
TMS320C62x DSP
CPU and Instruction Set

Reference Guide

Literature Number: SPRU731A
May 2010

ii

iiiRead This FirstSPRU731A

Preface

Read This First

About This Manual

The TMS320C6000™ digital signal processor (DSP) platform is part of the
TMS320™ DSP family. The TMS320C62x™ DSP generation and the
TMS320C64x™DSP generation comprise fixed-point devices in the C6000™
DSP platform, and the TMS320C67x™ DSP generation comprises floating-
point devices in the C6000 DSP platform. The C62x™ and C64x™ DSPs are
code-compatible.

This document describes the CPU architecture, pipeline, instruction set, and
interrupts of the C62x DSP.

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000™ devices and related support
tools. Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

The current documentation that describes the C6000 devices, related periph-
erals, and other technical collateral, is available in the C6000 DSP product
folder at: www.ti.com/c6000.

TMS320C6000 DSP Peripherals Overview Reference Guide (literature
number SPRU190) describes the peripherals available on the
TMS320C6000™ DSPs.

TMS320C6000 Technical Brief (literature number SPRU197) gives an
introduction to the TMS320C62x™ and TMS320C67x™DSPs, develop-
ment tools, and third-party support.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C6000™ DSPs and includes application program examples.

Trademarks

iv SPRU731ARead This First

TMS320C6000 Chip Support Library API Reference Guide (literature
number SPRU401) describes a set of application programming interfaces
(APIs) used to configure and control the on-chip peripherals.

Trademarks

Code Composer Studio, C6000, C62x, C64x, C67x, TMS320C2000,
TMS320C5000, TMS320C6000, TMS320C62x, TMS320C64x,
TMS320C67x, and VelociTI are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.

Related Documentation From Texas Instruments / Trademarks

Contents

vContentsSPRU731A

Contents

1 Introduction 1-1. .
Provides features and options of the TMS320C62x DSP. An overview of the DSP architecture
is also provided.

1.1 TMS320 DSP Family Overview 1-2. .
1.2 TMS320C6000 DSP Family Overview 1-2. .
1.3 TMS320C62x DSP Features and Options 1-4. .
1.4 TMS320C62x DSP Architecture 1-6. .

1.4.1 Central Processing Unit (CPU) 1-7. .
1.4.2 Internal Memory 1-7. .
1.4.3 Memory and Peripheral Options 1-7. .

2 CPU Data Paths and Control 2-1. .
Provides information about the data paths and control registers. The two register files and the
data cross paths are described.

2.1 Introduction 2-2. .
2.2 General-Purpose Register Files 2-2. .
2.3 Functional Units 2-5. .
2.4 Register File Cross Paths 2-6. .
2.5 Memory, Load, and Store Paths 2-6. .
2.6 Data Address Paths 2-7. .
2.7 Control Register File 2-7. .

2.7.1 Register Addresses for Accessing the Control Registers 2-8.
2.7.2 Pipeline/Timing of Control Register Accesses 2-9. .
2.7.3 Addressing Mode Register (AMR) 2-10. .
2.7.4 Control Status Register (CSR) 2-13. .
2.7.5 Interrupt Clear Register (ICR) 2-16. .
2.7.6 Interrupt Enable Register (IER) 2-17. .
2.7.7 Interrupt Flag Register (IFR) 2-18. .
2.7.8 Interrupt Return Pointer Register (IRP) 2-19. .
2.7.9 Interrupt Set Register (ISR) 2-20. .
2.7.10 Interrupt Service Table Pointer Register (ISTP) 2-21. .
2.7.11 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) 2-22.
2.7.12 E1 Phase Program Counter (PCE1) 2-22. .

Contents

vi SPRU731AContents

3 Instruction Set 3-1. .
Describes the assembly language instructions of the TMS320C62x DSP. Also described are
parallel operations, conditional operations, resource constraints, and addressing modes.

3.1 Instruction Operation and Execution Notations 3-2. .
3.2 Instruction Syntax and Opcode Notations 3-5. .
3.3 Delay Slots 3-6. .
3.4 Parallel Operations 3-7. .

3.4.1 Example Parallel Code 3-9. .
3.4.2 Branching Into the Middle of an Execute Packet 3-9. .

3.5 Conditional Operations 3-10. .
3.6 Resource Constraints 3-11. .

3.6.1 Constraints on Instructions Using the Same Functional Unit 3-11.
3.6.2 Constraints on Cross Paths (1X and 2X) 3-11. .
3.6.3 Constraints on Loads and Stores 3-12. .
3.6.4 Constraints on Long (40-Bit) Data 3-13. .
3.6.5 Constraints on Register Reads 3-14. .
3.6.6 Constraints on Register Writes 3-15. .

3.7 Addressing Modes 3-16. .
3.7.1 Linear Addressing Mode 3-16. .
3.7.2 Circular Addressing Mode 3-17. .
3.7.3 Syntax for Load/Store Address Generation 3-18. .

3.8 Instruction Compatibility 3-20. .
3.9 Instruction Descriptions 3-20. .

ABS (Absolute Value With Saturation) 3-24. .
ADD (Add Two Signed Integers Without Saturation) 3-26. .
ADDAB (Add Using Byte Addressing Mode) 3-30. .
ADDAH (Add Using Halfword Addressing Mode) 3-32. .
ADDAW (Add Using Word Addressing Mode) 3-34. .
ADDK (Add Signed 16-Bit Constant to Register) 3-36. .
ADDU (Add Two Unsigned Integers Without Saturation) 3-37. .
ADD2 (Add Two 16-Bit Integers on Upper and Lower Register Halves) 3-39.
AND (Bitwise AND) 3-41. .
B (Branch Using a Displacement) 3-43. .
B (Branch Using a Register) 3-45. .
B IRP (Branch Using an Interrupt Return Pointer) 3-47. .
B NRP (Branch Using NMI Return Pointer) 3-49. .
CLR (Clear a Bit Field) 3-51. .
CMPEQ (Compare for Equality, Signed Integers) 3-54. .
CMPGT (Compare for Greater Than, Signed Integers) 3-56. .
CMPGTU (Compare for Greater Than, Unsigned Integers) 3-59. .
CMPLT (Compare for Less Than, Signed Integers) 3-61. .
CMPLTU (Compare for Less Than, Unsigned Integers) 3-64. .
EXT (Extract and Sign-Extend a Bit Field) 3-66. .
EXTU (Extract and Zero-Extend a Bit Field) 3-69. .

Contents

viiContentsSPRU731A

IDLE (Multicycle NOP With No Termination Until Interrupt) 3-72. .
LDB(U) (Load Byte From Memory With a 5-Bit Unsigned Constant Offset

or Register Offset) 3-73. .
LDB(U) (Load Byte From Memory With a 15-Bit Unsigned Constant Offset) 3-76.
LDH(U) (Load Halfword From Memory With a 5-Bit Unsigned Constant Offset

or Register Offset) 3-78. .
LDH(U) (Load Halfword From Memory With a 15-Bit Unsigned Constant Offset) 3-81. . .
LDW (Load Word From Memory With a 5-Bit Unsigned Constant Offset

or Register Offset) 3-83. .
LDW (Load Word From Memory With a 15-Bit Unsigned Constant Offset) 3-86.
LMBD (Leftmost Bit Detection) 3-88. .
MPY (Multiply Signed 16 LSB by Signed 16 LSB) 3-90. .
MPYH (Multiply Signed 16 MSB by Signed 16 MSB) 3-92. .
MPYHL (Multiply Signed 16 MSB by Signed 16 LSB) 3-93. .
MPYHLU (Multiply Unsigned 16 MSB by Unsigned 16 LSB) 3-94.
MPYHSLU (Multiply Signed 16 MSB by Unsigned 16 LSB) 3-95. .
MPYHSU (Multiply Signed 16 MSB by Unsigned 16 MSB) 3-96. .
MPYHU (Multiply Unsigned 16 MSB by Unsigned 16 MSB) 3-97. .
MPYHULS (Multiply Unsigned 16 MSB by Signed 16 LSB) 3-98. .
MPYHUS (Multiply Unsigned 16 MSB by Signed 16 MSB) 3-99. .
MPYLH (Multiply Signed 16 LSB by Signed 16 MSB) 3-100. .
MPYLHU (Multiply Unsigned 16 LSB by Unsigned 16 MSB) 3-101.
MPYLSHU (Multiply Signed 16 LSB by Unsigned 16 MSB) 3-102.
MPYLUHS (Multiply Unsigned 16 LSB by Signed 16 MSB) 3-103.
MPYSU (Multiply Signed 16 LSB by Unsigned 16 LSB) 3-104. .
MPYU (Multiply Unsigned 16 LSB by Unsigned 16 LSB) 3-106. .
MPYUS (Multiply Unsigned 16 LSB by Signed 16 LSB) 3-107. .
MV (Move From Register to Register) 3-108. .
MVC (Move Between Control File and Register File) 3-110. .
MVK (Move Signed Constant Into Register and Sign Extend) 3-113.
MVKH and MVKLH (Move 16-Bit Constant Into Upper Bits of Register) 3-115.
MVKL (Move Signed Constant Into Register and

Sign Extend—Used with MVKH) 3-117. .
NEG (Negate) 3-119. .
NOP (No Operation) 3-120. .
NORM (Normalize Integer) 3-122. .
NOT (Bitwise NOT) 3-124. .
OR (Bitwise OR) 3-125. .
SADD (Add Two Signed Integers With Saturation) 3-127. .
SAT (Saturate a 40-Bit Integer to a 32-Bit Integer) 3-130. .
SET (Set a Bit Field) 3-132. .
SHL (Arithmetic Shift Left) 3-135. .
SHR (Arithmetic Shift Right) 3-137. .
SHRU (Logical Shift Right) 3-139. .

Contents

viii SPRU731AContents

SMPY (Multiply Signed 16 LSB by Signed 16 LSB With Left Shift
and Saturation) 3-141. .

SMPYH (Multiply Signed 16 MSB by Signed 16 MSB With Left Shift
and Saturation) 3-143. .

SMPYHL (Multiply Signed 16 MSB by Signed 16 LSB With Left Shift
and Saturation) 3-144. .

SMPYLH (Multiply Signed 16 LSB by Signed 16 MSB With Left Shift
and Saturation) 3-146. .

SSHL (Shift Left With Saturation) 3-148. .
SSUB (Subtract Two Signed Integers With Saturation) 3-150. .
STB (Store Byte to Memory With a 5-Bit Unsigned Constant Offset

or Register Offset) 3-152. .
STB (Store Byte to Memory With a 15-Bit Unsigned Constant Offset) 3-154.
STH (Store Halfword to Memory With a 5-Bit Unsigned Constant Offset

or Register Offset) 3-156. .
STH (Store Halfword to Memory With a 15-Bit Unsigned Constant Offset) 3-159.
STW (Store Word to Memory With a 5-Bit Unsigned Constant Offset

or Register Offset) 3-161. .
STW (Store Word to Memory With a 15-Bit Unsigned Constant Offset) 3-163.
SUB (Subtract Two Signed Integers Without Saturation) 3-165. .
SUBAB (Subtract Using Byte Addressing Mode) 3-168. .
SUBAH (Subtract Using Halfword Addressing Mode) 3-170. .
SUBAW (Subtract Using Word Addressing Mode) 3-171. .
SUBC (Subtract Conditionally and Shift—Used for Division) 3-173.
SUBU (Subtract Two Unsigned Integers Without Saturation) 3-175.
SUB2 (Subtract Two 16-Bit Integers on Upper and Lower Register Halves) 3-177.
XOR (Bitwise Exclusive OR) 3-179. .
ZERO (Zero a Register) 3-181. .

4 Pipeline 4-1. .
Describes phases, operation, and discontinuities for the TMS320C62x CPU pipeline.

4.1 Pipeline Operation Overview 4-2. .
4.1.1 Fetch 4-2. .
4.1.2 Decode 4-3. .
4.1.3 Execute 4-5. .
4.1.4 Pipeline Operation Summary 4-6. .

4.2 Pipeline Execution of Instruction Types 4-11. .
4.2.1 Single-Cycle Instructions 4-12. .
4.2.2 Two-Cycle Instructions 4-13. .
4.2.3 Store Instructions 4-13. .
4.2.4 Load Instructions 4-15. .
4.2.5 Branch Instructions 4-17. .

4.3 Performance Considerations 4-18. .
4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet 4-18.
4.3.2 Multicycle NOPs 4-20. .
4.3.3 Memory Considerations 4-22. .

Contents

ixContentsSPRU731A

5 Interrupts 5-1. .
Describes CPU interrupts, including reset and the nonmaskable interrupt (NMI). It details the
related CPU control registers and their functions in controlling interrupts.

5.1 Overview 5-2. .
5.1.1 Types of Interrupts and Signals Used 5-2. .
5.1.2 Interrupt Service Table (IST) 5-5. .
5.1.3 Summary of Interrupt Control Registers 5-9. .

5.2 Globally Enabling and Disabling Interrupts 5-10. .
5.3 Individual Interrupt Control 5-12. .

5.3.1 Enabling and Disabling Interrupts 5-12. .
5.3.2 Status of Interrupts 5-13. .
5.3.3 Setting and Clearing Interrupts 5-13. .
5.3.4 Returning From Interrupt Servicing 5-14. .

5.4 Interrupt Detection and Processing 5-15. .
5.4.1 Setting the Nonreset Interrupt Flag 5-15. .
5.4.2 Conditions for Processing a Nonreset Interrupt 5-15. .
5.4.3 Actions Taken During Nonreset Interrupt Processing 5-17.
5.4.4 Setting the RESET Interrupt Flag 5-18. .
5.4.5 Actions Taken During RESET Interrupt Processing 5-19. .

5.5 Performance Considerations 5-20. .
5.5.1 General Performance 5-20. .
5.5.2 Pipeline Interaction 5-20. .

5.6 Programming Considerations 5-21. .
5.6.1 Single Assignment Programming 5-21. .
5.6.2 Nested Interrupts 5-22. .
5.6.3 Manual Interrupt Processing 5-24. .
5.6.4 Traps 5-25. .

A Mapping Between Instruction and Functional Unit A-1. .
Lists the instructions that execute on each functional unit.

Figures

x SPRU731AFigures

Figures

1--1 TMS320C62x DSP Block Diagram 1-6. .
2--1 TMS320C62x CPU Data Paths 2-3. .
2--2 Storage Scheme for 40-Bit Data in a Register Pair 2-4. .
2--3 Addressing Mode Register (AMR) 2-10. .
2--4 Control Status Register (CSR) 2-13. .
2--5 PWRD Field of Control Status Register (CSR) 2-13. .
2--6 Interrupt Clear Register (ICR) 2-16. .
2--7 Interrupt Enable Register (IER) 2-17. .
2--8 Interrupt Flag Register (IFR) 2-18. .
2--9 Interrupt Return Pointer Register (IRP) 2-19. .
2--10 Interrupt Set Register (ISR) 2-20. .
2--11 Interrupt Service Table Pointer Register (ISTP) 2-21. .
2--12 NMI Return Pointer Register (NRP) 2-22. .
2--13 E1 Phase Program Counter (PCE1) 2-22. .
3--1 Basic Format of a Fetch Packet 3-7. .
3--2 Examples of the Detectability of Write Conflicts by the Assembler 3-15.
4--1 Pipeline Stages 4-2. .
4--2 Fetch Phases of the Pipeline 4-3. .
4--3 Decode Phases of the Pipeline 4-4. .
4--4 Execute Phases of the Pipeline 4-5. .
4--5 Pipeline Phases 4-6. .
4--6 Pipeline Operation: One Execute Packet per Fetch Packet 4-6. .
4--7 Pipeline Phases Block Diagram 4-8. .
4--8 Single-Cycle Instruction Phases 4-12. .
4--9 Single-Cycle Instruction Execution Block Diagram 4-12. .
4--10 Two-Cycle Instruction Phases 4-13. .
4--11 Single 16 × 16 Multiply Instruction Execution Block Diagram 4-13. .
4--12 Store Instruction Phases 4-14. .
4--13 Store Instruction Execution Block Diagram 4-14. .
4--14 Load Instruction Phases 4-15. .
4--15 Load Instruction Execution Block Diagram 4-15. .
4--16 Branch Instruction Phases 4-17. .
4--17 Branch Instruction Execution Block Diagram 4-17. .
4--18 Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets 4-19.
4--19 Multicycle NOP in an Execute Packet 4-20. .
4--20 Branching and Multicycle NOPs 4-21. .

Figures

xiFiguresSPRU731A

4--21 Pipeline Phases Used During Memory Accesses 4-22. .
4--22 Program and Data Memory Stalls 4-23. .
4--23 4-Bank Interleaved Memory 4-24. .
4--24 4-Bank Interleaved Memory With Two Memory Spaces 4-25. .
5--1 Interrupt Service Table 5-5. .
5--2 Interrupt Service Fetch Packet 5-6. .
5--3 Interrupt Service Table With Branch to Additional Interrupt Service Code

Located Outside the IST 5-7. .
5--4 Nonreset Interrupt Detection and Processing: Pipeline Operation 5-16.
5--5 RESET Interrupt Detection and Processing: Pipeline Operation 5-18.

Tables

xii SPRU731ATables

Tables

1--1 Typical Applications for the TMS320 DSPs 1-3. .
2--1 40-Bit/64-Bit Register Pairs 2-4. .
2--2 Functional Units and Operations Performed 2-5. .
2--3 Control Registers 2-7. .
2--4 Register Addresses for Accessing the Control Registers 2-8. .
2--5 Addressing Mode Register (AMR) Field Descriptions 2-10. .
2--6 Block Size Calculations 2-12. .
2--7 Control Status Register (CSR) Field Descriptions 2-14. .
2--8 Interrupt Clear Register (ICR) Field Descriptions 2-16. .
2--9 Interrupt Enable Register (IER) Field Descriptions 2-17. .
2--10 Interrupt Flag Register (IFR) Field Descriptions 2-18. .
2--11 Interrupt Set Register (ISR) Field Descriptions 2-20. .
2--12 Interrupt Service Table Pointer Register (ISTP) Field Descriptions 2-21.
3--1 Instruction Operation and Execution Notations 3-2. .
3--2 Instruction Syntax and Opcode Notations 3-5. .
3--3 Delay Slots 3-6. .
3--4 Registers That Can Be Tested by Conditional Operations 3-10. .
3--5 Indirect Address Generation for Load/Store 3-19. .
3--6 Address Generator Options for Load/Store 3-19. .
3--7 Relationships Between Operands, Operand Size, Signed/Unsigned,

Functional Units, and Opfields for Example Instruction (ADD) 3-22. .
3--8 Program Counter Values for Example Branch Using a Displacement 3-44.
3--9 Program Counter Values for Example Branch Using a Register 3-46.
3--10 Program Counter Values for B IRP Instruction 3-48. .
3--11 Program Counter Values for B NRP Instruction 3-50. .
3--12 Data Types Supported by LDB(U) Instruction 3-73. .
3--13 Data Types Supported by LDB(U) Instruction (15-Bit Offset) 3-76. .
3--14 Data Types Supported by LDH(U) Instruction 3-78. .
3--15 Data Types Supported by LDH(U) Instruction (15-Bit Offset) 3-81. .
3--16 Register Addresses for Accessing the Control Registers 3-112. .
4--1 Operations Occurring During Pipeline Phases 4-7. .
4--2 Execution Stage Length Description for Each Instruction Type 4-11. .
4--3 Program Memory Accesses Versus Data Load Accesses 4-22. .
4--4 Loads in Pipeline From Example 4--2 4-25. .
5--1 Interrupt Priorities 5-3. .
5--2 Interrupt Control Registers 5-9. .
A--1 Instruction to Functional Unit Mapping A-1. .

Examples

xiiiExamplesSPRU731A

Examples

3--1 Fully Serial p-Bit Pattern in a Fetch Packet 3-8. .
3--2 Fully Parallel p-Bit Pattern in a Fetch Packet 3-8. .
3--3 Partially Serial p-Bit Pattern in a Fetch Packet 3-9. .
3--4 LDW Instruction in Circular Mode 3-17. .
3--5 ADDAH Instruction in Circular Mode 3-18. .
4--1 Execute Packet in Figure 4--7 4-10. .
4--2 Load From Memory Banks 4-24. .
5--1 Relocation of Interrupt Service Table 5-8. .
5--2 Interrupts Versus Writes to GIE 5-10. .
5--3 Code Sequence to Disable Maskable Interrupts Globally 5-11. .
5--4 Code Sequence to Enable Maskable Interrupts Globally 5-11. .
5--5 Code Sequence to Enable an Individual Interrupt (INT9) 5-12. .
5--6 Code Sequence to Disable an Individual Interrupt (INT9) 5-12. .
5--7 Code to Set an Individual Interrupt (INT6) and Read the Flag Register 5-13.
5--8 Code to Clear an Individual Interrupt (INT6) and Read the Flag Register 5-13.
5--9 Code to Return From NMI 5-14. .
5--10 Code to Return from a Maskable Interrupt 5-14. .
5--11 Code Without Single Assignment: Multiple Assignment of A1 5-21. .
5--12 Code Using Single Assignment 5-22. .
5--13 Assembly Interrupt Service Routine That Allows Nested Interrupts 5-23.
5--14 C Interrupt Service Routine That Allows Nested Interrupts 5-24. .
5--15 Manual Interrupt Processing 5-24. .
5--16 Code Sequence to Invoke a Trap 5-25. .
5--17 Code Sequence for Trap Return 5-25. .

1-1IntroductionSPRU731A

a

Introduction

The TMS320C6000™ digital signal processor (DSP) platform is part of the
TMS320™ DSP family. The TMS320C62x™ DSP generation and the
TMS320C64x™DSP generation comprise fixed-point devices in the C6000™
DSP platform, and the TMS320C67x™ DSP generation comprises floating-
point devices in the C6000 DSP platform. The C62x™ and C64x™ DSPs are
code-compatible. The C62x and C67x™DSPs are code-compatible. All three
DSPs use the VelociTI™ architecture, a high-performance, advanced very
long instruction word (VLIW) architecture, making these DSPs excellent
choices for multichannel and multifunction applications.

Topic Page

1.1 TMS320 DSP Family Overview 1-2. .

1.2 TMS320C6000 DSP Family Overview 1-2. .

1.3 TMS320C62x DSP Features and Options 1-4. .

1.4 TMS320C62x DSP Architecture 1-6. .

Chapter 1

TMS320 DSP Family Overview

Introduction1-2 SPRU731A

1.1 TMS320 DSP Family Overview

TheTMS320™DSP family consists of fixed-point, floating-point, andmultipro-
cessor digital signal processors (DSPs). TMS320™ DSPs have an architec-
ture designed specifically for real-time signal processing.

Table 1--1 lists some typical applications for theTMS320™ family ofDSPs.The
TMS320™ DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.

1.2 TMS320C6000 DSP Family Overview

With a performance of up to 8000 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6000 DSPs give system architects
unlimited possibilities to differentiate their products. High performance, ease
of use, and affordable pricing make the C6000 generation the ideal solution
for multichannel, multifunction applications, such as:

- Pooled modems
- Wireless local loop base stations
- Remote access servers (RAS)
- Digital subscriber loop (DSL) systems
- Cable modems
- Multichannel telephony systems

The C6000 generation is also an ideal solution for exciting new applications;
for example:

- Personalized home security with face and hand/fingerprint recognition

- Advancedcruise controlwith global positioningsystems (GPS)navigation
and accident avoidance

- Remote medical diagnostics

- Beam-forming base stations

- Virtual reality 3-D graphics

- Speech recognition

- Audio

- Radar

- Atmospheric modeling

- Finite element analysis

- Imaging (examples: fingerprint recognition, ultrasound, and MRI)

TMS320 DSP Family Overview / TMS320C6000 DSP Family Overview

TMS320C6000 DSP Family Overview

1-3IntroductionSPRU731A

Table 1--1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D transformations
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56 600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail

TMS320C62x DSP Features and Options

Introduction1-4 SPRU731A

1.3 TMS320C62x DSP Features and Options

TheC6000 devices execute up to eight 32-bit instructions per cycle. TheC62x
CPUconsists of 32general-purpose32-bit registers andeight functional units.
These eight functional units contain:

- Two multipliers
- Six ALUs

The C6000 generation has a complete set of optimized development tools,
including an efficient C compiler, an assembly optimizer for simplified
assembly-language programming and scheduling, and a Windows™ based
debugger interface for visibility into source code execution characteristics. A
hardware emulation board, compatible with the TI XDS510™ and XDS560™
emulator interface, is also available. This tool complies with IEEE Standard
1149.1--1990, IEEE Standard Test Access Port and Boundary-Scan
Architecture.

Features of the C6000 devices include:

- Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

J Executes up to eight instructions per cycle for up to ten times the
performance of typical DSPs

J Allows designers to develop highly effective RISC-like code for fast
development time

- Instruction packing

J Gives code size equivalence for eight instructions executed serially or
in parallel

J Reduces code size, program fetches, and power consumption

- Conditional execution of all instructions

J Reduces costly branching

J Increases parallelism for higher sustained performance

- Efficient code execution on independent functional units

J Industry’s most efficient C compiler on DSP benchmark suite

J Industry’s first assembly optimizer for fast development and improved
parallelization

- 8/16/32-bit data support, providing efficient memory support for a variety
of applications

- 40-bit arithmetic options add extra precision for vocoders and other
computationally intensive applications

TMS320C62x DSP Features and Options

1-5IntroductionSPRU731A

- Saturation and normalization provide support for key arithmetic
operations

- Field manipulation and instruction extract, set, clear, and bit counting
support common operation found in control and data manipulation
applications.

The VelociTI architecture of the C6000 platform of devicesmake them the first
off-the-shelf DSPs to use advanced VLIW to achieve high performance
through increased instruction-levelparallelism.A traditionalVLIWarchitecture
consists of multiple execution units running in parallel, performing multiple
instructions duringa single clock cycle.Parallelism is the key to extremely high
performance, taking these DSPs well beyond the performance capabilities of
traditional superscalar designs. VelociTI is a highly deterministic architecture,
having few restrictions on how or when instructions are fetched, executed, or
stored. It is this architectural flexibility that is key to the breakthrough efficiency
levels of the TMS320C6000 Optimizing C compiler. VelociTI’s advanced
features include:

- Instruction packing: reduced code size

- All instructions can operate conditionally: flexibility of code

- Variable-width instructions: flexibility of data types

- Fully pipelined branches: zero-overhead branching.

TMS320C62x DSP Architecture

Introduction1-6 SPRU731A

1.4 TMS320C62x DSP Architecture

Figure 1--1 is the block diagram for the C62x DSP. The C6000 devices come
with program memory, which, on some devices, can be used as a program
cache. The devices also have varying sizes of datamemory. Peripherals such
as a direct memory access (DMA) controller, power-down logic, and external
memory interface (EMIF) usually come with the CPU, while peripherals such
as serial ports and host ports are on only certain devices. Check your data
manual for your device to determine the specific peripheral configurations.

Figure 1--1. TMS320C62x DSP Block Diagram

256-bit data
32-bit address

Program cache/program memory

8-, 16-, 32-bit data

32-bit address
Data cache/data memory

etc.
serial ports,
Timers,

Additional
peripherals:

down
Power

C6000 CPU

Interrupts

Emulation

Test

Control
logic

registers
Control

.D1.M1.S1.L1

Register file BRegister file A
DMA, EMIF

.D2 .M2 .S2 .L2

Data path A Data path B

Program fetch

Instruction decode

Instruction dispatch (See Note)

TMS320C62x DSP Architecture

1-7IntroductionSPRU731A

1.4.1 Central Processing Unit (CPU)

The C62x CPU, in Figure 1--1, contains:

- Program fetch unit
- Instruction dispatch unit
- Instruction decode unit
- Two data paths, each with four functional units
- 32 32-bit registers
- Control registers
- Control logic
- Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can
deliver up to eight 32-bit instructions to the functional units every CPU clock
cycle. The processing of instructions occurs in each of the two data paths (A
and B), each of which contains four functional units (.L, .S, .M, and .D) and
16 32-bit general-purpose registers. The data paths are described in more
detail in Chapter 2. A control register file provides the means to configure and
control various processor operations. To understand how instructions are
fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

1.4.2 Internal Memory

The C62x DSP has a 32-bit, byte-addressable address space. Internal
(on-chip) memory is organized in separate data and program spaces. When
off-chip memory is used, these spaces are unified onmost devices to a single
memory space via the external memory interface (EMIF).

The C62x DSP has two 32-bit internal ports to access internal data memory.
The C62x DSP has a single internal port to access internal programmemory,
with an instruction-fetch width of 256 bits.

1.4.3 Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000
platform:

- Large on-chip RAM, up to 7M bits

- Program cache

- 2-level caches

- 32-bit external memory interface supports SDRAM, SBSRAM, SRAM,
and other asynchronous memories for a broad range of external memory
requirements and maximum system performance.

TMS320C62x DSP Architecture

Introduction1-8 SPRU731A

- The direct memory access (DMA) controller transfers data between
address ranges in the memory map without intervention by the CPU. The
DMA controller has four programmable channels and a fifth auxiliary
channel.

- The enhanced direct memory access (EDMA) controller (C6211 DSP
only) performs the same functions as the DMA controller. The EDMA has
16 programmable channels, as well as a RAM space to hold multiple
configurations for future transfers.

- Thehost port interface (HPI) is a parallel port throughwhich a host proces-
sor candirectly access theCPUmemory space. Thehost device functions
asamaster to the interface,which increases easeof access. Thehost and
CPU can exchange information via internal or external memory. The host
alsohasdirect access tomemory-mappedperipherals.Connectivity to the
CPU memory space is provided through the DMA/EDMA controller.

- The expansion bus is a replacement for the HPI, as well as an expansion
of the EMIF. The expansion provides two distinct areas of functionality
(host port and I/O port) that can co-exist in a system. The host port of the
expansion bus can operate in either asynchronous slave mode, similar to
the HPI, or in synchronous master/slave mode. This allows the device to
interface to a variety of host bus protocols. Synchronous FIFOs and
asynchronous peripheral I/O devices may interface to the expansion bus.

- The peripheral component interconnect (PCI) port supports connection of
the C62x DSP to a PCI host via the integrated PCI master/slave bus
interface.

- The multichannel buffered serial port (McBSP) is based on the standard
serial port interface found on the TMS320C2000™ and TMS320C5000™
devices. In addition, the port can buffer serial samples in memory auto-
maticallywith theaidof theDMA/EDMAcontroller. It also hasmultichannel
capability compatible with the T1, E1, SCSA, and MVIP networking
standards.

- Timers in the C6000 devices are two 32-bit general-purpose timers used
for these functions:

J Time events
J Count events
J Generate pulses
J Interrupt the CPU
J Send synchronization events to the DMA/EDMA controller.

TMS320C62x DSP Architecture

1-9IntroductionSPRU731A

- Power-down logic allows reduced clocking to reduce power consumption.
Most of the operating power of CMOS logic dissipates during circuit
switching from one logic state to another. By preventing some or all of the
chip’s logic from switching, you can realize significant power savingswith-
out losing any data or operational context.

For an overview of the peripherals available on the C6000 DSP, refer to the
TM320C6000 DSP Peripherals Overview Reference Guide (SPRU190) or to
your device-specific data manual.

2-1CPU Data Paths and ControlSPRU731A

CPU Data Paths and Control

This chapter focuses on theCPU, providing information about the data paths and
control registers. The two register files and the data cross paths are described.

Topic Page

2.1 Introduction 2-2. .

2.2 General-Purpose Register Files 2-2. .

2.3 Functional Units 2-5. .

2.4 Register File Cross Paths 2-6. .

2.5 Memory, Load, and Store Paths 2-6. .

2.6 Data Address Paths 2-7. .

2.7 Control Register File 2-7. .

Chapter 2

Introduction

CPU Data Paths and Control2-2 SPRU731A

2.1 Introduction

The components of the data path for the TMS320C62x CPU are shown in
Figure 2--1. These components consist of:

- Two general-purpose register files (A and B)
- Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
- Two load-from-memory data paths (LD1 and LD2)
- Two store-to-memory data paths (ST1 and ST2)
- Two data address paths (DA1 and DA2)
- Two register file data cross paths (1X and 2X)

2.2 General-Purpose Register Files

There are two general-purpose register files (A and B) in the C62x CPU data
paths. Each of these files contains 16 32-bit registers (A0–A15 for file A and
B0–B15 for file B), as shown in Table 2--1. The general-purpose registers can
be used for data, data address pointers, or condition registers.

TheC62xDSPgeneral-purpose register files support data ranging in size from
packed 16-bit through 40-bit fixed-point data. Values larger than 32 bits, such
as 40-bit long quantities, are stored in register pairs. The 32 LSBs of data are
placed in an even-numbered register and the remaining 8 MSBs in the next
upper register (that is always an odd-numbered register). Packed data types
store two 16-bit values in a single 32-bit register.

