TMS320C62x DSP CPU and Instruction Set Reference Guide

Literature Number: SPRU731A May 2010

Preface

Read This First

About This Manual

The TMS320C6000[™] digital signal processor (DSP) platform is part of the TMS320[™] DSP family. The TMS320C62x[™] DSP generation and the TMS320C64x[™] DSP generation comprise fixed-point devices in the C6000[™] DSP platform, and the TMS320C67x[™] DSP generation comprises floating-point devices in the C6000 DSP platform. The C62x[™] and C64x[™] DSPs are code-compatible.

This document describes the CPU architecture, pipeline, instruction set, and interrupts of the C62x DSP.

Notational Conventions

This document uses the following conventions.

□ Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the $C6000^{\text{TM}}$ devices and related support tools. Copies of these documents are available on the Internet at www.ti.com. *Tip:* Enter the literature number in the search box provided at www.ti.com.

The current documentation that describes the C6000 devices, related peripherals, and other technical collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

- TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) describes the peripherals available on the TMS320C6000[™] DSPs.
- **TMS320C6000 Technical Brief** (literature number SPRU197) gives an introduction to the TMS320C62x[™] and TMS320C67x[™] DSPs, development tools, and third-party support.
- **TMS320C6000 Programmer's Guide** (literature number SPRU198) describes ways to optimize C and assembly code for the TMS320C6000[™] DSPs and includes application program examples.

TMS320C6000 Chip Support Library API Reference Guide (literature number SPRU401) describes a set of application programming interfaces (APIs) used to configure and control the on-chip peripherals.

Trademarks

Code Composer Studio, C6000, C62x, C64x, C67x, TMS320C2000, TMS320C5000, TMS320C6000, TMS320C62x, TMS320C64x, TMS320C67x, and VelociTI are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.

Contents

	_	_		
1				1-1
		des featu o provide	ires and options of the TMS320C62x DSP. An overview of the DSP architecture ed.	
	1.1	TMS32	0 DSP Family Overview	1-2
	1.2	TMS32	0C6000 DSP Family Overview	1-2
	1.3	TMS32	0C62x DSP Features and Options	1-4
	1.4	TMS32	0C62x DSP Architecture	1-6
		1.4.1	Central Processing Unit (CPU)	1-7
		1.4.2	Internal Memory	1-7
		1.4.3	Memory and Peripheral Options	1-7
2	CPU	Data Pa	ths and Control	2-1
	Provid	des infor	mation about the data paths and control registers. The two register files and the	
			ths are described.	
	2.1	Introdu	ction	2-2
	2.2	Genera	al-Purpose Register Files	2-2
	2.3	Functio	nal Units	2-5
	2.4	Registe	er File Cross Paths	2-6
	2.5	Memor	y, Load, and Store Paths	2-6
	2.6	Data A	ddress Paths	2-7
	2.7	Contro	Register File	2-7
		2.7.1	Register Addresses for Accessing the Control Registers	2-8
		2.7.2	Pipeline/Timing of Control Register Accesses	2-9
		2.7.3	Addressing Mode Register (AMR) 2	2-10
		2.7.4	Control Status Register (CSR) 2	2-13
		2.7.5	Interrupt Clear Register (ICR) 2	2-16
		2.7.6	Interrupt Enable Register (IER) 2	2-17
		2.7.7	Interrupt Flag Register (IFR) 2	2-18
		2.7.8	Interrupt Return Pointer Register (IRP)	2-19
		2.7.9	Interrupt Set Register (ISR)	2-20
		2.7.10	Interrupt Service Table Pointer Register (ISTP) 2	
		2.7.11	Nonmaskable Interrupt (NMI) Return Pointer Register (NRP) 2	
		2.7.12	E1 Phase Program Counter (PCE1)	2-22

Contents v

3	Instru	uction S	Set	3-1
	Desc	ribes the	e assembly language instructions of the TMS320C62x DSP. Also described	d are
	parali	lel opera	ations, conditional operations, resource constraints, and addressing modes	S.
	3.1	Instruc	tion Operation and Execution Notations	3-2
	3.2	Instruc	tion Syntax and Opcode Notations	3-5
	3.3	Delay	Slots	3-6
	3.4	Paralle	el Operations	3-7
		3.4.1	Example Parallel Code	3-9
		3.4.2	Branching Into the Middle of an Execute Packet	3-9
	3.5	Condit	ional Operations	3-10
	3.6	Resou	rce Constraints	3-11
		3.6.1	Constraints on Instructions Using the Same Functional Unit	3-11
		3.6.2	Constraints on Cross Paths (1X and 2X)	
		3.6.3	Constraints on Loads and Stores	
		3.6.4	Constraints on Long (40-Bit) Data	
		3.6.5	Constraints on Register Reads	
		3.6.6	Constraints on Register Writes	
	3.7	Addres	ssing Modes	
		3.7.1		
		3.7.2	5	
		3.7.3	Syntax for Load/Store Address Generation	
	3.8		tion Compatibility	
	3.9		tion Descriptions	
		•	Absolute Value With Saturation)	
		•	Add Two Signed Integers Without Saturation)	
			B (Add Using Byte Addressing Mode)	
			H (Add Using Halfword Addressing Mode)	
			W (Add Using Word Addressing Mode)	
			(Add Signed 16-Bit Constant to Register)	
			(Add Two Unsigned Integers Without Saturation)	
			(Add Two 16-Bit Integers on Upper and Lower Register Halves)	
		· ·	Bitwise AND)	
		•	nch Using a Displacement)	
			nch Using a Register)	
			(Branch Using an Interrupt Return Pointer)	
			P (Branch Using NMI Return Pointer)	
			Clear a Bit Field)	
			Q (Compare for Equality, Signed Integers)	
			T (Compare for Greater Than, Signed Integers)	
			TU (Compare for Greater Than, Unsigned Integers)	
			T (Compare for Less Than, Signed Integers)	
			TU (Compare for Less Than, Unsigned Integers)	
			Extract and Sign-Extend a Bit Field)	
			(Extract and Zero-Extend a Bit Field)	3-09

Contents

vi

SPRU731A

	DLE (Multicycle NOP With No Termination Until Interrupt)	3-72
LI	DB(U) (Load Byte From Memory With a 5-Bit Unsigned Constant Offset or Register Offset)	3-73
L	DB(U) (Load Byte From Memory With a 15-Bit Unsigned Constant Offset)	
	DH(U) (Load Halfword From Memory With a 5-Bit Unsigned Constant Offset	
	or Register Offset)	3-78
	DH(U) (Load Halfword From Memory With a 15-Bit Unsigned Constant Offset)	3-81
L	DW (Load Word From Memory With a 5-Bit Unsigned Constant Offset	0.00
	or Register Offset)	
	DW (Load Word From Memory With a 15-Bit Unsigned Constant Offset)	
	MBD (Leftmost Bit Detection)	
	PY (Multiply Signed 16 LSB by Signed 16 LSB)	
	PYH (Multiply Signed 16 MSB by Signed 16 MSB) PYHL (Multiply Signed 16 MSB by Signed 16 LSB)	
	PYHLU (Multiply Unsigned 16 MSB by Signed 16 LSB)	
	PYHSLU (Multiply Signed 16 MSB by Unsigned 16 LSB)	
	PYHSU (Multiply Signed 16 MSB by Unsigned 16 MSB)	
	PYHU (Multiply Unsigned 16 MSB by Unsigned 16 MSB)	
	PYHULS (Multiply Unsigned 16 MSB by Signed 16 LSB)	
	PYHUS (Multiply Unsigned 16 MSB by Signed 16 MSB)	
	PYLH (Multiply Signed 16 LSB by Signed 16 MSB)	
	PYLHU (Multiply Unsigned 16 LSB by Unsigned 16 MSB)	
	PYLSHU (Multiply Signed 16 LSB by Unsigned 16 MSB)	
	PYLUHS (Multiply Unsigned 16 LSB by Signed 16 MSB)	
	PYSU (Multiply Signed 16 LSB by Unsigned 16 LSB)	
	PYU (Multiply Unsigned 16 LSB by Unsigned 16 LSB)	
	PYUS (Multiply Unsigned 16 LSB by Signed 16 LSB)	
	V (Move From Register to Register)	
	VC (Move Between Control File and Register File)	
Μ	VK (Move Signed Constant Into Register and Sign Extend)	3-113
Μ	VKH and MVKLH (Move 16-Bit Constant Into Upper Bits of Register)	3-115
Μ	VKL (Move Signed Constant Into Register and	
• •	5	3-117
		3-119
	OP (No Operation)	
	ORM (Normalize Integer)	
	OT (Bitwise NOT)	
	R (Bitwise OR)	
	ADD (Add Two Signed Integers with Saturation)AD (Saturate a 40-Bit Integer to a 32-Bit Integer)	
	ET (Set a Bit Field)	
	HL (Arithmetic Shift Left)	
	HR (Arithmetic Shift Right)	
	HRU (Logical Shift Right)	
0		0-109

		SMPY	(Multiply Signed 16 LSB by Signed 16 LSB With Left Shift and Saturation)	3-141
		SMPY	H (Multiply Signed 16 MSB by Signed 16 MSB With Left Shift	
			and Saturation)	3-143
		SMPY	HL (Multiply Signed 16 MSB by Signed 16 LSB With Left Shift and Saturation)	3-144
		SMPY	LH (Multiply Signed 16 LSB by Signed 16 MSB With Left Shift	
			and Saturation)	
			(Shift Left With Saturation)	
			(Subtract Two Signed Integers With Saturation)	3-150
		STB (S	Store Byte to Memory With a 5-Bit Unsigned Constant Offset or Register Offset)	3-152
		STB (S	Store Byte to Memory With a 15-Bit Unsigned Constant Offset)	3-154
		STH (S	Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or Register Offset)	3-156
		STH (S	Store Halfword to Memory With a 15-Bit Unsigned Constant Offset)	
			Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset)	
		STW (Store Word to Memory With a 15-Bit Unsigned Constant Offset)	
		•	Subtract Two Signed Integers Without Saturation)	
		•	B (Subtract Using Byte Addressing Mode)	
			H (Subtract Using Halfword Addressing Mode)	
			<i>N</i> (Subtract Using Word Addressing Mode)	
			(Subtract Conditionally and Shift—Used for Division)	
			(Subtract Two Unsigned Integers Without Saturation)	
			(Subtract Two 16-Bit Integers on Upper and Lower Register Halves)	
			Bitwise Exclusive OR)	
		ZERO	(Zero a Register)	3-181
4	Pipel	ine		4-1
			ases, operation, and discontinuities for the TMS320C62x CPU pipeline.	
	4.1		e Operation Overview	4-2
	4.1	4.1.1	Fetch	
		4.1.2		
		4.1.3		
		4.1.4	Pipeline Operation Summary	
	4.2	Pipelin	e Execution of Instruction Types	
		4.2.1	Single-Cycle Instructions	
		4.2.2	Two-Cycle Instructions	
		4.2.3	Store Instructions	4-13
		4.2.4	Load Instructions	4-15
		4.2.5	Branch Instructions	4-17
	4.3	Perfor	mance Considerations	
		4.3.1	Pipeline Operation With Multiple Execute Packets in a Fetch Packet	4-18
		4.3.2	Multicycle NOPs	
		4.3.3	Memory Considerations	4-22

5	Descr	ibes CP	U interrupts, including reset and the nonmaskable interrupt (NMI). It details the control registers and their functions in controlling interrupts.	5-1
	5.1	Overvie	ew	5-2
		5.1.1	Types of Interrupts and Signals Used	5-2
		5.1.2	Interrupt Service Table (IST)	
		5.1.3	Summary of Interrupt Control Registers	5-9
	5.2	Globall	y Enabling and Disabling Interrupts 5	-10
	5.3	Individu	al Interrupt Control	-12
		5.3.1	Enabling and Disabling Interrupts 5	-12
		5.3.2	Status of Interrupts	
		5.3.3	Setting and Clearing Interrupts 5	-13
		5.3.4	Returning From Interrupt Servicing 5	5-14
	5.4	Interrup	ot Detection and Processing 5	5-15
		5.4.1	Setting the Nonreset Interrupt Flag 5	5-15
		5.4.2	Conditions for Processing a Nonreset Interrupt 5	5-15
		5.4.3	Actions Taken During Nonreset Interrupt Processing 5	
		5.4.4	Setting the RESET Interrupt Flag 5	5-18
		5.4.5	Actions Taken During RESET Interrupt Processing 5	-19
	5.5	Perform	nance Considerations 5	
		5.5.1	General Performance 5	-20
		5.5.2	Pipeline Interaction	-20
	5.6	Program	mming Considerations 5	-21
		5.6.1	Single Assignment Programming 5	-21
		5.6.2	Nested Interrupts 5	-22
		5.6.3	Manual Interrupt Processing 5	-24
		5.6.4	Traps 5	-25
Α			ween Instruction and Functional Unit	A-1

