†	3, 4†	3+2p, 4+2p†
		SARAM/ DROM	3, 4†	3, 4†	3+2p, 4+2p†
		External	3+d, 4+d [†]	3+d, 4+d [†]	3+d+2p, 4+d+2p†
	SARAM/ DROM	DARAM	3	3	3+2p
		SARAM/ DROM	3, 4‡	3, 4‡	3+2p, 4+2p‡
		External	3+d	3+d	3+d+2p
	External	DARAM	3+d	3+d	3+d+2p
		SARAM/ DROM	3+d	3+d	3+d+2p
		External	4+2d	4+2d	4+2d+2p
SARAM/ DROM	DARAM	DARAM	3	3	3+2p
		SARAM/ DROM	3, 4§	3, 4§	3+2p, 4+2p§
		External	3+d	3+d	3+d+2p

[†] Xmem and pmad in same memory block [‡] Xmem and Ymem in same memory block

§ Ymem and pmad in same memory block

¶ Xmem, Ymem, and pmad in same memory block

Оре	rand			Program	
pmad	Xmem	Ymem	ROM/SARAM	DARAM	External
	SARAM/ DROM	DARAM	3, 4†	3, 4†	3+2p, 4+2p†
		SARAM/ DROM	3, 4†, 5¶	3, 4†, 5¶	3+2p, 4+2p†, 5+2p¶
		External	3+d, 4+d†	3+d, 4+d†	3+d+2p, 4+d+2p [†]
	External	DARAM	3+d	3+d	3+2p
		SARAM/ DROM	3+d, 4+d§	3+d, 4+d§	3+2p, 4+d+2p§
		External	4+2d	4+2d	4+2d+2p
External	DARAM	DARAM	3+pd	3+pd	3+pd+2p
		SARAM/ DROM	3+pd	3+pd	3+pd+2p
		External	4+pd+d	4+pd+d	4+pd+d+2
	SARAM/ DROM	DARAM	3+pd	3+pd	3+pd+2p
		SARAM/ DROM	3+pd, 4+pd‡	3+pd, 4+pd‡	3+pd+2p, 4+pd+2p [‡]
		External	4+pd+d	4+pd+d	4+pd+d+2
	External	DARAM	4+pd+d	4+pd+d	4+pd+d+2
		SARAM/ DROM	4+pd+d	4+pd+d	4+pd+d+2
		External	5+pd+2d	5+pd+2d	5+pd+2d +2p

Cycles for a Single Execution (Continued)

[†] Xmem and pmad in same memory block [‡] Xmem and Ymem in same memory block [§] Ymem and pmad in same memory block ¶ Xmem, Ymem, and pmad in same memory block

Оре	erand			Program	
pmad	Xmem	Ymem	ROM/ SARAM	DARAM	External
DARAM	DARAM	DARAM	n+2, 2n+2†	n+2, 2n+2†	n+2+2p, 2n+2+2p†
		SARAM/ DROM	n+2, 2n+2†	n+2, 2n+2†	n+2+2p, 2n+2+2p†
		External	n+2+nd, 2n+2+nd [†]	n+2+nd, 2n+2+nd [†]	n+2+nd+2p, 2n+2+nd +2p†
	SARAM/ DROM	DARAM	n+2	n+2	n+2+2p
		SARAM/ DROM	n+2, 2n+2‡	n+2, 2n+2‡	n+2+2p, 2n+2+2p‡
		External	n+2+nd	n+2+nd	n+2+nd+2p
	External	DARAM	n+2+nd	n+2+nd	n+2+nd+2p
		SARAM/ DROM	n+2+nd	n+2+nd	n+2+nd+2p
		External	2n+2+2nd	2n+2+2nd	2n+2+2nd +2p
SARAM/ DROM	DARAM	DARAM	n+2	n+2	n+2+2p
		SARAM/ DROM	n+2, 2n+2§	n+2, 2n+2§	n+2+2p, 2n+2+2p§
		External	n+2+nd	n+2+nd	n+2+nd+2p

Cycles for a Repeat Execution

[†] Xmem and pmad in same memory block [‡] Xmem and Ymem in same memory block

§ Ymem and pmad in same memory block ¶ Xmem, Ymem, and pmad in same memory block

Оре	erand		Program		
pmad	Xmem	Ymem	ROM/ SARAM	DARAM	External
	SARAM/ DROM	DARAM	n+2, 2n+2†	n+2, 2n+2†	n+2+2p, 2n+2+2p†
		SARAM/ DROM	n+2, 2n+2 [†] , 3n+2¶	n+2, 2n+2 [†] , 3n+2¶	n+2+2p, 2n+2+2p†, 3n+2+2p¶
		External	n+2+nd, 2n+2+nd†	n+2+nd, 2n+2+nd†	n+2+nd+2p, 2n+2+nd +2p†
	External	DARAM	n+2+nd	n+2+nd	n+2+nd
		SARAM/ DROM	n+2+nd, 2n+2+nd§	n+2+nd, 2n+2+nd§	n+2+nd+2p, 2n+2+nd +2p§
		External	2n+2+2nd	2n+2+2nd	2n+2+2nd +2p
External	DARAM	DARAM	n+2+npd	n+2+npd	n+2+npd+2p
		SARAM/ DROM	n+2+npd	n+2+npd	n+2+npd+2p
		External	2n+2+npd+nd	2n+2+npd+nd	2n+2+npd +nd+2p
	SARAM/ DROM	DARAM	n+2+npd	n+2+npd	n+2+npd+2
		SARAM/ DROM	n+2+npd, 2n+2+npd [‡]	n+2+npd, 2n+2+npd [‡]	n+2+npd+2p 2n+2+npd +2p‡
		External	2n+2+npd+nd	2n+2+npd+nd	2n+2+npd +nd+2p

Cycles for a Repeat Execution (Continued)

[†] Xmem and pmad in same memory block
[‡] Xmem and Ymem in same memory block
[§] Ymem and pmad in same memory block
[¶] Xmem, Ymem, and pmad in same memory block

Operand		Program			
pmad	Xmem	Ymem	ROM/ SARAM	DARAM	External
	External	DARAM	2n+2+npd+nd	2n+2+npd+nd	2n+2+npd +nd+2p
		SARAM/ DROM	2n+2+npd+nd	2n+2+npd+nd	2n+2+npd +nd+2p
		External	3n+2+npd+2nd	3n+2+npd+2nd	3n+2+npd +2nd+2p

Cycles for a Repeat Execution (Continued)

[†] Xmem and pmad in same memory block
[‡] Xmem and Ymem in same memory block
[§] Ymem and pmad in same memory block
[¶] Xmem, Ymem, and pmad in same memory block

Class 9A 1 word, 1 cycle. Single long-word data-memory (Lmem) read operand.

Syntaxes

- dst = src + dbl(Lmem)
 dst = src + dual(Lmem)
- dst = dadst(Lmem, T)
- dst = dbl(Lmem)
 dst = dual(Lmem)
- src = dbl(Lmem) src
 src = dual(Lmem) src

- dst = dsadt(Lmem, T)
- src = src dbl(Lmem)
 src = src dual(Lmem)
- dst = dbl(Lmem) T
 dst = dual(Lmem) T

Cycles

Cycles for a Single Execution

Operand	Program				
Lmem	ROM/SARAM	DARAM	External		
DARAM	1	1, 2†	1+p		
SARAM	1, 2†	1	1+p		
DROM	1, 2†	1	1+p		
External	2+2d	2+2d	3+2d+p		

[†] Operand and code in same memory block

Cycles for a Repeat Execution Operand Program Lmem **ROM/SARAM** DARAM External DARAM n. n+1[†] n n+p SARAM n. n+1[†] n n+p DROM n. n+1[†] n n+p External 2n+2nd 2n+2nd 1+2n+2nd+p

[†] Operand and code in same memory block

Class 9B 2 words, 2 cycles. Single long-word data-memory (Lmem) read operand using long-offset indirect addressing.

Syntaxes

- dst = src + dbl(Lmem)
 dst = src + dual(Lmem)
- dst = dadst(Lmem, T)
- dst = dbl(Lmem)
 dst = dual(Lmem)
- src = dbl(Lmem) src
 src = dual(Lmem) src

- dst = dsadt(Lmem, T)
- src = src dbl(Lmem)
 src = src dual(Lmem)
- dst = dbl(Lmem) T dst = dual(Lmem) - T

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Operand	Program		
Lmem	ROM/SARAM	DARAM	External
DARAM	2	2, 3†	2+2p
SARAM	2, 3†	2	2+2p
DROM	2, 3†	2	2+2p
External	3+2d	3+2d	4+2d+2p

[†]Operand and code in same memory block

Class 10A 1 word, 1 cycle. Single data-memory (Smem or Xmem) write operand or an MMR write operand.

Syntaxes

- cmps(*src*, *Smem*)
- Smem = T
 Smem = TRN
- Smem = hi(src)
 Smem = hi(src) << ASM
 Xmem = hi(src) << SHFT
- Smem = src
 Smem = src << ASM
 Xmem = src << SHFT
- MMR = src mmr(MMR) = src

Cycles

Cycles for a Single Execution			
Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	1	1	1+p
SARAM	1, 2†	1	1 + p
External	1	1	4+d+p
MMR◊	1	1	1+p

[†] Operand and code in same memory block

Add n cycles for peripheral memory-mapped access.

Cycles for a Repeat Execution			
Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	n	n	n+p
SARAM	n, n+1†	n	n+p
External	2n-1+(n-1)d	2n-1+(n-1)d	2n+2+nd+p
MMR◊	n	n	n+p

[†] Operand and code in same memory block

♦ Add n cycles for peripheral memory-mapped access.

Class 10B 2 words, 2 cycles. Single data-memory (Smem or Xmem) write operand using long-offset indirect addressing.

Syntaxes

- cmps(src, Smem)
- Smem = T
 Smem = TRN
 - Smem = hi(src) Smem = hi(src) << ASM</p>
- Smem = src
 Smem = src << ASM
 Xmem = src << SHFT

Cycles

Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	2	2	2+2p
SARAM	2, 3†	2	2+2p
External	2	2	5+d+2p
MMR◊	2	2	2+2p

Cycles for a Single Execution With Long-Offset Modifier

[†]Operand and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

2 words, 2 cycles. Single data-memory (Smem) write operand. Class 11A

Syntaxes

Smem = hi(*src*) << *SHIFT*

Smem = src << SHIFT

Cycles

Cycles for a Single Execution			
Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	2	2	2+2p
SARAM	2, 3†	2	2+2p
External	2	2	5+d+2p
MMR◊	2	2	2+2p

 † Operand and code in same memory block $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	n+1	n+1	n+1+2p
SARAM	n+1, n+2†	n+1	n+1+2p
External	2n+(n-1)d	2n+(n–1)d	2n+3+nd+2p
MMR◊	n+1	n+1	n+1+2p

Cycles for a Repeat Execution

[†] Operand and code in same memory block

◊ Add n cycles for peripheral memory-mapped access.

- *Class 11B* 3 words, 3 cycles. Single data-memory (Smem) write operand using long-offset indirect addressing.
 - Smem = hi(src) << SHIFT
 Smem = src << SHIFT

Cycles

Syntaxes

Cycles for a Single Execution With Long-Offset Modifier

Operand	Program		
Smem	ROM/SARAM	DARAM	External
DARAM	3	3	3+3p
SARAM	3, 4†	3	3+3p
External	3	3	6+d+3p
MMR◊	3	3	3+3p

[†]Operand and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.
2 words, 2 cycles. Single data-memory (Smem) write operand or MMR write operand. Class 12A

Syntaxes

Smem = #lk

MMR = #lkmmr(MMR) = #lk

Cycles

Cycles for a Single Execution					
Operand	Program				
Smem	ROM/SARAM	ROM/SARAM DARAM External			
DARAM	2	2	2+2p		
SARAM	2, 3†	2	2+2p		
External	2	2	5+d+2p		
MMR◊	2	2	2+2p		

[†] Operand and code in same memory block [◊] Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution				
Operand	Program			
Smem	ROM/SARAM DARAM External			
DARAM	2n	2n	2n+2p	
SARAM	2n, 2n+1†	2n	2n+2p	
External	2n+(n-1)d	2n+(n–1)d	2n+3+nd+p	
MMR◊	2n	2n	2n+2p	

Cycles for a Repeat Execution

[†] Operand and code in same memory block [◊] Add n cycles for peripheral memory-mapped access.

- 3 words, 3 cycles. Single data-memory (Smem) write operand using long-offset Class 12B indirect addressing.
- Syntaxes ■ Smem = #lk

Cycles for a Single Execution With Long-Offset Modifier

Operand		Program	
Smem	ROM/SARAM	DARAM	External
DARAM	3	3	3+3p
SARAM	3, 4†	3	3+3p
External	3	3	6+d+3p
MMR◊	3	3	3+3p

[†] Operand and code in same memory block [◊] Add one cycle for peripheral memory-mapped access.

1 word, 2 cycles. Single long-word data-memory (Lmem) write operand. Class 13A

Syntaxes

dbl(Lmem) = srcdual(Lmem) = src

Cycles

Cycles for a Single Execution					
Operand	Program				
Lmem	ROM/SARAM	ROM/SARAM DARAM External			
DARAM	2	2	2+p		
SARAM	2, 4†	2	2+p		
External	3+d	3+d	8+2d+p		
MMR◊	2	2	2+p		

[†] Operand and code in same memory block [◊] Add one cycle for peripheral memory-mapped access.

Operand		Program			
Lmem	ROM/SARAM	DARAM	External		
DARAM	2n	2n	2n+p		
SARAM	2n, 2n+2†	2n	2n+p		
External	4n-1+(2n-1)d	4n-1+(2n-1)d	4n+4+2nd+p		
MMR◊	2n	2n	2n+p		

Cycles for a Repeat Execution

 † Operand and code in same memory block $^\diamond$ Add n cycles for peripheral memory-mapped access.

- 2 words, 3 cycles. Single long-word data-memory (Lmem) write operand using long-Class 13B offset indirect addressing.
- Syntaxes dbl(Lmem) = srcdual(Lmem) = src

Cycles for a Single Execution With Long-Offset Modifier

Operand	Program		
Lmem	ROM/SARAM	DARAM	External
DARAM	3	3	3+2p
SARAM	3, 5†	3	3+2p
External	4+d	4+d	9+2d+2p
MMR◊	3	3	3+2p

 † Operand and code in same memory block $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

Class 14 1 word, 1 cycle. Dual data-memory (Xmem and Ymem) read and write operands.

Syntaxes

- Ymem = Xmem
- Ymem = hi(src) [<< ASM] || dst = dst_ + Xmem << 16</p>
- Ymem = hi(src) [<< ASM]
 || dst = Xmem << 16
 Ymem = hi(src) [<< ASM]
 || T = Xmem
- Ymem = hi(src) [<< ASM]
 || dst = dst + T * Xmem
 Ymem = hi(src) [<< ASM]
 || dst = rnd(dst + T * Xmem)
- Ymem = hi(src) [<< ASM]
 || dst = dst T * Xmem
 Ymem = hi(src) [<< ASM]
 || dst = rnd(dst T * Xmem)
- Ymem = hi(src) [<< ASM] || dst = T * Xmem
- Ymem = hi(src) [<< ASM] || dst = Xmem << 16 - dst_</p>

Cycles

Cycles for a Single Execution				
Ор	erand		Program	
Xmem	Ymem	ROM/SARAM	DARAM	External
DARAM	DARAM	1	1, 2†	1+p
	SARAM	1, 2†	1, 2†	1+p
	External	1	1, 2†	4+d+p
SARAM	DARAM	1, 2†	1	1+p
	SARAM	1, 2†, 3‡	1	1+p
	External	1, 2†	1	4+d+p
DROM	DARAM	1, 2†	1	1+p
	SARAM	1, 2†	1	1+p
	External	1, 2†	1	4+d+p
External	DARAM	1+d	1+d	2+d+p
	SARAM	1+d, 2+d†	1+d	2+d+p
	External	1+d	1+d	5+2d+p
MMR◊	DARAM	1	1, 2†	1+p
	SARAM	1, 2†	1	1+p
	External	1	1	4+d+p

[†] Operand and code in same memory block

[‡]Two operands and code in same memory block

◊ Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution				
erand	Program			
Ymem	ROM/SARAM	DARAM	External	
DARAM	n	n, n+1†	n+p	
SARAM	n, n+1†	n, n+1†	n+p	
External	2n-1+(n-1)d	2n–1+(n–1)d, 2n+(n–1)d [†]	2n+2+nd+p	
DARAM	n, n+1†	n	n+p	
SARAM	n, n+1†, 2n#, 2n+1‡	n, 2n#	n+p, 2n+p#	
External	2n–1+(n–1)d, 2n+(n–1)d†	2n–1+(n–1)d, 2n+(n–1)d [†]	2n+2+nd+p	
DARAM	n, n+1†	n, n+1†	n+p	
SARAM	n, n+1†	n	n+p	
External	2n–1+(n–1)d, 2n+(n–1)d†	2n-1+(n-1)d	2n+2+nd+p	
DARAM	n+nd	n+nd	n+1+nd+p	
SARAM	n+nd, n+1+nd†	n+nd	n+1+nd+p	
External	4n-3+(2n-1)d	4n-3+(2n-1)d	4n+1+2nd+p	
DARAM	n	n, 2n†	n+p	
SARAM	n, n+1†	n	n+p	
External	2n-1+(n-1)d	2n-1+(n-1)d	2n+2+nd+p	
	erand Ymem DARAM SARAM External DARAM SARAM	Point of the second systemYmemROM/SARAMDARAMnSARAMn, n+1†External2n-1+(n-1)dDARAMn, n+1†SARAMn, n+1†SARAMn, n+1†, 2n#, 2n+1‡External2n-1+(n-1)d, 2n+(n-1)d†DARAMn, n+1†SARAMn, n+1†DARAMn, n+1†SARAMn, n+1†External2n-1+(n-1)d, 2n+(n-1)d†DARAMn+ndSARAMn+ndSARAMn+nd, n+1+nd†External4n-3+(2n-1)dDARAMnSARAMn, n+1†	ProgramYmemROM/SARAMDARAMDARAMnn, n+1†SARAMn, n+1†n, n+1†SARAMn, n+1†n, n+1†External $2n-1+(n-1)d$ $2n-1+(n-1)d$, $2n+(n-1)d†$ DARAMn, n+1†nSARAMn, n+1†nSARAMn, n+1†, 2n#, $2n+1‡$ n, 2n#External $2n-1+(n-1)d$, $2n+(n-1)d†$ $2n-1+(n-1)d$, $2n+(n-1)d†$ DARAMn, n+1†n, n+1†SARAMn, n+1†nExternal $2n-1+(n-1)d$, $2n+(n-1)d†$ DARAMn+ndn+ndSARAMn+ndn+ndSARAMn+nd, n+1+nd†n+ndExternal $4n-3+(2n-1)d$ $4n-3+(2n-1)d$ DARAMnnn, $2n^{\dagger}$ SARAMnnn, $2n^{\dagger}$ SARAMnnn, $2n^{\dagger}$	

alaa far a Danaat Evaauti

† Operand and code in same memory block ‡ Two operands and code in same memory block

Two operands in same memory block
 ◊ Add n cycles for peripheral memory-mapped access.

Class 15 1 word, 1 cycle. Single data-memory (Xmem) write operand.

Syntaxes

if (cond) Xmem = hi(src) << ASM if (cond) Xmem = T

if (cond) Xmem = BRC

Cycles

Cycles for a Single Execution				
Operand	Program			
Xmem	ROM/SARAM	DARAM	External	
DARAM	1	1	1+p	
SARAM	1, 2†	1	1+p	
External	1	1	4+d+p	
MMR◊	1	1	1+p	

 † Operand and code in same memory block $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

Operand	Program		
Xmem	ROM/SARAM	DARAM	External
DARAM	n	n	n+p
SARAM	n, n+1†	n	n+p
External	2n-1+(n-1)d	2n–1+(n–1)d	2n+2+nd+p
MMR◊	n	n	n+p

Cycles for a Repeat Execution

[†] Operand and code in same memory block [◊] Add n cycles for peripheral memory-mapped access.

- 1 word, 1 cycle. Single data-memory (Smem) read operand or MMR read operand, Class 16A and a stack-memory write operand.
- Syntaxes push(Smem)

push(MMR) push(mmr(*MMR*))

Cycles

Ор	erand		Program	
Smem	Stack	ROM/SARAM	DARAM	External
DARAM	DARAM	1	1, 2†	1+p
	SARAM	1, 2†	1, 2†	1+p
	External	1	1, 2†	4+d+p
SARAM	DARAM	1, 2†	1	1+p
	SARAM	1, 2†, 3‡	1	1+p
	External	1, 2†	1	4+d+p
DROM	DARAM	1, 2†	1	1+p
	SARAM	1, 2†	1	1+p
	External	1, 2†	1	4+d+p
External	DARAM	1+d	1+d	2+d+p
	SARAM	1+d, 2+d†	1+d	2+d+p
	External	1+d	1+d	5+2d+p
MMR◊	DARAM	1	1, 2†	1+p
	SARAM	1, 2†	1	1+p
	External	1	1	4+d+p

[†] Operand and code in same memory block [‡] Two operands and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

Ор	erand	and Program		
Smem	Stack	ROM/SARAM	DARAM	External
DARAM	DARAM	n	n, n+1†	n+p
	SARAM	n, n+1†	n, n+1†	n+p
	External	2n-1+(n-1)d	2n–1+(n–1)d, 2n+(n–1)d [†]	2n+2+nd+p
SARAM	DARAM	n, n+1†	n	n+p
	SARAM	n, n+1†, 2n#, 2n+1‡	n, 2n#	n+p, 2n+p [#]
	External	2n–1+(n–1)d, 2n+(n–1)d†	2n–1+(n–1)d, 2n+(n–1)d [†]	2n+2+nd+p
DROM	DARAM	n, n+1†	n, n+1†	n+p
	SARAM	n, n+1†	n	n+p
	External	2n–1+(n–1)d, 2n+(n–1)d†	2n-1+(n-1)d	2n+2+nd+p
External	DARAM	n+nd	n+nd	n+1+nd+p
	SARAM	n+nd, n+1+nd†	n+nd	n+1+nd+p
	External	4n-3+(2n-1)d	4n-3+(2n-1)d	4n+1+2nd+p
MMR◊	DARAM	n	n, 2n†	n+p
	SARAM	n, n+1†	n	n+p
	External	2n-1+(n-1)d	2n–1+(n–1)d	2n+2+nd+p

Cuolos for a Banast Execution

[†] Operand and code in same memory block
 [‡] Two operands and code in same memory block

 $^{\#}$ Two operands in same memory block $^{\Diamond}$ Add $\,$ n cycles for peripheral memorymapped access.

- 2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset Class 16B indirect addressing and a stack-memory write operand.
- Syntaxes push(Smem)

Cycles for a Single Execution With Long-Offset Modifier

Ор	Operand Program			
Smem	Stack	ROM/SARAM	DARAM	External
DARAM	DARAM	2	2, 3†	2+2p
	SARAM	2, 3†	2, 3†	2+2p
	External	2	2, 3†	5+d+2p
SARAM	DARAM	2, 3†	2	2+2p
	SARAM	2, 3†, 4‡	2	2+2p
	External	2, 3†	2	5+d+2p
DROM	DARAM	2, 3†	2	2+2p
	SARAM	2, 3†	2	2+2p
	External	2, 3†	2	5+d+2p
External	DARAM	2+d	2+d	3+d+2p
	SARAM	2+d, 3+d [†]	2+d	3+d+2p
	External	2+d	2+d	6+2d+2p
MMR◊	DARAM	2	2, 3†	2+2p
	SARAM	2, 3†	2	2+2p
	External	2	2	5+d+2p

[†] Operand and code in same memory block
[‡] Two operands and code in same memory block
[◊] Add one cycle for peripheral memory-mapped access.

Class 17A 1 word, 1 cycle. Single data-memory (Smem) write operand or MMR write operand, and a stack-memory read operand.

Syntaxes

Smem = pop()

MMR = pop()mmr(MMR) = pop()

...

Cycles

Ор	erand		Program	
Smem	Stack	ROM/SARAM	DARAM	External
DARAM	DARAM	1	1, 2†	1+p
	SARAM	1, 2†	1	1+p
	DROM	1, 2†	1	1+p
	External	1+d	1+d	2+d+p
	MMR◊	1	1, 2†	1+p
SARAM	DARAM	1, 2†	1, 2†	1+p
	SARAM	1, 2†, 3‡	1	1+p
	DROM	1, 2†	1	1+p
	External	1+d, 2+d†	1+d	2+d+p
	MMR◊	1, 2†	1	1+p
External	DARAM	1	1, 2†	4+d+p
	SARAM	1, 2†	1	4+d+p
	DROM	1, 2†	1	4+d+p
	External	1+d	1+d	5+2d+p
	MMR◊	1	1	4+d+p

~ .

[†] Operand and code in same memory block [‡] Two operands and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

	Cy	cles for a Repeat E	xecution	
Ор	erand		Program	
Smem	Stack	ROM/SARAM	DARAM	External
DARAM	DARAM	n	n, n+1†	n+p
	SARAM	n, n+1†	n	n+p
	DROM	n, n+1†	n, n+1†	n+p
	External	n+nd	n+nd	n+1+nd+p
	MMR◊	n	n, 2n†	n+p
SARAM	DARAM	n, n+1†	n, n+1†	n+p
	SARAM	n, n+1†, 2n 2n+1‡	n, 2n	n+p, 2n+p
	DROM	n, n+1†	n	n+p
	External	n+nd, n+1+nd [†]	n+nd	n+1+nd+p
	MMR◊	n, n+1†	n	n+p
External	DARAM	2n-1+(n-1)d	2n–1+(n–1)d, 2n+(n–1)d [†]	2n+2+nd+p
	SARAM	2n–1+(n–1)d, 2n+(n–1)d†	2n–1+(n–1)d, 2n+(n–1)d†	2n+2+nd+p
	DROM	2n-1+(n-1)d, 2n+(n-1)d†	2n-1+(n-1)d	2n+2+nd+p
	External	4n-3+((2n-1)d	4n-3+(2n-1)d	4n+1+2nd+p
	MMR◊	2n-1+(n-1)d	2n–1+(n–1)d	2n+2+nd+p

ŝ	ردامه	for	2	Popost	Execution
- U)	/cies	TOP	a	Repeat	Execution

[†] Operand and code in same memory block
 [‡] Two operands and code in same memory block
 [◊] Add one cycle for peripheral memory-mapped access.

Class 17B 2 words, 2 cycles. Single data-memory (Smem) write operand using long-offset indirect addressing, and a stack-memory read operand.

Syntaxes Smem = pop()

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Program	
Smem	Stack	ROM/SARAM	DARAM	External
DARAM	DARAM	2	2, 3†	2+2p
	SARAM	2, 3†	2	2+2p
	DROM	2, 3†	2	2+2p
	External	2+d	2+d	3+d+2p
	MMR◊	2	2, 3†	2+2p
SARAM	DARAM	2, 3†	2, 3†	2+2p
	SARAM	2, 3†, 4‡	2	2+2p
	DROM	2, 3†	2	2+2p
	External	2+d, 3+d†	2+d	3+d+2p
	MMR◊	2, 3†	2	2+2p
External	DARAM	2	2, 3†	5+d+2p
	SARAM	2, 3†	2	5+d+2p
	DROM	2, 3†	2	5+d+2p
	External	2+d	2+d	6+2d+2p
	MMR◊	2	2	5+d+2p

[†] Operand and code in same memory block

[‡]Two operands and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

Class 18A 2 words, 2 cycles. Single data-memory (Smem) read and write operand.

Syntaxes

- Smem = Smem + #lk
- Smem = Smem & #lk
- Smem = Smem | #lk
- Smem = Smem ^ #lk

Cycles

	Cycles IOI a	a Single Execution	1
Operand		Program	
Smem	ROM/SARAM	DARAM	External
DARAM	2	2, 3†	2+2p
SARAM	2, 4†	2	2+2p
External	2+d	2+d	6+2d+2p
MMR◊	2	2	2+2p

Cycles for a Single Execution

[†]Operand and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

Class 18B 3 words, 3 cycles. Single data-memory (Smem) read and write operand using long-offset indirect addressing.

Syntaxes

- Smem = Smem + #lk
 - Smem = Smem & #lk
- Smem = Smem | #lk
- Smem = Smem ^ #lk

Cycles

Cyc	Cycles for a Single Execution with Long-Onset Mouther				
Operand		Program			
Smem	ROM/SARAM	DARAM	External		
DARAM	3	3, 4†	3+3p		
SARAM	3, 5†	3	3+3p		
External	3+d	3+d	7+2d+3p		
MMR◊	3	3	3+3p		

Cycles for a Single Execution With Long-Offset Modifier

[†]Operand and code in same memory block

⁽⁾ Add one cycle for peripheral memory-mapped access.

Class 19A 2 words, 2 cycles. Single data-memory (Smem) read operand or MMR read operand, and single data-memory (dmad) write operand; or single data-memory (dmad) read operand, and single data-memory (Smem) write operand or MMR write operand.

 data(dmad) =	Smem
---------------------------	---------	------

- Smem = data(dmad)
- MMR = data(dmad) mmr(MMR) = data(dmad)
- data(*dmad*) = MMR
 data (*dmad*) = mmr(MMR)

Ор	erand		Progran	า
Smem	dmad	ROM/SARAM	DARAM	External
DARAM	DARAM	2	2, 3†	2+2p
	SARAM	2, 3†	2, 3†	2+2p
	External	2	2, 3†	5+d+2p
	MMR◊	2	2	2+2p
ARAM	DARAM	2, 3†	2	2+2p
	SARAM	2, 3†, 4‡	2	2+2p
	External	2, 3†	2	5+d+2p
	MMR◊	2, 3†	2	2+2p
ROM	DARAM	2, 3‡	2	2+2p
	SARAM	2, 3†	2	2+2p
	External	2, 3†	2	5+d+2p
	MMR◊	2, 3†	2	2+2p
xternal	DARAM	2+d	2+d	3+d+2p
	SARAM	2+d, 3+d†	2+d	3+d+2p
	External	2+d	2+d	6+2d+p
	MMR◊	2+d	2+d	3+d+2p
MR◊	DARAM	2	2, 3†	2+2p
	SARAM	2, 3†	2	2+2p
	External	2	2	5+d+2p
	MMR◊	2	2	2+2p

Cycles

Syntaxes

[†] Operand and code in same memory block

[‡]Two operands and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution				
Ор	erand		Program	
Smem	dmad	ROM/SARAM	DARAM	External
DARAM	DARAM	n+1	n+1, n+2†	n+1+2p
	SARAM	n+1, n+2†	n+1, n+2†	n+1+2p
	External	2n+(n–1)d	2n+(n–1)d, 2n+1+(n–1)d†	2n+3+nd+2p
	MMR◊	n+1	n+1	n+1+2p
SARAM	DARAM	n+1, n+2†	n+1	n+1+2p
	SARAM	2n, 2n+1†, 2n+2‡	2n	2n+2p
	External	2n+(n–1)d, 2n+1+(n–1)d [†]	2n+(n–1)d	2n+3+nd+2p
	MMR◊	n+1, n+2†	n+1	n+1+2p
DROM	DARAM	n+1, n+2†	n+1	n+1+2p
	SARAM	n+1, n+2†	n+1	n+1+2p
	External	2n+(n–1)d, 2n+1+(n–1)d [†]	2n+(n-1)d	2n+3+nd+2p
	MMR◊	n+1, n+2†	n+1	n+1+2p
External	DARAM	n+1+nd	n+1+nd	n+1+nd+2p
	SARAM	n+1+nd, n+2nd [†]	n+1+nd	n+1+nd+2p
	External	4n-2+(2n-1)d	4n-2+(2n-1)d	4n+2+2nd+2p
	MMR◊	n+1+nd	n+1+nd	n+1+nd+2p
MMR◊	DARAM	n+1	n+1	n+1+2p
	SARAM	n+1, n+2†	n+1	n+1+2p
	External	2n+(n-1)d	2n+(n-1)d	2n+3+nd+2p
	MMR◊	n+1	n+1	n+1+2p
		-		

Cycles	for a	Repeat	Execution
--------	-------	--------	-----------

[†] Operand and code in same memory block
 [‡] Two operands and code in same memory block
 [◊] Add n cycles for peripheral memory-mapped access.

Class 19B 2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing and single data-memory (dmad) write operand, or single data-memory (dmad) read operand and single data-memory (Smem) write operand using long-offset indirect addressing.

data(dmad) = Smem
 Smem = data(dmad)

Cycles

Syntaxes

Operand			Program		
Smem	dmad	ROM/SARAM	DARAM	External	
DARAM	DARAM	3	3, 4†	3+3p	
	SARAM	3, 4†	3, 4†	3+3p	
	External	3	3, 4†	6+d+3p	
	MMR◊	3	3	3+3p	
SARAM	DARAM	3, 4†	3	3+3p	
	SARAM	3, 4†, 5‡	3	3+3p	
	External	3, 4†	3	6+d+3p	
	MMR◊	3, 4†	3	3+3p	
ROM	DARAM	3, 4‡	3	3+3p	
	SARAM	3, 4†	3	3+3p	
	External	3, 4†	3	6+d+3p	
	MMR◊	3, 4†	3	3+3p	
xternal	DARAM	3+d	3+d	4+d+3p	
	SARAM	3+d, 4+d†	3+d	4+d+3p	
	External	3+d	3+d	7+2d+2p	
	MMR◊	3+d	3+d	4+d+3p	

[†] Operand and code in same memory block

[‡]Two operands and code in same memory block

⁽⁾ Add one cycle for peripheral memory-mapped access.

Operand			Program	n
Smem	dmad	ROM/SARAM	DARAM	External
MMR◊	DARAM	3	3, 4†	3+3p
	SARAM	3, 4†	3	3 + 3p
	External	3	3	6+d+3p
	MMR◊	3	3	3+3p

Cycles for a Single Execution With Long-Offset Modifier (Continued)

[†] Operand and code in same memory block
 [‡] Two operands and code in same memory block
 [◊] Add one cycle for peripheral memory-mapped access.

- Class 20A 2 words, 4 cycles. Single data-memory (Smem) read operand and single programmemory (pmad) write operand.
- Syntaxes prog(pmad) = Smem

Cycles for a Single Execution				
Op	erand		Progran	n
Smem	pmad	ROM/SARAM	DARAM	External
DARAM	DARAM	4	4	4+2p
	SARAM	4	4	4+2p
	External	4	4	6+pd+2p
SARAM	DARAM	4, 5†	4	4+2p
	SARAM	4	4	4+2p
	External	4	4	6+pd+2p
DROM	DARAM	4, 5†	4	4+2p
	SARAM	4	4	4+2p
	External	4	4	6+pd+2p
External	DARAM	4+d	4+d	4+d+2p
	SARAM	4+d	4+d	4+d+2p
	External	4+d+pd	4+d+pd	6+d+pd+2p
MMR◊	DARAM	4	4	4+2p
	SARAM	4	4	4+2p
	External	4	4	6+pd+2p

 † Operand and code in same memory block $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

	Cycles for a Repeat Execution					
Operand			Program			
Smem	pmad	ROM/SARAM	DARAM	External		
DARAM	DARAM	n+3	n+3	n+3+2p		
	SARAM	n+3	n+3	n+3+2p		
	External	2n+2+(n-1)pd	2n+2+(n-1)pd	2n+4+npd+2p		
SARAM	DARAM	n+3	n+3	n+3+2p		
	SARAM	n+3, 2n+2 [#]	n+3, 2n+2 [#]	n+3+2p, 2n+2+2p [#]		
	External	2n+2+(n-1)pd	2n+2+(n-1)pd	2n+4+npd+2p		
DROM	DARAM	n+3	n+3	n+3+2p		
	SARAM	n+3	n+3	n+3+2p		
	External	2n+2+(n–1)pd	2n+2+(n-1)pd	2n+4+npd+2p		
External	DARAM	n+3+npd	n+3+npd	n+3+npd+2p		
	SARAM	n+3+npd	n+3+npd	n+3+npd+2p		
	External	4n+nd+npd	4n+nd+npd	4n+2+nd+npd+2p		
MMR◊	DARAM	n+3	n+3	n+3+2p		
	SARAM	n+3	n+3	n+3+2p		
	External	2n+2+(n-1)pd	2n+2+(n-1)pd	2n+4+npd+2p		

Two operands in same memory block
 ◊ Add n cycles for peripheral memory-mapped access.

- 3 words, 5 cycles. Single data-memory (Smem) read operand using long-offset Class 20B indirect addressing and single program-memory (pmad) write operand.
- Syntaxes
- prog(pmad) = Smem

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Program	ı
Smem	pmad	ROM/SARAM	DARAM	External
DARAM	DARAM	5	5	5+3p
	SARAM	5	5	5 + 3p
	External	5	5	7+2pd+3p
SARAM	DARAM	5, 6†	5	5 + 3p
	SARAM	5	5	5 + 3p
	External	5	5	7+2pd+3p
DROM	DARAM	5, 6†	5	5 + 3p
	SARAM	5	5	5 + 3p
	External	5	5	7+2pd+3p
External	DARAM	5+d	5+d	5+d+3p
	SARAM	5+d	5+d	5+d+3p
	External	5+d+2pd	5+d+2pd	7+d+2pd+3p
MMR◊	DARAM	5	5	5 + 3p
	SARAM	5	5	5 + 3p
	External	5	5	7+3pd+3p

 † Operand and code in same memory block $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

- *Class 21A* 2 words, 3 cycles. Single program-memory (pmad) read operand and single datamemory (Smem) write operand.
- *Syntaxes Smem* = prog(*pmad*)

Operand			Program	า
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	3	3	3+2p
	SARAM	3	3	3+2p
	External	3	3	6+d+2p
	MMR◊	3	3	3+2p
SARAM	DARAM	3	3	3+2p
	SARAM	3	3	3+2p
	External	3	3	6+d+2p
	MMR◊	3	3	3+2p
PROM	DARAM	3	3	3+2p
	SARAM	3	3	3+2p
	External	3	3	6+d+2p
	MMR◊	3	3	3+2p
External	DARAM	3+pd	3+pd	3+pd+2p
	SARAM	3+pd	3+pd	3+pd+2p
	External	3+pd	3+pd	6+d+pd+2p
	MMR◊	3+pd	3+pd	3+pd+2p

 $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

Operand			Program	
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	n+2	n+2	n+2+2p
	SARAM	n+2	n+2	n+2+2p
	External	2n+1+(n-1)d	2n+1+(n–1)d	2n+4+nd+2p
	MMR◊	n+2	n+2	n+2+2p
SARAM	DARAM	n+2	n+2	n+2+2p
	SARAM	n+2, 2n+1 [#]	n+2, 2n+1 [#]	n+2+2p
	External	2n+1+(n-1)d	2n+1+(n–1)d	2n+4+nd+2p
	MMR◊	n+2	n+2	n+2+2p
PROM	DARAM	n+2	n+2	n+2+2p
	SARAM	n+2	n+2	n+2+2p
	External	2n+1+(n-1)d	2n+1+(n–1)d	2n+4+nd+2p
	MMR◊	n+2	n+2	n+2+2p
External	DARAM	n+2+npd	n+2+npd	n+2+npd+2p
	SARAM	n+2+npd	n+2+npd	n+2+npd+2p
	External	4n–1+(n–1)d +npd	4n–1+(n–1)d +npd	4n+2+nd+npd+2p
	MMR◊	n+2+npd	n+2+npd	n+2+npd+2p

- *Class 21B* 3 words, 4 cycles. Single program-memory (pmad) read operand and single datamemory (Smem) write operand using long-offset indirect addressing.
- *Syntaxes Smem* = prog(*pmad*)

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Progran	n
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	4	4	4+3p
	SARAM	4	4	4+3p
	External	4	4	7+d+3p
	MMR◊	4	4	4+3p
SARAM	DARAM	4	4	4+3p
	SARAM	4	4	4+3p
	External	4	4	7+d+3p
	MMR◊	4	4	4 + 3p
PROM	DARAM	4	4	4+3p
	SARAM	4	4	4+3p
	External	4	4	7+d+3p
	MMR◊	4	4	4+3p
External	DARAM	4+2pd	4+2pd	4+2pd+3p
	SARAM	4+2pd	4+2pd	4+2pd+3p
	External	4+2pd	4+2pd	7+d+2pd+3p
	MMR◊	4+2pd	4+2pd	4+2pd+3p

 $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

- Class 22A 2 words, 3 cycles. Single data-memory (Smem) read operand and single programmemory (pmad) read operand.
- Syntaxes macp(Smem, pmad, src)

Cycles for a Single Execution					
Ор	erand		Program		
pmad	Smem	ROM/SARAM	DARAM	External	
DARAM	DARAM	3	3, 4†	3+2p	
	SARAM	3, 4†	3	3+2p	
	External	3+d	3+d	4+d+2p	
	MMR◊	3	3	3+2p	
SARAM	DARAM	3	3, 4†	3+2p	
	SARAM	3, 4†	3	3+2p	
	External	3+d	3+d	4+d+2p	
	MMR◊	3	3	3+2p	
PROM	DARAM	3	3, 4†	3+2p	
	SARAM	3, 4†	3	3+2p	
	External	3+d	3+d	4+d+2p	
	MMR◊	3	3	3+2p	
External	DARAM	3+pd	3+pd, 4+pd†	3+pd+2p	
	SARAM	3+pd	3+pd	4+pd+2p	
	External	4+d+pd	4+d+pd	4+d+pd+2p	
	MMR◊	3+pd	3+pd	3+pd+2p	

[†] Operand and code in same memory block [◊] Add one cycle for peripheral memory-mapped access.