There are 16 valid register pairs for 40-bit data in the C62x DSP cores. In
assembly language syntax, a colon between the register names denotes the
register pairs, and the odd-numbered register is specified first.

Figure 2--2 shows the register storage scheme for 40-bit longdata.Operations
requiring a long input ignore the 24 MSBs of the odd-numbered register.
Operations producing a long result zero-fill the 24MSBs of the odd-numbered
register. The even-numbered register is encoded in the opcode.

Introduction / General-Purpose Register Files

General-Purpose Register Files

2-3CPU Data Paths and ControlSPRU731A

Figure 2--1. TMS320C62x CPU Data Paths

2X

1X

.L2

.S2

.M2

.D2

(B0--B15)

(A0--A15)

.D1

.M1

.S1

.L1

long src

dst

src2

src1

src1

src1

src1

src1

src1

src1

src1

8

8

8

8

8
8

long dst

long dst
dst

dst

dst

dst

dst

dst

dst

src2

src2

src2

src2

src2

src2

src2

long src

Control
register
file

DA1

DA2

ST1

LD1

LD2

ST2

32

32

Data path A

Data path B

Register
file A

Register
file B

long src
long dst

long dst
long src

General-Purpose Register Files

CPU Data Paths and Control2-4 SPRU731A

Table 2--1. 40-Bit/64-Bit Register Pairs

Register Files

A B

A1:A0 B1:B0

A3:A2 B3:B2

A5:A4 B5:B4

A7:A6 B7:B6

A9:A8 B9:B8

A11:A10 B11:B10

A13:A12 B13:B12

A15:A14 B15:B14

Figure 2--2. Storage Scheme for 40-Bit Data in a Register Pair

31 0 31 0Odd register Even register

39 32 31 0

Zero-filled 40-bit data

39 32 31 0

40-bit data

Odd register Even register

Read from registers

Write to registers

Ignored

78

Functional Units

2-5CPU Data Paths and ControlSPRU731A

2.3 Functional Units

The eight functional units in the C6000 data paths can be divided into two
groups of four; each functional unit in one data path is almost identical to the
corresponding unit in the other data path. The functional units are described
in Table 2--2.

Most data lines in the CPU support 32-bit operands, and some support long
(40-bit) operands. Each functional unit has its own 32-bit write port into a
general-purpose register file (refer to Figure 2--1). All units ending in 1 (for
example, .L1) write to register file A, and all units ending in 2 write to register
file B. Each functional unit has two 32-bit read ports for source operands src1
and src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for
40-bit long writes, as well as an 8-bit input for 40-bit long reads. Each unit has
its own 32-bit write port, so all eight units can be used in parallel every cycle.

See Appendix A for a list of the instructions that execute on each functional
unit.

Table 2--2. Functional Units and Operations Performed

Functional Unit Fixed-Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

.S unit (.S1, .S2) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register file (.S2 only)

.M unit (.M1, .M2) 16 × 16-bit multiply operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)

Register File Cross Paths

CPU Data Paths and Control2-6 SPRU731A

2.4 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file
within its owndatapath. That is, the .L1, .S1, .D1, and .M1unitswrite to register
file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register
files are connected to the opposite-side register file’s functional units via the
1Xand 2X cross paths. These cross paths allow functional units fromone data
path to access a 32-bit operand from the opposite side register file. The 1X
cross path allows the functional units of data path A to read their source from
register file B, and the 2X cross path allows the functional units of data path
B to read their source from register file A.

On the C62x DSP, six of the eight functional units have access to the register
file on the opposite side, via a cross path. The src2 inputs of .M1, .M2, .S1, and
.S2units are selectable between the cross path and the sameside register file.
In the caseof the .L1and .L2, both src1and src2 inputs are selectablebetween
the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the
limit is one source read from each data path’s opposite register file per cycle,
or a total of two cross path source reads per cycle. In the C62x DSP, only one
functional unit per data path, per execute packet, can get an operand from the
opposite register file.

2.5 Memory, Load, and Store Paths

The C62x DSP has two 32-bit paths for loading data from memory to the
register file: LD1 for register file A, and LD2 for register file B. There are also
two32-bit paths,ST1andST2, for storing register values tomemory fromeach
register file.

On the C6000 architecture, some of the ports for long operands are shared
between functional units. This places a constraint on which long operations
can be scheduled on a data path in the same execute packet. See
section 3.6.4.

Register File Cross Paths / Memory, Load, and Store Paths

Data Address Paths

2-7CPU Data Paths and ControlSPRU731A

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in
both data paths. This allows data addresses generated by any one path to
access data to or from any register.

The DA1 and DA2 resources and their associated data paths are specified as
T1 and T2, respectively. T1 consists of the DA1 address path and the LD1 and
ST1 data paths. Similarly, T2 consists of the DA2 address path and the LD2
and ST2 data paths.

The T1 and T2 designations appear in the functional unit fields for load and
store instructions. For example, the following load instruction uses the .D1 unit
to generate the address but is using the LD2 path resource fromDA2 to place
the data in the B register file. The use of the DA2 resource is indicated with the
T2 designation.

LDW .D1T2 *A0[3],B1

2.7 Control Register File

Table 2--3 lists the control registers contained in the control register file.

Table 2--3. Control Registers

Acronym Register Name Section

AMR Addressing mode register 2.7.3

CSR Control status register 2.7.4

ICR Interrupt clear register 2.7.5

IER Interrupt enable register 2.7.6

IFR Interrupt flag register 2.7.7

IRP Interrupt return pointer register 2.7.8

ISR Interrupt set register 2.7.9

ISTP Interrupt service table pointer register 2.7.10

NRP Nonmaskable interrupt return pointer register 2.7.11

PCE1 Program counter, E1 phase 2.7.12

Data Address Paths / Control Register File

Control Register File

CPU Data Paths and Control2-8 SPRU731A

2.7.1 Register Addresses for Accessing the Control Registers

Table 2--4 lists the register addresses for accessing the control register file.
One unit (.S2) can read from and write to the control register file. Each control
register is accessed by theMVC instruction. See theMVC instruction descrip-
tion, page 3-110, for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other
ways. For example, arrival of amaskable interrupt on an external interrupt pin,
INTm, triggers the setting of flag bit IFRm. Subsequently, when that interrupt
is processed, this triggers the clearing of IFRm and the clearing of the global
interrupt enable bit, GIE. Finally, when that interrupt processing is complete,
the B IRP instruction in the interrupt service routine restores the pre-interrupt
value of the GIE. Similarly, saturating instructions like SADD set the SAT
(saturation) bit in the control status register (CSR).

Table 2--4. Register Addresses for Accessing the Control Registers

Acronym Register Name Address Read/ Write

AMR Addressing mode register 00000 R, W

CSR Control status register 00001 R, W

ICR Interrupt clear register 00011 W

IER Interrupt enable register 00100 R, W

IFR Interrupt flag register 00010 R

IRP Interrupt return pointer 00110 R, W

ISR Interrupt set register 00010 W

ISTP Interrupt service table pointer 00101 R, W

NRP Nonmaskable interrupt return pointer 00111 R, W

PCE1 Program counter, E1 phase 10000 R

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction

Control Register File

2-9CPU Data Paths and ControlSPRU731A

2.7.2 Pipeline/Timing of Control Register Accesses

All MVC instructions are single-cycle instructions that complete their access
of the explicitly named registers in the E1 pipeline phase. This is true whether
MVC is moving a general register to a control register, or conversely. In all
cases, the source register content is read, moved through the .S2 unit, and
written to the destination register in the E1 pipeline phase.

Pipeline Stage E1

Read src2

Written dst

Unit in use .S2

Even though MVC modifies the particular target control register in a single
cycle, it can take extra clocks to complete modification of the non-explicitly
named register. For example, theMVC cannot modify bits in the IFR directly.
Instead, MVC can only write 1’s into the ISR or the ICR to specify setting or
clearing, respectively, of the IFR bits.MVC completes this ISR/ICR write in a
single (E1) cycle but themodification of the IFR bits occurs one clock later. For
more information on themanipulation of ISR, ICR, and IFR, see section 2.7.9,
section 2.7.5, and section 2.7.7.

Saturating instructions, such asSADD, set the saturation flag bit (SAT) inCSR
indirectly. As a result, several of these instructions update the SAT bit one full
clock cycle after their primary results are written to the register file. For exam-
ple, the SMPY instruction writes its result at the end of pipeline stage E2; its
primary result is available after one delay slot. In contrast, the SAT bit in CSR
is updated one cycle later than the result is written; this update occurs after two
delay slots. (For the specific behavior of an instruction, refer to the description
of that individual instruction).

The B IRP and B NRP instructions directly update the GIE and NMIE bits,
respectively. Because these branches directly modify CSR and IER, respec-
tively, there are no delay slots between when the branch is issued and when
the control register updates take effect.

Control Register File

CPU Data Paths and Control2-10 SPRU731A

2.7.3 Addressing Mode Register (AMR)

For eachof theeight registers (A4–A7,B4–B7) that canperform linear or circu-
lar addressing, the addressing mode register (AMR) specifies the addressing
mode. A 2-bit field for each register selects the address modification mode:
linear (the default) or circular mode. With circular addressing, the field also
specifies which BK (block size) field to use for a circular buffer. In addition, the
buffer must be aligned on a byte boundary equal to the block size. The mode
select fields and block size fields are shown in Figure 2--3 and described in
Table 2--5.

Figure 2--3. Addressing Mode Register (AMR)

31 26 25 21 20 16

Reserved BK1 BK0

R-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B7 MODE B6 MODE B5 MODE B4 MODE A7 MODE A6 MODE A5 MODE A4 MODE

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2--5. Addressing Mode Register (AMR) Field Descriptions

Bit Field Value Description

31-26 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to
this field has no effect.

25--21 BK1 0--1Fh Block size field 1. A 5-bit value used in calculating block sizes for circular
addressing. Table 2--6 shows block size calculations for all 32 possibilities.

Block size (in bytes) = 2(N+1), where N is the 5-bit value in BK1

20--16 BK0 0--1Fh Block size field 0. A 5-bit value used in calculating block sizes for circular
addressing. Table 2--6 shows block size calculations for all 32 possibilities.

Block size (in bytes) = 2(N+1), where N is the 5-bit value in BK0

15--14 B7 MODE 0--3h Address mode selection for register file B7.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

Control Register File

2-11CPU Data Paths and ControlSPRU731A

Table 2--5. Addressing Mode Register (AMR) Field Descriptions (Continued)

DescriptionValueFieldBit

13--12 B6 MODE 0--3h Address mode selection for register file B6.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

11--10 B5 MODE 0--3h Address mode selection for register file B5.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

9--8 B4 MODE 0--3h Address mode selection for register file B4.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

7--6 A7 MODE 0--3h Address mode selection for register file A7.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

5--4 A6 MODE 0--3h Address mode selection for register file A6.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

Control Register File

CPU Data Paths and Control2-12 SPRU731A

Table 2--5. Addressing Mode Register (AMR) Field Descriptions (Continued)

DescriptionValueFieldBit

3--2 A5 MODE 0--3h Address mode selection for register file a5.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

1--0 A4 MODE 0--3h Address mode selection for register file A4.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

Table 2--6. Block Size Calculations

BKn Value Block Size BKn Value Block Size

00000 2 10000 131 072

00001 4 10001 262 144

00010 8 10010 524 288

00011 16 10011 1 048 576

00100 32 10100 2 097 152

00101 64 10101 4 194 304

00110 128 10110 8 388 608

00111 256 10111 16 777 216

01000 512 11000 33 554 432

01001 1 024 11001 67 108 864

01010 2 048 11010 134 217 728

01011 4 096 11011 268 435 456

01100 8 192 11100 536 870 912

01101 16 384 11101 1 073 741 824

01110 32 768 11110 2 147 483 648

01111 65 536 11111 4 294 967 296

Note: When n is 11111, the behavior is identical to linear addressing.

Control Register File

2-13CPU Data Paths and ControlSPRU731A

2.7.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR
is shown in Figure 2--4 and described in Table 2--7. For the PWRD, EN, PCC,
and DCC fields, see the device-specific datasheet to see if it supports the
options that these fields control.

The power-down modes and their wake-up methods are programmed by the
PWRD field (bits 15--10) of CSR. The PWRD field of CSR is shown in
Figure 2--5. When writing to CSR, all bits of the PWRD field should be
configured at the same time. A logic 0 should be used when writing to the
reserved bit (bit 15) of the PWRD field.

Figure 2--4. Control Status Register (CSR)

31 24 23 16

CPU ID REVISION ID

R-0 R-x†

15 10 9 8 7 5 4 2 1 0

PWRD SAT EN PCC DCC PGIE GIE

R/W-0 R/WC-0 R-x R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by theMVC instruction; W = Writeable by the MVC instruction; WC = Bit is cleared on write; -n = value
after reset; -x = value is indeterminate after reset

† See the device-specific data manual for the default value of this field.

Figure 2--5. PWRD Field of Control Status Register (CSR)

15 14 13 12 11 10

Reserved Enabled or nonenabled interrupt wake Enabled interrupt wake PD3 PD2 PD1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Control Register File

CPU Data Paths and Control2-14 SPRU731A

Table 2--7. Control Status Register (CSR) Field Descriptions

Bit Field Value Description

31--24 CPU ID 0--FFh Identifies the CPU of the device. Not writable by the MVC instruction.

0 C62x DSP

1h--FFh Reserved

23--16 REVISION ID 0--FFh Identifies silicon revision of the CPU. For the most current silicon
revision information, see the device-specific datasheet. Not writable by
the MVC instruction.

15--10 PWRD 0--3Fh Power-downmode field. See Figure 2--5.Writable by theMVC instruction.

0 No power-down.

1h--8h Reserved

9h Power-down mode PD1; wake by an enabled interrupt.

Ah--10h Reserved

11h Power-down mode PD1; wake by an enabled or nonenabled interrupt.

12h--19h Reserved

1Ah Power-down mode PD2; wake by a device reset.

1Bh Reserved

1Ch Power-down mode PD3; wake by a device reset.

1D--3Fh Reserved

9 SAT Saturate bit. Can be cleared only by the MVC instruction and can be set
only by a functional unit. The set by a functional unit has priority over a
clear (by the MVC instruction), if they occur on the same cycle. The SAT
bit is set one full cycle (one delay slot) after a saturate occurs. The SAT
bit will not bemodified by a conditional instructionwhose condition is false.

0 No functional units generated saturated results.

1 One or more functional units performed an arithmetic operation which
resulted in saturation.

8 EN Endian mode. Not writable by the MVC instruction.

0 Big endian

1 Little endian

Control Register File

2-15CPU Data Paths and ControlSPRU731A

Table 2--7. Control Status Register (CSR) Field Descriptions (Continued)

Bit DescriptionValueField

7--5 PCC 0--7h Program cache control mode. Writable by the MVC instruction. See the
TMS320C621x/C671x DSP Two-Level Internal Memory Reference
Guide (SPRU609).

0 Direct-mapped cache enabled

1h Reserved

2h Direct-mapped cache enabled

3h--7h Reserved

4--2 DCC 0--7h Data cache control mode. Writable by the MVC instruction. See the
TMS320C621x/C671x DSP Two-Level Internal Memory Reference
Guide (SPRU609).

0 2-way cache enabled

1h Reserved

2h 2-way cache enabled

3h--7h Reserved

1 PGIE Previous GIE (global interrupt enable). This bit contains a copy of the GIE
bit at the point when interrupt is taken. Writeable by the MVC instruction.

0 Interrupts will be disabled after return from interrupt.

1 Interrupts will be enabled after return from interrupt.

0 GIE Global interrupt enable. Physically the same bit as GIE bit in the task state
register (TSR). Writable by the MVC instruction.

0 Disables all interrupts, except the reset interrupt and NMI (nonmaskable
interrupt).

1 Enables all interrupts.

Control Register File

CPU Data Paths and Control2-16 SPRU731A

2.7.5 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable
interrupts (INT15--INT4) in the interrupt flag register (IFR). Writing a 1 to any
of the bits in ICR causes the corresponding interrupt flag (IFn) to be cleared
in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have
priority and override any write to ICR. You cannot set any bit in ICR to affect
NMI or reset. The ISR is shown in Figure 2--6 and described in Table 2--8.

Note:

Any write to ICR (by the MVC instruction) effectively has one delay slot
because the results cannot be read (by theMVC instruction) in IFR until two
cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the
interrupt set register (ISR).

Figure 2--6. Interrupt Clear Register (ICR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

IC15 IC14 IC13 IC12 IC11 IC10 IC9 IC8 IC7 IC6 IC5 IC4 Reserved

W-0 R-0

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2--8. Interrupt Clear Register (ICR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15--4 ICn Interrupt clear.

0 Corresponding interrupt flag (IFn) in IFR is not cleared.

1 Corresponding interrupt flag (IFn) in IFR is cleared.

3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

Control Register File

2-17CPU Data Paths and ControlSPRU731A

2.7.6 Interrupt Enable Register (IER)

The interrupt enable register (IER) enables and disables individual interrupts.
The IER is shown in Figure 2--7 and described in Table 2--9.

Figure 2--7. Interrupt Enable Register (IER)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8 IE7 IE6 IE5 IE4 Reserved NMIE 1

R/W-0 R-0 R/W-0 R-1

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2--9. Interrupt Enable Register (IER) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15--4 IEn Interrupt enable. An interrupt triggers interrupt processing only if the
corresponding bit is set to 1.

0 Interrupt is disabled.

1 Interrupt is enabled.

3-2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

1 NMIE Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if
the bit is set to 1.

The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to
enable the NMI and to allow INT15--INT4 to be enabled by the GIE bit in CSR
and the corresponding IER bit. You cannot manually clear the NMIE bit; a write
of 0 has no effect. The NMIE bit is also cleared by the occurrence of an NMI.

0 All nonreset interrupts are disabled.

1 All nonreset interrupts are enabled. The NMIE bit is set only by completing a
B NRP instruction or by a write of 1 to the NMIE bit.

0 1 1 Reset interrupt enable. You cannot disable the reset interrupt.

Control Register File

CPU Data Paths and Control2-18 SPRU731A

2.7.7 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4--INT15 and NMI
interrupt. Each corresponding bit in the IFR is set to 1 when that interrupt
occurs; otherwise, the bits are cleared to 0. If you want to check the status of
interrupts, use theMVC instruction to read the IFR. (See theMVC instruction
description, page 3-110, for information on how to use this instruction.) The
IFR is shown in Figure 2--8 and described in Table 2--10.

Figure 2--8. Interrupt Flag Register (IFR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 Reserved NMIF 0

R-0 R-0 R-0 R-0

Legend: R = Readable by the MVC instruction; -n = value after reset

Table 2--10. Interrupt Flag Register (IFR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15--4 IFn Interrupt flag. Indicates the status of the corresponding maskable interrupt. An
interrupt flag may be manually set by setting the corresponding bit (ISn) in the
interrupt set register (ISR) or manually cleared by setting the corresponding bit
(ICn) in the interrupt clear register (ICR).

0 Interrupt has not occurred.

1 Interrupt has occurred.

3-2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

1 NMIF Nonmaskable interrupt flag.

0 Interrupt has not occurred.

1 Interrupt has occurred.

0 0 0 Reset interrupt flag.

Control Register File

2-19CPU Data Paths and ControlSPRU731A

2.7.8 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that
directs the CPU to the proper location to continue program execution after
processing a maskable interrupt. A branch using the address in IRP (B IRP)
in your interrupt service routine returns to the program flow when interrupt
servicing is complete. The IRP is shown in Figure 2--9.

The IRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of amaskable interrupt. Although you can
write a value to IRP, any subsequent interrupt processing may overwrite that
value.

Figure 2--9. Interrupt Return Pointer Register (IRP)

31 0

IRP

R/W-x

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

Control Register File

CPU Data Paths and Control2-20 SPRU731A

2.7.9 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable
interrupts (INT15--INT4) in the interrupt flag register (IFR). Writing a 1 to any
of the bits in ISR causes the corresponding interrupt flag (IFn) to be set in IFR.
Writing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect
NMI or reset. The ISR is shown in Figure 2--10 and described in Table 2--11.

Note:

Any write to ISR (by the MVC instruction) effectively has one delay slot
because the results cannot be read (by theMVC instruction) in IFR until two
cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous
write to the same bit in ISR.

Figure 2--10. Interrupt Set Register (ISR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Reserved

W-0 R-0

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2--11. Interrupt Set Register (ISR) Field Descriptions

Bit Field Value Description

31-16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15--4 ISn Interrupt set.

0 Corresponding interrupt flag (IFn) in IFR is not set.

1 Corresponding interrupt flag (IFn) in IFR is set.

3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

Control Register File

2-21CPU Data Paths and ControlSPRU731A

2.7.10 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt
service routine (ISR). The ISTB field identifies the base portion of the address
of the interrupt service table (IST) and the HPEINT field identifies the specific
interrupt and locates the specific fetch packet within the IST. The ISTP is
shown in Figure 2--11 and described in Table 2--12. See section 5.1.2.2 on
page 5-8 for a discussion of the use of the ISTP.

Figure 2--11.Interrupt Service Table Pointer Register (ISTP)

31 16

ISTB

R/W-S

15 10 9 5 4 0

ISTB HPEINT 0 0 0 0 0

R/W-S R-0 R-0

Legend: R=Readable by theMVC instruction;W =Writeable by theMVC instruction; -n = value after reset; S = See the device-
specific data manual for the default value of this field after reset

Table 2--12. Interrupt Service Table Pointer Register (ISTP) Field Descriptions

Bit Field Value Description

31--10 ISTB 0--3F FFFFh Interrupt service table base portion of the IST address. This field is cleared
to a device-specific default value on reset; therefore, upon startup the IST
must reside at this specific address. See the device-specific data manual for
more information. After reset, you can relocate the IST by writing a new value
to ISTB. If relocated, the first ISFP (corresponding to RESET) is never
executed via interrupt processing, because reset clears the ISTB to its default
value. See Example 5--1 on page 5-8.

9--5 HPEINT 0--1Fh Highest priority enabled interrupt that is currently pending. This field indicates
the number (related bit position in the IFR) of the highest priority interrupt (as
defined in Table 5--1 on page 5-3) that is enabled by its bit in the IER. Thus,
the ISTP can be used for manual branches to the highest priority enabled in-
terrupt. If no interrupt is pending and enabled, HPEINT contains the value 0.
The corresponding interrupt need not be enabled by NMIE (unless it is NMI)
or by GIE.

4--0 -- Cleared to 0 (fetch packetsmust be aligned on 8-word (32-byte) boundaries).

Control Register File

CPU Data Paths and Control2-22 SPRU731A

2.7.11 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs
theCPU to the proper location to continue programexecution after processing
of a nonmaskable interrupt (NMI) or exception. A branch using the address in
NRP (B NRP) in your interrupt service routine or exception service routine
returns to the program flow when NMI or exception servicing is complete. The
NRP is shown in Figure 2--12.

TheNRPcontains the 32-bit address of the first execute packet in the program
flow that was not executed because of a nonmaskable interrupt. Although you
can write a value to NRP, any subsequent interrupt processing may overwrite
that value.

Figure 2--12. NMI Return Pointer Register (NRP)

31 0

NRP

R/W-x

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

2.7.12 E1 Phase Program Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2--13, contains the
32-bit address of the fetch packet in the E1 pipeline phase.

Figure 2--13. E1 Phase Program Counter (PCE1)

31 0

PCE1

R-x

Legend: R = Readable by the MVC instruction; -x = value is indeterminate after reset

3-1Instruction SetSPRU731A

Instruction Set

This chapter describes the assembly language instructions of the
TMS320C62x DSP. Also described are parallel operations, conditional
operations, resource constraints, and addressing modes.

Topic Page

3.1 Instruction Operation and Execution Notations 3-2.

3.2 Instruction Syntax and Opcode Notations 3-5. .

3.3 Delay Slots 3-6. .

3.4 Parallel Operations 3-7. .

3.5 Conditional Operations 3-10. .

3.6 Resource Constraints 3-11. .

3.7 Addressing Modes 3-16. .

3.8 Instruction Compatibility 3-20. .

3.9 Instruction Descriptions 3-20. .

Chapter 3

Instruction Operation and Execution Notations

Instruction Set3-2 SPRU731A

3.1 Instruction Operation and Execution Notations

Table 3--1 explains the symbols used in the instruction descriptions.

Table 3--1. Instruction Operation and Execution Notations

Symbol Meaning

abs(x) Absolute value of x

and Bitwise AND

--a Perform 2s-complement subtraction using the addressing mode defined by the AMR

+a Perform 2s-complement addition using the addressing mode defined by the AMR

by..z Selection of bits y through z of bit string b

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register, see section 3.5

cstn n-bit constant field (for example, cst5)

int 32-bit integer value

lmb0(x) Leftmost 0 bit search of x

lmb1(x) Leftmost 1 bit search of x

long 40-bit integer value

lsbn or LSBn n least-significant bits (for example, lsb16)

msbn or MSBn n most-significant bits (for example, msb16)

nop No operation

norm(x) Leftmost nonredundant sign bit of x

not Bitwise logical complement

op Opfields

or Bitwise OR

R Any general-purpose register

scstn n-bit signed constant field

sint Signed 32-bit integer value

slong Signed 40-bit integer value

Instruction Operation and Execution Notations

3-3Instruction SetSPRU731A

Table 3--1. Instruction Operation and Execution Notations (Continued)

Symbol Meaning

slsb16 Signed 16-bit integer value in lower half of 32-bit register

smsb16 Signed 16-bit integer value in upper half of 32-bit register

--s Perform 2s-complement subtraction and saturate the result to the result size, if an overflow
occurs

+s Perform 2s-complement addition and saturate the result to the result size, if an overflow
occurs

ucstn n-bit unsigned constant field (for example, ucst5)

uint Unsigned 32-bit integer value

ulong Unsigned 40-bit integer value

ulsb16 Unsigned 16-bit integer value in lower half of 32-bit register

umsb16 Unsigned 16-bit integer value in upper half of 32-bit register

x clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)

x ext l,r Extract and sign-extend a field in x, specified by l (shift left value) and r (shift right value)

x extu l,r Extract an unsigned field in x, specified by l (shift left value) and r (shift right value)

x set b,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

xint 32-bit integer value that can optionally use cross path

xor Bitwise exclusive-OR

xsint Signed 32-bit integer value that can optionally use cross path

xslsb16 Signed 16 LSB of register that can optionally use cross path

xsmsb16 Signed 16 MSB of register that can optionally use cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

xulsb16 Unsigned 16 LSB of register that can optionally use cross path

xumsb16 Unsigned 16 MSB of register that can optionally use cross path

→ Assignment

+ Addition

++ Increment by 1

× Multiplication

Instruction Operation and Execution Notations

Instruction Set3-4 SPRU731A

Table 3--1. Instruction Operation and Execution Notations (Continued)

Symbol Meaning

-- Subtraction

== Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<< Shift left

>> Shift right

>>s Shift right with sign extension

>>z Shift right with a zero fill

~ Logical inverse

& Logical AND

Instruction Syntax and Opcode Notations

3-5Instruction SetSPRU731A

3.2 Instruction Syntax and Opcode Notations

Table 3--2 explains the syntaxes and opcode fields used in the instruction
descriptions.

Table 3--2. Instruction Syntax and Opcode Notations

Symbol Meaning

baseR base address register

creg 3-bit field specifying a conditional register, see section 3.5

cst constant

csta constant a

cstb constant b

cstn n-bit constant field

dst destination

mode addressing mode, see section 3.7

offsetR register offset

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is
executed in parallel

r Load/store instruction

s side A or B for destination; 0 = side A, 1 = side B.

scstn n-bit signed constant field

src source

src1 source 1

src2 source 2

ucstn n-bit unsigned constant field

unit unit decode

x cross path for src2; 0 = do not use cross path, 1 = use cross path

y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit

z test for equality with zero or nonzero

Delay Slots

Instruction Set3-6 SPRU731A

3.3 Delay Slots

Theexecution of fixed-point instructions can be defined in terms of delay slots.
The number of delay slots is equivalent to the number of additional cycles
required after the source operands are read for the result to be available for
reading. For a single-cycle type instruction (such as ADD), source operands
read in cycle i produce a result that can be read in cycle i + 1. For a multiply
(MPY) instruction, source operands read in cycle i produce a result that can
be read in cycle i + 2. Table 3--3 shows the number of delay slots associated
with each type of instruction.

Delay slots are equivalent to an execution or result latency. All of the instruc-
tions in the C62x DSP have a functional unit latency of 1. This means that a
new instruction can be started on the functional unit each cycle. Single-cycle
throughput is another term for single-cycle functional unit latency.

Table 3--3. Delay Slots

Instruction Type Delay Slots Read Cycles† Write Cycles† Branch Taken†

NOP (no operation) 0

Store 0 i i

Single cycle 0 i i

Multiply (16 × 16) 1 i i + 1

Load 4 i i, i + 4§

Branch 5 i‡ i + 5

† Cycle i is in the E1 pipeline phase.
‡ The branch to label, branch to IRP, and branch to NRP instructions do not read any general-purpose registers.
§ The write on cycle i + 4 uses a separate write port from other .D unit instructions.

Parallel Operations

3-7Instruction SetSPRU731A

3.4 Parallel Operations

Instructions are always fetched eight words at a time. This constitutes a fetch
packet. The basic format of a fetch packet is shown in Figure 3--1. Fetch
packets are aligned on 256-bit (8-word) boundaries.

Figure 3--1. Basic Format of a Fetch Packet

p p p p p p p p

Instruction
A

00000b

Instruction
B

00100b

Instruction
C

01000b

Instruction
D

01100b

Instruction
E

10000b

Instruction
F

10100b

Instruction
G

11000b

Instruction
H

11100b
LSBs of
the byte
address

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

The execution of the individual instructions is partially controlled by a bit in
each instruction, the p-bit. The p-bit (bit 0) determines whether the instruction
executes in parallel with another instruction. The p-bits are scanned from left
to right (lower to higher address). If the p-bit of instruction i is 1, then instruction
i + 1 is to be executed in parallel with (in the the same cycle as) instruction i.
If the p-bit of instruction i is 0, then instruction i + 1 is executed in the cycle after
instruction i. All instructions executing in parallel constitute an execute packet.
An execute packet can contain up to eight instructions. Each instruction in an
execute packet must use a different functional unit.

An execute packet cannot cross an 8-word boundary. Therefore, the last p-bit
in a fetch packet is always cleared to 0, and each fetch packet starts a new
execute packet. There are three types of p-bit patterns for fetch packets.
These three p-bit patterns result in the following execution sequences for the
eight instructions:

- Fully serial
- Fully parallel
- Partially serial

Example 3--1 through Example 3--3 show the conversion of a p-bit sequence
into a cycle-by-cycle execution stream of instructions.

Parallel Operations

Instruction Set3-8 SPRU731A

Example 3--1. Fully Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

0 0 0 0 0 0 0 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

The eight instructions are executed sequentially.

Example 3--2. Fully Parallel p-Bit Pattern in a Fetch Packet

This p-bit pattern:

1 1 1 1 1 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A B C D E F G H

All eight instructions are executed in parallel.

Parallel Operations

3-9Instruction SetSPRU731A

Example 3--3. Partially Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

31 0 31 0 31 0 31 0

0 0 1 1

31 0 31 0 31 0 31 0

0 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

results in this execution sequence:

Cycle/Execute Packet Instructions

1 A

2 B

3 C D E

4 F G H

Note: InstructionsC,D, andEdonot useanyof the same functional units, cross paths, or
other data path resources. This is also true for instructions F, G, and H.

3.4.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the
previous instruction. The code for the fetch packet in Example 3--3 would be
represented as this:

instruction A

instruction B

instruction C
|| instruction D
|| instruction E

instruction F
|| instruction G
|| instruction H

3.4.2 Branching Into the Middle of an Execute Packet

If a branch into themiddle of an execute packet occurs, all instructions at lower
addresses are ignored. In Example 3--3, if a branch to the address containing
instruction D occurs, then only D and E execute. Even though instruction C is
in the same execute packet, it is ignored. Instructions A andBare also ignored
because they are in earlier execute packets. If your result depends on execut-
ing A, B, or C, the branch to the middle of the execute packet will produce an
erroneous result.

Conditional Operations

Instruction Set3-10 SPRU731A

3.5 Conditional Operations

All instructions canbeconditional. Thecondition is controlledbya3-bit opcode
field (creg) that specifies the condition register tested, and a 1-bit field (z) that
specifies a test for zero or nonzero. The four MSBs of every opcode are creg
and z. The specified condition register is tested at the beginning of the E1
pipeline stage for all instructions. For more information on the pipeline, see
Chapter 4. If z = 1, the test is for equality with zero; if z = 0, the test is for
nonzero. The case of creg = 0 and z = 0 is treated as always true to allow
instructions to be executed unconditionally. The creg field is encoded in the
instruction opcode as shown in Table 3--4.