Figures

1-1	TMS320C62x DSP Block Diagram	1-6
2-1	TMS320C62x CPU Data Paths	2-3
2-2	Storage Scheme for 40-Bit Data in a Register Pair	2-4
2-3	Addressing Mode Register (AMR)	. 2-10
2-4	Control Status Register (CSR)	
2-5	PWRD Field of Control Status Register (CSR)	. 2-13
2-6	Interrupt Clear Register (ICR)	
2-7	Interrupt Enable Register (IER)	
2-8	Interrupt Flag Register (IFR)	. 2-18
2-9	Interrupt Return Pointer Register (IRP)	. 2-19
2-10	Interrupt Set Register (ISR)	
2-11	Interrupt Service Table Pointer Register (ISTP)	
2-12	NMI Return Pointer Register (NRP)	
2-13	E1 Phase Program Counter (PCE1)	
3-1	Basic Format of a Fetch Packet	
3-2	Examples of the Detectability of Write Conflicts by the Assembler	. 3-15
4-1	Pipeline Stages	
4-2	Fetch Phases of the Pipeline	
4-3	Decode Phases of the Pipeline	4-4
4-4	Execute Phases of the Pipeline	
4-5	Pipeline Phases	
4-6	Pipeline Operation: One Execute Packet per Fetch Packet	
4-7	Pipeline Phases Block Diagram	4-8
4-8	Single-Cycle Instruction Phases	
4-9	Single-Cycle Instruction Execution Block Diagram	. 4-12
4-10	Two-Cycle Instruction Phases	
4-11	Single 16 × 16 Multiply Instruction Execution Block Diagram	. 4-13
4-12	Store Instruction Phases	. 4-14
4-13	Store Instruction Execution Block Diagram	. 4-14
4-14	Load Instruction Phases	. 4-15
4-15	Load Instruction Execution Block Diagram	. 4-15
4-16	Branch Instruction Phases	
4-17	Branch Instruction Execution Block Diagram	. 4-17
4-18	Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets	
4-19	Multicycle NOP in an Execute Packet	
		. 4-20

x Figures

4-21	Pipeline Phases Used During Memory Accesses 4-22
4-22	Program and Data Memory Stalls 4-23
4-23	4-Bank Interleaved Memory 4-24
4-24	4-Bank Interleaved Memory With Two Memory Spaces 4-25
5-1	Interrupt Service Table 5-5
5-2	Interrupt Service Fetch Packet 5-6
5-3	Interrupt Service Table With Branch to Additional Interrupt Service Code
	Located Outside the IST 5-7
5-4	Nonreset Interrupt Detection and Processing: Pipeline Operation 5-16
5-5	RESET Interrupt Detection and Processing: Pipeline Operation 5-18

Tables

1-1	Typical Applications for the TMS320 DSPs 1	-3
2-1	40-Bit/64-Bit Register Pairs 2	
2-2	Functional Units and Operations Performed 2	-5
2-3	Control Registers	
2-4	Register Addresses for Accessing the Control Registers 2	-8
2-5	Addressing Mode Register (AMR) Field Descriptions 2-1	0
2-6	Block Size Calculations 2-1	2
2-7	Control Status Register (CSR) Field Descriptions 2-1	4
2-8	Interrupt Clear Register (ICR) Field Descriptions 2-1	6
2-9	Interrupt Enable Register (IER) Field Descriptions 2-1	17
2-10	Interrupt Flag Register (IFR) Field Descriptions 2-1	8
2-11	Interrupt Set Register (ISR) Field Descriptions 2-2	20
2-12	Interrupt Service Table Pointer Register (ISTP) Field Descriptions 2-2	21
3-1	Instruction Operation and Execution Notations	
3-2	Instruction Syntax and Opcode Notations	-5
3-3	Delay Slots	
3-4	Registers That Can Be Tested by Conditional Operations	
3-5	Indirect Address Generation for Load/Store	9
3-6	Address Generator Options for Load/Store	9
3-7	Relationships Between Operands, Operand Size, Signed/Unsigned, Functional Units, and Opfields for Example Instruction (ADD)	22
3-8	Program Counter Values for Example Branch Using a Displacement	
3-9	Program Counter Values for Example Branch Using a Register	
3-10	Program Counter Values for B IRP Instruction	
3-11	Program Counter Values for B NRP Instruction	
3-12	Data Types Supported by LDB(U) Instruction	
3-13	Data Types Supported by LDB(U) Instruction (15-Bit Offset)	
3-14	Data Types Supported by LDH(U) Instruction	
3-15	Data Types Supported by LDH(U) Instruction (15-Bit Offset)	
3-16	Register Addresses for Accessing the Control Registers	
4-1	Operations Occurring During Pipeline Phases	
4-2	Execution Stage Length Description for Each Instruction Type	
4-3	Program Memory Accesses Versus Data Load Accesses	
4-4	Loads in Pipeline From Example 4-2 4-2	
5-1	Interrupt Priorities	
5-2	Interrupt Control Registers	
A-1	Instruction to Functional Unit Mapping A	

xii Tables

Examples

3-1	Fully Serial p-Bit Pattern in a Fetch Packet
3-2	Fully Parallel p-Bit Pattern in a Fetch Packet
3-3	Partially Serial p-Bit Pattern in a Fetch Packet
3-4	LDW Instruction in Circular Mode 3-17
3-5	ADDAH Instruction in Circular Mode 3-18
4-1	Execute Packet in Figure 4-7 4-10
4-2	Load From Memory Banks 4-24
5-1	Relocation of Interrupt Service Table 5-8
5-2	Interrupts Versus Writes to GIE 5-10
5-3	Code Sequence to Disable Maskable Interrupts Globally 5-11
5-4	Code Sequence to Enable Maskable Interrupts Globally 5-11
5-5	Code Sequence to Enable an Individual Interrupt (INT9) 5-12
5-6	Code Sequence to Disable an Individual Interrupt (INT9) 5-12
5-7	Code to Set an Individual Interrupt (INT6) and Read the Flag Register 5-13
5-8	Code to Clear an Individual Interrupt (INT6) and Read the Flag Register 5-13
5-9	Code to Return From NMI 5-14
5-10	Code to Return from a Maskable Interrupt 5-14
5-11	Code Without Single Assignment: Multiple Assignment of A1 5-21
5-12	Code Using Single Assignment 5-22
5-13	Assembly Interrupt Service Routine That Allows Nested Interrupts 5-23
5-14	C Interrupt Service Routine That Allows Nested Interrupts 5-24
5-15	Manual Interrupt Processing 5-24
5-16	Code Sequence to Invoke a Trap 5-25
5-17	Code Sequence for Trap Return 5-25

Chapter 1

Introduction

The TMS320C6000[™] digital signal processor (DSP) platform is part of the TMS320[™] DSP family. The TMS320C62x[™] DSP generation and the TMS320C64x[™] DSP generation comprise fixed-point devices in the C6000[™] DSP platform, and the TMS320C67x[™] DSP generation comprises floating-point devices in the C6000 DSP platform. The C62x[™] and C64x[™] DSPs are code-compatible. The C62x and C67x[™] DSPs are code-compatible. All three DSPs use the VelociTI[™] architecture, a high-performance, advanced very long instruction word (VLIW) architecture, making these DSPs excellent choices for multichannel and multifunction applications.

Topic

Page

1.1	TMS320 DSP Family Overview	1-2
1.2	TMS320C6000 DSP Family Overview	1-2
1.3	TMS320C62x DSP Features and Options	1-4
1.4	TMS320C62x DSP Architecture	1-6

1.1 TMS320 DSP Family Overview

The TMS320[™] DSP family consists of fixed-point, floating-point, and multiprocessor digital signal processors (DSPs). TMS320[™] DSPs have an architecture designed specifically for real-time signal processing.

Table 1-1 lists some typical applications for the TMS320[™] family of DSPs. The TMS320[™] DSPs offer adaptable approaches to traditional signal-processing problems. They also support complex applications that often require multiple operations to be performed simultaneously.

1.2 TMS320C6000 DSP Family Overview

With a performance of up to 8000 million instructions per second (MIPS) and an efficient C compiler, the TMS320C6000 DSPs give system architects unlimited possibilities to differentiate their products. High performance, ease of use, and affordable pricing make the C6000 generation the ideal solution for multichannel, multifunction applications, such as:

- Pooled modems
- Wireless local loop base stations
- Remote access servers (RAS)
- Digital subscriber loop (DSL) systems
- Cable modems
- Multichannel telephony systems

The C6000 generation is also an ideal solution for exciting new applications; for example:

- Personalized home security with face and hand/fingerprint recognition
- Advanced cruise control with global positioning systems (GPS) navigation and accident avoidance
- Remote medical diagnostics
- Beam-forming base stations
- Virtual reality 3-D graphics
- Speech recognition
- 🗋 Audio
- 🗋 Radar
- □ Atmospheric modeling
- Finite element analysis
- Imaging (examples: fingerprint recognition, ultrasound, and MRI)

1-2 Introduction

Automotive	Consumer	Control
Adaptive ride control Antiskid brakes Cellular telephones Digital radios Engine control Global positioning Navigation Vibration analysis Voice commands	Digital radios/TVs Educational toys Music synthesizers Pagers Power tools Radar detectors Solid-state answering machines	Disk drive control Engine control Laser printer control Motor control Robotics control Servo control
General-Purpose	Graphics/Imaging	Industrial
Adaptive filtering Convolution Correlation Digital filtering Fast Fourier transforms Hilbert transforms Waveform generation Windowing	3-D transformations Animation/digital maps Homomorphic processing Image compression/transmission Image enhancement Pattern recognition Robot vision Workstations	Numeric control Power-line monitoring Robotics Security access
Instrumentation	Medical	Military
Digital filtering Function generation Pattern matching Phase-locked loops Seismic processing Spectrum analysis Transient analysis	Diagnostic equipment Fetal monitoring Hearing aids Patient monitoring Prosthetics Ultrasound equipment	Image processing Missile guidance Navigation Radar processing Radio frequency modems Secure communications Sonar processing
Telecomm	nunications	Voice/Speech
1200- to 56 600-bps modems Adaptive equalizers ADPCM transcoders Base stations Cellular telephones Channel multiplexing Data encryption Digital PBXs Digital speech interpolation (DSI) DTMF encoding/decoding Echo cancellation	Faxing Future terminals Line repeaters Personal communications systems (PCS) Personal digital assistants (PDA) Speaker phones Spread spectrum communications Digital subscriber loop (xDSL) Video conferencing X.25 packet switching	Speaker verification Speech enhancement Speech recognition Speech synthesis Speech vocoding Text-to-speech Voice mail

Table 1-1. Typical Applications for the TMS320 DSPs

1.3 TMS320C62x DSP Features and Options

The C6000 devices execute up to eight 32-bit instructions per cycle. The C62x CPU consists of 32 general-purpose 32-bit registers and eight functional units. These eight functional units contain:

- Two multipliers
- Six ALUs

The C6000 generation has a complete set of optimized development tools, including an efficient C compiler, an assembly optimizer for simplified assembly-language programming and scheduling, and a Windows[™] based debugger interface for visibility into source code execution characteristics. A hardware emulation board, compatible with the TI XDS510[™] and XDS560[™] emulator interface, is also available. This tool complies with IEEE Standard 1149.1–1990, IEEE Standard Test Access Port and Boundary-Scan Architecture.