	Cycles for a Repeat Execution					
Ор	erand		Program			
pmad	Smem	ROM/SARAM	DARAM	External		
DARAM	DARAM	n+2	n+2, n+3†	n+2+2p		
	SARAM	n+2, n+3†	n+2	n+2+2p		
	External	n+2+nd	n+2+nd	n+2+nd+2p		
	MMR◊	n+2	n+2	n+2+2p		
SARAM	DARAM	n+2	n+2, n+3†	n+2+2p		
	SARAM	n+2, n+3 [†] , 2n+2 [#]	n+2, 2n+2 [#]	n+2+2p, 2n+2+2p [#]		
	External	n+2+nd	n+2+nd	n+2+nd+2p		
	MMR◊	n+2	n+2	n+2+2p		
PROM	DARAM	n+2	n+2, n+3†	n+2+2p		
	SARAM	n+2, n+3†	n+2	n+2+2p		
	External	n+2+nd	n+2+nd	n+2+nd+2p		
	MMR◊	n+2	n+2	n+2+2p		
External	DARAM	n+2+npd	n+2+npd, n+3+npd [†]	n+2+npd+2p		
	SARAM	n+2+npd	n+2+npd	n+3+npd+2p		
	External	2n+2+nd+npd	2n+2+nd+npd	2n+2+nd+npd +2p		
	MMR◊	n+2+npd	n+2+npd	n+2+npd+2p		

veloe fer e Denest Evenuti ~

[†] Operand and code in same memory block
 [#] Two operands in same memory block
 [◊] Add n cycles for peripheral memory-mapped access.

- *Class 22B* 3 words, 4 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing and single program-memory (pmad) read operand.
- *Syntaxes* macp(*Smem*, *pmad*, *src*)

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Program	
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	4	4, 5†	4+3p
	SARAM	4, 5†	4	4+3p
	External	4+d	4+d	5+d+3p
	MMR◊	4	4	4+3p
SARAM	DARAM	4	4, 5†	4+3p
	SARAM	4, 5†	4	4+3p
	External	4+d	4+d	5+d+3p
	MMR◊	4	4	4+3p
PROM	DARAM	4	4, 5†	4+3p
	SARAM	4, 5†	4	4+3p
	External	4+d	4+d	5+d+3p
	MMR◊	4	4	4+3p
External	DARAM	4+2pd	4+2pd, 5+2pd†	4+2pd+3p
	SARAM	4+2pd	4+2pd	5+2pd+3p
	External	5+d+2pd	5+d+2pd	5+d+2pd+3p
	MMR◊	4+2pd	4+2pd	4+2pd+3p

[†] Operand and code in same memory block

♦ Add one cycle for peripheral memory-mapped access.

2 words, 3 cycles. Single data-memory (Smem) read operand, single data-memory Class 23A (Smem) write operand, and single program-memory (pmad) read operand.

Syntaxes macd(Smem, pmad, src)

Cycles

Operand			Program	
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	3, 4#	3, 4#	3+2p, 4+2p#
	SARAM	3, 4†	3, 4†	3+2p
	External	3+d	3+d	6+2d+2p
	MMR◊	3	3	3+2p
SARAM	DARAM	3, 4†	3	3+2p
	SARAM	3, 4#	3, 4#	3+2p, 4+2p [#]
	External	3+d	3+d	6+2d+2p
	MMR◊	3	3	3+2p
PROM	DARAM	3	3	3+2p
	SARAM	3, 4†	3	3+2p
	External	3+d	3+d	6+2d+2p
	MMR◊	3	3	3+2p
External	DARAM	3+pd	3+pd	3+pd+2p
	SARAM	3+pd	3+pd	3+pd+2p
	External	4+d+pd	4+d+pd	7+d+pd+2p
	MMR◊	3+pd	3+pd	4+pd+2p

[†] Operand and code in same memory block
 [#] Two operands in same memory block
 [◊] Add one cycle for peripheral memory-mapped access.

		vcles for a Repeat E		
Ор	erand		Program	
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	n+2, 2n+2#	n+2, 2n+2#	n+2+2p, 2n+2+2p [#]
	SARAM	n+2, n+3†	n+2, n+3†	n+2+2p
	External	4n+1+2nd	4n+1+2nd	4n+2+2nd+2p
	MMR◊	n+2	n+2	n+2+2p
SARAM	DARAM	n+2, n+3†	n+2	n+2+2p
	SARAM	n+2, 2n+2 [#]	n+2, 2n+2#	n+2+2p, 2n+2+2p [#]
	External	4n+1+2nd	4n+1+2nd	4n+2+2nd+2p
	MMR◊	n+2	n+2	n+2+2p
PROM	DARAM	n+2	n+2	n+2+2p
	SARAM	n+2, n+3†	n+2	n+2+2p
	External	4n+1+2nd	4n+1+2nd	4n+2+2nd+2p
	MMR◊	n+2	n+2	n+2+2p
External	DARAM	n+2+npd	n+2+npd, n+3+npd†	n+2+npd+2p
	SARAM	n+2+npd	n+2+npd	n+2+npd+2p
	External	5n–1+nd+npd	5n–1+nd+npd	5n+2+nd+npd +2p
	MMR◊	n+2+npd	n+2+npd	4n+3+npd+2p

Cuolos for a Banast Execution

[†] Operand and code in same memory block
 [#] Two operands in same memory block
 [◊] Add one cycle for peripheral memory-mapped access.

- *Class 23B* 3 words, 4 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing, single data-memory (Smem) write operand using long-offset indirect addressing, and single program-memory (pmad) read operand.
- *Syntaxes* macd(*Smem*, *pmad*, *src*)

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Program	
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	4, 5#	4, 5#	4+3p, 5+3p [#]
	SARAM	4, 5†	4, 5†	4+3p
	External	4+d	4+d	7+2d+3p
	MMR◊	4	4	4+3p
SARAM	DARAM	4, 5†	4	4+3p
	SARAM	4, 5#	4, 5#	4+3p, 5+3p [#]
	External	4+d	4+d	7+2d+3p
	MMR◊	4	4	4+3p
PROM	DARAM	4	4	4+3p
	SARAM	4, 5†	4	4+3p
	External	4+d	4+d	7+2d+3p
	MMR◊	4	4	4+3p
External	DARAM	4+2pd	4+2pd	4+pd+3p
	SARAM	4+2pd	4+2pd	4+2pd+3p
	External	5+d+2pd	5+d+2pd	8+d+2pd+3p
	MMR◊	4+2pd	4+2pd	5+2pd+3p

[†]Operand and code in same memory block

[#] Two operands in same memory block

[◊] Add one cycle for peripheral memory-mapped access.

Class 24A 1 word, 1 cycle. Single data-memory (Smem) read operand and single data-memory (Smem) write operand.

```
Syntaxes
```

delay(Smem)
 ltd(Smem)

Cycles

Cycles for a Single Execution				
Operand	Program ROM/SARAM DARAM External			
Smem				
DARAM	1	1, 2†	1+p	
SARAM	1, 3 [†]	1	1+p	
External	1+d	1+d	5+p+2d	

[†] Operand and code in same memory block

Cycles for a Repeat Execution					
Operand	Program				
Smem	ROM/SARAM DARAM External				
DARAM	n	n, n+1†	n+p		
SARAM	2n–1, 2n+1†	2n–1	2n–1+p		
External	4n-3+(2n-1)d	4n-3+(2n-1)d	4n+1+p+2nd		

[†] Operand and code in same memory block

- **Class 24B** 2 words, 2 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing and single data-memory (Smem) write operand using long-offset indirect addressing.
- Syntaxes

delay(*Smem*) Itd(*Smem*)

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Operand		Program	
Smem	ROM/SARAM	DARAM	External
DARAM	2	2, 3†	2+2p
SARAM	2, 4†	2	2+2p
External	2+d	2+d	6+2p+2d

[†] Operand and code in same memory block

Class 25A 1 word, 5 cycles. Single program-memory (pmad) read address and single datamemory (Smem) write operand.

Syntaxes Smem = prog(A)

Cycles

Operand		Program		
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	5	5	5+p
	SARAM	5	5	5+p
	External	5	5	8+d+p
	MMR◊	5	5	5+p
SARAM	DARAM	5	5	5+p
	SARAM	5	5	5+p
	External	5	5	8+d+p
	MMR◊	5	5	5+p
PROM	DARAM	5	5	5+p
	SARAM	5	5	5+p
	External	5	5	8+d+p
	MMR◊	5	5	5+p
External	DARAM	5+pd	5+pd	5+pd+p
	SARAM	5+pd	5+pd	5+pd+p
	External	5+pd	5+pd	8+pd+d+p
	MMR◊	5+pd	5+pd	5+pd+p

◊ Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution						
Ор	erand		Program			
pmad	Smem	ROM/SARAM	DARAM	External		
DARAM	DARAM	n+4	n+4	n+4+p		
	SARAM	n+4	n+4	n+4+p		
	External	2n+3+(n–1)d	2n+3+(n–1)d	2n+6+nd+np		
	MMR◊	n+4	n+4	n+4+p		
SARAM	DARAM	n+4	n+4	n+4+p		
	SARAM	n+4, 2n+3 [#]	n+4, 2n+3 [#]	n+4+p, 2n+3+p [#]		
	External	2n+3+(n-1)d	2n+3+(n–1)d	2n+6+nd+p		
	MMR◊	n+4	n+4	n+4+p		
PROM	DARAM	n+4	n+4	n+4+p		
	SARAM	n+4	n+4	n+4+p		
	External	2n+3+(n-1)d	2n+3+(n–1)d	2n+6+nd+p		
	MMR◊	n+4	n+4	n+4+p		
External	DARAM	n+4+npd	n+4+npd	n+4+npd+p		
	SARAM	n+4+npd	n+4+npd	n+4+npd+p		
	External	4n+1+(n–1)d +npd	4n+1+(n–1)d +npd	4n+4+nd+npd +p		
	MMR◊	n+4+npd	n+4+npd	n+4+npd+p		

_ .

Two operands in same memory block
 ◊ Add n cycles for peripheral memory-mapped access.

- *Class 25B* 2 words, 6 cycles. Single program-memory (pmad) read address and single datamemory (Smem) write operand using long-offset indirect addressing.
- Syntaxes Smem = prog(A)

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Program	
pmad	Smem	ROM/SARAM	DARAM	External
DARAM	DARAM	6	6	6+2p
	SARAM	6	6	6+2p
	External	6	6	9+d+2p
	MMR◊	6	6	6+2p
SARAM	DARAM	6	6	6+2p
	SARAM	6	6	6+2p
	External	6	6	9+d+2p
	MMR◊	6	6	6+2p
PROM	DARAM	6	6	6+2p
	SARAM	6	6	6+2p
	External	6	6	9+d+2p
	MMR◊	6	6	6+2p
External	DARAM	6+2pd	6+2pd	6+2pd+2p
	SARAM	6+2pd	6+2pd	6+2pd+2p
	External	6+2pd	6+2pd	9+2pd+d+2p
	MMR◊	6+2pd	6+2pd	6+2pd+2p

 $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

Class 26A 1 word, 5 cycles. Single data-memory (Smem) read operand and single programmemory (pmad) write address.

Syntaxes **•** prog(A) = *Smem*

Cycles

Cycles for a Single Execution					
Operand		Program			
Smem	pmad	ROM/SARAM	DARAM	External	
DARAM	DARAM	5	5	5+p	
	SARAM	5	5	5+p	
	External	5	5	5+pd+p	
SARAM	DARAM	5	5	5+p	
	SARAM	5	5	5+p	
	External	5	5	5+pd+p	
DROM	DARAM	5	5	5+p	
	SARAM	5	5	5+p	
	External	5	5	5+pd+p	
External	DARAM	5+pd	5+pd	5+pd+p	
	SARAM	5+pd	5+pd	5+pd+p	
	External	5+d	5+d	7+d+pd+p	
MMR◊	DARAM	5	5	5+p	
	SARAM	5	5	5+p	
	External	5	5	5+pd+p	

 $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

Cycles for a Repeat Execution					
Ор	erand	Program			
Smem	pmad	ROM/SARAM	DARAM	External	
DARAM	DARAM	n+4	n+4	n+4+p	
	SARAM	n+4	n+4	n+4+p	
	External	2n+3+(n–1)pd	2n+3+(n–1)pd	2n+3+npd+p	
SARAM	DARAM	n+4	n+4	n+4+p	
	SARAM	n+4, 2n+3 [#]	n+4, 2n+3 [#]	n+4+p, 2n+3+p [#]	
	External	2n+3+(n-1)pd	2n+3+(n–1)pd	2n+3+npd+p	
DROM	DARAM	n+4	n+4	n+4+p	
	SARAM	n+4	n+4	n+4+p	
	External	2n+3+(n-1)pd	2n+3+(n–1)pd	2n+3+npd+p	
External	DARAM	n+4+npd	n+4+npd	n+4+npd+p	
	SARAM	n+4+npd	n+4+npd	n+4+npd+p	
	External	4n+1+nd +(n–1)pd	4n+1+nd +(n–1)pd	4n+3+nd+npd +p	
MMR◊	DARAM	n+4	n+4	n+4+p	
	SARAM	n+4	n+4	n+4+p	
	External	2n+3+(n–1)pd	2n+3+(n–1)pd	2n+3+npd+p	
	External	2n+3+(n-1)pd	2n+3+(n-1)pd	2n+3+npd+p	

alaa fax a Damaat Ewaauti

[#] Two operands in same memory block
 [◊] Add n cycles for peripheral memory-mapped access.
Class 26B 2 words, 6 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing and single program-memory (pmad) write address.

Syntaxes **•** prog(A) = *Smem*

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand	Program		
Smem	pmad	ROM/SARAM	DARAM	External
DARAM	DARAM	6	6	6+2p
	SARAM	6	6	6+2p
	External	6	6	6+2pd+2p
SARAM	DARAM	6	6	6+2p
	SARAM	6	6	6+2p
	External	6	6	6+2pd+2p
DROM	DARAM	6	6	6+2p
	SARAM	6	6	6+2p
	External	6	6	6+2pd+2p
External	DARAM	6+2pd	6+2pd	6+2pd+2p
	SARAM	6+2pd	6+2pd	6+2pd+2p
	External	6+d	6+d	8+d+2pd+2p
MMR◊	DARAM	6	6	6+2p
	SARAM	6	6	6+2p
	External	6	6	6+2pd+2p

 $^{\Diamond}$ Add one cycle for peripheral memory-mapped access.

- *Class 27A* 2 words, 2 cycles. Single I/O port read operand and single data-memory (Smem) write operand.
- *Syntaxes* Smem = port(PA)

Cycles

Cycles for a Single Execution					
Operand Program					
Port	Smem	ROM/SARAM	DARAM	External	
External	DARAM	3+io	3+io	6+2p+io	
	SARAM	3+io, 4+io†	3+io	6+2p+io	
	External	3+io	3+io	9+2p+d+io	

[†]Operand and code in same memory block

	Cycles for a Repeat Execution					
Ор	erand		Program			
Port	Smem	ROM/SARAM	DARAM	External		
External	DARAM	2n+1+nio	2n+1+nio	2n+4+2p+nio		
	SARAM	2n+1+nio, 2n+2+nio [†]	2n+1+nio	2n+4+2p+nio		
	External	5n–2+nio +(n–1)d	5n–2+nio +(n–1)d	5n+4+2p +nio+nd		

[†]Operand and code in same memory block

- *Class 27B* 3 words, 3 cycles. Single I/O port read operand and single data-memory (Smem) write operand using long-offset indirect addressing.
- *Syntaxes Smem* = port(*PA*)

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Program	
Port	Smem	ROM/SARAM	DARAM	External
External	DARAM	4+io	4+io	7+3p+io
	SARAM	4+io, 5+io†	4+io	7+3p+io
	External	4+io	4+io	10+3p+d+io

[†]Operand and code in same memory block

Class 28A 2 words, 2 cycles. Single data-memory (Smem) read operand and single I/O port write operand.

Syntaxes **•** port(*PA*) = *Smem*

Cycles

Cycles for a Single Execution					
Ор	erand		Program		
Port	Smem	ROM/SARAM	DARAM	External	
External	DARAM	2	2, 3†	6+2p+io	
	SARAM	2, 3†	2	6+2p+io	
	DROM	2, 3†	2	6+2p+io	
	External	2+d	2+d	7+2p+d+io	

[†] Operand and code in same memory block

Ор	erand	Program				
Port	Smem	ROM/SARAM	DARAM	External		
External	DARAM	2n+(n–1)io	2n+(n–1)io, 2n+1+(n–1)io†	2n+4+2p+nio		
	SARAM	2n+(n–1)io, 2n+1+(n–1)io†	2n+(n-1)io	2n+4+2p+nio		
	DROM	2n+(n–1)io, 2n+1+(n–1)io†	2n+(n-1)io	2n+4+2p+nio		
	External	5n–3+nd +(n–1)io	5n–3+nd +(n–1)io	5n+2+2p+nd +nio		

Cycles for a Repeat Execution

[†] Operand and code in same memory block

- *Class 28B* 3 words, 3 cycles. Single data-memory (Smem) read operand using long-offset indirect addressing and single I/O port write operand.
- *Syntaxes* **•** port(*PA*) = *Smem*

Cycles

Cycles for a Single Execution With Long-Offset Modifier

Ор	erand		Program	
Port	Smem	ROM/SARAM	DARAM	External
External	DARAM	3	3, 4†	7+3p+io
	SARAM	3, 4†	3	7+3p+io
	DROM	3, 4†	3	7+3p+io
	External	3+d	3+d	8+3p+d+io

[†]Operand and code in same memory block

Class 29A 2 words, 4 cycles, 2 cycles (delayed), 2 cycles (false condition). Single programmemory (pmad) operand.

- Syntaxes
- [d]goto pmad

[d]call pmad

- if (*Sind* != 0) [d]goto *pmad*
- far [d]goto extpmad

[d]blockrepeat(pmad)

Cycles

Cycles for a Single Execution

	Program	
ROM/SARAM	DARAM	External
4	4	4+4p

Cycles for a Single Delayed Execution					
Program					
ROM/SARAM	DARAM	External			
2	2	2+2p			

Class 29B 2 words, 4 cycles, 2 cycles (delayed). Single program-memory (pmad) operand.

Syntaxes

far [d]call extpmad

Cycles

		0	
Operand		Program	
Stack	ROM/SARAM	DARAM	External
DARAM	4	4	4+4p
SARAM	4, 5†	4	4+4p
External	4	4	7+4p+d

Cycles for a Single Execution

[†] Operand and code in same memory block

Cycles for a Single Delayed Execution

Operand		Program	
Stack	ROM/SARAM	DARAM	External
DARAM	2	2	2+2p
SARAM	2, 3†	2	2+2p
External	2	2	5+2p+d

[†] Operand and code in same memory block

Class 30A 1 word, 6 cycles, 4	cycles (d	delayed). S	Single register	operand.
-------------------------------	-----------	-------------	-----------------	----------

Syntaxes I [d]goto src I far [d]goto src

Cycles		Cycles for a Single	Execution			
		Program				
	ROM/SARAM	DARAM	External			
	6	6	6+3p			

	Cycles for a Single Delayed Execution				
Program					
ROM/SARAM	DARAM	External			
4	4	4+p			

Class 30B 1 word, 6 cycles, 4 cycles (delayed). Single register operand.

[d]call *src*

Syntaxes

far [d]call src

Cycles

Cycles for a Single Execution				
	Program			
Stack	ROM/SARAM	DARAM	External	
DARAM	6	6	6+3p	
SARAM	6	6	6+3p	
External	6	6	7+3p+d	

	Cycles for a Single Delayed Execution				
	Program				
Stack	ROM/SARAM	DARAM	External		
DARAM	4	4	4+p		
SARAM	4	4	4+p		
External	4	4	5+p+d		

- *Class 31A* 2 words, 5 cycles, 3 cycles (delayed). Single program-memory (pmad) operand and short-immediate operands.
- *Syntaxes* if (cond [, cond [, cond]]) [d]goto pmad
- Cycles

	Cycles for a Single Execution				
	Program				
Condition	ROM/SARAM	DARAM	External		
True	5	5	5+4p		
False	3	3	3+2p		

Cycles for a	Single	Delayed	Execution
--------------	--------	---------	-----------

	Program		
Condition	ROM/SARAM	DARAM	External
True	3	3	3+2p
False	3	3	3+2p

- *Class 31B* 2 words, 5 cycles, 3 cycles (delayed), 3 cycles (false condition). Single programmemory (pmad) operand and short-immediate operands.
- *Syntaxes* if (cond [, cond [, cond]]) [d]call pmad

Cycles

Cycles for a Single True Condition Execution				
Operand	Program			
Stack	ROM/SARAM	DARAM	External	
DARAM	5	5	5+4p	
SARAM	5, 6†	5	5+4p	
External	5	5	8+4p+d	

[†] Operand and code in same memory block

Cycles for a Single False Condition Execution				
Operand	Program			
Stack	ROM/SARAM	DARAM	External	
DARAM	3	3	3+2p	
SARAM	3, 4†	3	3+2p	
External	3	3	6+2p+d	

[†]Operand and code in same memory block

Operand	Cycles for a Sin	gle Delayed Exec Program	ution
Stack	ROM/SARAM	DARAM	External
DARAM	3	3	3+2p
SARAM	3, 4†	3	3+2p
External	3	3	6+2p+d

[†]Operand and code in same memory block

- *Class 32* 1 word, 5 cycles, 3 cycles (delayed), 3 cycles (false condition). No operand, or short-immediate operands.
- Syntaxes
- if (cond [, cond [, cond]]) [d]return [d]return_enable
- [d]return

Cycles

	Cycles for a Single Execution				
Operand		Program			
Stack	ROM/SARAM	DARAM	External		
DARAM	5	5, 6†	5+3p		
SARAM	5, 6†	5	5+3p		
External	5+d	5+d	6+d+3p		

[†] Operand and code in same memory block

Operand	Program			
Stack	ROM/SARAM	DARAM	External	
DARAM	3	3, 4†	3+р	
SARAM	3, 4†	3	3+р	
External	3+d	3+d	4+d+p	

[†] Operand and code in same memory block

Class 33 1 word, 3 cycles, 1 cycle (delayed). No operand.

Syntaxes Id]return_fast

Cycles

Cycles for a Single Execution						
	Program					
ROM/SARAM	DARAM	External				
3	3	3+р				

Cycles for a Single Delayed Execution						
Program						
ROM/SARAM	DARAM	External				
1	1	1+p				

_

.

- - -

Class 34 1 word, 6 cycles, 4 cycles (delayed). No operand.

Syntaxes

far [d]return

far [d]return_enable

Cycles

Cycles for a Single Execution							
	Program						
Stack	ROM/SARAM	DARAM	External				
DARAM	6	6, 8†	6+3p				
SARAM	6, 8†	6	6+3p				
External	6+2d	6+2d	8+3p+d				

[†]Operand and code in same memory block

Cycles for a Single Delayed Execution									
	Program								
Stack	ROM/SARAM	DARAM	External						
DARAM	4	4, 6†	4+p						
SARAM	4, 6†	4	4+p						
External	4+2d	4+2d	6+p+2d						

[†] Operand and code in same memory block

Class 35 1 word, 3 cycles. No operand or single short-immediate operand.

Syntaxes

■ int(*K*)

reset

Cycles

	Cycles for a Single	Execution				
Program						
ROM/SARAM	DARAM	External				
3	3	3+р				

trap(K)

Class 36 1 word, 4 cycles (minimum). Single short-immediate operand.

Syntaxes I idle(K)

Cycles The number of cycles needed to execute this instruction depends on the idle period.

Assembly Language Instructions

This section provides detailed information on the instruction set for the TMS320C54x[™] DSP family. The C54x[™] DSP instruction set supports numerically intensive signal-processing operations as well as general-purpose applications, such as multiprocessing and high-speed control.

See Section 1.1, *Instruction Set Symbols and Abbreviations*, for definitions of symbols and abbreviations used in the description of assembly language instructions. See Section 1.2, *Example Description of Instruction*, for a description of the elements in an instruction. See Chapter 2 for a summary of the instruction set.

Syntax	abdst(Xmem, Ymem)											
Operands	Xmem, Ymem: Dual data-memory operands											
Opcode	15 14 13 12 1 1 1 0	<u>11 10</u> 0 0		8 1	7 X	6 X	5 X	4 X	3 Y	2 Y	1 Y	0 Y
Execution	(B) + (A(32–16) ((Xmem) – (Yme		6 → A	L.								
Status Bits	Affected by OVM, FRCT, and SXM Affects C, OVA, and OVB											
Description	This instruction calculates the absolute value of the distance between two vectors, <i>Xmem</i> and <i>Ymem</i> . The absolute value of accumulator A(32–16) is added to accumulator B. The content of <i>Ymem</i> is subtracted from <i>Xmem</i> , and the result is left-shifted 16 bits and stored in accumulator A. If the fractional mode bit is logical 1 (FRCT = 1), the absolute value is multiplied by 2.											
Words	1 word											
Cycles	1 cycle											
Classes	Class 7 (see pag	e 3-14)										
Example	abdst(*AR3+,*A	R4+)										
		Before II	structi	on					After	Instr	uctior	า
	А	FF A	BCD 00	00				A [FF	FFAB	0000)
	В	00 00	00 00	00				в [00	0000	5433	3
	AR3		01	00				.R3 [0101	
	AR4		02	00				.R4 [0201	-
	FRCT			0			Η	RCT			(ס
	Data Memory						04				0.057	7
	0100h			55				00h			0055	_
	0200h		00	AA			02	200h			00A7	7

Syntax	dst = src										
Operands	src, dst: A (accumulator A) B (accumulator B)										
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 S D 1 0 0 0 1 0 1										
Execution	$ (src) \rightarrow dst$										
Status Bits	OVM affects this instruction as follows:										
	If OVM = 1, the absolute value of 80 0000 0000h is 00 7FFF FFFFh. If OVM = 0, the absolute value of 80 0000 0000h is 80 0000 0000h. Affects C and OVdst										
Description	This instruction calculates the absolute value of <i>src</i> and loads the value into <i>dst.</i>										
	If the result of the operation is equal to 0, the carry bit, C, is set.										
Words	1 word										
Cycles	1 cycle										
Classes	Class 1 (see page 3-3)										
Example 1	B = A										
	Before Instruction After Instruction A FF FFFF FFCB -53 A FF FFFF FFCB -53 B FF FFFF FC18 -1000 B 00 0000 0035 +53										
Example 2	A = A Before Instruction After Instruction A 03 1234 5678 A 00 7FFF FFFF OVM 1 OVM 1										
Example 3	A = A Before Instruction After Instruction A 03 1234 5678 A 03 1234 5678 OVM 0 OVM 0										

Syntax	1:	src = src +			em													
	2:	src =			em <	< TS	5											
		src +																
	3:	dst=		-		-												
		dst +																
	4: dst = src + Smem [<< SHIFT] dst += Smem [<< SHIFT]																	
	5:	src =		-			-											
	0.	src +																
	6:	dst =	Хте	em <<	< 16	+ Yn	nem	<< 16	6									
	7: $dst = src + #lk[<< SHFT]$																	
	dst += #lk [<< SHFT] 8: $dst = src + #lk << 16$																	
	8: dst = src + #lk << 16 dst += #lk << 16																	
	9:	ast + dst =			-	SHIF	-71											
	0.	dst +					, 1											
	10:	dst=		-		-												
		dst +	= src	: << A	SM													
Operands	Sme	۶m.		ç	Sinale	e dat	a-me	emor	v ope	erano	4							
eporanao	Smem:Single data-memory operandXmem, Ymem:Dual data-memory operands																	
		dst:		A	(ac	cumu	ulato	r A)										
	B (accumulator B)																	
		768 ≤ ≤ SH																
		SHFT																
		•••••		•														
Opcode	1:		10	4.0		4.0			_		_							
		<u>5 14</u>) 0	<u>13</u> 0	12 0	<u>11</u> 0	<u>10</u> 0	<u>9</u> 0	8 S	7	6 A	<u>5</u> A	4 A	3 A	2 A	 A	0 A		
		<u> </u>	•	0	0	0	0	0	•		,,							
	2:																	
		<u>5 14</u> 0 0	<u>13</u> 0	<u>12</u> 0	<u>11</u> 0	<u>10</u> 1	9 0	8 S	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A		
		5 0	0	0	0	1	0	3	I	A	A	A	A	A	A	A		
	3:																	
		5 14						8		6			3	2	1			
		0 0	1	1	1	1	S	D	Ι	A	A	A	A	A	A	A		
	4:																	
		5 14		12		10	9	8	7	6	5	4	3	2	1	0		
) 1	1	0	1	1	1	1	1	A	A	A	A	A	A	A		
		0 0	0	0	1	1	S	D	0	0	0	S	Н	Ι	F	Т		

	5:															
	Г		4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	0 0	1	0	0	0	S	Х	Х	Х	Х	S	Н	F	Т
	6:															
			4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
	L	1) 1	0	0	0	0	D	Х	Х	Х	Х	Y	Y	Y	Y
	7:															
	Г		<u>4 13</u>	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	0	0	S	D	0	0	0	0	S	Н	F	Т
							1	6-bit c	onsta	nt						
	8:															
	Г		4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	0	0	S	D	0	1	1	0	0	0	0	0
							1	6-bit c	onsta	nt						
	9:															
	Г		4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
	L	1	1	1	0	1	S	D	0	0	0	S	Н	I	F	Т
	10:															
	_		4 13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	0	1	S	D	1	0	0	0	0	0	0	0
Execution	1: 2: 3: 4: 5: 6: 7: 8: 9: 10:	(Sm (Sm (Xm ((Xm ((Xm Ik << Ik << (src	em) + em) <- em) (- em) [< em) + sHFT 16 + or [dst or [dst	< (TS) < 16 + < SH < SHF (Ym T + (s (src)]) + () + (s - (src IFT] + em)) rc)→ → ds src) •	src) – ;) → (+ (src) << 1 · dst st << S⊦	dst c) → → si 6 →	dst rc dst → d								
Status Bits	Aff	ects (by SX and (OVds	t		resul	It of t	he ac	ditio	n ge	nerat	tes a	carry	y, the	carry

For instruction syntax 3, if the result of the addition generates a carry, the carry bit, C, is set to 1; otherwise, C is not affected.

Description	This instruction adds a 16-bit value to the content of the selected accumulator
	or to a 16-bit operand Xmem in dual data-memory operand addressing mode.
	The 16-bit value added is one of the following:

- The content of a single data-memory operand (*Smem*)
- The content of a dual data-memory operand (*Ymem*)
- A 16-bit immediate operand (#*lk*)
- The shifted value in *src*

If *dst* is specified, this instruction stores the result in *dst*. If no *dst* is specified, this instruction stores the result in *src*. Most of the second operands can be shifted. For a left shift:

Low-order bits are cleared

- High-order bits are:
 - Sign extended if SXM = 1
 - Cleared if SXM = 0

For a right shift, the high-order bits are:

- Sign extended if SXM = 1
- Cleared if SXM = 0

Notes:

The following syntaxes are assembled as a different syntax in certain cases.

- Syntax 4: If dst = src and SHIFT = 0, then the instruction opcode is assembled as syntax 1.
- Syntax 4: If dst = src, $SHIFT \le 15$ and Smem indirect addressing mode is included in *Xmem*, then the instruction opcode is assembled as syntax 5.
- \Box Syntax 5: If *SHIFT* = 0, the instruction opcode is assembled as syntax 1.

Words Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 word Syntaxes 4, 7, and 8: 2 words

Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.

 Cycles
 Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 cycle

 Syntaxes 4, 7, and 8: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.

Syntaxes 1, 2, 3, and 5: Class 3A (see Syntaxes 1, 2, and 3: Class 3B (see pa Syntax 4: Class 4A (see page 3-9) Syntax 4: Class 4B (see page 3-10) Syntax 6: Class 7 (see page 3-14) Syntaxes 7 and 8: Class 2 (see page 3 Syntaxes 9 and 10: Class 1 (see page	age 3-8) 3-5)
A = A + *AR3+ << 14	
Before Instruction	After Instruction
A 00 0000 1200	A 00 0540 1200
C 1	C 0
AR3 0100	AR3 0101
SXM 1	SXM 1
Data Memory	
0100h 1500	0100h 1500
B = B + A << -8	
	After Instruction
A 00 0000 1200	A 00 0000 1200
	B 00 0000 1812
C1	C 0
B = A + #4568 << 8	
Before Instruction	After Instruction
A 00 0000 1200	A 00 0000 1200
B 00 0000 1800	B 00 0045 7A00
C1	C0
A = *AR2+ << 16 + *AR2- << 16	<pre>;after accessing the ; operands, AR2 is ; incremented by one.</pre>
	Syntaxes 1, 2, and 3: Class 3B (see page Syntax 4: Class 4A (see page 3-9) Syntax 4: Class 4B (see page 3-10) Syntax 6: Class 7 (see page 3-14) Syntaxes 7 and 8: Class 2 (see page 3 Syntaxes 9 and 10: Class 1 (see page A = A + *AR3 + << 14 Before Instruction A 00 0000 1200 C 1 AR3 0100 SXM 1 Data Memory 0100h 1500 B = B + A << -8 Before Instruction A 00 0000 1200 B 00 0000 1200 C 1

Example 4 shows the same auxiliary register (AR2) with different addressing modes specified for both operands. The mode defined by the Xmod field (*AR2+) is used for addressing.

Syntax	src = src + Smem + CARRY src += Smem + CARRY										
Operands	Smem:Single data-memory operandsrc:A (accumulator A)B (accumulator B)										
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 S I A										
Execution	$(Smem) + (src) + (C) \rightarrow src$										
Status Bits	Affected by OVM, C Affects C and OVsrc										
Description	This instruction adds the 16-bit single data-memory operand <i>Smem</i> and the value of the carry bit (C) to <i>src</i> . This instruction stores the result in <i>src</i> . Sign extension is suppressed regardless of the value of the SXM bit.										
Words	1 word										
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.										
Cycles	1 cycle										
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.										
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)										
Example	A = A + *+AR2(5) + CARRY										
	Before Instruction After Instruction A 00 0000 0013 A 00 0000 0018										
	C 1 C 0										
	AR2 0100 AR2 0105										
	Data Memory										
	0105h 0004 0105h 0004										

Syntax	Smem = Smem + #lk Smem += #lk							
Operands	Smem: Single data-memory operand $-32768 \le lk \le 32767$							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 0 1 1 I A							
Execution	#lk + (Smem) → Smem							
Status Bits	Affected by OVM and SXM Affects C and OVA							
Description	This instruction adds the 16-bit single data-memory operand <i>Smem</i> to the 16-bit immediate memory value <i>lk</i> and stores the result in <i>Smem</i> .							
	Note:							
	This instruction is not repeatable.							
Words	2 words							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.							
Cycles	2 cycles							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.							
Classes	Class 18A (see page 3-41) Class 18B (see page 3-41)							
Example 1	*AR4+ = *AR4+ + #0123Bh							
	Before InstructionAfter InstructionAR40100AR40101							
	Data Memory							
	0100h 0004 0100h 123F							
Example 2	*AR4+ = *AR4+ + #0FFF8h							
	Before Instruction After Instruction							
	OVM 1 OVM 1 SXM 1 SXM 1							
	AR4 0100 AR4 0101							
	Data Memory							
	0100h 8007 0100h 8000							

Syntax	src = src + uns (Smem) src += uns (Smem)													
Operands	Smem: src:													
Opcode	15 14 0 0	<u>13 1</u> 0 (<u>2 11</u>) 0	10 0	9 1	8 S	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	uns(Smer	n) + (s	rc) → :	src										
Status Bits	Affected by OVM Affects C and OVsrc													
Description	This instruction adds the 16-bit single data-memory operand <i>Smem</i> to <i>src</i> and stores the result in <i>src</i> . Sign extension is suppressed regardless of the value of the SXM bit.													
Words	1 word													
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.													
Cycles	1 cycle													
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.													
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)													
Example	B = B + uns(*AR2-)													
	Data Mem			e Inst	010	3 x 0			(Af	3 [C [R2 [Instru 0000	F009 0 00FF]]]
		0104h			F00	16			010	04h			F006	J

Syntax	 src = src & Smem src &= Smem dst = src & #lk [<< SHFT] dst &= #lk [<< SHFT] dst = src & #lk << 16 dst &= #lk << 16 dst = dst & src [<< SHIFT] dst &= src [<< SHIFT] 						
Operands	Smem:Single data-memory operandsrc:A (accumulator A)B (accumulator B) $-16 \le$ SHIFT ≤ 15 $0 \le$ SHFT ≤ 15 $0 \le$ Ik ≤ 65535						
Opcode	1:						
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 1 1 0 0 S I A A A A A A A						
	0 0 0 1 1 0 0 S I A A A A A A A						
	2:						
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0						
	1 1 1 1 0 0 S D 0 0 1 1 S H F T						
	16-bit constant						
	3:						
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>						
	1 1 1 1 0 0 S D 0 1 1 0 0 0 1 1						
	16-bit constant						
	4:						
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>						
	1 1 1 1 0 0 S D 1 0 0 S H I F T						
Execution	1: (Smem) AND (src) → src 2: lk << SHFT AND (src)→ dst 3: lk << 16 AND (src)→ dst 4: (dst) AND (src) << SHIFT → dst						
Status Bits	None						

Description	This instruction ANDs the following to <i>src</i> :					
	 A 16-bit operand <i>Smem</i> A 16-bit immediate operand <i>lk</i> The source or destination accumulator (<i>src</i> or <i>dst</i>) 					
	If a shift is specified, this instruction left-shifts the operand before the AND. For a left shift, the low-order bits are cleared and the high-order bits are not sign extended. For a right shift, the high-order bits are not sign extended.					
Words	Syntaxes 1 and 4: 1 word Syntaxes 2 and 3: 2 words					
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.					
Cycles	Syntaxes 1 and 4: 1 cycle Syntaxes 2 and 3: 2 cycles					
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.					
Classes	Syntax 1: Class 3A (see page 3-6) Syntax 1: Class 3B (see page 3-8) Syntaxes 2 and 3: Class 2 (see page 3-5) Syntax 4: Class 1 (see page 3-3)					
Example 1	A = *AR3+ & A					
	Before Instruction After Instruction A 00 00FF 1200 A 00 0000 1000 AR3 0100 AR3 0101					
	0100h 1500 0100h 1500					
Example 2	B = B & A << 3					
	Before Instruction After Instruction					
	A 00 00000 1200 A 00 00000 1200 B 00 00000 1800 B 00 00000 1000					

Syntax	Smem = Smem & #lk Smem &= #lk									
Operands	Smem: Single data-memory operand $0 \le lk \le 65535$									
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 0 0 0 I A									
Execution	lk AND (Smem) → Smem									
Status Bits	None									
Description	This instruction ANDs the 16-bit single data-memory operand <i>Smem</i> with a 16-bit long constant <i>lk</i> . The result is stored in the data-memory location specified by <i>Smem</i> .									
	Note:									
	This instruction is not repeatable.									
Words	2 words									
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.									
Cycles	2 cycles									
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.									
Classes	Class 18A (see page 3-41) Class 18B (see page 3-41)									
Example 1	*AR4+ = *AR4+ & #00FFh									
	Before InstructionAfter InstructionAR40100AR40101Data Memory0100h004440100h00444									
Example 2	@4 = @4 & #0101h									
-	Before Instruction After Instruction									
	Data Memory 0004h 00 0000 0100 0004h 00 0000 0100									

Syntax	[d]goto pmad						
Operands	$0 \leq pmad \leq 65535$						
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 0 Z 0 0 1 1 1 0 0 1 1 I6-bit constant						
Execution	$pmad \rightarrow PC$						
Status Bits	None						
Description	This instruction passes control to the designated program-memory address (<i>pmad</i>), which can be either a symbolic or numeric address. If the branch is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the branch instruction is fetched from program memory and executed. Note: This instruction is not repeatable.						
Words	2 words						
Cycles	4 cycles 2 cycles (delayed)						
Classes	Class 29A (see page 3-68)						
Example 1	goto 2000h Before Instruction After Instruction PC 1F45 PC 2000						
Example 2	dgoto 1000h *AR1+ = *AR1+ & #4444h Before Instruction After Instruction PC 1F45 PC 1000						

After the operand has been ANDed with 4444h, the program continues executing from location 1000h.