Table 3--4. Registers That Can Be Tested by Conditional Operations

Specified
C diti l

creg z
Conditional
Register Bit 31 30 29 28

Unconditional 0 0 0 0

Reserved† 0 0 0 1

B0 0 0 1 z

B1 0 1 0 z

B2 0 1 1 z

A1 1 0 0 z

A2 1 0 1 z

Reserved 1 1 x‡ x‡

† This value is reserved for software breakpoints that are used for emulation purposes.
‡ x can be any value.

Conditional instructions are represented in codeby using square brackets, [],
surrounding the condition register name. The following execute packet
contains two ADD instructions in parallel. The first ADD is conditional on B0
being nonzero. The secondADD is conditional on B0 being zero. The charac-
ter ! indicates the inverse of the condition.

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2 B1,B2,B3

The above instructions are mutually exclusive, only one will execute. If they
are scheduled in parallel, mutually exclusive instructions are constrained as
described insection3.6. Ifmutually exclusive instructionsshareany resources
as described in section 3.6, they cannot be scheduled in parallel (put in the
same execute packet), even though only one will execute.

Resource Constraints

3-11Instruction SetSPRU731A

3.6 Resource Constraints

No two instructions within the same execute packet can use the same
resources. Also, no two instructions can write to the same register during the
same cycle. The following sections describe how an instruction can use each
of the resources.

3.6.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same
execute packet.

The following execute packet is invalid:

ADD .S1 A0, A1, A2 ; .S1 is used for
|| SHR .S1 A3, 15, A4 ; both instructions

The following execute packet is valid:

ADD .L1 A0, A1, A2 ; Two different functional
|| SHR .S1 A3, 15, A4 ; units are used

3.6.2 Constraints on Cross Paths (1X and 2X)

Only one unit (.S, .L, or .M unit) per data path, per execute packet, can read
asourceoperand from its opposite register file via the cross paths (1Xand2X).
provided that each unit is reading the same operand.

For example, the .S1 unit can read both its operands from the A register file; or
it can read an operand from the B register file using the 1X cross path and the
other from the A register file. The use of a cross path is denoted by an X following
the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being
used for two different B register operands:

MV .S1X B0,A0 ;Invalid: Instructions are using the 1X
|| MV .L1X B1,A1 ;cross path with different B registers

The following execute packet is valid because all uses of the 1X cross path are
for the same B register operand, and all uses of the 2X cross path are for the
same A register operand:

ADD.L1X A0,B1,A1 ;Instructions use the 1X
|| MPY.M2X B4,A4,B2 ;and 2X cross paths

The operand comes from a register file opposite of the destination, if the x bit
in the instruction field is set.

Resource Constraints

Instruction Set3-12 SPRU731A

3.6.3 Constraints on Loads and Stores

Load and store instructions can use an address pointer from one register file
while loading to or storing from the other register file. Two load and store
instructions using a destination/source from the same register file cannot be
issued in the same execute packet. The address registermust be on the same
side as the .D unit used.

The following execute packet is invalid:

LDW.D1 *A0,A1 ; \ .D2 unit must use the address
|| LDW.D2 *A2,B2 ; / register from the B register file

The following execute packet is valid:

LDW.D1 *A0,A1 ; \ Address registers from correct
|| LDW.D2 *B0,B2 ; / register files

Two loads and/or stores loading to and/or storing from the same register file
cannot be issued in the same execute packet.

The following execute packet is invalid:

LDW.D1 *A4,A5 ; \ Loading to and storing from the
|| STW.D2 A6,*B4 ; / same register file

The following execute packets are valid:

LDW.D1 *A4,B5 ; \ Loading to, and storing from
|| STW.D2 A6,*B4 ; / different register files

LDW.D1 *A0,B2 ; \ Loading to
|| LDW.D2 *B0,A1 ; / different register files

Resource Constraints

3-13Instruction SetSPRU731A

3.6.4 Constraints on Long (40-Bit) Data

Because the .Sand .L units sharea read register port for long sourceoperands
and a write register port for long results, only one long result may be issued
per register file in an execute packet. All instructions with a long result on the
.S and .L units have zero delay slots. See section 2.2 for the order for long
pairs.

The following execute packet is invalid:

ADD.L1 A5:A4,A1,A3:A2 ; \ Two long writes
|| SHL.S1 A8,A9,A7:A6 ; / on A register file

The following execute packet is valid:

ADD.L1 A5:A4,A1,A3:A2 ; \ One long write for
|| SHL.S2 B8,B9,B7:B6 ; / each register file

Because the .L and .S units share their long read port with the store port,
operations that read a long value cannot be issued on the .L and/or .S units
in the same execute packet as a store.

The following execute packet is invalid:

ADD.L1 A5:A4,A1,A3:A2 ; \ Long read operation and a
|| STW.D1 A8,*A9 ; / store

The following execute packets are valid:

ADD.L1 A4, A1, A3:A2 ; \ No long read with
|| STW.D1 A8,*A9 ; / the store

ADD.L1 A1,A5:A4,A3:A2 ; \ One long write for
|| SHL.S2 B8,B9,B7:B6 ; / each register file

ADD.L1 A4, A1, A3:A2 ; \ No long read with the
|| STW.D1T1 A8,*A9 ; / store on T1 path of .D1

Resource Constraints

Instruction Set3-14 SPRU731A

3.6.5 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle.
Conditional registers are not included in this count.

The following execute packets are invalid:

MPY .M1 A1, A1, A4 ; five reads of register A1
|| ADD .L1 A1, A1, A5
|| SUB .D1 A1, A2, A3

MPY .M1 A1, A1, A4 ; five reads of register A1
|| ADD .L1 A1, A1, A5
|| SUB .D2x A1, B2, B3

The following execute packet is valid:

MPY .M1 A1, A1, A4 ; only four reads of A1
|| [A1] ADD .L1 A0, A1, A5
|| SUB .D1 A1, A2, A3

Resource Constraints

3-15Instruction SetSPRU731A

3.6.6 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two
instructions with the same destination can be scheduled in parallel as long as
they do not write to the destination register on the same cycle. For example,
anMPY issued on cycle i followed by anADD on cycle i + 1 cannot write to the
same register becauseboth instructionswrite a result on cycle i+1.Therefore,
the following code sequence is invalid unless a branch occurs after theMPY,
causing the ADD not to be issued.

MPY .M1 A0, A1, A2
ADD .L1 A4, A5, A2

However, this code sequence is valid:

MPY .M1 A0, A1, A2
|| ADD .L1 A4, A5, A2

Figure 3--2 shows different multiple-write conflicts. For example, ADD and
SUB in execute packet L1 write to the same register. This conflict is easily
detectable.

MPY in packet L2 andADD in packet L3might bothwrite toB2simultaneously;
however, if a branch instruction causes the execute packet after L2 to be
something other than L3, a conflict would not occur. Thus, the potential conflict
in L2 and L3 might not be detected by the assembler. The instructions in L4
do not constitute a write conflict because they are mutually exclusive. In
contrast, because the instructions in L5may ormay not bemutually exclusive,
the assembler cannot determine a conflict. If the pipeline does receive
commands to perform multiple writes to the same register, the result is
undefined.

Figure 3--2. Examples of the Detectability of Write Conflicts by the Assembler

L1: ADD.L2 B5,B6,B7 ; \ detectable, conflict

|| SUB.S2 B8,B9,B7 ; /

L2: MPY.M2 B0,B1,B2 ; \ not detectable

L3: ADD.L2 B3,B4,B2 ; /

L4:[!B0] ADD.L2 B5,B6,B7 ; \ detectable, no conflict

|| [B0] SUB.S2 B8,B9,B7 ; /

L5:[!B1] ADD.L2 B5,B6,B7 ; \ not detectable

|| [B0] SUB.S2 B8,B9,B7 ; /

Addressing Modes

Instruction Set3-16 SPRU731A

3.7 Addressing Modes

The addressing modes on the C62x DSP are linear, circular using BK0, and
circular using BK1. The addressingmode is specified by the addressingmode
register (AMR), described in section 2.7.3.

All registers can perform linear addressing. Only eight registers can perform
circular addressing: A4--A7 are used by the .D1 unit and B4--B7 are used by
the .D2 unit. No other units can perform circular addressing.
LDB(U)/LDH(U)/LDW, STB/STH/STW, ADDAB/ADDAH/ADDAW, and
SUBAB/SUBAH/SUBAW instructions all use AMR to determine what type of
address calculations are performed for these registers.

3.7.1 Linear Addressing Mode

3.7.1.1 LD and ST Instructions

For load and store instructions, linear mode simply shifts the offsetR/cst
operand to the left by 2, 1, or 0 for word, halfword, or byte access, respectively;
and then performs an add or a subtract to baseR (depending on the operation
specified).

For the preincrement, predecrement, positive offset, and negative offset
address generation options, the result of the calculation is the address to be
accessed in memory. For postincrement or postdecrement addressing, the
valueofbaseRbefore theadditionor subtraction is theaddress tobeaccessed
from memory.

3.7.1.2 ADDA and SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the
src1/cst operand to the left by 2, 1, or 0 for word, halfword, or byte data sizes,
respectively, and then performs the add or subtract specified.

Addressing Modes

3-17Instruction SetSPRU731A

3.7.2 Circular Addressing Mode

TheBK0andBK1 fields in AMRspecify the block sizes for circular addressing,
see section 2.7.3.

3.7.2.1 LD and ST Instructions

Aswith linear address arithmetic, offsetR/cst is shifted left by 2, 1, or 0 accord-
ing to the data size, and is then added to or subtracted from baseR to produce
the final address.Circular addressingmodifies this slightly byonlyallowingbits
N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to
2(N + 1) range, regardless of the size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block-size of 8 is
8 bytes, not 8 times the data size (byte, halfword,word). So, to performcircular
addressing on an array of 8 words, a size of 32 should be specified, or N = 4.
Example 3--4 shows an LDW performed with register A4 in circular mode and
BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in
AMR for this example is 0004 0001h.

Example 3--4. LDW Instruction in Circular Mode

LDW .D1 *++A4[9],A1

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A1 XXXX XXXXh A1 XXXX XXXXh A1 1234 5678h

mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

Note: 9hwords is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h--11Fh; thus, it is wrapped around to
(124h -- 20h = 104h).

Addressing Modes

Instruction Set3-18 SPRU731A

3.7.2.2 ADDA and SUBA Instructions

Aswith linear address arithmetic, offsetR/cst is shifted left by 2, 1, or 0 accord-
ing to the data size, and is then added to or subtracted from baseR to produce
the final address.Circular addressingmodifies this slightly byonlyallowingbits
N through 0 of the result to be updated, leaving bits 31 through N + 1
unchanged after address arithmetic. The resulting address is bounded to
2(N + 1) range, regardless of the size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block size of 8 is
8 bytes, not 8 times the data size (byte, halfword,word). So, to performcircular
addressing on an array of 8 words, a size of 32 should be specified, or N = 4.
Example 3--5 shows an ADDAH performed with register A4 in circular mode
andBK0 = 4, so thebuffer size is 32bytes, 16halfwords, or 8 words. Thevalue
in AMR for this example is 0004 0001h.

Example 3--5. ADDAH Instruction in Circular Mode

ADDAH .D1 A4,A1,A4

Before ADDAH 1 cycle after ADDAH

A4 0000 0100h A4 0000 0106h

A1 0000 0013h A1 0000 0013h

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary 100h--11Fh; thus, it is wrapped
around to (126h -- 20h = 106h).

3.7.3 Syntax for Load/Store Address Generation

The C62x DSP has a load/store architecture, which means that the only way
to access data in memory is with a load or store instruction. Table 3--5 shows
the syntax of an indirect address to amemory location. Sometimes a large off-
set is required for a load/store. In this case, youcanuse theB14orB15 register
as the base register, and use a 15-bit constant (ucst15) as the offset.

Table 3--6 describes the addressing generator options. The memory address
is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5).

Addressing Modes

3-19Instruction SetSPRU731A

Table 3--5. Indirect Address Generation for Load/Store

Addressing Type
No Modification of
Address Register

Preincrement or
Predecrement of
Address Register

Postincrement or
Postdecrement of
Address Register

Register indirect *R *++R
*-- --R

*R++
*R-- --

Register relative *+R[ucst5]
*--R[ucst5]

*++R[ucst5]
*-- --R[ucst5]

*R++[ucst5]
*R-- --[ucst5]

Register relative with
15-bit constant offset

*+B14/B15[ucst15] not supported not supported

Base + index *+R[offsetR]
*--R[offsetR]

*++R[offsetR]
*-- --R[offsetR]

*R++[offsetR]
*R-- --[offsetR]

Table 3--6. Address Generator Options for Load/Store

Mode Field Syntax Modification Performed

0 0 0 0 *--R[ucst5] Negative offset

0 0 0 1 *+R[ucst5] Positive offset

0 1 0 0 *--R[offsetR] Negative offset

0 1 0 1 *+R[offsetR] Positive offset

1 0 0 0 *-- --R[ucst5] Predecrement

1 0 0 1 *++R[ucst5] Preincrement

1 0 1 0 *R-- --[ucst5] Postdecrement

1 0 1 1 *R++[ucst5] Postincrement

1 1 0 0 *----R[offsetR] Predecrement

1 1 0 1 *++R[offsetR] Preincrement

1 1 1 0 *R-- --[offsetR] Postdecrement

1 1 1 1 *R++[offsetR] Postincrement

Instruction Compatibility

Instruction Set3-20 SPRU731A

3.8 Instruction Compatibility

The C62x, C64x, and C67x DSPs share an instruction set. All of the instruc-
tions valid for the C62x DSP are also valid for the C64x and C67x DSPs.

3.9 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction
may present the following information:

- Assembler syntax
- Functional units
- Operands
- Opcode
- Description
- Execution
- Pipeline
- Instruction type
- Delay slots
- Examples

The ADD instruction is used as an example to familiarize you with the way
each instruction is described. The example describes the kind of information
you will find in each part of the individual instruction description and where to
obtain more information.

Instruction Compatibility / Instruction Descriptions

The way each instruction is described Example

3-21Instruction SetSPRU731A

The way each instruction is described.Example

Syntax EXAMPLE (.unit) src, dst
.unit = .L1, .L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates
which functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2,
.D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units
the instruction is mapped to, types of operands, and the opcode.

The opcode shows the various fields that make up each instruction. These
fields are described in Table 3--2 on page 3-5.

There are instructions that can be executed on more than one functional unit.
Table 3--7 shows how this is documented for theADD instruction. This instruc-
tion has three opcode map fields: src1, src2, and dst. In the fifth group, the
operands have the types cst5, long, and long for src1, src2, and dst, respec-
tively. The ordering of these fields implies cst5 + long→ long, where + repre-
sents the operation being performed by theADD. This operation can be done
on .L1 or .L2 (both are specified in the unit column). The s in front of each oper-
and signifies that src1 (scst5), src2 (slong), and dst (slong) are all signed
values.

In the ninth group, src1, src2, and dst are int, cst5, and int, respectively. The
u in front of the cst5 operand signifies that src1 (ucst5) is an unsigned value.
Any operand that begins with x can be read from a register file that is different
from the destination register file. The operand comes from the register file
opposite the destination, if the x bit in the instruction is set (shown in the
opcode map).

Example The way each instruction is described

3-22 Instruction Set SPRU731A

Table 3--7. Relationships Between Operands, Operand Size, Signed/Unsigned,
Functional Units, and Opfields for Example Instruction (ADD)

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 0011

src1
src2
dst

sint
xsint
slong

.L1, .L2 010 0011

src1
src2
dst

xsint
slong
slong

.L1, .L2 010 0001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 0010

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 0000

src1
src2
dst

sint
xsint
sint

.S1, .S2 00 0111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 00 0110

src2
src1
dst

sint
sint
sint

.D1, .D2 01 0000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 01 0010

The way each instruction is described Example

3-23Instruction SetSPRU731A

Description Instruction execution and its effect on the rest of the processor or memory
contents are described. Any constraints on the operands imposed by the
processor or the assembler are discussed. The description parallels and
supplements the information given by the execution block.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) src1 + src2→ dst
else nop

Execution for .D1, .D2 Opcodes

if (cond) src2 + src1→ dst
else nop

The execution describes the processing that takes place when the instruction
is executed. The symbols are defined in Table 3--1 (page 3-2).

Pipeline This section contains a table that shows the sources read from, the destina-
tions written to, and the functional unit used during each execution cycle of the
instruction.

Instruction Type This section gives the type of instruction. See section 4.2 (page 4-11) for
information about the pipeline execution of this type of instruction.

Delay Slots This section gives the number of delay slots the instruction takes to execute
See section 3.3 (page 3-6) for an explanation of delay slots.

Example Examples of instruction execution. If applicable, register and memory values
are given before and after instruction execution.

ABS Absolute Value With Saturation

3-24 Instruction Set SPRU731A

Absolute Value With SaturationABS

Syntax ABS (.unit) src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 001 1010

src2
dst

slong
slong

.L1, L2 011 1000

Description The absolute value of src2 is placed in dst.

Execution if (cond) abs(src2)→ dst
else nop

The absolute value of src2 when src2 is an sint is determined as follows:

1) If src2≥ 0, then src2→ dst
2) If src2< 0 and src2 ¸ --231, then --src2→ dst
3) If src2 = --231, then 231 -- 1→ dst

The absolute value of src2 when src2 is an slong is determined as follows:

1) If src2≥ 0, then src2→ dst
2) If src2< 0 and src2 ¸ --239, then --src2→ dst
3) If src2 = --239, then 239 -- 1→ dst

Pipeline
Stage E1

Read src2

Written dst

Unit in use .L

Pipeline

Absolute Value With Saturation ABS

3-25Instruction SetSPRU731A

Instruction Type Single-cycle

Delay Slots 0

Example 1 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 8000 4E3Dh -2147463619 A1 8000 4E3Dh -2147463619

A5 xxxx xxxxh A5 7FFF B1C3h 2147463619

Example 2 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 3FF6 0010h 1073086480 A1 3FF6 0010h 1073086480

A5 xxxx xxxxh A5 3FF6 0010h 1073086480

ADD Add Two Signed Integers Without Saturation

3-26 Instruction Set SPRU731A

Add Two Signed Integers Without SaturationADD

Syntax ADD (.unit) src1, src2, dst
or

ADD (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 0011

src1
src2
dst

sint
xsint
slong

.L1, .L2 010 0011

src1
src2
dst

xsint
slong
slong

.L1, .L2 010 0001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 0010

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 0000

Add Two Signed Integers Without Saturation ADD

3-27Instruction SetSPRU731A

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.S1, .S2 00 0111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 00 0110

Description for .L1, .L2 and .S1, .S2 Opcodes

src2 is added to src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond)
src1 + src2 → dst

else nop

ADD Add Two Signed Integers Without Saturation

3-28 Instruction Set SPRU731A

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 01 0000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 01 0010

Description for .D1, .D2 Opcodes

src1 is added to src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes

if (cond)
src2 + src1 → dst

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDK, ADDU, ADD2, SADD, SUB

Pipeline

Add Two Signed Integers Without Saturation ADD

3-29Instruction SetSPRU731A

Example 1 ADD .L2X A1,B1,B2

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

B1 FFFF FF12h -238 B1 FFFF FF12h

B2 xxxx xxxxh B2 0000 316Ch 12652

Example 2 ADD .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h -228§ A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0§ A5:A4 0000 0000h 0000 316Ch 12652§

§ Signed 40-bit (long) integer

Example 3 ADD .L1 -13,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 xxxx xxxxh A6 0000 324Dh 12877

Example 4 ADD .D1 A1,26,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 xxxx xxxxh A6 0000 3274h 12916

ADDAB Add Using Byte Addressing Mode

3-30 Instruction Set SPRU731A

Add Using Byte Addressing ModeADDAB

Syntax ADDAB (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0010

Description src1 is added to src2 using the byte addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4--A7 or B4--B7,
the mode can be changed to circular mode by writing the appropriate value to
the AMR (see section 2.7.3, page 2-10). The result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDAH, ADDAW

Pipeline

Add Using Byte Addressing Mode ADDAB

3-31Instruction SetSPRU731A

Example 1 ADDAB .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0103h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

ADDAH Add Using Halfword Addressing Mode

3-32 Instruction Set SPRU731A

Add Using Halfword Addressing ModeADDAH

Syntax ADDAH (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0100

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0110

Description src1 is added to src2 using the halfword addressing mode specified for src2.
The addition defaults to linear mode. However, if src2 is one of A4--A7 or
B4--B7, the mode can be changed to circular mode by writing the appropriate
value to the AMR (see section 2.7.3, page 2-10). If circular addressing is
enabled, src1 is left shifted by 1. The result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDAB, ADDAW

Pipeline

Add Using Halfword Addressing Mode ADDAH

3-33Instruction SetSPRU731A

Example 1 ADDAH .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0106h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

ADDAW Add Using Word Addressing Mode

3-34 Instruction Set SPRU731A

Add Using Word Addressing ModeADDAW

Syntax ADDAW (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 1000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 1010

Description src1 is added to src2 using the word addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4--A7 or B4--B7,
the mode can be changed to circular mode by writing the appropriate value to
theAMR (see section 2.7.3, page 2-10). If circular addressing is enabled, src1
is left shifted by 2. The result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDAB, ADDAH

Pipeline

Add Using Word Addressing Mode ADDAW

3-35Instruction SetSPRU731A

Example 1 ADDAW .D1 A4,2,A4

Before instruction 1 cycle after instruction

A4 0002 0000h A4 0002 0000h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

ADDK Add Signed 16-Bit Constant to Register

3-36 Instruction Set SPRU731A

Add Signed 16-Bit Constant to RegisterADDK

Syntax ADDK (.unit) cst, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 1 0 1 0 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

scst16
uint

.S1, .S2

Description A 16-bit signed constant, cst16, is added to the dst register specified. The
result is placed in dst.

Execution if (cond) cst + dst → dst
else nop

Pipeline
Stage E1

Read cst16

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example ADDK .S1 15401,A1

Before instruction 1 cycle after instruction

A1 0021 37E1h 2176993 A1 0021 740Ah 2192394

Pipeline

Add Two Unsigned Integers Without Saturation ADDU

3-37Instruction SetSPRU731A

Add Two Unsigned Integers Without SaturationADDU

Syntax ADDU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
ulong

.L1, .L2 010 1011

src1
src2
dst

xuint
ulong
ulong

.L1, .L2 010 1001

Description src2 is added to src1. The result is placed in dst.

Execution if (cond)
src1 + src2 → dst

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SADD, SUBU

Pipeline

ADDU Add Two Unsigned Integers Without Saturation

3-38 Instruction Set SPRU731A

Example 1 ADDU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890† A1 0000 325Ah

A2 FFFF FF12h 4294967058† A2 FFFF FF12h

A5:A4 xxxx xxxxh A5:A4 0000 0001h 0000 316Ch 4294979948‡

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

Example 2 ADDU .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h 1099511627538‡ A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0 A5:A4 0000 0000h 0000 316Ch 12652‡

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

Add Two 16-Bit Integers on Upper and Lower Register Halves ADD2

3-39Instruction SetSPRU731A

Add Two 16-Bit Integers on Upper and Lower Register HalvesADD2

Syntax ADD2 (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode

31 29 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Description The upper and lower halves of the src1 operand are added to the upper and
lower halves of the src2 operand. The values in src1 and src2 are treated as
signed, packed 16-bit data and the results are written in signed, packed 16-bit
format into dst.

For each pair of signed packed 16-bit values found in the src1 and src2, the
sum between the 16-bit value from src1 and the 16-bit value from src2 is
calculated to produce a16-bit result. The result is placed in the corresponding
positions in the dst. The carry from the lower half add does not affect the upper
half add.

31 16 15 0

a_hi a_lo src1

ADD2

b_hi b_lo src2

31 16 15 0

a_hi + b_hi a_lo + b_lo dst

ADD2 Add Two 16-Bit Integers on Upper and Lower Register Halves

3-40 Instruction Set SPRU731A

Execution if (cond) {
msb16(src1) + msb16(src2)→ msb16(dst);
lsb16(src1) + lsb16(src2)→ lsb16(dst);
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDU, SUB2

Example ADD2 .S1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0021 37E1h 33 14305 A1 0021 37E1h

A2 xxxx xxxxh A2 03BB 1C99h 955 7321

B1 039A E4B8h 922 58552 B1 039A E4B8h

Pipeline

Bitwise AND AND

3-41Instruction SetSPRU731A

Bitwise ANDAND

Syntax AND (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 111 1011

src1
src2
dst

scst5
xuint
uint

.L1, .L2 111 1010

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.S1, .S2 01 1111

src1
src2
dst

scst5
xuint
uint

.S1, .S2 01 1110

Description Performs a bitwiseAND operation between src1 and src2. The result is placed
in dst. The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 AND src2 → dst
else nop

AND Bitwise AND

3-42 Instruction Set SPRU731A

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

See Also OR, XOR

Example 1 AND .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 F7A1 302Ah A1 F7A1 302Ah

A2 xxxx xxxxh A2 02A0 2020h

B1 02B6 E724h B1 02B6 E724h

Example 2 AND .L1 15,A1,A3

Before instruction 1 cycle after instruction

A1 32E4 6936h A1 32E4 6936h

A3 xxxx xxxxh A3 0000 0006h

Pipeline

Branch Using a Displacement B

3-43Instruction SetSPRU731A

Branch Using a DisplacementB

Syntax B (.unit) label

.unit = .S1 or .S2

Opcode

31 29 28 27 7 6 5 4 3 2 1 0

creg z cst21 0 0 1 0 0 s p

3 1 21 1 1

Opcode map field used... For operand type... Unit

cst21 scst21 .S1, .S2

Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the
address of the first instruction of the fetch packet that contains the branch
instruction. The result is placed in the program fetch counter (PFC). The
assembler/linker automatically computes the correct value for cst21 by the
following formula:

cst21 = (label -- PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
usesadisplacement and theother usesa register, IRP, orNRP.As longasonly
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) cst21 << 2 + PCE1→ PFC
else nop

Notes:

1) PCE1 (program counter) represents the address of the first instruction
in the fetch packet in the E1 stage of the pipeline. PFC is the program
fetch counter.

2) Theexecute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

3) See section 3.4.2 on page 3-9 for information on branching into the
middle of an execute packet.

B Branch Using a Displacement

3-44 Instruction Set SPRU731A

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read

Written

Branch
Taken

n

Unit in use .S

Instruction Type Branch

Delay Slots 5

Example Table 3--8 gives the programcounter values and actions for the following code
example.

0000 0000 B .S1 LOOP
0000 0004 ADD .L1 A1, A2, A3
0000 0008 || ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .M1X A3, B3, A4
0000 0010 || SUB .D1 A5, A6, A6
0000 0014 MPY .M1 A3, A6, A5
0000 0018 MPY .M1 A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4

Table 3--8. Program Counter Values for Example Branch Using a Displacement

Cycle Program Counter Value Action

Cycle 0 0000 0000h Branch command executes
(target code fetched)

Cycle 1 0000 0004h

Cycle 2 0000 000Ch

Cycle 3 0000 0014h

Cycle 4 0000 0018h

Cycle 5 0000 001Ch

Cycle 6 0000 000Ch Branch target code executes

Cycle 7 0000 0014h

Pipeline

Branch Using a Register B

3-45Instruction SetSPRU731A

Branch Using a RegisterB

Syntax B (.unit) src2

.unit = .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z 0 0 0 0 0 src2 0 0 0 0 0 x 0 0 1 1 0 1 1 0 0 0 s p

3 1 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S2

Description src2 is placed in the program fetch counter (PFC).

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
usesadisplacement and theother usesa register, IRP, orNRP.As longasonly
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) src2 → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) Theexecute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

3) See section 3.4.2 on page 3-9 for information on branching into the
middle of an execute packet.

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch
Taken

n

Unit in use .S2

Pipeline

B Branch Using a Register

3-46 Instruction Set SPRU731A

Instruction Type Branch

Delay Slots 5

Example Table 3--9 gives the programcounter values and actions for the following code
example. In this example, the B10 register holds the value 1000 000Ch.

B10 1000 000Ch

1000 0000 B .S2 B10
1000 0004 ADD .L1 A1, A2, A3
1000 0008 || ADD .L2 B1, B2, B3
1000 000C MPY .M1X A3, B3, A4
1000 0010 || SUB .D1 A5, A6, A6
1000 0014 MPY .M1 A3, A6, A5
1000 0018 MPY .M1 A6, A7, A8
1000 001C SHR .S1 A4, 15, A4
1000 0020 ADD .D1 A4, A6, A4

Table 3--9. Program Counter Values for Example Branch Using a Register

Cycle Program Counter Value Action

Cycle 0 1000 0000h Branch command executes
(target code fetched)

Cycle 1 1000 0004h

Cycle 2 1000 000Ch

Cycle 3 1000 0014h

Cycle 4 1000 0018h

Cycle 5 1000 001Ch

Cycle 6 1000 000Ch Branch target code executes

Cycle 7 1000 0014h

Branch Using an Interrupt Return Pointer B IRP

3-47Instruction SetSPRU731A

Branch Using an Interrupt Return PointerB IRP

Syntax B (.unit) IRP

.unit = .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst 0 0 1 1 0 0 0 0 0 0 x 0 0 0 0 1 1 1 0 0 0 s p

3 1 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S2

Description IRP is placed in the program fetch counter (PFC). This instruction also moves
the PGIE bit value to the GIE bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
usesadisplacement and theother usesa register, IRP, orNRP.As longasonly
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) IRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is the program fetch counter.

2) Refer to Chapter 5, Interrupts, for more information on IRP, PGIE, and
GIE.

3) Theexecute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

4) See section 3.4.2 on page 3-9 for information on branching into the
middle of an execute packet.

B IRP Branch Using an Interrupt Return Pointer

3-48 Instruction Set SPRU731A

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read IRP

Written

Branch
Taken

n

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Example Table 3--10 gives the program counter values and actions for the following
code example. Given that an interrupt occurred at

PC = 0000 1000 IRP = 0000 1000

0000 0020 B .S2 IRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3--10. Program Counter Values for B IRP Instruction

Cycle Program Counter Value Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

Pipeline

Branch Using NMI Return Pointer B NRP

3-49Instruction SetSPRU731A

Branch Using NMI Return PointerB NRP

Syntax B (.unit) NRP

.unit = .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst 0 0 1 1 1 0 0 0 0 0 x 0 0 0 0 1 1 1 0 0 0 s p

3 1 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S2

Description NRP is placed in the program fetch counter (PFC). This instruction also sets
the NMIE bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
usesadisplacement and theother usesa register, IRP, orNRP.As longasonly
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) NRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) Refer to Chapter 5, Interrupts, for more information on NRP and NMIE.

3) Theexecute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

4) See section 3.4.2 on page 3-9 for information on branching into the
middle of an execute packet.

B NRP Branch Using NMI Return Pointer

3-50 Instruction Set SPRU731A

Target Instruction
Pipeline
Stage E1 PS PW PR DP DC E1

Read NRP

Written

Branch
Taken

n

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Example Table 3--11 gives the program counter values and actions for the following
code example. Given that an interrupt occurred at

PC = 0000 1000 NRP = 0000 1000

0000 0020 B .S2 NRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3--11. Program Counter Values for B NRP Instruction

Cycle Program Counter Value Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

Pipeline

Clear a Bit Field CLR

3-51Instruction SetSPRU731A

Clear a Bit FieldCLR

Syntax CLR (.unit) src2, csta, cstb, dst
or

CLR (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode Constant form

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 1 1 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

Opcode Register form

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xuint
uint
uint

.S1, .S2

CLR Clear a Bit Field

3-52 Instruction Set SPRU731A

Description The field in src2, specified by csta and cstb, is cleared to zero. csta and cstb
may be specified as constants or as the ten LSBs of the src1 registers, with
cstb being bits 0--4 and csta bits 5--9. csta signifies the bit location of the LSB
in the field and cstb signifies the bit location of the MSB in the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be cleared. The LSB location of src2 is 0 and the MSB location of
src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.

src2

dst

0x x1 1 1 1 10 0 0

0x x0 0 0 0 00 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 clear csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 clear src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SET

Pipeline

Clear a Bit Field CLR

3-53Instruction SetSPRU731A

Example 1 CLR .S1 A1,4,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 07A0 000Ah

Example 2 CLR .S2 B1,B3,B2

Before instruction 1 cycle after instruction

B1 03B6 E7D5h B1 03B6 E7D5h

B2 xxxx xxxxh B2 03B0 0001h

B3 0000 0052h B3 0000 0052h

CMPEQ Compare for Equality, Signed Integers

3-54 Instruction Set SPRU731A

Compare for Equality, Signed IntegersCMPEQ

Syntax CMPEQ (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 101 0011

src1
src2
dst

scst5
xsint
uint

.L1, .L2 101 0010

src1
src2
dst

xsint
slong
uint

.L1, .L2 101 0001

src1
src2
dst

scst5
slong
uint

.L1, .L2 101 0000

Description Compares src1 to src2. If src1 equals src2, then 1 is written to dst; otherwise,
0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst

else 0 → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Pipeline

Compare for Equality, Signed Integers CMPEQ

3-55Instruction SetSPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also CMPGT, CMPLT

Example 1 CMPEQ .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 04B8h 1208 A1 0000 04B8h

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 04B7h 1207 B1 0000 04B7h

Example 2 CMPEQ .L1 Ch,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Ch 12 A1 0000 000Ch

A2 xxxx xxxxh A2 0000 0001h true

Example 3 CMPEQ .L2X A1,B3:B2,B1

Before instruction 1 cycle after instruction

A1 F23A 3789h A1 F23A 3789h

B1 xxxx xxxxh B1 0000 0001h true

B3:B2 0000 00FFh F23A 3789h B3:B2 0000 00FFh F23A 3789h

CMPGT Compare for Greater Than, Signed Integers

3-56 Instruction Set SPRU731A

Compare for Greater Than, Signed IntegersCMPGT

Syntax CMPGT (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 100 0111

src1
src2
dst

scst5
xsint
uint

.L1, .L2 100 0110

src1
src2
dst

xsint
slong
uint

.L1, .L2 100 0101

src1
src2
dst

scst5
slong
uint

.L1, .L2 100 0100

Compare for Greater Than, Signed Integers CMPGT

3-57Instruction SetSPRU731A

Description Performs a signed comparison of src1 to src2. If src1 is greater than src2, then
a 1 is written to dst; otherwise, a 0 is written to dst.