Features of the C6000 devices include:

- Advanced VLIW CPU with eight functional units, including two multipliers and six arithmetic units
 - Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs
 - Allows designers to develop highly effective RISC-like code for fast development time
- Instruction packing
 - Gives code size equivalence for eight instructions executed serially or in parallel
 - Reduces code size, program fetches, and power consumption
- Conditional execution of all instructions
 - Reduces costly branching
 - Increases parallelism for higher sustained performance
- Efficient code execution on independent functional units
 - Industry's most efficient C compiler on DSP benchmark suite
 - Industry's first assembly optimizer for fast development and improved parallelization
- 8/16/32-bit data support, providing efficient memory support for a variety of applications
- 40-bit arithmetic options add extra precision for vocoders and other computationally intensive applications

- Saturation and normalization provide support for key arithmetic operations
- □ Field manipulation and instruction extract, set, clear, and bit counting support common operation found in control and data manipulation applications.

The VelociTI architecture of the C6000 platform of devices make them the first off-the-shelf DSPs to use advanced VLIW to achieve high performance through increased instruction-level parallelism. A traditional VLIW architecture consists of multiple execution units running in parallel, performing multiple instructions during a single clock cycle. Parallelism is the key to extremely high performance, taking these DSPs well beyond the performance capabilities of traditional superscalar designs. VelociTI is a highly deterministic architecture, having few restrictions on how or when instructions are fetched, executed, or stored. It is this architectural flexibility that is key to the breakthrough efficiency levels of the TMS320C6000 Optimizing C compiler. VelociTI's advanced features include:

- Instruction packing: reduced code size
- All instructions can operate conditionally: flexibility of code
- U Variable-width instructions: flexibility of data types
- □ Fully pipelined branches: zero-overhead branching.

1.4 TMS320C62x DSP Architecture

Figure 1-1 is the block diagram for the C62x DSP. The C6000 devices come with program memory, which, on some devices, can be used as a program cache. The devices also have varying sizes of data memory. Peripherals such as a direct memory access (DMA) controller, power-down logic, and external memory interface (EMIF) usually come with the CPU, while peripherals such as serial ports and host ports are on only certain devices. Check your data manual for your device to determine the specific peripheral configurations.

1.4.1 Central Processing Unit (CPU)

The C62x CPU, in Figure 1-1, contains:

- Program fetch unit
- □ Instruction dispatch unit
- Instruction decode unit
- Two data paths, each with four functional units
- □ 32 32-bit registers
- Control registers
- □ Control logic
- Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can deliver up to eight 32-bit instructions to the functional units every CPU clock cycle. The processing of instructions occurs in each of the two data paths (A and B), each of which contains four functional units (.L, .S, .M, and .D) and 16 32-bit general-purpose registers. The data paths are described in more detail in Chapter 2. A control register file provides the means to configure and control various processor operations. To understand how instructions are fetched, dispatched, decoded, and executed in the data path, see Chapter 4.

1.4.2 Internal Memory

The C62x DSP has a 32-bit, byte-addressable address space. Internal (on-chip) memory is organized in separate data and program spaces. When off-chip memory is used, these spaces are unified on most devices to a single memory space via the external memory interface (EMIF).

The C62x DSP has two 32-bit internal ports to access internal data memory. The C62x DSP has a single internal port to access internal program memory, with an instruction-fetch width of 256 bits.

1.4.3 Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000 platform:

- Large on-chip RAM, up to 7M bits
- Program cache
- 2-level caches
- 32-bit external memory interface supports SDRAM, SBSRAM, SRAM, and other asynchronous memories for a broad range of external memory requirements and maximum system performance.

- The direct memory access (DMA) controller transfers data between address ranges in the memory map without intervention by the CPU. The DMA controller has four programmable channels and a fifth auxiliary channel.
- The enhanced direct memory access (EDMA) controller (C6211 DSP only) performs the same functions as the DMA controller. The EDMA has 16 programmable channels, as well as a RAM space to hold multiple configurations for future transfers.
- The host port interface (HPI) is a parallel port through which a host processor can directly access the CPU memory space. The host device functions as a master to the interface, which increases ease of access. The host and CPU can exchange information via internal or external memory. The host also has direct access to memory-mapped peripherals. Connectivity to the CPU memory space is provided through the DMA/EDMA controller.
- The expansion bus is a replacement for the HPI, as well as an expansion of the EMIF. The expansion provides two distinct areas of functionality (host port and I/O port) that can co-exist in a system. The host port of the expansion bus can operate in either asynchronous slave mode, similar to the HPI, or in synchronous master/slave mode. This allows the device to interface to a variety of host bus protocols. Synchronous FIFOs and asynchronous peripheral I/O devices may interface to the expansion bus.
- The peripheral component interconnect (PCI) port supports connection of the C62x DSP to a PCI host via the integrated PCI master/slave bus interface.
- □ The multichannel buffered serial port (McBSP) is based on the standard serial port interface found on the TMS320C2000[™] and TMS320C5000[™] devices. In addition, the port can buffer serial samples in memory automatically with the aid of the DMA/EDMA controller. It also has multichannel capability compatible with the T1, E1, SCSA, and MVIP networking standards.
- Timers in the C6000 devices are two 32-bit general-purpose timers used for these functions:
 - Time events
 - Count events
 - Generate pulses
 - Interrupt the CPU
 - Send synchronization events to the DMA/EDMA controller.

1-8 Introduction

Power-down logic allows reduced clocking to reduce power consumption. Most of the operating power of CMOS logic dissipates during circuit switching from one logic state to another. By preventing some or all of the chip's logic from switching, you can realize significant power savings without losing any data or operational context.

For an overview of the peripherals available on the C6000 DSP, refer to the *TM320C6000 DSP Peripherals Overview Reference Guide* (SPRU190) or to your device-specific data manual.

Chapter 2

CPU Data Paths and Control

This chapter focuses on the CPU, providing information about the data paths and control registers. The two register files and the data cross paths are described.

Topic

Page

2.1	Introduction	2-2
2.2	General-Purpose Register Files	2-2
2.3	Functional Units	2-5
2.4	Register File Cross Paths	2-6
2.5	Memory, Load, and Store Paths	2-6
2.6	Data Address Paths	2-7
2.7	Control Register File	2-7

2.1 Introduction

The components of the data path for the TMS320C62x CPU are shown in Figure 2-1. These components consist of:

- Two general-purpose register files (A and B)
- Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
- Two load-from-memory data paths (LD1 and LD2)
- Two store-to-memory data paths (ST1 and ST2)
- Two data address paths (DA1 and DA2)
- Two register file data cross paths (1X and 2X)

2.2 General-Purpose Register Files

There are two general-purpose register files (A and B) in the C62x CPU data paths. Each of these files contains 16 32-bit registers (A0–A15 for file A and B0–B15 for file B), as shown in Table 2–1. The general-purpose registers can be used for data, data address pointers, or condition registers.

The C62x DSP general-purpose register files support data ranging in size from packed 16-bit through 40-bit fixed-point data. Values larger than 32 bits, such as 40-bit long quantities, are stored in register pairs. The 32 LSBs of data are placed in an even-numbered register and the remaining 8 MSBs in the next upper register (that is always an odd-numbered register). Packed data types store two 16-bit values in a single 32-bit register.

There are 16 valid register pairs for 40-bit data in the C62x DSP cores. In assembly language syntax, a colon between the register names denotes the register pairs, and the odd-numbered register is specified first.

Figure 2–2 shows the register storage scheme for 40-bit long data. Operations requiring a long input ignore the 24 MSBs of the odd-numbered register. Operations producing a long result zero-fill the 24 MSBs of the odd-numbered register. The even-numbered register is encoded in the opcode.

Figure 2-1. TMS320C62x CPU Data Paths

Register Files						
Α	В					
A1:A0	B1:B0					
A3:A2	B3:B2					
A5:A4	B5:B4					
A7:A6	B7:B6					
A9:A8	B9:B8					
A11:A10	B11:B10					
A13:A12	B13:B12					
A15:A14	B15:B14					

Table 2-1. 40-Bit/64-Bit Register Pairs

Figure 2-2. Storage Scheme for 40-Bit Data in a Register Pair

2.3 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of four; each functional unit in one data path is almost identical to the corresponding unit in the other data path. The functional units are described in Table 2–2.

Most data lines in the CPU support 32-bit operands, and some support long (40-bit) operands. Each functional unit has its own 32-bit write port into a general-purpose register file (refer to Figure 2-1). All units ending in 1 (for example, .L1) write to register file A, and all units ending in 2 write to register file B. Each functional unit has two 32-bit read ports for source operands *src1* and *src2*. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. Each unit has its own 32-bit write port, so all eight units can be used in parallel every cycle.

See Appendix A for a list of the instructions that execute on each functional unit.

Functional Unit	Fixed-Point Operations
.L unit (.L1, .L2)	32/40-bit arithmetic and compare operations
	32-bit logical operations
	Leftmost 1 or 0 counting for 32 bits
	Normalization count for 32 and 40 bits
.S unit (.S1, .S2)	32-bit arithmetic operations
	32/40-bit shifts and 32-bit bit-field operations
	32-bit logical operations
	Branches
	Constant generation
	Register transfers to/from control register file (.S2 only)
.M unit (.M1, .M2)	16 × 16-bit multiply operations
.D unit (.D1, .D2)	32-bit add, subtract, linear and circular address calculation
	Loads and stores with 5-bit constant offset
	Loads and stores with 15-bit constant offset (.D2 only)

Table 2-2. Functional Units and Operations Performed

2.4 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register files are connected to the opposite-side register file's functional units via the 1X and 2X cross paths. These cross paths allow functional units from one data path to access a 32-bit operand from the opposite side register file. The 1X cross path allows the functional units of data path A to read their source from register file B, and the 2X cross path allows the functional units of data path A to read their source from register file B, and the 2X cross path allows the functional units of data path B to read their source from register file A.

On the C62x DSP, six of the eight functional units have access to the register file on the opposite side, via a cross path. The *src2* inputs of .M1, .M2, .S1, and .S2 units are selectable between the cross path and the same side register file. In the case of the .L1 and .L2, both *src1* and *src2* inputs are selectable between the cross path and the same side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the limit is one source read from each data path's opposite register file per cycle, or a total of two cross path source reads per cycle. In the C62x DSP, only one functional unit per data path, per execute packet, can get an operand from the opposite register file.

2.5 Memory, Load, and Store Paths

The C62x DSP has two 32-bit paths for loading data from memory to the register file: LD1 for register file A, and LD2 for register file B. There are also two 32-bit paths, ST1 and ST2, for storing register values to memory from each register file.

On the C6000 architecture, some of the ports for long operands are shared between functional units. This places a constraint on which long operations can be scheduled on a data path in the same execute packet. See section 3.6.4.

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in both data paths. This allows data addresses generated by any one path to access data to or from any register.

The DA1 and DA2 resources and their associated data paths are specified as T1 and T2, respectively. T1 consists of the DA1 address path and the LD1 and ST1 data paths. Similarly, T2 consists of the DA2 address path and the LD2 and ST2 data paths.

The T1 and T2 designations appear in the functional unit fields for load and store instructions. For example, the following load instruction uses the .D1 unit to generate the address but is using the LD2 path resource from DA2 to place the data in the B register file. The use of the DA2 resource is indicated with the T2 designation.

LDW .D1T2 *A0[3],B1

2.7 Control Register File

Table 2-3 lists the control registers contained in the control register file.

Acronym	Register Name	Section
AMR	Addressing mode register	2.7.3
CSR	Control status register	2.7.4
ICR	Interrupt clear register	2.7.5
IER	Interrupt enable register	2.7.6
IFR	Interrupt flag register	2.7.7
IRP	Interrupt return pointer register	2.7.8
ISR	Interrupt set register	2.7.9
ISTP	Interrupt service table pointer register	2.7.10
NRP	Nonmaskable interrupt return pointer register	2.7.11
PCE1	Program counter, E1 phase	2.7.12

Table 2-3. Control Registers

2.7.1 Register Addresses for Accessing the Control Registers

Table 2-4 lists the register addresses for accessing the control register file. One unit (.S2) can read from and write to the control register file. Each control register is accessed by the **MVC** instruction. See the **MVC** instruction description, page 3-110, for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other ways. For example, arrival of a maskable interrupt on an external interrupt pin, INT*m*, triggers the setting of flag bit IFR*m*. Subsequently, when that interrupt is processed, this triggers the clearing of IFR*m* and the clearing of the global interrupt enable bit, GIE. Finally, when that interrupt processing is complete, the **B IRP** instruction in the interrupt service routine restores the pre-interrupt value of the GIE. Similarly, saturating instructions like **SADD** set the SAT (saturation) bit in the control status register (CSR).