Syntax	[d]goto src								
Operands	src: A (accumulator A) B (accumulator B)								
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z S 1 1 1 0 0 1 0								
Execution	$(src(15-0)) \rightarrow PC$								
Status Bits	None								
Description	This instruction passes control to the 16-bit address in the low part of <i>src</i> (bits 15–0). If the branch is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the branch instruction is fetched from program memory and executed. Note: This instruction is not repeatable.								
Words	1 word								
Cycles	6 cycles 4 cycles (delayed)								
Classes	Class 30A (see page 3-69)								
Example 1	goto A Before Instruction After Instruction A 00 0000 3000 A 00 0000 3000 PC 1F45 PC 3000								
Example 2	dgoto B *AR1+ = *AR1+ & #4444h Before Instruction B 00 0000 2000 B 00 0000 2000 PC 1F45 PC 2000								

After the operand has been ANDed with 4444h value, the program continues executing from location 2000h.

Syntax	if (Sind != 0) [d]goto pmad							
Operands	Sind:Single indirect addressing operand $0 \le pmad \le 65535$							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 1 Z 0 I A A A A A A 16-bit constant							
Execution	If $((ARx) \neq 0)$ Then pmad \rightarrow PC Else $(PC) + 2 \rightarrow PC$							
Status Bits	None							
Description	This instruction branches to the specified program-memory address (<i>pmad</i>) if the value of the current auxiliary register ARx is not 0. Otherwise, the PC is incremented by 2. If the branch is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the branch instruction is fetched from program memory and executed. Note: This instruction is not repeatable.							
Words	2 words							
Cycles	4 cycles (true condition) 2 cycles (false condition) 2 cycles (delayed)							
Classes	Class 29A (see page 3-68)							
Example 1	if (*AR3- != 0) goto 2000h Before Instruction PC AR3 0005 AR3 0004 AR3							
Example 2	if (*AR3- != 0) goto 2000h After Instruction PC 1000 PC 1002 AR3 0000 AR3 FFFF							

Example 3	if (*AR3(-1) != 0) dgoto 2000h						
	Before Instruction	After Instruction					
	PC 1000	PC 1003					
	AR3 0001	AR3 0001					
Example 4	if (*AR3- != 0) dgoto 2000h						
	*AR5+ = *AR5+ & #4444h						
	Before Instruction	After Instruction					
	PC 1000	PC 2000					
	AR3 0004	AR3 0003					

After the memory location has been ANDed with 4444h, the program continues executing from location 2000h.

if (cond [, cond [, cond]]) [d]goto pmad

Operands

Syntax

$0 \le pmad \le 65535$

The following table lists the conditions (cond operand) for this instruction.

	Cond	Description	Condition Code	Cond	Description	Condition Code		
	BIO	BIO low	0000 0011	NBIO	BIO high	0000 0010		
	С	C = 1	0000 1100	NC	C = 0	0000 1000		
	ТС	TC = 1	0011 0000	NTC	TC = 0	0010 0000		
	AEQ	(A) = 0	0100 0101	BEQ	(B) = 0	0100 1101		
	ANEQ	$(A) \neq 0$	0100 0100	BNEQ	(B) ≠ 0	0100 1100		
	AGT	(A) > 0	0100 0110	BGT	(B) > 0	0100 1110		
	AGEQ	$(A) \geq 0$	0100 0010	BGEQ	$(B) \geq 0$	0100 1010		
	ALT	(A) < 0	0100 0011	BLT	(B) < 0	0100 1011		
	ALEQ	$(A) \leq 0$	0100 0111	BLEQ	$(B) \leq 0$	0100 1111		
	AOV	A overflow	0111 0000	BOV	B overflow	0111 1000		
	ANOV	A no overflow	0110 0000	BNOV	B no overflow	0110 1000		
	UNC	Unconditional	0000 0000					
Opcode	15 14 1 1	<u>13 12 11</u> 1 1 1	10 9 8 0 Z 0 16-bit co	C C	5 4 3 2 C C C C C			
Execution	If (cond(s)) Then $pmad \rightarrow PC$ Else $(PC) + 2 \rightarrow PC$							
Status Bits	Affects O	VA or OVB if O	V or NOV is c	hosen				
Description	This instruction branches to the program-memory address (<i>pmad</i>) if the speci- fied condition(s) is met. The two 1-word instructions or the one 2-word instruc- tion following the branch instruction is fetched from program memory. If the condition(s) is met, the two words following the instruction are flushed from the pipeline and execution begins at <i>pmad</i> . If the condition(s) is not met, the PC is incremented by 2 and the two words following the instruction are executed.							

If the branch is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction is fetched from program memory and executed. The two words following the delayed instruction have no effect on the conditions being tested. If the condition(s) is met, execution continues at *pmad*. If the condition(s) is not met, the PC is incremented by 2 and the two words following the delayed instruction are executed.

This instruction tests multiple conditions before passing control to another section of the program. This instruction can test the conditions individually or in combination with other conditions. You can combine conditions from only one group as follows:

- Group1: You can select up to two conditions. Each of these conditions must be from a different category (category A or B); you cannot have two conditions from the same category. For example, you can test EQ and OV at the same time but you cannot test GT and NEQ at the same time. The accumulator must be the same for both conditions; you cannot test conditions for both accumulators with the same instruction. For example, you can test AGT and AOV at the same time, but you cannot test AGT and BOV at the same time.
- Group 2: You can select up to three conditions. Each of these conditions must be from a different category (category A, B, or C); you cannot have two conditions from the same category. For example, you can test TC, C, and BIO at the same time but you cannot test NTC, C, and NC at the same time.

Gro	up 1	Group 2				
Category A	Category B	Category A	Category B	Category (
EQ	OV	ТС	С	BIO		
NEQ	NOV	NTC	NC	NBIO		
LT						
LEQ						
GT						
GEQ						
Note:						
This instruction	is not repeatabl	e.				
2 words						
5 cycles (true co	ondition)					
3 cycles (false o	,					
3 cycles (delaye	ed)					

Conditions for This Instruction

Classes

Words Cycles

Example 1	if (AGT) goto	2000h		
		Before Instruction		After Instruction
	А	00 0000 0053	А	00 0000 0053
	PC	1000	PC	2000
Example 2	if (AGT) goto	2000h		
		Before Instruction		After Instruction
	А	FF FFFF FFFF	А	FF FFFF FFFF
	PC	1000	PC	1002
Example 3	if (BOV) dgot	o 1000h		
	*AR1+ = *AR1+	& #4444h		
		Before Instruction		After Instruction
	PC	3000	PC	1000
	OVB	1	OVB	1

After the memory location is ANDed with 4444h, the branch is taken if the condition (OVB) is met. Otherwise, execution continues at the instruction following this instruction.

Example 4 if (TC, NC, BIO) goto 1000h Before Instruction PC 3000 PC [C 1 C [

	After Instruction
PC	3002
С	1

Syntax	TC = bit (<i>Xmem</i> , <i>bit_code</i>)					
Operands	Xmem:Dual data-memory operand $0 \le bit_code \le 15$					
Opcode	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>					
	1 0 0 1 0 1 1 0 X X X B I T C					
Execution	$(Xmem (15 - bit_code)) \rightarrow TC$					
Status Bits	Affects TC					
Description	This instruction copies the specified bit of the dual data-memory operand <i>Xmem</i> into the TC bit of status register ST0. The following table lists the bit codes that correspond to each bit in data memory.					

The bit code corresponds to bit_code and the bit address corresponds to $(15 - bit_code)$.

Bit Codes for This Instruction						
Bit Address		Bit Code	Bit Addr	Bit Code		
(LSB)	0	1111		8	0111	
	1	1110		9	0110	
	2	1101		10	0101	
	3	1100		11	0100	
	4	1011		12	0011	
	5	1010		13	0010	
	6	1001		14	0001	
	7	1000	(MSB)	15	0000	

Bit Codes for This Instruction

Words	1 word					
Cycles	1 cycle					
Classes	Class 3A (see page 3-6)					
Example	TC = bit(*AR5-	+,15-12) ; test bit	3			
		Before Instruction		After Instruction		
	AR5	0100	AR5	0101		
	тс	0	тс	1		
	Data Memory					
	0100h	7688	0100h	7688		

Syntax	TC = bitf(Smem, #lk)
Operands	Smem: Single data-memory operand $0 \le lk \le 65535$
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 0 0 1 I A A A A A A 16-bit constant
Execution	If ((Smem) AND Ik) = 0 Then $0 \rightarrow TC$ Else $1 \rightarrow TC$
Status Bits	Affects TC
Description	This instruction tests the specified bit or bits of the data-memory value <i>Smem</i> . If the specified bit (or bits) is 0, the TC bit in status register ST0 is cleared to 0; otherwise, TC is set to 1. The <i>lk</i> constant is a mask for the bit or bits tested.
Words	2 words
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	2 cycles
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Class 6A (see page 3-12) Class 6B (see page 3-13)
Example 1	TC = bitf(@5,00FFh)
	Before InstructionAfter InstructionTCxTCDP004DPData Memory0205h5400
Example 2	TC = bitf(@5,0800h) Before Instruction TC TC TC
	DP 004 DP 004 Data Memory
	0205h 0F7F 0205h 0F7F

Syntax	TC = bitt(<i>Smem</i>)															
Operands	Sme	em: Single data-memory operand														
Opcode	15 0	14 0	13 1	12 1	11 0	10 1	9 0	8 0	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	(Sme	em (1	5 –	T(3–	0))) -	→ TC	;									
Status Bits	Affec	ts T(С													
Description		C bi	t in s	tatus	s reg	ister	ST0									<i>em</i> into ode that

The bit address corresponds to (15 - T(3-0)). The bit code corresponds to the content of T(3-0).

Bit Codes for This Instruction						
Bit Address		Bit Code	Bit Addro	Bit Code		
(LSB)	0	1111		8	0111	
	1	1110		9	0110	
	2	1101		10	0101	
	3	1100		11	0100	
	4	1011		12	0011	
	5	1010		13	0010	
	6	1001		14	0001	
	7	1000	(MSB)	15	0000	

Bit Codes for This Instruction

Words	1 word
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	1 cycle
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)

Example

TC = bitt(*AR7+0)

	After Instruction
Т	C
TC	1
AR0	0008
AR7	0108
0100h	0008

Syntax	[d]call src						
Operands	src: A (accumulator A) B (accumulator B)						
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z S 1 1 1 0 0 1 1 1						
Execution	Nondelayed $(SP) - 1 \rightarrow SP$ $(PC) + 1 \rightarrow TOS$ $(src(15-0)) \rightarrow PC$ Delayed $(SP) - 1 \rightarrow SP$ $(PC) + 3 \rightarrow TOS$ $(src(15-0)) \rightarrow PC$						
Status Bits	None						
Description	This instruction passes control to the 16-bit address in the low part of <i>src</i> (bits 15–0). If the call is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the call instruction is fetched from program memory and executed. Note: This instruction is not repeatable.						
Words	1 word						
Cycles	6 cycles 4 cycles (delayed)						
Classes	Class 30B (see page 3-69)						
Example 1	call A Before Instruction After Instruction A 00 0000 3000 A 00 0000 3000 PC 0025 PC 3000 SP 1111 SP 1110 Data Memory 1110h 4567 1110h 0026						
dcall B							
---------------	---------------------------	-------	-------------------				
*AR1+ = *AR1+	& #4444h						
	Before Instruction		After Instruction				
В	00 0000 2000	В	00 0000 2000				
PC	0025	PC	2000				
SP	1111	SP	1110				
Data Memory							
1110h	4567	1110h	0028				

After the memory location has been ANDed with 4444h, the program continues executing from location 2000h.

Syntax	[d]call pmad							
-								
Operands	$0 \leq pmad \leq 65535$							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 0 7 0 0 1 1 1 0 1 0 0							
	1 1 1 1 0 0 Z 0 0 1 1 1 0 1 0 0 16-bit constant							
Execution	Nondelayed $(SP) - 1 \rightarrow SP$ $(PC) + 2 \rightarrow TOS$ pmad $\rightarrow PC$ Delayed							
	$(SP) - 1 \rightarrow SP$ (PC) + 4 \rightarrow TOS pmad \rightarrow PC							
Status Bits	None							
Description	This instruction passes control to the specified program-memory address (<i>pmad</i>). The return address is pushed onto the TOS before <i>pmad</i> is loaded into PC. If the call is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the call instruction is fetched from program memory and executed.							
	Note:							
	This instruction is not repeatable.							
Words	2 words							
Cycles	4 cycles 2 cycles (delayed)							
Classes	Class 29B (see page 3-68)							

Example 1	call	3333h			
			Before Instruction		After Instruction
		PC	0025	PC [3333
		SP	1111	SP [1110
	Data M	lemory			
		1110h	4567	1110h [0027
Example 2	dcall	1000h			
	@4444h	= @4444h	& #(*AR1+)		
			Before Instruction		After Instruction
		PC	0025	PC	1000
		SP	1111	SP	1110
	Data I	Memory			
		1110h	4567	1110h	0029

After the memory location has been ANDed with 4444h, the program continues executing from location 1000h.

if (cond[, cond[, cond]]) [d]call pmad

Operands $0 \le pmad \le 65535$

Syntax

The following table lists the conditions (cond operand) for this instruction.

Cond	Description	Conditi Code	on	Co	ond	D	escr	iptio	n	Conc Code	dition
BIO	BIO low	0000 00	011	NE	BIO	В	IO hi	gh		0000	0010
С	C = 1	0000 11	00	N	2	С	;= 0			0000	1000
тс	TC = 1	0011 00	000	N	ГС	Т	C = ()		0010	0000
AEQ	(A) = 0	0100 01	01	BE	Q	(E	3) = ()		0100 1101	
ANEQ	(A) ≠ 0	0100 01	00	BN	IEQ	(E	3) ≠	0		0100	1100
AGT	(A) > 0	0100 01	10	ВС	ЭT	(E	3) >	0		0100	1110
AGEQ	$(A) \geq 0$	0100 00	010	BC	GEQ	(E	3) ≥	0		0100	1010
ALT	(A) < 0	0100 00)11	BL	T	(E	3) <	0		0100	1011
ALEQ	$(A) \leq 0$	0100 01	11	BL	EQ	(E	3) ≤	0		0100	1111
AOV	A overflow	0111 00	00	ВС	V	В	over	flow		0111	1000
ANOV	A no overflow	0110 00	000	BN	VOV	В	no c	verflo	wc	0110	1000
UNC	Unconditiona	0000 00	000								
15 14	13 12 11	10 9	8	7	6	5	4	3	2	1	0
1 1	1 1 1	0 Z	1	С	С	С	С	С	С	С	С

Execution

Opcode

Nondelayed

If (cond(s)) Then (SP) $-1 \rightarrow SP$ (PC) $+2 \rightarrow TOS$ pmad $\rightarrow PC$ Else (PC) $+2 \rightarrow PC$

	(PC) + pmad - Else	$1 \rightarrow SP$ $4 \rightarrow TOS$ $\Rightarrow PC$ $2 \rightarrow PC$					
Status Bits	Affects OVA	A or OVB (if OV or NOV is chosen)					
Description	This instruction passes control to the program-memory address (<i>pmad</i> specified condition(s) is met. The two 1-word instructions or the one 2 instruction following the call instruction is fetched from program memory condition(s) is met, the two words following the instruction are flushed from pipeline and execution begins at <i>pmad</i> . If the condition(s) is not met, the is incremented by 2 and the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed by 2 and the two words following the instruction are executed as a security of the two words following the instruction are executed by 2 and the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a security of the two words following the instruction are executed as a secured as a secured as a secured as a secured as a secuted as a secu						
	If the call is delayed (specified by the d prefix), the two 1-word inst the one 2-word instruction is fetched from program memory and exe two words following the delayed instruction have no effect on the being tested. If the condition(s) is met, execution continues at <i>pr</i> condition(s) is not met, the PC is incremented by 2 and the two word the delayed instruction are executed.						
	This instruction tests multiple conditions before passing control to another sec- tion of the program. This instruction can test the conditions individually or in combination with other conditions. You can combine conditions from only one group as follows:						
	Group1:	You can select up to two conditions. Each of these conditions must be from a different category (category A or B); you cannot have two conditions from the same category. For example, you can test EQ and OV at the same time but you cannot test GT and NEQ at the same time. The accumulator must be the same for both conditions; you cannot test conditions for both accumulators with the same instruction. For example, you can test AGT and AOV at the same time, but you cannot test AGT and BOV at the same time.					
	Group 2:	You can select up to three conditions. Each of these conditions must be from a different category (category A, B, or C); you cannot have two conditions from the same category. For example, you can test TC, C, and BIO at the same time but you cannot test NTC, C, and NC at the same time.					

		Conditions for This Instruction							
	Gro	oup 1		Group 2					
	Category A	Category B	Category A	Category B	Category C				
	EQ	OV	TC	С	BIO				
	NEQ	NOV	NTC	NC	NBIO				
	LT								
	LEQ								
	GT								
	GEQ								
	Note:				1				
	This instructior	n is not repeatable	е.						
Words	2 words								
Cycles	5 cycles (true c 3 cycles (false o 3 cycles (delaye	condition)							
Classes	Class 31B (see	page 3-71)							
Example 1	if (AGT) call	2222h							
	A PC SP Data Memory 1110h	Before Instruction 00 0000 3000 0025 0025 1111 4567		After Ins A 00 000 PC SP 1110h	truction 0 3000 2222 1110 0027				
Example 2	if (BOV) dcal *AR1+ = *AR1+	.l 1000h			0027				
		Before Instructio	n	After In	struction				
	PC	002	15	PC	1000				
	OVB		1	OVB	0				
	SP	111	.1	SP	1110				
	Data Memory		_						
	1110h	456	57	1110h	0029				

After the memory location has been ANDed with 4444h, the program continues executing from location 1000h.

Syntax	dst = ~src
Operands	src, dst: A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 S D 1 0 0 1 1 0 1
Execution	$(\overline{src}) \rightarrow dst$
Status Bits	None
Description	This instruction calculates the 1s complement of the content of <i>src</i> (this is a logical inversion). The result is stored in <i>dst</i> , if specified, or <i>src</i> otherwise.
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example	B = ~A
	Before InstructionAfter InstructionAFC DFFA AEAAAB00 0000 7899B03 2005 5155

Syntax	TC = (<i>Smem</i> == # <i>lk</i>)
Operands	Smem: Single data-memory operand $-32768 \le lk \le 32767$
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 1 1 0 0 0 0 0 I A A A A A A A A A A A A A A
	To-bit constant
Execution	If (Smem) = Ik Then $1 \rightarrow TC$ Else $0 \rightarrow TC$
Status Bits	Affects TC
Description	This instruction compares the 16-bit single data-memory operand <i>Smem</i> to the 16-bit constant lk . If they are equal, TC is set to 1. Otherwise, TC is cleared to 0.
Words	2 words
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	2 cycles
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Class 6A (see page 3-12) Class 6B (see page 3-13)
Example	TC = (*AR4+ == #0404h)
	Before Instruction After Instruction TC 1 AR4 0100 Data Memory Image: Comparison of the second
	0100h 4444 0100h 4444

Syntax	1: $TC = (AR0 == AR)$ 2: $TC = (AR0 > AR)$ 3: $TC = (AR0 < AR)$ 4: $TC = (AR0 != AR)$	x) x)					
Operands	ARx: AR0–AR7						
Opcode	<u>15 14 13 12 11</u> 1 1 1 1 0	10 9 8 1 C C	7 <u>6</u> 10	5 4 1 0	3 2 1 A	1 R	0 X
Execution	If (cond) Then $1 \rightarrow TC$ Else $0 \rightarrow TC$						
Status Bits	Affects TC						
Description	This instruction compa (<i>ARx</i>) to the content of <i>A</i> If the condition is true, T	R0 and sets th	ne TC bit	accordir	ng to the	comp	barison.
	0. All conditions are cor	nputed as unsig		erations.			
	0. All conditions are cor Condition	nputed as unsig	gned op	erations. Descrip			
			gned op	Descrip			
	Condition	Condition Cod	gned op	Descrip	tion ARx) == (AR0)	
	Condition EQ	Condition Coo	gned op	Descrip Test if (A Test if (A	tion ARx) == (AR0) R0)	
	Condition EQ LT	Condition Cod 00 01	gned op	Descrip Test if (A Test if (A Test if (A	tion ARx) == (ARx) < (A	AR0) R0) R0)	
Words	Condition EQ LT GT	Condition Cod 00 01 10	gned op	Descrip Test if (A Test if (A Test if (A	tion ARx) == (ARx) < (A ARx) > (A	AR0) R0) R0)	
Words Cycles	Condition EQ LT GT NEQ	Condition Cod 00 01 10	gned op	Descrip Test if (A Test if (A Test if (A	tion ARx) == (ARx) < (A ARx) > (A	AR0) R0) R0)	
	Condition EQ LT GT NEQ 1 word	Condition Cod 00 01 10	gned op	Descrip Test if (A Test if (A Test if (A	tion ARx) == (ARx) < (A ARx) > (A	AR0) R0) R0)	
Cycles	Condition EQ LT GT NEQ 1 word 1 cycle	Condition Cod 00 01 10	gned op	Descrip Test if (A Test if (A Test if (A	tion ARx) == (ARx) < (A ARx) > (A	AR0) R0) R0)	
Cycles Classes	Condition EQ LT GT NEQ 1 word 1 cycle Class 1 (see page 3-3) TC = (AR0 < AR4) Befor	Condition Cod 00 01 10 11	gned op	Descrip Test if (A Test if (A Test if (A Test if (A	tion ARx) == (ARx) < (A ARx) > (A	AR0) R0) AR0)	n
Cycles Classes	Condition EQ LT GT NEQ 1 word 1 cycle Class 1 (see page 3-3) TC = (AR0 < AR4)	Condition Cod 00 01 10 11	gned op	Descrip Test if (A Test if (A Test if (A	tion ARx) == (ARx) < (A ARx) > (A ARx) != (A	AR0) R0) AR0)	n

AR4

7fff

AR4

7fff

Syntax	cmp	s (src	, Sm	nem)												
Operands	src: A (accumulator A) B (accumulator B)															
	Sme	m:	Sin	gle c	lata-	merr	ory o	opera	and							
Opcode	15 1	14 0	13 0	12 0	11 1	10 1	9 1	8 S	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	If $((\operatorname{src}(31-16)) > (\operatorname{src}(15-0)))$ Then $(\operatorname{src}(31-16)) \rightarrow \operatorname{Smem}$ $(\operatorname{TRN}) << 1 \rightarrow \operatorname{TRN}$ $0 \rightarrow \operatorname{TRN}(0)$ $0 \rightarrow \operatorname{TC}$ Else $(\operatorname{src}(15-0)) \rightarrow \operatorname{Smem}$ $(\operatorname{TRN}) << 1 \rightarrow \operatorname{TRN}$ $1 \rightarrow \operatorname{TRN}(0)$ $1 \rightarrow \operatorname{TC}$															
Status Bits	Affec	ts T(C													
Description	This instruction compares the two 16-bit 2s-complement values located in the high and low parts of <i>src</i> and stores the maximum value in the single data memory location <i>Smem</i> . If the high part of <i>src</i> (bits 31–16) is greater, a 0 is shifted into the LSB of the transition register (TRN) and the TC bit is cleared to 0. If the low part of <i>src</i> (bits 15–0) is greater, a 1 is shifted into the LSB of TRN and the TC bit is set to 1.						le data- r, a 0 is cleared									
	son i	s per re the	form e ins	ed ir tructi	n the	read	l pha	se; t	hus,	the s	src va	alue	is the	e valu	le or	ompari- ne cycle ring the
Words	1 wo	rd														
	Add with				sing	long	-offs	et inc	direct	add	ressi	ingo	r abs	olute	ado	Iressing
Cycles	1 cyc	cle														
	Add with				ising	long	-offs	etino	direct	tadd	ressi	ing o	r abs	olute	ado	lressing
Classes	Clas Clas		•	•	•											

cmps(A,*AR4+)

	Afte	r Instru	uction
А	00	2345	7899
тс			1
AR4			0101
TRN			8889
0100h			7899

Syntax	 dst = src + dbl(Lmem) dst += dbl(Lmem) dst = src + dual(Lmem) dst += dual(Lmem) 					
Operands	Lmem: Long data-memory operand src, dst: A (accumulator A) B (accumulator B)					
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 0 0 S D I A					
Execution	If C16 = 0 Then (Lmem) + (src) \rightarrow dst Else (Lmem(31-16)) + (src(31-16)) \rightarrow dst(39-16) (Lmem(15-0)) + (src(15-0)) \rightarrow dst(15-0)					
Status Bits	Affected by SXM and OVM (only if C16 = 0) Affects C and OVdst					
Description	This instruction adds the content of <i>src</i> to the 32-bit long data-memory oper- and <i>Lmem</i> . If a dst is specified, this instruction stores the result in <i>dst</i> . If no <i>dst</i> is specified, this instruction stores the result in <i>src</i> . The value of C16 deter- mines the mode of the instruction:					
	If $C16 = 0$, the instruction is executed in double-precision mode. The 40-bit <i>src</i> value is added to the <i>Lmem</i> . The saturation and overflow bits are set according to the result of the operation.					
	□ If C16 = 1, the instruction is executed in dual 16-bit mode. The high part of <i>src</i> (bits 31–16) is added to the 16 MSBs of <i>Lmem</i> , and the low part of <i>src</i> (bits 15–0) is added to the 16 LSBs of <i>Lmem</i> . The saturation and over- flow bits are not affected in this mode. In this mode, the results are not saturated regardless of the state of the OVM bit.					
Words	1 word					
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Lmem.					
Cycles	1 cycle					
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Lmem.					
Classes	Class 9A (see page 3-22) Class 9B (see page 3-23)					

Syntax	dst = dadst(Lmem, T)							
Operands	Lmem: Long data-memory operand dst: A (accumulator A) B (accumulator B)							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 0 1 D I A							
Execution	If C16 = 1 Then (Lmem(31-16)) + (T) \rightarrow dst(39-16) (Lmem(15-0)) - (T) \rightarrow dst(15-0) Else (Lmem) + ((T) + (T) << 16) \rightarrow dst							
Status Bits	Affected by SXM and OVM (only if C16 = 0) Affects C and OVdst							
Description	This instruction adds the content of T to the 32-bit long data-memory operand <i>Lmem</i> . The value of C16 determines the mode of the instruction:							
	If C16 = 0, the instruction is executed in double-precision mode. <i>Lmem</i> is added to a 32-bit value composed of the content of T concatenated with the content of T left-shifted 16 bits (T <<16 + T). The result is stored in <i>dst</i> .							
	□ If C16 = 1, the instruction is executed in dual 16-bit mode. The 16 MSBs of the <i>Lmem</i> are added to the content of T and stored in the upper 24 bits of <i>dst</i> . At the same time, the content of T is subtracted from the 16 LSBs of <i>Lmem</i> . The result is stored in the lower 16 bits of <i>dst</i> . In this mode, the results are not saturated regardless of the state of the OVM bit.							
	Note:							
	This instruction is meaningful only if C16 is set to 1 (dual 16-bit mode).							
Words	1 word							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Lmem.							
Cycles	1 cycle							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Lmem.							
Classes	Class 9A (see page 3-22) Class 9B (see page 3-23)							

A = dadst(*AR3-,T)

[†] Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the execution.

Example 2

A = dadst(*AR3+,T)

[†] Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the execution.

Syntax	delay(Smem)							
Operands	Smem: Single data-memory operand							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 1 1 0 1 I A							
Execution	$(Smem) \rightarrow Smem + 1$							
Status Bits	None							
Description	This instruction copies the content of a single data-memory location <i>Smem</i> into the next higher address. When data is copied, the content of the addressed location remains the same. This function is useful for implementing a Z delay in digital signal processing applications. The delay operation is also contained in the load T and insert delay instruction (page 4-82) and the multiply by program memory and accumulate with delay instruction (page 4-89).							
Words	1 word							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.							
Cycles	1 cycle							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.							
Classes	Class 24A (see page 3-58) Class 24B (see page 3-58)							
Example	delay(*AR3)							
	Before Instruction After Instruction AR3 0100 AR3 0100 Data Memory 0100h 6CAC 0100h 6CAC							
	0101h 0000 0101h 6CAC							

Syntax	1: <i>dst</i> = dbl (<i>Lmem</i>) 2: <i>dst</i> = dual (<i>Lmem</i>)								
Operands	Lmem: Long data-memory operand dst: A (accumulator A) B (accumulator B)								
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 1 D I A								
Execution	If C16 = 0 Then (Lmem) \rightarrow dst Else (Lmem(31-16)) \rightarrow dst(39-16) (Lmem(15-0)) \rightarrow dst(15-0)								
Status Bits	Affected by SXM								
Description	This instruction loads <i>dst</i> with a 32-bit long operand <i>Lmem</i> . The value of C16 determines the mode of the instruction:								
	☐ If C16 = 0, the instruction is executed in double-precision mode. <i>Lmem</i> is loaded to <i>dst</i> .								
	☐ If C16 = 1, the instruction is executed in dual 16-bit mode. The 16 MSBs of <i>Lmem</i> are loaded to the upper 24 bits of <i>dst</i> . At the same time, the 16 LSBs of <i>Lmem</i> are loaded in the lower 16 bits of <i>dst</i> .								
Words	1 word								
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Lmem.								
Cycles	1 cycle								
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Lmem.								
Classes	Class 9A (see page 3-22) Class 9B (see page 3-23)								

B = dbl(*AR3+)

	Before Instruction	After Instruction
В	00 0000 0000	B 00 6CAC BD90
AR3	0100	AR3 [†] 0102
Data Memory		
0100h	6CAC	0100h 6CAC
0101h	BD90	0101h BD90

[†] Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the execution.

Syntax	1: $src = dbl(Lmem) - src$ 2: $src = dual(Lmem) - src$								
Operands	Lmem:Long data-memory operandsrc:A (accumulator A)B (accumulator B)								
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 1 0 0 S I A A A A A A A								
Execution	If C16 = 0 Then (Lmem) - (src) \rightarrow src Else (Lmem(31-16)) - (src(31-16)) \rightarrow src(39-16) (Lmem(15-0)) - (src(15-0)) \rightarrow src(15-0)								
Status Bits	Affected by SXM and OVM (only if $C16 = 0$) Affects C and OVsrc								
Description	This instruction subtracts the content of <i>src</i> from the 32-bit long data-memory operand <i>Lmem</i> and stores the result in <i>src</i> . The value of C16 determines the mode of the instruction:								
	☐ If C16 = 0, the instruction is executed in double-precision mode. The content of <i>src</i> (32 bits) is subtracted from <i>Lmem</i> . The result is stored in <i>src</i> .								
	☐ If C16 = 1, the instruction is executed in dual 16-bit mode. The high part of <i>src</i> (bits 31–16) is subtracted from the 16 MSBs of <i>Lmem</i> and the result is stored in the high part of <i>src</i> (bits 39–16). At the same time, the low part of <i>src</i> (bits 15–0) is subtracted from the 16 LSBs of <i>Lmem</i> . The result is stored in the low part of <i>src</i> (bits 15–0). In this mode, the results are not saturated regardless of the state of the OVM bit.								
Words	1 word								
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Lmem.								
Cycles	1 cycle								
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Lmem.								
Classes	Class 9A (see page 3-22) Class 9B (see page 3-23)								

Example 1 A = dbl(*AR3+) - A**Before Instruction** After Instruction А 00 5678 8933 А FF BEBB AB23 С С 0 х 0 C16 C16 0 AR3† AR3 0100 0102 Data Memory 0100h 1534 0100h 1534 3456 0101h 0101h 3456 [†] Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the execution. Example 2 A = dbl(*AR3-) - A**Before Instruction** After Instruction А 00 5678 3933 FF BEBC FB23 А С 1 С 0 C16 1 C16 1 AR3 AR3[†] 0100 OOFE Data Memory 0100h 1534 0100h 1534 0101h 0101h 3456 3456 [†] Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the

Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the execution.

Syntax	dst = dsadt(Lmem, T)							
Operands	Lmem: Long data-memory operand dst: A (accumulator A) B (accumulator B)							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 1 1 D I A							
Execution	If C16 = 1 Then (Lmem(31-16)) - (T) \rightarrow dst(39-16) (Lmem(15-0)) + (T) \rightarrow dst(15-0) Else (Lmem) - ((T) + (T << 16)) \rightarrow dst							
Status Bits	Affected by SXM and OVM (only if $C16 = 0$) Affects C and OVdst							
Description	This instruction subtracts/adds the content of T from the 32-bit long data- memory operand <i>Lmem</i> and stores the result in <i>dst</i> . The value of C16 deter- mines the mode of the instruction:							
	☐ If C16 = 0, the instruction is executed in double-precision mode. A 32-bit value composed of the content of T concatenated with the content of T left-shifted 16 bits (T << 16 + T) is subtracted from <i>Lmem</i> . The result is stored in <i>dst</i> .							
	☐ If C16 = 1, the instruction is executed in dual 16-bit mode. The content of T is subtracted from the 16 MSBs of <i>Lmem</i> and the result is stored in the high part of <i>dst</i> (bits 39–16). At the same time, the content of T is added to the 16 LSBs of <i>Lmem</i> and the result is stored in the low part of <i>dst</i> (bits 15–0). In this mode, the results are not saturated regardless of the state of the OVM bit.							
	Note:							
	This instruction is meaningful only if C16 is set (dual 16-bit mode).							
Words	1 word							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Lmem.							
Cycles	1 cycle							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Lmem.							

Classes	Class 9A (see pa Class 9B (see pa							
Example 1	A = dsadt(*AR3+,T)							
		Before Instruction		After Instruction				
	А	00 0000 0000	Α [FF F1EF 1111				
	Т	2345	т [2345				
	С	0	с [0				
	C16	0	C16 [0				
	AR3	0100	AR3† [0102				
	Data Memory							
	0100h	1534	0100h [1534				
	0101h	3456	0101h [3456				
	[†] Because this instrue execution.	ction is a long-operand instruction,	AR3 is incr	emented by 2 after the				
Example 2	A = dsadt(*AR	3-,T)						
		Before Instruction		After Instruction				
	А	00 0000 0000	А	FF F1EF 579B				
	Т	2345	Т	2345				
	С	0	С	1				
	C16	1	C16	1				
	AR3	0100	AR3†	00FE				
	Data Memory							
	0100h	1534	0100h	1534				
	0101h	3456	0101h	3456				
	T Because this instru	uction is a long-operand instruction	AP3 is doc	remented by 2 after the				

⁺ Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the execution.

Syntax	1: dbl (<i>Lmem</i>) = <i>src</i> 2: dual (<i>Lmem</i>) = <i>src</i>													
Operands	src: A (accumulator A) B (accumulator B) Lmem: Long data-memory operand													
	Linem.	Long	uata-m	iemor.	у ор	ciai	u							
Opcode	15 14 0 1		1 <u>2 11</u> 0 1	10 1	9 1	8 S	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	(src(31–0	$(src(31-0)) \rightarrow Lmem$												
Status Bits	None													
Description	This instru <i>Lmem</i> .	uction	stores tł	ne cor	ntent	of s	<i>rc</i> in	a 32	-bit lo	ong c	lata-i	nem	ory l	ocation
Words	1 word													
	Add 1 wor with an Lr		n using	long-c	offse	t ind	irect	addı	essi	ng or	abs	olute	add	ressing
Cycles	2 cycles													
	Add 1 cyc with an Lr		n using	long-c	offse	t ind	irect	addi	ressi	ng oi	abs	olute	add	ressing
Classes	Class 13A Class 13B			,										
Example 1	dbl(*AR3	+) =	В											
			Before	Instru	ction					Α	fter Ir	struc	ction	
		В	00	6CAC I	BD90]			В		00 60	CAC E	3D90	
		AR3		(0100]			AR	3† 🗌		(0102	
	Data Memo	ory												
		0100h		(0000]			010	Dh 🗌		6	5CAC	
		0101h		(0000]			010	1h 🗌		E	3D90	
	[†] Because texecution.		ruction is	a long	g-ope	rand	instru	uction,	AR3	is in	creme	nted	by 2	after the
Example 2	dbl(*AR3	—) =	В											
			Before	Instru	ction	_				_A	fter li	nstrue	ction	
		В	00	6CAC :	BD90				В		00 60	CAC I	BD90	
		AR3			0101]			AR:	3† 🗌		(OOFF	
	Data Memo	ory												
		0100h			0000]			010	0h 🗌		Ι	BD90	
		0101h			0000]			010	1h 🗌		(6CAC	
	[†] Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the													

[†]Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the execution.