Note:

TheCMPGT instruction allows using a 5-bit constant as src1. If src2 is a 5-bit
constant, as in

CMPGT .L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction to

CMPLT .L1 5, A4, A0

These two instructions are equivalent, with the second instruction using the
conventional operand types for src1 and src2.

Similarly, the CMPGT instruction allows a cross path operand to be used as
src2. If src1 is a cross path operand as in

CMPGT .L1x B4, A5, A0

Then to implement this operation the assembler converts this instruction to

CMPLT .L1x A5, B4, A0

In both of these operations the listing file (.lst) will have the first implementa-
tion, and the second implementation will appear in the debugger.

Execution if (cond) {
if (src1 > src2) 1 → dst

else 0→ dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPGTU, CMPLT

Pipeline

CMPGT Compare for Greater Than, Signed Integers

3-58 Instruction Set SPRU731A

Example 1 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 01B6h 438 A1 0000 01B6h

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 08BDh 2237 B1 0000 08BDh

Example 2 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 FFFF FE91h -367 A1 FFFF FE91h

A2 xxxx xxxxh A2 0000 0001h true

B1 FFFF FDC4h -572 B1 FFFF FDC4h

Example 3 CMPGT .L1 8,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0023h 35 A1 0000 0023h

A2 xxxx xxxxh A2 0000 0000h false

Example 4 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 00EBh 235 A1 0000 00EBh

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 00EBh 235 B1 0000 00EBh

Compare for Greater Than, Unsigned Integers CMPGTU

3-59Instruction SetSPRU731A

Compare for Greater Than, Unsigned IntegersCMPGTU

Syntax CMPGTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 100 1111

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 100 1110

src1
src2
dst

xuint
ulong
uint

.L1, .L2 100 1101

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 100 1100

Description Performs an unsigned comparison of src1 to src2. If src1 is greater than src2,
then a 1 is written to dst; otherwise, a 0 is written to dst. Only the four LSBs
are valid in the 5-bit dst field when the ucst4 operand is used. If theMSB of the
dst field is nonzero, the result is invalid.

Execution if (cond) {
if (src1 > src2) 1 → dst

else 0→ dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Pipeline

CMPGTU Compare for Greater Than, Unsigned Integers

3-60 Instruction Set SPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also CMPGT, CMPLTU

Example 1 CMPGTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0128h 296† A1 0000 0128h

A2 FFFF FFDEh 4294967262† A2 FFFF FFDEh

A3 xxxx xxxxh A3 0000 0000h false

† Unsigned 32-bit integer

Example 2 CMPGTU .L1 0Ah,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5† A1 0000 0005h

A2 xxxx xxxxh A2 0000 0001h true

† Unsigned 32-bit integer

Example 3 CMPGTU .L1 0Eh,A3:A2,A4

Before instruction 1 cycle after instruction

A3:A2 0000 0000h 0000 000Ah 10‡ A3:A2 0000 0000h 0000 000Ah

A4 xxxx xxxxh A4 0000 0001h true

‡ Unsigned 40-bit (long) integer

Compare for Less Than, Signed Integers CMPLT

3-61Instruction SetSPRU731A

Compare for Less Than, Signed IntegersCMPLT

Syntax CMPLT (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 101 0111

src1
src2
dst

scst5
xsint
uint

.L1, .L2 101 0110

src1
src2
dst

xsint
slong
uint

.L1, .L2 101 0101

src1
src2
dst

scst5
slong
uint

.L1, .L2 101 0100

CMPLT Compare for Less Than, Signed Integers

3-62 Instruction Set SPRU731A

Description Performs a signed comparison of src1 to src2. If src1 is less than src2, then
1 is written to dst; otherwise, 0 is written to dst.

Note:

TheCMPLT instruction allows using a 5-bit constant as src1. If src2 is a 5-bit
constant, as in

CMPLT .L1 A4, 5, A0

Then to implement this operation, the assembler converts this instruction to

CMPGT .L1 5, A4, A0

These two instructions are equivalent, with the second instruction using the
conventional operand types for src1 and src2.

Similarly, the CMPLT instruction allows a cross path operand to be used as
src2. If src1 is a cross path operand as in

CMPLT .L1x B4, A5, A0

Then to implement this operation, the assembler converts this instruction to

CMPGT .L1x A5, B4, A0

In both of these operations the listing file (.lst) will have the first implementa-
tion, and the second implementation will appear in the debugger.

Execution if (cond) {
if (src1 < src2) 1 → dst

else 0 → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPGT, CMPLTU

Pipeline

Compare for Less Than, Signed Integers CMPLT

3-63Instruction SetSPRU731A

Example 1 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 07E2h 2018 A1 0000 07E2h

A2 0000 0F6Bh 3947 A2 0000 0F6Bh

A3 xxxx xxxxh A3 0000 0001h true

Example 2 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 FFFF FED6h -298 A1 FFFF FED6h

A2 0000 000Ch 12 A2 0000 000Ch

A3 xxxx xxxxh A3 0000 0001h true

Example 3 CMPLT .L1 9,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5 A1 0000 0005h

A2 xxxx xxxxh A2 0000 0000h false

CMPLTU Compare for Less Than, Unsigned Integers

3-64 Instruction Set SPRU731A

Compare for Less Than, Unsigned IntegersCMPLTU

Syntax CMPLTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 101 1111

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 101 1110

src1
src2
dst

xuint
ulong
uint

.L1, .L2 101 1101

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 101 1100

Description Performsanunsigned comparisonof src1 to src2. If src1 is less than src2, then
1 is written to dst; otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 < src2) 1 → dst

else 0 → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Pipeline

Compare for Less Than, Unsigned Integers CMPLTU

3-65Instruction SetSPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also CMPGTU, CMPLT

Example 1 CMPLTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 289Ah 10394† A1 0000 289Ah

A2 FFFF F35Eh 4294964062† A2 FFFF F35Eh

A3 xxxx xxxxh A3 0000 0001h true

† Unsigned 32-bit integer

Example 2 CMPLTU .L1 14,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Fh 15† A1 0000 000Fh

A2 xxxx xxxxh A2 0000 0001h true

† Unsigned 32-bit integer

Example 3 CMPLTU .L1 A1,A5:A4,A2

Before instruction 1 cycle after instruction

A1 003B 8260h 3900000† A1 003B 8260h

A2 xxxx xxxxh A2 0000 0000h false

A5:A4 0000 0000h 003A 0002h 3801090‡ A5:A4 0000 0000h 003A 0002h

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

EXT Extract and Sign-Extend a Bit Field

3-66 Instruction Set SPRU731A

Extract and Sign-Extend a Bit FieldEXT

Syntax EXT (.unit) src2, csta, cstb, dst
or

EXT (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode Constant form

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 0 1 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

sint
ucst5
ucst5
sint

.S1, .S2

Opcode Register form

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xsint
uint
sint

.S1, .S2

Extract and Sign-Extend a Bit Field EXT

3-67Instruction SetSPRU731A

Description The field in src2, specified by csta and cstb, is extracted and sign-extended
to 32bits. Theextract is performedbya shift left followedby a signed shift right.
csta and cstb are the shift left amount and shift right amount, respectively. This
canbe thought of in termsof theLSBandMSBof the field tobeextracted.Then
csta = 31 -- MSB of the field and cstb = csta + LSB of the field. The shift left and
shift right amounts may also be specified as the ten LSBs of the src1 register
with cstb being bits 0--4 and csta bits 5--9. In the example below, csta is 12 and
cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the
instruction. If any of the 22 MSBs are non-zero, the result is invalid.

csta

x

cstb -- csta

src2

dst

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0

1 1 0 1 0 0 1 1 0 11 1

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 ext csta, cstb→ dst
else nop

If the register form is used:

if (cond) src2 ext src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline

EXT Extract and Sign-Extend a Bit Field

3-68 Instruction Set SPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also EXTU

Example 1 EXT .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 FFFF F21Fh

Example 2 EXT .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0073h A2 0000 0073h

A3 xxxx xxxxh A3 0000 03B6h

Extract and Zero-Extend a Bit Field EXTU

3-69Instruction SetSPRU731A

Extract and Zero-Extend a Bit FieldEXTU

Syntax EXTU (.unit) src2, csta, cstb, dst
or

EXTU (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode Constant width and offset form:

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 0 0 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

Opcode Register width and offset form:

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xuint
uint
uint

.S1, .S2

EXTU Extract and Zero-Extend a Bit Field

3-70 Instruction Set SPRU731A

Description The field in src2, specified by csta and cstb, is extracted and zero extended
to 32 bits. The extract is performed by a shift left followed by an unsigned shift
right. csta and cstb are the amounts to shift left and shift right, respectively.
This can be thought of in terms of the LSBandMSBof the field to be extracted.
Then csta = 31 -- MSB of the field and cstb = csta + LSB of the field. The shift
left and shift right amounts may also be specified as the ten LSBs of the src1
register with cstb being bits 0--4 and csta bits 5--9. In the example below, csta
is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register
version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.

0 1 0 1 0 0 1 1 0 10 0

x

csta cstb -- cst a

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0src2

dst

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 extu csta, cstb → dst
else nop

If the register width and offset form is used:

if (cond) src2 extu src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline

Extract and Zero-Extend a Bit Field EXTU

3-71Instruction SetSPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also EXT

Example 1 EXTU .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 0000 121Fh

Example 2 EXTU .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0156h A2 0000 0156h

A3 xxxx xxxxh A3 0000 036Eh

IDLE Multicycle NOPWith No Termination Until Interrupt

3-72 Instruction Set SPRU731A

Multicycle NOP With No Termination Until InterruptIDLE

Syntax IDLE

.unit = none

Opcode

31 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 s p

14 1 1

Description Performs an infinite multicycle NOP that terminates upon servicing an
interrupt, or a branch occurs due to an IDLE instruction being in the delay slots
of a branch.

Instruction Type NOP

Delay Slots 0

Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset LDB(U)

3-73Instruction SetSPRU731A

Load Byte From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

LDB(U)

Syntax Register Offset

LDB (.unit) *+baseR[offsetR], dst
or

LDBU (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDB (.unit) *+baseR[ucst5], dst
or

LDBU (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y op 0 1 s p

3 1 5 5 5 4 1 3 1 1

Description Loads a byte from memory to a general-purpose register (dst). Table 3--12
summarizes the data types supported by loads. Table 3--6 (page 3-19)
describes the addressing generator options. The memory address is formed
from a base address register (baseR) and an optional offset that is either a
register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given,
the assembler assigns an offset of zero.

offsetR and baseRmust be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed in memory.

Table 3--12. Data Types Supported by LDB(U) Instruction

Mnemonic
op
Field Load Data Type SIze

Left Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

LDB(U) Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-74 Instruction Set SPRU731A

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4--A7 and for B4--B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper
24 bits of dst values are sign-extended; for LDBU, the upper 24 bits of dst are
zero-filled. The sbit determineswhich filedstwill be loaded into: s=0 indicates
dst will be loaded in the A register file and s = 1 indicates dst will be loaded in
the B register file. The r bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that donomodification to the
baseR canuse the syntax *R.Squarebrackets, [], indicate that theucst5offset
is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant
offset. You must type either brackets or parentheses around the specified
offset, if you use the optional offset parameter.

Execution if (cond) mem → dst
else nop

Pipeline
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.

See Also LDH, LDW

Pipeline

Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset LDB(U)

3-75Instruction SetSPRU731A

Example LDB .D1 *-A5[4],A7

Before LDB 1 cycle after LDB 5 cycles after LDB

A5 0000 0204h A5 0000 0204h A5 0000 0204h

A7 1951 1970h A7 1951 1970h A7 FFFF FFE1h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 200h E1h mem 200h E1h mem 200h E1h

LDB(U) Load Byte From Memory With a 15-Bit Unsigned Constant Offset

3-76 Instruction Set SPRU731A

Load Byte From Memory With a 15-Bit Unsigned Constant OffsetLDB(U)

Syntax LDB (.unit) *+B14/B15[ucst15], dst
or

LDBU (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z dst ucst15 y op 1 1 s p

3 1 5 15 1 3 1 1

Description Loads a byte from memory to a general-purpose register (dst). Table 3--13
summarizes the data types supported by loads. The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset,
which is a 15-bit unsigned constant (ucst15). The assembler selects this
format only when the constant is larger than five bits in magnitude. This
instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 0 bits. After scaling, ucst15 is
added to baseR. Subtraction is not supported. The result of the calculation is
the address sent to memory. The addressing arithmetic is always performed
in linear mode.

For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper
24 bits of dst values are sign-extended; for LDBU, the upper 24 bits of dst are
zero-filled. The sbit determineswhich filedstwill be loaded into: s=0 indicates
dst will be loaded in the A register file and s = 1 indicates dst will be loaded in
the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 0.
Parentheses, (), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Table 3--13. Data Types Supported by LDB(U) Instruction (15-Bit Offset)

Mnemonic
op
Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits

Load Byte From Memory With a 15-Bit Unsigned Constant Offset LDB(U)

3-77Instruction SetSPRU731A

Execution if (cond) mem→ dst
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDH, LDW

Example LDB .D2 *+B14[36],B1

Before LDB 1 cycle after LDB

B1 XXXX XXXXh B1 XXXX XXXXh

B14 0000 0100h B14 0000 0100h

mem 124-127h 4E7A FF12h mem 124-127h 4E7A FF12h

mem 124h 12h mem 124h 12h

5 cycles after LDB

B1 0000 0012h

B14 0000 0100h

mem 124-127h 4E7A FF12h

mem 124h 12h

Pipeline

LDH(U) Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-78 Instruction Set SPRU731A

Load Halfword From Memory With a 5-Bit Unsigned Constant Offset
or Register Offset

LDH(U)

Syntax Register Offset

LDH (.unit) *+baseR[offsetR], dst
or

LDHU (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDH (.unit) *+baseR[ucst5], dst
or

LDHU (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y op 0 1 s p

3 1 5 5 5 4 1 3 1 1

Description Loadsahalfword frommemory toageneral-purpose register (dst). Table 3--14
summarizes the data types supported by halfword loads. Table 3--6
(page 3-19) describes the addressing generator options. The memory
address is formed froma base address register (baseR) and an optional offset
that is either a register (offsetR) or a5-bit unsignedconstant (ucst5). If anoffset
is not given, the assembler assigns an offset of zero.

offsetR and baseRmust be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed in memory.

Table 3--14. Data Types Supported by LDH(U) Instruction

Mnemonic
op
Field Load Data Type SIze

Left Shift of
Offset

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset LDH(U)

3-79Instruction SetSPRU731A

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4--A7 and for B4--B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

ForLDH(U), the values are loaded into the 16 LSBs of dst. ForLDH, the upper
16 bits of dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-
filled. The s bit determines which file dstwill be loaded into: s = 0 indicates dst
will be loaded in the A register file and s = 1 indicates dst will be loaded in the
B register file. The r bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that donomodification to the
baseR canuse the syntax *R.Squarebrackets, [], indicate that theucst5offset
is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant
offset. You must type either brackets or parentheses around the specified
offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution if (cond) mem → dst
else nop

Pipeline
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.

See Also LDB, LDW

Pipeline

LDH(U) Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-80 Instruction Set SPRU731A

Example LDH .D1 *++A4[A1],A8

Before LDH 1 cycle after LDH 5 cycles after LDH

A1 0000 0002h A1 0000 0002h A1 0000 0002h

A4 0000 0020h A4 0000 0024h A4 0000 0024h

A8 1103 51FFh A8 1103 51FFh A8 FFFF A21Fh

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 24h A21Fh mem 24h A21Fh mem 24h A21Fh

Load Halfword From Memory With a 15-Bit Unsigned Constant Offset LDH(U)

3-81Instruction SetSPRU731A

Load Halfword From Memory With a 15-Bit Unsigned Constant OffsetLDH(U)

Syntax LDH (.unit) *+B14/B15[ucst15], dst
or

LDHU (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z dst ucst15 y op 1 1 s p

3 1 5 15 1 3 1 1

Description Loadsahalfword frommemory toageneral-purpose register (dst). Table 3--15
summarizes the data types supported by loads. The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset,
which is a 15-bit unsigned constant (ucst15). The assembler selects this
format only when the constant is larger than five bits in magnitude. This
instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 1 bit. After scaling,ucst15 is added
to baseR. Subtraction is not supported. The result of the calculation is the
address sent to memory. The addressing arithmetic is always performed in
linear mode.

ForLDH(U), the values are loaded into the 16 LSBs of dst. ForLDH, the upper
16 bits of dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-
filled. The s bit determines which file dstwill be loaded into: s = 0 indicates dst
will be loaded in the A register file and s = 1 indicates dst will be loaded in the
B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 1.
Parentheses, (), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Table 3--15. Data Types Supported by LDH(U) Instruction (15-Bit Offset)

Mnemonic
op
Field Load Data Type SIze

Left Shift of
Offset

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

LDH(U) Load Halfword From Memory With a 15-Bit Unsigned Constant Offset

3-82 Instruction Set SPRU731A

Execution if (cond) mem→ dst
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDB, LDW

Pipeline

Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset LDW

3-83Instruction SetSPRU731A

Load Word From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

LDW

Syntax Register Offset

LDW (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDW (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y 1 1 0 0 1 s p

3 1 5 5 5 4 1 1 1

Description Loads a word from memory to a general-purpose register (dst). Table 3--6
(page 3-19) describes the addressing generator options. The memory
address is formed froma base address register (baseR) and an optional offset
that is either a register (offsetR) or a5-bit unsignedconstant (ucst5). If anoffset
is not given, the assembler assigns an offset of zero.

offsetR and baseRmust be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4--A7 and for B4--B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For LDW, the entire 32 bits fills dst. dst can be in either register file, regardless
of the .D unit or baseR or offsetR used. The s bit determines which file dstwill
be loaded into: s = 0 indicates dstwill be loaded in the A register file and s = 1
indicates dst will be loaded in the B register file. The r bit should be cleared to 0.

LDW Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-84 Instruction Set SPRU731A

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that donomodification to the
baseR canuse the syntax *R.Squarebrackets, [], indicate that theucst5offset
is left-shifted by 2. Parentheses, (), can be used to set a nonscaled, constant
offset. For example, LDW (.unit) *+baseR (12) dst represents an offset of
12 bytes; whereas, LDW (.unit) *+baseR [12] dst represents an offset of
12 words, or 48 bytes. You must type either brackets or parentheses around
the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) mem → dst
else nop

Pipeline
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.

See Also LDB, LDH

Pipeline

Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset LDW

3-85Instruction SetSPRU731A

Example 1 LDW .D1 *A10,B1

Before LDW 1 cycle after LDW 5 cycles after LDW

B1 0000 0000h B1 0000 0000h B1 21F3 1996h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 21F3 1996h mem 100h 21F3 1996h mem 100h 21F3 1996h

Example 2 LDW .D1 *A4++[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 4321h A6 1234 4321h A6 0798 F25Ah

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 100h 0798 F25Ah mem 100h 0798 F25Ah mem 100h 0798 F25Ah

mem 104h 1970 19F3h mem 104h 1970 19F3h mem 104h 1970 19F3h

Example 3 LDW .D1 *++A4[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 5678h A6 1234 5678h A6 0217 6991h

AMR 0000 0000h 0000 0000h AMR 0000 0000h

mem 104h 0217 6991h mem 104h 0217 6991h mem 104h 0217 6991h

LDW Load Word From Memory With a 15-Bit Unsigned Constant Offset

3-86 Instruction Set SPRU731A

Load Word From Memory With a 15-Bit Unsigned Constant OffsetLDW

Syntax LDW (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z dst ucst15 y 1 1 0 1 1 s p

3 1 5 15 1 1 1

Description Load a word from memory to a general-purpose register (dst). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and
an offset, which is a 15-bit unsigned constant (ucst15). The assembler selects
this format only when the constant is larger than five bits in magnitude. This
instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 2 bits. After scaling, ucst15 is
added to baseR. Subtraction is not supported. The result of the calculation is
the address sent to memory. The addressing arithmetic is always performed
in linear mode.

For LDW, the entire 32 bits fills dst. dst can be in either register file. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded
in the A register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 2.
Parentheses, (), canbeused to set a nonscaled, constant offset. For example,
LDW (.unit) *+B14/B15(60), dst represents an offset of 60 bytes; whereas,
LDW (.unit) *+B14/B15[60], dst represents an offset of 60words, or 240 bytes.
You must type either brackets or parentheses around the specified offset, if
you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) mem→ dst
else nop

Note:

This instruction executes only on the B side (.D2).

Load Word From Memory With a 15-Bit Unsigned Constant Offset LDW

3-87Instruction SetSPRU731A

Pipeline
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDB, LDH

Pipeline

LMBD Leftmost Bit Detection

3-88 Instruction Set SPRU731A

Leftmost Bit DetectionLMBD

Syntax LMBD (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 110 1011

src1
src2
dst

cst5
xuint
uint

.L1, .L2 110 1010

Description TheLSBof the src1operanddetermineswhether to search for a leftmost 1or 0
in src2. The number of bits to the left of the first 1 or 0 when searching for a 1
or 0, respectively, is placed in dst.

The following diagram illustrates the operation of LMBD for several cases.

1 1 1 1 1 1 1 1 1 11 1

x0 1 xx x x x xx x x

x x x x x x x00 0 x x x0 1 x x x x x x x x x xx x xx x xx

When searching for 1 in src2, LMBD returns 4:

When searching for 0 in src2, LMBD returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When searching for 0 in src2, LMBD returns 0:

Leftmost Bit Detection LMBD

3-89Instruction SetSPRU731A

Execution if (cond) {
if (src10 == 0) lmb0(src2) → dst
if (src10 == 1) lmb1(src2) → dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example LMBD .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0001h A1 0000 0001h

A2 009E 3A81h A2 009E 3A81h

A3 xxxx xxxxh A3 0000 0008h

Pipeline

MPY Multiply Signed 16 LSB x Signed 16 LSB

3-90 Instruction Set SPRU731A

Multiply Signed 16 LSB × Signed 16 LSBMPY

Syntax MPY (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

slsb16
xslsb16
sint

.M1, .M2 11001

src1
src2
dst

scst5
xslsb16
sint

.M1, .M2 11000

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYU, MPYSU, MPYUS, SMPY

Pipeline

Multiply Signed 16 LSB x Signed 16 LSB MPY

3-91Instruction SetSPRU731A

Example 1 MPY .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291† A1 0000 0123h

A2 01E0 FA81h -1407† A2 01E0 FA81h

A3 xxxx xxxxh A3 FFF9 C0A3 -409437

† Signed 16-LSB integer

Example 2 MPY .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h -13† A1 3497 FFF3h

A2 xxxx xxxxh A2 FFFF FF57h -163

† Signed 16-LSB integer

MPYH Multiply Signed 16 MSB x Signed 16 MSB

3-92 Instruction Set SPRU731A

Multiply Signed 16 MSB × Signed 16 MSBMPYH

Syntax MPYH (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHU, MPYHSU, MPYHUS, SMPYH

Example MPYH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 1234h -89† A2 FFA7 1234h

A3 xxxx xxxxh A3 FFFF F3D5h -3115

† Signed 16-MSB integer

Pipeline

Multiply Signed 16 MSB x Signed 16 LSB MPYHL

3-93Instruction SetSPRU731A

Multiply Signed 16 MSB × Signed 16 LSBMPYHL

Syntax MPYHL (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHLU, MPYHSLU, MPYHULS, SMPYHL

Example MPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 003Eh 138† A1 008A 003Eh

A2 21FF 00A7h 167‡ A2 21FF 00A7h

A3 xxxx xxxxh A3 0000 5A06h 23046

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline

MPYHLU Multiply Unsigned 16 MSB x Unsigned 16 LSB

3-94 Instruction Set SPRU731A

Multiply Unsigned 16 MSB × Unsigned 16 LSBMPYHLU

Syntax MPYHLU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xulsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHSLU, MPYHULS

Pipeline

Multiply Signed 16 MSB x Unsigned 16 LSB MPYHSLU

3-95Instruction SetSPRU731A

Multiply Signed 16 MSB × Unsigned 16 LSBMPYHSLU

Syntax MPYHSLU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xulsb16
sint

.M1, .M2

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHLU, MPYHULS

Pipeline

MPYHSU Multiply Signed 16 MSB x Unsigned 16 MSB

3-96 Instruction Set SPRU731A

Multiply Signed 16 MSB × Unsigned 16 MSBMPYHSU

Syntax MPYHSU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xumsb16
sint

.M1, .M2

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHU, MPYHUS

Example MPYHSU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 FFFFh 65447‡ A2 FFA7 FFFFh

A3 xxxx xxxxh A3 0022 F3D5h 2290645

† Signed 16-MSB integer
‡ Unsigned 16-MSB integer

Pipeline

Multiply Unsigned 16 MSB x Unsigned 16 MSB MPYHU

3-97Instruction SetSPRU731A

Multiply Unsigned 16 MSB × Unsigned 16 MSBMPYHU

Syntax MPYHU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xumsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHSU, MPYHUS

Example MPYHU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35‡ A1 0023 0000h

A2 FFA7 1234h 65447‡ A2 FFA7 1234h

A3 xxxx xxxxh A3 0022 F3D5h 2290645§

‡ Unsigned 16-MSB integer
§ Unsigned 32-bit integer

Pipeline

MPYHULS Multiply Unsigned 16 MSB x Signed 16 LSB

3-98 Instruction Set SPRU731A

Multiply Unsigned 16 MSB × Signed 16 LSBMPYHULS

Syntax MPYHULS (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xslsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHLU, MPYHSLU

Pipeline

Multiply Unsigned 16 MSB x Signed 16 MSB MPYHUS

3-99Instruction SetSPRU731A

Multiply Unsigned 16 MSB × Signed 16 MSBMPYHUS

Syntax MPYHUS (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xsmsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHU, MPYHSU

Pipeline

MPYLH Multiply Signed 16 LSB x Signed 16 MSB

3-100 Instruction Set SPRU731A

Multiply Signed 16 LSB × Signed 16 MSBMPYLH

Syntax MPYLH (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLHU, MPYLSHU, MPYLUHS, SMPYLH

Example MPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0900 000Eh 14† A1 0900 000Eh

A2 0029 00A7h 41‡ A2 0029 00A7h

A3 xxxx xxxxh A3 0000 023Eh 574

† Signed 16-LSB integer
‡ Signed 16-MSB integer

Pipeline

Multiply Unsigned 16 LSB x Unsigned 16 MSB MPYLHU

3-101Instruction SetSPRU731A

Multiply Unsigned 16 LSB × Unsigned 16 MSBMPYLHU

Syntax MPYLHU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xumsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLSHU, MPYLUHS

Pipeline

MPYLSHU Multiply Signed 16 LSB x Unsigned 16 MSB

3-102 Instruction Set SPRU731A

Multiply Signed 16 LSB × Unsigned 16 MSBMPYLSHU

Syntax MPYLSHU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xumsb16
sint

.M1, .M2

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLHU, MPYLUHS

Pipeline

Multiply Unsigned 16 LSB x Signed 16 MSB MPYLUHS

3-103Instruction SetSPRU731A

Multiply Unsigned 16 LSB × Signed 16 MSBMPYLUHS

Syntax MPYLUHS (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xsmsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLHU, MPYLSHU

Pipeline

MPYSU Multiply Signed 16 LSB x Unsigned 16 LSB

3-104 Instruction Set SPRU731A

Multiply Signed 16 LSB × Unsigned 16 LSBMPYSU

Syntax MPYSU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

slsb16
xulsb16
sint

.M1, .M2 11011

src1
src2
dst

scst5
xulsb16
sint

.M1, .M2 11110

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYU, MPYUS

Pipeline

Multiply Signed 16 LSB x Unsigned 16 LSB MPYSU

3-105Instruction SetSPRU731A

Example MPYSU .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h 65523‡ A1 3497 FFF3h

A2 xxxx xxxxh A2 000C FF57h 851779

‡ Unsigned 16-LSB integer

MPYU Multiply Unsigned 16 LSB x Unsigned 16 LSB

3-106 Instruction Set SPRU731A

Multiply Unsigned 16 LSB × Unsigned 16 LSBMPYU

Syntax MPYU (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xulsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYSU, MPYUS

Example MPYU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 0F12 FA81h 64129‡ A2 0F12 FA81h

A3 xxxx xxxxh A3 011C C0A3 18661539§

‡ Unsigned 16-LSB integer

Pipeline

Multiply Unsigned 16 LSB x Signed 16 LSB MPYUS

3-107Instruction SetSPRU731A

Multiply Unsigned 16 LSB × Signed 16 LSBMPYUS

Syntax MPYUS (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xslsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYU, MPYSU

Example MPYUS .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 1234 FFA1h 65441‡ A1 1234 FFA1h

A2 1234 FFA1h -95† A2 1234 FFA1h

A3 xxxx xxxxh A3 FFA1 2341h -6216895

† Signed 16-LSB integer
‡ Unsigned 16-LSB integer

Pipeline

MV Move From Register to Register

3-108 Instruction Set SPRU731A

Move From Register to RegisterMV

Syntax MV (.unit) src2, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 000 0010

src2
dst

slong
slong

.L1, .L2 010 0000

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 1 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsint
sint

.S1, .S2

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 s p

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

src2
dst

sint
sint

.D1, .D2

Move From Register to Register MV

3-109Instruction SetSPRU731A

Description The MV pseudo-operation moves a value from one register to another. The
assembler uses the ADD (.unit) 0, src2, dst operation to perform this task.

Execution if (cond) 0 + src2→ dst
else nop

Instruction Type Single-cycle

Delay Slots 0

MVC Move Between Control File and Register File

3-110 Instruction Set SPRU731A

Move Between Control File and Register FileMVC

Syntax MVC (.unit) src2, dst

.unit = .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 0 0 0 s p

3 1 5 5 1 6 1 1

Operands when moving from the control file to the register file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

uint
uint

.S2 00 1111

Description The src2 register ismoved from the control register file to the register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3--16
(page 3-112).

Operands when moving from the register file to the control file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

xuint
uint

.S2 00 1110

Description The src2 register ismoved from the register file to the control register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3--16
(page 3-112).

Move Between Control File and Register File MVC

3-111Instruction SetSPRU731A

Execution if (cond) src2→ dst
else nop

Note:

The MVC instruction executes only on the B side (.S2).

Refer to the individual control register descriptions for specific behaviors and
restrictions in accesses via the MVC instruction.

Pipeline
Stage E1

Read src2

Written dst

Unit in use .S2

Instruction Type Single-cycle

Any write to the ISR or ICR (by theMVC instruction) effectively has one delay
slot because the results cannot be read (by theMVC instruction) in the IFRuntil
two cycles after the write to the ISR or ICR.

Delay Slots 0

Example MVC .S2 B1,AMR

Before instruction 1 cycle after instruction

B1 F009 0001h B1 F009 0001h

AMR 0000 0000h AMR 0009 0001h

Note:

The six MSBs of the AMR are reserved and therefore are not written to.