Acronym	Register Name	Address	Read/ Write
AMR	Addressing mode register	00000	R, W
CSR	Control status register	00001	R, W
ICR	Interrupt clear register	00011	W
IER	Interrupt enable register	00100	R, W
IFR	Interrupt flag register	00010	R
IRP	Interrupt return pointer	00110	R, W
ISR	Interrupt set register	00010	W
ISTP	Interrupt service table pointer	00101	R, W
NRP	Nonmaskable interrupt return pointer	00111	R, W
PCE1	Program counter, E1 phase	10000	R

Table 2-4. Register Addresses for Accessing the Control Registers

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction

2.7.2 Pipeline/Timing of Control Register Accesses

All **MVC** instructions are single-cycle instructions that complete their access of the explicitly named registers in the E1 pipeline phase. This is true whether **MVC** is moving a general register to a control register, or conversely. In all cases, the source register content is read, moved through the .S2 unit, and written to the destination register in the E1 pipeline phase.

Pipeline Stage	E1
Read	src2
Written	dst
Unit in use	.S2

Even though **MVC** modifies the particular target control register in a single cycle, it can take extra clocks to complete modification of the non-explicitly named register. For example, the **MVC** cannot modify bits in the IFR directly. Instead, **MVC** can only write 1's into the ISR or the ICR to specify setting or clearing, respectively, of the IFR bits. **MVC** completes this ISR/ICR write in a single (E1) cycle but the modification of the IFR bits occurs one clock later. For more information on the manipulation of ISR, ICR, and IFR, see section 2.7.9, section 2.7.5, and section 2.7.7.

Saturating instructions, such as **SADD**, set the saturation flag bit (SAT) in CSR indirectly. As a result, several of these instructions update the SAT bit one full clock cycle after their primary results are written to the register file. For example, the **SMPY** instruction writes its result at the end of pipeline stage E2; its primary result is available after one delay slot. In contrast, the SAT bit in CSR is updated one cycle later than the result is written; this update occurs after two delay slots. (For the specific behavior of an instruction, refer to the description of that individual instruction).

The **B IRP** and **B NRP** instructions directly update the GIE and NMIE bits, respectively. Because these branches directly modify CSR and IER, respectively, there are no delay slots between when the branch is issued and when the control register updates take effect.

2.7.3 Addressing Mode Register (AMR)

For each of the eight registers (A4–A7, B4–B7) that can perform linear or circular addressing, the addressing mode register (AMR) specifies the addressing mode. A 2-bit field for each register selects the address modification mode: linear (the default) or circular mode. With circular addressing, the field also specifies which BK (block size) field to use for a circular buffer. In addition, the buffer must be aligned on a byte boundary equal to the block size. The mode select fields and block size fields are shown in Figure 2–3 and described in Table 2–5.

Figure 2-3. Addressing Mode Register (AMR)

31					26	25				21	20				16
Reserved				BK1			ВКО								
R-0				R/W-0			R/W-0								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
B7 M	IODE	B6	MODE	B5 N	NODE	B2	4 MODE	A7 N	IODE	A6 N	<i>I</i> ODE	A5	MODE	A4	MODE
R/V	V-0	R	/W-0	R/	W-0		R/W-0	R/\	V-0	R/	W-0	F	?/W-0	F	R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-5.	Addressina l	Mode	Reaister	(AMR)	Field Descriptions

Bit	Field	Value	Description
31-26	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
25-21	BK1	0-1Fh	Block size field 1. A 5-bit value used in calculating block sizes for circular addressing. Table 2–6 shows block size calculations for all 32 possibilities.
			<i>Block size (in bytes)</i> = $2^{(N+1)}$, where <i>N</i> is the 5-bit value in BK1
20-16	BK0	0-1Fh	Block size field 0. A 5-bit value used in calculating block sizes for circular addressing. Table 2-6 shows block size calculations for all 32 possibilities.
			Block size (in bytes) = $2^{(N+1)}$, where N is the 5-bit value in BK0
15-14	B7 MODE	0-3h	Address mode selection for register file B7.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved

Bit	Field	Value	Description
13-12	B6 MODE	0-3h	Address mode selection for register file B6.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
11-10	B5 MODE	0-3h	Address mode selection for register file B5.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
9-8	B4 MODE	0-3h	Address mode selection for register file B4.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
7-6	A7 MODE	0-3h	Address mode selection for register file A7.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved
5-4	A6 MODE	0-3h	Address mode selection for register file A6.
		0	Linear modification (default at reset)
		1h	Circular addressing using the BK0 field
		2h	Circular addressing using the BK1 field
		3h	Reserved

Table 2-5. Addressing Mode Register (AMR) Field Descriptions (Continued)

Bit	Field	Value	Description		
3-2	A5 MODE	0-3h	ddress mode selection for register file a5.		
		0	Linear modification (default at reset)		
		1h	Circular addressing using the BK0 field		
		2h	Circular addressing using the BK1 field		
		3h	Reserved		
1-0	A4 MODE	0-3h	Address mode selection for register file A4.		
		0	Linear modification (default at reset)		
		1h	Circular addressing using the BK0 field		
		2h	Circular addressing using the BK1 field		
		3h	Reserved		

Table 2-5. Addressing Mode Register (AMR) Field Descriptions (Continued)

Table 2-6. Block Size Calculations

BK <i>n</i> Value	Block Size	BKn Value	Block Size
00000	2	10000	131 072
00001	4	10001	262 144
00010	8	10010	524 288
00011	16	10011	1 048 576
00100	32	10100	2 097 152
00101	64	10101	4 194 304
00110	128	10110	8 388 608
00111	256	10111	16 777 216
01000	512	11000	33 554 432
01001	1 024	11001	67 108 864
01010	2 048	11010	134 217 728
01011	4 096	11011	268 435 456
01100	8 192	11100	536 870 912
01101	16 384	11101	1 073 741 824
01110	32 768	11110	2 147 483 648
01111	65 536	11111	4 294 967 296

Note: When *n* is 11111, the behavior is identical to linear addressing.

2.7.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR is shown in Figure 2–4 and described in Table 2–7. For the PWRD, EN, PCC, and DCC fields, see the device-specific datasheet to see if it supports the options that these fields control.

The power-down modes and their wake-up methods are programmed by the PWRD field (bits 15-10) of CSR. The PWRD field of CSR is shown in Figure 2-5. When writing to CSR, all bits of the PWRD field should be configured at the same time. A logic 0 should be used when writing to the reserved bit (bit 15) of the PWRD field.

Figure 2-4. Control Status Register (CSR)

31				24	23						16		
	CPU ID							REVISION ID					
R-0								R-x [†]					
15		10	9	8	7		5	4	2	1	0		
	PWRD		SAT	EN		PCC		DCC		PGIE	GIE		
	R/W-0		R/WC-0	R-x		R/W-0		R/W-0		R/W-0	R/W-0		

Legend: R = Readable by the **MVC** instruction; W = Writeable by the **MVC** instruction; WC = Bit is cleared on write; -*n* = value after reset; -*x* = value is indeterminate after reset

[†] See the device-specific data manual for the default value of this field.

Figure 2-5. PWRD Field of Control Status Register (CSR)

15	14	13	12	11	10
Reserved	Enabled or nonenabled interrupt wake	Enabled interrupt wake	PD3	PD2	PD1
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Bit	Field	Value	Description	
31-24	CPU ID	0-FFh	Identifies the CPU of the device. Not writable by the MVC instruction.	
		0	C62x DSP	
		1h-FFh	Reserved	
23-16	REVISION ID	0-FFh	Identifies silicon revision of the CPU. For the most current silicon revision information, see the device-specific datasheet. Not writable by the MVC instruction.	
15-10	PWRD	0-3Fh	Power-down mode field. See Figure 2-5. Writable by the MVC instruction.	
		0	No power-down.	
		1h-8h	Reserved	
		9h	Power-down mode PD1; wake by an enabled interrupt.	
		Ah-10h	Reserved	
		11h	Power-down mode PD1; wake by an enabled or nonenabled interrupt.	
		12h-19h	Reserved	
		1Ah	Power-down mode PD2; wake by a device reset.	
		1Bh	Reserved	
		1Ch	Power-down mode PD3; wake by a device reset.	
		1D-3Fh	Reserved	
9	SAT		Saturate bit. Can be cleared only by the MVC instruction and can be set only by a functional unit. The set by a functional unit has priority over a clear (by the MVC instruction), if they occur on the same cycle. The SAT bit is set one full cycle (one delay slot) after a saturate occurs. The SAT bit will not be modified by a conditional instruction whose condition is false.	
		0	No functional units generated saturated results.	
		1	One or more functional units performed an arithmetic operation which resulted in saturation.	
8	EN		Endian mode. Not writable by the MVC instruction.	
		0	Big endian	
		1	Little endian	

Table 2-7. Control Status Register (CSR) Field Descriptions
Bit	Field	Value	Description
7-5	PCC	0-7h	Program cache control mode. Writable by the MVC instruction. See the <i>TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide</i> (SPRU609).
		0	Direct-mapped cache enabled
		1h	Reserved
		2h	Direct-mapped cache enabled
		3h-7h	Reserved
4-2	DCC	0-7h	Data cache control mode. Writable by the MVC instruction. See the <i>TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide</i> (SPRU609).
		0	2-way cache enabled
		1h	Reserved
		2h	2-way cache enabled
		3h-7h	Reserved
1	PGIE		Previous GIE (global interrupt enable). This bit contains a copy of the GIE bit at the point when interrupt is taken. Writeable by the MVC instruction.
		0	Interrupts will be disabled after return from interrupt.
		1	Interrupts will be enabled after return from interrupt.
0	GIE		Global interrupt enable. Physically the same bit as GIE bit in the task state register (TSR). Writable by the MVC instruction.
		0	Disables all interrupts, except the reset interrupt and NMI (nonmaskable interrupt).
		1	Enables all interrupts.

Table 2-7. Control Status Register (CSR) Field Descriptions (Continued)

2.7.5 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable interrupts (INT15–INT4) in the interrupt flag register (IFR). Writing a 1 to any of the bits in ICR causes the corresponding interrupt flag (IF*n*) to be cleared in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have priority and override any write to ICR. You cannot set any bit in ICR to affect NMI or reset. The ISR is shown in Figure 2–6 and described in Table 2–8.

Note:

Any write to ICR (by the **MVC** instruction) effectively has one delay slot because the results cannot be read (by the **MVC** instruction) in IFR until two cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the interrupt set register (ISR).

Figure 2-6. Interrupt Clear Register (ICR)

31														16
							Rese	erved						
							R	-0						
15	14	13	12	11	10	9	8	7	6	5	4	3		0
IC15	IC14	IC13	IC12	IC11	IC10	IC9	IC8	IC7	IC6	IC5	IC4		Reserved	
					W	-0							R-0	

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Bit	Field	Value	Description
31-16	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4	ICn		Interrupt clear.
		0	Corresponding interrupt flag (IFn) in IFR is not cleared.
		1	Corresponding interrupt flag (IFn) in IFR is cleared.
3-0	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

2.7.6 Interrupt Enable Register (IER)

The interrupt enable register (IER) enables and disables individual interrupts. The IER is shown in Figure 2-7 and described in Table 2-9.

Figure 2-7.	Interrupt Enable	Register	(IER)
0	1		· /

31															16
							Rese	erved							
							R	-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IE15	IE14	IE13	IE12	IE11	IE10	IE9	IE8	IE7	IE6	IE5	IE4	Rese	rved	NMIE	1
	R/W-0 R-0 R/W-0 R-1											R-1			

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2-9.	Interrupt Enable	Register (IER)	Field Descriptions
	1	0 ()	,

Bit	Field	Value	Description
31-16	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4	IEn		Interrupt enable. An interrupt triggers interrupt processing only if the corresponding bit is set to 1.
		0	Interrupt is disabled.
		1	Interrupt is enabled.
3-2	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1	NMIE		Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if the bit is set to 1.
			The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to enable the NMI and to allow INT15-INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually clear the NMIE bit; a write of 0 has no effect. The NMIE bit is also cleared by the occurrence of an NMI.
		0	All nonreset interrupts are disabled.
		1	All nonreset interrupts are enabled. The NMIE bit is set only by completing a B NRP instruction or by a write of 1 to the NMIE bit.
0	1	1	Reset interrupt enable. You cannot disable the reset interrupt.