Syntax	1: $src = src - dbl(Lmem)$ src - = dbl(Lmem) 2: $src = src - dual(Lmem)$ src - = dual(Lmem)								
Operands	Lmem: Long data-memory operand src: A (accumulator A) B (accumulator B)								
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 0 S I A								
Execution	If C16 = 0 Then (src) - (Lmem) \rightarrow src Else (src(31-16)) - (Lmem(31-16)) \rightarrow src(39-16) (src(15-0)) - (Lmem(15-0)) \rightarrow src(15-0)								
Status Bits	Affected by SXM and OVM (only if C16 = 0) Affects C and OVsrc								
Description	This instruction subtracts the 32-bit long data-memory operand <i>Lmem</i> from the content of <i>src</i> , and stores the result in <i>src</i> . The value of C16 determines the mode of the instruction:								
	☐ If C16 = 0, the instruction is executed in double-precision mode. <i>Lmem</i> is subtracted from the content of <i>src</i> .								
	If C16 = 1, the instruction is executed in dual 16-bit mode. The 16 MSBs of <i>Lmem</i> are subtracted from the high part of <i>src</i> (bits 31–16) and the result is stored in the high part of <i>src</i> (bits 39–16). At the same time, the 16 LSBs of <i>Lmem</i> are subtracted from the low part of <i>src</i> (bits15–0) and the result is stored in the low part of <i>src</i> (bits 15–0).								
Words	1 word								
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Lmem.								
Cycles	1 cycle								
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Lmem.								
Classes	Class 9A (see page 3-22) Class 9B (see page 3-23)								

A = A - dbl(*AR3+)

⁺ Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the execution.

Exam	ple 2
------	-------

A = A - dbl(*AR3-)

[†] Because this instruction is a long-operand instruction, AR3 is decremented by 2 after the execution.

Syntax	 1: dst = dbl(Lmem) − T 2: dst = dual(Lmem) − T 							
Operands	Lmem: Long data-memory operand dst: A (accumulator A) B (accumulator B)							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 1 1 0 D I A							
Execution	If C16 = 1 Then (Lmem(31-16)) - (T) \rightarrow dst(39-16) (Lmem(15-0)) - (T) \rightarrow dst(15-0) Else (Lmem) - ((T) + (T << 16)) \rightarrow dst							
Status Bits	Affected by SXM and OVM (only if C16 = 0) Affects C and OVdst							
Description	This instruction subtracts the content of T from the 32-bit long data-memory operand <i>Lmem</i> and stores the result in <i>dst</i> . The value of C16 determines the mode of the instruction:							
	☐ If C16 = 0, the instruction is executed in double-precision mode. A 32-bit value composed of the content of T concatenated with the content of T left-shifted 16 bits (T << 16 + T) is subtracted from <i>Lmem</i> . The result is stored in <i>dst</i> .							
	☐ If C16 = 1, the instruction is executed in dual 16-bit mode. The content of T is subtracted from the 16 MSBs of <i>Lmem</i> and the result is stored in the high part of <i>dst</i> (bits 39–16). At the same time, the content of T is subtracted from the 16 LSBs of <i>Lmem</i> and the result is stored in the low part of <i>dst</i> (bits 15–0). In this mode, the results are not saturated regardless of the value of the OVM bit.							
	Note:							
	This instruction is meaningful only if C16 is set to 1 (dual 16-bit mode).							
Words	1 word							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Lmem.							
Cycles	1 cycle							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Lmem.							

Classes		Class 9A (see page 3-22) Class 9B (see page 3-23)					
Example 1	A = dbl(*AR3+) — T					
		Before Instruction		After Instruction			
	А	00 0000 0000	Α [FF F1EF 1111			
	Т	2345	т [2345			
	C16	0	C16 [0			
	AR3	0100	AR3† [0102			
	Data Memory						
	0100h	1534	0100h [1534			

[†] Because this instruction is a long-operand instruction, AR3 is incremented by 2 after the execution.

0101h

3456

Example 2

A = dbl(*AR3-) - T

0101h

	Before Instruction	After Instruction
А	00 0000 0000	A FF F1EF 1111
Т	2345	T 2345
C16	1	C16 1
AR3	0100	AR3T OOFE
Data Memory		
0100h	1534	0100h 1534
0101h	3456	0101h 3456

[†] Because this instruction is a long operand instruction, AR3 is decremented by 2 after the execution.

3456

Syntax	T = exp(src)
Operands	src: A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 S 1 0 0 0 1 1 1 0
Execution	If (src) = 0 Then $0 \rightarrow T$ Else (Number of leading bits of src) $-8 \rightarrow T$
Status Bits	None
Description	This instruction computes the exponent value, which is a signed 2s-comple- ment value in the –8 to 31 range, and stores the result in T. The exponent is computed by calculating the number of leading bits in <i>src</i> and subtracting 8 from this value. The number of leading bits is equivalent to the number of left shifts needed to eliminate the significant bits from the 40-bit <i>src</i> with the excep- tion of the sign bit. The <i>src</i> is not modified after this instruction. The result of subtracting 8 from the number of leading bits produces a negative exponent for accumulator values that have significant bits in the guard bits (the eight MSBs of the accumulator used in error detection and correction). See the normalization instruction (page 4-124).
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example 1 Example 2	$T = \exp(A)$ $A = \frac{\text{Before Instruction}}{T = 0000} -53$ $T = \exp(B)$ $A = \frac{\text{FF FFFF FFCB}}{\text{FF} = 0000} -53$ $T = \exp(B)$
	Before Instruction After Instruction B 07 8543 2105 B 07 8543 2105 T FFFC T FFFC -4 [†]

[†] The value in accumulator B has significant bits in the guard bits, which results in a negative exponent.

Syntax	far [d]goto extpmad				
Operands	$0 \leq \text{extpmad} \leq 7F FFFF$				
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 Z 0 1 7-bit constant = pmad(22-16) 16-bit constant = pmad(15-0)				
Execution	$(pmad(15-0)) \rightarrow PC$ $(pmad(22-16)) \rightarrow XPC$				
Status Bits	None				
Description	This instruction passes control to the program-memory address <i>pmad</i> (bits 15–0) on the page specified by <i>pmad</i> (bits 22–16). The <i>pmad</i> can be either a symbolic or numeric address. If the branch is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the branch instruction is fetched from program memory and executed.				
	This instruction is not repeatable. This instruction cannot be included in a blockrepeat instruction.				
Words	2 words				
Cycles	4 cycles 2 cycles (delayed)				
Classes	Class 29A (see page 3-68)				
Example 1	far goto 012000h Before Instruction PC 1000 PC 2000 XPC 00 XPC 01 2000h is loaded into the PC, 01h is loaded into XPC, and the program continues executing from that location.				
Example 2	far dgoto 7F1000h *AR1+ = *AR1+ & #4444h Before Instruction After Instruction PC 2000 PC 1000 XPC 00 XPC 7F				

After the operand has been ANDed with 4444h, the program continues executing from location 1000h on page 7Fh.

Syntax	far [d]goto src
Operands	src: A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z S 1 1 1 0 0 1 1 0
Execution	$(src(15-0)) \rightarrow PC$ $(src(22-16)) \rightarrow XPC$
Status Bits	None
Description	This instruction loads the XPC with the value in <i>src</i> (bits 22–16) and passes control to the 16-bit address in the low part of <i>src</i> (bits 15–0). If the branch is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the branch instruction is fetched from program memory and executed.
	Note:
	This instruction is not repeatable. This instruction cannot be included in a blockrepeat instruction.
Words	1 word
Cycles	6 cycles 4 cycles (delayed)
Classes	Class 30A (see page 3-69)
Example 1	far goto A
	Before Instruction After Instruction A 00 0001 3000 A 00 0001 3000 PC 1000 PC 3000 XPC 00 XPC 01
	1h is loaded into the XPC, 3000h is loaded into the PC, and the program continues executing from that location on page 1h.
Example 2	far dgoto B *AR1+ = *AR1+ & #(4444h *AR1+) Before Instruction B 00 007F 2000 XPC 01 B 00 007F 2000 XPC 7F

After the operand has been ANDed with 4444h value, 7Fh is loaded into the XPC, and the program continues executing from location 2000h on page 7Fh.

Syntax	far [d]call src	
Operands	src: A (accumulator A) B (accumulator B)	
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z S 1 1 1 0 0 1 1 1	
Execution	Nondelayed $(SP) - 1 \rightarrow SP$ $(PC) + 1 \rightarrow TOS$ $(SP) - 1 \rightarrow SP$ $(XPC) \rightarrow TOS$ $(src(15-0)) \rightarrow PC$ $(src(22-16)) \rightarrow XPC$ Delayed $(SP) - 1 \rightarrow SP$ $(PC) + 3 \rightarrow TOS$ $(SP) - 1 \rightarrow SP$ $(XPC) \rightarrow TOS$ $(src(15-0)) \rightarrow PC$ $(src(22-16)) \rightarrow XPC$	
Status Bits	None	
Description	This instruction loads the XPC with the value in <i>src</i> (bits 22–16) and passes control to the 16-bit address in the low part of <i>src</i> (bits 15–0). If the call is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the call instruction is fetched from program memory and executed.	
	Note:	
	This instruction is not repeatable. This instruction cannot be included in a blockrepeat instruction.	
Words	1 word	
Cycles	6 cycles 4 cycles (delayed)	
Classes	Class 30B (see page 3-69)	
4.50		

Example 1	far call A		
		Before Instruction	After Instruction
	А	00 007F 3000	A 00 007F 3000
	PC	0025	PC 3000
	XPC	0 0	XPC 7F
	SP	1111	SP 110F
	Data Memory		
	1110h	4567	1110h 0026
	110Fh	4567	110Fh 0000
Example 2	far dcall B		
Example 2	far dcall B *AR1+ = *AR1+	- & #4444h	
Example 2		- & #4444h Before Instruction	After Instruction
Example 2			After Instruction
Example 2	*AR1+ = *AR1+	Before Instruction	
Example 2	*AR1+ = *AR1+ B	Before Instruction 00 0020 2000 0025 0025	B 00 0020 2000
Example 2	*AR1+ = *AR1+ B PC	Before Instruction 00 0020 2000 0025 0025	B 00 0020 2000 PC 2000
Example 2	*AR1+ = *AR1+ B PC XPC	Before Instruction 00 0020 2000 0025 7F	B 00 0020 2000 PC 2000 XPC 20
Example 2	*AR1+ = *AR1+ B PC XPC SP	Before Instruction 00 0020 2000 0025 0025 7F 1111	B 00 0020 2000 PC 2000 XPC 20
Example 2	*AR1+ = *AR1+ B PC XPC SP Data Memory	Before Instruction 00 0020 2000 0025 7F 1111	B 00 0020 2000 PC 2000 XPC 20 SP 110F

After the memory location has been ANDed with 4444h, the program continues executing from location 2000h on page 20h.

Syntax	far [d]call extpmad			
Operands	$0 \leq \text{extpmad} \leq 7\text{FFFF}$			
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 Z 1 1 7-bit constant = pmad(22-16) 16-bit constant = pmad(15-0)			
Execution	Nondelayed $(SP) - 1 \rightarrow SP$ $(PC) + 2 \rightarrow TOS$ $(SP) - 1 \rightarrow SP$ $(XPC) \rightarrow TOS$ $(pmad(15-0)) \rightarrow PC$ $(pmad(22-16)) \rightarrow XPC$			
	Delayed $(SP) - 1 \rightarrow SP$ $(PC) + 4 \rightarrow TOS$ $(SP) - 1 \rightarrow SP$ $(XPC) \rightarrow TOS$ $(pmad(15-0)) \rightarrow PC$ $(pmad(22-16)) \rightarrow XPC$			
Status Bits	None			
Description	This instruction passes control to the specified program-memory address <i>pmad</i> (bits 15–0) on the page specified by <i>pmad</i> (bits 22–16). The return address is pushed onto the stack before <i>pmad</i> is loaded into PC. If the call is delayed (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following the call instruction is fetched from program memory and executed.			
	Note:			
	This instruction is not repeatable. This instruction cannot be included in a blockrepeat instruction.			
Words	2 words			
Cycles	4 cycles 2 cycles (delayed)			
Classes	Class 29B (see page 3-68)			

Example 1	far call 3333h	
	Before Instruction	After Instruction
	PC 0025	PC 3333
	XPC 00	XPC 01
	SP 1111	SP 110F
	Data Memory	
	1110h 4567	1110h 0027
	110Fh 4567	110Fh 0000
Example 2	far dcall 1000h	
	*AR1+ = *AR1+ & #4444h	
	Before Instruction	After Instruction
	PC 3001	PC 1000
	XPC 7F	XPC 30
	SP 1111	SP 110F
	Data Memory	
	1110 h 4567	1110h 3005

After the memory location has been ANDed with 4444h, the program continues executing from location 1000h.

Syntax	firs(Xmem, Ym	nem, pm	ad)										
Operands	Xmem, Ymem: $0 \le pmad \le 6$		data-	men	nory	oper	ands	;					
Opcode	15 14 13	12 11	10	9	8	7	6	5	4	3	2	1	0
	1 1 1	0 0	0	0	0	Х	Х	Х	Х	Y	Y	Y	Y
				16-b	it con	stant							
Execution	$pmad \rightarrow PAR$ While (RC) \ne ((B) + (A(3)) ((Xmem) + (PAR) + 1 (RC) - 1 -	2–16)) > · (Ymen → PAR				resse	ed by	' PAR	!) →	В			
Status Bits	Affected by SX Affects C, OVA			d O∖	/M								
Description	This instruction This instruction addressed by <i>p</i> to the value in a <i>Xmem</i> and <i>Ym</i> mulator A. In th pipeline is start	n multipl <i>mad</i> (in t ccumula <i>em</i> , shift ne next i	ies a the pr ator E ts the terati	accur rogra 3. At e resu ion, <i>j</i>	mula am a the s ult lei p <i>ma</i>	tor A ddres ame ft 16 I d is in	(bits ss reg time bits, ncrer	s 32– gister , it ad and lo mente	-16) PAF ds ti bads ed b	with R) an he m s this y 1.	n a F nd ad nemo s valu Once	omen ds th ry op le inte e the	e result erands o accu-
Words	2 words												
Cycles	3 cycles	3 cycles											
Classes	Class 8 (see page 3-17)												
Example	firs(*AR3+,*2	AR4+,CC	EFFS	5)									
		Before	Instru	uctior	1				A	fter Ir	nstruc	tion	
	A		0077		_			A)FF (
	B FRCT	00	0000					B FRC		00 00	008 7	0 0 0 0	
	AR3			0100	-			AR3	_		()101	
	AR4			0200	-			AR4				201	
	Data Memory				_								
	0100h			0055	5			0100	h 🗌		C	055	
	0200h			00A7	A A			0200	h 🗌		C	0AA	
	Program Memory				-								
	COEFFS			1234	Ł		C	DEFFS			1	234	

Syntax	SP = SP + K $SP + = K$
Operands	$-128 \le K \le 127$
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode	1 1 1 0 1 1 1 0 K K K K K K K K
Execution	$(SP) + K \rightarrow SP$
Status Bits	None
Description	This instruction adds a short-immediate offset K to the SP. There is no latency for address generation in compiler mode (CPL = 1) or for stack manipulation by the instruction following this instruction.
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example	SP = SP + 10h Before Instruction After Instruction
	SP 1000 SP 1010
Syntax	far [d]return
-------------	---
Operands	None
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z 0 1 1 1 0 0 1 0 0
Execution	$\begin{array}{l} (\text{TOS}) \rightarrow \text{XPC} \\ (\text{SP}) \ + \ 1 \rightarrow \text{SP} \\ (\text{TOS}) \rightarrow \text{PC} \\ (\text{SP}) \ + \ 1 \rightarrow \text{SP} \end{array}$
Status Bits	None
Description	This instruction replaces the XPC with the 7-bit value from the TOS and replaces the PC with the next 16-bit value on the stack. The SP is incremented by 1 for each of the two replacements. If the return is delayed (specified by the d prefix), the two 1-word instructions or one 2-word instruction following this instruction is fetched and executed. Note: This instruction is not repeatable.
Words	1 word
Cycles	6 cycles 4 cycles (delayed)
Classes	Class 34 (see page 3-73)
Example	Before Instruction After Instruction PC 2112 PC 1000 XPC 01 XPC 05 SP 0300 SP 0302 Data Memory 0300h 0005 0300h 0005 0301h 1000 0301h 1000

Syntax	far [d]return_enable
Operands	None
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z 0 1 1 1 0 1 0 1
Execution	$(TOS) \rightarrow XPC$ $(SP) + 1 \rightarrow SP$ $(TOS) \rightarrow PC$ $(SP) + 1 \rightarrow SP$ $0 \rightarrow INTM$
Status Bits	Affects INTM
Description	This instruction replaces the XPC with the 7-bit value from the TOS and replaces the PC with the next 16-bit value on the stack, continuing execution from the new PC value. This instruction automatically clears the interrupt mask bit (INTM) in ST1. (Clearing this bit enables interrupts.) If the return is delayed (specified by the d prefix), the two 1-word instructions or one 2-word instruction following this instruction is fetched and executed.
Words	1 word
Cycles	6 cycles 4 cycles (delayed)
Classes	Class 34 (see page 3-73)
Example	far return_enable
	Before Instruction After Instruction PC 2112 PC 0110 XPC 05 XPC 6E ST1 xCxx ST1 x4xx SP 0300 SP 0302 Data Memory 0300h 006E 0300h 006E 0301h 0110 0301h 0110

Syntax	idle(K)														
Operands	1 ≤	K ≤	3													
Opcode	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-	1	1	1	1	0	1	Ν	Ν	1	1	1	0	0	0	0	1
						lf	K is:			Ν	N is:					
							1				00					
							2				10					
							3				01					

Execution

 $(PC) + 1 \rightarrow PC$

Status Bits

Affected by INTM

DescriptionThis instruction forces the program being executed to wait until an unmasked
interrupt or reset occurs. The PC is incremented by 1. The device remains in
an idle state (power-down mode) until it is interrupted.

The idle state is exited after an unmasked interrupt, even if INTM = 1. If INTM = 1, the program continues executing at the instruction following the idle. If INTM = 0, the program branches to the corresponding interrupt service routine. The interrupt is enabled by the interrupt mask register (IMR), regardless of the INTM value. The following options, indicated by the value of K, determine the type of interrupts that can release the device from idle:

- K = 1 Peripherals, such as the timer and the serial ports, are still active. The peripheral interrupts as well as reset and external interrupts release the processor from idle mode.
- K = 2 Peripherals, such as the timer and the serial ports, are inactive. Reset and external interrupts release the processor from idle mode. Because interrupts are not latched in idle mode as they are in normal device operation, they must be low for a number of cycles to be acknowledged.
- K = 3 Peripherals, such as the timer and the serial ports, are inactive and the PLL is halted. Reset and external interrupts release the processor from idle mode. Because interrupts are not latched in idle mode as they are in normal device operation, they must be low for a number of cycles to be acknowledged.

Note:

This instruction is not repeatable.

Words	1 word
Cycles	The number of cycles needed to execute this instruction depends on the idle period. Because the entire device is halted when $K = 3$, the number of cycles cannot be specified. The minimum number of cycles is 4.
Classes	Class 36 (see page 3-74)
Example 1	<pre>idle(1)</pre>
	The processor idles until a reset or unmasked interrupt occurs.
Example 2	idle(2)
	The processor idles until a reset or unmasked external interrupt occurs.
Example 3	idle(3)
	The processor idles until a reset or unmasked external interrupt occurs.

Suntay	int(10)										
Syntax	int(K)										
Operands	$0 \leq K \leq 31$										
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 0 K K K K K K										
Execution	$(SP) - 1 \rightarrow SP$ (PC) + 1 \rightarrow TOS interrupt vector specified by K \rightarrow PC 1 \rightarrow INTM										
Status Bits	Affects INTM and IFR										
Description	This instruction transfers program control to the interrupt vector specified by K . This instruction allows you to use your application software to execute any interrupt service routine. For a list of interrupts and their corresponding K value, see your device datasheet.										
	During execution of the instruction, the PC is incremented by 1 and pushed onto the TOS. Then, the interrupt vector specified by K is loaded in the PC and the interrupt service routine for this interrupt is executed. The corresponding bit in the interrupt flag register (IFR) is cleared and interrupts are globally disabled (INTM = 1). The interrupt mask register (IMR) has no effect on the INTR instruction. INTR is executed regardless of the value of INTM.										
Words	1 word										
Cycles	3 cycles										
Classes	Class 35 (see page 3-74)										
Example	int (3)										
	Before InstructionAfter InstructionPC0025PCFF8CINTM0INTM1IPTR01FFIPTR01FFSP1000SP0FFFData Memory0FFFh96530FFFh0026										

Syntax	1: 2: 3: 4: 5: 6: 7: 8: 9: 10:	dst = $dst =$	Sme Sme Sme #K #Ik [#Ik < src < src [em << em [< em [< em [< << 16 << A << S	< 16 << <i>S</i> SHFT S SM SHIF	HIFT HFT T] T]]									
	For a	additio	nal le	oad i	nstru	iction	s, se	e Lo	oad 7	/DP/	ASN	1/AR	P on	pag	e 4-7	'1.
Operands	Smem:Single data-memory operandXmem:Dual data-memory operandsrc, dst:A (accumulator A) B (accumulator B) $0 \le K \le 255$ $-32\ 768 \le lk \le 32\ 767$ $-16 \le SHIFT \le 15$ $0 \le SHFT \le 15$															
Opcode	1:															
	1		13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	1	0	0	0	D	I	А	A	A	Α	А	A	A
	2:															
	1;	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	1	0	1	0	D	I	А	А	Α	Α	Α	А	А
	3:															
	1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	0	0	1	0	D	Ι	А	А	А	А	А	А	А
	4:															
	1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	1	1	0	1	1	1	1	Ι	А	А	А	А	А	А	А
	0	0	0	0	1	1	0	D	0	1	0	S	Н	Ι	F	Т
	5:															
		5 14	13	12	11	10	9	8							1	0
	1	0	0	1	0	1	0	D	Х	Х	Х	Х	S	Н	F	Т
	6:															
	-	5 14												2	1	
	1	1	1	0	1	0	0	D	K	K	K	K	K	K	K	К

	7:															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	0	0	D	0	0	1	0	S	Н	F	Т
	16-bit constant															
	8:															
	0. 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	0	0	D	0	1	1	0	0	0	1	0
							1	6-bit d	consta	nt						
	9: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	1	S	D	1	0	0	0	0	0	1	0
	10: 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1	1	0	1	S	D	0	1	0	S	 H		F	Т
Execution	1: $(Smem) \rightarrow dst$ 2: $(Smem) \ll TS \rightarrow dst$ 3: $(Smem) \ll 16 \rightarrow dst$ 4: $(Smem) \ll SHIFT \rightarrow dst$ 5: $(Xmem) \ll SHFT \rightarrow dst$ 6: $K \rightarrow dst$ 7: $Ik \ll SHFT \rightarrow dst$ 8: $Ik \ll 16 \rightarrow dst$ 9: $(src) \ll SHIFT \rightarrow dst$ 10: $(src) \ll SHIFT \rightarrow dst$															
Status Bits	Affected by SXM in all accumulator loads Affected by OVM in loads with SHIFT or ASM shift Affects OVdst in loads with SHIFT or ASM shift															
Description	This ir suppo mulato	rting	diffe	rents	shift	quan	tities	. Add	dition							

Notes: The following syntaxes are assembled as a different syntax in certain cases \Box Syntax 4: If <i>SHIFT</i> = 0, the instruction opcode is assembled as syntax T \Box Syntax 4: If 0 < <i>SHIFT</i> ≤ 15 and Smem indirect addressing mode is in
Syntax 4: If $SHIFT = 0$, the instruction opcode is assembled as syntax
Syntax 4: If $0 < SHIFT \le 15$ and Smem indirect addressing mode is ir
cluded in Xmem, the instruction opcode is assembled as syntax 5.
\Box Syntax 5: If SHFT = 0, the instruction opcode is assembled as syntax
□ Syntax 7: If <i>SHFT</i> = 0 and $0 \le lk \le 255$, the instruction opcode assembled as syntax 6.
Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 word Syntaxes 4, 7, and 8: 2 words
Add 1 word when using long-offset indirect addressing or absolute addressi with an Smem.
Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 cycle Syntaxes 4, 7, and 8: 2 cycles
Add 1 cycle when using long-offset indirect addressing or absolute addressi with an Smem.
Syntaxes 1, 2, 3, and 5: Class 3A (see page 3-6) Syntaxes 1, 2, and 3: Class 3B (see page 3-8) Syntax 4: Class 4A (see page 3-9) Syntax 4: Class 4B (see page 3-10) Syntaxes 6, 9, and 10: Class 1 (see page 3-3) Syntaxes 7 and 8: Class 2 (see page 3-5)
A = *AR1
Before Instruction After Instruction A 00 0000 0000 A 00 0000 FEDC SXM 0 SXM 0 AR1 02000 AR1 0200 Data Memory FEDC 0200h FEDC

Example 2	A = *AR1		
		Before Instruction	After Instruction
	А	00 0000 0000	A FF FFFF FEDC
	SXM	1	SXM 1
	AR1	0200	AR1 0200
	Data Memory		
	0200h	FEDC	0200h FEDC
Example 3	B = *AR1 << T	S	
		Before Instruction	After Instruction
	В		B FF FFFE DC00
	SXM	1	SXM 1
	AR1	0200	AR1 0200
	т	8	T 8
	Data Memory		
	0200h	FEDC	0200h FEDC
Example 4	A = *AR3+ <<	16	
		Before Instruction	After Instruction
	A	00 0000 0000	A FF FEDC 0000
	SXM	1	SXM 1
	AR3	0300	AR1 0301
	Data Memory		
	03001	n FEDC	0300h FEDC
Evenue E			
Example 5	B = #248		
	P	Before Instruction	After Instruction
	В		B 00 0000 00F8
	SXM	1	SXM 1
Example 6	B = A << 8		
		Before Instruction	After Instruction
	A	00 7FFD 0040	A 00 7FF0 0040
	В	00 0000 FFFF	B 7F FD00 4000
	OVB	0	OVB 1
	SXM	1	SXM 1
	Data Memory		
	02001	n FEDC	0200h FEDC

Syntax	 T = Smem DP = Smem DP = #k9 ASM = #k5 ARP = #k3 ASM = Smem 										
	For additional load instructions, see <i>Load Accumulator With Shift</i> on page 4-67.										
Operands	Smem:Single data-memory operand $0 \le k9 \le 511$ $-16 \le k5 \le 15$ $0 \le k3 \le 7$										
Opcode	1:										
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 0 0 0 I A A A A A A A										
	2: _15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0_										
	0 1 0 0 1 1 0 I A A A A A A										
	3:										
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>										
	1 1 1 0 1 0 1 K K K K K K K K										
	4:										
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0										
	1 1 1 0 1 1 0 1 0 0 K K K K K										
	5:										
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 0 1 0 1 0 K K K										
	6:										
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 0 1 0 I A										
Execution	1: $(\text{Smem}) \rightarrow \text{T}$ 2: $(\text{Smem}(8-0)) \rightarrow \text{DP}$ 3: $k9 \rightarrow \text{DP}$ 4: $k5 \rightarrow \text{ASM}$ 5: $k3 \rightarrow \text{ARP}$ 6: $(\text{Smem}(4-0)) \rightarrow \text{ASM}$										
Status Bits	None										

Description	This instruction loads a value into T or into the DP, ASM, and ARP fields of ST0 or ST1. The value loaded can be a single data-memory operand <i>Smem</i> or a constant.									
Words	1 word									
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.									
Cycles	Syntaxes 1, 3, 4, 5, and 6: 1 cycle Syntax 2: 3 cycles									
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.									
Classes	Syntaxes 1 and Syntax 2: Class Syntax 2: Class	6: Class 3A (see page 3-6) 6: Class 3B (see page 3-8) 5A (see page 3-11) 5B (see page 3-11) nd 5: Class 1 (see page 3-3)								
Example 1	T = *AR3+									
		Before Instruction		After Instruction						
	Т	0000	T	FEDC						
	AR3 Data Memory	0300	AR3	0301						
	0300h	FEDC	0300	h FEDC						
Example 2	DD 43D4									
Example 2	DP = *AR4	Before Instruction		After Instruction						
	AR4	0200	AR4	0200						
	DP	1FF	DP	0DC						
	Data Memory									
	0200h	FEDC	02001	n FEDC						
Example 3	DP = #23									
·		Before Instruction		After Instruction						
	DP	1FF	DP	017						
Example 4	ASM = @15									
		Before Instruction		After Instruction						
	ASM	00	ASM	OF						
Example 5	ARP = #3									
		Before Instruction		After Instruction						
	ARP	0	ARP	3						

Example 6 ASM = @0 Before Instruction ASM 00

	Before Instruction		After Instruction
ASM	00	ASM	10
DP	004	DP	004
Data Memory			
0200h	FEDC	0200h	FEDC

Syntax	dst = MMI dst = mm i)											
Operands	MMR: dst:	Memo A (aco B (aco	cumul	ator)	l regi	ister								
Opcode	15 14 0 1	<u>13 1</u> 0 0		10 0	9 0	8 D	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	(MMR) → 00 0000h		,	6)										
Status Bits	None													
Description	This instru The nine N 0, regardle instruction	ISBs o ess of	f the e the cu	ffectiv irrent	ve ad valu	ldres le of	s are DP (clea or th	ared t e up	:0 0 to	o des	igna	te da	ta page
Words	1 word													
Cycles	1 cycle													
Classes	Class 3A	(see pa	age 3-	6)										
Example 1	A = AR4	A AR4		e Instr 0000		1			ہ AF	۹ [After I	000	ction FFFF FFFF	
Example 2	B = mmr() Data Memo	B ory		re Inst	000	0				3 [0000	1234]
		0060h			123	34			000	60h [_			1234	J

Syntax	 dst = Xmem [<< 16] dst_ = dst_ + T * Ymem dst = Xmem [<< 16] dst_ += T * Ymem dst = Xmem [<< 16] dst_ = rnd(dst_ + T * Ymem) 								
Operands	dst:A (accumulator A) B (accumulator B)dst_:If $dst = A$, then $dst_{-} = B$; if $dst = B$, then $dst_{-} = A$ Xmem, Ymem:Dual data-memory operands								
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 1 0 R D X X X Y Y Y								
Execution	$\begin{array}{l} (\text{Xmem}) << 16 \rightarrow \text{dst} (31-16) \\ \text{If (Rounding)} \\ \text{Round (((Ymem) \times (T)) + (dst_))} \rightarrow \text{dst_} \\ \text{Else} \\ ((Ymem) \times (T)) + (\text{dst_}) \rightarrow \text{dst_} \end{array}$								
Status Bits	Affected by SXM, FRCT, and OVM Affects OVdst_								
Description	This instruction loads the high part of dst (bits 31–16) with a 16-bit dual data- memory operand Xmem shifted left 16-bits. In parallel, this instruction multi- plies a dual data-memory operand Ymem by the content of T, adds the result of the multiplication to dst_{-} , and stores the result in dst_{-} .								
	If you use the rnd prefix, this instruction optionally rounds the result of the multiply and accumulate operation by adding 2^{15} to the result and clearing the LSBs (15–0) to 0, and stores the result in <i>dst_</i> .								
Words	1 word								
Cycles	1 cycle								
Classes	Class 7 (see page 3-14)								

Example 1	A = *AR4+		
	B = B + *AR5	5+ * T	
		Before Instruction	
	А	00 0000 1000	A
	В	00 0000 1111	В
	Т	0400	т [
	FRCT	0	FRCT
	AR4	0100	AR4
	AR5	0200	AR5
	Data Memory		
	0100h	1234	0100h [
	0200h	4321	0200h [
Example 2	A = *AR4+		
Example 2	A = AR4 + B = rnd(B + AR4) B = rnd(B + AR4)	* >	
	B = ING(B +	Before Instruction	
	А		АГ
	В	00 0000 1000	вГ
	Т	0400	тГ
	FRCT		FRCT
		0	
	AR4	0100	AR4
	AR5	0200	AR5

Data Memory

0100h	1234
0200h	4321

	Afte	er Instru	uction
А	00	1234	0000
В	00	010D	0000
Т			0400
RCT			0
AR4			0101
AR5			0201

After Instruction
00 1234 0000

00 010C 9511

0400

0101

0201

1234

4321

0100h	1234
0200h	4321

Syntax	 dst = Xmem [<< 16] dst_ = dst T * Ymem dst = Xmem [<< 16] dst = T * Ymem dst = Xmem [<< 16] dst_ = rnd(dst T * Ymem) 								
Operands	Xmem, Ymem:Dual data-memory operandsdst:A (accumulator A)B (accumulator B)dst_:If $dst = A$, then $dst_{-} = B$; if $dst = B$, then $dst_{-} = A$								
Opcode	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>								
Execution Status Bits	$\begin{array}{l} (\text{Xmem}) << 16 \rightarrow \text{dst} (31-16) \\ \text{If (Rounding)} \\ \text{Round } ((\text{dst}_{-}) - ((\text{T}) \times (\text{Ymem}))) \rightarrow \text{dst}_{-} \\ \text{Else} \\ (\text{dst}_{-}) - ((\text{T}) \times (\text{Ymem})) \rightarrow \text{dst}_{-} \\ \text{Affected by SXM, FRCT, and OVM} \end{array}$								
	Affects OVdst_								
Description	This instruction loads the high part of dst (bits 31–16) with a 16-bit dual data- memory operand Xmem shifted left 16 bits. In parallel, this instruction multi- plies a dual data-memory operand Ymem by the content of T, subtracts the result of the multiplication from dst_{-} , and stores the result in dst_{-} .								
	If you use the rnd prefix, this instruction optionally rounds the result of the multiply and subtract operation by adding 2^{15} to the result and clearing the LSBs (15–0) to 0, and stores the result in <i>dst_</i> .								
Words	1 word								
Cycles	1 cycle								
Classes	Class 7 (see page 3-14)								

Example 1	A = *AR4+			
	B = B - *AR5+	* Т		
		Before Instruction		After Instruction
	А	00 0000 1000	А	00 1234 0000
	В	00 0000 1111	В	FF FEF3 8D11
	Т	0400	Т	0400
	FRCT	0	FRCT	0
	AR4	0100	AR4	0101
	AR5	0200	AR5	0201
	Data Memory			
	0100h	1234	0100h	1234
	0200h	4321	0200h	4321
Example 2	A = *AR4+			
Example 2	A = *AR4+ B = rnd(B - *A	AR5+ * T)		
Example 2		AR5+ * T) Before Instruction		After Instruction
Example 2			A	After Instruction
Example 2	B = rnd(B - *)	Before Instruction	AB	
Example 2	B = rnd(B - *A A	Before Instruction		00 1234 0000
Example 2	B = rnd(B - *A A B	Before Instruction 00 0000 1000 00 0000 1111	В	00 1234 0000 FF FEF4 0000
Example 2	B = rnd(B - *A A B T	Before Instruction 00 0000 1000 00 0000 1111 0400	B T	00 1234 0000 FF FEF4 0000 0400
Example 2	B = rnd(B - *A A B T FRCT	Before Instruction 00 0000 1000 00 0000 1111 0400 0 0	B T FRCT	00 1234 0000 FF FEF4 0000 0400 0
Example 2	B = rnd(B - *A A B T FRCT AR4	Before Instruction 00 0000 1000 00 0000 1111 00 0400 0 0100	B T FRCT AR4	00 1234 0000 FF FEF4 0000 0400 0 0101
Example 2	B = rnd(B - *A A B T FRCT AR4 AR5	Before Instruction 00 0000 1000 00 0000 1111 00 0400 0 0100	B T FRCT AR4	00 1234 0000 FF FEF4 0000 0400 0 0101

Syntax	dst = rnd(Smem)												
Operands	Smem:Single data-memory operanddst:A (accumulator A)B (accumulator B)													
Opcode	15 14 0 0	<u>13 12</u> 0 1	11 0	10 1	9 1	8 D	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	(Smem) << 16 + 1 << 15 → dst(31–16)													
Status Bits	Affected b	y SXM												
Description	This instru high part o clearing th is set to 1.	f <i>dst</i> (bit e 15 LS	ts 31-	-16).	Sme	mis	roun	ded	by ad	dding	2 ¹⁵ 2	to th	is va	lue and
Words	1 word													
	Add 1 word with an Sn		using	long	-offse	et inc	lirect	addi	ressi	ng o	r abs	olute	add	ressing
Cycles	1 cycle													
	Add 1 cyclo with an Sn		using	long	-offse	et inc	direct	add	ressi	ing o	r abs	olute	add	ressing
Classes	Class 3A (Class 3B (-	,										
Example	A = rnd(; Data Mem	A SXM AR1		0 000		00			Δ	A [SXM [NR1 200h			e 800 020 FED	0 0 0

Syntax	dst = uns (Smem)													
Operands	Smem:Single data-memory operanddst:A (accumulator A)B (accumulator B)													
Opcode	15 14 0 0	<u>13 12</u> 0 1	<u>11</u> 0	10 0	9 1	8 D	7	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	$(Smem) \rightarrow dst(15-0)$ 00 0000h $\rightarrow dst(39-16)$													
Status Bits	None													
Description	This instruction loads the data-memory value <i>Smem</i> into the low part of <i>dst</i> (bits 15–0). The guard bits and the high part of <i>dst</i> (bits 39–16) are cleared to 0. Data is then treated as an unsigned 16-bit number. There is no sign extension regardless of the status of the SXM bit.													
Words	1 word													
	Add 1 wor with an Si		using	long	-offse	et inc	direct	add	ressi	ngo	rabs	olute	add	ressing
Cycles	1 cycle													
	Add 1 cyc with an Si		using	long	-offs	et inc	direc	t add	ressi	ingo	r abs	olute	add	ressing
Classes	Class 3A Class 3B		-											
Example	A = uns(*AR1)												
	Data Men	A AR1 nory 0200h		ore Ins	0 00					A [\R1 [200h		0000		

Syntax	Ims(Xmem, Ymem)										
Operands	Xmem, Ymem: Dual data-memory operands										
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 0 0 0 1 X X X Y Y Y Y										
Execution	$\begin{array}{l} (A) \ + \ (Xmem) << 16 \ + \ 2^{15} \rightarrow A \\ (B) \ + \ (Xmem) \ \times \ (Ymem) \rightarrow B \end{array}$										
Status Bits	Affected by SXM, FRCT, and OVM Affects C, OVA, and OVB										
Description	This instruction executes the least mean square (LMS) algorithm. The dual data-memory operand <i>Xmem</i> is shifted left 16 bits and added to accumulator A. The result is rounded by adding 2 ¹⁵ to the high part of the accumulator (bits 31–16). The result is stored in accumulator A. In parallel, <i>Xmem</i> and <i>Ymem</i> are multiplied and the result is added to accumulator B. <i>Xmem</i> does not overwrite T; therefore, T always contains the error value used to update coefficients.										
Words	1 word										
Cycles	1 cycle										
Classes	Class 7 (see page 3-14)										
Example	lms(*AR3+,*AR4+)										
	Before Instruction After Instruction										
	A 00 7777 8888 A 00 77CD 0888 B 00 0000 0100 B 00 0000 3972										
	FRCT 0 FRCT 0										
	AR3 0100 AR3 0101										
	AR4 0200 AR4 0201										
	Data Memory										
	0100h 0055 0100h 0055										
	0200h 00AA 0200h 00AA										