Pipeline

MVC Move Between Control File and Register File

3-112 Instruction Set SPRU731A

Table 3--16. Register Addresses for Accessing the Control Registers

Acronym Register Name Address Read/ Write

AMR Addressing mode register 00000 R, W

CSR Control status register 00001 R, W

ICR Interrupt clear register 00011 W

IER Interrupt enable register 00100 R, W

IFR Interrupt flag register 00010 R

IRP Interrupt return pointer 00110 R, W

ISR Interrupt set register 00010 W

ISTP Interrupt service table pointer 00101 R, W

NRP Nonmaskable interrupt return pointer 00111 R, W

PCE1 Program counter, E1 phase 10000 R

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction

Move Signed Constant Into Register and Sign Extend MVK

3-113Instruction SetSPRU731A

Move Signed Constant Into Register and Sign ExtendMVK

Syntax MVK (.unit) cst, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 0 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

scst16
sint

.S1, .S2

Description The 16-bit signed constant, cst, is sign extended and placed in dst.

In most cases, the C6000 assembler and linker issue a warning or an error
when a constant is outside the range supported by the instruction. In the case
of MVK .S, a warning is issued whenever the constant is outside the signed
16-bit range, --32768 to 32767 (or FFFF 8000h to 0000 7FFFh).

For example:

MVK .S1 0x00008000X, A0

will generate a warning; whereas:

MVK .S1 0xFFFF8000, A0

will not generate a warning.

Execution if (cond) scst→ dst
else nop

Pipeline
Stage E1

Read

Written dst

Unit in use .S

Pipeline

MVK Move Signed Constant Into Register and Sign Extend

3-114 Instruction Set SPRU731A

Instruction Type Single cycle

Delay Slots 0

See Also MVKH, MVKL, MVKLH

Example 1 MVK .S2 -5,B8

Before instruction 1 cycle after instruction

B8 xxxx xxxxh B8 FFFF FFFBh

Example 2 MVK .S2 14,B8

Before instruction 1 cycle after instruction

B8 xxxx xxxxh B8 0000 000Eh

Move 16-Bit Constant Into Upper Bits of Register MVKH/MVKLH

3-115Instruction SetSPRU731A

Move 16-Bit Constant Into Upper Bits of RegisterMVKH/MVKLH

Syntax MVKH (.unit) cst, dst
or

MVKLH (.unit) cst, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 1 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

uscst16
sint

.S1, .S2

Description The 16-bit constant, cst16 , is loaded into the upper 16 bits of dst. The 16 LSBs
of dst are unchanged. For theMVKH instruction, the assembler encodes the
16MSBsof a32-bit constant into the cst16 field of theopcode .For theMVKLH
instruction, the assembler encodes the 16 LSBs of a constant into the cst16
field of the opcode.

Execution For the MVKLH instruction:

if (cond)((cst15..0) << 16) or (dst15..0) → dst
else nop

For the MVKH instruction:

if (cond)((cst31..16) << 16) or (dst15..0)→ dst
else nop

Pipeline
Stage E1

Read

Written dst

Unit in use .S

Pipeline

MVKH/MVKLH Move 16-Bit Constant Into Upper Bits of Register

3-116 Instruction Set SPRU731A

Instruction Type Single-cycle

Delay Slots 0

Note:

Use theMVK instruction (page 3-113) to load 16-bit constants. The assem-
bler generates a warning for any constant over 16 bits. To load 32-bit
constants, such as 1234 5678h, use the following pair of instructions:

MVKL 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVKL label
MVKH label

See Also MVK, MVKL

Example 1 MVKH .S1 0A329123h,A1

Before instruction 1 cycle after instruction

A1 0000 7634h A1 0A32 7634h

Example 2 MVKLH .S1 7A8h,A1

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 07A8 F25Ah

Move Signed Constant Into Register and Sign Extend--Used with MVKH MVKL

3-117Instruction SetSPRU731A

Move Signed Constant Into Register and Sign ExtendMVKL

Syntax MVKL (.unit) cst, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 0 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

scst16
sint

.S1, .S2

Description The MVKL pseudo-operation sign extends the 16-bit constant, cst16, and
places it in dst.

TheMVKL instruction isequivalent totheMVK instruction(page 3-113),except
that the MVKL instruction disables the constant range checking normally
performed by the assembler/linker. This allows the MVKL instruction to be
paired with the MVKH instruction (page 3-115) to generate 32-bit constants.

To load 32-bit constants, such as 1234 ABCDh, use the following pair of
instructions:

MVKL .S1 0x0ABCD, A4
MVKLH .S1 0x1234, A4

This could also be used:

MVKL .S1 0x1234ABCD, A4
MVKH .S1 0x1234ABCD, A4

Use this to load the address of a label:

MVKL .S2 label, B5
MVKH .S2 label, B5

Execution if (cond) scst→ dst
else nop

MVKL Move Signed Constant Into Register and Sign Extend--Used with MVKH

3-118 Instruction Set SPRU731A

Pipeline
Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single cycle

Delay Slots 0

See Also MVK, MVKH, MVKLH

Example 1 MVKL .S1 5678h,A8

Before instruction 1 cycle after instruction

A8 xxxx xxxxh A8 0000 5678h

Example 2 MVKL .S1 0C678h,A8

Before instruction 1 cycle after instruction

A8 xxxx xxxxh A8 FFFF C678h

Pipeline

Negate NEG

3-119Instruction SetSPRU731A

NegateNEG

Syntax NEG (.unit) src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 1 0 1 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsint
sint

.S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 000 0110

src2
dst

slong
slong

.L1, .L2 010 0100

Description The NEG pseudo-operation negates src2 and places the result in dst. The
assembler uses SUB (.unit) 0, src2, dst to perform this operation.

Execution if (cond) 0 --s src2→ dst
else nop

Instruction Type Single-cycle

Delay Slots 0

NOP No Operation

3-120 Instruction Set SPRU731A

No OperationNOP

Syntax NOP [count]

.unit = none

Opcode

31 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved 0 src 0 0 0 0 0 0 0 0 0 0 0 0 p

14 4 1

Opcode map field used... For operand type... Unit

src ucst4 none

Description src is encoded as count -- 1. For src + 1 cycles, no operation is performed. The
maximum value for count is 9.NOPwith no operand is treated likeNOP 1with
src encoded as 0000.

A multicycle NOP will not finish if a branch is completed first. For example, if
a branch is initiated on cycle n and a NOP 5 instruction is initiated on cycle
n + 3, the branch is complete on cycle n + 6 and theNOP is executed only from
cycle n + 3 to cycle n + 5. A single-cycleNOP in parallel with other instructions
does not affect operation.

Execution No operation for count cycles

Instruction Type NOP

Delay Slots 0

No Operation NOP

3-121Instruction SetSPRU731A

Example 1 NOP

MVK .S1 125h,A1

Before NOP

1 cycle after NOP
(No operation
executes)

1 cycle after
MVK

A1 1234 5678h A1 1234 5678h A1 0000 0125h

Example 2 MVK .S1 1,A1
MVKLH .S1 0,A1
NOP 5
ADD .L1 A1,A2,A1

Before NOP 5

1 cycle after ADD
instruction (6 cycles
after NOP 5)

A1 0000 0001h A1 0000 0004h

A2 0000 0003h A2 0000 0003h

NORM Normalize Integer

3-122 Instruction Set SPRU731A

Normalize IntegerNORM

Syntax NORM (.unit) src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
uint

.L1, .L2 110 0011

src2
dst

slong
uint

.L1, .L2 110 0000

Description The number of redundant sign bits of src2 is placed in dst. Several examples
are shown in the following diagram.

1 1 1 1 1 1 1 1 1 01 1

x0 1 xx x x x xx x x

In this case, NORM returns 3:

In this case, NORM returns 30:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In this case, NORM returns 0:

In this case, NORM returns 31:

x0 0 0 0 1 x x x x x x x x x x x x x x x x x xx x x x xx x x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 11 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

src2

src2

src2

src2

Normalize Integer NORM

3-123Instruction SetSPRU731A

Execution if (cond) norm(src) → dst
else nop

Pipeline
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 02A3 469Fh A1 02A3 469Fh

A2 xxxx xxxxh A2 0000 0005h 5

Example 2 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 FFFF F25Ah

A2 xxxx xxxxh A2 0000 0013h 19

Pipeline

NOT Bitwise NOT

3-124 Instruction Set SPRU731A

Bitwise NOTNOT

Syntax NOT (.unit) src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 1 1 0 1 1 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xuint
uint

.L1, .L2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 0 0 1 0 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xuint
uint

.S1, .S2

Description TheNOT pseudo-operation performs a bitwise NOT on the src2 operand and
places the result in dst. The assembler uses XOR (.unit) --1, src2, dst to
perform this operation.

Execution if (cond) --1 XOR src2→ dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Bitwise OR OR

3-125Instruction SetSPRU731A

Bitwise OROR

Syntax OR (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 111 1111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 111 1110

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.S1, .S2 01 1011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 01 1010

Description Performs a bitwiseOR operation between src1 and src2. The result is placed
in dst. The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 OR src2 → dst
else nop

OR Bitwise OR

3-126 Instruction Set SPRU731A

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

See Also AND, XOR

Example 1 OR .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 08A3 A49Fh A3 08A3 A49Fh

A4 00FF 375Ah A4 00FF 375Ah

A5 xxxx xxxxh A5 08FF B7DFh

Example 2 OR .L2 -12,B2,B8

Before instruction 1 cycle after instruction

B2 0000 3A41h B2 0000 3A41h

B8 xxxx xxxxh B8 FFFF FFF5h

Pipeline

Add Two Signed Integers With Saturation SADD

3-127Instruction SetSPRU731A

Add Two Signed Integers With SaturationSADD

Syntax SADD (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 001 0011

src1
src2
dst

xsint
slong
slong

.L1, .L2 011 0001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 001 0010

src1
src2
dst

scst5
slong
slong

.L1, .L2 011 0000

Description src1 is added to src2 and saturated, if an overflow occurs according to the
following rules:

1) If the dst is an int and src1 + src2 > 231 -- 1, then the result is 231 -- 1.
2) If the dst is an int and src1 + src2 < --231, then the result is --231.
3) If the dst is a long and src1 + src2 > 239 -- 1, then the result is 239 -- 1.
4) If the dst is a long and src1 + src2 < --239, then the result is --239.

The result is placed in dst. If a saturate occurs, the SAT bit in the control status
register (CSR) is set one cycle after dst is written.

Execution if (cond) src1 +s src2→ dst
else nop

SADD Add Two Signed Integers With Saturation

3-128 Instruction Set SPRU731A

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SSUB

Example 1 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 012A 3FA2h 19546018 A2 012A 3FA2h A2 012A 3FA2h

A3 xxxx xxxxh A3 5B58 9145h 1532531013 A3 5B58 9145h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 4367 71F2h 1130852850 A1 4367 71F2h A1 4367 71F2h

A2 5A2E 51A3h 1512984995 A2 5A2E 51A3h A2 5A2E 51A3h

A3 xxxx xxxxh A3 7FFF FFFFh 2147483647 A3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Pipeline

Add Two Signed Integers With Saturation SADD

3-129Instruction SetSPRU731A

Example 3 SADD .L1X B2,A5:A4,A7:A6

Before instruction 1 cycle after instruction

A5:A4 0000 0000h 7C83 39B1h 1922644401† A5:A4 0000 0000h 7C83 39B1h

A7:A6 xxxx xxxxh xxxx xxxxh A7:A6 0000 0000h 8DAD 7953h 2376956243†

B2 112A 3FA2h 287981474 B2 112A 3FA2h

CSR 0001 0100h CSR 0001 0100h

2 cycles after instruction

A5:A4 0000 0000h 7C83 39B1h

A7:A6 0000 0000h 83C3 7953h

B2 112A 3FA2h

CSR 0001 0100h Not saturated

† Signed 40-bit (long) integer

SAT Saturate a 40-Bit Integer to a 32-Bit Integer

3-130 Instruction Set SPRU731A

Saturate a 40-Bit Integer to a 32-Bit IntegerSAT

Syntax SAT (.unit) src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 0 0 0 0 0 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

slong
sint

.L1, .L2

Description A 40-bit src2 value is converted to a 32-bit value. If the value in src2 is greater
thanwhat can be represented in 32-bits, src2 is saturated. The result is placed
in dst. If a saturate occurs, the SAT bit in the control status register (CSR) is
set one cycle after dst is written.

Execution if (cond) {
if (src2 > (231 -- 1))

(231 -- 1)→ dst
else if (src2 < --231)

--231 → dst
else src231..0 → dst
}

else nop

Pipeline
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline

Saturate a 40-Bit Integer to a 32-Bit Integer SAT

3-131Instruction SetSPRU731A

Example 1 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 001Fh 3413 539Ah B1:B0 0000 001Fh 3413 539Ah B1:B0 0000 001Fh 3413 539Ah

B5 xxxx xxxxh B5 7FFF FFFFh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h

B5 xxxx xxxxh B5 7FFF FFFFh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 3 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h

B5 xxxx xxxxh B5 A190 7321h B5 A190 7321h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

SET Set a Bit Field

3-132 Instruction Set SPRU731A

Set a Bit FieldSET

Syntax SET (.unit) src2, csta, cstb, dst
or

SET (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode Constant form:

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 1 0 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

Opcode Register form:

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xuint
uint
uint

.S1, .S2

Set a Bit Field SET

3-133Instruction SetSPRU731A

Description The field in src2, specified by csta and cstb, is set to all 1s. The csta and cstb
operandsmay be specified as constants or in the ten LSBs of the src1 register,
with cstb being bits 0--4 and csta bits 5--9. csta signifies the bit location of the
LSBof the field and cstb signifies thebit locationof theMSBof the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be set to all 1s. The LSB location of src2 is 0 and the MSB location
of src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.

src2

dst

0x x1 1 1 1 10 0 0

x x1 11 1 1 11 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

Execution If the constant form is used:

if (cond) src2 SET csta, cstb→ dst
else nop

If the register form is used:

if (cond) src2 SET src19..5, src14..0 → dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also CLR

Pipeline

SET Set a Bit Field

3-134 Instruction Set SPRU731A

Example 1 SET .S1 A0,7,21,A1

Before instruction 1 cycle after instruction

A0 4B13 4A1Eh A0 4B13 4A1Eh

A1 xxxx xxxxh A1 4B3F FF9Eh

Example 2 SET .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 9ED3 1A31h B0 9ED3 1A31h

B1 0000 C197h B1 0000 C197h

B2 xxxx xxxxh B2 9EFF FA31h

Arithmetic Shift Left SHL

3-135Instruction SetSPRU731A

Arithmetic Shift LeftSHL

Syntax SHL (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 11 0011

src2
src1
dst

slong
uint
slong

.S1, .S2 11 0001

src2
src1
dst

xuint
uint
ulong

.S1, .S2 01 0011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 11 0010

src2
src1
dst

slong
ucst5
slong

.S1, .S2 11 0000

src2
src1
dst

xuint
ucst5
ulong

.S1, .S2 01 0010

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0--40. When an immediate is used, valid shift amounts are 0--31.

If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 << src1 → dst
else nop

SHL Arithmetic Shift Left

3-136 Instruction Set SPRU731A

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHR, SSHL

Example 1 SHL .S1 A0,4,A1

Before instruction 1 cycle after instruction

A0 29E3 D31Ch A0 29E3 D31Ch

A1 xxxx xxxxh A1 9E3D 31C0h

Example 2 SHL .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 4197 51A5h B0 4197 51A5h

B1 0000 0009h B1 0000 0009h

B2 xxxx xxxxh B2 2EA3 4A00h

Example 3 SHL .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0009h 4197 51A5h B1:B0 0000 0009h 4197 51A5h

B2 0000 0022h B2 0000 0000h

B3:B2 xxxx xxxxh xxxx xxxxh B3:B2 0000 0094h 0000 0000h

Pipeline

Arithmetic Shift Right SHR

3-137Instruction SetSPRU731A

Arithmetic Shift RightSHR

Syntax SHR (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 11 0111

src2
src1
dst

slong
uint
slong

.S1, .S2 11 0101

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 11 0110

src2
src1
dst

slong
ucst5
slong

.S1, .S2 11 0100

Description The src2operand is shifted to the right by the src1operand. Thesign-extended
result is placed in dst. When a register is used, the six LSBs specify the shift
amount and valid values are 0--40. When an immediate value is used, valid
shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>s src1→ dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline

SHR Arithmetic Shift Right

3-138 Instruction Set SPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHRU

Example 1 SHR .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 xxxx xxxxh A1 FFF1 2363h

Example 2 SHR .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 1492 5A41h B0 1492 5A41h

B1 0000 0012h B1 0000 0012h

B2 xxxx xxxxh B2 0000 0524h

Example 3 SHR .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0012h 1492 5A41h B1:B0 0000 0012h 1492 5A41h

B2 0000 0019h B2 0000 090Ah

B3:B2 xxxx xxxxh xxxx xxxxh B3:B2 0000 0000h 0000 090Ah

Logical Shift Right SHRU

3-139Instruction SetSPRU731A

Logical Shift RightSHRU

Syntax SHRU (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xuint
uint
uint

.S1, .S2 10 0111

src2
src1
dst

ulong
uint
ulong

.S1, .S2 10 0101

src2
src1
dst

xuint
ucst5
uint

.S1, .S2 10 0110

src2
src1
dst

ulong
ucst5
ulong

.S1, .S2 10 0100

Description The src2 operand is shifted to the right by the src1 operand. The
zero-extended result is placed in dst. When a register is used, the six LSBs
specify the shift amount and valid values are 0–40.When an immediate value
is used, valid shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>z src1→ dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline

SHRU Logical Shift Right

3-140 Instruction Set SPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR

Example SHRU .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 xxxx xxxxh A1 00F1 2363h

Multiply Signed 16 LSB x Signed 16 LSB With Left Shift and Saturation SMPY

3-141Instruction SetSPRU731A

Multiply Signed 16 LSB × Signed 16 LSB With Left Shift and SaturationSMPY

Syntax SMPY (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xslsb16
sint

.M1, .M2

Description The least significant 16 bits of src1operand ismultiplied by the least significant
16 bits of the src2 operand. The result is left shifted by 1 and placed in dst. If
the left-shifted result is 8000 0000h, then the result is saturated to
7FFF FFFFh. If a saturate occurs, the SAT bit in CSR is set one cycle after dst
is written. The source operands are signed by default.

Execution if (cond) {
if (((lsb16(src1) ¢ lsb16(src2)) << 1) != 8000 0000h)

((lsb16(src1) ¢ lsb16(src2)) << 1)→ dst
else

7FFF FFFFh → dst
}

else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPY, SMPYH, SMPYHL, SMPYLH

Pipeline

SMPY Multiply Signed 16 LSB x Signed 16 LSB With Left Shift and Saturation

3-142 Instruction Set SPRU731A

Example SMPY .M1 A1,A2,A3

Before instruction 2 cycle after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 01E0 FA81h -1407‡ A2 01E0 FA81h

A3 xxxx xxxxh A3 FFF3 8146h -818874

CSR 0001 0100h CSR 0001 0100h Not saturated

‡ Signed 16-LSB integer

Multiply Signed 16 MSB x Signed 16 MSB With Left Shift and Saturation SMPYH

3-143Instruction SetSPRU731A

Multiply Signed 16 MSB × Signed 16 MSB With Left Shift and SaturationSMPYH

Syntax SMPYH (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2

Description Themost significant 16bits of src1operand ismultiplied by themost significant
16 bits of the src2 operand. The result is left shifted by 1 and placed in dst. If
the left-shifted result is 8000 0000h, then the result is saturated to
7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set one cycle after
dst is written. The source operands are signed by default.

Execution if (cond) {
if (((msb16(src1) ¢ msb16(src2)) << 1) != 8000 0000h)

((msb16(src1) ¢ msb16(src2)) << 1)→ dst
else

7FFF FFFFh → dst
}

else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYH, SMPY, SMPYHL, SMPYLH

Pipeline

SMPYHL Multiply Signed 16 MSB x Signed 16 LSB With Left Shift and Saturation

3-144 Instruction Set SPRU731A

Multiply Signed 16 MSB × Signed 16 LSB With Left Shift and SaturationSMPYHL

Syntax SMPYHL (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2

Description Themost significant 16bits of the src1operand ismultiplied by the least signifi-
cant bits of the src2 operand. The result is left shifted by 1 and placed in dst.
If the left-shifted result is 8000 0000h, then the result is saturated to
7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set one cycle after
dst is written.

Execution if (cond) {
if (((msb16(src1) ¢ lsb16(src2)) << 1) != 8000 0000h)

((msb16(src1) ¢ lsb16(src2)) << 1)→ dst
else

7FFF FFFFh → dst
}

else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYHL, SMPY, SMPYH, SMPYLH

Pipeline

Multiply Signed 16 MSB x Signed 16 LSB With Left Shift and Saturation SMPYHL

3-145Instruction SetSPRU731A

Example SMPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 0000h 138† A1 008A 0000h

A2 0000 00A7h 167‡ A2 0000 00A7h

A3 xxxx xxxxh A3 0000 B40Ch 46092

CSR 0001 0100h CSR 0001 0100h Not saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer

SMPYLH Multiply Signed 16 LSB x Signed 16 MSB With Left Shift and Saturation

3-146 Instruction Set SPRU731A

Multiply Signed 16 LSB × Signed 16 MSB With Left Shift and SaturationSMPYLH

Syntax SMPYLH (.unit) src1, src2, dst

.unit = .M1 or .M2

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2

Description The least significant 16bits of the src1operand ismultiplied by themost signifi-
cant 16 bits of the src2 operand. The result is left shifted by 1 and placed in
dst. If the left-shifted result is 8000 0000h, then the result is saturated to
7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set one cycle after
dst is written.

Execution if (cond) {
if (((lsb16(src1) ¢ msb16(src2)) << 1) != 8000 0000h)

((lsb16(src1) ¢ msb16(src2)) << 1)→ dst
else

7FFF FFFFh → dst
}

else nop

Pipeline
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYLH, SMPY, SMPYH, SMPYHL

Pipeline

Multiply Signed 16 LSB x Signed 16 MSB With Left Shift and Saturation SMPYLH

3-147Instruction SetSPRU731A

Example SMPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 8000h -32768‡ A1 0000 8000h

A2 8000 0000h -32768† A2 8000 0000h

A3 xxxx xxxxh A3 7FFF FFFFh 2147483647

CSR 0001 0100h CSR 0001 0300h Saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer

SSHL Shift Left With Saturation

3-148 Instruction Set SPRU731A

Shift Left With SaturationSSHL

Syntax SSHL (.unit) src2, src1, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 10 0011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 10 0010

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used to specify the shift, the five least significant bits
specify the shift amount. Valid values are 0 through 31, and the result of the
shift is invalid if the shift amount is greater than 31. The result of the shift is
saturated to 32 bits. If a saturate occurs, the SAT bit in CSR is set one cycle
after dst is written.

Execution if (cond) {
if (bit(31) through bit(31--src1) of src2 are all 1s or all 0s)

dst = src2 << src1;
else if (src2 > 0)

saturate dst to 7FFF FFFFh;
else if (src2 < 0)

saturate dst to 8000 0000h;
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline

Shift Left With Saturation SSHL

3-149Instruction SetSPRU731A

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR

Example 1 SSHL .S1 A0,2,A1

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 02E3 031Ch A0 02E3 031Ch A0 02E3 031Ch

A1 xxxx xxxxh A1 0B8C 0C70h A1 0B8C 0C70h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SSHL .S1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4719 1925h A0 4719 1925h A0 4719 1925h

A1 0000 0006h A1 0000 0006h A1 0000 0006h

A2 xxxx xxxxh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

SSUB Subtract Two Signed Integers With Saturation

3-150 Instruction Set SPRU731A

Subtract Two Signed Integers With SaturationSSUB

Syntax SSUB (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 1111

src1
src2
dst

xsint
sint
sint

.L1, .L2 001 1111

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 1110

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 1100

Description src2 is subtracted from src1 and is saturated to the result size according to the
following rules:

1) If the result is an int and src1 -- src2 > 231 -- 1, then the result is 231 -- 1.
2) If the result is an int and src1 -- src2 < --231, then the result is --231.
3) If the result is a long and src1 -- src2 > 239 -- 1, then the result is 239 -- 1.
4) If the result is a long and src1 -- src2 < --239, then the result is --239.

The result is placed in dst. If a saturate occurs, the SAT bit in CSR is set
one cycle after dst is written.

Execution if (cond) src1 --s src2→ dst
else nop

Subtract Two Signed Integers With Saturation SSUB

3-151Instruction SetSPRU731A

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also SUB

Example 1 SSUB .L2 B1,B2,B3

Before instruction 1 cycle after instruction 2 cycles after instruction

B1 5A2E 51A3h 1512984995 B1 5A2E 51A3h B1 5A2E 51A3h

B2 802A 3FA2h -2144714846 B2 802A 3FA2h B2 802A 3FA2h

B3 xxxx xxxxh B3 7FFF FFFFh 2147483647 B3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SSUB .L1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4367 71F2h 1130852850 A0 4367 71F2h A0 4367 71F2h

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 xxxx xxxxh A2 E939 204Fh -382132145 A2 E939 204Fh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Pipeline

STB Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-152 Instruction Set SPRU731A

Store Byte to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

STB

Syntax Register Offset

STB (.unit) src, *+baseR[offsetR]

Unsigned Constant Offset

STB (.unit) src, *+baseR[ucst5]

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 0 1 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a byte to memory from a general-purpose register (src). Table 3--6
(page 3-19) describes the addressing generator options. The memory
address is formed froma base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseRmust be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is sent to memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4--A7 and for B4--B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

ForSTB, the 8 LSBs of the src register are stored. src can be in either register
file, regardless of the .D unit or baseR or offsetR used. The s bit determines
which file src is read from: s = 0 indicates src will be in the A register file and
s = 1 indicates src will be in the B register file. The r bit should be cleared to 0.

Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset STB

3-153Instruction SetSPRU731A

Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [], indicate that the ucst5
offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled,
constant offset. You must type either brackets or parentheses around the
specified offset, if you use the optional offset parameter.

Execution if (cond) src →mem
else nop

Pipeline
Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0
For more information on delay slots for a store, see Chapter 4.

See Also STH, STW

Example STB .D1 A1,*A10

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 11h mem 100h 11h mem 100h 34h

Pipeline

STB Store Byte to Memory With a 15-Bit Unsigned Constant Offset

3-154 Instruction Set SPRU731A

Store Byte to Memory With a 15-Bit Unsigned Constant OffsetSTB

Syntax STB (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z src ucst15 y 0 1 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a byte to memory from a general-purpose register (src). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and
an offset, which is a 15-bit unsigned constant (ucst15). The assembler selects
this format only when the constant is larger than five bits in magnitude. This
instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 0 bits. After scaling, ucst15 is
added to baseR. The result of the calculation is the address that is sent to
memory. The addressing arithmetic is always performed in linear mode.

ForSTB, the 8 LSBs of the src register are stored. src can be in either register
file. The s bit determines which file src is read from: s = 0 indicates src is in the
A register file and s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 0.
Parentheses, (), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Execution if (cond) src → mem
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline
Stage E1

Read B14/B15, src

Written

Unit in use .D2

Pipeline

Store Byte to Memory With a 15-Bit Unsigned Constant Offset STB

3-155Instruction SetSPRU731A

Instruction Type Store

Delay Slots 0

See Also STH, STW

Example STB .D2 B1,*+B14[40]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

B1 1234 5678h B1 1234 5678h B1 1234 5678h

B14 0000 1000h B14 0000 1000h B14 0000 1000h

mem 1028h 42h mem 1028h 42h mem 1028h 78h

STH Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-156 Instruction Set SPRU731A

Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

STH

Syntax Register Offset

STH (.unit) src, *+baseR[offsetR]

Unsigned Constant Offset

STH (.unit) src, *+baseR[ucst5]

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 1 0 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a halfword tomemory from a general-purpose register (src). Table 3--6
(page 3-19) describes the addressing generator options. The memory
address is formed froma base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseRmust be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is sent to memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4--A7 and for B4--B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

ForSTH, the 16LSBs of the src register are stored. src can be in either register
file, regardless of the .D unit or baseR or offsetR used. The s bit determines
which file src is read from: s = 0 indicates src will be in the A register file and
s = 1 indicates src will be in the B register file. The r bit should be cleared to 0.

Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset STH

3-157Instruction SetSPRU731A

Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [], indicate that the ucst5
offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled,
constant offset. You must type either brackets or parentheses around the
specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution if (cond) src →mem
else nop

Pipeline
Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0
For more information on delay slots for a store, see Chapter 4.

See Also STB, STW

Example 1 STH .D1 A1,*+A10(4)

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 104h 1134h mem 104h 1134h mem 104h 7634h

Pipeline

STH Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-158 Instruction Set SPRU731A

Example 2 STH .D1 A1,*A10--[A11]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 2634h A1 9A32 2634h A1 9A32 2634h

A10 0000 0100h A10 0000 00F8h A10 0000 00F8h

A11 0000 0004h A11 0000 0004h A11 0000 0004h

mem F8h 0000h mem F8h 0000h mem F8h 0000h

mem 100h 0000 mem 100h 0000h mem 100h 2634h

Store Halfword to Memory With a 15-Bit Unsigned Constant Offset STH

3-159Instruction SetSPRU731A

Store Halfword to Memory With a 15-Bit Unsigned Constant OffsetSTH

Syntax STH (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z src ucst15 y 1 0 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a halfword to memory from a general-purpose register (src). The
memory address is formed from a base address register B14 (y = 0) or
B15 (y = 1) and an offset, which is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction executes only on the .D2 unit.

Theoffset,ucst15, is scaledbya left-shift of 1 bit. After scaling,ucst15 is added
to baseR. The result of the calculation is the address that is sent to memory.
The addressing arithmetic is always performed in linear mode.

ForSTH, the 16LSBs of the src register are stored. src can be in either register
file. The s bit determines which file src is read from: s = 0 indicates src is in the
A register file and s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 1.
Parentheses, (), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution if (cond) src → mem
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline
Stage E1

Read B14/B15, src

Written

Unit in use .D2

Pipeline

STH Store Halfword to Memory With a 15-Bit Unsigned Constant Offset

3-160 Instruction Set SPRU731A

Instruction Type Store

Delay Slots 0

See Also STB, STW

Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset STW

3-161Instruction SetSPRU731A

Store Word to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

STW

Syntax Register Offset

STW (.unit) src, *+baseR[offsetR]

Unsigned Constant Offset

STW (.unit) src, *+baseR[ucst5]

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 1 1 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a word to memory from a general-purpose register (src). Table 3--6
(page 3-19) describes the addressing generator options. The memory
address is formed froma base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseRmust be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is sent to memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4--A7 and for B4--B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For STW, the entire 32-bits of the src register are stored. src can be in either
register file, regardless of the .D unit or baseR or offsetR used. The s bit deter-
mines which file src is read from: s = 0 indicates srcwill be in the A register file
and s = 1 indicates src will be in the B register file. The r bit should be cleared
to 0.

STW Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-162 Instruction Set SPRU731A

Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [], indicate that the ucst5
offset is left-shifted by 2. Parentheses, (), can be used to set a nonscaled,
constant offset. For example, STW (.unit) src, *+baseR(12) represents an
offset of 12bytes;whereas,STW (.unit) src, *+baseR[12] represents anoffset
of 12words, or 48 bytes. Youmust type either brackets or parentheses around
the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) src →mem
else nop

Pipeline
Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0
For more information on delay slots for a store, see Chapter 4.

See Also STB, STH

Example STW .D1 A1,*++A10[1]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0104h A10 0000 0104h

mem 100h 1111 1134h mem 100h 1111 1134h mem 100h 1111 1134h

mem 104h 0000 1111h mem 104h 0000 1111h mem 104h 9A32 7634h

Pipeline

Store Word to Memory With a 15-Bit Unsigned Constant Offset STW

3-163Instruction SetSPRU731A

Store Word to Memory With a 15-Bit Unsigned Constant OffsetSTW

Syntax STW (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z src ucst15 y 1 1 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a word to memory from a general-purpose register (src). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and
an offset, which is a 15-bit unsigned constant (ucst15). The assembler selects
this format only when the constant is larger than five bits in magnitude. This
instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 2 bits. After scaling, ucst15 is
added to baseR. The result of the calculation is the address that is sent to
memory. The addressing arithmetic is always performed in linear mode.

For STW, the entire 32-bits of the src register are stored. src can be in either
register file. The s bit determines which file src is read from: s = 0 indicates src
is in the A register file and s = 1 indicates src is in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 2. Paren-
theses, (), can be used to set a nonscaled, constant offset. For example,
STW (.unit) src, *+B14/B15(60) represents an offset of 12 bytes; whereas,
STW (.unit) src, *+B14/B15[60] representsanoffset of 60words,or 240bytes.
You must type either brackets or parentheses around the specified offset, if
you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) src → mem
else nop

Note:

This instruction executes only on the B side (.D2).