2.7.7 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4-INT15 and NMI interrupt. Each corresponding bit in the IFR is set to 1 when that interrupt occurs; otherwise, the bits are cleared to 0. If you want to check the status of interrupts, use the **MVC** instruction to read the IFR. (See the **MVC** instruction description, page 3-110, for information on how to use this instruction.) The IFR is shown in Figure 2-8 and described in Table 2-10.

Figure 2-8. Interrupt Flag Register (IFR)

Legend: R = Readable by the MVC instruction; -n = value after reset

Table 2-10. Interrupt Flag Register (IFR) Field Descriptions

Bit	Field	Value	Description
31-16	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4	IFn		Interrupt flag. Indicates the status of the corresponding maskable interrupt. An interrupt flag may be manually set by setting the corresponding bit (IS <i>n</i>) in the interrupt set register (ISR) or manually cleared by setting the corresponding bit (IC <i>n</i>) in the interrupt clear register (ICR).
		0	Interrupt has not occurred.
		1	Interrupt has occurred.
3-2	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
1	NMIF		Nonmaskable interrupt flag.
		0	Interrupt has not occurred.
		1	Interrupt has occurred.
0	0	0	Reset interrupt flag.

2.7.8 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that directs the CPU to the proper location to continue program execution after processing a maskable interrupt. A branch using the address in IRP (**B IRP**) in your interrupt service routine returns to the program flow when interrupt servicing is complete. The IRP is shown in Figure 2–9.

The IRP contains the 32-bit address of the first execute packet in the program flow that was not executed because of a maskable interrupt. Although you can write a value to IRP, any subsequent interrupt processing may overwrite that value.

Figure 2-9. Interrupt Return Pointer Register (IRP)

31		0
	IRP	
	R/W-x	

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

2.7.9 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable interrupts (INT15-INT4) in the interrupt flag register (IFR). Writing a 1 to any of the bits in ISR causes the corresponding interrupt flag (IF*n*) to be set in IFR. Writing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect NMI or reset. The ISR is shown in Figure 2-10 and described in Table 2-11.

Note:

Any write to ISR (by the **MVC** instruction) effectively has one delay slot because the results cannot be read (by the **MVC** instruction) in IFR until two cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous write to the same bit in ISR.

Figure 2-10. Interrupt Set Register (ISR)

31														16
							Rese	erved						
							R	-0						
15	14	13	12	11	10	9	8	7	6	5	4	3		0
IS15	IS14	IS13	IS12	IS11	IS10	IS9	IS8	IS7	IS6	IS5	IS4		Reserved	
					W	-0							R-0	

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2-11.	Interrupt Set Register	r (ISR) Field Descriptions

Bit	Field	Value	Description
31-16	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.
15-4	ISn		Interrupt set.
		0	Corresponding interrupt flag (IFn) in IFR is not set.
		1	Corresponding interrupt flag (IFn) in IFR is set.
3-0	Reserved	0	Reserved. The reserved bit location is always read as 0. A value written to this field has no effect.

2.7.10 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt service routine (ISR). The ISTB field identifies the base portion of the address of the interrupt service table (IST) and the HPEINT field identifies the specific interrupt and locates the specific fetch packet within the IST. The ISTP is shown in Figure 2-11 and described in Table 2-12. See section 5.1.2.2 on page 5-8 for a discussion of the use of the ISTP.

31										16
				ISTB						
				R/W-S						
15		10	9		5	4				0
	ISTB			HPEINT		0	0	0	0	0
R/W-S			R-0				R-0			

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset; S = See the devicespecific data manual for the default value of this field after reset

Table 2-12.	Interrupt Service	Table Pointer Register	(ISTP) Field Descriptions
-------------	-------------------	------------------------	---------------------------

Bit	Field	Value	Description
31-10	ISTB	0-3F FFFFh	Interrupt service table base portion of the IST address. This field is cleared to a device-specific default value on reset; therefore, upon startup the IST must reside at this specific address. See the device-specific data manual for more information. After reset, you can relocate the IST by writing a new value to ISTB. If relocated, the first ISFP (corresponding to RESET) is never executed via interrupt processing, because reset clears the ISTB to its default value. See Example 5-1 on page 5-8.
9-5	HPEINT	0-1Fh	Highest priority enabled interrupt that is currently pending. This field indicates the number (related bit position in the IFR) of the highest priority interrupt (as defined in Table 5-1 on page 5-3) that is enabled by its bit in the IER. Thus, the ISTP can be used for manual branches to the highest priority enabled interrupt. If no interrupt is pending and enabled, HPEINT contains the value 0. The corresponding interrupt need not be enabled by NMIE (unless it is NMI) or by GIE.
4-0	-		Cleared to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).

2.7.11 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs the CPU to the proper location to continue program execution after processing of a nonmaskable interrupt (NMI) or exception. A branch using the address in NRP (**B NRP**) in your interrupt service routine or exception service routine returns to the program flow when NMI or exception servicing is complete. The NRP is shown in Figure 2–12.

The NRP contains the 32-bit address of the first execute packet in the program flow that was not executed because of a nonmaskable interrupt. Although you can write a value to NRP, any subsequent interrupt processing may overwrite that value.

Figure 2-12. NMI Return Pointer Register (NRP)

31		0
	NRP	
	R/W-x	

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

2.7.12 E1 Phase Program Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2–13, contains the 32-bit address of the fetch packet in the E1 pipeline phase.

Figure 2-13. E1 Phase Program Counter (PCE1)

31		0
	PCE1	
	R-x	

Legend: R = Readable by the **MVC** instruction; -x = value is indeterminate after reset

Chapter 3

Instruction Set

This chapter describes the assembly language instructions of the TMS320C62x DSP. Also described are parallel operations, conditional operations, resource constraints, and addressing modes.

Торіс

Page

3.1	Instruction Operation and Execution Notations
3.2	Instruction Syntax and Opcode Notations 3-5
3.3	Delay Slots
3.4	Parallel Operations 3-7
3.5	Conditional Operations 3-10
3.6	Resource Constraints 3-11
3.7	Addressing Modes 3-16
3.8	Instruction Compatibility 3-20
3.9	Instruction Descriptions 3-20

3.1 Instruction Operation and Execution Notations

Table 3-1 explains the symbols used in the instruction descriptions.

Table 3-1. Instruction Operation and Execution Notations

Symbol	Meaning
abs(x)	Absolute value of x
and	Bitwise AND
-a	Perform 2s-complement subtraction using the addressing mode defined by the AMR $% \mathcal{A}$
+a	Perform 2s-complement addition using the addressing mode defined by the AMR
b _{yz}	Selection of bits y through z of bit string b
cond	Check for either <i>creg</i> equal to 0 or <i>creg</i> not equal to 0
creg	3-bit field specifying a conditional register, see section 3.5
<i>cst</i> n	n-bit constant field (for example, cst5)
int	32-bit integer value
lmb0(x)	Leftmost 0 bit search of x
lmb1(x)	Leftmost 1 bit search of x
long	40-bit integer value
lsbn or LSBn	n least-significant bits (for example, lsb16)
msb <i>n</i> or MSB <i>n</i>	n most-significant bits (for example, msb16)
nop	No operation
norm(x)	Leftmost nonredundant sign bit of x
not	Bitwise logical complement
ор	Opfields
or	Bitwise OR
R	Any general-purpose register
scstn	n-bit signed constant field
sint	Signed 32-bit integer value
slong	Signed 40-bit integer value

3-2 Instruction Set

Symbol	Meaning
slsb16	Signed 16-bit integer value in lower half of 32-bit register
smsb16	Signed 16-bit integer value in upper half of 32-bit register
-S	Perform 2s-complement subtraction and saturate the result to the result size, if an overflow occurs
+S	Perform 2s-complement addition and saturate the result to the result size, if an overflow occurs
ucstn	n-bit unsigned constant field (for example, ucst5)
uint	Unsigned 32-bit integer value
ulong	Unsigned 40-bit integer value
ulsb16	Unsigned 16-bit integer value in lower half of 32-bit register
umsb16	Unsigned 16-bit integer value in upper half of 32-bit register
x clear b,e	Clear a field in x, specified by b (beginning bit) and e (ending bit)
x ext l,r	Extract and sign-extend a field in x, specified by I (shift left value) and r (shift right value)
<i>x</i> extu <i>l,r</i>	Extract an unsigned field in x, specified by I (shift left value) and r (shift right value)
x set b,e	Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)
xint	32-bit integer value that can optionally use cross path
xor	Bitwise exclusive-OR
xsint	Signed 32-bit integer value that can optionally use cross path
xslsb16	Signed 16 LSB of register that can optionally use cross path
xsmsb16	Signed 16 MSB of register that can optionally use cross path
xuint	Unsigned 32-bit integer value that can optionally use cross path
xulsb16	Unsigned 16 LSB of register that can optionally use cross path
xumsb16	Unsigned 16 MSB of register that can optionally use cross path
\rightarrow	Assignment
+	Addition
++	Increment by 1
×	Multiplication

Table 3-1. Instruction Operation and Execution Notations (Continued)

SPRU731A

Symbol	Meaning
-	Subtraction
==	Equal to
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to
<<	Shift left
>>	Shift right
>>S	Shift right with sign extension
>>z	Shift right with a zero fill
~	Logical inverse
&	Logical AND

Table 3-1. Instruction Operation and Execution Notations (Continued)

3.2 Instruction Syntax and Opcode Notations

Table 3-2 explains the syntaxes and opcode fields used in the instruction descriptions.

Symbol	Meaning
baseR	base address register
creg	3-bit field specifying a conditional register, see section 3.5
cst	constant
csta	constant a
cstb	constant b
<i>cst</i> n	n-bit constant field
dst	destination
mode	addressing mode, see section 3.7
offsetR	register offset
ор	opfield; field within opcode that specifies a unique instruction
p	parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is executed in parallel
r	Load/store instruction
S	side A or B for destination; $0 = side A$, $1 = side B$.
<i>scst</i> n	n-bit signed constant field
src	source
src1	source 1
src2	source 2
<i>ucst</i> n	n-bit unsigned constant field
unit	unit decode
x	cross path for $src2$; 0 = do not use cross path, 1 = use cross path
У	.D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit
Ζ	test for equality with zero or nonzero

Table 3-2. Instruction Syntax and Opcode Notations

SPRU731A

3.3 Delay Slots

The execution of fixed-point instructions can be defined in terms of delay slots. The number of delay slots is equivalent to the number of additional cycles required after the source operands are read for the result to be available for reading. For a single-cycle type instruction (such as **ADD**), source operands read in cycle *i* produce a result that can be read in cycle *i* + 1. For a multiply (**MPY**) instruction, source operands read in cycle *i* produce a result that can be read in cycle *i* produce a result that can be read in cycle *i* produce a result that can be read in cycle *i* produce a result that can be read in cycle *i* produce a result that can be read in cycle *i* + 2. Table 3–3 shows the number of delay slots associated with each type of instruction.

Delay slots are equivalent to an execution or result latency. All of the instructions in the C62x DSP have a functional unit latency of 1. This means that a new instruction can be started on the functional unit each cycle. Single-cycle throughput is another term for single-cycle functional unit latency.

Instruction Type	Delay Slots	Read Cycles [†]	Write Cycles [†]	Branch Taken [†]
NOP (no operation)	0			
Store	0	i	i	
Single cycle	0	i	i	
Multiply (16 × 16)	1	i	i + 1	
Load	4	i	i, i + 4§	
Branch	5	i‡		i + 5

Table 3-3. Delay Slots

[†] Cycle i is in the E1 pipeline phase.

[‡] The branch to label, branch to IRP, and branch to NRP instructions do not read any general-purpose registers.

[§] The write on cycle i + 4 uses a separate write port from other .D unit instructions.

3.4 Parallel Operations

Instructions are always fetched eight words at a time. This constitutes a *fetch packet*. The basic format of a fetch packet is shown in Figure 3–1. Fetch packets are aligned on 256-bit (8-word) boundaries.