Syntax	ltd(Smem)										
Operands	Smem: Single data-memory operand										
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 0 1 A										
Execution	$(Smem) \rightarrow T$ $(Smem) \rightarrow Smem + 1$										
Status Bits	None										
Description	This instruction copies the content of a single data-memory location <i>Smem</i> into T and into the address following this data-memory location. When data is copied, the content of the address location remains the same. This function is useful for implementing a Z delay in digital signal processing applications. This function also contains the memory delay instruction (page 4-41).										
Words	1 word										
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.										
Cycles	1 cycle										
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.										
Classes	Class 24A (see page 3-58) Class 24B (see page 3-58)										
Example	ltd(*AR3)										
	Before Instruction After Instruction T 00000 T										
	T 0000 T 6CAC AR3 0100 AR3 0100										
	Data Memory										
	0100h 6CAC 0100h 6CAC										
	0101h xxxx 0101h 6CAC										

Syntax	 src = src + T * Smem src + = T * Smem src = rnd(src + T * Smem) dst = src + Xmem * Ymem [, T = Xmem] dst + = Xmem * Ymem [, T = Xmem] dst = rnd(src + Xmem * Ymem) [, T = Xmem] dst = src + T * #lk dst + = T * #lk dst = src + Smem * #lk [, T = Smem] dst + = Smem * #lk [, T = Smem] 															
Operands	Smem:Single data-memory operandsXmem, Ymem:Dual data-memory operandssrc, dst:A (accumulator A)B (accumulator B) $-32\ 768 \le lk \le 32\ 767$															
Opcode	1:															
	1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		0 0	1	0	1	0	R	S	Ι	А	А	А	Α	Α	Α	А
	2:								_		_	_	_	_		_
			<u>13</u> 1	<u>12</u> 1	<u>11</u> 0	<u>10</u> R	9 S	8 D	7 X	6 X	5 X	4 X	<u>3</u> Y	2 Y	1 Y	0 Y
		0	- 1	1	0	ĸ	3	D	^	^	~	^	ř	ř	ř	Ť
	3:															
	1	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	1	0	0	S	D	0	1	1	0	0	1	1	1
							1	6-bit c	onsta	nt						
	4:	- 44	40	40	44	10	0	0	7	0	~	4	2	~	4	0
			<u>13</u> 1	<u>12</u> 0	<u>11</u> 0	<u>10</u> 1	9 S	8 D	7	6 A	5 A	4 A	3 A	2 A	1 A	0 A
								_	onsta							
Execution	1: $(Smem) \times (T) + (src) \rightarrow src$ 2: $(Xmem) \times (Ymem) + (src) \rightarrow dst$ $(Xmem) \rightarrow T$ 3: $(T) \times lk + (src) \rightarrow dst$ 4: $(Smem) \times lk + (src) \rightarrow dst$ $(Smem) \rightarrow T$															
Status Bits	Affected by FRCT and OVM Affects OVdst															

Description	stored in <i>dst</i> or <i>src</i>	, as specified. For syn	ith or without rounding. The result is taxes 2 and 4, the data-memory value updated in the read phase.			
			n rounds the result of the multiply and he result and clearing the LSBs (15–0)			
Words	Syntaxes 1 and 2: Syntaxes 3 and 4:					
	Add 1 word when u with an Smem.	using long-offset indire	ect addressing or absolute addressing			
Cycles	Syntaxes 1 and 2: 1 cycle Syntaxes 3 and 4: 2 cycles					
	Add 1 cycle when u with an Smem.	using long-offset indire	ect addressing or absolute addressing			
Classes	Syntax 1: Class 3/ Syntax 1: Class 3 Syntax 2: Class 7 Syntax 3: Class 2 Syntax 4: Class 6/ Syntax 4: Class 6/	B (see page 3-8) (see page 3-14) (see page 3-5) A (see page 3-12)				
Example 1	A = A + *AR5+ *	Т				
	A T FRCT AR5 Data Memory	OO OOOO 1000 00 0400 0400 0 0100 0100	After Instruction A 00 0048 E000 T 0400 FRCT 0 AR5 0101			
	0100h	1234	0100h 1234			
Example 2	B = A + #345h *					
	۸	Before Instruction	After Instruction			
	AB	00 0000 1000	A 00 0000 1000 B 00 001A 3800			
	Т	0400	T 0400			
	FRCT	1	FRCT 1			

Example 3	A = A + *AR5+ *	#1234h , T = *AR5+		
		Before Instruction		After Instruction
	А	00 0000 1000	A [00 0626 1060
	Т	0000	т [5678
	FRCT	0	FRCT [0
	AR5	0100	AR5 [0101
	Data Memory			
	0100h	5678	0100h [5678
Example 4	B = A + *AR5+ *	*AR6+ , T = *AR5+		
		Before Instruction		After Instruction
	А	00 0000 1000	A	00 0000 1000
	В	00 0000 0004	В	00 0C4C 10C0
	Т	0008	Т	5678
	FRCT	1	FRCT	1
	AR5	0100	AR5	0101
	AR6	0200	AR6	0201
	Data Memory			
	0100h	5678	0100h	5678
	0200h	1234	0200h	1234
Example 5	A = rnd(A + *AR)			
		Before Instruction		After Instruction
	A	00 0000 1000	A	00 0049 0000
	Т	0400	Т	0400
	FRCT	0	FRCT	0
	AR5	0100	AR5	0101
	Data Memory		0465	
	0100h	1234	0100h	1234

Example 6

B = rnd(A + *AR5 + * *AR6 +), T = *AR5 +

	Before Instruction				
А	00 0000 1000				
В	00 0000 0004				
Т	0008				
FRCT	1				
AR5	0100				
AR6	0200				
Data Memory					
0100h	5678				
0200h	1234				

	Afte	r Instru	uction
А	00	0000	1000
В	00	0C4C	0000
Т			5678
FRCT			1
AR5			0101
AR6			0201

0100h	5678
0200h	1234

Syntax	1: $\mathbf{B} = \mathbf{B} + Smem^* \operatorname{hi}(\mathbf{A})$ [, $T = Smem$] $\mathbf{B} + = Smem^* \operatorname{hi}(\mathbf{A})$ [, $T = Smem$] $\mathbf{B} = \operatorname{rnd}(\mathbf{B}+Smem^* \operatorname{hi}(\mathbf{A}))$ [, $T = Smem$] 2: $dst = src + \mathbf{T}^* \operatorname{hi}(\mathbf{A})$ $dst + = \mathbf{T}^* \operatorname{hi}(\mathbf{A})$ $dst = \operatorname{rnd}(src + \mathbf{T}^* \operatorname{hi}(\mathbf{A}))$						
Operands	Smem: Single data-memory operand src, dst: A (accumulator A) B (accumulator B)						
Opcode	1: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Execution	1: (Smem) × (A(32–16)) + (B) → B (Smem) → T 2: (T) × (A(32–16)) + (src) → dst						
Status Bits	Affected by FRCT and OVM Affects OVdst and OVB in syntax 1						
Description	This instruction multiplies the high part of accumulator A (bits 32–16) by a single data-memory operand <i>Smem</i> or by the content of T, adds the product to accumulator B (syntax 1) or to <i>src</i> . The result is stored in accumulator B (syntax 1) or in <i>dst</i> . A(32–16) is used as a 17-bit operand for the multiplier.						
	If you use the rnd prefix, this instruction rounds the result of the multiply by accumulator A operation by adding 2^{15} to the result and clearing the 16 LSBs of <i>dst</i> (bits 15–0) to 0.						
Words	1 word						
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.						
Cycles	1 cycle						
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.						
Classes	Syntaxes 1 and 2: Class 3A (see page 3-6) Syntaxes 1 and 2: Class 3B (see page 3-8) Syntaxes 3 and 4: Class 1 (see page 3-3)						

Example 1 B = B + *AR5 + * hi(A), T = *AR5 +**Before Instruction** After Instruction A 00 1234 0000 А 00 1234 0000 В 00 0000 0000 В 00 0626 0060 т 0400 т 5678 FRCT 0 FRCT 0 AR5 0100 AR5 0101 Data Memory 0100h 5678 0100h 5678 Example 2 B = B + T * hi(A)**Before Instruction** After Instruction A 00 1234 0000 00 1234 0000 А В 00 0002 0000 В 00 009D 4BA0 т 0444 Т 0444 1 1 FRCT FRCT Example 3 B = rnd(B + *AR5 + * hi(A)), T = *AR5 + ***Before Instruction** After Instruction 00 1234 0000 00 1234 0000 А А В 00 0000 0000 00 0626 0000 В Т 0400 Т 5678 0 0 FRCT FRCT AR5 AR5 0100 0101 Data Memory 5678 0100h 0100h 5678 Example 4 B = rnd(B + T * hi(A))**Before Instruction** After Instruction А 00 1234 0000 А 00 1234 0000 00 0002 0000 00 009D 0000 В В Т Т 0444 0444 FRCT FRCT 1 1

Syntax	macd(Smem, pmad, src)												
Operands	Smem:Single data-memory operandsrc:A (accumulator A) B (accumulator B) $0 \le pmad \le 65\ 535$												
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 0 1 S I A A A A A I6-bit constant								0 A				
Execution	$\begin{array}{l} pmad \to PAR \\ If \ (RC) \neq 0 \\ Then \\ & (Smem) \times (Pmem \ addressed \ by \ PAR) + (src) \to src \\ & (Smem) \to T \\ & (Smem) \to Smem + 1 \\ & (PAR) + 1 \to PAR \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$												
Status Bits	Affected by FR Affects OVsrc	CT and	OV№	1									
Description	This instruction multiplies a single data-memory value <i>Smem</i> by a program- memory value <i>pmad</i> , adds the product to <i>src</i> , and stores the result in <i>src</i> . The data-memory value <i>Smem</i> is copied into T and into the next address following the <i>Smem</i> address. When this instruction is repeated, the program-memory address (in the program address register PAR) is incremented by 1. Once the repeat pipeline is started, the instruction becomes a single-cycle instruction. This function also contains the memory delay instruction (page 4-41).												
Words	2 words												
	Add 1 word whe with an Smem.	en using	long	-offse	et ind	lirect	add	ressi	ng oi	r abs	olute	add	ressing
Cycles	3 cycles												
	Add 1 cycle whe with an Smem.	en using	long	-offs	et ind	lirect	add	ressi	ngo	r abs	olute	add	ressing
Classes	Class 23A (see page 3-55) Class 23B (see page 3-57)												

Example

macd(*AR3-,COEFFS,A)

	Before Instruction
А	00 0077 0000
Т	0008
FRCT	0
AR3	0100
Program Memory	
COEFFS	1234
Data Memory	
0100h	0055
0101h	0066

	1	Afte	r Instru	uction
А		00	007D	0B44
Т				0055
FRCT				0
AR3				00FF
COEFFS				1234
0100h				0055
0101h				0055

Syntax	macp(Smem, pmad, src)								
Operands	Smem:Single data-memory operandsrc:A (accumulator A)B (accumulator B) $0 \le pmad \le 65535$								
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 1 0 0 S I A B B B B								
Execution	$\begin{array}{l} (\text{pmad}) \rightarrow \text{PAR} \\ \text{If } (\text{RC}) \neq 0 \\ \text{Then} \\ (\text{Smem}) \times (\text{Pmem addressed by PAR}) + (\text{src}) \rightarrow \text{src} \\ (\text{Smem}) \rightarrow \text{T} \\ (\text{PAR}) + 1 \rightarrow \text{PAR} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$								
Status Bits	Affected by FRCT and OVM Affects OVsrc								
Description	This instruction multiplies a single data-memory value <i>Smem</i> by a program- memory value <i>pmad</i> , adds the product to <i>src</i> , and stores the result in <i>src</i> . The data-memory value <i>Smem</i> is copied into T. When this instruction is repeated, the program-memory address (in the program address register PAR) is in- cremented by 1. Once the repeat pipeline is started, the instruction becomes a single-cycle instruction.								
Words	2 words								
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.								
Cycles	3 cycles								
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.								
Classes	Class 22A (see page 3-52) Class 22B (see page 3-54)								

Example

macp(*AR3-,COEFFS,A)

	Before Instruction
А	00 0077 0000
Т	0008
FRCT	0
AR3	0100
Program Memory	
COEFFS	1234
Data Memory	
0100h	0055
0101h	0066

	/	Afte	r Instru	uction
А		00	007D	0B44
Т				0055
FRCT				0
AR3				00FF
COEFFS				1234
0100h				0055
0101h				0066

Syntax	<pre>src = src + uns(Xmem) * Ymem [, T = Xmem] src + = uns(Xmem) * Ymem [, T = Xmem]</pre>										
Operands	Xmem, Ymem:Dual data-memory operandssrc:A (accumulator A)B (accumulator B)										
Opcode	15 14 13 12 1 0 1 0	<u>11 10</u> 0 1	9 8 1 S	7 X	6 X	5 X	4 X	3 Y	2 Y	1 Y	0 Y
Execution	unsigned(Xmem) (Xmem) → T	× signed	(Ymem)	+ (si	rc) →	src					
Status Bits	Affected by FRCT Affects OVsrc	and OVN	1								
Description	This instruction multiplies an unsigned data-memory value <i>Xmem</i> by a signed data-memory value <i>Ymem</i> , adds the product to <i>src</i> , and stores the result in <i>src</i> . The 16-bit unsigned value <i>Xmem</i> is stored in T. T is updated with the unsigned value <i>Xmem</i> in the read phase.										
	The data address <i>Ymem</i> is fed from	-		l from	the [) bu	s. Th	ne da	ta ad	ldres	ssed by
Words	1 word										
Cycles	1 cycle										
Classes	Class 7 (see page 3-14)										
Example	A = A + uns(*A)	R4+) * *;	AR5+ , 1	C = *	AR4+						
		Before Ins	struction				_	After	Instru	uctio	n
	А	00 00	00 1000				A [00	09A0		_
	T		0008				T [876	-
	FRCT AR4		0100				R4 [010	
	AR4 AR5		0200				.R5 [010	-
	Data Memory	L	0200			,,	Ľ			010.	
	0100h		8765			01	00h [876	5
	0200h		1234			02	:00h [1234	4

Syntax	mar(Smem)															
Operands	Sme	m:	Single data-memory operand													
Opcode	15 0	14 1	13 1	12 0	11 1	10 1	9 0	8 1	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	In indirect addressing mode, the auxiliary register is modified as follows: If compatibility is on (CMPT = 1), then: If (ARx = AR0) AR(ARP) is modified ARP is unchanged Else ARx is modified $x \rightarrow ARP$ Else compatibility is off (CMPT = 0) ARx is modified ARP is unchanged															
Status Bits	Affected by CMPT Affects ARP (if CMPT = 1)															
Description	This instruction modifies the content of the selected auxiliary register (ARx) as specified by <i>Smem</i> . In compatibility mode (CMPT = 1), this instruction modifies the ARx content as well as the auxiliary register pointer (ARP) value.															
	If CN	IPT =	= 0, the auxiliary register is modified but ARP is not.													
Words	1 wo	brd														
		d 1 word when using long-offset indirect addressing or absolute addressing h an Smem.														
Cycles	1 сус	le														
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.															
Classes	Class 1 (see page 3-3) Class 2 (see page 3-5)															
Example 1	mar(*AR3	CI	MPT RP .R3	Befo	ore Ins		ion 0 0				MPT ARP AR3	Afte	er Inst	ructio 010	0

Example 2	mar(*AR0-)			
		Before Instruction		After Instruction
	CMPT	1	CMPT	1
	ARP	4	ARP	4
	AR4	0100	AR4	00FF
Example 3	mar(*AR3)			
		Before Instruction		After Instruction
	CMPT	1	CMPT	1
	ARP	0	ARP	3
	AR0	0008	AR0	0008
	AR3	0100	AR3	0100
Example 4	mar(*+AR3)			
		Before Instruction		After Instruction
	CMPT	1	CMPT	1
	ARP	0	ARP	3
	AR3	0100	AR3	0101
Example 5	mar(*AR3-)			
		Before Instruction		After Instruction
	CMPT	1	CMPT	1
	ARP	0	ARP	3

0100

AR3

AR3

00FF

Syntax	 src = src - T * Smem src - = T * Smem src = rnd(src - T * Smem) dst = src - Xmem * Ymem [, T = Xmem] dst - = Xmem * Ymem [, T = Xmem] dst = rnd(src - Xmem * Ymem) [, T = Xmem] 									
Operands	Smem:Single data-memory operandXmem, Ymem:Dual data-memory operandssrc, dst:A (accumulator A)B (accumulator B)									
Opcode	1: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Execution	1: $(src) - (Smem) \times (T) \rightarrow src$ 2: $(src) - (Xmem) \times (Ymem) \rightarrow dst$ $(Xmem) \rightarrow T$									
Status Bits	Affected by FRCT and OVM Affects OVdst									
Description	This instruction multiplies an operand by the content of T or multiplies two operands, subtracts the result from <i>src</i> unless <i>dst</i> is specified, and stores the result in <i>src</i> or <i>dst</i> . <i>Xmem</i> is loaded into T in the read phase.									
	If you use the rnd prefix, this instruction rounds the result of the multiply and subtract operation by adding 2 ¹⁵ to the result and clearing bits 15–0 of the result to 0.									
	The data addressed by <i>Xmem</i> is fed from DB and the data addressed by <i>Ymem</i> is fed from CB.									
Words	1 word									
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.									
Cycles	1 cycle									
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.									

Classes	Syntax 1: Class 3 Syntax 1: Class 3 Syntax 2: Class 7	BB (see page 3-8)	
Example 1	A = A - *AR5+	* Т	
		Before Instruction	After Instruction
	А	00 0000 1000	A FF FFB7 4000
	Т	0400	T 0400
	FRCT	Г0	FRCT 0
	AR5	0100	AR5 0101
	Data Memory		
	0100	n 1234	0100h 1234
Example 2	B = A - *AR5+	* *AR6+ , T = *AR5+	
		Before Instruction	After Instruction
	А	00 0000 1000	A 00 0000 1000
	В	00 0000 0004	B FF F9DA OFAO
	Т	0008	T 5678
	FRCT	1	FRCT 1
	AR5	0100	AR5 0101
	AR6	0200	AR6 0201
	Data Memory		
	0100h	5678	0100h 5678
	0200h	1234	0200h 1234
Example 3	A = rnd(A - *A)	R5+ * T)	
		Before Instruction	After Instruction
	А	00 0000 1000	A FF FFB7 0000
	Т	0400	T 0400
	FRCT	0	FRCT 0
	AR5	0100	AR5 0101
	Data Memory		
	0100h	1234	0100h 1234
Data

Example 4

B = rnd(A - *AR5+ * *AR6+) , T = *AR5+

	Before Instruction		
А	00 0000 1000		
В	00 0000 0004		
Т	0008		
FRCT	1		
AR5	0100		
AR6	0200		
Memory			
0100h	5678		
0200h	1234		

	1	Afte	r Instru	uction
А		00	0000	1000
В		FF	F9DA	0000
Т				5678
FRCT				1
AR5				0101
AR6				0201

0100h	5678
0200h	1234

Syntax	 B = B - Smem * hi(A) [, T = Smem] B - = Smem * hi(A) [, T = Smem] dst = src - T * hi(A) dst - = T * hi(A) dst = rnd(src - T * hi(A))
Operands	Smem:Single data-memory operandsrc, dst:A (accumulator A)B (accumulator B)
Opcode	1: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Execution	1: (B) – (Smem) × (A(32–16)) → B (Smem) → T 2: (src) – (T) × (A(32–16)) → dst
Status Bits	Affected by FRCT and OVM Affects OVdst and OVB in syntax 1
Description	This instruction multiplies the high part of accumulator A (bits 32–16) by a single data-memory operand <i>Smem</i> or by the content of T, subtracts the result from accumulator B (syntax 1) or from <i>src</i> . The result is stored in accumulator B (syntax 1) or in <i>dst</i> . T is updated with the <i>Smem</i> value in the read phase.
	If you use the rnd prefix in syntax 2, this instruction optionally rounds the result of the multiply by accumulator A and subtract operation by adding 2^{15} to the result and clearing bits 15–0 of the result to 0.
Words	1 word
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	1 cycle
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Syntax 1: Class 3A (see page 3-6) Syntax 1: Class 3B (see page 3-8) Syntax 2: Class 1 (see page 3-3)

B = B - *AR5+ * hi(A) , T = *AR5+

	Afte	r Instru	uction
А	00	1234	0000
В	FF	F9DB	FFA0
Т			5678
FRCT			0
AR5			0101

0100h	5678

Example 2

B = B - T * hi(A)

	Be	efore	e Instru	uction
А		00	1234	0000
В		00	0002	0000
Т				0444
FRCT				1

Example 3

B = rnd(B - T * hi(A))

	Befo	ore	Instr	uctio	n
А	0	0	1234	000	0
В	0	0	0002	000	0
Т				044	4
FRCT					1

	A	fte	r Instru	uction
А		00	1234	0000
В		FF	FF66	B460
Т				0444
FRCT				1

	Afte	r Instru	uction
А	00	1234	0000
В	FF	FF67	0000
Т			0444
FRCT			1

Syntax	dst = max(A, B)
Operands	dst: A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 D 1 0 0 0 1 1 0
Execution	If $(A > B)$ Then $(A) \rightarrow dst$ $0 \rightarrow C$ Else $(B) \rightarrow dst$ $1 \rightarrow C$
Status Bits	Affects C
Description	This instruction compares the content of the accumulators and stores the max- imum value in <i>dst</i> . If the maximum value is in accumulator A, the carry bit, C, is cleared to 0; otherwise, it is set to 1.
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example 1	A = max(A, B)
Example 2	Before InstructionAfter InstructionA $FFF6$ -10 B $FFCB$ -53 C1C
Example 2	A = max(A, B) Before Instruction After Instruction A 00 0000 0055 A 00 0000 1234 B 00 0000 1234 B 00 0000 1234 C 0 C 1

Syntax	dst = min(A, B)
Operands	dst: A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 D 1 0 0 0 1
Execution	If $(A < B)$ Then $(A) \rightarrow dst$ $0 \rightarrow C$ Else $(B) \rightarrow dst$ $1 \rightarrow C$
Status Bits	Affects C
Description	This instruction compares the content of the accumulators and stores the mini- mum value in <i>dst</i> . If the minimum value is in accumulator A, the carry bit, C, is cleared to 0; otherwise, it is set to 1.
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example 1	A = min(A, B)Before InstructionA fter InstructionAFFCB-53BFFF6-10C1CC0
Example 2	A = min(A, B) Before Instruction After Instruction A 00 0000 1234 A 00 0000 1234 B 00 0000 1234 B 00 0000 1234 C 0 C 1

Syntax	 dst = T * Smem dst = rnd(T * Smem) dst = Xmem * Ymem [, T = Xmem] dst = Smem * #lk [, T = Smem] dst = T * #lk
Operands	Smem:Single data-memory operandXmem, Ymem:Dual data-memory operandsdst:A (accumulator A)B (accumulator B) $-32768 \le k \le 32767$
Opcode	-32 700 ≤ ik ≤ 32 707 1: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 0 R D I A A A A A A A A
	2: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> <u>1 0 1 0 0 1 0 D X X X Y Y Y Y</u>
	3: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 0 1 1 0 0 0 1 D I A A A A A A A <u>16-bit constant</u>
	4: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> <u>1 1 1 1 0 0 0 D 0 1 1 0 0 1 1 0</u> <u>16-bit constant</u>
Execution	1: (T) × (Smem) → dst 2: (Xmem) × (Ymem) → dst (Xmem) → T 3: (Smem) × lk → dst (Smem) → T 4: (T) × lk → dst
Status Bits	Affected by FRCT and OVM Affects OVdst
Description	This instruction multiplies the content of T or a data-memory value by a data- memory value or an immediate value, and stores the result in <i>dst</i> . T is loaded with the <i>Smem</i> or <i>Xmem</i> value in the read phase.
	If you use the rnd prefix, this instruction optionally rounds the result of the multiply operation by adding 2^{15} to the result and then clearing bits 15–0 to 0.

Words	Syntaxes 1 and 2 Syntaxes 3 and 4						
	Add 1 word when with an Smem.	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.					
Cycles	Syntaxes 1 and 2 Syntaxes 3 and 4	-					
	Add 1 cycle when with an Smem.	using long-offset indirect ad	dressing	or absolute addressing			
Classes	Syntax 1: Class 3 Syntax 2: Class 7 Syntax 3: Class 6	BA (see page 3-6) BB (see page 3-8) 7 (see page 3-14) BA (see page 3-12) BB (see page 3-13) 2 (see page 3-5)					
Example 1	A = T * @13						
		Before Instruction		After Instruction			
	А	00 0000 0036	Α [00 0000 0054			
	Т	0006	т [0006			
	FRCT	1	FRCT [1			
	DP	008	DP [008			
	Data Memory						
	040Dh	0007	040Dh [0007			
Example 2	B = *AR2- * *A	R4+0% , T = *AR2-;					
		Before Instruction		After Instruction			
	В	FF FFFF FFEO	В	00 0000 0020			
	FRCT	0	FRCT	0			
	AR0	0001	AR0	0001			
	AR2	01FF	AR2	O1FE			
	AR4	0300	AR4	0301			
	Data Memory						
	01FFh	0010	01FFh	0010			
	0300h	0002	0300h	0002			
Example 3	A = T * #OFFFE	h					
		Before Instruction		After Instruction			
	A	000 0000 1234	А	FF FFFF C000			
	Т	2000	Т	2000			
	FRCT	0	FRCT	- 0			

B = rnd(T * @0)

	Before Instruction		After Instruction
В	FF FE00 0001	В	00 0626 0000
Т	1234	т [1234
FRCT	0	FRCT	0
DP	004	DP	004
Data Memory			
0200h	5678	0200h	5678

Syntax	 B = Smem * hi(A) [, T = Smem] dst = T * hi(A)
Operands	Smem:Single data-memory operanddst:A (accumulator A)B (accumulator B)
Opcode	1: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Execution	1: $(Smem) \times (A(32-16)) \rightarrow B$ $(Smem) \rightarrow T$ 2: $(T) \times (A(32-16)) \rightarrow dst$
Status Bits	Affected by FRCT and OVM Affects OVdst (OVB in syntax 1)
Description	This instruction multiplies the high part of accumulator A (bits 32–16) by a single data-memory operand <i>Smem</i> or by the content of T, and stores the result in <i>dst</i> or accumulator B. T is updated in the read phase.
Words	1 word
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	1 cycle
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Syntax 1: Class 3A (see page 3-6) Syntax 1: Class 3B (see page 3-8) Syntax 2: Class 1 (see page 3-3)
Example 1	B = *AR2 * hi(A), $T = *AR2$
	Before Instruction After Instruction
	A FF 8765 1111 A FF 8765 1111 B 00 0000 0320 B FF D743 6558
	T 1234 T 5678
	FRCT 0 FRCT 0
	AR2 0200 AR2 0200
	Data Memory
	0200h 5678 0200h 5678

B = T * hi(A)

	Befor	e Instru	uction
А	FF	8765	1111
В	00	0000	0320
Т			4567
FRCT			0

	Afte	r Instru	uction
А	FF	8765	1111
В	FF	DF4D	B2A3
Т			4567
FRCT			0

Syntax	dst = T * uns(Smem)					
Operands	Smem:Single data-memory operanddst:A (accumulator A)B (accumulator B)					
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 0 0 1 0 D I A					
Execution	unsigned(T) \times unsigned(Smem) \rightarrow dst					
Status Bits	Affected by FRCT and OVM Affects OVdst					
Description	This instruction multiplies the unsigned content of T by the unsigned content of the single data-memory operand <i>Smem</i> , and stores the result in <i>dst</i> . The multiplier acts as a signed 17×17 -bit multiplier for this instruction with the MSB of both operands cleared to 0. This instruction is particularly useful for computing multiple-precision products, such as multiplying two 32-bit numbers to yield a 64-bit product.					
Words	1 word					
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.					
Cycles	1 cycle					
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.					
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)					
Example	A = T * uns(*AR0-) After Instruction A FF 8000 0000 A 00 3F80 0000 T 4000 T 4000 FRCT 0 FRCT 0 AR0 1000 AR0 0FFF Data Memory 100h FE00 100h FE00					

Syntax	Ymen	$n = \lambda$	(mer	п												
Operands	Xmen	Xmem, Ymem: Dual data-memory operands														
Opcode	15 1	14 1	13 1	12 0	11 0	10 1	9 0	8 1	7 X	6 X	5 X	4 X	3 Y	2 Y	1 Y	0 Y
Execution	(Xme	m)	> Ym	nem												
Status Bits	None															
Description		This instruction copies the content of the data-memory location addressed by <i>Xmem</i> to the data-memory location addressed by <i>Ymem</i> .														
Words	1 wor	d														
Cycles	1 cycl	e														
Classes	Class 14 (see page 3-32)															
Example	*AR5+	+ = *	*AR3	+												
					Befo	re Ins	tructi	on					After	Instr	uctio	n
			AR	83 [80	00			A	\R3 [800	1
			AR	85			02	00			A	AR5			020	1
	Data	Mem	ory													
			020	0h			AB	CD			02	200h			123	4
			800	0h			12	34			80	000h			123	4

Syntax	data(dmad) = Smem						
Operands	Smem:Single data-memory operand $0 \le dmad \le 65535$						
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 0 0 0 1 I A						
	16-bit constant						
Execution	$(dmad) \rightarrow EAR$ If $(RC) \neq 0$ Then $(Smem) \rightarrow Dmem addressed by EAR$ $(EAR) + 1 \rightarrow EAR$ Else $(Smem) \rightarrow Dmem addressed by EAR$						
Status Bits	None						
Description	This instruction copies the content of a single data-memory operand <i>Smem</i> to a data-memory location addressed by a 16-bit immediate value <i>dmad</i> (address is in the EAB address register EAR). You can use this instruction with the single-repeat instruction to move consecutive words in data memory (using indirect addressing). The number of words to be moved is one greater than the number contained in the repeat counter at the beginning of the instruction. Once the repeat pipeline is started, the instruction becomes a single-cycle instruction.						
Words	2 words						
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.						
Cycles	2 cycles						
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.						
Classes	Class 19A (see page 3-42) Class 19B (see page 3-44)						
Example 1	data(8000h) = @10 Before Instruction After Instruction DP 004 DP 004 Data Memory 020Ah 1234 020Ah 1234 8000h ABCD 8000h 1234						

data(1000h) = *AR3-

	Before Instruction		After Instruction
AR3	01FF	AR3	01FE
Data Memory			
1000h	ABCD	1000h	1234
01FFh	1234	01FFh	1234

Syntax	 MMR = data(dmad) mmr(MMR) = data(dmad)
Operands	MMR: Memory-mapped register $0 \le dmad \le 65535$
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 0 0 1 0 I A B B B B
Execution	$\begin{array}{l} dmad \to DAR \\ If \ (RC) \ \neq \ 0 \\ Then \\ (Dmem \ addressed \ by \ DAR) \to MMR \\ (DAR) + 1 \to DAR \\ Else \\ (Dmem \ addressed \ by \ DAR) \to MMR \end{array}$
Status Bits	None
Description	This instruction copies data from a data-memory location <i>dmad</i> (address is in the DAB address register DAR) to a memory-mapped register <i>MMR</i> . The data-memory value is addressed with a 16-bit immediate value. Once the repeat pipeline is started, the instruction becomes a single-cycle instruction.
Words	2 words
Cycles	2 cycles
Classes	Class 19A (see page 3-42)
Example	BK = data(300h) Before Instruction BK ABCD BK 1234 Data Memory
	0300h 1234 0300h 1234

Syntax	prog(pmad) = Smem							
Operands	Smem:Single data-memory operand $0 \le pmad \le 65535$							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 1 0 1 I A							
Execution	$pmad \rightarrow PAR$ If (RC) $\neq 0$ Then (Smem) \rightarrow Pmem addressed by PAR (PAR) + 1 \rightarrow PAR Else (Smem) \rightarrow Pmem addressed by PAR							
Status Bits	None							
Description	This instruction copies a 16-bit single data-memory operand <i>Smem</i> to a program-memory location addressed by a 16-bit immediate value <i>pmad</i> . You can use this instruction with the repeat instruction to move consecutive words in data memory (using indirect addressing) to the contiguous program-memory space addressed by 16-bit immediate values. The source and destination blocks do not have to be entirely on-chip or off-chip. When used with repeat, this instruction becomes a single-cycle instruction, interrupts are inhibited. Once the repeat pipeline is started, the instruction becomes a single-cycle instruction becomes a single-cycle instruction.							
Words	2 words							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.							
Cycles	4 cycles							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.							
Classes	Class 20A (see page 3-46) Class 20B (see page 3-48)							

prog(0FE00h) = @0

Syntax	Smem = data(dmad)
Operands	Smem:Single data-memory operand $0 \le dmad \le 65535$
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 0 0 0 I A B B B B
Execution	$\begin{array}{l} dmad \to DAR \\ If \ (RC) \ \neq \ 0 \\ Then \\ (Dmem \ addressed \ by \ DAR) \to Smem \\ (DAR) + 1 \to \times DAR \\ Else \\ (Dmem \ addressed \ by \ DAR) \to Smem \end{array}$
Status Bits	None
Description	This instruction moves data from data memory to data memory. The source data-memory value is addressed with a 16-bit immediate operand <i>dmad</i> and is moved to <i>Smem</i> . You can use this instruction with the single repeat instruction to move consecutive words in data memory (using indirect addressing). The number of words to move is one greater than the number contained in the repeat counter at the beginning of the instruction. Once the repeat pipeline is started, the instruction becomes a single-cycle instruction.
Words	2 words
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	2 cycles
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Class 19A (see page 3-42) Class 19B (see page 3-44)
Example 1	Before Instruction After Instruction DP 004 DP 004 Data Memory 0200h ABCD 0200h 1234 0300h 1234 0300h 1234

* + AR5 = data(1000h)

	After Instruction
AR5	0200
1000h	1234
0200h	1234

Syntax	 data(<i>dmad</i>) = MMR data(<i>dmad</i>) = mmr(MMR) 					
Operands	MMR: Memory-mapped register $0 \le dmad \le 65535$					
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 0 0 1 1 I A B B B B					
Execution	$\begin{array}{l} dmad \to EAR \\ If \ (RC) \ \neq \ 0 \\ Then \\ (MMR) \to Dmem \ addressed \ by \ EAR \\ (EAR) + 1 \to EAR \\ Else \\ (MMR) \to Dmem \ addressed \ by \ EAR \end{array}$					
Status Bits	None					
Description	This instruction moves data from a memory-mapped register <i>MMR</i> to data memory. The data-memory destination is addressed with a 16-bit immediate value <i>dmad</i> . Once the repeat pipeline is started, the instruction becomes a single-cycle instruction.					
Words	2 words					
Cycles	2 cycles					
Classes	Class 19A (see page 3-42)					
Example	Before Instruction After Instruction AR7 1234 AR7 1234 Data Memory 8000h ABCD 8000h 1234					

Syntax	1: $MMRy = MMRx$ 2: $mmr(MMRy) = mmr(MMRx)$					
Operands	MMRx: AR0–AR7, SP MMRy: AR0–AR7, SP					
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 0 0 1 1 1 M M R X M M R Y					
	Register MMRX/MMRY Register MMRX/MMRY					
	AR0 0000 AR5 0101					
	AR1 0001 AR6 0110					
	AR2 0010 AR7 0111					
	AR3 0011 SP 1000					
	AR4 0100					
Execution	$(MMRx) \rightarrow MMRy$					
Status Bits	None					
Description	This instruction moves the content of memory-mapped register $MMRx$ to the memory-mapped register $MMRy$. Only nine operands are allowed: AR0–AR7 and SP. The read operation from $MMRx$ is executed in the decode phase. The write operation to $MMRy$ is executed in the access phase.					
	Note:					
	This instruction is not repeatable.					
Words	1 word					
Cycles	1 cycle					
Classes	Class 1 (see page 3-3)					
Example	AR1 = SP					
	Before InstructionAfter InstructionAR13EFFAR10200SP0200SP0200					

Syntax	Smem = prog (<i>pmad</i>)						
Operands	Smem: Single data-memory operand $0 \le pmad \le 65535$						
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 1 0 0 I A						
Execution	$pmad \rightarrow PAR$ If (RC) $\neq 0$ Then (Pmem addressed by PAR) \rightarrow Smem (PAR) + 1 \rightarrow PAR Else (Pmem addressed by PAR) \rightarrow Smem						
Status Bits	None						
Description	This instruction moves a word in program memory addressed by a 16-bit im- mediate value <i>pmad</i> to a data-memory location addressed by <i>Smem</i> . This instruction can be used with the repeat instruction to move consecutive words addressed by a 16-bit immediate program address to contiguous data- memory locations addressed by <i>Smem</i> . The source and destination blocks do not have to be entirely on-chip or off-chip. When used with repeat, this instruc- tion becomes a single-cycle instruction after the repeat pipeline starts. In addi- tion, when repeat is used with this instruction, interrupts are inhibited. Once the repeat pipeline is started, the instruction becomes a single-cycle instruc- tion.						
Words	2 words						
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.						
Cycles	3 cycles						
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.						
Classes	Class 21A (see page 3-49) Class 21B (see page 3-51)						

Syntax	dst = -src	;													
Operands	src, dst:	A (ac B (ac				,									
Opcode	15 14 1 1		12 1	11 0	10 1	9 S	8 D	7 1	6 0	5 0	4 0	3 0	2 1	1 0	0
Execution	(src) \times –	1 → ds	st												
Status Bits	Affected b Affects C	•		st											
Description	This instru B) and sto all nonzer bit is set t	ores th o valu	e re	esult	in d	st. Tl	nis ir	stru	ction	clea	rs th	e cai	rry bi	t, C,	to 0 for
	If the acc overflow I 32 bits of OVM = 0, overflow i	becaus the a <i>dst</i> is	se ti ccui ass	he 2 mula signe	s co ator.	mple If O	emer /M =	nt of = 1, -	FF 8 <i>dst</i> is	000 (s ass	0000 igne)h ex d 00	ceed 7FF	ds the	e lower FFh. If
Words	1 word														
Cycles	1 cycle														
Classes	Class 1 (s	see pa	ge :	3-3)											
Example 1	B = -A														
		A B OVA		FF	FFFI	ructic F F22	8			A E O\	\ [3 [FF E	FFF	1 ction F228 0DD8 0]
Example 2	A = -B														
		A B OVB	в [00	0000	123 000	4			A B OV			nstru 000 000	0000]]]
Example 3	A = -A	A OVA OVM				ructic	_			4 0\ 0\	/A [1 0000 1 0]

Example 4 A = -A

	After Instruction							
А		00	7fff	FFFF				
OVA				1				
OVM				1				

Syntax	nop						
Operands	None						
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 0 1 0						
Execution	None						
Status Bits	None						
Description	No operation is performed. Only the PC is incremented. This is useful to create pipeline and execution delays.						
Words	1 word						
Cycles	1 cycle						
Classes	Class 1 (see page 3-3)						
Example	nop						
	No operation is performed.						