STW Store Word to Memory With a 15-Bit Unsigned Constant Offset

3-164 Instruction Set SPRU731A

Pipeline
Stage E1

Read B14/B15, src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

See Also STB, STH

Pipeline

Subtract Two Signed Integers Without Saturation SUB

3-165Instruction SetSPRU731A

Subtract Two Signed Integers Without SaturationSUB

Syntax SUB (.unit) src1, src2, dst
or

SUB (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 0111

src1
src2
dst

xsint
sint
sint

.L1, .L2 001 0111

src1
src2
dst

sint
xsint
slong

.L1, .L2 010 0111

src1
src2
dst

xsint
sint
slong

.L1, .L2 011 0111

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 0110

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 0100

SUB Subtract Two Signed Integers Without Saturation

3-166 Instruction Set SPRU731A

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.S1, .S2 01 0111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 01 0110

Description for .L1, .L2 and .S1, .S2 Opcodes

src2 is subtracted from src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond)
src1 -- src2→ dst

else nop

Opcode .D unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 01 0001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 01 0011

Description for .D1, .D2 Opcodes

src1 is subtracted from src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes

if (cond)
src2 -- src1 → dst

else nop

Subtract Two Signed Integers Without Saturation SUB

3-167Instruction SetSPRU731A

Note:

Subtractionwith a signedconstant on the .L and .Sunits allowseither the first
or the second operand to be the signed 5-bit constant.

SUB (.unit) src1, scst5,dst is encodedasADD (.unit) --scst5, src2,dstwhere
the src1 register is now src2 and scst5 is now --scst5.

However, the .D unit provides only the second operand as a constant since
it is an unsigned 5-bit constant. ucst5 allows a greater offset for addressing
with the .D unit.

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SSUB, SUBC, SUBU, SUB2

Example SUB .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810 A1 0000 325Ah

A2 FFFF FF12h -238 A2 FFFF FF12h

A3 xxxx xxxxh A3 0000 3348h 13128

Pipeline

SUBAB Subtract Using Byte Addressing Mode

3-168 Instruction Set SPRU731A

Subtract Using Byte Addressing ModeSUBAB

Syntax SUBAB (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0011

Description src1 is subtracted from src2using thebyteaddressingmodespecified for src2.
The subtraction defaults to linear mode. However, if src2 is one of A4--A7 or
B4--B7, the mode can be changed to circular mode by writing the appropriate
value to the AMR (see section 2.7.3, page 2-10). The result is placed in dst.

Execution if (cond) src2 --a src1→ dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAH, SUBAW

Pipeline

Subtract Using Byte Addressing Mode SUBAB

3-169Instruction SetSPRU731A

Example SUBAB .D1 A5,A0,A5

Before instruction 1 cycle after instruction

A0 0000 0004h A0 0000 0004h

A5 0000 4000h A5 0000 400Ch

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0

SUBAH Subtract Using Halfword Addressing Mode

3-170 Instruction Set SPRU731A

Subtract Using Halfword Addressing ModeSUBAH

Syntax SUBAH (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0101

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0111

Description src1 is subtracted from src2 using the halfword addressingmode specified for
src2. The subtraction defaults to linearmode.However, if src2 is one of A4--A7
or B4--B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.7.3, page 2-10). If circular addressing is
enabled, src1 is left shifted by 1. The result is placed in dst.

Execution if (cond) src2 --a src1→ dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAB, SUBAW

Pipeline

Subtract Using Word Addressing Mode SUBAW

3-171Instruction SetSPRU731A

Subtract Using Word Addressing ModeSUBAW

Syntax SUBAW (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1/cst op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 1001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 1011

Description src1 is subtracted from src2 using the word addressing mode specified for
src2. The subtraction defaults to linearmode.However, if src2 is one of A4--A7
or B4--B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.7.3, page 2-10). If circular addressing is
enabled, src1 is left shifted by 2. The result is placed in dst.

Execution if (cond) src2 --a src1→ dst
else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAB, SUBAH

Pipeline

SUBAW Subtract Using Word Addressing Mode

3-172 Instruction Set SPRU731A

Example SUBAW .D1 A5,2,A3

Before instruction 1 cycle after instruction

A3 xxxx xxxxh A3 0000 0108h

A5 0000 0100h A5 0000 0100h

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0

Subtract Conditionally and Shift--Used for Division SUBC

3-173Instruction SetSPRU731A

Subtract Conditionally and Shift—Used for DivisionSUBC

Syntax SUBC (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 1 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

uint
xuint
uint

.L1, .L2

Description Subtract src2 from src1. If result is greater than or equal to 0, left shift result
by 1, add 1 to it, and place it in dst. If result is less than 0, left shift src1 by 1,
and place it in dst. This step is commonly used in division.

Execution if (cond) {
if (src1 -- src2≥ 0)

((src1 -- src2) << 1) + 1→ dst
else src1 << 1→ dst
}

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SSUB, SUB, SUBU, SUB2

Pipeline

SUBC Subtract Conditionally and Shift--Used for Division

3-174 Instruction Set SPRU731A

Example 1 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0000 125Ah 4698 A0 0000 024B4h 9396

A1 0000 1F12h 7954 A1 0000 1F12h

Example 2 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0002 1A31h 137777 A0 0000 47E5h 18405

A1 0001 F63Fh 128575 A1 0001 F63Fh

Subtract Two Unsigned Integers Without Saturation SUBU

3-175Instruction SetSPRU731A

Subtract Two Unsigned Integers Without SaturationSUBU

Syntax SUBU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
ulong

.L1, .L2 010 1111

src1
src2
dst

xuint
uint
ulong

.L1, .L2 011 1111

Description src2 is subtracted from src1. The result is placed in dst.

Execution if (cond)
src1 -- src2→ dst

else nop

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADDU, SSUB, SUB, SUBC, SUB2

Pipeline

SUBU Subtract Two Unsigned Integers Without Saturation

3-176 Instruction Set SPRU731A

Example SUBU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810† A1 0000 325Ah

A2 FFFF FF12h 4294967058† A2 FFFF FF12h

A5:A4 xxxx xxxxh xxxx xxxxh A5:A4 0000 00FFh 0000 3348h -4294954168‡

† Unsigned 32-bit integer
‡ Signed 40-bit (long) integer

Subtract Two 16-Bit Integers on Upper and Lower Register Halves SUB2

3-177Instruction SetSPRU731A

Subtract Two 16-Bit Integers on Upper and Lower Register HalvesSUB2

Syntax SUB2 (.unit) src1, src2, dst

.unit = .S1 or .S2

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Description The upper and lower halves of src2 are subtracted from the upper and lower
halves of src1 and the result is placed in dst. Any borrow from the lower-half
subtraction does not affect the upper-half subtraction. Specifically, the
upper-half of src2 is subtracted from the upper-half of src1 and placed in the
upper-half of dst. The lower-half of src2 is subtracted from the lower-half of
src1 and placed in the lower-half of dst.

31 16 15 0

a_hi a_lo src1

SUB2

b_hi b_lo src2

31 16 15 0

a_hi - b_hi a_lo - b_lo dst

Execution if (cond) {
(lsb16(src1) -- lsb16(src2))→ lsb16(dst);
(msb16(src1) -- msb16(src2))→ msb16(dst);
}

else nop

SUB2 Subtract Two 16-Bit Integers on Upper and Lower Register Halves

3-178 Instruction Set SPRU731A

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD2, SSUB, SUB, SUBC, SUBU

Example 1 SUB2 .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h 4357 28208

A4 1105 6980h 4357 27008 A4 1105 6980h 4357 27008

A5 xxxx xxxxh A5 0000 04B0h 0 1200

Example 2 SUB2 .S2X B1,A0,B2

Before instruction 1 cycle after instruction

A0 0021 3271h †33 12913‡ A0 0021 3271h

B1 003A 1B48h †58 6984‡ B1 003A 1B48h

B2 xxxx xxxxh B2 0019 E8D7h 25† -5929‡

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline

Bitwise Exclusive OR XOR

3-179Instruction SetSPRU731A

Bitwise Exclusive ORXOR

Syntax XOR (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 110 1111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 110 1110

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1/cst x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.S1, .S2 00 1011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 00 1010

Description Performs a bitwise exclusive-OR (XOR) operation between src1 and src2.
The result is placed in dst. The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 XOR src2 → dst
else nop

XOR Bitwise Exclusive OR

3-180 Instruction Set SPRU731A

Pipeline
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

See Also AND, OR

Example 1 XOR .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 0721 325Ah A3 0721 325Ah

A4 0019 0F12h A4 0019 0F12h

A5 xxxx xxxxh A5 0738 3D48h

Example 2 XOR .L2 B1, 0dh, B8

Before instruction 1 cycle after instruction

B1 0000 1023h B1 0000 1023h

B8 xxxx xxxxh B8 0000 102Eh

Pipeline

Zero a Register ZERO

3-181Instruction SetSPRU731A

Zero a RegisterZERO

Syntax ZERO (.unit) dst

.unit = .L1, .L2, .D1, .D2, .S1, .S2

Opcode

Opcode map field used... For operand type... Unit Opfield

dst sint .L1, .L2 001 0111

dst sint .D1, .D2 01 0001

dst sint .S1, .S2 01 0111

dst slong .L1, .L2 011 0111

Description TheZERO pseudo-operation fills the dst register with 0s by subtracting the dst
from itself and placing the result in the dst.

In the case where dst is sint, the assembler uses the MVK (.unit) 0, dst
instruction.

In the case where dst is slong, the assembler uses the
SUB (.unit) src1, src2, dst instruction.

Execution if (cond) dst -- dst→ dst
else nop

Instruction Type Single-cycle

Delay Slots 0

See Also MVK, SUB

Example ZERO .D1 A1

Before instruction 1 cycle after instruction

A1 B174 6CA1h A1 0000 0000h

4-1PipelineSPRU731A

Pipeline

The C62x DSP pipeline provides flexibility to simplify programming and
improve performance. These two factors provide this flexibility:

1) Control of the pipeline is simplified by eliminating pipeline interlocks.

2) Increased pipelining eliminates traditional architectural bottlenecks in
program fetch, data access, andmultiply operations. This provides single-
cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

- The pipeline can dispatch eight parallel instructions every cycle.

- Parallel instructions proceed simultaneously through each pipeline
phase.

- Serial instructions proceed through the pipelinewith a fixed relative phase
difference between instructions.

- Load and store addresses appear on the CPU boundary during the same
pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and
decode, but require a varying number of execute phases. This chapter
contains a description of the number of execution phases for each type of
instruction.

Finally, this chapter contains performance considerations for the pipeline.
These considerations include the occurrence of fetch packets that contain
multiple execute packets, execute packets that contain multicycle NOPs, and
memory considerations for the pipeline. For more information about fully
optimizing a program and taking full advantage of the pipeline, see the
TMS320C6000 Programmer’s Guide (SPRU198).

Topic Page

4.1 Pipeline Operation Overview 4-2. .

4.2 Pipeline Execution of Instruction Types 4-11. .

4.3 Performance Considerations 4-18. .

Chapter 4

Pipeline Operation Overview

Pipeline4-2 SPRU731A

4.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

- Fetch
- Decode
- Execute

All instructions in the C62xDSP instruction set flow through the fetch, decode,
and execute stages of the pipeline. The fetch stage of the pipeline has four
phases for all instructions, and thedecodestagehas twophases for all instruc-
tions. The execute stage of the pipeline requires a varying number of phases,
depending on the type of instruction. The stages of the C62x DSP pipeline are
shown in Figure 4--1.

Figure 4--1. Pipeline Stages

Fetch Decode Execute

4.1.1 Fetch

The fetch phases of the pipeline are:

- PG: Program address generate
- PS: Program address send
- PW: Program access ready wait
- PR: Program fetch packet receive

The C62x DSP uses a fetch packet (FP) of eight words. All eight of the words
proceed through fetch processing together, through the PG, PS, PW, and PR
phases. Figure 4--2(a) shows the fetch phases in sequential order from left to
right. Figure 4--2(b) is a functional diagram of the flow of instructions through
the fetch phases. During the PG phase, the program address is generated in
the CPU. In the PS phase, the program address is sent to memory. In the PW
phase, a memory read occurs. Finally, in the PR phase, the fetch packet is
received at the CPU. Figure 4--2(c) shows fetch packets flowing through the
phases of the fetch stage of the pipeline. In Figure 4--2(c), the first fetch packet
(in PR) is made up of four execute packets, and the second and third fetch
packets (in PW and PS) contain two execute packets each. The last fetch
packet (in PG) contains a single execute packet of eight instructions.

Pipeline Operation Overview

4-3PipelineSPRU731A

Figure 4--2. Fetch Phases of the Pipeline

PRPWPSPG

PW

Memory

PS

PR

PG

Registers

units
Functional

(a) (b)

CPU

PR

PW

PS

PG

256

MVKLDWLDWSHLADDMVKLDWLDW

NOP

MVK

MV

BSADD

SMPYH

SADD

SHR

SMPY

SHR

SMPYH

LDW

LDW

LDW

LDW

MVKBSMPYSMPYHMVMVKLHLDWLDW

Fetch

SMPYH

Decode

(c)

4.1.2 Decode

The decode phases of the pipeline are:

- DP: Instruction dispatch
- DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute pack-
ets. Execute packets consist of one instruction or from two to eight parallel
instructions. During the DP phase, the instructions in an execute packet are
assigned to the appropriate functional units. In the DC phase, the the source
registers, destination registers, and associated paths are decoded for the
execution of the instructions in the functional units.

Pipeline Operation Overview

Pipeline4-4 SPRU731A

Figure 4--3(a) shows the decode phases in sequential order from left to right.
Figure 4--3(b) shows a fetch packet that contains two execute packets as they
are processed through the decode stage of the pipeline. The last six instruc-
tions of the fetch packet (FP) are parallel and form an execute packet (EP).
This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate
each instruction’sassigned functional unit forexecutionduring thesamecycle.
TheNOP instruction in theeighth slot of theFP is not dispatched to a functional
unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute
packet of two parallel instructions that were dispatched on the previous cycle.
This execute packet contains two MPY instructions that are now in decode
(DC) one cycle before execution. There are no instructions decoded for the .L,
.S, and .D functional units for the situation illustrated.

Figure 4--3. Decode Phases of the Pipeline

(b)

DCDP
(a)

DP
3232323232323232
NOP†ADDKSTWSTWADD

DCMPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional
units

† NOP is not dispatched to a functional unit.

Pipeline Operation Overview

4-5PipelineSPRU731A

4.1.3 Execute

The execute portion of the pipeline is subdivided into five phases (E1--E5).
Different types of instructions require different numbers of these phases to
complete their execution. These phases of the pipeline play an important role
in your understanding the device state at CPU cycle boundaries. The execu-
tion of different types of instructions in the pipeline is described in section 4.2,
Pipeline Execution of Instruction Types. Figure 4--4(a) shows the execute
phases of the pipeline in sequential order from left to right. Figure 4--4(b)
shows the portion of the functional block diagram in which execution occurs.

Figure 4--4. Execute Phases of the Pipeline

E4E3E2E1 E5(a)

(b)

Register file A Register file B

LD2LD1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

32

.L1
SADD

.S1
B

.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
SUBSMPYH

.M2

E1

.D1
STH

.D2
STH

Execute

ST2ST1

32 32

DA1 DA2

Pipeline Operation Overview

Pipeline4-6 SPRU731A

4.1.4 Pipeline Operation Summary

Figure 4--5 shows all the phases in each stage of the C62x DSP pipeline in
sequential order, from left to right.

Figure 4--5. Pipeline Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

Fetch Decode Execute

Figure 4--6 showsanexampleof thepipeline flowof consecutive fetchpackets
that contain eight parallel instructions. In this case, where the pipeline is full,
all instructions in a fetch packet are in parallel and split into oneexecute packet
per fetch packet. The fetch packets flow in lockstep fashion through each
phase of the pipeline.

For example, examine cycle 7 in Figure 4--6. When the instructions from FPn
reach E1, the instructions in the execute packet from FPn +1 are being
decoded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are
each in one of four phases of program fetch. See section 4.3, page 4-18, for
additional detail on code flowing through the pipeline. Table 4--1 summarizes
the pipeline phases and what happens in each phase.

Figure 4--6. Pipeline Operation: One Execute Packet per Fetch Packet

Clock cycle
Fetch
packet 1 2 3 4 5 6 7 8 9 10 11 12 13

n PG PS PW PR DP DC E1 E2 E3 E4 E5

n+1 PG PS PW PR DP DC E1 E2 E3 E4 E5

n+2 PG PS PW PR DP DC E1 E2 E3 E4 E5

n+3 PG PS PW PR DP DC E1 E2 E3 E4

n+4 PG PS PW PR DP DC E1 E2 E3

n+5 PG PS PW PR DP DC E1 E2

n+6 PG PS PW PR DP DC E1

n+7 PG PS PW PR DP DC

n+8 PG PS PW PR DP

n+9 PG PS PW PR

n+10 PG PS PW

Pipeline Operation Overview

4-7PipelineSPRU731A

Table 4--1. Operations Occurring During Pipeline Phases

Stage Phase Symbol During This Phase

Instruction
Type

Completed

Program
fetch

Program address
generate

PG The address of the fetch packet is determined.

Program address
send

PS The address of the fetch packet is sent to memory.

Program wait PW A program memory access is performed.

Program data
receive

PR The fetch packet is at the CPU boundary.

Program
decode

Dispatch DP The next execute packet in the fetch packet is deter-
mined and sent to the appropriate functional units to
be decoded.

Decode DC Instructions are decoded in functional units.

Execute Execute 1 E1 For all instruction types, the conditions for the
instructions are evaluated and operands are read.

For load and store instructions, address generation
is performed and address modifications are written
to a register file.†

For branch instructions, branch fetch packet in PG
phase is affected.†

For single-cycle instructions, results are written to a
register file.†

Single cycle

Execute 2 E2 For load instructions, the address is sent to memory.
For store instructions, the address and data are sent
to memory.†

Single-cycle instructions that saturate results set the
SAT bit in the control status register (CSR) if satura-
tion occurs.†

For single 16 × 16 multiply instructions, results are
written to a register file.†

Multiply

Execute 3 E3 Data memory accesses are performed. Any multiply
instruction that saturates results sets the SAT bit in
the control status register (CSR) if saturation
occurs.†

Store

Execute 4 E4 For load instructions, data is brought to the CPU.† Load

Execute 5 E5 For load instructions, data is written into a register.† Load

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write any results or have any pipeline operation after E1.

Pipeline Operation Overview

Pipeline4-8 SPRU731A

Figure 4--7 shows a functional block diagram of the pipeline stages.

Figure 4--7. Pipeline Phases Block Diagram

32 Data 2 32

DP

PR

PW

PS

PG

3232323232323232

256

SMPYHSMPYHLDWLDW

BSUBSMPY

SMPYH

SMPYH

SMPYH

SADDSADD

SADD

STH

LDW

STH

LDW

BSUBSMPYSMPYHSADDSADDSTHSTH

BSUBSMPYSMPYHSADDSADDSTHSTH

Register file A Register file B
Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

DCLDW SHRSMPYH MVLDWSMPYHSHR

32

E1
.L1

SADD
.S1
B

.D1.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
MVK

.D2
SMPYH
.M2

Fetch

Decode

Execute

SADD

SADD

SADD

SHR SHR

SHR SHR

DA 1

ST 1 LD 1 LD 2 ST 2

DA 2

Pipeline Operation Overview

4-9PipelineSPRU731A

The pipeline operation is based on CPU cycles. A CPU cycle is the period
duringwhich a particular execute packet is in a particular pipeline phase. CPU
cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts
of the C62x DSP. Figure 4--7 shows a full pipeline with a fetch packet in every
phase of fetch. One execute packet of eight instructions is being dispatched
at the same time that a 7-instruction execute packet is in decode. The arrows
between DP and DC correspond to the functional units identified in the code
in Example 4--1.

In the DC phase portion of Figure 4--7, one box is empty because a NOPwas
the eighth instruction in the fetch packet in DC and no functional unit is needed
for a NOP. Finally, Figure 4--7 shows six functional units processing code
during the same cycle of the pipeline.

Registers used by the instructions in E1 are shaded in Figure 4--7. The multi-
plexers used for the input operands to the functional units are also shaded in
the figure. The bold crosspaths are used by the MPY instructions.

Most C62x DSP instructions are single-cycle instructions, which means they
have only one execution phase (E1). A small number of instructions require
more than one execute phase. The types of instructions, each ofwhich require
different numbers of execute phases, are described in section 4.2.

Pipeline Operation Overview

Pipeline4-10 SPRU731A

Example 4--1. Execute Packet in Figure 4--7

SADD .L1 A2,A7,A2 ; E1 Phase
|| SADD .L2 B2,B7,B2
|| SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
|| B .S1 LOOP1
|| MVK .S2 117,B1

LDW .D2 *B4++,B3 ; DC Phase
|| LDW .D1 *A4++,A3
|| MV .L2X A1,B0
|| SMPYH .M1 A2,A2,A0
|| SMPYH .M2 B2,B2,B10
|| SHR .S1 A2,16,A5
|| SHR .S2 B2,16,B5

LOOP1:

STH .D1 A5,*A8++[2] ; DP, PW, and PG Phases
|| STH .D2 B5,*B8++[2]
|| SADD .L1 A2,A7.A2
|| SADD .L2 B2,B7,B2
|| SMPYH .M2X B3,A3,B2
|| SMPY .M1X B3,A3,A2
|| [B1] B .S1 LOOP1
|| [B1] SUB .S2 B1,1,B1

LDW .D2 *B4++,B3 : PR and PS Phases
|| LDW .D1 *A4++,A3
|| SADD .L1 A0,A1,A1
|| SADD .L2 B10,B0,B0
|| SMPYH .M1 A2,A2,A0
|| SMPYH .M2 B2,B2,B10
|| SHR .S1 A2,16,A5
|| SHR .S2 B2,16,B5

Pipeline Execution of Instruction Types

4-11PipelineSPRU731A

4.2 Pipeline Execution of Instruction Types

The pipeline operation of the C62x DSP instructions can be categorized into
six instruction types.Fiveof theseare shown inTable 4--2 (NOP is not included
in the table), which is a mapping of operations occurring in each execution
phase for the different instruction types. The delay slots associated with each
instruction type are also listed.

The execution of instructions is defined in terms of delay slots. A delay slot is
a CPU cycle that occurs after the first execution phase (E1) of an instruction.
Results from instructions with delay slots are not available until the end of the
last delay slot. For example, a multiply instruction has one delay slot, which
means that one CPU cycle elapses before the results of themultiply are avail-
able for use by a subsequent instruction. However, results are available from
other instructions finishing execution during the same CPU cycle in which the
multiply is in a delay slot.

Table 4--2. Execution Stage Length Description for Each Instruction Type

Instruction Type

Execution
phases Single Cycle

16 × 16 Single
Multiply Store Load Branch

E1 Compute result and
write to register

Read operands
and start
computations

Compute
address

Compute
address

Target code
in PG‡

E2 Compute result and
write to register

Send address
and data to
memory

Send address to
memory

E3 Access memory Access memory

E4 Send data back
to CPU

E5 Write data into
register

Delay
slots

0 1 0† 4† 5‡

† See sections 4.2.3 and 4.2.4 for more information on execution and delay slots for stores and loads.
‡ See section 4.2.5 for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

Pipeline Execution of Instruction Types

Pipeline4-12 SPRU731A

4.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipe-
line. Figure 4--8 shows the fetch, decode, and execute phases of the pipeline
that the single-cycle instructions use.

Figure 4--9 shows thesingle-cycleexecutiondiagram.Theoperandsare read,
the operation is performed, and the results are written to a register, all during
E1. Single-cycle instructions have no delay slots.

Figure 4--8. Single-Cycle Instruction Phases

PG PS PW PR DP DC E1

Figure 4--9. Single-Cycle Instruction Execution Block Diagram

(data)
Operands

Register file

Write results

Functional
unit

.L, .S, .M,
or .D

E1

Pipeline Execution of Instruction Types

4-13PipelineSPRU731A

4.2.2 Two-Cycle Instructions

Two-cycle or multiply instructions use both the E1 and E2 phases of the pipe-
line to complete their operations. Figure 4--10 shows the fetch, decode, and
execute phases of the pipeline that the two-cycle instructions use.

Figure 4--11 shows the operations occurring in the pipeline for a multiply
instruction. In the E1 phase, the operands are read and the multiply begins.
In theE2phase, themultiply finishes, and the result iswritten to the destination
register. Multiply instructions have one delay slot.

Figure 4--10. Two-Cycle Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot

Figure 4--11.Single 16 × 16 Multiply Instruction Execution Block Diagram

(data)
Operands

Register file

Write results

Functional
unit

.M

E1

E2

4.2.3 Store Instructions

Store instructions require phases E1 through E3 of the pipeline to complete
their operations. Figure 4--12 shows the fetch, decode, and execute phases
of the pipeline that the store instructions use.

Figure 4--13 shows the operations occurring in the pipeline phases for a store
instruction. In the E1 phase, the address of the data to be stored is computed.
In the E2 phase, the data and destination addresses are sent to datamemory.
In the E3 phase, a memory write is performed. The address modification is
performed in the E1 stage of the pipeline. Even though stores finish their
execution in the E3 phase of the pipeline, they have no delay slots. There is
additional explanation of why stores have zero delay slots in section 4.2.4.

Pipeline Execution of Instruction Types

Pipeline4-14 SPRU731A

Figure 4--12. Store Instruction Phases

PG PS PW PR DP DC E1 E2 E3

A
dd
re
ss

m
od
ifi
ca
tio
n

Figure 4--13. Store Instruction Execution Block Diagram

Memory

E2

E3

Memory controller

Register file

E1

.D

Data

E2

Address

Functional
unit

Whenyouperforma loadandastore to the samememory location, these rules
apply (i = cycle):

- When a load is executed before a store, the old value is loaded and the
new value is stored.
i LDW
i + 1 STW

- When a store is executed before a load, the new value is stored and the
new value is loaded.
i STW
i + 1 LDW

- When the instructions are executed in parallel, the old value is loaded first
and then the new value is stored, but both occur in the same phase.
i STW
i || LDW

Pipeline Execution of Instruction Types

4-15PipelineSPRU731A

4.2.4 Load Instructions

Data loads require all five, E1--E5, of the pipeline execute phases to complete
their operations. Figure 4--14 shows the fetch, decode, and execute phases
of the pipeline that the load instructions use.

Figure 4--15 shows the operations occurring in the pipeline phases for a load.
In the E1 phase, the data address pointer is modified in its register. In the E2
phase, the data address is sent to data memory. In the E3 phase, a memory
read at that address is performed.

Figure 4--14. Load Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

A
dd
re
ss

m
od
ifi
ca
tio
n

Figure 4--15. Load Instruction Execution Block Diagram

E5

Address

E3

Memory

E2

E4
Memory controller

Register file

E1

.D

Functional
unit

Data

Pipeline Execution of Instruction Types

Pipeline4-16 SPRU731A

In the E4 stage of a load, the data is received at the CPU core boundary. Finally,
in the E5 phase, the data is loaded into a register. Because data is not written
to the register until E5, load instructions have four delay slots. Becausepointer
results arewritten to the register in E1, there are no delay slots associatedwith
the address modification.

In the following code, pointer results are written to the A4 register in the first
execute phase of the pipeline and data is written to the A3 register in the fifth
execute phase.

LDW .D1 *A4++,A3

Because a store takes three execute phases to write a value to memory and
a load takes three execute phases to read from memory, a load following a
store accesses the value placed in memory by that store in the cycle after the
store is completed. This iswhy the store is considered to have zero delay slots.

Pipeline Execution of Instruction Types

4-17PipelineSPRU731A

4.2.5 Branch Instructions

Although branch instructions take one execute phase, there are five delay
slots between the execution of the branch and execution of the target code.
Figure 4--16 shows the pipeline phases used by the branch instruction and
branch target code. The delay slots are shaded.

Figure 4--17 shows a branch instruction execution block diagram. If a branch
is in the E1 phase of the pipeline (in the .S2 unit in the figure), its branch target
is in the fetch packet that is in PGduring that same cycle (shaded in the figure).
Because the branch target has to wait until it reaches the E1 phase to begin
execution, the branch takes five delay slots before the branch target code
executes.

Figure 4--16. Branch Instruction Phases

Branch
target

PG PS PW PR DP DC E1

5 delay slots

PG PS PW PR DP DC E1

Figure 4--17. Branch Instruction Execution Block Diagram

DP

PR

PW

PS

PG

3232323232323232

256

NOPMVSMPYHSMPYHSHRSHRLDWLDW

B

LDW

SUB

LDW

SMPY

SMPYH

SMPYH

SMPYH

SADD

SHR

SADD

SHR

STH

SADD

STH

SADD

BSUBSMPYSMPYHSADDSADDSTHSTH

MVKBSADDSADDSMPYSMPYH

DCLDWLDW

E1

.L1 .S1
MVK

.D1.M1
SMPY

.S2
B

.D2
SMPYH
.M2

Fetch

Decode

Execute

.L2

Performance Considerations

Pipeline4-18 SPRU731A

4.3 Performance Considerations
TheC62xDSPpipeline ismost effectivewhen it is kept as full as thealgorithms
in the program allow it to be. It is useful to consider some situations that can
affect pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. EachFPcanbe split into
from one to eight execute packets (EPs). Each EP contains instructions that
execute in parallel. Each instruction executes in an independent functional
unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes
serially with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of
instructions through the pipeline. Another defining factor is the instruction
types in the EP. Each type of instruction has a fixed number of execute cycles
that determineswhen this instruction’s operations are complete. Section 4.3.2
covers the effect of including a multicycle NOP in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is
considered. The access of programand datamemory is discussed, alongwith
memory stalls.

4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Referring to Figure 4--6 on page 4-6, pipeline operation is shown with eight
instructions in every fetch packet. Figure 4--18, however, shows the pipeline
operation with a fetch packet that containsmultiple execute packets. Code for
Figure 4--18 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D
|| instruction E

instruction F ; EP k + 2 FP n
|| instruction G
|| instruction H

instruction I ; EP k + 3 FP n + 1
|| instruction J
|| instruction K
|| instruction L
|| instruction M
|| instruction N
|| instruction O
|| instruction P

... continuing with EPs k + 4 through k + 8, which have
eight instructions in parallel, like k + 3.

Performance Considerations

4-19PipelineSPRU731A

Figure 4--18. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets

Clock cycle
Fetch
packet
(FP)

Execute
packet
(EP) 1 2 3 4 5 6 7 8 9 10 11 12 13

n k PG PS PW PR DP DC E1 E2 E3 E4 E5

n k+1 DP DC E1 E2 E3 E4 E5

n k+2 DP DC E1 E2 E3 E4 E5

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3

n+3 k+5 PG PS stall PW PR DP DC E1 E2

n+4 k+6 PG PS PW PR DP DC E1

n+5 k+7 PG PS PW PR DP DC

n+6 k+8 PG PS PW PR DP

In Figure 4--18, fetch packet n, which contains three execute packets, is
shown followed by six fetch packets (n + 1 through n + 6), each with one
execute packet (containing eight parallel instructions). The first fetch packet (n)
goes through the program fetch phases during cycles 1--4. During these
cycles, a program fetch phase is started for each of the fetch packets that
follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and
detects that thereare threeexecutepackets (k throughk + 2) in fetchpacket n.
This forces the pipeline to stall, which allows the DP phase to start for execute
packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready
to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have
time to perform the DP phase for each of the three execute packets (k through
k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7:
it was not allowed to enter the PG phase until after the pipeline stall was
released in cycle 8. The pipeline continues operation as shown with fetch
packets n + 5 and n + 6 until another fetch packet containing multiple execu-
tion packets enters the DP phase, or an interrupt occurs.

Performance Considerations

Pipeline4-20 SPRU731A

4.3.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue
a single instruction for multicycle NOPs. A NOP 2, for example, fills in extra
delay slots for the instructions in its executepacket and for all previousexecute
packets. If a NOP 2 is in parallel with an MPY instruction, the MPY result is
available for use by instructions in the next execute packet.

Figure 4--19 shows how a multicycle NOP drives the execution of other
instructions in the same execute packet. Figure 4--19(a) shows a NOP in an
execute packet (in parallel) with other code. The results of the LD, ADD, and
MPY is available during the proper cycle for each instruction.Hence,NOPhas
no effect on the execute packet.

Figure 4--19(b) shows the replacement of the single-cycle NOP with a
multicycle NOP (NOP 5) in the same execute packet. The NOP 5 causes no
operation to perform other than the operations from the instructions inside its
execute packet. The results of the LD,ADD, andMPY cannot be used by any
other instructions until the NOP 5 period has completed.