Figure 3-1.	Basic Format of a Fetch Packet
-------------	--------------------------------

	31 0	31	0	31 0	31	0	31	0	31 0	31	0	31 0
	p	,	, p	p		p		р	p		р	p
LSBs of	Instruction A	In	struction B	Instruction C	Ins	struction D	Instructio E	n	Instruction F	Instruction G		Instruction H
the byte address	00000b		00100b	01000b	C	01100b	10000b		10100b	11000b		11100b

The execution of the individual instructions is partially controlled by a bit in each instruction, the *p*-bit. The *p*-bit (bit 0) determines whether the instruction executes in parallel with another instruction. The *p*-bits are scanned from left to right (lower to higher address). If the *p*-bit of instruction *i* is 1, then instruction i + 1 is to be executed in parallel with (in the the same cycle as) instruction *i*. If the *p*-bit of instruction *i* = 1 is executed in the cycle after instruction *i*. All instructions executing in parallel constitute an *execute packet*. An execute packet can contain up to eight instructions. Each instruction in an execute packet must use a different functional unit.

An execute packet cannot cross an 8-word boundary. Therefore, the last *p*-bit in a fetch packet is always cleared to 0, and each fetch packet starts a new execute packet. There are three types of *p*-bit patterns for fetch packets. These three *p*-bit patterns result in the following execution sequences for the eight instructions:

- Fully serial
- Fully parallel
- Partially serial

Example 3–1 through Example 3–3 show the conversion of a p-bit sequence into a cycle-by-cycle execution stream of instructions.

Example 3-1. Fully Serial p-Bit Pattern in a Fetch Packet

-

Cycle/Execute Packet	Instructions
1	A
2	В
3	С
4	D
5	E
6	F
7	G
8	н

results in this execution sequence:

The eight instructions are executed sequentially.

Example 3-2. Fully Parallel p-Bit Pattern in a Fetch Packet

All eight instructions are executed in parallel.

3-8 Instruction Set

Example 3-3. Partially Serial p-Bit Pattern in a Fetch Packet

results in this execution sequence:

Cycle/Execute Packet		Instruction	S	
1	А			
2	В			
3	С	D	Е	
4	F	G	Н	

Note: Instructions C, D, and E do not use any of the same functional units, cross paths, or other data path resources. This is also true for instructions F, G, and H.

3.4.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the previous instruction. The code for the fetch packet in Example 3–3 would be represented as this:

instruction	A
instruction	В
instruction instruction instruction	D
instruction instruction instruction	F G H

3.4.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower addresses are ignored. In Example 3–3, if a branch to the address containing instruction D occurs, then only D and E execute. Even though instruction C is in the same execute packet, it is ignored. Instructions A and B are also ignored because they are in earlier execute packets. If your result depends on executing A, B, or C, the branch to the middle of the execute packet will produce an erroneous result.

3.5 Conditional Operations

All instructions can be conditional. The condition is controlled by a 3-bit opcode field (*creg*) that specifies the condition register tested, and a 1-bit field (*z*) that specifies a test for zero or nonzero. The four MSBs of every opcode are *creg* and *z*. The specified condition register is tested at the beginning of the E1 pipeline stage for all instructions. For more information on the pipeline, see Chapter 4. If z = 1, the test is for equality with zero; if z = 0, the test is for nonzero. The case of *creg* = 0 and z = 0 is treated as always true to allow instructions to be executed unconditionally. The *creg* field is encoded in the instruction opcode as shown in Table 3-4.

Table 3-4. Registers That Can Be Tested by Conditional Operations

	-								
Specified Conditional		creg							
Register	Bit	31	30	29	28				
Unconditional		0	0	0	0				
Reserved [†]		0	0	0	1				
B0		0	0	1	Z				
B1		0	1	0	Z				
B2		0	1	1	Z				
A1		1	0	0	Z				
A2		1	0	1	Z				
Reserved		1	1	x‡	x‡				

[†] This value is reserved for software breakpoints that are used for emulation purposes.

[‡] x can be any value.

Conditional instructions are represented in code by using square brackets, [], surrounding the condition register name. The following execute packet contains two **ADD** instructions in parallel. The first **ADD** is conditional on B0 being nonzero. The second **ADD** is conditional on B0 being zero. The character ! indicates the inverse of the condition.

[B0]	ADD	.L1	A1,A2,A3
[! B0]	ADD	.L2	B1,B2,B3

The above instructions are mutually exclusive, only one will execute. If they are scheduled in parallel, mutually exclusive instructions are constrained as described in section 3.6. If mutually exclusive instructions share any resources as described in section 3.6, they cannot be scheduled in parallel (put in the same execute packet), even though only one will execute.

3.6 Resource Constraints

No two instructions within the same execute packet can use the same resources. Also, no two instructions can write to the same register during the same cycle. The following sections describe how an instruction can use each of the resources.

3.6.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same execute packet.

The following execute packet is invalid:

ADD .S1 A0, A1, A2 ; .S1 is used for || SHR .S1 A3, 15, A4 ; both instructions

The following execute packet is valid:

ADD .L1 A0, A1, A2 ; Two different functional || SHR .S1 A3, 15, A4 ; units are used

3.6.2 Constraints on Cross Paths (1X and 2X)

Only one unit (.S, .L, or .M unit) per data path, per execute packet, can read a source operand from its opposite register file via the cross paths (1X and 2X). provided that each unit is reading the same operand.

For example, the .S1 unit can read both its operands from the A register file; or it can read an operand from the B register file using the 1X cross path and the other from the A register file. The use of a cross path is denoted by an X following the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being used for two different B register operands:

MV .S1XB0,A0;Invalid: Instructions are using the 1X||MV .L1XB1,A1;cross path with different B registers

The following execute packet is valid because all uses of the 1X cross path are for the same B register operand, and all uses of the 2X cross path are for the same A register operand:

ADD.L1X A0,B1,A1 ;Instructions use the 1X || MPY.M2X B4,A4,B2 ;and 2X cross paths

The operand comes from a register file opposite of the destination, if the x bit in the instruction field is set.

SPRU731A

Instruction Set 3-11

3.6.3 Constraints on Loads and Stores

Load and store instructions can use an address pointer from one register file while loading to or storing from the other register file. Two load and store instructions using a destination/source from the same register file cannot be issued in the same execute packet. The address register must be on the same side as the .D unit used.

The following execute packet is invalid:

LDW.D1 *A0,A1 ; \ .D2 unit must use the address || LDW.D2 *A2,B2 ; / register from the B register file

The following execute packet is valid:

LDW.D1	*A0,A1	;	\	Address	registers	from	correct
LDW.D2	*B0,B2	;	/	register	files		

Two loads and/or stores loading to and/or storing from the same register file cannot be issued in the same execute packet.

The following execute packet is invalid:

LDW.D1	*A4 , A5	;	\	Loading to and storing from the
STW.D2	A6,*B4	;	/	same register file

The following execute packets are valid:

LDW.D1	*A4,B5	;	\	Loading	to,	and	storing	from
STW.D2	A6,*B4	;	/	differen	nt re	egist	er files	3

LDW.D1 *A0,B2 ; \ Loading to || LDW.D2 *B0,A1 ; / different register files

3.6.4 Constraints on Long (40-Bit) Data

Because the .S and .L units share a read register port for long source operands and a write register port for long results, only one long result may be issued per register file in an execute packet. All instructions with a long result on the .S and .L units have zero delay slots. See section 2.2 for the order for long pairs.

The following execute packet is invalid:

ADD.L1	A5:A4,A1,A3:A2	;	\ Two long writes
SHL.S1	A8,A9,A7:A6	;	/ on A register file

The following execute packet is valid:

ADD.	L1 A5:A	4,A1,A3:A2	; \	One	long	write	e for
SHL.	S2 B8,B	9,B7:B6	; /	each	n regi	ister	file

Because the .L and .S units share their long read port with the store port, operations that read a long value cannot be issued on the .L and/or .S units in the same execute packet as a store.

The following execute packet is invalid:

	A5:A4,A1,A3:A2	;	١	Long	read	operation	and	а
STW.D1	A8,*A9	;	/	store	è			

The following execute packets are valid:

	ADD.L1	A4, A1, A3:A2	; \ No long read with
	STW.D1	A8,*A9	; / the store
	ADD.L1	A1,A5:A4,A3:A2	; \ One long write for
	SHL.S2	B8,B9,B7:B6	; / each register file
	ADD.L1 STW.D1T1	A4, A1, A3:A2 A8,*A9	; \ No long read with the ; / store on Tl path of .Dl

3.6.5 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle. Conditional registers are not included in this count.

The following execute packets are invalid:

	.M1 .L1 .D1		;	five	reads	of	register	A1
	.M1 .L1 .D2x		;	five	reads	of	register	A1

The following execute packet is valid:

	MPY	.M1	A1,	A1,	A4	;	only	four	reads	of	A1
[A1]	ADD	.L1	Α0,	A1,	A5						

3.6.6 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two instructions with the same destination can be scheduled in parallel as long as they do not write to the destination register on the same cycle. For example, an **MPY** issued on cycle *i* followed by an **ADD** on cycle i + 1 cannot write to the same register because both instructions write a result on cycle i + 1. Therefore, the following code sequence is invalid unless a branch occurs after the **MPY**, causing the **ADD** not to be issued.

MPY .M1 A0, A1, A2 ADD .L1 A4, A5, A2

However, this code sequence is valid:

MPY	.M1	Α0,	A1,	A2
ADD	.L1	Α4,	Α5,	A2

Figure 3-2 shows different multiple-write conflicts. For example, **ADD** and **SUB** in execute packet L1 write to the same register. This conflict is easily detectable.

MPY in packet L2 and **ADD** in packet L3 might both write to B2 simultaneously; however, if a branch instruction causes the execute packet after L2 to be something other than L3, a conflict would not occur. Thus, the potential conflict in L2 and L3 might not be detected by the assembler. The instructions in L4 do not constitute a write conflict because they are mutually exclusive. In contrast, because the instructions in L5 may or may not be mutually exclusive, the assembler cannot determine a conflict. If the pipeline does receive commands to perform multiple writes to the same register, the result is undefined.

Figure 3-2. Examples of the Detectability of Write Conflicts by the Assembler

L1:	ADD.L2	B5,B6,B7	;	\ detectable, conflict
	SUB.S2	B8,B9,B7	;	/
L2:	MPY.M2	B0,B1,B2	;	\ not detectable
L3:	ADD.L2	B3,B4,B2	;	/
L4:[!B0]	ADD.L2	B5,B6,B7	;	\ detectable, no conflict
[B0]	SUB.S2	B8,B9,B7	;	/
L5:[!B1]	ADD.L2	B5,B6,B7	;	\ not detectable
[B0]	SUB.S2	B8,B9,B7	;	/

3.7 Addressing Modes

The addressing modes on the C62x DSP are linear, circular using BK0, and circular using BK1. The addressing mode is specified by the addressing mode register (AMR), described in section 2.7.3.

All registers can perform linear addressing. Only eight registers can perform circular addressing: A4–A7 are used by the .D1 unit and B4–B7 are used by the .D2 unit. No other units can perform circular addressing. LDB(U)/LDH(U)/LDW, STB/STH/STW, ADDAB/ADDAH/ADDAW, and SUBAB/SUBAH/SUBAW instructions all use AMR to determine what type of address calculations are performed for these registers.

3.7.1 Linear Addressing Mode

3.7.1.1 LD and ST Instructions

For load and store instructions, linear mode simply shifts the *offsetR/cst* operand to the left by 2, 1, or 0 for word, halfword, or byte access, respectively; and then performs an add or a subtract to *baseR* (depending on the operation specified).

For the preincrement, predecrement, positive offset, and negative offset address generation options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of *baseR* before the addition or subtraction is the address to be accessed from memory.

3.7.1.2 ADDA and SUBA Instructions

For integer addition and subtraction instructions, linear mode simply shifts the *src1/cst* operand to the left by 2, 1, or 0 for word, halfword, or byte data sizes, respectively, and then performs the add or subtract specified.

3.7.2 Circular Addressing Mode

The BK0 and BK1 fields in AMR specify the block sizes for circular addressing, see section 2.7.3.

3.7.2.1 LD and ST Instructions

As with linear address arithmetic, *offsetR/cst* is shifted left by 2, 1, or 0 according to the data size, and is then added to or subtracted from *baseR* to produce the final address. Circular addressing modifies this slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1 unchanged after address arithmetic. The resulting address is bounded to $2^{(N + 1)}$ range, regardless of the size of the *offsetR/cst*.