Syntax	1: dst = src << TS 2: dst = norm (src, TS)
Operands	src, dst : A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 S D 1 0 0 0 1 1 1 1 1
Execution	$(src) \ll TS \rightarrow dst$
Status Bits	Affected by SXM and OVM Affects OVdst
Description	The signed number contained in <i>src</i> is normalized and the value is stored in <i>dst</i> . Normalizing a fixed-point number separates the number into a mantissa and an exponent by finding the magnitude of the sign-extended number.
	This instruction allows single-cycle normalization of the accumulator once the accumulator exponent instruction, which computes the exponent of a number, has executed. The shift value is defined by $T(5-0)$ and coded as a 2s-complement number. The valid shift values are -16 to 31. For the normalization, the shifter needs the shift value (in T) in the read phase; the normalization is executed in the execution phase.
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example 1	A = A << TS Before Instruction After Instruction
	A FF FFFF F001 A FF 8008 0000 T 0013 T 0013
Example 2	A = B << TS
	Before InstructionAfter InstructionAFF FFFF F001AB21 0A0A 0A0ABT0FF9TOFF9T

Syntax	 src = src Smem src = Smem dst = src #lk [<< SHFT] dst = #lk [<< SHFT] dst = src #lk << 16 dst = #lk << 16 dst = dst src [<< SHIFT] dst = src [<< SHIFT]
Operands	src, dst :A (accumulator A) B (accumulator B)Smem :Single data-memory operand $0 \le SHFT \le 15$ $-16 \le SHIFT \le 15$ $0 \le lk \le 65535$
Opcode	1:
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	0 0 0 1 1 0 1 S I A A A A A A A
	2:
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 1 1 1 0 0 S D 0 1 0 0 S H F T
	16-bit constant
	3:
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
	16-bit constant
	4:
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 0 S D 1 0 1 S H I F T
Execution	 (Smem) OR (src(15–0)) → src src(39–16) unchanged Ik << SHFT OR (src) → dst Ik << 16 OR (src) → dst (src or [dst]) OR (src) << SHIFT → dst
Status Bits	None
Description	This instruction ORs the <i>src</i> with a single data-memory operand <i>Smem</i> , a left- shifted 16-bit immediate value <i>lk</i> , <i>dst</i> , or with itself. The result is stored in <i>dst</i> , or <i>src</i> if <i>dst</i> is not specified. The values can be shifted as indicated by the instruction. For a positive (left) shift, low-order bits are cleared and high-order bits are not sign extended. For a negative (right) shift, high-order bits are not sign extended.

Words	Syntaxes 1 and 4 Syntaxes 2 and 3			
	Add 1 word when with an Smem.	using long-offset in	direct addressing	or absolute addressing
Cycles	Syntaxes 1 and 4 Syntaxes 2 and 3			
	Add 1 cycle when with an Smem.	using long-offset in	direct addressing	or absolute addressing
Classes	Syntax 1: Class 3 Syntax 1: Class 3 Syntaxes 2 and 3 Syntax 4: Class 1	B (see page 3-8) : Class 2 (see page	e 3-5)	
Example 1	A = *AR3+ A			
	A AR3 Data Memory 0100h	Before Instruction 00 00FF 1200 0100 0100	A AR3 0100h	After Instruction 00 00FF 1700 0101 1500
Example 2	B = B A << +3	3		
	·	Before Instruction		After Instruction
	А	00 0000 1200	А	00 0000 1200
	В	00 0000 1800	В	00 0000 9800

Syntax	Smem = Smem #lk Smem = #lk							
Operands	Smem: Single data-memory operand $0 \le lk \le 65535$							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 0 1 I A							
Execution	lk OR (Smem) → Smem							
Status Bits	None							
Description	This instruction ORs the single data-memory operand <i>Smem</i> with a 16-bit constant Ik , and stores the result in <i>Smem</i> . This instruction is a memory-to-memory operation.							
	Note:							
	This instruction is not repeatable.							
Words	2 words							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.							
Cycles	2 cycles							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.							
Classes	Class 18A (see page 3-41) Class 18B (see page 3-41)							
Example	*AR4+ = *AR4+ #0404h Before Instruction AR4 0100 AR4 0101 Data Memory 0100h 4444							
	0100h 4444 0100h 4444							

Syntax	poly(Smem)													
Operands	Smem : Single data-memory operand													
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 1 1 0 I A													
Execution	Round (A(32–16) \times (T) + (B)) \rightarrow A (Smem) << 16 \rightarrow B													
Status Bits	Affected by FRCT, OVM, and SXM Affects OVA													
Description	This instruction shifts the content of the single data-memory operand <i>Smem</i> 16 bits to the left and stores the result in accumulator B. In parallel, this instruction multiplies the high part of accumulator A (bits 32–16) by the content of T, adds the product to accumulator B, rounds the result of this operation, and stores the final result in accumulator A. This instruction is useful for polynomial evaluation to implement computations that take one cycle per monomial to execute.													
Words	1 word													
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.													
Cycles	1 cycle													
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.													
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)													
Example	poly(*AR3+%) Before Instruction A O0 O627 O0000 A 00 0001 0000 B 00 00000 B 00 0001 0000 B 00 2000 0000 T 5678 T 5678 AR3 0200 AR3 0201 Data Memory 2000 0200h 2000													

Syntax	Smem = pop()														
Operands	Smem: Single data-memory operand														
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 0 1 1 I A														
Execution	$(TOS) \rightarrow Smem$ $(SP) + 1 \rightarrow SP$														
Status Bits	None														
Description	This instruction moves the content of the data-memory location addressed by SP to the memory location specified by <i>Smem</i> . SP is incremented by 1.														
Words	1 word														
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.														
Cycles	1 cycle														
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.														
Classes	Class 17A (see page 3-38) Class 17B (see page 3-40)														
Example	@10 = pop()														
	Before Instruction After Instruction DP 008 DP 008 SP 0300 SP 0301 Data Memory 0300h 0092 0300h 0092 040Ah 0055 040Ah 0092														

Syntax	1: <i>MMR</i> = pop() 2: mmr (<i>MMR</i>) = pop()													
Operands	MMR: Memory-mapped register													
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 0 1 0 I A													
Execution	$(TOS) \rightarrow MMR$ $(SP) + 1 \rightarrow SP$													
Status Bits	None													
Description	This instruction moves the content of the data-memory location addressed by SP to the specified memory-mapped register <i>MMR</i> . SP is incremented by 1.													
Words	1 word													
Cycles	1 cycle													
Classes	Class 17A (see page 3-38)													
Example	AR5 = pop()													
	Before Instruction After Instruction AR5 0055 AR5 0060 SP 03F0 SP 03F1 Data Memory 03F0h 0060 03F0h 0060													

Syntax	Smem = port (PA)													
Operands	Smem: Single data-memory operand $0 \le PA \le 65535$													
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 0 0 I A													
Execution	$(PA) \rightarrow Smem$													
Status Bits	None													
Description	This instruction reads a 16-bit value from an external I/O port <i>PA</i> (16-bit immediate address) into the specified data-memory location <i>Smem</i> . The IS signal goes low to indicate an I/O access, and the IOSTRB and READY timings are the same as for an external data memory read.													
Words	2 words													
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.													
Cycles	2 cycles (dependent on the external I/O operation)													
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.													
Classes	Class 27A (see page 3-65) Class 27B (see page 3-65)													
Example	<pre>@INDAT = port(05) ;INDAT .equ 60h</pre>													
	Before Instruction After Instruction DP 000 I/O Memory 0005h 0005h 7FFA 0005h 7FFA													
	0060h 0000 0060h 7FFA													

Syntax	port(PA) = Smem												
Operands	Smem: Single data-memory operand $0 \le PA \le 65535$												
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 0 1 0 1 I A												
Execution	$(Smem) \rightarrow PA$												
Status Bits	None												
Description	This instruction writes a 16-bit value from the specified data-memory location <i>Smem</i> to an external I/O port <i>PA</i> . The \overline{IS} signal goes low to indicate an I/O access, and the \overline{IOSTRB} and READY timings are the same as for an external data memory read.												
Words	2 words												
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.												
Cycles	2 cycles (dependent on the external I/O operation)												
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.												
Classes	Class 28A (see page 3-66) Class 28B (see page 3-67)												
Example	port(7h) = @OUTDAT ; OUTDAT .equ 07h												
	Before Instruction After Instruction DP 001 DP 001 I/O Memory 0005h 0005h 7FFA Data Memory 0087h 7FFA 0087h 7FFA												
	0087h 7FFA 0087h 7FFA												

Syntax	push(Smem)															
Operands	Smem: Single data-memory operand															
Opcode	15 0	14 1	13 0	12 0	11 1	10 0	9 1	8	7 I	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	$(SP) - 1 \rightarrow SP$ (Smem) $\rightarrow TOS$															
Status Bits	None															
Description	After SP has been decremented by 1, this instruction stores the content of the memory location <i>Smem</i> in the data-memory location addressed by SP. SP is read during the decode phase; it is stored during the access phase.															
Words	1 word															
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.															
Cycles	1 cycle															
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.															
Classes	Class Class		•		-	,										
Example	push	(*AR	3+)													
				_	efore	Instr		_				_	fter l			l
			AR3 SP				800	=			AR SI				0201 7FFF	
	Data I	Memo	_				000	<u> </u>			01					1
			0200	h 🗌			07F1	7			020	0h 🗌		(07FF	
			7FFF	h 🗌			0093	2			7FF	Fh		(07FF	
Syntax	1: push (<i>MMR</i>) 2: push (<i>mmr</i> (<i>MMR</i>))															
-------------	---															
Operands	MMR: Memory-mapped register															
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 0 1 0 I A															
Execution	$(SP) - 1 \rightarrow SP$ (MMR) $\rightarrow TOS$															
Status Bits	None															
Description	After SP has been decremented by 1, this instruction stores the content of the memory-mapped register <i>MMR</i> in the data-memory location addressed by SP.															
Words	1 word															
Cycles	1 cycle															
Classes	Class 16A (see page 3-35)															
Example	push(BRC)															
	Before Instruction After Instruction BRC 1234 SP 2000 Data Memory															
	1FFFh 07FF 1FFFh 1234															

Syntax if (cond [, cond [, cond]]) [d]return

Operands

The following table lists the conditions (cond operand) for this instruction.

	Cond	Description	Condition Code	Cond	Description	Condition Code
	BIO	BIO low	0000 0011	NBIO	BIO high	0000 0010
	С	C = 1	0000 1100	NC	C = 0	0000 1000
	тс	TC = 1	0011 0000	NTC	TC = 0	0010 0000
	AEQ	(A) = 0	0100 0101	BEQ	(B) = 0	0100 1101
	ANEQ	(A) ≠ 0	0100 0100	BNEQ	(B) ≠ 0	0100 1100
	AGT	(A) > 0	0100 0110	BGT	(B) > 0	0100 1110
	AGEQ	$(A) \geq 0$	0100 0010	BGEQ	$(B) \geq 0$	0100 1010
	ALT	(A) < 0	0100 0011	BLT	(B) < 0	0100 1011
	ALEQ	$(A) \leq 0$	0100 0111	BLEQ	$(B) \leq 0$	0100 1111
	AOV	A overflow	0111 0000	BOV	B overflow	0111 1000
	ANOV	A no overflow	0110 0000	BNOV	B no overflow	0110 1000
	UNC	Unconditional	0000 0000			
Opcode	15 14 1 1	<u>13 12 11</u> 1 1 1	10 9 8 1 Z 0		5 4 3 2 C C C C	
Execution	(SP) - Else))) → PC + 1 → SP + 1 → PC				
Status Bits	None					
Description	the data-n	ditions given by nemory value fi not met, this in:	rom the TOS a	nd increm	ents the SP by	
	or one 2-v The two in	rn is delayed (s word instruction struction words ing tested.	n following thi	s instructi	on is fetched a	and executed.

This instruction tests multiple conditions before passing control to another section of the program. It can test the conditions individually or in combination with other conditions. You can combine conditions from only one group as follows:

- Group 1 You can select up to two conditions. Each of these conditions must be from a different category (category A or B); you cannot have two conditions from the same category. For example, you can test EQ and OV at the same time but you cannot test GT and NEQ at the same time. The accumulator must be the same for both conditions; you cannot test conditions for both accumulators with the same instruction. For example, you can test AGT and AOV at the same time, but you cannot test AGT and BOV at the same time.
- Group 2 You can select up to three conditions. Each of these conditions must be from a different category (category A, B, or C); you cannot have two conditions from the same category. For example, you can test TC, C, and BIO at the same time but you cannot test NTC, C, and NC at the same time.

Group 1		Group 2		
Category A	Category B	Category A	Category B	Category C
EQ	OV	тс	С	BIO
NEQ	NOV	NTC	NC	NBIO
LT				
LEQ				
GT				
GEQ				
Note:				
This instruction	n is not repeatabl	e.		

Conditions for This Instruction

Words	1 word
Cycles	5 cycles (t

5 cycles (true condition) 3 cycles (false condition) 3 cycles (delayed)

Classes Class 32 (see page 3-72)

if (AGEQ, ANOV) return; return is executed if the accumulator A ; contents are positive and the OVA bit ; is a zero

	Before Instruction		After Instruction
PC	0807	PC	2002
OVA	0	OVA	0
SP	0308	SP	0309
Data Memory			
0308h	2002	0308h	2002

Syntax	Smem = prog(A)
Operands	Smem: Single data-memory operand
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 1 1 1 0 I A
Execution	$\begin{array}{l} A \rightarrow PAR \\ If ((RC) \neq 0) \\ (Pmem \ (addressed \ by \ PAR)) \rightarrow Smem \\ (PAR) + 1 \rightarrow PAR \\ (RC) - 1 \rightarrow RC \\ \\ Else \\ (Pmem \ (addressed \ by \ PAR)) \rightarrow Smem \end{array}$
Status Bits	None
Description	This instruction transfers a word from a program-memory location specified by accumulator A to a data-memory location specified by <i>Smem</i> . Once the repeat pipeline is started, the instruction becomes a single-cycle instruction. The program-memory location is defined by Accumulator A, depending on the specific device, as follows:
	Devices with Extended Program MemoryA(15-0)A(22-0)
	C541–C546 Program Memory
Words	C541–C546 Program Memory A(15–0) A(22–0) This instruction can be used with the repeat instruction to move consecutive words (starting with the address specified in accumulator A) to a contiguous data-memory space addressed using indirect addressing. Source and
Words	$\begin{tabular}{ c c c c c } \hline C541-C546 & Program Memory \\ \hline A(15-0) & A(22-0) \\ \hline \end{tabular}$ This instruction can be used with the repeat instruction to move consecutive words (starting with the address specified in accumulator A) to a contiguous data-memory space addressed using indirect addressing. Source and destination blocks do not need to be entirely on-chip or off-chip. \end{tabular}
Words	C541–C546 Program Memory A(15–0) A(22–0) This instruction can be used with the repeat instruction to move consecutive words (starting with the address specified in accumulator A) to a contiguous data-memory space addressed using indirect addressing. Source and destination blocks do not need to be entirely on-chip or off-chip. 1 word Add 1 word when using long-offset indirect addressing or absolute addressing
	C541–C546 Program Memory A(15–0) A(22–0) This instruction can be used with the repeat instruction to move consecutive words (starting with the address specified in accumulator A) to a contiguous data-memory space addressed using indirect addressing. Source and destination blocks do not need to be entirely on-chip or off-chip. 1 word Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.

@6 = prog(A)

	Before Instruction		After Instruction
А	00 0000 0023	A	00 0000 0023
DP	004	DP	004
Program Memory			
0023h	0306	0023h	0306
Data Memory			
0206h	0075	0206h (0306

Syntax	reset	
Operands	None	
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	
Execution	These fields of PMST, ST0, and ST1 are loaded with the values shown:	
	$(IPTR) << 7 \rightarrow PC$ $0 \rightarrow OVA$ $0 \rightarrow OVB$	
	$1 \rightarrow C$ $1 \rightarrow TC$ $0 \rightarrow ARP$	
	$0 \rightarrow DP$ $1 \rightarrow SXM$ $0 \rightarrow ASM$	
	$0 \rightarrow BRAF$ $0 \rightarrow HM$ $1 \rightarrow XF$	
	$0 \rightarrow C16$ $0 \rightarrow FRCT$ $0 \rightarrow CMPT$	
	$0 \rightarrow CPL$ $1 \rightarrow INTM$ $0 \rightarrow IFR$	
	$0 \rightarrow \text{OVM}$	
Status Bits	The status bits affected are listed in the execution section.	
Description	This instruction performs a nonmaskable software reset that can be used at any time to put the $C54x^{TM}$ DSP into a known state. When the reset instruction is executed, the operations listed in the execution section occur. The MP/MC pin is not sampled during this software reset. The initialization of IPTR and the peripheral registers is different from the initialization using \overline{RS} . This instruction is not affected by INTM; however, it sets INTM to 1 to disable interrupts.	
	This instruction is not repeatable.	
Words	1 word	
Cycles	3 cycles	
Classes	Class 35 (see page 3-74)	
Example	reset	
	Before InstructionAfter InstructionPC0025PC0080INTM0INTM1IPTR1IPTR1	

Syntax	[d]return
Operands	None
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 1 Z 0
Execution	$(TOS) \rightarrow PC$ $(SP) + 1 \rightarrow SP$
Status Bits	None
Description	This instruction replaces the value in the PC with the 16-bit value from the TOS. The SP is incremented by 1. If the return is delayed (specified by the d prefix), the two 1-word instructions or one 2-word instruction following this instruction is fetched and executed. Note: This instruction is not repeatable.
Words	1 word
Cycles	5 cycles 3 cycles (delayed)
Classes	Class 32 (see page 3-72)
Example	return Before Instruction After Instruction PC 2112 PC 1000 SP 0300 SP 0301 Data Memory 1000 0300h 1000

Enable Interrupts and Return From Interrupt

Syntax	[d]return_enable
Operands	None
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z 0 1 1 1 0 1
Execution	$(TOS) \rightarrow PC$ $(SP) + 1 \rightarrow SP$ $0 \rightarrow INTM$
Status Bits	Affects INTM
Description	This instruction replaces the value in the PC with the 16-bit value from the TOS. Execution continues from this address. The SP is incremented by 1. This instruction automatically clears the interrupt mask bit (INTM) in ST1. (Clearing this bit enables interrupts.) If the return is delayed (specified by the d prefix), the two 1-word instructions or one 2-word instruction following this instruction is fetched and executed.
Words	1 word
Cycles	5 cycles 3 cycles (delayed)
Classes	Class 32 (see page 3-72)
Example	return_enable Before Instruction After Instruction PC 01C3 PC 0110 SP 2001 SP 2002 ST1 xCxx ST1 x4xx
	2001h 0110 2001h 0110

Syntax	[d]return_fast
Operands	None
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 Z 0 1 0 0 1 1 0 1 1
Execution	$(RTN) \rightarrow PC$ $(SP) + 1 \rightarrow SP$ $0 \rightarrow INTM$
Status Bits	Affects INTM
Description	This instruction replaces the value in the PC with the 16-bit value in RTN. RTN holds the address to which the interrupt service routine should return. RTN is loaded into the PC during the return instead of reading the PC from the stack. The SP is incremented by 1. This instruction automatically clears the interrupt mask bit (INTM) in ST1. (Clearing this bit enables interrupts.) If the return is delayed (specified by the d prefix), the two 1-word instructions or one 2-word instruction following this instruction is fetched and executed. Note: You can use this instruction only if no call is performed during the interrupt service routine and no other interrupt routine is taken. This instruction is not repeatable.
Words	1 word
Cycles	3 cycles 1 cycle (delayed)
Classes	Class 33 (see page 3-73)
Example	return_fast Before Instruction PC 01c3 PC 0110 SP 2001 SP 2002 ST1 xCxx ST1 x4xx Data Memory 2001h 0110 2001h 0110

Round Accumulator

Syntax	dst = rnd (src)
Operands	src , dst: A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 S D 1 0 0 1
Execution	$(src) + 8000h \rightarrow dst$
Status Bits	Affected by OVM
Description	This instruction rounds the content of <i>src</i> (either A or B) by adding 2^{15} . The rounded value is stored in <i>dst</i> .
	Note:
	This instruction is not repeatable.
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example 1	B = rnd(A) Before Instruction A FF FFFF FFFF A FFFF FFFF B 00 0000 0001 B 00 0000 7FFF
Example 2	A = rnd(A) $Before Instruction$ $A 00 7FFF FFFF$ $A 00 7FFF FFFFF$ $OVM 1 OVM 1$

Syntax	src = src \\ CARRY		
Operands	src : A (accumulator A) B (accumulator B)		
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 S 1 0 0 1 0 0 1		
Execution	$\begin{array}{l} (C) \rightarrow src(0) \\ (src(30-0)) \rightarrow src(31-1) \\ (src(31)) \rightarrow C \\ 0 \rightarrow src(39-32) \end{array}$		
Status Bits	Affected by C Affects C		
Description	This instruction rotates each bit of <i>src</i> left 1 bit. The value of the carry bit, C, before the execution of the instruction is shifted into the LSB of <i>src</i> . Then, the MSB of <i>src</i> is shifted into C. The guard bits of <i>src</i> are cleared.		
Words	1 word		
Cycles	1 cycle		
Classes	Class 1 (see page 3-3)		
Example	$A = A \setminus CARRY$		
	Before Instruction After Instruction A 5F B000 1234 A 00 6000 2468 C 0 C 1		

Syntax	roltc(<i>src</i>)			
Operands	src: A (accumulator A) B (accumulator B)			
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 S 1 0 0 1 0 1 0			
Execution	$(TC) \rightarrow src(0)$ $(src(30-0)) \rightarrow src(31-1)$ $(src(31)) \rightarrow C$ $0 \rightarrow src(39-32)$			
Status Bits	Affects C Affected by TC			
Description	This instruction rotates each bit of <i>src</i> left 1 bit. The value of the TC bit before the execution of the instruction is shifted into the LSB of <i>src</i> . Then, the MSB of <i>src</i> is shifted into C. The guard bits of <i>src</i> are cleared.			
Words	1 word			
Cycles	1 cycle			
Classes	Class 1 (see page 3-3)			
Example	roltc(A)			
	Before Instruction After Instruction A 81 C000 5555 A 00 8000 AAAB C C TC TC			

Syntax	src = src // CARRY
Operands	src: A (accumulator A) B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 S 1 0 0 1 0
Execution	$\begin{array}{l} (C) \rightarrow \operatorname{src}(31) \\ (\operatorname{src}(31-1)) \rightarrow \operatorname{src}(30-0) \\ (\operatorname{src}(0)) \rightarrow C \\ 0 \rightarrow \operatorname{src}(39-32) \end{array}$
Status Bits	Affects C Affected by C
Description	This instruction rotates each bit of <i>src</i> right 1 bit. The value of the carry bit, C, before the execution of the instruction is shifted into the MSB of <i>src</i> . Then, the LSB of <i>src</i> is shifted into C. The guard bits of <i>src</i> are cleared.
Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example	A = A // CARRY Before Instruction After Instruction A 7F B000 1235 A 00 5800 091A C 0 C 1

Syntax	 repeat(<i>Smem</i>) repeat(#K) repeat(#k) 			
Operands	Smem:Single data-memory operand $0 \le K \le 255$ $0 \le lk \le 65535$			
Opcode	1: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 0 1 0 0 0 1 1 1 I A A A A A A A			
	2: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> <u>1 1 1 0 1 1 0 0 K K K K K K K K K</u>			
	3 : <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0			
	16-bit constant			
Execution	1: (Smem) \rightarrow RC 2: K \rightarrow RC 3: lk \rightarrow RC			
Status Bits	None			
Description	The repeat counter (RC) is loaded with the number of iterations when this instruction is executed. The number of iterations (n) is given in a 16-bit single data-memory operand <i>Smem</i> or an 8- or 16-bit constant, <i>K</i> or <i>lk</i> , respectively. The instruction following the repeat instruction is repeated $n + 1$ times. You cannot access RC while it decrements.			
	Note:			
	This instruction is not repeatable.			
Words	Syntaxes 1 and 2: 1 word Syntax 3: 2 words			
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.			
Cycles	Syntax 1: 3 cycles Syntax 2: 1 cycle Syntax 3: 2 cycles			
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.			

Classes	Syntax 1: Class 5A (Syntax 1: Class 5B (Syntax 2: Class 1 (so Syntax 3: Class 2 (so	(see page 3-11) see page 3-3)		
Example 1	repeat(@DAT127) ;	; DAT127 .EQU OFFFh		
	Be	efore Instruction		After Instruction
	RC	0	RC [000C
	DP	031	DP [031
	Data Memory			
	0FFFh	000C	0FFFh	000C
Example 2	repeat(#2) ; Repe	eat next instruction 3	times	
	В	Before Instruction	_	After Instruction
	RC	0	RC	0002
Example 3		Repeat next instructio	on 4370	
	RC	0	RC	After Instruction

Syntax	[d]blockrepeat(pmad)		
Operands	$0 \le pmad \le 65\ 535$		
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 0 0 Z 0 0 1 1 1 0 0 1 0 16-bit constant		
Execution	$1 \rightarrow BRAF$ If (delayed) then (PC) + 4 \rightarrow RSA Else (PC) + 2 \rightarrow RSA pmad \rightarrow REA		
Status Bits	Affects BRAF		
Description	This instruction repeats a block of instructions the number of times specified by the memory-mapped block-repeat counter (BRC). BRC must be loaded before the execution of this instruction. When this instruction is executed, the block-repeat start address register (RSA) is loaded with PC + 2 (or PC + 4 if you use the delayed instruction) and the block-repeat end address register (REA) is loaded with the program-memory address (<i>pmad</i>).		
	This instruction is interruptible. Single-instruction repeat loops can be included as part of block repeat blocks. To nest block repeat instructions you must ensure that:		
	 BRC, RSA, and REA are appropriately saved and restored. The block-repeat active flag (BRAF) is properly set. 		
	In a delayed block repeat (specified by the d prefix), the two 1-word instructions or the one 2-word instruction following this instruction is fetched and executed.		
	Note:		
	Block repeat can be deactivated by clearing the BRAF bit.		
	Far branch and far call instructions cannot be included in a repeat block of instructions.		
	This instruction is not repeatable.		
Words	2 words		
Cycles	4 cycles 2 cycles (delayed)		
Classes	Class 29A (see page 3-68)		

Example 1	<pre>@BRC = #99 blockrepeat(end_blockrepeat)</pre>	block - 1)		
	—	ek = Bottom of Block		After Instruction
	PC	1000	PC	
	BRC	1234	BRC	0063
	RSA		RSA	
		5678		1002
	REA	9ABC	REA	end_block - 1
Example 2	<pre>@BRC = #99 ;exect dblockrepeat(end_ AR1 = data(POINTE)</pre>			
	; initiali	ze pointer		
	; end_bloc	k ; Bottom of Block		
	Be	efore Instruction		After Instruction
	PC	1000	PC	1004

PC	1000
BRC	1234
RSA	5678
REA	9ABC

	After Instruction		
PC	1004		
BRC	0063		
RSA	1004		
REA	end_block - 1		

Repeat Next Instruction And Clear Accumulator

Syntax	repeat(#/k), dst = 0
Operands	dst: A (accumulator A) B (accumulator B) $0 \le lk \le 65535$
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 0 0 D 0 1 1 1 0 0 0 1 16-bit constant
Execution	$\begin{array}{l} 0 \rightarrow dst \\ lk \rightarrow RC \end{array}$
Status Bits	None
Description	This instruction clears dst and repeats the next instruction n + 1 times, where n is the value in the repeat counter (RC). The RC value is obtained from the 16-bit constant <i>lk</i> .
Words	2 words
Cycles	2 cycles
Classes	Class 2 (see page 3-5)
Example	repeat(#1023) , A = 0 ; Repeat the next instruction 1024 times
	Before Instruction After Instruction A 0F FE00 8000 A 00 0000 0000

0000

RC

RC

03FF

Syntax	1: $SBIT = 0$ 2: $ST(N, SBIT) = 0$		
Operands	$0 \le SBIT \le 15$ N = 0 or 1		
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 N 0 1 0 1 1 S B I T		
Execution	$0 \rightarrow STN(SBIT)$		
Status Bits	None		
Description	This instruction clears the specified bit in status register 0 or 1 to a logic 0. <i>N</i> designates the status register to modify and <i>SBIT</i> specifies the bit to be modified. The name of a field in a status register can be used as an operand instead of the <i>N</i> and <i>SBIT</i> operands (see Example1). Note: This instruction is not repeatable.		
Words	1 word		
Cycles	1 cycle		
Classes	Class 1 (see page 3-3)		
Example 1	SXM = 0 ; SXM means: n=1 and SBIT=8 After Instruction Before Instruction ST1 35CD ST1 34CD		
Example 2	st(1,8) = 0After InstructionST135CDST134CD		

Syntax	if (cond) Xmem = hi(src) << ASM
--------	---------------------------------

Operands	SIC:	A (accumulator A)
		B (accumulator B)
	Xmem:	Dual data-memory operand

The following table lists the conditions (cond operand) for this instruction.

	Cond	d	De	scrip	tion		ondit ode	ion	Co	nd	[Descr	iptio		Cond Code	
	AEQ		(A)	= 0		01	01		BE	Q	(B) = (C		1101	
	ANE	Q	(A)	≠ 0		01	00		BN	IEQ	(B) ≠	0		1100	
	AGT		(A)	> 0		01	10		BG	Τ	(B) >	0		1110	
	AGE	Q	(A)	≥ 0		00	10		BG	ΒEQ	(B) ≥	0		1010	
	ALT		(A)	< 0		00	11		BĽ	Т	(B) <	0		1011	
	ALEC	ג	(A)	≤ 0		01	11		BL	EQ	(B) ≤	0		1111	
Opcode	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Opcode	15	0	0	1	1	1	9	S	X	X	X	X	C	0	1 N	0 D
Execution Status Bits	If (cond) Then (src) << (ASM – 16) \rightarrow Xmem Else (Xmem) \rightarrow (Xmem) Affected by ASM and SXM															
Description	If the condition is true, this instruction stores <i>src</i> left-shifted by (ASM – 16). The shift value is in the memory location designated by <i>Xmem</i> . If the condition is false, the instruction reads <i>Xmem</i> and writes the value in <i>Xmem</i> back to the same address; thus, <i>Xmem</i> remains the same. Regardless of the condition, <i>Xmem</i> is always read and updated.															
Words	1 wor	d														
Cycles	1 cycle															
Classes	Class	5 15 (see	page	e 3-3	4)										

if (ALT) *AR3+0% = hi(A) << ASM

	Before Instruction		After Instruction
А	FF FE00 4321	А	FF FE00 4321
ASM	01	ASM	01
AR0	0002	AR0	0002
AR3	0202	AR3	0204
Data Memory			
0202h	0101	0202h	FC00

Syntax	saturate(src)						
Operands	src: A (accumulator A) B (accumulator B)						
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 S 1 0 0 0 0 1 1 1						
Execution	Saturate (src) \rightarrow src						
Status Bits	Affects OVsrc						
Description	Regardless of the OVM value, this instruction allows the saturation of the con- tent of <i>src</i> on 32 bits.						
Words	1 word						
Cycles	1 cycle						
Classes	Class 1 (see page 3-3)						
Example 1	saturate(B)						
	Before Instruction After Instruction B 71 2345 6789 B 00 7FFF FFFF OVB x OVB 1						
Example 2	saturate(A)						
	Before Instruction After Instruction A F8 1234 5678 A FF 8000 0000 OVA OVA						
Example 3	saturate(B)						
	Before Instruction After Instruction B 00 0012 3456 B 00 0012 3456 OVB x OVB 0						

Syntax	dst = src << C SHIFT				
Operands	src, dst A (accumulator A) B (accumulator B)				
	$-16 \leq \text{SHIFT} \leq 15$				
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 S D 0 1 1 S H I F T				
Execution	If SHIFT < 0 Then $(src((-SHIFT) - 1)) \rightarrow C$ $(src(39-0)) << SHIFT \rightarrow dst$ If SXM = 1 Then $(src(39)) \rightarrow dst(39-(39 + (SHIFT + 1)))$ Else $0 \rightarrow dst(39-(39 + (SHIFT + 1)))$ Else $(src(39 - SHIFT)) \rightarrow C$ $(src) << SHIFT \rightarrow dst$ $0 \rightarrow dst((SHIFT - 1)-0)$				
Status Bits	Affected by SXM and OVM Affects C and OVdst (or OVsrc, if dst = src)				
Description	This instruction arithmetically shifts <i>src</i> and stores the result in <i>dst</i> or <i>src</i> , if <i>dst</i> is not specified. The execution of the instruction depends on the SHIFT value:				
	If the SHIFT value is less than 0, the following occurs:				
	 src((-SHIFT) - 1) is copied into the carry bit, C. If SXM is 1, the instruction executes an arithmetic right shift and the MSB of the src is shifted into dst(39–(39 + (SHIFT + 1))). If SXM is 0, 0 is written into dst(39–(39 + (SHIFT + 1))). 				
	If the SHIFT value is greater than 0, the following occurs:				
	 src(39 – SHIFT) is copied into the carry bit, C. An arithmetic left shift is produced by the instruction. 0 is written into <i>dst</i>((SHIFT – 1)–0). 				
Words	1 word				
Cycles	1 cycle				
Classes	Class 1 (see page 3-3)				

B = A <<C -5

	Before Instruction								
А	FF 8765 0055								
В	00 4321 1234								
С	x								
SXM	1								

	After Instruction						
А	FF	8765	0055				
В	FF	FC3B	2802				
С			1				
SXM			1				

Example 2

B = B <<C +5

	Before Instruction							
В	80 AA00 1234							
С	0							
OVM	0							
SXM	0							

		Afte	r Instru	uction
В		15	4002	4680
С				1
OVM				0
SXM	Γ			0

Syntax	shiftc(<i>src</i>)						
Operands	src: A (accumulator A) B (accumulator B)						
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 S 1 0 0 1 0 1 0 0						
Execution	If (src) = 0 Then $1 \rightarrow TC$ Else If (src(31)) XOR (src(30)) = 0 Then (two significant sign bits) $0 \rightarrow TC$ (src) << 1 \rightarrow src Else (only one sign bit) $1 \rightarrow TC$						
Status Bits	Affects TC						
Description	If <i>src</i> has two significant sign bits, this instruction shifts the 32-bit <i>src</i> left by 1 bit. If there are two sign bits, the test control (TC) bit is cleared to 0; otherwise, it is set to 1.						
Words	1 word						
Cycles	1 cycle						
Classes	Class 1 (see page 3-3)						
Example	shiftc(A)Before InstructionAfter InstructionAFF FFFF F001AFF FFFF E002TCxTC0						

Syntax	dst = src <<< SHIFT					
Operands	src, dst: A (accumulator A) B (accumulator B) $-16 \le$ SHIFT ≤ 15					
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 0 S D 1 1 S H I F T					
Execution	If SHIFT < 0 Then $\operatorname{src}((-\operatorname{SHIFT}) - 1) \rightarrow C$ $\operatorname{src}(31-0) \ll \operatorname{SHIFT} \rightarrow \operatorname{dst}$ $0 \rightarrow \operatorname{dst}(39-(31 + (\operatorname{SHIFT} + 1))))$ If SHIFT = 0 Then $0 \rightarrow C$ Else $\operatorname{src}(31 - (\operatorname{SHIFT} - 1)) \rightarrow C$ $\operatorname{src}((31 - \operatorname{SHIFT}) - 0) \ll \operatorname{SHIFT} \rightarrow \operatorname{dst}$ $0 \rightarrow \operatorname{dst}((\operatorname{SHIFT} - 1) - 0)$ $0 \rightarrow \operatorname{dst}(39-32)$					
Status Bits	Affects C					
Description	This instruction logically shifts <i>src</i> and stores the result in <i>dst</i> or <i>src</i> , if <i>dst</i> is not specified. The guard bits of <i>dst</i> or <i>src</i> , if <i>dst</i> is not specified, are also cleared. The execution of the instruction depends on the SHIFT value:					
	cleared. The execution of the instruction depends on the SHIFT value:					
	 cleared. The execution of the instruction depends on the SHIFT value: If the SHIFT value is less than 0, the following occurs: 1) <i>src</i>((-SHIFT) – 1) is copied into the carry bit, C. 2) A logical right shift is produced by the instruction. 					
	 cleared. The execution of the instruction depends on the SHIFT value: If the SHIFT value is less than 0, the following occurs: 1) <i>src</i>((-SHIFT) - 1) is copied into the carry bit, C. 2) A logical right shift is produced by the instruction. 3) 0 is written into <i>dst</i>(39–(31 + (SHIFT + 1))). 					
Words	 cleared. The execution of the instruction depends on the SHIFT value: If the SHIFT value is less than 0, the following occurs: src((-SHIFT) - 1) is copied into the carry bit, C. A logical right shift is produced by the instruction. 0 is written into <i>dst</i>(39–(31 + (SHIFT + 1))). If the SHIFT value is greater than 0, the following occurs: src(31 – (SHIFT – 1)) is copied into the carry bit, C. A logical left shift is produced by the instruction. 					
Words Cycles	 cleared. The execution of the instruction depends on the SHIFT value: If the SHIFT value is less than 0, the following occurs: src((-SHIFT) - 1) is copied into the carry bit, C. A logical right shift is produced by the instruction. 0 is written into <i>dst</i>(39–(31 + (SHIFT + 1))). If the SHIFT value is greater than 0, the following occurs: src(31 - (SHIFT - 1)) is copied into the carry bit, C. A logical left shift is produced by the instruction. 0 is written into <i>dst</i>((SHIFT - 1)–0). 					