Figure 4--19. Multicycle NOP in an Execute Packet

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

Can use LD result

Can use MPY results

Can use ADD results

NOPMPYADDLD(a)

Execute packet

Cycle

i + 5

i + 4

i + 3

i + 2

i + 1

i

All values available on i + 5

NOP 5MPYADDLD

(b)

Performance Considerations

4-21PipelineSPRU731A

Figure 4--20 shows how a multicycle NOP can be affected by a branch. If the
delay slots of a branch finish while a multicycle NOP is still dispatching NOPs
into the pipeline, the branch overrides the multicycle NOP and the branch
target begins execution five delay slots after the branch was issued.

Figure 4--20. Branching and Multicycle NOPs

EP7
Normal

Cycle #

11

10

9

8

7

6

5

4

3

2

1

Target

E1

DC

DP

PR

PW

PS

PG

Branch

E1

EP6

EP5

EP4

EP3

EP2

EP1

NOP5ADDMPYLD

EP without branch

EP without branch

. . .B

EP without branch

EP without branch

Branch will execute here

Pipeline Phase

{

{

{

{

{

Branch
EP7

See Figure 4--19(b)

† Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in
EP6 forces the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch
coincide with cycles 2 through 6. Once the target code reaches E1 in cycle 7,
it executes.

Performance Considerations

Pipeline4-22 SPRU731A

4.3.3 Memory Considerations

The C62x DSP has a memory configuration with program memory in one
physical space and data memory in another physical space. Data loads and
program fetches have the same operation in the pipeline, they just use differ-
ent phases to complete their operations. With both data loads and program
fetches, memory accesses are broken into multiple phases. This enables the
C62x DSP to access memory at a high speed. These phases are shown in
Figure 4--21.

Figure 4--21. Pipeline Phases Used During Memory Accesses

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

To understand the memory accesses, compare data loads and instruction
fetches/dispatches. The comparison is valid because data loads and program
fetchesoperate on internalmemories of the samespeedon theC62xDSPand
perform the same types of operations (listed in Table 4--3) to accommodate
those memories. Table 4--3 shows the operation of program fetches pipeline
versus the operation of a data load.

Table 4--3. Program Memory Accesses Versus Data Load Accesses

Operation
Program Memory
Access Phase

Data Load
Access Phase

Compute address PG E1

Send address to memory PS E2

Memory read/write PW E3

Program memory: receive fetch packet at CPU boundary
Data load: receive data at CPU boundary

PR E4

Program memory: send instruction to functional units
Data load: send data to register

DP E5

Performance Considerations

4-23PipelineSPRU731A

Depending on the type of memory and the time required to complete an
access, the pipeline may stall to ensure proper coordination of data and
instructions. This is discussed in section 4.3.3.1.

In the instance where multiple accesses are made to a single ported memory,
the pipeline stalls to allow the extra access to occur. This is called a memory
bank hit and is discussed in section 4.3.3.2.

4.3.3.1 Memory Stalls

Amemory stall occurswhenmemory is not ready to respond to anaccess from
the CPU. This access occurs during the PW phase for a program memory
access and during the E3 phase for a data memory access. The memory stall
causes all of the pipeline phases to lengthen beyond a single clock cycle, causing
execution to take additional clock cycles to finish. The results of the program
execution are identical whether a stall occurs or not. Figure 4--22 illustrates
this point.

Figure 4--22. Program and Data Memory Stalls

Clock cycle
Fetch
packet
(FP) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n PG PS PW PR DP DC E1 E2 E3 E4 E5

n+1 PG PS PW PR DP DC E1 E2 E3 E4

n+2 PG PS PW PR DP Program DC E1 E2 E3

n+3 PG PS PW PR memory stall DP DC Data E1 E2

n+4 PG PS PW PR DP memory stall DC E1

n+5 PG PS PW PR DP DC

n+6 PG PS PW PR DP

n+7 PG PS PW PR

n+8 PG PS PW

n+9 PG PS

n+10 PG

Performance Considerations

Pipeline4-24 SPRU731A

4.3.3.2 Memory Bank Hits

Most C62x devices use an interleaved memory bank scheme, as shown in
Figure 4--23; however, the C6211 DSP uses a two-level cache memory
scheme. Each number in Figure 4--23 represents a byte address. A load byte
(LDB) instruction fromaddress 0 loads byte 0 in bank 0. A load halfword (LDH)
from address 0 loads the halfword value in bytes 0 and 1, which are also in
bank 0. A load word (LDW) from address 0 loads bytes 0 through 3 in banks
0 and 1.

Figure 4--23. 4-Bank Interleaved Memory

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

Because each of these banks is single-ported memory, only one access to
each bank is allowed per cycle. Two accesses to a single bank in a given cycle
result in a memory stall that halts all pipeline operation for one cycle, while the
second value is read from memory. Two memory operations per cycle are
allowed without any stall, as long as they do not access the same bank.

Consider the code in Example 4--2. Because both loads are trying to access
the same bank at the same time, one load must wait. The first LDW accesses
bank 0 on cycle i + 2 (in the E3 phase) and the second LDW accesses bank 0
on cycle i + 3 (in the E3 phase). See Table 4--4 for identification of cycles and
phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate
this extra phase, the loadsmust access data from different banks (B4 address
would need to be in bank 1). Formore information on programming topics, see
the TMS320C6000 Programmer’s Guide (SPRU198).

Example 4--2. Load From Memory Banks

LDW .D1 *A4++,A5 ; load 1, A4 address is in bank 0
|| LDW .D2 *B4++,B5 ; load 2, B4 address is in bank 0

Performance Considerations

4-25PipelineSPRU731A

Table 4--4. Loads in Pipeline From Example 4--2

i i + 1 i + 2 i + 3 i + 4 i + 5

LDW .D1
Bank 0

E1 E2 E3 † E4 E5

LDW .D2
Bank 0

E1 E2 † E3 E4 E5

† Stall due to memory bank hit

For devices that have more than one memory space (see Figure 4--24), an
access to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

The internal memory of the C62x family of DSPs varies from device to device.
See your device-specific datasheet to determine the memory spaces in your
device.

Figure 4--24. 4-Bank Interleaved Memory With Two Memory Spaces

6 7

14 15

8N + 6 8N + 7

Bank 3Bank 2

8N + 58N + 4

1312

542 3

10 11

8N + 2 8N + 3

Bank 1Bank 0

8N + 18N

98

10

8M + 6 8M + 78M + 58M + 48M + 2 8M + 38M + 18M

Memory
space 0

Memory
space 1

Bank 3Bank 2Bank 1Bank 0

5-1InterruptsSPRU731A

9

Interrupts

This chapter describes CPU interrupts, including reset and the nonmaskable
interrupt (NMI). It details the related CPU control registers and their functions
in controlling interrupts. It also describes interrupt processing, the method the
CPU uses to detect automatically the presence of interrupts and divert
program execution flow to your interrupt service code. Finally, the chapter
describes the programming implications of interrupts.

Topic Page

5.1 Overview 5-2. .

5.2 Globally Enabling and Disabling Interrupts 5-10.

5.3 Individual Interrupt Control 5-12. .

5.4 Interrupt Detection and Processing 5-15. .

5.5 Performance Considerations 5-20. .

5.6 Programming Considerations 5-21. .

Chapter 5

Overview

Interrupts5-2 SPRU731A

5.1 Overview

Typically, DSPs work in an environment that contains multiple external
asynchronousevents. Theseevents require tasks to beperformedby theDSP
when they occur. An interrupt is an event that stops the current process in the
CPU so that the CPU can attend to the task needing completion because of
the event. These interrupt sources can be on chip or off chip, such as timers,
analog-to-digital converters, or other peripherals.

Servicing an interrupt involves saving the context of the current process,
completing the interrupt task, restoring the registers and the process context,
and resuming the original process. There are eight registers that control
servicing interrupts.

An appropriate transition on an interrupt pin sets the pending status of the
interrupt within the interrupt flag register (IFR). If the interrupt is properly
enabled, the CPU begins processing the interrupt and redirecting program
flow to the interrupt service routine.

5.1.1 Types of Interrupts and Signals Used

There are three types of interrupts on the C6000 CPU.

- Reset
- Maskable
- Nonmaskable

These three types are differentiated by their priorities, as shown in Table 5--1.
The reset interrupt has the highest priority and corresponds to the RESET signal.
The nonmaskable interrupt (NMI) has the second highest priority and corre-
sponds to the NMI signal. The lowest priority interrupts are interrupts 4--15
corresponding to the INT4--INT15 signals. RESET, NMI, and some of the
INT4--INT15 signals are mapped to pins on C6000 devices. Some of the
INT4--INT15 interrupt signals are used by internal peripherals and some may
be unavailable or can be used under software control. Check your device-
specific data manual to see your interrupt specifications.

Overview

5-3InterruptsSPRU731A

Table 5--1. Interrupt Priorities

Priority Interrupt Name Interrupt Type

Highest Reset Reset

NMI Nonmaskable

INT4 Maskable

INT5 Maskable

INT6 Maskable

INT7 Maskable

INT8 Maskable

INT9 Maskable

INT10 Maskable

INT11 Maskable

INT12 Maskable

INT13 Maskable

INT14 Maskable

Lowest INT15 Maskable

5.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return
it to a known state. The reset interrupt is unique in a number of ways:

- RESET is an active-low signal. All other interrupts are active-high signals.

- RESET must be held low for 10 clock cycles before it goes high again to
reinitialize the CPU properly.

- The instruction execution in progress is aborted and all registers are
returned to their default states.

- The reset interrupt service fetch packet must be located at a specific
address which is specific to the specific device. See the device data
manual for more information.

- RESET is not affected by branches.

5.1.1.2 Nonmaskable Interrupt (NMI)

NMI is the second-highest priority interrupt and is generally used to alert the
CPU of a serious hardware problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in
the interrupt enable register must be set to 1. If NMIE is set to 1, the only
condition that canpreventNMI processing is if theNMI occurs during the delay
slots of a branch (whether the branch is taken or not).

Overview

Interrupts5-4 SPRU731A

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared
at theoccurrenceof anNMI toprevent anotherNMI frombeingprocessed.You
cannot manually clear NMIE, but you can set NMIE to allow nested NMIs.
While NMI is cleared, all maskable interrupts (INT4--INT15) are disabled.

5.1.1.3 Maskable Interrupts (INT4- INT15)

The CPUs of the C6000 DSPs have 12 interrupts that are maskable. These
have lower priority than the NMI and reset interrupts. These interrupts can be
associated with external devices, on-chip peripherals, software control, or not
be available.

Assuming that a maskable interrupt does not occur during the delay slots of
a branch (this includes conditional branches that do not complete execution
due to a false condition), the following conditions must be met to process a
maskable interrupt:

- The global interrupt enable bit (GIE) bit in the control status register (CSR)
is set to1.

- The NMIE bit in the interrupt enable register (IER) is set to1.

- The corresponding interrupt enable (IE) bit in the IER is set to1.

- The corresponding interrupt occurs, which sets the corresponding bit in
the interrupt flags register (IFR) to 1 and there are no higher priority
interrupt flag (IF) bits set in the IFR.

5.1.1.4 Interrupt Acknowledgment (IACK) and Interrupt Number (INUMn)

The IACK and INUMn signals alert hardware external to the C6000 that an
interrupt has occurred and is being processed. The IACK signal indicates that
the CPU has begun processing an interrupt. The INUMn signal (INUM3--
INUM0) indicates the number of the interrupt (bit position in the IFR) that is
being processed. For example:

INUM3 = 0 (MSB)
INUM2 = 1
INUM1 = 1
INUM0 = 1 (LSB)

Together, these signals provide the 4-bit value 0111, indicating INT7 is being
processed.

Overview

5-5InterruptsSPRU731A

5.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt
service table (IST). The IST is a table of fetch packets that contain code for
servicing the interrupts. The IST consists of 16 consecutive fetch packets.
Each interrupt service fetchpacket (ISFP) containseight instructions.Asimple
interrupt service routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 5--1. Because
each fetch packet contains eight 32-bit instruction words (or 32 bytes), each
address in the table is incremented by 32 bytes (20h) from the one adjacent
to it.

Figure 5--1. Interrupt Service Table

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Overview

Interrupts5-6 SPRU731A

5.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 5--2 shows an
ISFP that contains an interrupt service routine small enough to fit in a single
fetch packet (FP). To branch back to the main program, the FP contains a
branch to the interrupt return pointer instruction (B IRP). This is followed by a
NOP 5 instruction to allow the branch target to reach the execution stage of
the pipeline.

Note:

If the NOP 5 was not in the routine, the CPU would execute the next five
execute packets (some of which are likely to be associated with the next
ISFP) because of the delay slots associated with the B IRP instruction. See
section 4.2.5 for more information.

Figure 5--2. Interrupt Service Fetch Packet

Instr3

Interrupt service table
(IST)

Instr2

Instr4

Instr5

Instr6

B IRP

NOP 5

ISFP for INT6

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

0C0h

0C4h

0C8h

0CCh

0D0h

0D4h

0D8h

0DCh

The interrupt service
routine for INT6 is short
enough to be contained
in a single fetch packet.

Program memory

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Instr1

Overview

5-7InterruptsSPRU731A

If the interrupt service routine for an interrupt is too large to fit in a single fetch
packet, a branch to the location of additional interrupt service routine code is
required. Figure 5--3 shows that the interrupt service routine for INT4 was too
large for a single fetch packet, and a branch to memory location 1234h is
required to complete the interrupt service routine.

Note:

The instruction B LOOP branches into the middle of a fetch packet and
processes code starting at address 1234h. The CPU ignores code from
address 1220h--1230h, even if it is in parallel to code at address 1234h.

Figure 5--3. Interrupt Service Table With Branch to Additional Interrupt Service Code
Located Outside the IST

IST

RESET ISFP

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

Additional ISFP for INT4

1220h

The interrupt service routine
for INT4 includes this

7-instruction extension of
the interrupt ISFP. Instr1

Instr2

B LOOP

Instr4

Instr5

Instr6

Instr7

Instr8

ISFP for INT4

080h

084h

088h

08Ch

090h

094h

098h

09Ch

Program memory

--

--

--

--

--

Instr9

Instr11

1224h

1228h

122Ch

1230h

LOOP: 1234h

1238h

123Ch

B IRP

000h

020h

040h

060h

080h

0A0h

0C0h

0E0h

100h

120h

140h

160h

180h

1A0h

1C0h

1E0h

Additional ISFP for INT4

1240h Instr12

Instr13

Instr14

Instr15

--

--

--

1244h

1248h

124Ch

1250h

1254h

1258h

125Ch

--

Overview

Interrupts5-8 SPRU731A

5.1.2.2 Interrupt Service Table Pointer (ISTP)

The reset fetch packetmust be located at the default location (see device data
manual for more information), but the rest of the IST can be at any program
memory location that is on a 256-word boundary (that is, any 1K byte bound-
ary). The location of the IST is determined by the interrupt service table base
(ISTB) field of the interrupt service table pointer register (ISTP). The ISTP is
shown in Figure 2--11 (page 2-21) and described in Table 2--12 (page 2-21).
Example 5--1 shows the relationship of the ISTB to the table location.

Example 5--1. Relocation of Interrupt Service Table

IST

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

0

820h

840h

860h

880h

8A0h

8C0h

8E0h

900h

920h

940h

96h0

980h

9A0h

9C0h

9E0h

Program memory

800h

RESET ISFP

1) Copy IST, located between 0h and 200h, to the memory location
between 800h and A00h.

2) Write 800h to ISTP: MVK 800h, A2
MVC A2, ISTP

ISTP = 800h = 1000 0000 0000b

RESET ISFP

Assume: IFR = BBC0h = 1011 1011 1100 0000b
IER = 1230h = 0001 0010 0011 0001b

2 enabled interrupts pending: INT9 and INT12

The 1s in IFR indicate pending interrupts; the 1s in IER
indicate the interrupts that are enabled. INT9 has a higher priority
than INT12, so HPEINT is encoded with the value for INT9, 01001b.

HPEINT corresponds to bits 9--5 of the ISTP:
ISTP = 1001 0010 0000b = 920h = address of INT9

(b) How the ISTP directs theCPU to the appropriate ISFP in the
relocated IST

(a) Relocating the IST to 800h

Overview

5-9InterruptsSPRU731A

5.1.3 Summary of Interrupt Control Registers

Table 5--2 lists the interrupt control registers on the C62x CPU.

Table 5--2. Interrupt Control Registers

Acronym Register Name Description Page

CSR Control status register Allows you to globally set or disable interrupts 2-13

ICR Interrupt clear register Allows you to clear flags in the IFR manually 2-16

IER Interrupt enable register Allows you to enable interrupts 2-17

IFR Interrupt flag register Shows the status of interrupts 2-18

IRP Interrupt return pointer
register

Contains the return address used on return from a
maskable interrupt. This return is accomplished via
the B IRP instruction.

2-19

ISR Interrupt set register Allows you to set flags in the IFR manually 2-20

ISTP Interrupt service table pointer
register

Pointer to the beginning of the interrupt service
table

2-21

NRP Nonmaskable interrupt return
pointer register

Contains the return address used on return from a
nonmaskable interrupt. This return is accom-
plished via the B NRP instruction.

2-22

Globally Enabling and Disabling Interrupts

Interrupts5-10 SPRU731A

5.2 Globally Enabling and Disabling Interrupts

The control status register (CSR) contains two fields that control interrupts:
GIE and PGIE, as shown in Figure 2--4 (page 2-13) and described in
Table 2--7 (page 2-14). The global interrupt enable (GIE) bit allows you to
enable or disable all maskable interrupts:

- GIE = 1 enables the maskable interrupts so that they are processed.

- GIE = 0 disables the maskable interrupts so that they are not processed.

The CPU detects interrupts in parallel with instruction execution. As a result,
the CPU may begin interrupt processing in the same cycle that an MVC
instruction writes 0 to GIE to disable interrupts. The PGIE bit (bit 1 of CSR)
records the value of GIE after the CPU begins interrupt processing, recording
whether the program was in the process of disabling interrupts.

Duringmaskable interrupt processing, the CPU finishes executing the current
execute packet. The CPU then copies the current value of GIE to PGIE,
overwriting the previous value of PGIE. The CPU then clears GIE to prevent
another maskable interrupt from occurring before the handler saves the
machine’s state. (Section 5.6.2 discusses nesting interrupts.)

When the interrupt handler returns to the interrupted code with the B IRP
instruction, the CPU copies PGIE back to GIE. When the interrupted code
resumes, GIE reflects the last value written by the interrupted code.

Because interrupt detection occurs in parallel with CPU execution, the CPU
can takean interrupt in the cycle immediately followinganMVC instruction that
clearsGIE. The behavior of PGIE and theB IRP instruction ensures, however,
that interrupts do not occur after subsequent execute packets. Consider the
code in Example 5--2.

Example 5--2. Interrupts Versus Writes to GIE

;Assume GIE = 1
MVC CSR,B0 ;(1) Get CSR
AND -2,B0,B0 ;(2) Get ready to clear GIE
MVC B0,CSR ;(3) Clear GIE
ADD A0,A1,A2 ;(4)
ADD A3,A4,A5 ;(5)

In Example 5--2, the CPUmay service an interrupt between instructions 1 and
2, between instructions 2 and 3, or between instructions 3 and 4. The CPUwill
not service an interrupt between instructions 4 and 5.

Globally Enabling and Disabling Interrupts

5-11InterruptsSPRU731A

If the CPU services an interrupt between instructions 1 and 2 or between
instructions 2 and 3, thePGIEbit will hold the value 1when arriving at the inter-
rupt service routine. If the CPU services an interrupt between instructions 3
and 4, the PGIE bit will hold the value 0. Thus, when the interrupt service
routine resumes the interrupted code, it will resume with GIE set as the inter-
rupted code intended.

Programs must directly manipulate the GIE bit in CSR to disable and enable
interrupts. Example 5--3 and Example 5--4 show code examples for disabling
and enabling maskable interrupts globally, respectively.

Example 5--3. Code Sequence to Disable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
AND -2,B0,B0 ; get ready to clear GIE
MVC B0,CSR ; clear GIE

Example 5--4. Code Sequence to Enable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
OR 1,B0,B0 ; get ready to set GIE
MVC B0,CSR ; set GIE

Individual Interrupt Control

Interrupts5-12 SPRU731A

5.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of
interrupts: reset, nonmaskable, andmaskable. Enabling and disabling individ-
ual interrupts is done with the interrupt enable register (IER). The status of
pending interrupts is stored in the interrupt flag register (IFR).Manual interrupt
processing can be accomplished through the use of the interrupt set register
(ISR) and interrupt clear register (ICR). The interrupt return pointers restore
context after servicing nonmaskable and maskable interrupts.

5.3.1 Enabling and Disabling Interrupts

You can enable and disable individual interrupts by setting and clearing bits
in the IER that correspond to the individual interrupts. An interrupt can trigger
interrupt processing only if the corresponding bit in the IER is set. Bit 0,
corresponding to reset, is not writeable and is always read as 1, so the reset
interrupt is always enabled. You cannot disable the reset interrupt. Bits
IE4--IE15 can be written as 1 or 0, enabling or disabling the associated
interrupt, respectively. The IER is shown in Figure 2--7 (page 2-17) and
described in Table 2--9.

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption
of an NMI. The NMIE bit is cleared at reset to prevent any interruption of
process or initialization until you enable NMI. After reset, you must set the
NMIE bit to enable the NMI and to allow INT15--INT4 to be enabled by theGIE
bit inCSRand the corresponding IER bit. You cannotmanually clear theNMIE
bit; the NMIE bit is unaffected by a write of 0. The NMIE bit is also cleared by
the occurrence of an NMI. If cleared, the NMIE bit is set only by completing a
B NRP instruction or by a write of 1 to the NMIE bit. Example 5--5 and
Example 5--6 show code for enabling and disabling individual interrupts,
respectively.

Example 5--5. Code Sequence to Enable an Individual Interrupt (INT9)

MVK 200h,B1 ; set bit 9
MVC IER,B0 ; get IER
OR B1,B0,B0 ; get ready to set IE9
MVC B0,IER ; set bit 9 in IER

Example 5--6. Code Sequence to Disable an Individual Interrupt (INT9)

MVK FDFFh,B1 ; clear bit 9
MVC IER,B0
AND B1,B0,B0 ; get ready to clear IE9
MVC B0,IER ; clear bit 9 in IER

Individual Interrupt Control

5-13InterruptsSPRU731A

5.3.2 Status of Interrupts

The interrupt flag register (IFR) contains the status of INT4--INT15 and NMI.
Each interrupt’s corresponding bit in IFR is set to 1 when that interrupt occurs;
otherwise, the bits have a value of 0. If you want to check the status of inter-
rupts, use the MVC instruction to read IFR. The IFR is shown in Figure 2--8
(page 2-18) and described in Table 2--10.

5.3.3 Setting and Clearing Interrupts

The interrupt set register (ISR) and the interrupt clear register (ICR) allow you
to set or clear maskable interrupts manually in IFR. Writing a 1 to IS4--IS15 in
ISR causes the corresponding interrupt flag to be set in IFR. Similarly, writing
a 1 to a bit in ICR causes the corresponding interrupt flag to be cleared.Writing
a 0 to any bit of either ISR or ICR has no effect. Incoming interrupts have prior-
ity and override any write to ICR. You cannot set or clear any bit in ISR or ICR
to affect NMI or reset. The ISR is shown in Figure 2--10 (page 2-20) and
described in Table 2--11. The ICR is shown in Figure 2--6 (page 2-16) and
described in Table 2--8.

Note:

Anywrite to the ISRor ICR (by theMVC instruction) effectively has onedelay
slot because the results cannot be read (by theMVC instruction) in IFR until
two cycles after the write to ISR or ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in ISR.

Example 5--7 andExample 5--8 show code examples to set and clear individual
interrupts, respectively.

Example 5--7. Code to Set an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ISR
NOP
MVC IFR,B4

Example 5--8. Code to Clear an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ICR
NOP
MVC IFR,B4

Individual Interrupt Control

Interrupts5-14 SPRU731A

5.3.4 Returning From Interrupt Servicing

After RESETgoes high, the control registers are brought to a known value and
program execution begins at address 0h. After nonmaskable and maskable
interrupt servicing, use a branch to the corresponding return pointer register
to continue the previous program execution.

5.3.4.1 CPU State After RESET

After RESET, the control registers and bits contain the following values:

- AMR, ISR, ICR, and IFR = 0h
- ISTP =Default value varies by device (See data manual for correct value)
- IER = 1h
- IRP and NRP = undefined
- CSR bits 15--0 = 100h in little-endian mode

= 000h in big-endian mode

The program execution begins at the address specified by the ISTB field in
ISTP.

5.3.4.2 Returning From Nonmaskable Interrupts

The NMI return pointer register (NRP), shown in Figure 2--12 (page 2-22),
contains the return pointer that directs theCPU to the proper location to contin-
ue program execution after NMI processing. A branch using the address in
NRP (B NRP) in your interrupt service routine returns to the program flow
when NMI servicing is complete. Example 5--9 shows how to return from an
NMI.

Example 5--9. Code to Return From NMI

B NRP ; return, sets NMIE
NOP 5 ; delay slots

5.3.4.3 Returning From Maskable Interrupts

The interrupt return pointer register (IRP), shown in Figure 2--9 (page 2-19),
contains the return pointer that directs theCPU to the proper location to contin-
ue program execution after processing a maskable interrupt. A branch using
the address in IRP (B IRP) in your interrupt service routine returns to the
program flowwhen interrupt servicing is complete. Example 5--10 shows how
to return from a maskable interrupt.

Example 5--10. Code to Return from a Maskable Interrupt

B IRP ; return, moves PGIE to GIE
NOP 5 ; delay slots

Interrupt Detection and Processing

5-15InterruptsSPRU731A

5.4 Interrupt Detection and Processing
When an interrupt occurs, it sets a flag in the interrupt flag register (IFR).
Depending on certain conditions, the interrupt may or may not be processed.
This section discusses the mechanics of setting the flag bit, the conditions for
processing an interrupt, and the order of operation for detecting and proces-
sing an interrupt. The similarities and differences between reset and nonreset
interrupts are also discussed.

5.4.1 Setting the Nonreset Interrupt Flag

Figure 5--4 shows the processing of a nonreset interrupt (INTm). The flag
(IFm) for INTm in the IFR is set following the low-to-high transition of the INTm
signal on the CPU boundary. This transition is detected on a clock-cycle by
clock-cycle basis and is not affected bymemory stalls thatmight extendaCPU
cycle. Once there is a low-to-high transition on an external interrupt pin
(cycle 1), it takes two clock cycles for the signal to reach the CPU boundary
(cycle 3). When the interrupt signal enters the CPU, it is has been detected
(cycle 4). Two clock cycles after detection, the interrupt’s corresponding flag
bit in the IFR is set (cycle 6).

In Figure 5--4, IFm is set during CPU cycle 6. You could attempt to clear IFm
by using anMVC instruction to write a 1 to bit m of the ICR in execute packet
n + 3 (during CPU cycle 4). However, in this case, the automated write by the
interrupt detection logic takes precedence and IFm remains set.

Figure 5--4 assumes INTm is the highest-priority pending interrupt and is
enabled by the GIE and NMIE bits, as necessary. If it is not the highest-priority
pending interrupt, IFm remains set until either you clear it bywriting a 1 to bit m
of ICR or the processing of INTm occurs.

5.4.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 5--4, a nonreset interrupt in need of processing is
detected. For this interrupt to be processed, the following conditions must be
valid on the same clock cycle and are evaluated every clock cycle:

- IFm is set duringCPUcycle 6. (This determination ismade in CPUcycle 4
by the interrupt logic.)

- There is not a higher priority IFm bit set in the IFR.

- The corresponding bit in the IER is set (IEm = 1).

- GIE = 1

- NMIE = 1

- The five previous execute packets (n through n + 4) do not contain a
branch (even if the branch is not taken) and are not in the delay slots of
a branch.

Interrupt Detection and Processing

Interrupts5-16 SPRU731A

Any pending interrupt will be taken as soon as pending branches are
completed.

Figure 5--4. Nonreset Interrupt Detection and Processing: Pipeline Operation

ISFP

n+10
n+9
n+8
n+7
n+6

Annulled Instructions

E5E4E3E2E1DCDPPRPWPSPG

PG
PSPG
PWPS
PRPW

PG
PS

DPPRPW
PG
PSPG

E5E4
E5

E3
E4
E5

DC
E1
E2
E3
E4

DP
DC
E1
E2
E3

PR
DP
DC
E1
E2

PW
PR
DP
DC
E1

PS
PW
PR
DP
DC

E5E4E3E2E1

n+5
n+4
n+3
n+2
n+1
n

Execute packet
INUM

IACK

IFm

External INTm

Clock cycle

0000000000m000000

17161514131211109876543210

Cycles 6--12: Nonreset
interrupt processing is

disabled.

17161514131211109876543210

{

}

CPU cycle

at pin

0

PG
PS
PW
PR
DP
DC

PG
PS
PW
PR
DP
DC E5E4E3E2E1

n+11

Contains no branch

† IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are
disabled when GIE = 0.

Interrupt Detection and Processing

5-17InterruptsSPRU731A

5.4.3 Actions Taken During Nonreset Interrupt Processing

During CPU cycles 6 through 12 of Figure 5--4, the following interrupt proces-
sing actions occur:

- Processing of subsequent nonreset interrupts is disabled.

- For all interrupts except NMI, the PGIE bit is set to the value of the GIE bit
and then the GIE bit is cleared.

- For NMI, the NMIE bit is cleared.

- The next execute packets (from n + 5 on) are annulled. If an execute
packet is annulled duringaparticular pipeline stage, it doesnotmodify any
CPU state. Annulling also forces an instruction to be annulled in future
pipeline stages.

- The address of the first annulled execute packet (n + 5) is loaded in NRP
(in the case of NMI) or IRP (for all other interrupts).

- A branch to the address held in ISTP (the pointer to the ISFP for INTm)
is forced into the E1 phase of the pipeline during cycle 7.

- During cycle 7, IACK is asserted and the proper INUMn signals are
asserted to indicate which interrupt is being processed. The timings for
these signals in Figure 5--4 represent only the signals’ characteristics
inside the CPU. The external signals may be delayed and be longer in
duration to handle external devices. Check the device-specific datasheet
for your timing values.

- IFm is cleared during cycle 8.

Interrupt Detection and Processing

Interrupts5-18 SPRU731A

5.4.4 Setting the RESET Interrupt Flag

RESET must be held low for a minimum of 10 clock cycles. Four clock cycles
after RESET goes high, processing of the reset vector begins. The flag for
RESET (IF0) in the IFR is set by the low-to-high transition of the RESET signal
on the CPU boundary. In Figure 5--5, IF0 is set during CPU cycle 15. This
transition is detected on a clock-cycle by clock-cycle basis and is not affected
by memory stalls that might extend a CPU cycle.

Figure 5--5. RESET Interrupt Detection and Processing: Pipeline Operation

Reset ISFP

n+7
n+6

Pipeline flush

E1DCDPPRPWPSPG

PG
PS

PW
PR
DP
DC

E1

n+5
n+4
n+3
n+2

n+1
n

Execute
packet

INUM

IACK

IF0

RESET

Clock cycle

0000000000000000

17161514131211109876543210

Cycles 15--21:
Nonreset interrupt

processing is disabled

17161514131211109876543210

{

}

CPU cycle

at pin

0

PG

PS
PW
PR
DP

DC
E2E1

00000

2221201918

0

2221201918

† IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of RESET.
‡ After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are
disabled when GIE = 0.

Interrupt Detection and Processing

5-19InterruptsSPRU731A

5.4.5 Actions Taken During RESET Interrupt Processing

A lowsignal on theRESETpin is theonly requirement to processa reset.Once
RESETmakes a high-to-low transition, the pipeline is flushed and CPU regis-
ters are returned to their reset values. The GIE bit, the NMIE bit, and the ISTB
bits in ISTP are cleared. For the CPU state after reset, see section 5.3.4.1.

During CPU cycles 15 through 21 of Figure 5--5, the following reset proces-
sing actions occur:

- Processing of subsequent nonreset interrupts is disabled because the
GIE and NMIE bits are cleared.

- A branch to the address held in ISTP (the pointer to the ISFP for INT0) is
forced into the E1 phase of the pipeline during cycle 16.

- During cycle 16, IACK is asserted and the proper INUMn signals are
asserted to indicate a reset is being processed.

- IF0 is cleared during cycle 17.

Note:

Code that starts running after reset must explicitly enable the GIE bit, the
NMIE bit, and IER to allow interrupts to be processed.

Performance Considerations

Interrupts5-20 SPRU731A

5.5 Performance Considerations

The interaction of the C62x CPU and sources of interrupts present perfor-
mance issues for you to consider when you are developing your code.

5.5.1 General Performance

- Overhead. Overhead for all CPU interrupts is 7 cycles. You can see this
in Figure 5--4, where no new instructions are entering the E1 pipeline
phase during CPU cycles 6 through 12.

- Latency. Interrupt latency is 11 cycles (21 cycles for RESET). In
Figure 5--4, although the interrupt is active in cycle2,executionof interrupt
service code does not begin until cycle 13.