The circular buffer size in AMR is not scaled; for example, a block-size of 8 is 8 bytes, not 8 times the data size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should be specified, or N = 4. Example 3-4 shows an **LDW** performed with register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is 0004 0001h.

Example 3-4. LDW Instruction in Circular Mode

Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped around to (124h - 20h = 104h).

3.7.2.2 ADDA and SUBA Instructions

As with linear address arithmetic, *offsetR/cst* is shifted left by 2, 1, or 0 according to the data size, and is then added to or subtracted from *baseR* to produce the final address. Circular addressing modifies this slightly by only allowing bits N through 0 of the result to be updated, leaving bits 31 through N + 1 unchanged after address arithmetic. The resulting address is bounded to $2^{(N + 1)}$ range, regardless of the size of the *offsetR/cst*.

The circular buffer size in AMR is not scaled; for example, a block size of 8 is 8 bytes, not 8 times the data size (byte, halfword, word). So, to perform circular addressing on an array of 8 words, a size of 32 should be specified, or N = 4. Example 3–5 shows an **ADDAH** performed with register A4 in circular mode and BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in AMR for this example is 0004 0001h.

Example 3-5. ADDAH Instruction in Circular Mode

ADDAH .D1 A4,A1,A4

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary 100h-11Fh; thus, it is wrapped around to (126h - 20h = 106h).

3.7.3 Syntax for Load/Store Address Generation

The C62x DSP has a load/store architecture, which means that the only way to access data in memory is with a load or store instruction. Table 3–5 shows the syntax of an indirect address to a memory location. Sometimes a large offset is required for a load/store. In this case, you can use the B14 or B15 register as the base register, and use a 15-bit constant (*ucst15*) as the offset.

Table 3–6 describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

Addressing Type	No Modification of Address Register	Preincrement or Predecrement of Address Register	Postincrement or Postdecrement of Address Register
Register indirect	*R	*++R *R	*R++ *R
Register relative	*+R[<i>ucst5</i>] *-R[<i>ucst5</i>]	*++R[<i>ucst5</i>] *R[<i>ucst5</i>]	*R++[<i>ucst5</i>] *R[<i>ucst5</i>]
Register relative with 15-bit constant offset	*+B14/B15[<i>ucst15</i>]	not supported	not supported
Base + index	*+R[<i>offsetR</i>] *-R[<i>offsetR</i>]	*++R[<i>offsetR</i>] *R[<i>offsetR</i>]	*R++[<i>offsetR</i>] *R- <i>-[offsetR</i>]

Table 3-5. Indirect Address Generation for Load/Store

Table 3-6. Address Generator Options for Load/Store

	Mode Field		Syntax	Modification Performed	
0	0	0	0	*-R[<i>ucst5</i>]	Negative offset
0	0	0	1	*+R[<i>ucst5</i>]	Positive offset
0	1	0	0	*-R[<i>offsetR</i>]	Negative offset
0	1	0	1	*+R[<i>offsetR</i>]	Positive offset
1	0	0	0	*R[<i>ucst5</i>]	Predecrement
1	0	0	1	*++R[<i>ucst5</i>]	Preincrement
1	0	1	0	*R[<i>ucst5</i>]	Postdecrement
1	0	1	1	*R++[<i>ucst5</i>]	Postincrement
1	1	0	0	*R[<i>offsetR</i>]	Predecrement
1	1	0	1	*++R[<i>offsetR</i>]	Preincrement
1	1	1	0	*R[<i>offsetR</i>]	Postdecrement
1	1	1	1	*R++[<i>offsetR</i>]	Postincrement

3.8 Instruction Compatibility

The C62x, C64x, and C67x DSPs share an instruction set. All of the instructions valid for the C62x DSP are also valid for the C64x and C67x DSPs.

3.9 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction may present the following information:

- Assembler syntax
- Functional units
- Operands
- Opcode
- Description
- Execution
- D Pipeline
- Instruction type
- Delay slots
- Examples

The **ADD** instruction is used as an example to familiarize you with the way each instruction is described. The example describes the kind of information you will find in each part of the individual instruction description and where to obtain more information.

Example	The way each instruction is described.
Syntax	EXAMPLE (.unit) <i>src</i> , <i>dst</i> .unit = .L1, .L2, .S1, .S2, .D1, .D2
	<i>src</i> and <i>dst</i> indicate source and destination, respectively. The (.unit) dictates which functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2, .D1, or .D2).
	A table is provided for each instruction that gives the opcode map fields, units the instruction is mapped to, types of operands, and the opcode.
	The opcode shows the various fields that make up each instruction. These fields are described in Table 3-2 on page 3-5.
	There are instructions that can be executed on more than one functional unit. Table 3–7 shows how this is documented for the ADD instruction. This instruc- tion has three opcode map fields: <i>src1</i> , <i>src2</i> , and <i>dst</i> . In the fifth group, the operands have the types <i>cst5</i> , <i>long</i> , and <i>long</i> for <i>src1</i> , <i>src2</i> , and <i>dst</i> , respec- tively. The ordering of these fields implies <i>cst5</i> + <i>long</i> \rightarrow <i>long</i> , where + repre- sents the operation being performed by the ADD . This operation can be done on .L1 or .L2 (both are specified in the unit column). The <i>s</i> in front of each oper- and signifies that <i>src1</i> (<i>scst5</i>), <i>src2</i> (<i>slong</i>), and <i>dst</i> (<i>slong</i>) are all signed values.
	In the ninth group, $src1$, $src2$, and dst are <i>int</i> , $cst5$, and <i>int</i> , respectively. The u in front of the $cst5$ operand signifies that $src1$ ($ucst5$) is an unsigned value. Any operand that begins with x can be read from a register file that is different from the destination register file. The operand comes from the register file opposite the destination, if the x bit in the instruction is set (shown in the opcode map).

Opcode map field used	For operand type	Unit	Opfield
src1	sint	.L1, .L2	000 0011
src2	xsint		
dst	sint		
src1	sint	.L1, .L2	010 0011
src2	xsint		
dst	slong		
src1	xsint	.L1, .L2	010 0001
src2	slong		
dst	slong		
src1	scst5	.L1, .L2	000 0010
src2	xsint		
dst	sint		
src1	scst5	.L1, .L2	010 0000
src2	slong		
dst	slong		
src1	sint	.S1, .S2	00 0111
src2	xsint		
dst	sint		
src1	scst5	.S1, .S2	00 0110
src2	xsint		
dst	sint		
src2	sint	.D1, .D2	01 0000
src1	sint		
dst	sint		
src2	sint	.D1, .D2	01 0010
src1	ucst5		
dst	sint		

 Table 3-7. Relationships Between Operands, Operand Size, Signed/Unsigned,

 Functional Units, and Opfields for Example Instruction (ADD)

Description Instruction execution and its effect on the rest of the processor or memory contents are described. Any constraints on the operands imposed by the processor or the assembler are discussed. The description parallels and supplements the information given by the execution block.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) $src1 + src2 \rightarrow dst$ else nop

Execution for .D1, .D2 Opcodes

if (cond) $src2 + src1 \rightarrow dst$ else nop

The execution describes the processing that takes place when the instruction is executed. The symbols are defined in Table 3-1 (page 3-2).

- PipelineThis section contains a table that shows the sources read from, the destina-
tions written to, and the functional unit used during each execution cycle of the
instruction.
- **Instruction Type** This section gives the type of instruction. See section 4.2 (page 4-11) for information about the pipeline execution of this type of instruction.
- Delay SlotsThis section gives the number of delay slots the instruction takes to execute
See section 3.3 (page 3-6) for an explanation of delay slots.
- **Example** Examples of instruction execution. If applicable, register and memory values are given before and after instruction execution.

ABS	Absolute Value With Saturation
Syntax	ABS (.unit) src2, dst
	.unit = .L1 or .L2
Opcode	
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0
creg z	dst src2 0 0 0 0 0 x op 1 1 0 s p
3 1	5 5 1 7 1 1
	Opcode map field used For operand type Unit Opfield
	src2 xsint .L1, .L2 001 1010 dst sint
	<i>src2</i> slong .L1, L2 011 1000 <i>dst</i> slong
Execution	if (cond) $abs(src2) \rightarrow dst$ else nop The absolute value of $src2$ when $src2$ is an sint is determined as follows: 1) If $src2 \ge 0$, then $src2 \rightarrow dst$ 2) If $src2 \le 0$ and $src2 \ne -2^{31}$, then $-src2 \rightarrow dst$ 3) If $src2 = -2^{31}$, then $2^{31} - 1 \rightarrow dst$ The absolute value of $src2$ when $src2$ is an slong is determined as follows: 1) If $src2 \ge 0$, then $src2 \rightarrow dst$ 2) If $src2 < 0$ and $src2 \ne -2^{39}$, then $-src2 \rightarrow dst$ 3) If $src2 = -2^{39}$, then $2^{39} - 1 \rightarrow dst$
Pipeline	Pipeline Stage E1
	Read src2
	Written dst
	Unit in use .L

3-24 Instruction Set

dst

AD	D			Add Two Signed Integers Without Saturation							
Syr	ıtax			ADD	(.unit) <i>src1</i> , <i>src2</i> , or (.D1 or .D2) <i>src2</i> = .L1, .L2, .S1, .S	, src1, dst					
Оро	code			.L uni	.L unit						
31	29	28	27	23	22 18	17 13	12 11	5	4 3 2 1 0		
(creg	z	d	lst	src2	src1/cst	х	ор	1 1 0 <i>s p</i>		
	3	1		5	5	5	1	7	1 1		
				0.000	de men field used	East and	rend type	l lucit	Onfield		
		Орсс	de map field used	гог оре	rand type	Unit	Opfield				
			src1		sint		.L1, .L2	000 0011			
				src2		xsint					
				dst		sint					
				src1		sint		.L1, .L2	010 0011		
				src2		xsint		,			
				dst		slong					
									010 0001		
				src1 src2		xsint slong		.L1, .L2	010 0001		
				dst		slong					
						e.eg					
				src1		scst5		.L1, .L2	000 0010		
				src2		xsint					
				dst		sint					
				src1		scst5		.L1, .L2	010 0000		
				src2		slong		,			

slong

Opcode			.S uni	it				
31 29	28	27	23	22 18	17	13 12 1	1	6 5 4 3 2 1 0
creg	z	dst		src2	src1/cst	х	ор	1 0 0 0 <i>s p</i>
3	1	5		5	5	1	6	1 1
			Орсо	ode map field used	I For opera	ind type	. Unit	Opfield
			src1 src2 dst		sint xsint sint		.S1, .S2	00 0111
			src1 src2 dst		scst5 xsint sint		.S1, .S2	00 0110

Description for .L1, .L2 and .S1, .S2 Opcodes

src2 is added to *src1*. The result is placed in *dst*.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) $src1 + src2 \rightarrow dst$ else nop

O	ocode				.D uni	it				
31	29	28	27		23	22 18	17	13 12		7 6 5 4 3 2 1 0
	creg	Ζ		dst		src2	src1/cs	st	ор	10000 <i>s</i> p
	3	1		5		5	5		6	1 1
			Opcode map field used		I For ope	For operand type		Opfield		
					src2		sint		.D1, .D2	01 0000
					src1		sint			
					dst		sint			
					src2		sint		.D1, .D2	01 0010
					src1		ucst5		· ·, · 	
					dst		sint			

Description for .D1, .D2 Opcodes

src1 is added to *src2*. The result is placed in *dst*.