Example 1 B = A <<< -5 Before Instruction A FF 8765 0055 B FF 8000 0000 C 0 B = B <<< +5

	Before Instruction								
В	80	AA00	1234						
С			0						

	After Instruction							
А	FF	8765	0055					
В	00	043B	2802					
С			1					

	After Instruction							
В		00	4002	4680				
С	Г			1				

Syntax	sqdst(Xmem, Ymem)							
Operands	Xmem, Ymem: Dual data-memory operands							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 0 0 0 1 0 X X X Y Y Y Y							
Execution	(A(32–16)) × (A(32–16)) + (B) → B ((Xmem) – (Ymem)) << 16 → A							
Status Bits	Affected by OVM, FRCT, and SXM Affects C, OVA, and OVB							
Description	Used in repeat single mode, this instruction computes the square of the distance between two vectors. The high part of accumulator A (bits 32–16) is squared, the product is added to accumulator B, and the result is stored in accumulator B. <i>Ymem</i> is subtracted from <i>Xmem</i> , the difference is shifted 16 bits left, and the result is stored in accumulator A. The value to be squared (A(32–16)) is the value of the accumulator before the subtraction is executed by this instruction.							
Words	1 word							
Cycles	1 cycle							
Classes	Class 7 (see page 3-14)							
Example	sqdst(*AR3+,AR4+) After Instruction A FF ABCD 0000 A B 00 0000 0000 B B 00 1000 B FRCT 0 FRCT							
	AR3 0100 AR3 0101 AR4 0200 AR4 0201							
	AR4 0200 AR4 0201 Data Memory							
	0100h 0055 0100h 0055							
	0200h 00AA 0200h 00AA							

Syntax	 dst = Smem * Smem [, T = Smem] dst = square (Smem) [, T = Smem] dst = hi(A) * hi(A) dst = square (hi(A)) 								
Operands	Smem:Single data-memory operanddst:A (accumulator A)B (accumulator B)								
Opcode	1: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Execution	1: (Smem) \rightarrow T (Smem) \times (Smem) \rightarrow dst 2: (A(32–16)) \times (A(32–16)) \rightarrow dst								
Status Bits	Affected by OVM and FRCT Affects OVsrc								
Description	This instruction squares a single data-memory operand <i>Smem</i> or the high part of accumulator A (bits 32–16) and stores the result in <i>dst</i> . T is unaffected when accumulator A is used; otherwise, <i>Smem</i> is stored in T.								
Words	1 word								
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.								
Cycles	1 cycle								
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.								
Classes	Syntax 1: Class 3A (see page 3-6) Syntax 1: Class 3B (see page 3-8) Syntax 2: Class 1 (see page 3-3)								

Example 1	B = square(@30	B = square(@30)						
		Before Instruction		After Instruction				
	В	00 0000 01F4	в [00 0000 00E1				
	Т	0003	т [000F				
	FRCT	0	FRCT [0				
	DP	006	DP [006				
	Data Memory							
	031Eh	000F	031Eh [000F				
Example 2	B = square(hi	(A))						
		Before Instruction		After Instruction				

	Before Instruction							
А	00	000F	0000					
В	00	0101	0101					
FRCT			1					

	After Instruction							
А	00	000F	0000					
В	00	0000	01C2					
FRCT			1					

Syntax	 src = src + square (Smem) [, T = Smem] src += square (Smem) [, T = Smem] src = src + Smem * Smem [, T = Smem] src += Smem * Smem [, T = Smem]
Operands	Smem:Single data-memory operandsrc:A (accumulator A)B (accumulator B)
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 1 0 0 S I A
Execution	$(Smem) \rightarrow T$ $(Smem) \times (Smem) + (src) \rightarrow src$
Status Bits	Affected by OVM and FRCT Affects OVsrc
Description	This instruction stores the data-memory value <i>Smem</i> in T, then it squares <i>Smem</i> and adds the product to <i>src</i> . The result is stored in <i>src</i> .
Words	1 word
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	1 cycle
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)
Example 1	B = B + square(@30), $T = @30$
	Before Instruction After Instruction B 00 0320 0000 B 00 0320 00E1 T 0003 T 000F FRCT 0 FRCT 0 DP 006 DP 006
	031Eh 000F 031Eh 000F

A = A + square(*AR3+), T = *AR3+

	After Instruction						
А	00	0000	02D5				
Т			000F				
FRCT			0				
AR3			031F				
031Eh			000F				

Syntax	 src = src - square(Smem) [, T = Smem] src - = square(Smem) [, T = Smem] src = src - Smem * Smem [, T = Smem] src - = Smem * Smem [, T = Smem] 							
Operands	Smem:Single data-memory operandsrc:A (accumulator A)B (accumulator B)							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 1 1 0 1 S I A							
Execution	$(Smem) \rightarrow T$ $(src) - (Smem) \times (Smem) \rightarrow src$							
Status Bits	Affected by OVM and FRCT Affects OVsrc							
Description	This instruction stores the data-memory value <i>Smem</i> in T, then it squares <i>Smem</i> and subtracts the product from <i>src</i> . The result is stored in <i>src</i> .							
Words	1 word							
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.							
Cycles	1 cycle							
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.							
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)							
Example 1	A = A - square(@9), $T = @9$							
	Before Instruction After Instruction A 00 014B 5DB0 A 00 0000 0320							
	T 8765 T 1234							
	FRCT 0 FRCT 0 DP 006 DP 006							
	Data Memory							
	0309h 1234 0309h 1234							

B = B - square(*AR3), T = *AR3

	Afte	r Instru	uction
В	00	0000	0320
Т			1234
FRCT			0
AR3			0309
0309h			1234

Syntax if (cond) Xmem = BRC

Operands Xmem: Dual data-memory operand

The following table lists the conditions (cond operand) for this instruction.

					-11							
	Cond	Descripti		Condition Code		C)escr	iptio		Cond Code		
	AEQ (A) = 0 0101		BEQ	((B) = 0			1101				
	ANEQ	(A) ≠ 0	01	00	BNEC	Q (I	(B) ≠ 0			1100		
	AGT	(A) > 0	01	10	BGT	(B) >	0		1110		
	AGEQ	$(A) \geq 0$	00	10	BGE	ا) <u>د</u>	B) ≥	0		1010		
	ALT	(A) < 0	00	11	BLT	(B) <	0		1011		
	ALEQ	$(A) \leq 0$	01	11	BLEC) (I	B) ≤	0		1111		
Opcode	15 14 1 0	<u>13 12</u> 0 1	<u>11 10</u> 1 1	<u>9 8</u> 0 1	7 6 X X		4 X	3 C	2 0	1 N	0 D	
Execution	Else) → Xmen m) → Xme										
Status Bits	None											
Description	counter (E and writes	dition is tru 3RC) in <i>Xri</i> the value Regardle	<i>nem</i> . If tl in <i>Xmer</i>	he condi n back to	tion is fa the sarr	lse, th ie add	e ins ress	struct ; thus	ion r s, <i>Xn</i>	eads <i>nem</i> re	<i>Xmem</i> emains	
Words	1 word											
Cycles	1 cycle											
Classes	Class 15	(see page	3-34)									
Example	if (AGT)	*AR5- =	BRC									
	Data Memo	A	fore Instr			A AF BR 020		After II	OFF	ction FFFF 0201 4321 4321		
Syntax	1: $SBIT = 1$ 2: $ST(N, SBIT) = 1$											
-------------	--	--	--									
Operands	$0 \le SBIT \le 15$ N = 0 or 1											
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 N 1 1 0 1 1 S B I T											
Execution	$1 \rightarrow STN(SBIT)$											
Status Bits	None											
Description	This instruction sets the specified bit in status register 0 or 1 to a logic 1. <i>N</i> designates the status register to modify and <i>SBIT</i> specifies the bit to be modified. The name of a field in a status register can be used as an operand instead of the <i>N</i> and <i>SBIT</i> operands (see Example 1). Note: This instruction is not repeatable.											
Words	1 word											
Cycles	1 cycle											
Classes	Class 1 (see page 3-3)											
Example 1	SXM = 1; SXM means: N=1, SBIT=8Before InstructionAfter InstructionST134CDST135CD											
Example 2	st(1,8) = 1 Before Instruction ST1 34CD ST1 35CD											

Syntax	 Smem = T Smem = TRN Smem = #lk
Operands	Smem:Single data-memory operand $-32768 \le lk \le 32767$
Opcode	1: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 0 1 1 1 0 1 1 0 I A A A A A A A <u>16-bit constant</u>
Execution	1: (T) → Smem 2: (TRN) → Smem 3: $lk \rightarrow Smem$
Status Bits	None
Description	This instruction stores the content of T, the transition register (TRN), or a 16-bit constant <i>Ik</i> in data-memory location <i>Smem</i> .
Words	Syntaxes 1 and 2: 1 word Syntax 3: 2 words
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.
Cycles	Syntaxes 1 and 2: 1 cycle Syntax 3: 2 cycles
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.
Classes	Syntaxes 1 and 2: Class 10A (see page 3-24) Syntaxes 1 and 2: Class 10B (see page 3-25) Syntax 3: Class 12A (see page 3-28) Syntax 3: Class 12B (see page 3-29)

Example 1	@0 = FFFFh				
			Before Instruction		After Instruction
		DP	004	DP	004
	Data Memory	/			
	02	200h (0101	0200h [FFFF
Example 2	@5 = TRN				
			Before Instruction		After Instruction
		DP	004	DP	004
	٦	TRN	1234	TRN	1234
	Data Memory	/			
	02)205h	0030	0205h	1234
Example 3	*AR7- = T				
			Before Instruction		After Instruction
		Т	4210	Т	4210
	/	AR7	0321	AR7	0320
	Data Memory	/			
	03)321h	1200	0321h	4210

Syntax	1: $Smem = hi(src)$ 2: $Smem = hi(src) \iff ASM$ 3: $Xmem = hi(src) \iff SHFT$ 4: $Smem = hi(src) \iff SHIFT$
Operands	src:A (accumulator A) B (accumulator B)Smem:Single data-memory operandXmem:Dual data-memory operand $0 \le SHFT \le 15$ $-16 \le SHIFT \le 15$
Opcode	1: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> <u>1 0 0 0 0 0 1 S I A A A A A A A</u>
	2: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> <u>1 0 0 0 0 1 1 S I A A A A A A A</u>
	3: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> <u>1 0 0 1 1 0 1 S X X X X S H F T</u>
	4: <u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 0 1 1 0 1 1 1 1 1 A A A A A A A A 0 0 0 0 1 1 1 0 S 0 1 1 S H I F T
Execution	1: $(src) << (-16) \rightarrow Smem$ 2: $(src) << (ASM - 16) \rightarrow Smem$ 3: $(src) << (SHFT - 16) \rightarrow Xmem$ 4: $(src) << (SHIFT - 16) \rightarrow Smem$
Status Bits	Affected by SXM
Description	This instruction stores the high part of <i>src</i> (bits 31–16) in data-memory location <i>Smem.</i> The <i>src</i> is shifted left (as specified by ASM, SHFT, or SHIFT) and bits 31–16 of the shifted value are stored in data memory (<i>Smem</i> or <i>Xmem</i>). If SXM = 0, bit 39 of <i>src</i> is copied in the MSBs of the data-memory location. If SXM = 1, the sign-extended value with bit 39 of <i>src</i> is stored in the MSBs of the data-memory location after being right-shifted by the exceeding guard bit margin. The <i>src</i> remains unaffected.

	Notes:				
	The following syntaxes are assembled as a different syntax in certain cases.				
	Syntax 3: If SHFT = 0, the instruction opcode is assembled as syntax 1.				
	Syntax 4: If <i>SHIFT</i> = 0, the instruction opcode is assembled as syntax 1.				
	Syntax 4: If 0 < SHIFT ≤ 15 and an indirect modifier is equal to one of the Xmem modes, the instruction opcode is assembled as syntax 3.				
Words	Syntaxes 1, 2, and 3: 1 word Syntax 4: 2 words				
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.				
Cycles	Syntaxes 1, 2, and 3: 1 cycle Syntax 4: 2 cycles				
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.				
Classes	Syntaxes 1, 2, and 3: Class 10A (see page 3-24) Syntaxes 1 and 2: Class 10B (see page 3-25) Syntax 4: Class 11A (see page 3-26) Syntax 4: Class 11B (see page 3-27)				
Example 1	@10 = hi(A)				
	Before Instruction After Instruction A FF 8765 4321 A DP 004 DP 004				
	020Ah 1234 020Ah 8765				
Example 2	*AR7- = hi(B) << (-8)				
	Before Instruction After Instruction B FF 8421 1234 B FF 8421 1234 AR7 0321 AR7 0320 Data Memory Control of the second s				
	0321h ABCD 0321h FF84				

Example 3

@10 = hi(A) << (-4)

	Before Instruction		After Instruction
А	FF 8421 1234	А	FF 8421 1234
SXM	1	SXM	1
DP	004	DP	004
Data Memory			
020Ah	7FFF	020Ah	F842

Syntax	 Smem = src Smem = src << ASM Xmem = src << SHFT Smem = src << SHIFT
Operands	src:A (accumulator A) B (accumulator B)Smem:Single data-memory operandXmem:Dual data-memory operand $0 \le SHFT \le 15$ $-16 \le SHIFT \le 15$
Opcode	1:
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 0 0 0 0 0 S I A A A A A A A
	2:
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 0 1 0 S I A A A A A A A
	3:
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
	1 0 0 1 1 0 0 S X X X X S H F T
	4:
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
	0 1 1 0 1 1 1 1 I A A A A A A A
	0 0 0 0 1 1 0 S 1 0 0 S H I F T
Execution	1: $(src) \rightarrow Smem$ 2: $(src) \ll ASM \rightarrow Smem$ 3: $(src) \iff SHFT \rightarrow Xmem$ 4: $(src) \iff SHIFT \rightarrow Smem$
Status Bits	Affected by SXM
Description	This instruction stores the low part of <i>src</i> (bits 15–0) in data-memory location <i>Smem.</i> The <i>src</i> is shifted left (as specified by ASM, SHFT, or SHIFT) and bits 15–0 of the shifted value are stored in data memory (<i>Smem</i> or <i>Xmem</i>).

When the shifted value is positive, zeros are shifted into the LSBs.

	Notes:				
	The following syntaxes are assembled as a different syntax in certain cases.				
	Syntax 3: If <i>SHFT</i> = 0, the instruction opcode is assembled as syntax 1.				
	Syntax 4: If $SHIFT = 0$, the instruction opcode is assembled as syntax 1.				
	Syntax 4: If $0 < SHIFT \le 15$ and an indirect modifier is equal to one of				
	the Xmem modes, the instruction opcode is assembled as syntax 3.				
Words	Syntaxes 1, 2, and 3: 1 word Syntax 4: 2 words				
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.				
Cycles	Syntaxes 1, 2, and 3: 1 cycle Syntax 4: 2 cycles				
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.				
Classes	Syntaxes 1, 2, and 3: Class 10A (see page 3-24) Syntaxes 1, 2, and 3: Class 10B (see page 3-25) Syntax 4: Class 11A (see page 3-26) Syntax 4: Class 11B (see page 3-27)				
Example 1	@11 = A				
	Before Instruction After Instruction A FF 8765 4321 A FF 8765 4321 DP 004 DP 004 Data Memory 1234 020Bh 4321				
Example 2	*AR7- = B << (-8)				
	Before Instruction After Instruction B FF 8421 1234 B FF 8421 1234 SXM 0 SXM 0 AR7 0321 AR7 0320				
	Data Memory				
	0321h 0099 0321h 2112				

Example 3

@11 = A << 7

Syntax	1: $MMR = src$ 2: $mmr(MMR) = src$
Operands	src: A (accumulator A) B (accumulator B) MMR: Memory-mapped register
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 0 1 0 0 S I A
Execution	$(src(15-0)) \rightarrow MMR$
Status Bits	None
Description	This instruction stores the low part of <i>src</i> (bits 15–0) into the addressed memory-mapped register <i>MMR</i> . The nine MSBs of the effective address are cleared to 0 regardless of the current value of DP or of the upper nine bits of ARx. This instruction allows <i>src</i> to be stored in any memory location on data page 0 without modifying the DP field in status register ST0.
Words	1 word
Cycles	1 cycle
Classes	Class 10A (see page 3-24)
Example 1	BRC = A Before Instruction After Instruction A FF 8765 4321 A FF 8765 4321 BRC(1Ah) 1234 BRC 4321
Example 2	mmr (*AR1-) = B Before Instruction After Instruction B FF 8421 1234 B FF 8421 1234 AR1 3F17 AR1 0016 AR7(17h) 0099 AR7 1234

Syntax	1: $MMR = #lk$ 2: $mmr(MMR) = #lk$
Operands	MMR: Memory-mapped register -32 768 \leq lk \leq 32 767
Opcode	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u> 0 1 1 1 0 1 1 1 A A A A A A A
	16-bit constant
Execution	$lk \rightarrow MMR$
Status Bits	None
Description	This instruction stores a 16-bit constant <i>lk</i> into a memory-mapped register <i>MMR</i> or a memory location on data page 0 without modifying the DP field in status register ST0. The nine MSBs of the effective address are cleared to 0 regardless of the current value of DP or of the upper nine bits of ARx.
Words	2 words
Cycles	2 cycles
Classes	Class 12A (see page 3-28)
Example 1	IMR = #0FFFFh
	Before Instruction After Instruction IMR FF01 IMR FFFF
Example 2	mmr(*AR7+) = #8765h
	Before InstructionAfter InstructionAR00000AR08765AR78010AR70011

Syntax	Ymem = hi(src) [<< ASM] dst = dst_ + Xmem << 16						
Operands	src, dst:A (accumulator A) B (accumulator B)Xmem, Ymem:Dual data-memory operands If dst = A, then dst = B; if dst = B, then dst = A						
Opcode	15 14 13 12 1 1 0 0	<u>11 10 9</u> 0 0 9		7 6 X X	5 4 X X	3 2 Y Y	1 0 Y Y
Execution	(src) << (ASM - 1 (dst_) + (Xmem)						
Status Bits	Affected by OVM, SXM, and ASM Affects C and OVdst						
Description	This instruction stores <i>src</i> shifted by (ASM – 16) in data-memory location <i>Ymem</i> . In parallel, this instruction adds the content of <i>dst</i> _ to the data-memory operand <i>Xmem</i> shifted left 16 bits, and stores the result in <i>dst</i> . If <i>src</i> is equal to <i>dst</i> , the value stored in <i>Ymem</i> is the value of <i>src</i> before the execution.						
Words	1 word						
Cycles	1 cycle	1 cycle					
Classes	Class 14 (see page 3-32)						
Example	*AR3 = hi(A) B = A + *AR5+0% << 16						
	٨	Before Inst			٨	After Ins	
	AB	FF 8421			A B		2 1000
	OVM		0		OVM		0
	SXM		1		SXM		1
	ASM		1		ASM		1
	AR0		0002		AR0		0002
	AR3		0200		AR3		0200
	AR5		0300		AR5		0302
	Data Memory						
	0200h		0101		0200h		0842
	0300h		8001		0300h		8001

Syntax	 Ymem = hi(src) [<< ASM] dst = Xmem << 16 Ymem = hi(src) [<< ASM] T = Xmem
Operands	src, dst: A (accumulator A) B (accumulator B)
	Xmem, Ymem: Dual data-memory operands
Opcode	1: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
	1 1 0 0 1 0 S D X X X X Y Y Y Y
	2:
	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>
	1 1 1 0 0 1 S 0 X X X X Y Y Y Y
Execution	 (src) << (ASM - 16) → Ymem (Xmem) << 16 → dst (src) << (ASM - 16) → Ymem (Xmem) → T
Status Bits	Affected by OVM and ASM Affects C
Description	This instruction stores <i>src</i> shifted by $(ASM - 16)$ in data-memory location <i>Ymem</i> . In parallel, this instruction loads the 16-bit dual data-memory operand <i>Xmem</i> to <i>dst</i> or T. If <i>src</i> is equal to <i>dst</i> , the value stored in <i>Ymem</i> is the value of <i>src</i> before the execution.
Words	1 word
Cycles	1 cycle
Classes	Class 14 (see page 3-32)

Example 1	*AR2- = hi(B)	1.0		
	A = *AR4+ <<			
		Before Instruction		After Instruction
	A	00 0000 001C	A	FF 8001 0000
	В	FF 8421 1234	В	FF 8421 1234
	SXM	1	SXM	1
	ASM	1C	ASM	1C
	AR2	01FF	AR2	01FE
	AR4	0200	AR4	0201
	Data Memory			
	01FFh	xxxx	01FFh	F842
	0200h	8001	0200h	8001
Example 2	*AR3 = hi(A)			
	111(3) 111(11)			
	T = *AR4			
		Before Instruction		After Instruction
		Before Instruction	A	After Instruction
	T = *AR4		A T	
	T = *AR4 A	FF 8421 1234		FF 8421 1234
	T = *AR4 A T	FF 8421 1234	т	FF 8421 1234 80FF
	T = *AR4 A T ASM	FF 8421 1234 3456 1	T ASM	FF 8421 1234 80FF 1
	T = *AR4 A T ASM AR3	FF 8421 1234 3456 1 0200	T ASM AR3	FF 8421 1234 80FF 1 0200
	T = *AR4 A T ASM AR3 AR4	FF 8421 1234 3456 1 0200 0100	T ASM AR3	FF 8421 1234 80FF 1 0200 0100
	T = *AR4 A T ASM AR3 AR4 Data Memory	FF 8421 1234 3456 1 0200 0100	T ASM AR3 AR4	FF 8421 1234 80FF 1 0200 0100 0842
	T = *AR4 A T ASM AR3 AR4 Data Memory 0200h	FF 8421 1234 3456 1 0200 0100	T ASM AR3 AR4 0200h	FF 8421 1234 80FF 1 0200 0100 0842
Example 3	T = *AR4 A T ASM AR3 AR4 Data Memory 0200h	FF 8421 1234 3456 1 0200 0100	T ASM AR3 AR4 0200h	FF 8421 1234 80FF 1 0200 0100 0842

In Example 3, the load reads the source operand at the memory location pointed to by AR2 before the store writes to the same location. The store reads the source operand of accumulator A before load loads accumulator A.

Syntax	 Ymem = hi(src) [<< ASM] dst = dst + T * Xmem Ymem = hi(src) [<< ASM] dst += T * Xmem Ymem = hi(src) [<< ASM] dst = rnd(dst + T * Xmem) 													
Operands	src, dst: A (accumulator A) B (accumulator B) Xmem, Ymem: Dual data-memory operands													
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 0 R S D X X X Y Y Y Y													
Execution	$(src \ll (ASM - 16)) \rightarrow Ymem$ If (Rounding) Then Round ((Xmem) × (T) + (dst)) \rightarrow dst Else (Xmem) × (T) + (dst) \rightarrow dst													
Status Bits	Affected by OVM, SXM, ASM, and FRCT Affects C and OVdst													
Description	This instruction stores <i>src</i> shifted by (ASM – 16) in data-memory location <i>Ymem</i> . In parallel, this instruction multiplies the content of T by the data- memory operand <i>Xmem</i> , adds the value in <i>dst</i> (with or without rounding), and stores the result in <i>dst</i> . If <i>src</i> is equal to <i>dst</i> , the value stored in <i>Ymem</i> is the value of <i>src</i> before the execution of this instruction.													
	If you use the rnd prefix, this instruction rounds the result of the multiply accumulate operation by adding 2^{15} to the result and clearing the LSBs (bits 15–0) to 0.													
Words	1 word													
Cycles	1 cycle													
Classes	Class 14 (see page 3-32)													

Example 1	*AR4- = hi(A)			
	B = B + *AR	5 * Т		
		Before Instruction		After Instruction
	А	00 0011 1111	А	00 0011 1111
	В	00 0000 1111	В	00 010C 9511
	Т	0400	Т	0400
	ASM	5	ASM	5
	FRCT	0	FRCT	0
	AR4	0100	AR4	00FF
	AR5	0200	AR5	0200
	Data Memory			
	100h	1234	100h	0222
	200h	4321	200h	4321
E				
Example 2	*AR4+ = hi(A)			
	B = rnd(B +	*AR5+ * T)		
		*AR5+ * T) Before Instruction		After Instruction
			A	After Instruction
		Before Instruction		
	A	Before Instruction	А	00 0011 1111
	AB	Before Instruction	A B	00 0011 1111 00 010D 0000
	A B T	Before Instruction 00 0011 1111 00 0000 1111 0400 0400	A B T	00 0011 1111 00 010D 0000 0400
	A B T ASM	Before Instruction 00 0011 1111 00 0000 1111 0400 10	A B T ASM	00 0011 1111 00 010D 0000 0400 1C
	A B T ASM FRCT	Before Instruction 00 0011 1111 00 0000 1111 0400 1c 1c 0	A B T ASM FRCT	00 0011 1111 00 010D 0000 0400 1C 0
	A B T ASM FRCT AR4	Before Instruction 00 0011 1111 00 0000 1111 0400 1C 1C 0 0100 0	A B T ASM FRCT AR4	00 0011 1111 00 010D 0000 0400 1C 0 0101
	A B T ASM FRCT AR4 AR5	Before Instruction 00 0011 1111 00 0000 1111 0400 1C 1C 0 0100 0	A B T ASM FRCT AR4	00 0011 1111 00 010D 0000 0400 1C 0 0101
	A B T ASM FRCT AR4 AR5 Data Memory	Before Instruction 00 0011 1111 00 0000 1111 0400 10 10 0 0100 0 0200 0	A B T ASM FRCT AR4 AR5	00 0011 1111 00 010D 0000 0400 1C 0 0101 0201

Syntax	 Ymem = hi(src) [<< ASM] dst = dst - T * Xmem Ymem = hi(src) [<< ASM] dst - = T * Xmem Ymem = hi(src) [<< ASM] dst = rnd(dst - T * Xmem)
Operands	src, dst: A (accumulator A) B (accumulator B) Xmem, Ymem: Dual data-memory operands
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 1 1 R S D X X X Y Y Y Y
Execution	$(src << (ASM - 16)) \rightarrow$ Ymem If (Rounding) Then Round ((dst) - (Xmem) × (T)) \rightarrow dst Else $(dst) - (Xmem) × (T) \rightarrow$ dst
Status Bits	Affected by OVM, SXM, ASM, and FRCT Affects C and OVdst
Description	This instruction stores <i>src</i> shifted by $(ASM - 16)$ in data-memory location <i>Ymem</i> . In parallel, this instruction multiplies the content of T by the data- memory operand <i>Xmem</i> , subtracts the value from <i>dst</i> (with or without round- ing), and stores the result in <i>dst</i> . If <i>src</i> is equal to <i>dst</i> , the value stored in <i>Ymem</i> is the value of <i>src</i> before the execution of this instruction.
	If you use the rnd prefix, this instruction optionally rounds the result of this operation by adding 2 ¹⁵ to the result and clearing the LSBs (bits 15–0) to 0.
Words	1 word
Cycles	1 cycle
Classes	Class 14 (see page 3-32)

Example 1	*AR4+ = hi(A)		
	B = B - *AR5	* Т	
		Before Instruction	After Instruction
	А	00 0011 1111	A 00 0011 1111
	В	00 0000 1111	B FF FEF3 8D11
	Т	0400	T 0400
	ASM	5	ASM 5
	FRCT	0	FRCT 0
	AR4	0100	AR4 0101
	AR5	0200	AR5 0200
	Data Memory		
	0100h	1234	0100h 0222
	0200h	4321	0200h 4321
Example 2	*AR4+ = hi(A)		
Example 2	*AR4+ = hi(A) B = rnd(B -		
Example 2	B = rnd(B -	Before Instruction	After Instruction
Example 2	B = rnd(B - A	Before Instruction	A 00 0011 1111
Example 2	B = rnd(B - A B	Before Instruction 00 0011 1111 00 0000 1111	A 00 0011 1111 B FF FEF4 0000
Example 2	B = rnd(B - A B T	Before Instruction	A 00 0011 1111 B FF FEF4 0000 T 0400
Example 2	B = rnd(B - A B T ASM	Before Instruction 00 0011 1111 00 0000 1111	A 00 0011 1111 B FF FEF4 0000 T 0400 ASM 1
Example 2	B = rnd(B - A B T	Before Instruction 00 0011 1111 00 0000 1111 0400 0400	A 00 0011 1111 B FF FEF4 0000 T 0400
Example 2	B = rnd(B - A B T ASM	OO 0011 1111 00 0000 1111 00 0000 1111 01 0400 1	A 00 0011 1111 B FF FEF4 0000 T 0400 ASM 1
Example 2	B = rnd(B - A B T ASM FRCT	OO 0011 1111 00 0000 1111 00 0000 1111 00 0000 1111 1 0 0	A 00 0011 1111 B FF FEF4 0000 T 0400 ASM 1 FRCT 0
Example 2	B = rnd(B - A B T ASM FRCT AR4	OO 0011 1111 00 0000 1111 00 0000 1111 00 0000 1111 0100 0100 0100	A 00 0011 1111 B FF FEF4 0000 T 0400 ASM 1 FRCT 0 AR4 0101
Example 2	B = rnd(B - A B T ASM FRCT AR4 AR5	OO 0011 1111 00 0000 1111 00 0000 1111 00 0000 1111 0100 0100 0100	A 00 0011 1111 B FF FEF4 0000 T 0400 ASM 1 FRCT 0 AR4 0101

Syntax	Ymem = hi(src) [<< A dst = T * Xmem	SM]											
Operands		cumulator A)											
	B (accumulator B) Xmem, Ymem: Dual data-memory operands												
	Amem, rmem. Duai	data-memory	operand	15									
Opcode	15 14 13 12 11 1 1 0 0 1	10 9 8 1 S D	7 6 X X	5 4 3 X X Y	2 1 0 Y Y Y								
Execution	(src << (ASM - 16)) - (T) × (Xmem) \rightarrow dst	> Ymem											
Status Bits	Affected by OVM, SXM Affects C and OVdst	1, ASM, and F	RCT										
Description	This instruction stores <i>Ymem</i> . In parallel, this data-memory operand then the value stored in	instruction mu <i>Xmem</i> , and st	Itiplies the	ne content of T result in <i>dst</i> . If s	by the 16-bit dual src is equal to dst,								
Words	1 word												
Cycles	1 cycle												
Classes	Class 14 (see page 3-3	32)											
Example	*AR3+ = hi(A) B = T * *AR5+												
		Before Instruc	tion		After Instruction								
	А	FF 8421 1	234	А	FF 8421 1234								
	В			B	00 2000 0000								
	T ASM	4	1000	T ASM	4000								
	FRCT		00	FRCT	00								
	AR3)200	AR3	0201								
	AR5		0300	AR5	0301								
	Data Memory												
	0200h	1	1111	0200h	8421								
	0300h	4	1000	0300h	4000								

Syntax	Ymem = hi(src) [<< ASM] dst = Xmem << 16 - dst_
Operands	src, dst:A (accumulator A) B (accumulator B)Xmem, Ymem:Dual data-memory operands dst_:dst_:If $dst = A$, then $dst_{-} = B$; if $dst = B$, then $dst_{-} = A$.
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 0 0 0 1 S D X X X Y Y Y Y
Execution	$(src \ll (ASM - 16)) \rightarrow Ymem$ (Xmem) $\ll 16 - (dst_) \rightarrow dst$
Status Bits	Affected by OVM, SXM, and ASM Affects C and OVdst
Description	This instruction stores <i>src</i> shifted by (ASM $-$ 16) in data-memory location <i>Ymem</i> . In parallel, this instruction subtracts the content of <i>dst_</i> from the 16-bit dual data-memory operand <i>Xmem</i> shifted left 16 bits, and stores the result in <i>dst.</i> If <i>src</i> is equal to <i>dst</i> , then the value stored in <i>Ymem</i> is the value of <i>src</i> before the execution.
Words	1 word
Cycles	1 cycle
Classes	Class 14 (see page 3-32)
Example	*AR3- = hi(A) B = *AR5+0% << 16 - A
	Before Instruction After Instruction
	A FF 8421 0000 A FF 8421 0000
	B 00 1000 0001 B FF FBE0 0000
	ASM 01 ASM 01
	SXM 1 SXM 1
	AR0 0002 AR0 0002
	AR3 01FF AR3 01FE
	AR5 0300 AR5 0302
	Data Memory
	01FFh 1111 01FFh 0842
	0300h 8001 0300h 8001

Syntax	if (cor	nd))	(mei	<i>n</i> = 1	г											
Operands	Xmerr					-mer	nory	oper	and							
·	The following table lists the conditions (cond operand) for this instruction.															
	Condition Condition Condition Cond Description Code Cond Description Code															lition
	Cond AEQ			scrip = 0	tion		ode 01		#			escr 3) = (-	n	Code	
	ANEC	h	. ,	_ 0 ≠ 0			00				,	5) – (3) ≠			1100	
	AGT	×	. ,	> 0			10		BG			3) <i>≻</i> 3) >			1110	
	AGEO	2	. ,	≥ 0		-	10			SEQ.		3) ≥			1010	
	ALT	~		< 0		00			BL			-, - 3) <			1011	
	ALEQ	2		≤ 0		01				EQ		-, 3) ≤			1111	
									<u> </u>							
Opcode	15 1	14 0	13 0	12 1	11 1	10 1	9 0	8	7 X	6 X	5 X	4 X	3 C	2 0	1 N	0 D
Execution	Else) →	Xme m) →	em ∍ Xm	em											
Status Bits	None															
Description	memo	ory lo rites	cati the	on <i>X</i> value	<i>men</i> e in λ	n. If tl (mer	he co nbao	onditi ck to t	on is he s	fals ame	e, th addi	e ins ress;	truct thus	ion s, <i>Xı</i>	reads <i>nem</i> r	e data- <i>Xmem</i> emains dated.
Words	1 word	d														
Cycles	1 cycl	е														
Classes	Class	15 (see	page	e 3-3	4)										
Example	if (A	GT)	*AR	25- =	= Т											
	Data N	/lemc	A T ARt				FFF 432 020	F 1			A T AF	· [uction FFFF 4321 0201]]

0202h 1234

4321

0202h

Syntax	1:	src = src –			em											
	2:	src =			em <	< TS	;									
		src –	= Sr	nem	<< T	S										
	3:	dst=	src -	- Sm	em <	< 16										
		dst –														
	4:	dst =			-			<i>T</i>]								
	_	dst -= Smem [<< SHIFT] 5: src = src - Xmem << SHFT src -= Xmem << SHFT 6: dst = Xmem << 16 - Ymem << 16 7: dst = src - #lk [<< SHFT]														
	5:															
	6.															
	0. 7:															
	7: $ast = src - #IK [<< SHFT]$ dst - = #IK [<< SHFT]															
	8:	dst =		-		-										
		dst –	= #//	k << 1	6											
	9:	dst=	dst-	- src	<< 5	HIFT	Γ									
		dst –	= sre	C << \	SHIF	T										
	10:	dst =				-										
		dst –	= <i>sr</i> (C << 1	ASM											
Operands	src,	dst:				lator										
	C					lator										
	Sme			-		-mer	-	-								
		em, Yn 768 ≤				ata-m	iemo	JIYO	pera	nus						
		SHFT			101											
		≤ SH														
Opcode	1:															
Opcode		5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
) 0	0	0	1	0	0	S	I	A	A	A	A	A	A	A
	2:															
		5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			<u>13</u> 0	0	1	1	0	S	1	A	 A	A	A	2 A	A	A
	L															
	3:															
		<u>5 14</u>) 1	<u>13</u> 0	<u>12</u> 0	<u>11</u> 0	<u>10</u> 0	9 S	8 D	7	6 A	5 A	4 A	<u>3</u> A	2 A	1 A	0 A
) I	0	0	0	0	3	D	1	A	A	A	A	A	A	A
	4:															
		5 14		12		10	9	8	7	6	5	4	3		1	0
) 1	1	0	1	1	1	1		A	A	A	A	A	A	A
) 0	0	0	1	1	S	D	0	0	1	S	Н	I	F	Т

Execution

Status Bits

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
1	0	0	1	0	0	1	S	Х	Х	Х	Х	S	Н	F
6:														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
1	0	1	0	0	0	1	D	Х	Х	Х	Х	Y	Y	Y
7:														
7. 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
1	1	1	1	0	0	S	D	0	0	0	1	S	H	F
						1	6-bit (consta	nt					
8:														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
1	1	1	1	0	0	S	D	0	1	1	0	0	0	0
						1	6-bit (consta	nt					
9:		4.0	4.0		4.0			_	•	_				
15	<u>14</u> 1	<u>13</u> 1	<u>12</u> 1	<u>11</u> 0	<u>10</u> 1	9 S	8 D	7	6 0	5 1	4 S	3 H	2	1 F
L .								Ŭ						
10:														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
1	1	1	1	0	1	S	D	1	0	0	0	0	0	0
2: (s 3: (s 4: (s 5: (s 6: (X 7: (s 8: (s	rc) – rc) – rc) – (mem rc) – rc) –	(Sm (Sm (Sm (Xm n) << lk << lk <<	em) em) em) em) 16 – SHI 316	<< T << 1 << S << S ∙ (Ym FT – → ds	S → 6 → 0 HIFT HFT nem) > dst	dst ` → c → si << 1	rc	dst						
10: (d														

For instruction syntax 3, if the result of the subtraction generates a borrow, the carry bit, C, is cleared to 0; otherwise, C is not affected.

Description This instruction subtracts a 16-bit value from the content of the selected accumulator or from the 16-bit operand *Xmem* in dual data-memory addressing mode. The 16-bit value to be subtracted is one of the following:

- The content of a single data-memory operand (*Smem*)
- The content of a dual data-memory operand (*Ymem*)
- □ A 16-bit immediate operand (#*lk*)
- The shifted value in src

If a *dst* is specified, this instruction stores the result in *dst*. If no *dst* is specified, this instruction stores the result in *src*. Most of the second operands can be shifted. For a left shift:

- Low-order bits are cleared
- High-order bits are:
 - Sign extended if SXM = 1
 - Cleared if SXM = 0

For a right shift, the high-order bits are:

- Sign extended if SXM = 1
- Cleared if SXM = 0

Notes:

The following syntaxes are assembled as a different syntax in certain cases.

- Syntax 4: If dst = src and SHIFT = 0, then the instruction opcode is assembled as syntax 1.
- Syntax 4: If dst = src, $SHIFT \le 15$, and Smem indirect addressing mode is included in *Xmem*, then the instruction opcode is assembled as syntax 1.

WordsSyntaxes 1, 2, 3, 5, 6, 9, and 10: 1 word
Syntaxes 4, 7, and 8: 2 wordsAdd 1 word when using long-offset indirect addressing or absolute addressing
with an Smem.

Cycles Syntaxes 1, 2, 3, 5, 6, 9, and 10: 1 cycle Syntaxes 4, 7, and 8: 2 cycles

Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.