- Frequency. The logic clears the nonreset interrupt (IFm) on cycle 8, with
any incoming interrupt having highest priority. Thus, an interrupt is can be
recognized every second cycle. Also, because a low-to-high transition is
necessary, an interrupt can occur only every second cycle. However, the
frequency of interrupt processing depends on the time required for inter-
rupt service and whether you reenable interrupts during processing,
thereby allowing nested interrupts. Effectively, only two occurrences of a
specific interrupt can be recognized in two cycles.

5.5.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect theDC
and subsequent phases of the pipeline, no conflicts between code parallelism
and interrupts exist. There are three operations or conditions that can affect
or are affected by interrupts:

- Branches. Nonreset interrupts are delayed, if any execute packets n
through n + 4 in Figure 5--4 contain a branch or are in the delay slots of
a branch.

- Memory stalls. Memory stalls delay interrupt processing, because they
inherently extend CPU cycles.

- Multicycle NOPs. Multicycle NOPs (including the IDLE instruction)
operate like other instructions when interrupted, except when an interrupt
causes annulment of any but the first cycle of a multicycle NOP. In that
case, the address of the next execute packet in the pipeline is saved in
NRP or IRP. This prevents returning to an IDLE instruction or a multicycle
NOP that was interrupted.

Programming Considerations

5-21InterruptsSPRU731A

5.6 Programming Considerations

The interaction of the C62x CPUs and sources of interrupts present program-
ming issues for you to consider when you are developing your code.

5.6.1 Single Assignment Programming

Using the same register to store different variables (called here: multiple
assignment) can result in unpredictable operation when the code can be
interrupted.

To avoid unpredictable operation, you must employ the single assignment
method in code that can be interrupted. When an interrupt occurs, all instruc-
tions entering E1 prior to the beginning of interrupt processing are allowed to
complete execution (through E5). All other instructions are annulled and
refetched upon return from interrupt. The instructions encountered after the
return from the interrupt donot experienceanydelay slots from the instructions
prior to processing the interrupt. Thus, instructions with delay slots prior to the
interrupt can appear, to the instructions after the interrupt, to have fewer delay
slots than they actually have.

Example 5--11 shows a code fragment which stores two variables into A1
using multiple assignment. Example 5--12 shows equivalent code using the
single assignment programming method which stores the two variables into
two different registers.

For example, suppose that register A1 contains 0 and register A0 points to a
memory location containing a value of 10 before reaching the code in
Example 5--11. TheADD instruction, which is in a delay slot of the LDW, sums
A2with the value inA1 (0) and the result in A3 is just a copy of A2. If an interrupt
occurred between the LDW and ADD, the LDW would complete the update
of A1 (10), the interrupt would be processed, and theADDwould sumA1 (10)
with A2 and place the result in A3 (equal to A2 + 10). Obviously, this situation
produces incorrect results.

In Example 5--12, the single assignment method is used. The register A1 is
assigned only to the ADD input and not to the result of the LDW. Regardless
of the value of A6 with or without an interrupt, A1 does not change before it is
summed with A2. Result A3 is equal to A2.

Example 5--11. Code Without Single Assignment: Multiple Assignment of A1

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5 ; uses new A1

Programming Considerations

Interrupts5-22 SPRU731A

Example 5--12. Code Using Single Assignment

LDW .D1 *A0,A6
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A6,A4,A5 ; uses A6

5.6.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are
disabled. However, when the interrupt service routine is for one of the
maskable interrupts (INT4--INT15), an NMI can interrupt processing of the
maskable interrupt. In other words, an NMI can interrupt amaskable interrupt,
but neither an NMI nor a maskable interrupt can interrupt an NMI.

There may be times when you want to allow an interrupt service routine to be
interrupted by another (particularly higher priority) interrupt. Even though the
processor by default does not allow interrupt service routines to be interrupted
unless the source is an NMI, it is possible to nest interrupts under software
control. To allow nested interrupts, the interrupt service routine must perform
the following initial steps in addition to its normal work of saving any registers
(including control registers) that it modifies:

1) The contents of IRP (or NRP) must be saved
2) The contents of the PGIE bit must be saved
3) The GIE bit must be set to 1

Prior to returning from the interrupt service routine, the code must restore the
registers saved above as follows:

1) The GIE bit must be first cleared to 0
2) The PGIE bit saved value must be restored
3) The IRP (or NRP) saved value must be restored

Although steps 2 and 3 abovemay be performed in either order, it is important
that the GIE bit is cleared first. This means that the GIE and PGIE bits must
be restored with separate writes to CSR. If these bits are not restored
separately, then it is possible that the PGIE bit is overwritten by nested
interrupt processing just as interrupts are being disabled.

Example 5--13 shows a simple assembly interrupt handler that allows nested
interrupts. This example saves its context to the compiler’s stack, pointed to
by B15. This assumes that the C runtime conventions are being followed. The
example code is not optimized, to aid in readability.

Programming Considerations

5-23InterruptsSPRU731A

Example 5--13. Assembly Interrupt Service Routine That Allows Nested Interrupts

_isr:
STW B0, *B15--[4] ; Save B0, allocate 4 words of stack
STW B1, *B15[1] ; Save B1 on stack

MVC IRP, B0
STW B0, *B15[2] ; Save IRP on stack

MVC CSR, B0
STW B0, *B15[3] ; Save CSR (and thus PGIE) on stack

OR B0, 1, B1
MVC B1, CSR ; Enable interrupts

; Interrupt service code goes here.
; Interrupts may occur while this code executes.

MVC CSR, B0 ;\
AND B0, -2, B1 ; |-- Disable interrupts.
MVC B1, CSR ;/ (Set GIE to 0)

LDW *B15[3], B0 ; get saved value of CSR into B0
NOP 4 ; wait for LDW *B15[3] to finish
MVC B0, CSR ; Restore PGIE

LDW *B15[2], B0 ; get saved value of IRP into B1
NOP 4
MVC B0, IRP ; Restore IRP

B IRP ; Return from interrupt
|| LDW *B15[1], B1 ; Restore B1

LDW *++B15[4], B0 ; Restore B0, release stack.

NOP 4 ; wait for B IRP and LDW to complete.

Example 5--14 shows a C-based interrupt handler that allows nested
interrupts. The steps are similar, although the compiler takes care of allocating
thestackandsavingCPUregisters. Formore informationonusingC toaccess
control registers and write interrupt handlers, see the TMS320C6000
Optimizing C Compiler Users Guide, SPRU187.

Example 5--14 uses the interrupt keyword alongwith explicit context save and
restore code. An alternative is to use the DSP/BIOS interrupt dispatcher that
also provides an easy way to nest interrupt service routines.

Programming Considerations

Interrupts5-24 SPRU731A

Example 5--14. C Interrupt Service Routine That Allows Nested Interrupts

/* c6x.h contains declarations of the C6x control registers */
#include <c6x.h>

interrupt void isr(void)
{

unsigned old_csr;
unsigned old_irp;

old_irp = IRP ;/* Save IRP */
old_csr = CSR ;/* Save CSR (and thus PGIE) */

CSR = old_csr | 1 ;/* Enable interrupts */

/* Interrupt service code goes here. */
/* Interrupts may occur while this code executes */

CSR = CSR & -2 ;/* Disable interrupts */
CSR = old_csr ;/* Restore CSR (and thus PGIE) */
IRP = old_irp ;/* Restore IRP */

}

5.6.3 Manual Interrupt Processing

You can poll the IFR and IER to detect interrupts manually and then branch to
the value held in the ISTP as shown below in Example 5--15.

The code sequence begins by copying the address of the highest priority inter-
rupt from the ISTP to the register B2. The next instruction extracts the number
of the interrupt, which is used later to clear the interrupt. The branch to the
interrupt service routine comes nextwith a parallel instruction to set up the ICR
word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return
address is stored in the B2 register and then copied to the interrupt return
pointer (IRP). Finally, the number of the highest priority interrupt, stored in B1,
is used to shift the ICR word in B1 to clear the interrupt.

Example 5--15. Manual Interrupt Processing

MVC ISTP,B2 ; get related ISFP address
EXTU B2,23,27,B1 ; extract HPEINT
[B1] B B2 ; branch to interrupt

|| [B1] MVK 1,A0 ; setup ICR word
[B1] MVK RET_ADR,B2 ; create return address
[B1] MVKH RET_ADR,B2 ;
[B1] MVC B2,IRP ; save return address
[B1] SHL A0,B1,B1 ; create ICR word
[B1] MVC B1,ICR ; clear interrupt flag
RET_ADR: (Post interrupt service routine Code)

Programming Considerations

5-25InterruptsSPRU731A

5.6.4 Traps

A trap behaves like an interrupt, but is created and controlled with software.
The trap condition can be stored in any one of the conditional registers: A1,
A2, B0, B1, or B2. If the trap condition is valid, a branch to the trap handler
routine processes the trap and the return.

Example 5--16 and Example 5--17 show a trap call and the return code
sequence, respectively. In the first code sequence, the address of the trap
handler code is loaded into register B0 and the branch is called. In the delay
slots of the branch, the context is saved in theB0 register, theGIEbit is cleared
to disable maskable interrupts, and the return pointer is stored in the B1
register. If the trap handler were within the 21-bit offset for a branch using a
displacement, theMVKH instructions could be eliminated, thus shortening the
code sequence.

The trap is processed with the code located at the address pointed to by the
label TRAP_HANDLER. If the B0 or B1 registers are needed in the trap
handler, their contents must be stored to memory and restored before return-
ing. The codeshown inExample 5--17 should be includedat the endof the trap
handler code to restore the context prior to the trap and return to the
TRAP_RETURN address.

Example 5--16. Code Sequence to Invoke a Trap

[A1] MVK TRAP_HANDLER,B0 ; load 32-bit trap address
[A1] MVKH TRAP_HANDLER,B0
[A1] B B0 ; branch to trap handler
[A1] MVC CSR,B0 ; read CSR
[A1] AND -2,B0,B1 ; disable interrupts: GIE = 0
[A1] MVC B1,CSR ; write to CSR
[A1] MVK TRAP_RETURN,B1 ; load 32-bit return address
[A1] MVKH TRAP_RETURN,B1
TRAP_RETURN: (post-trap code)

Note: A1 contains the trap condition.

Example 5--17. Code Sequence for Trap Return

B B1 ; return
MVC B0,CSR ; restore CSR
NOP 4 ; delay slots

A-1Mapping Between Instruction and Functional UnitSPRU731A

Appendix A

Mapping Between Instruction and
Functional Unit

Table A--1 lists the instructions that execute on each functional unit.

Table A--1. Instruction to Functional Unit Mapping

Functional Unit

Instruction Page .L Unit .M Unit .S Unit .D Unit

ABS 3-24 n

ADD 3-26 n n n

ADDAB 3-30 n

ADDAH 3-32 n

ADDAW 3-34 n

ADDK 3-36 n

ADDU 3-37 n

ADD2 3-39 n

AND 3-41 n n

B displacement 3-43 n

B register 3-45 n†

B IRP 3-47 n†

B NRP 3-49 n†

CLR 3-51 n

CMPEQ 3-54 n

CMPGT 3-56 n

† S2 only
‡ D2 only

Appendix A

Mapping Between Instruction and Functional Unit

Mapping Between Instruction and Functional UnitA-2 SPRU731A

Table A--1. Instruction to Functional Unit Mapping (Continued)

Functional Unit

Instruction .D Unit.S Unit.M Unit.L UnitPage

CMPGTU 3-59 n

CMPLT 3-61 n

CMPLTU 3-64 n

EXT 3-66 n

EXTU 3-69 n

IDLE 3-72 No unit

LDB memory 3-73 n

LDB memory (15-bit offset) 3-76 n‡

LDBU memory 3-73 n

LDBU memory (15-bit offset) 3-76 n‡

LDH memory 3-78 n

LDH memory (15-bit offset) 3-81 n‡

LDHU memory 3-78 n

LDHU memory (15-bit offset) 3-81 n‡

LDW memory 3-83 n

LDW memory (15-bit offset) 3-86 n‡

LMBD 3-88 n

MPY 3-90 n

MPYH 3-92 n

MPYHL 3-93 n

MPYHLU 3-94 n

MPYHSLU 3-95 n

MPYHSU 3-96 n

MPYHU 3-97 n

† S2 only
‡ D2 only

Mapping Between Instruction and Functional Unit

A-3Mapping Between Instruction and Functional UnitSPRU731A

Table A--1. Instruction to Functional Unit Mapping (Continued)

Functional Unit

Instruction .D Unit.S Unit.M Unit.L UnitPage

MPYHULS 3-98 n

MPYHUS 3-99 n

MPYLH 3-100 n

MPYLHU 3-101 n

MPYLSHU 3-102 n

MPYLUHS 3-103 n

MPYSU 3-104 n

MPYU 3-106 n

MPYUS 3-107 n

MV 3-108 n n n

MVC 3-110 n†

MVK 3-113 n

MVKH 3-115 n

MVKL 3-117 n

MVKLH 3-115 n

NEG 3-119 n n

NOP 3-120 No unit

NORM 3-122 n

NOT 3-124 n n

OR 3-125 n n

SADD 3-127 n

SAT 3-130 n

SET 3-132 n

† S2 only
‡ D2 only

Mapping Between Instruction and Functional Unit

Mapping Between Instruction and Functional UnitA-4 SPRU731A

Table A--1. Instruction to Functional Unit Mapping (Continued)

Functional Unit

Instruction .D Unit.S Unit.M Unit.L UnitPage

SHL 3-135 n

SHR 3-137 n

SHRU 3-139 n

SMPY 3-141 n

SMPYH 3-143 n

SMPYHL 3-144 n

SMPYLH 3-146 n

SSHL 3-148 n

SSUB 3-150 n

STB memory 3-152 n

STB memory (15-bit offset) 3-154 n‡

STH memory 3-156 n

STH memory (15-bit offset) 3-159 n‡

STW memory 3-161 n

STW memory (15-bit offset) 3-163 n‡

SUB 3-165 n n n

SUBAB 3-168 n

SUBAH 3-170 n

SUBAW 3-171 n

SUBC 3-173 n

SUBU 3-175 n

SUB2 3-177 n

XOR 3-179 n n n

ZERO 3-181 n n n

† S2 only
‡ D2 only

Index

Index-1SPRU731A

Index

1X and 2X paths 2-6

A
A4 MODE bits 2-10
A5 MODE bits 2-10
A6 MODE bits 2-10
A7 MODE bits 2-10
ABS instruction 3-24
absolute value, with saturation (ABS) 3-24

actions taken during nonreset interrupt
processing 5-17

actions taken during RESET interrupt
processing 5-19

add
signed 16-bit constant to register (ADDK) 3-36
two 16-bit integers on upper and lower register

halves (ADD2) 3-39
using byte addressing mode (ADDAB) 3-30
using halfword addressing mode (ADDAH) 3-32
using word addressing mode (ADDAW) 3-34
with saturation, two signed integers

(SADD) 3-127
without saturation

two signed integers (ADD) 3-26
two unsigned integers (ADDU) 3-37

ADD instruction 3-26

add instructions
using circular addressing 3-18
using linear addressing 3-16

ADD2 instruction 3-39
ADDAB instruction 3-30
ADDAH instruction 3-32
ADDAW instruction 3-34

ADDK instruction 3-36
address generation for load/store 3-18

address paths 2-7
addressing mode 3-16

circular mode 3-17
linear mode 3-16

addressing mode register (AMR) 2-10
ADDU instruction 3-37
AMR 2-10
AND instruction 3-41
applications, TMS320 DSP family 1-3
architecture, TMS320C62x DSP 1-6
arithmetic shift left (SHL) 3-135
arithmetic shift right (SHR) 3-137

B
B instruction

using a displacement 3-43
using a register 3-45

B IRP instruction 3-47
B NRP instruction 3-49
B4 MODE bits 2-10
B5 MODE bits 2-10
B6 MODE bits 2-10
B7 MODE bits 2-10
bit field

clear (CLR) 3-51
extract and sign-extend a bit field (EXT) 3-66
extract and zero-extend a bit field (EXTU) 3-69
set (SET) 3-132

bitwise AND (AND) 3-41
bitwise exclusive OR (XOR) 3-179
bitwise NOT (NOT) 3-124
bitwise OR (OR) 3-125
BK0 bits 2-10
BK1 bits 2-10

Index

Index-2 SPRU731A

block diagram
branch instructions 4-17
decode pipeline phases 4-4
execute pipeline phases 4-5
fetch pipeline phases 4-3
load instructions 4-15
multiply instructions 4-13
pipeline phases 4-8
single-cycle instructions 4-12
store instructions 4-14
TMS320C62x CPU data path 2-3
TMS320C62x DSP 1-6

block size calculations 2-12
branch

using a displacement (B) 3-43
using a register (B) 3-45
using an interrupt return pointer (B IRP) 3-47
using NMI return pointer (B NRP) 3-49

branch instruction
block diagram 4-17
pipeline operation 4-17

branching
into the middle of an execute packet 3-9
performance considerations 5-20
to additional interrupt service routine 5-7

C
circular addressing, block size calculations 2-12
circular addressing mode

add instructions 3-18
block size specification 3-17
load instructions 3-17
store instructions 3-17
subtract instructions 3-18

clear a bit field (CLR) 3-51
clear an individual interrupt 5-13
clearing interrupts 5-13
CLR instruction 3-51
CMPEQ instruction 3-54
CMPGT instruction 3-56
CMPGTU instruction 3-59
CMPLT instruction 3-61
CMPLTU instruction 3-64

compare
for equality, signed integers (CMPEQ) 3-54
for greater than

signed integers (CMPGT) 3-56
unsigned integers (CMPGTU) 3-59

for less than
signed integers (CMPLT) 3-61
unsigned integers (CMPLTU) 3-64

compare for equality, signed integers
(CMPEQ) 3-54

compare for greater than
signed integers (CMPGT) 3-56
unsigned integers (CMPGTU) 3-59

compare for less than
signed integers (CMPLT) 3-61
unsigned integers (CMPLTU) 3-64

conditional operations 3-10

conditional subtract and shift (SUBC) 3-173

conditions for processing a nonreset interrupt 5-15

constraints
on cross paths 3-11
on instructions using the same functional

unit 3-11
on loads and stores 3-12
on long data 3-13
on register reads 3-14
on register writes 3-15

control, individual interrupts 5-12

control register, interrupts 5-9

control status register (CSR) 2-13

CPU
control register file 2-7
data paths 2-3
functional units 2-5
general-purpose register files 2-2
introduction 1-7
load and store paths 2-6

CPU data paths
relationship to register files 2-6
TMS320C62x DSP 2-3

CPU ID bits 2-13

cross paths 2-6

CSR 2-13

Index

Index-3SPRU731A

D
DA1 and DA2 2-7

data address paths 2-7

DC pipeline phase 4-3

DCC bits 2-13

decoding instructions 4-3

delay slots 3-6

disabling an individual interrupt 5-12

disabling maskable interrupts globally 5-11

DP pipeline phase 4-3

E
E1 phase program counter (PCE1) 2-22

E1--E5 pipeline phases 4-5

EN bit 2-13

enabling an individual interrupt 5-12

enabling maskable interrupts globally 5-11

execute packet, pipeline operation 4-18

execution notations 3-2

EXT instruction 3-66

extract and sign-extend a bit field (EXT) 3-66

extract and zero-extend a bit field (EXTU) 3-69

EXTU instruction 3-69

F
features, TMS320C62x DSP 1-4

fetch packet 3-7, 5-6

fetch packets
fully parallel 3-8
fully serial 3-8
partially serial 3-9

fetch pipeline phase 4-2

functional unit to instruction mapping A-1

functional units 2-5

G
general-purpose register files

cross paths 2-6
data address paths 2-7
description 2-2
memory, load, and store paths 2-6

GIE bit 2-13

H
HPEINT bits 2-21

I
ICn bit 2-16
ICR 2-16
IDLE instruction 3-72
IEn bit 2-17
IER 2-17
IFn bit 2-18
IFR 2-18
individual interrupt control 5-12
instruction compatibility 3-20
instruction descriptions 3-20
instruction operation, notations 3-2
instruction to functional unit mapping A-1
instruction types

branch instructions 4-17
load instructions 4-15
multiply instructions 4-13
single-cycle 4-12
store instructions 4-13
two-cycle 4-13

interleaved memory bank scheme 4-24
interrupt clear register (ICR) 2-16
interrupt detection and processing 5-15
interrupt enable register (IER) 2-17
interrupt flag register (IFR) 2-18
interrupt return pointer register (IRP) 2-19
interrupt service fetch packet (ISFP) 5-6
interrupt service table (IST) 5-5
interrupt service table pointer (ISTP), overview 5-8
interrupt service table pointer register (ISTP) 2-21
interrupt set register (ISR) 2-20

Index

Index-4 SPRU731A

interrupts
clearing 5-13
control 5-12
control registers 5-9
detection 5-15
detection and processing

actions taken during nonreset interrupt
processing 5-17

actions taken during RESET interrupt
processing 5-19

conditions for processing a nonreset
interrupt 5-15

setting the nonreset interrupt flag 5-15
setting the RESET interrupt flag 5-18

disabling 5-12
enabling 5-12
global control 5-10
globally disabling 5-10
globally enabling 5-10
manual interrupt processing 5-24
overview 5-2
performance considerations 5-20

frequency 5-20
latency 5-20
overhead 5-20
pipeline interaction 5-20

pipeline interaction
branches 5-20
code parallelism 5-20
memory stalls 5-20
multicycle NOPs 5-20

priorities 5-3
processing 5-15
programming considerations 5-21

nested interrupts 5-22
single assignment 5-21
traps 5-25

returning from interrupt servicing 5-14
setting 5-13
signals used 5-2
status 5-13
types of 5-2

invoking a trap 5-25

IRP 2-19

IRP bits 2-19

ISFP 5-6

ISn bit 2-20

ISR 2-20

IST 5-5

ISTB bits 2-21

ISTP 2-21

L
latency 3-6

LDB instruction
5-bit unsigned constant offset or register

offset 3-73
15-bit unsigned constant offset 3-76

LDBU instruction
5-bit unsigned constant offset or register

offset 3-73
15-bit constant offset 3-76

LDH instruction
5-bit unsigned constant offset or register

offset 3-78
15-bit unsigned constant offset 3-81

LDHU instruction
5-bit unsigned constant offset or register

offset 3-78
15-bit unsigned constant offset 3-81

LDW instruction
5-bit unsigned constant offset or register

offset 3-83
15-bit unsigned constant offset 3-86

leftmost bit detection (LMBD) 3-88

linear addressing mode 3-16
add instructions 3-16
load instructions 3-16
store instructions 3-16
subtract instructions 3-16

LMBD instruction 3-88

load
byte

from memory with a 5-bit unsigned constant
offset or register offset (LDB and
LDBU) 3-73

from memory with a 15-bit unsigned constant
offset (LDB and LDBU) 3-76

halfword
from memory with a 5-bit unsigned constant

offset or register offset (LDH and
LDHU) 3-78

from memory with a 15-bit unsigned constant
offset (LDH and LDHU) 3-81

Index

Index-5SPRU731A

load (continued)
word

from memory with a 5-bit unsigned constant
offset or register offset (LDW) 3-83

from memory with a 15-bit unsigned constant
offset (LDW) 3-86

load and store paths CPU 2-6

load instructions
block diagram 4-15
conflicts 3-12
pipeline operation 4-15
syntax for indirect addressing 3-18
using circular addressing 3-17
using linear addressing 3-16

load or store to the same memory location,
rules 4-14

load paths 2-6

logical shift right (SHRU) 3-139

M
memory

introduction 1-7
paths 2-6

memory bank hits 4-24

memory considerations 4-22
memory bank hits 4-24
memory stalls 4-23

memory paths 2-6

memory stalls 4-23

move
16-bit constant into upper bits of register (MVKH

and MVKLH) 3-115
between control file and register file

(MVC) 3-110
from register to register (MV) 3-108
signed constant into register and sign extend

(MVK) 3-113
signed constant into register and sign extend

(MVKL) 3-117

MPY instruction 3-90

MPYH instruction 3-92

MPYHL instruction 3-93

MPYHLU instruction 3-94

MPYHSLU instruction 3-95

MPYHSU instruction 3-96

MPYHU instruction 3-97
MPYHULS instruction 3-98
MPYHUS instruction 3-99
MPYLH instruction 3-100
MPYLHU instruction 3-101
MPYLSHU instruction 3-102
MPYLUHS instruction 3-103
MPYSU instruction 3-104
MPYU instruction 3-106
MPYUS instruction 3-107
multicycle NOP with no termination until interrupt

(IDLE) 3-72
multicycle NOPs 4-20
multiply

signed by signed
signed 16 LSB by signed 16 LSB

(MPY) 3-90
signed 16 LSB by signed 16 LSB with left shift

and saturation (SMPY) 3-141
signed 16 LSB by signed 16 MSB

(MPYLH) 3-100
signed 16 LSB by signed 16 MSB with left

shift and saturation (SMPYLH) 3-146
signed 16 MSB by signed 16 LSB

(MPYHL) 3-93
signed 16 MSB by signed 16 LSB with left

shift and saturation (SMPYHL) 3-144
signed 16 MSB by signed 16 MSB

(MPYH) 3-92
signed 16 MSB by signed 16 MSB with left

shift and saturation (SMPYH) 3-143
signed by unsigned

signed 16 LSB by unsigned 16 LSB
(MPYSU) 3-104

signed 16 LSB by unsigned 16 MSB
(MPYLSHU) 3-102

signed 16 MSB by unsigned 16 LSB
(MPYHSLU) 3-95

signed 16 MSB by unsigned 16 MSB
(MPYHSU) 3-96

unsigned by signed
unsigned 16 LSB by signed 16 LSB

(MPYUS) 3-107
unsigned 16 LSB by signed 16 MSB

(MPYLUHS) 3-103
unsigned 16 MSB by signed 16 LSB

(MPYHULS) 3-98
unsigned 16 MSB by signed 16 MSB

(MPYHUS) 3-99

Index

Index-6 SPRU731A

multiply (continued)
unsigned by unsigned

unsigned 16 LSB by unsigned 16 LSB
(MPYU) 3-106

unsigned 16 LSB by unsigned 16 MSB
(MPYLHU) 3-101

unsigned 16 MSB by unsigned 16 LSB
(MPYHLU) 3-94

unsigned 16 MSB by unsigned 16 MSB
(MPYHU) 3-97

multiply instructions
block diagram 4-13
pipeline operation 4-13

MV instruction 3-108

MVC instruction 3-110

MVK instruction 3-113

MVKH instruction 3-115

MVKL instruction 3-117

MVKLH instruction 3-115

N
NEG instruction 3-119

negate (NEG) 3-119

nested interrupts 5-22

NMI return pointer register (NRP) 2-22

NMIE bit 2-17

NMIF bit 2-18

no operation (NOP) 3-120

NOP instruction 3-120

NORM instruction 3-122

normalize integer (NORM) 3-122

NOT instruction 3-124

notational conventions iii

NRP 2-22

NRP bits 2-22

O
opcode, fields and meanings 3-5

operands, examples 3-21

options, TMS320C62x DSP 1-4

OR instruction 3-125

overview
interrupts 5-2
pipeline 4-2
TMS320 DSP family 1-2
TMS320C6000 DSP family 1-2

P
parallel code 3-9
parallel fetch packets 3-8
parallel operations 3-7

branch into the middle of an execute packet 3-9
parallel code 3-9

partially serial fetch packets 3-9
PCC bits 2-13
PCE1 2-22
PCE1 bits 2-22
performance considerations

interrupts 5-20
pipeline 4-18

PG pipeline phase 4-2
PGIE bit 2-13
pipeline

decode stage 4-3
execute stage 4-5
execution 4-11
fetch stage 4-2
overview 4-2
performance considerations 4-18
phases 4-2
stages 4-2
summary 4-6

pipeline execution 4-11
pipeline operation

branch instructions 4-17
load instructions 4-15
multiple execute packets in a fetch packet 4-18
multiply instructions 4-13
one execute packet per fetch packet 4-6
single-cycle instructions 4-12
store instructions 4-13
two-cycle instructions 4-13

pipeline phases
block diagram 4-8
used during memory accesses 4-22

PR pipeline phase 4-2
programming considerations, interrupts 5-21
PS pipeline phase 4-2

Index

Index-7SPRU731A

PW pipeline phase 4-2

PWRD bits 2-13

R
register files

cross paths 2-6
data address paths 2-7
general-purpose 2-2
memory, load, and store paths 2-6
relationship to data paths 2-6

registers
addresses for accessing 2-8
addressing mode register (AMR) 2-10
control register file 2-7
control status register (CSR) 2-13
E1 phase program counter (PCE1) 2-22
interrupt clear register (ICR) 2-16
interrupt enable register (IER) 2-17
interrupt flag register (IFR) 2-18
interrupt return pointer register (IRP) 2-19
interrupt service table pointer register

(ISTP) 2-21
interrupt set register (ISR) 2-20
NMI return pointer register (NRP) 2-22
read constraints 3-14
write constraints 3-15

related documentation from Texas Instruments iii

resource constraints 3-11
cross paths 3-11
on loads and stores 3-12
on long data 3-13
on register reads 3-14
on register writes 3-15
using the same functional unit 3-11

return from NMI 5-14

returning from a trap 5-25

returning from interrupt servicing 5-14

returning from maskable interrupts 5-14

returning from nonmaskable interrupts 5-14

REVISION ID bits 2-13

S
SADD instruction 3-127

SAT bit 2-13

SAT instruction 3-130

saturate a 40-bit integer to a 32-bit integer
(SAT) 3-130

serial fetch packets 3-8

set a bit field (SET) 3-132

set an individual interrupt 5-13

SET instruction 3-132

setting interrupts 5-13

setting the nonreset interrupt flag 5-15

setting the RESET interrupt flag 5-18

shift
arithmetic shift left (SHL) 3-135
arithmetic shift right (SHR) 3-137
logical shift right (SHRU) 3-139
shift left with saturation (SSHL) 3-148

shift left with saturation (SSHL) 3-148

SHL instruction 3-135

SHR instruction 3-137

SHRU instruction 3-139

single-cycle instructions
block diagram 4-12
pipeline operation 4-12

SMPY instruction 3-141

SMPYH instruction 3-143

SMPYHL instruction 3-144

SMPYLH instruction 3-146

SSHL instruction 3-148

SSUB instruction 3-150

STB instruction
5-bit unsigned constant offset or register

offset 3-152
15-bit unsigned constant offset 3-154

STH instruction
5-bit unsigned constant offset or register

offset 3-156
15-bit unsigned constant offset 3-159

store
byte

to memory with a 5-bit unsigned constant
offset or register offset (STB) 3-152

to memory with a 15-bit unsigned constant
offset (STB) 3-154

halfword
to memory with a 5-bit unsigned constant

offset or register offset (STH) 3-156
to memory with a 15-bit unsigned constant

offset (STH) 3-159

Index

Index-8 SPRU731A

store (continued)
word

to memory with a 5-bit unsigned constant
offset or register offset (STW) 3-161

to memory with a 15-bit unsigned constant
offset (STW) 3-163

store instructions
block diagram 4-14
conflicts 3-12
pipeline operation 4-13
syntax for indirect addressing 3-18
using circular addressing 3-17
using linear addressing 3-16

store or load to the same memory location,
rules 4-14

store paths 2-6

STW instruction
5-bit unsigned constant offset or register

offset 3-161
15-bit unsigned constant offset 3-163

SUB instruction 3-165

SUB2 instruction 3-177

SUBAB instruction 3-168

SUBAH instruction 3-170

SUBAW instruction 3-171

SUBC instruction 3-173

subtract
conditionally and shift (SUBC) 3-173
two 16-bit integers on upper and lower register

halves (SUB2) 3-177
using byte addressing mode (SUBAB) 3-168
using halfword addressing mode

(SUBAH) 3-170
using word addressing mode (SUBAW) 3-171
with saturation, two signed integers

(SSUB) 3-150
without saturation

two signed integers (SUB) 3-165
two unsigned integers (SUBU) 3-175

subtract instructions
using circular addressing 3-18
using linear addressing 3-16

SUBU instruction 3-175
syntax, fields and meanings 3-5

T
TMS320 DSP family

applications 1-3
overview 1-2

TMS320C6000 DSP family, overview 1-2
TMS320C62x DSP

architecture 1-6
block diagram 1-6
features 1-4
options 1-4

trademarks iv
two 16-bit integers

add on upper and lower register halves
(ADD2) 3-39

subtract on upper and lower register halves
(SUB2) 3-177

two-cycle instructions, pipeline operation 4-13

V
VelociTI architecture 1-1
VLIW (very long instruction word) architecture 1-1

X
XOR instruction 3-179

Z
zero a register (ZERO) 3-181
ZERO instruction 3-181

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