Classes	Syntaxes 1, 2, a Syntax 4: Class Syntax 4: Class Syntax 6: Class Syntaxes 7 and	3, and 5: Class 3A (see page and 3: Class 3B (see page 3-8 4A (see page 3-9) 4B (see page 3-10) 7 (see page 3-14) 8: Class 2 (see page 3-5) 10: Class 1 (see page 3-3)		
Example 1	A = A - *AR1 +	<< 14		
		Before Instruction		After Instruction
	А	00 0000 1200	A	FF FAC0 1200
	С	x	С	0
	SXM	1	SXM [1
	AR1	0100	AR1	0101
	Data Memory			
	0100h	1500	0100h	1500
Example 2	B = B - A <<	-8		
		Before Instruction		After Instruction
	А	00 0000 1200	А	00 0000 1200
	В	00 0000 1800	В	00 0000 17EE
	С	X	С	1
	SXM	1	SXM	1
Example 3	B = A - #1234			
		Before Instruction		After Instruction
	A	00 0000 1200	A	00 0000 1200
	В	00 0000 1800	В	FF FFCF D900
	С	x	С	0
	SXM	1	SXM	1

Syntax	src = src – src – = Sm				W									
Operands		•	cumula cumula		,									
		•	e data-		·	pera	and							
Opcode	15 14 0 0	<u>13 1</u> 0 0		10 1	9 1	8 D	7 I	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	(src) – (Sm	nem) -	- (logic	al inv	ersio	on of	- (C	→ sro	>					
Status Bits	Affected by Affects C a)										
Description	This instruction and <i>Smerr</i> extension.									-				
Words	1 word													
	Add 1 word with an Sm		using	long-	offse	et inc	lirect	addi	ressi	ngo	r abs	olute	e addr	ressing
Cycles	1 cycle													
	Add 1 cycle with an Sm		nusing	long	offse	et inc	lirect	add	ressi	ngo	r abs	olute	e addr	ressing
Classes	Class 3A (s Class 3B (s	-	-											
Example 1	A = A - @	95 − E	BORROW											
		•	Before			-							ction	
		A C	00	0000		6 0			A		F'F' F	FFF	FFFF 0	
		DP			00	4			D				008	
	Data Memor	у				_								
	(0405h			000	6			040	95h 🗌			0006	
Example 2	B = B - *	AR1+	- BOR	ROW										
		_	Befor			_			_				uction	
		В	FF	8000	000	_				3 L ~ Г	FF	8000	0000	
		C OVM				1				с L /м [1	
		AR1			040	_				₹1 [0406	
	Data Memo									_				
		0405h			000	6			04	05h [0006	

Syntax	subc(Smen	n, src)											
Operands	Smem: src:	Single data-memory operand A (accumulator A) B (accumulator B)											
Opcode	15 14 13 0 0 0		<u>1 10</u> 1 1	9 1	8 S	7 	6 A	5 A	4 A	3 A	2 A	1 A	0 A
Execution	$(src) - ((Smem) << 15) \rightarrow ALU output$ If ALU output ≥ 0 Then $((ALU output) << 1) + 1 \rightarrow src$ Else $(src) << 1 \rightarrow src$												
Status Bits	Affected by Affects C an												
Description	This instruction subtracts the 16-bit single data-memory operand <i>Smem</i> , left-shifted 15 bits, from the content of <i>src</i> . If the result is greater than 0, it is shifted 1 bit left, 1 is added to the result, and the result is stored in <i>src</i> . Otherwise, this instruction shifts the content of <i>src</i> 1 bit left and stores the result in <i>src</i> .												
	The divisor and the dividend are both assumed to be positive in this instruction. The SXM bit affects this operation in these ways:												
	—	= 1, the d = 0, any 7										esul	ts.
	The dividend, which is in <i>src</i> , must initially be positive (bit 31 must be 0) and must remain positive following the accumulator shift, which occurs in the first portion of the instruction.												
	This instruct OVM; theref executing th	ore, <i>src</i> o	loes no		,			-	,				
Words	1 word												
	Add 1 word with an Sme		ng long	-offs	et inc	lirect	add	ressi	ngo	r abs	olute	add	ressing
Cycles	1 cycle												
	Add 1 cycle with an Sme		ng long	j-offs	et inc	direct	add	ressi	ing o	r abs	olute	add	ressing

Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)						
Example 1	<pre>subc(@2,A)</pre>						
		Before Instruction		After Instruction			
	А	00 0000 0004	А	00 0000 0008			
	С	x	С	0			
	DP	006	DP	006			
	Data Memory						
	0302h	0001	0302h	0001			
Example 2	repeat(#15)						
	<pre>subc(*AR1,B)</pre>						
		Before Instruction		After Instruction			
	В	00 0000 0041	В	00 0002 0009			
	С	x	С	1			
	AR1	1000	AR1	1000			
	Data Memory						
	1000h	0007	1000h	0007			

Syntax	src = src - uns (Smem) src - = uns (Smem)					
Operands	Smem:Single data-memory operandsrc:A (accumulator A)B (accumulator B)					
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 0 1 S I A					
Execution	src – unsigned (Smem) \rightarrow src					
Status Bits	Affected by OVM Affects C and OVsrc					
Description	This instruction subtracts the content of the 16-bit single data-memory oper- and <i>Smem</i> from the content of <i>src. Smem</i> is considered a 16-bit unsigned number regardless of the value of SXM. The result is stored in <i>src</i> .					
Words	1 word					
	Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.					
Cycles	1 cycle					
	Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.					
Classes	Class 3A (see page 3-6) Class 3B (see page 3-8)					
Example	B = B - uns(*AR2-) $B = 00 0000 0002$ $B = FFFFF 0FFC$ $C = x$ $AR2 = 0100$ $AR2 = 00FF$					
	Data Memory					
	0100h F006 0100h F006					

Syntax	trap(K)								
Operands	$0 \leq K \leq 31$								
-									
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 1 0 0 1 1 0 K K K K K								
Execution	$(SP) - 1 \rightarrow SP$ (PC) + 1 \rightarrow TOS Interrupt vector specified by K \rightarrow PC								
Status Bits	None								
Description	This instruction transfers program control to the interrupt vector specified by K . This instruction allows you to use your software to execute any interrupt service routine. For a list of interrupts and their corresponding K value, see your device datasheet.								
	This instruction pushes PC + 1 onto the data-memory location addressed by SP. This enables a return instruction to retrieve the pointer to the instruction after the trap from the data-memory location addressed by SP. This instruction is not maskable and is not affected by INTM nor does it affect INTM.								
	Note:								
	This instruction is not repeatable.								
Words	1 word								
Cycles	3 cycles								
Classes	Class 35 (see page 3-74)								
Example	trap(10h)								
	Before Instruction After Instruction PC 1233 PC FFC0 SP 03FF SP 03FE								
	03FEh 9653 03FEh 1234								

Syntax	prog(A) = Smem														
Operands	Smem:	Single	e da	ta-m	emoi	гу ор	eran	d							
Opcode	15 14 13 0 1 1	12 1	11 1	10 1	9 1	8 1	7 I	6 A	5 A	4 A	3 A	2 A	1 A	0 A]
Execution	$\begin{array}{l} A \rightarrow PAR \\ If \ (RC) \ \neq \ 0 \\ Then \\ (Smem) \\ (PAR) \ + \\ (RC) \ - \ 1 \\ Else \\ (Smem) \end{array}$	$1 \rightarrow P/$ $\rightarrow RC$	AR ;			-									
Status Bits	None														
Description	This instruction transfers a word from a data-memory location specified by Smem to a program-memory location. The program-memory location is defined by accumulator A, depending on the specific device, as follows: Extended Program Memory A(15–0) A(22–0)						-								
	This instructi words (using memory spa initial value is tion blocks in with repeat, t pipeline is sta	indire ce add set wi memo nis inst arted.	ct ad Iress ith th ory do truct	ddre: sed k ne 16 o not ion b	ssing by PA LSB have econ) in (AR by sofa to b nesa	data y aut accu e ent i sing	men toma mula tirely gle-cy	nory ticall tor A on-c ycle i	to a y inc The hip o nstru	conti reme sou r off- ictior	nuou entin irce a chip. nonc	us pr g PA and c Whe	ogra R. 1 Jesti en us	am- The na- sed
Words	The content	of accu	umu	lator	A is	not a	affect	ted b	ly thi	s ins	tructi	on.			
Words	Add 1 word w with an Sme		sing	long	-offse	et ind	lirect	add	ressi	ng or	abs	olute	add	ress	ing
Cycles	5 cycles														
	Add 1 cycle w with an Sme		sing	long	-offs	et inc	lirect	add	ressi	ng oi	rabs	olute	add	ress	ing
Classes	Class 26A (s Class 26B (s		-												

Example

prog(A) = @5

	Before Instruction		After Instruction
А	00 0000 0257	А	00 0000 0257
DP	032	DP	032
Program Memory			
0257h	0306	0257h	4339
Data Memory			
1005h	4339	1005h	4339

if (cond [, cond [, cond]]) execute(n)

Operands

Syntax

n = 1 or 2

The following table lists the conditions (cond operand) for this instruction.

Cond	Description	Condition Code	Cond	Description	Condition Code
BIO	BIO low	0000 0011	NBIO	BIO high	0000 0010
С	C = 1	0000 1100	NC	C = 0	0000 1000
тс	TC = 1	0011 0000	NTC	TC = 0	0010 0000
AEQ	(A) = 0	0100 0101	BEQ	(B) = 0	0100 1101
ANEQ	(A) ≠ 0	0100 0100	BNEQ	(B) ≠ 0	0100 1100
AGT	(A) > 0	0100 0110	BGT	(B) > 0	0100 1110
AGEQ	$(A) \geq 0$	0100 0010	BGEQ	$(B) \geq 0$	0100 1010
ALT	(A) < 0	0100 0011	BLT	(B) < 0	0100 1011
ALEQ	$(A) \leq 0$	0100 0111	BLEQ	(B) ≤ 0	0100 1111
AOV	A overflow	0111 0000	BOV	B overflow	0111 1000
ANOV	A no overflow	0110 0000	BNOV	B no overflow	0110 1000
UNC	Unconditional	0000 0000			

Opcode	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1	1	1	Ν	1	С	С	С	С	С	С	С	С	ı
						Synta	x n		Орсо	de N	I						
						1			(C							
						2				1							
Execution	lf (co	nd)															
	٦	- hen															
	Ν	lext	n ins	truct	ions	are e	exec	uted									
	Else																
	E	Exec	ute n	op fo	or ne	xt n i	nstru	ictio	ns								
Status Bits	None	9															

Description The execution of this instruction depends on the value of n and the selected conditions:

- ☐ If n = 1 and the condition(s) is met, the 1-word instruction following this instruction is executed.
- If n = 2 and the condition(s) is met, the one 2-word instruction or the two 1-word instructions following this instruction are executed.
- If the condition(s) is not met, one or two nops are executed depending on the value of n.

This instruction tests multiple conditions before executing and can test the conditions individually or in combination with other conditions. You can combine conditions from only one group as follows:

- Group 1: You can select up to two conditions. Each of these conditions must be from a different category (category A or B); you cannot have two conditions from the same category. For example, you can test EQ and OV at the same time but you cannot test GT and NEQ at the same time. The accumulator must be the same for both conditions; you cannot test conditions for both accumulators with the same instruction. For example, you can test AGT and AOV at the same time, but you cannot test AGT and BOV at the same time.
- Group 2: You can select up to three conditions. Each of these conditions must be from a different category (category A, B, or C); you cannot have two conditions from the same category. For example, you can test TC, C, and BIO at the same time but you cannot test NTC, C, and NC at the same time.

Grou	ир 1	Group 2							
Category A	Category B	Category A	Category B	Category C					
EQ	OV	ТС	С	BIO					
NEQ	NOV	NTC	NC	NBIO					
LT									
LEQ									
GT									
GEQ									

Conditions for This Instruction

This instruction and the two instruction words following this instruction are uninterruptible.

N	oto	
	Ole	

The conditions tested are sampled two full cycles before this instruction is executed. Therefore, if the two 1-word instructions or one 2-word instruction modifies the conditions, there is no effect on the execution of this instruction, but if the conditions are modified during the two slots, the interrupt operation using this instruction can cause undesirable results.

This instruction is not repeatable.

Words	1 word
Cycles	1 cycle
Classes	Class 1 (see page 3-3)
Example	if (ALEQ) execute (1) mar(*AR1+) A = A + A << DAT100

	Before Instruction	After Instruction
А	FF FFFF FFFF	A FF FFFF FFFF
AR1	0032	AR1 0033

If the content of accumulator A is less than or equal to 0, AR1 is modified before the execution of the addition instruction.

Syntax	 src = src ^ Smem src ^= Smem dst = src ^ #lk [<< SHFT] dst ^= #lk [<< SHFT] dst = src ^ #lk << 16 dst ^= #lk << 16 dst = dst ^ src [<< SHIFT] dst ^= src [<< SHIFT] 			
Operands	src, dst:A (accumulator A) B (accumulator B)Smem:Single data-memory operand $0 \le SHFT \le 15$ $-16 \le SHIFT \le 15$ $0 \le lk \le 65535$			
Opcode	1:			
·	<u>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</u>			
	0 0 0 1 1 1 0 S I A A A A A A A			
	2:			
	2. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	1 1 1 1 0 0 S D 0 1 0 1 S H F T			
	16-bit constant			
	3:			
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 0 0 S D 0 1 1 0 0 1 0 1			
	16-bit constant			
	TO-DIC CONstant			
	4:			
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0			
	1 1 1 1 0 0 S D 1 1 0 S H I F T			
Execution	 (Smem) XOR (src) → src Ik << SHFT XOR (src) → dst Ik << 16 XOR (src) → dst (src) << SHIFT XOR (dst) → dst 			
Status Bits	None			
Description	This instruction executes an exclusive OR of the 16-bit single data-memory operand <i>Smem</i> (shifted as indicated in the instruction) with the content of the selected accumulator and stores the result in <i>dst</i> or <i>src</i> , as specified. For a left shift, the low-order bits are cleared and the high-order bits are not sign extended. For a right shift, the sign is not extended.			
Words	Syntaxes 1 and Syntaxes 2 and			
-----------	-----------------------------------	--	---------------------	--------------------------
	Add 1 word wher with an Smem.	n using long-offset i	indirect addressing	or absolute addressing
Cycles	Syntaxes 1 and Syntaxes 2 and			
	Add 1 cycle wher with an Smem.	n using long-offset	indirect addressing	g or absolute addressing
Classes	Syntax 1: Class Syntaxes 2 and	3A (see page 3-6) 3B (see page 3-8) 3: Class 2 (see pa 1 (see page 3-3)		
Example 1	A = *AR3+ ^ A			
		Before Instruction		After Instruction
	А	00 00FF 1200	А	00 00FF 0700
	AR3	0100	AR3	0101
	Data Memory			
	0100h	1500	0100h	1500
Example 2	B = B ^ A << -	+3		
		Before Instruction		After Instruction
	А	00 0000 1200	А	00 0000 1200
	В	00 0000 1800	В	00 0000 8800

Syntax	Smem = Smem ^ #lk Smem ^= #lk							
Operands	Smem: Single data-memory operand $0 \le lk \le 65535$							
Opcode	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 1 0 1 0 1 0 I A							
Execution	Ik XOR (Smem) \rightarrow Smem							
Status Bits	None							
Description	This instruction executes an exclusive OR of the content of a data-memory location <i>Smem</i> with a 16-bit constant <i>lk</i> . The result is written to <i>Smem</i> . Note: This instruction is not repeatable.							
Words	2 words Add 1 word when using long-offset indirect addressing or absolute addressing with an Smem.							
Cycles	2 cycles Add 1 cycle when using long-offset indirect addressing or absolute addressing with an Smem.							
Classes	Class 18A (see page 3-41) Class 18B (see page 3-41)							
Example	*AR4- = *AR4- ^ #0404h Before Instruction After Instruction AR4 0100 AR4 00FF Data Memory 0100h 4444 0100h 4040							

Appendix A

Condition Codes

This appendix lists the conditions for conditional instructions (Table A–1) and the combination of conditions that can be tested (Table A–2). Conditional instructions can test conditions individually or in combination with other conditions. You can combine conditions from only one group as follows:

- Group1: You can select up to two conditions. Each of these conditions must be from a different category (category A or B); you cannot have two conditions from the same category. For example, you can test EQ and OV at the same time but you cannot test GT and NEQ at the same time. The accumulator must be the same for both conditions; you cannot test conditions for both accumulators with the same instruction. For example, you can test AGT and AOV at the same time, but you cannot test AGT and BOV at the same time.
- Group 2: You can select up to three conditions. Each of these conditions must be from a different category (category A, B, or C); you cannot have two conditions from the same category. For example, you can test TC, C, and BIO at the same time but you cannot test NTC, C, and NC at the same time.

Operand	Condition	Description
AEQ	A = 0	Accumulator A equal to 0
BEQ	B = 0	Accumulator B equal to 0
ANEQ	A ≠ 0	Accumulator A not equal to 0
BNEQ	B ≠ 0	Accumulator B not equal to 0
ALT	A < 0	Accumulator A less than 0
BLT	B < 0	Accumulator B less than 0
ALEQ	$A \leq 0$	Accumulator A less than or equal to 0
BLEQ	$B \leq 0$	Accumulator B less than or equal to 0
AGT	A > 0	Accumulator A greater than 0
BGT	B > 0	Accumulator B greater than 0
AGEQ	$A \ge 0$	Accumulator A greater than or equal to 0
BGEQ	$B \ge 0$	Accumulator B greater than or equal to 0
AOV†	AOV = 1	Accumulator A overflow detected
BOV†	BOV = 1	Accumulator B overflow detected
ANOV†	AOV = 0	No accumulator A overflow detected
BNOV†	BOV = 0	No accumulator B overflow detected
C‡	C = 1	ALU carry set to 1
NC [†]	C = 0	ALU carry clear to 0
тС†	TC = 1	Test/Control flag set to 1
NTC [†]	TC = 0	Test/Control flag cleared to 0
BIO [†]	BIO low	BIO signal is low
NBIO†	BIO high	BIO signal is high
UNC [†]	none	Unconditional operation

Table A-1. Conditions for Conditional Instructions

[†]Cannot be used with conditional store instructions

Gro	oup 1	Group 2					
Category A	Category B	Category A	Category B	Category C			
EQ	OV	тс	С	BIO			
NEQ	NOV	NTC	NC	NBIO			
LT							
LEQ							
GT							
GEQ							

Table A–2. Groupings of Conditions

CPU Status and Control Registers

This appendix shows the bit fields of the TMS320C54x[™] CPU status and control registers. The C54x[™] DSP has three status and control registers:

- □ Status register 0 (ST0)
- □ Status register 1 (ST1)
- Processor mode status register (PMST)

ST0 and ST1 contain the status of various conditions and modes; PMST contains memory-setup status and control information. Because these registers are memory-mapped, they can be stored into and loaded from data memory; the status of the processor can be saved and restored for subroutines and interrupt service routines (ISRs).

Table B–1 defines terms used in identifying the register fields.

Term	Definition
ARP	Auxiliary register pointer
ASM	Accumulator shift mode
AVIS	Address visibility mode
BRAF	Block repeat active flag
С	Carry
CLKOFF	CLOCKOUT off
CMPT	Compatibility mode
CPL	Compiler mode
C16	Dual 16-bit/double-precision arithmetic mode
DP	Data page pointer
DROM	Data ROM
FRCT	Fractional mode

Table B–1. Register Field Terms and Definitions

Term	Definition
НМ	Hold mode
INTM	Interrupt mode
IPTR	Interrupt vector pointer
MP/MC	Microprocessor/microcomputer
OVA	Overflow flag A
OVB	Overflow flag B
OVLY	RAM overlay
OVM	Overflow mode
SMUL	Saturation on multiplication
SST	Saturation on store
SXM	Sign-extension mode
тс	Test/control flag
XF	External flag status

Table B–1. Register Field Terms and Definitions (Continued)

Figure B–1. Processor Mode Status Register (PMST)

15–7	6	5	4	3	2	1	0
IPTR	MP/MC	OVLY	AVIS	DROM	CLKOFF [†]	SMUL [†]	SST†

[†] These bits are only supported on C54x devices with revision A or later, or on C54x devices numbered C548 or greater. You may also refer to the device-specific data sheet to determine if these bits are supported.

Figure B–2. Status Register 0 (ST0)

15–13	12	11	10	9	8–0
ARP	TC	С	OVA	OVB	DP

Figure B–3. Status Register 1 (ST1)

15	14	13	12	11	10	9	8	7	6	5	4–0
BRAF	CPL	XF	HM	INTM	0	OVM	SXM	C16	FRCT	CMPT	ASM

Appendix C Glossary

- A: See accumulator A.
- accumulator: A register that stores the results of an operation and provides an input for subsequent arithmetic logic unit (ALU) operations.
- accumulator A: One of two 40-bit registers that store the result of an operation and provide an input for subsequent arithmetic logic unit (ALU) operations.
- accumulator B: One of two 40-bit registers that store the result of an operation and provide an input for subsequent arithmetic logic unit (ALU) operations.
- accumulator shift mode bits (ASM): A 5-bit field in ST1 that specifies a shift value (from -16 to 15) that is used to shift an accumulator value when executing certain instructions, such as instructions with parallel loads and stores.
- address: The location of a word in memory.
- address visibility mode bit (AVIS): A bit in PMST that determines whether or not the internal program address appears on the device's external address bus pins.
- addressing mode: The method by which an instruction calculates the location of an object in memory.
- AG: Accumulator guard bits. An 8-bit register that contains bits 39–32 (the guard bits) of an accumulator. Both accumulator A and accumulator B have guards bits.
- **AH:** Accumulator A high word. Bits 31–16 of accumulator A.
- AL: Accumulator A low word. Bits15–0 of accumulator A.

- **ALU:** Arithmetic logic unit. The part of the CPU that performs arithmetic and logic operations.
- AR0–AR7: See auxiliary registers.
- ARAU: See auxiliary register arithmetic unit.
- ARP: See auxiliary register pointer.
- **ASM:** See accumulator shift mode bits.
- **auxiliary register arithmetic unit (ARAU):** An unsigned, 16-bit arithmetic logic unit (ALU) used to calculate indirect addresses using auxiliary registers.
- **auxiliary register file:** The area in data memory containing the eight 16-bit auxiliary registers. See also *auxiliary registers*.
- **auxiliary register pointer (ARP):** A 3-bit field in ST0 used as a pointer to the currently-selected auxiliary register, when the device is operating in 'C5x/'C2xx compatibility mode.
- **auxiliary registers (AR0–AR7):** Eight 16-bit registers that are used as pointers to an address within data space. These registers are operated on by the auxiliary register arithmetic units (ARAUs) and are selected by the auxiliary register pointer (ARP). See also *auxiliary register arithmetic unit*.
- AVIS: See address visibility mode bit.
- B: See accumulator B.

barrel shifter: A unit that rotates bits in a word.

- **BG:** Accumulator B guard bits. An 8-bit register that contains bits 39–32 (the guard bits) of accumulator B.
- BH: Accumulator B high word. Bits 31–16 of accumulator B.
- BL: Accumulator B low word. Bits 15–0 of accumulator B.
- **block-repeat active flag (BRAF):** A 1-bit flag in ST1 that indicates whether or not a block repeat is currently active.
- **block-repeat counter (BRC):** A 16-bit register that specifies the number of times a block of code is to be repeated when a block repeat is performed.

B

- **block-repeat end address register (REA):** A 16-bit memory-mapped register containing the end address of a code segment being repeated.
- **block-repeat start address register (RSA):** A 16-bit memory-mapped register containing the start address of a code segment being repeated.
- **boot:** The process of loading a program into program memory.
- **boot loader:** A built-in segment of code that transfers code from an external source to program memory at power-up.
- BRC: See block-repeat counter.
- **butterfly:** A kernel function for computing an N-point fast Fourier transform (FFT), where N is a power of 2. The combinational pattern of inputs resembles butterfly wings.

С

- **C16:** A bit in ST1 that determines whether the ALU operates in dual 16-bit mode or in double-precision mode.
- **CAB:** *C* address bus. A bus that carries addresses needed for accessing data memory.
- **carry bit (C):** A bit used by the ALU in extended arithmetic operations and accumulator shifts and rotates. The carry bit can be tested by conditional instructions.
- **CB:** *C bus.* A bus that carries operands that are read from data memory.
- **CMPT:** See *compatibility mode bit*.
- code: A set of instructions written to perform a task.
- **cold boot:** The process of loading a program into program memory at power-up.
- **compatibility mode bit (CMPT):** A bit in ST1 that determines whether or not the auxiliary register pointer (ARP) is used to select an auxiliary register in single indirect addressing mode.
- **compiler mode bit (CPL):** A bit in ST1 that determines whether the CPU uses the data page pointer or the stack pointer to generate data memory addresses in direct addressing mode.
- CPL: See compiler mode bit.

- **DAB:** *D* address bus. A bus that carries addresses needed for accessing data memory.
- **DAB address register (DAR):** A register that holds the address to be put on the DAB to address data memory for reads via the DB.
- DAGEN: See data address generation logic.
- DAR: See DAB address register.
- **DARAM:** *Dual-access RAM.* Memory that can be accessed twice in the same clock cycle.
- data address bus: A group of connections used to route data memory addresses. The C54x DSP has three 16-bit buses that carry data memory addresses: CAB, DAB, and EAB.
- data address generation logic (DAGEN): Logic circuitry that generates the addresses for data memory reads and writes. See also *program address generation logic.*
- **data bus:** A group of connections used to route data. The C54x DSP has three 16-bit data buses: CB, DB, and EB.
- **data memory:** A memory region used for storing and manipulating data. Addresses 00h–1Fh of data memory contain CPU registers. Addresses 20h–5Fh of data memory contain peripheral registers.
- data page pointer (DP): A 9-bit field in ST0 that specifies which of 512 128-word pages is currently selected for direct address generation. DP provides the nine MSBs of the data-memory address; the data memory address provides the lower seven bits. See also *direct memory address*.
- **data ROM bit (DROM):** A bit in processor mode status register (PMST) that determines whether part of the on-chip ROM is mapped into program space.
- **DB:** *D* bus. A bus that carries operands that are read from data memory.
- **direct memory address (dma, DMA):** The seven LSBs of a directaddressed instruction that are concatenated with the data page pointer (DP) to generate the entire data memory address. See also *data page pointer*.
- dma: See direct memory address.
- DP: See data page pointer.
- DROM: See data ROM bit.

Е	
	EAB address register (EAR): A register that holds the address to be put on the EAB to address data memory for reads via the EB.
	EAR: See EAB address register.
	EB: <i>E bus</i> . A bus that carries data to be written to memory.
	exponent (EXP) encoder: A hardware device that computes the exponent value of the accumulator.
F	
	fast return register (RTN): A 16-bit register used to hold the return address for the fast return from interrupt instruction.
	fractional mode bit (FRCT): A bit in status register ST1 that determines whether or not the multiplier output is left-shifted by one bit.
	FRCT: See fractional mode bit.
н	
	HM: See hold mode bit.
_	hold mode bit (HM): A bit in status register ST1 that determines whether the CPU enters the hold state in normal mode or concurrent mode.
	IFR: See interrupt flag register.
	IMR: See interrupt mask register.
	instruction register (IR): A 16-bit register used to hold a fetched instruction.
	interrupt: A condition caused by internal hardware, an event external to the CPU, or by a previously executed instruction that forces the current program to be suspended and causes the processor to execute an interrupt service routine corresponding to the interrupt.
	interrupt flag register (IFR): A 16-bit memory-mapped register used to identify and clear active interrupts.

- **interrupt mask register (IMR):** A 16-bit memory-mapped register used to enable or disable external and internal interrupts. A 1 written to any IMR bit position enables the corresponding interrupt (when INTM = 0).
- **interrupt mode bit (INTM):** A bit in status register ST1 that globally masks or enables all interrupts.
- **interrupt service routine (ISR):** A module of code that is executed in response to a hardware or software interrupt.
- **INTM:** See interrupt mode bit.
- **IPTR:** Interrupt vector pointer. A 9-bit field in the processor mode status register (PMST) that points to the 128-word page where interrupt vectors reside.
- IR: See instruction register.
- **ISR:** See interrupt service routine.
- **latency:** The delay between when a condition occurs and when the device reacts to the condition. Also, in a pipeline, the delay between the execution of two instructions that is necessary to ensure that the values used by the second instruction are correct.
- LSB: Least significant bit. The lowest order bit in a word.

memory-mapped register (MMR): The '54x processor registers mapped into page 0 of the data memory space.

- **microcomputer mode:** A mode in which the on-chip ROM is enabled and addressable.
- microprocessor mode: A mode in which the on-chip ROM is disabled.
- **micro stack:** A stack that provides temporary storage for the address of the next instruction to be fetched when the program address generation logic is used to generate sequential addresses in data space.
- **MP/MC bit:** A bit in the processor mode status register (PMST) that indicates whether the processor is operating in microprocessor or microcomputer mode. See also *microcomputer mode; microprocessor mode.*
- **MSB:** Most significant bit. The highest order bit in a word.

- **OVA:** *Overflow flag A*. A bit in status register ST0 that indicates the overflow condition of accumulator A.
- **OVB:** Overflow flag B. A bit status register ST0 that indicates the overflow condition of accumulator B.
- **overflow:** A condition in which the result of an arithmetic operation exceeds the capacity of the register used to hold that result.
- overflow flag (OVA, OVB): A flag that indicates whether or not an arithmetic operation has exceeded the capacity of the corresponding accumulator. See also *OVA* and *OVB*.
- **overflow mode bit (OVM):** A bit in status register ST1 that specifies how the ALU handles an overflow after an operation.
- OVLY: See RAM overlay bit.
- OVM: See overflow mode bit.

- **PAB:** *Program address bus.* A 16-bit bus that provides the address for program memory reads and writes.
- **PAGEN:** See program address generation logic.
- PAR: See program address register.
- **PB:** *Program bus.* A bus that carries the instruction code and immediate operands from program memory.
- PC: See program counter.
- pipeline: A method of executing instructions in an assembly-line fashion.
- **pmad:** *Program-memory address.* A 16-bit immediate program-memory address.
- **PMST:** See processor mode status register.
- **pop:** Action of removing a word from a stack.
- processor mode status register (PMST): A 16-bit status register that controls the memory configuration of the device. See also *ST0; ST1*.

- **program address generation logic (PAGEN):** Logic circuitry that generates the address for program memory reads and writes, and the address for data memory in instructions that require two data operands. This circuitry can generate one address per machine cycle. See also *data address generation logic.*
- **program address register (PAR):** A register that holds the address to be put on the PAB to address memory for reads via the PB.
- **program controller:** Logic circuitry that decodes instructions, manages the pipeline, stores status of operations, and decodes conditional operations.
- **program counter (PC):** A 16-bit register that indicates the location of the next instruction to be executed.
- program counter extension register (XPC): A register that contains the upper 7 bits of the current program memory address.
- **program data bus (PB):** A bus that carries the instruction code and immediate operands from program memory.
- program memory: A memory region used for storing and executing programs.
- **push:** Action of placing a word onto a stack.

R

- **RAM overlay bit (OVLY):** A bit in the processor mode status register PMST that determines whether or not on-chip dual-access RAM is mapped into the program/data space.
- RC: See repeat counter.
- **REA:** See block-repeat end address.
- **register:** A group of bits used for temporarily holding data or for controlling or specifying the status of a device.
- **repeat counter (RC):** A 16-bit register used to specify the number of times a single instruction is executed.
- **reset:** A means of bringing the CPU to a known state by setting the registers and control bits to predetermined values and signaling execution to start at a specified address.
- **RSA:** See block-repeat start address.
- RTN: See fast return register.

- **SARAM:** *Single-access RAM.* Memory that only can be read from or written during one clock cycle.
- shifter: A hardware unit that shifts bits in a word to the left or to the right.
- **sign-control logic:** Circuitry used to extend data bits (signed/unsigned) to match the input data format of the multiplier, ALU, and shifter.
- **sign extension:** An operation that fills the high order bits of a number with the sign bit.
- **sign-extension mode bit (SXM):** A bit in status register ST1 that enables sign extension in CPU operations.
- SINT: See software interrupt.
- **software interrupt:** An interrupt caused by the execution of a software interrupt instruction.
- SP: See stack pointer.
- **ST0:** *Status register 0.* A 16-bit register that contains C54x CPU status and control bits. See also *PMST; ST1.*
- **ST1:** *Status register 1.* A16-bit register that contains C54x CPU status and control bits. See also *PMST; ST0.*
- **stack:** A block of memory used for storing return addresses for subroutines and interrupt service routines and for storing data.
- **stack pointer (SP):** A register that always points to the last element pushed onto the stack.
- SXM: See sign-extension mode bit.

Т

TC: See test/control flag bit.

- **temporary register (T):** A 16-bit register that holds one of the operands for multiply and store instructions, the dynamic shift count for the add and subtract instructions, or the dynamic bit position for the bit test instructions.
- **test/control flag bit (TC):** A bit in status register ST0 that is affected by test operations.
- **transition register (TRN):** A 16-bit register that holds the transition decision for the path to new metrics to perform the Viterbi algorithm.

W

X

- **warm boot:** The process by which the processor transfers control to the entry address of a previously-loaded program.
- **XF:** *XF status flag.* A bit in status register ST1 that indicates the status of the XF pin.
- **XPC:** See program counter extension register.

Ζ

- **ZA:** Zero detect bit A. A signal that indicates when accumulator A contains a 0.
- **ZB:** Zero detect bit B. A signal that indicates when accumulator B contains a 0.
- zero detect: See ZA and ZB.
- **zero fill:** A method of filling the low- or high-order bits with zeros when loading a 16-bit number into a 32-bit field.

Index

Α

abdst 4-2 accumulator A C-1 accumulator A high word (AH) C-1 accumulator A low word (AL) C-1 accumulator B C-1 accumulator B guard bits (BG) C-2 accumulator B high word (BH) C-2 accumulator B low word (BL) C-2 accumulator guard bits (AG) C-1 accumulator shift mode (ASM) C-1 accumulators C-1 add instructions 2-2 to 2-3 address C-1 address visibility mode bit (AVIS) C-1 addressing mode C-1 AND instructions 2-9 application-specific instructions 2-8 AR0-AR7. See auxiliary registers ARAU. See auxiliary register arithmetic unit arithmetic logic unit (ALU) C-2 arithmetic operation instructions 2-2 add instructions 2-2 to 2-3 application-specific instructions 2-8 double (32-bit operand) instructions 2-7 multiply instructions 2-4 multiply-accumulate instructions 2-5 to 2-6 multiply-subtract instructions 2-5 to 2-6 subtract instructions 2-3 to 2-4 ARP. See auxiliary register pointer ASM. See accumulator shift mode bits assembly language instructions 4-1

auxiliary register arithmetic unit (ARAU) C-2 auxiliary register file C-2 auxiliary register pointer (ARP) C-2 auxiliary registers (AR0–AR7) C-2 AVIS. *See* address visibility mode bit

В

B. *See* accumulator B barrel shifter C-2 block-repeat active flag (BRAF) C-2 block-repeat counter (BRC) C-2 block-repeat end address register (REA) C-3 block-repeat start address register (RSA) C-3 boot C-3 boot loader C-3 branch instructions 2-12 BRC. *See* block-repeat counter butterfly C-3

С

C address bus (CAB) C-3 C bus (CB), definition C-3 C16 C-3 call instructions 2-13 carry bit (C), definition C-3 cmps 4-35 CMPT. *See* compatibility mode bit code, definition C-3 cold boot, definition C-3 compatibility mode bit (CMPT), definition C-3 compiler mode bit (CPL), definition C-3 conditional instructions conditions A-2 grouping of conditions A-3 conditional store instructions 2-18 CPL. See compiler mode bit

D address bus (DAB), definition C-4 D bus (DB), definition C-4 DAB address register (DAR), definition C-4 DAGEN. See data address generation logic DAR. See DAB address register DARAM 3-1 data address bus, definition C-4 data address generation logic (DAGEN). definition C-4 data bus, definition C-4 data memory, definition C-4 data page pointer (DP), definition C-4 data ROM bit (DROM), definition C-4 delay 4-41 direct memory address, definition C-4 double (32-bit operand) instructions 2-7 DP. See data page pointer DROM 3-1 See also data ROM bit dual-access RAM (DARAM), definition C-4

Ε

E bus (EB), definition C-5 EAB address register (EAR), definition C-5 EAR. *See* EAB address register EXP encoder, definition C-5 exponent encoder, definition C-5

F

fast return register (RTN), definition C-5 firs 4-60 fractional mode bit (FRCT), definition C-5 FRCT. *See* fractional mode bit

Η

HM. *See* hold mode bit hold mode bit (HM), definition C-5

idle 4-64 IFR. See interrupt flag register IMR. See interrupt mask register instruction cycles, assumptions 3-2 instruction register (IR), definition C-5 instruction set abbreviations 1-2 classes 3-3 to 3-74 cycle tables 3-3 to 3-74 example description 1-9 notations 1-7 opcode abbreviations 1-5 opcode symbols 1-5 operators 1-8 symbols 1-2 instruction set summarv add instructions 2-2 to 2-3 AND instructions 2-9 application-specific instructions 2-8 branch instructions 2-12 call instructions 2-13 conditional store instructions 2-18 double (32-bit operand) instructions 2-7 interrupt instructions 2-13 load instructions 2-16 to 2-17 miscellaneous load-type and store-type instructions 2-21 miscellaneous program control instructions 2-15 multiply instructions 2-4 multiply-accumulate instructions 2-5 to 2-6 multiply-subtract instructions 2-5 to 2-6 OR instructions 2-10 parallel load and multiply instructions 2-19 parallel load and store instructions 2-19 parallel store and add/subtract instructions 2-19 parallel store and multiply instructions 2-20 repeat instructions 2-14 return instructions 2-14 shift instructions 2-11 stack-manipulating instructions 2-15 store instructions 2-18

subtract instructions 2-3–2-4 test instructions 2-11 XOR instructions 2-10 int 4-66 interrupt, definition C-5 interrupt flag register (IFR), definition C-6 interrupt instructions 2-13 interrupt mask register (IMR), definition C-6 interrupt mode bit (INTM), definition C-6 interrupt service routine (ISR), definition C-6 INTM. *See* interrupt mode bit IR. *See* instruction register ISR. *See* interrupt service routine

L

latency, definition C-6 least significant bit (LSB), definition C-6 Ims 4-81 load and store operation instructions 2-16 conditional store instructions 2-18 load instructions 2-16 to 2-17 miscellaneous instructions 2-21 parallel load and multiply instructions 2-19 parallel load and store instructions 2-19 parallel store and add/subtract instructions 2-19 parallel store and multiply instructions 2-20 store instructions 2-18 load instructions 2-16 to 2-17 logical operation instructions 2-9 AND instructions 2-9 OR instructions 2-10 shift instructions 2-11 test instructions 2-11 XOR instructions 2-10

Μ

macd 4-89 macp 4-91 mar 4-94 max 4-101 memory-mapped register (MMR), definition C-6 micro stack, definition C-6 microcomputer mode, definition C-6 microprocessor mode, definition C-6 min 4-102 miscellaneous load-type and store-type instructions 2-21 miscellaneous program control instructions 2-15 MMR 3-1 most significant bit (MSB), definition C-6 MP/MC bit, definition C-6 multi-cycle instructions, transformed to single-cycle 2-22 multiply instructions 2-4 multiply-accumulate instructions 2-5 to 2-6

Ν

negation 4-121 nonrepeatable instructions 2-23 nop 4-123

0

OR instructions 2-10 OVA. See overflow flag A OVB. See overflow flag B overflow, definition C-7 overflow flag, definition C-7 overflow flag A (OVA), definition C-7 overflow flag B (OVB), definition C-7 overflow mode bit (OVM), definition C-7 OVLY. See RAM overlay bit OVM. See overflow mode bit

PAGEN. *See* program address generation logic PAR. *See* program address register parallel load and multiply instructions 2-19 parallel load and store instructions 2-19 parallel store and add/subtract instructions 2-19 parallel store and multiply instructions 2-20 PC. *See* program counter pipeline, definition C-7 pmad, definition C-7 PMST. *See* processor mode status register poly 4-128 pop, definition C-7 processor mode status register (PMST) definition C-7 figure B-2 program address bus (PAB), definition C-7 program address generation logic (PAGEN), definition C-8 program address register (PAR), definition C-8 program bus (PB), definition C-7 program control operation instructions 2-12 branch instructions 2-12 call instructions 2-13 interrupt instructions 2-13 miscellaneous instructions 2-15 repeat instructions 2-14 return instructions 2-14 stack-manipulating instructions 2-15 program controller, definition C-8 program counter (PC), definition C-8 program counter extension (XPC), definition C-8 program data bus (PB), definition C-8 program memory, definition C-8 program memory address (pmad), definition C-7 PROM 3-1 push, definition C-8

R

RAM overlay bit (OVLY), definition C-8 RC. *See* repeat counter REA. *See* block-repeat end address register, definition C-8 repeat counter (RC), definition C-8 repeat instructions 2-14 repeat operation 2-22 handling multicycle instructions 2-22 nonrepeatable instructions 2-23 reset 4-140 definition C-8 return instructions 2-14 ROM 3-1 RSA. *See* block-repeat start address RTN. *See* fast return register

S

SARAM 3-1 saturate 4-156 shift instructions 2-11 shiftc 4-159 shifter, definition C-9 sign control logic, definition C-9 sign extension, definition C-9 sign-extension mode bit (SXM), definition C-9 single-access RAM (SARAM), definition C-9 SINT. See software interrupt software interrupt, definition C-9 SP. See stack pointer sadst 4-162 ST0, definition. See status register 0 ST1, definition. See status register 1 stack, definition C-9 stack pointer (SP), definition C-9 stack-manipulating instructions 2-15 status register 0 (ST0) definition. See PMST. ST1 figure B-2 status register 1 (ST1) definition. See PMST, ST0 figure B-2 store instructions 2-18 subc 4-196 subtract instructions 2-3 to 2-4 SXM. See sign-extension mode bit

Т

TC. *See* test/control flag bit temporary register (T), definition C-9 test instructions 2-11 test/control flag bit (TC), definition C-9 transition register (TRN), definition C-9 trap 4-199

warm boot, definition C-10

Χ

XF status flag (XF), definition C-10 XOR instructions 2-10 XPC. *See* program counter extension register

zero detect. *See* zero detect bit A; zero detect bit B zero detect bit A (ZA), definition C-10 zero detect bit B (ZB), definition C-10 zero fill, definition C-10