Execution for .D1, .D2 Opcodes

if (cond) $src2 + src1 \rightarrow dst$ else nop

Pipeline	-				
i ipenne	Pipeline Stage	E1			
	Read	src1, src2			
	Written	dst			
	Unit in use	.L, .S, or .D			
Instruction Type	Single-cycle				
Delay Slots	0				
See Also	ADDK, ADDU, ADD2, SADD, SUB				

ADDAB	Add Using Byte Addre	essing Mode		
Syntax	ADDAB (.unit) src2, src	1, dst		
-	.unit = .D1 or .D2			
Opcode				
31 29 28 27	23 22 18	17 13 12	76	5 4 3 2 1 0
creg z ds		src1/cst	<i>op</i> 1	0 0 0 0 <i>s p</i>
3 1 5	5	5	6	1 1
	Opcode map field used	. For operand type	Unit	Opfield
	src2	sint	.D1, .D2	11 0000
	src1 dst	sint sint		
	src2	sint	.D1, .D2	11 0010
	src1 dst	ucst <i>5</i> sint		
Description Execution	<i>src1</i> is added to <i>src2</i> us addition defaults to linea the mode can be change the AMR (see section 2 if (cond) <i>src2</i> +a <i>src</i>	ar mode. However, if a ed to circular mode by .7.3, page 2-10). The	<i>src2</i> is one of <i>A</i> writing the app	4-A7 or B4-B7, propriate value to
	else nop			
Pipeline	Pipeline stage E1			
	Read src1, src2	2		
	Written dst			
	Unit in use .D			
Instruction Type	Single-cycle			
Delay Slots	0			
See Also	ADD, ADDAH, ADDAW	I		
3-30 Instruction S	Set			SPRU731A

ADDAH	Add Using Halfword Addressing Mode

Syntax ADDAH (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

31 2	9 28	27	23	22 18	17	13	12	7	6	5	4	3	2	1	0
creg	z		dst	src2		src1/cst	ор		1	0	0	0	0	s	р
3	1		5	5		5	6							1	1

Opcode map field used	For operand type	Unit	Opfield
src2	sint	.D1, .D2	11 0100
src1	sint		
dst	sint		
src2	sint	.D1, .D2	11 0110
src1	ucst5		
dst	sint		

Description *src1* is added to *src2* using the halfword addressing mode specified for *src2*. The addition defaults to linear mode. However, if *src2* is one of A4-A7 or B4-B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10). If circular addressing is enabled, *src1* is left shifted by 1. The result is placed in *dst*.

Execution	if (cond)	src2 +a src1	\rightarrow	dst
	else nop			

Pipeline	Discolision			
	Pipeline stage	E1		
	Read	src1, src2		
	Written	dst		
	Unit in use	.D		
Instruction Type	Single-cycle			
Delay Slots	0			
See Also	ADD, ADDAB, ADDAW			

3-32 Instruction Set

Syntax ADDAW (.unit) src2, src1, dst

.unit = .D1 or .D2

Opcode

З	1 29	28	27	23	22 1	18	17	13	12	7	6	5	4	3	2	1	0
	creg	z	a	lst	src2		src1/cst		ор		1	0	0	0	0	s	р
	3	1		5	5		5		6							1	1

Opcode map field used	For operand type	Unit	Opfield
src2	sint	.D1, .D2	11 1000
src1	sint		
dst	sint		
src2	sint	.D1, .D2	11 1010
src1	ucst5		
dst	sint		

Description *src1* is added to *src2* using the word addressing mode specified for *src2*. The addition defaults to linear mode. However, if *src2* is one of A4–A7 or B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10). If circular addressing is enabled, *src1* is left shifted by 2. The result is placed in *dst*.

Pipeline	Pineline	
Execution	if (cond) else nop	$src2 + a src1 \rightarrow dst$

, ibenue	Pipeline stage	E1			
	Read	src1, src2			
	Written	dst			
	Unit in use	.D			
Instruction Type	Single-cycle				
Delay Slots	0				
See Also	ADD, ADDAB, ADDAH				

3-34 Instruction Set

ADDK	Add Signed 16	Bit Constant to Re	egister	
Syntax	ADDK (.unit) cst	, dst		
	.unit = .S1 or .S2	2		
Opcode				
31 29 28 27	23 22		7 6	543210
creg z d	st	cst16	1	0 1 0 0 <i>s p</i>
3 1	5	16	· · · · ·	1 1
	Opcode map fiel	d used For opera	and type	Unit
	cst16 dst	scst16 uint		.S1, .S2
Execution Pipeline	else nop	- dst → dst		
	Stage Read	E1 cst16		
	Written	dst		
	Unit in use	.S		
Instruction Type	Single-cycle			
Delay Slots	0			
Example	ADDK .S1 154	101,A1		
	Before inst	ruction	1 cycle after in	struction
	A1 0021 37E1	lh 2176993	A1 0021 740Ah	2192394

ADDU	Add Two Unsigned Integers Without Saturation
Syntax	ADDU (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .L1 or .L2
Opcode	

31	29	28	27	23	22	18	17		13	12	11	5	4	3	2	1	0
c	creg	z	ds	st	src2	?		src1		х	ор		1	1	0	s	р
	3	1	5		5			5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	uint xuint ulong	.L1, .L2	010 1011
src1 src2 dst	xuint ulong ulong	.L1, .L2	010 1001

Description

Execution

src2 is added to *src1*. The result is placed in *dst*.

if (cond) $src1 + src2 \rightarrow dst$ else nop

Pipeline	Pipeline Stage	E1
	Read	src1, src2
	Written	dst
	Unit in use	.L

Instruction Type	Single-cycle
Delay Slots	0
See Also	ADD, SADD, SUBU

[‡] Unsigned 40-bit (long) integer

Example 2 ADDU .L1 A1,A3:A2,A5:A4

Before instruction

1 cycle after instruction

[†] Unsigned 32-bit integer

[‡] Unsigned 40-bit (long) integer

ADD2			Add Two 16-Bit Integers on Upper and Lower Register Halves												
Syntax			ADD2 (.unit) src1, src2, dst												
			.unit = .	S1 or .S2											
Opcode															
31 29		27	23	22	18	17	13	12	11				65	4 3	2 1 0
creg	z	-1-													-
0.09	12	ds	t	src2		sra	:1	х	0	0	0 0	0	1 1	00	0 <i>s p</i>
3	1	5	t	5 src2		5	:1	X	0	0	0 0	0	1 1	00	0 <i>s p</i> 1 1
				5		5		1		0	0 0	0			
					used	5	erand ty	1		0	0 0	0		0 0 nit	

DescriptionThe upper and lower halves of the *src1* operand are added to the upper and
lower halves of the *src2* operand. The values in *src1* and *src2* are treated as
signed, packed 16-bit data and the results are written in signed, packed 16-bit
format into *dst*.

xsint

sint

src2

dst

For each pair of signed packed 16-bit values found in the *src1* and *src2*, the sum between the 16-bit value from *src1* and the 16-bit value from *src2* is calculated to produce a16-bit result. The result is placed in the corresponding positions in the *dst*. The carry from the lower half add does not affect the upper half add.

Execution	lsb	sb16(src1) + msb16(src2 16(src1) + lsb16(src2) -	
	} else nop		
Pipeline	Pipeline Stage	E1	
	Read	src1, src2	
	Written	dst	
	Unit in use	.S	
Instruction Type	Single-cycle		
Delay Slots	0		
See Also	ADD, ADDU, S	SUB2	
Example	ADD2 .S1X A	1,B1,A2	
	Before in	struction	1 cycle after instruction
	A1 0021 37	E1h 33 14305	A1 0021 37E1h
	A2 XXXX XXX	xxh	A2 03BB 1C99h 955 7321
	B1 039A E4	B8h 922 58552	B1 039A E4B8h

AND			Bitwise	AND										
Syntax			AND (.unit) src1, src2, dst											
			.unit = .L1, .L2, .S1, .S2											
Opcode			.L unit											
31 29	28	27	23	22	18 17		13	12	11	5	4	3	2 1	0
creg	z	ds	st	src2		src1/cst		х	0	р	1	1	0 <i>s</i>	р
3	1	5		5		5		1		7		-	1	1
			Opcode	For operar	nd ty	pe	. U	nit	C)pfi	eld			
			src1			uint			11	12	11	11 1	011	

<u> </u>	1 71		•	
src1	uint	.L1, .L2	111 1011	
src2	xuint			
dst	uint			
src1	scst5	.L1, .L2	111 1010	
src2	xuint			
dst	uint			

Opcode .S unit

3	1	29	28	27	23	22	18	17	13	12	11	65	4 3 2 1 0
	creg		Ζ	ds	st	src2		src1/cst		х	ор	1	100 <i>sp</i>
	3		1	5		5		5		1	6		1 1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.S1, .S2	01 1111
src2	xuint		
dst	uint		
src1	scst5	.S1, .S2	01 1110
src2	xuint		
dst	uint		

DescriptionPerforms a bitwise AND operation between src1 and src2. The result is placed
in dst. The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 AND $src2 \rightarrow dst$ else nop

Pipeline	Pipeline Stage E1	
	Read src1, src2	2
	Written dst	
	Unit in use .L or .S	
Instruction Type	Single-cycle	
Delay Slots	0	
See Also	OR, XOR	
Example 1	AND .L1X A1,B1,A2	
	Before instruction	I
	A1 F7A1 302Ah	
	A2 xxxx xxxxh	
	B1 02B6 E724h	

1 cycle after instruction

Example 2

AND .L1 15,A1,A3

Before instruction

1 cycle after instruction

A1 32E4 6936h A3 0000 0006h

	Branch Using a Displaceme	ent	
ax	B (.unit) label		
	.unit = .S1 or .S2		
ode			
29 28 27			7 6 5 4 3 2 1 0
eg z	cst21		0 0 1 0 0 <i>s p</i>
3 1	21		1 1
	Opcode map field used	For operand type	Unit
	epeede map held doedm		
)		For operand type	U

Description A 21-bit signed constant, *cst21*, is shifted left by 2 bits and is added to the address of the first instruction of the fetch packet that contains the branch instruction. The result is placed in the program fetch counter (PFC). The assembler/linker automatically computes the correct value for *cst21* by the following formula:

cst21 = (label - PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior is undefined.

Two conditional branches can be in the same execute packet if one branch uses a displacement and the other uses a register, IRP, or NRP. As long as only one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) $cst21 \ll 2 + PCE1 \rightarrow PFC$ else nop

Notes:

- 1) PCE1 (program counter) represents the address of the first instruction in the fetch packet in the E1 stage of the pipeline. PFC is the program fetch counter.
- 2) The execute packets in the delay slots of a branch cannot be interrupted. This is true regardless of whether the branch is taken.
- 3) See section 3.4.2 on page 3-9 for information on branching into the middle of an execute packet.

B Branch Using a Displacement

Pipeline				-	Target In	structior	ı	
	Pipeline Stage	E1	PS	PW	PR	DP	DC	E1
	Read							
	Written							
	Branch Taken							~
	Unit in use	.S						
Instruction Type	Branch							
Delay Slots	5							
Example	Table 3-8 give example.	es the prog	ram cou	inter values	and acti	ons for ti	he follow	ing code
	0000 0000 0000 0004 0000 0008 0000 000C 0000 0010 0000 0014 0000 0018 0000 001C 0000 0020	 LOOP: 	B ADD ADD MPY SUB MPY MPY SHR ADD	.S1 LOOP .L1 A1, .L2 B1, .M1X A3, .D1 A5, .M1 A3, .M1 A6, .S1 A4, .D1 A4,	A2, A3 B2, B3 B3, A4 A6, A6 A6, A5 A7, A8 15, A4	1		

Table 3-8. Program Counter Values for Example Branch Using a Displacement

Cycle	Program Counter Value	Action
Cycle 0	0000 0000h	Branch command executes (target code fetched)
Cycle 1	0000 0004h	
Cycle 2	0000 000Ch	
Cycle 3	0000 0014h	
Cycle 4	0000 0018h	
Cycle 5	0000 001Ch	
Cycle 6	0000 000Ch	Branch target code executes
Cycle 7	0000 0014h	

3-44 Instruction Set

В	Bran	ch Using a	a Registe	ər						
Syntax	B (.u	3 (.unit) <i>src2</i>								
	.unit :	= .S2								
Opcode										
31 29 28 27	23	22	18 17		13	12	11	6	T T T	2 1 0
<i>creg z</i> 0 0 0	0 0	src2	0	0 0	0 0	x	0 0	1 1 0 1	100	
3 1		5				1				1 1
		ode map fie	ld used			ranc	d type		Unit	
	src2			XL	int				.S2	
Description	lf two	is placed in branches defined.					. ,		h taken,	behavior
Execution	uses one b if (coi	-	nent and t	he othe	ruses	are	egister, l	RP, or NF	RP. As lon	g as only
	else r	пор								
	Note	es:								
	1) 1	This instruc	tion exec	utes or	.S2 c	only.	PFC is	program	fetch co	unter.
	-	The execute This is true	-		-					rrupted.
		See section middle of a				or ir	nformati	on on br	anching	into the
Pipeline							Target	nstructio	n	
	Pipe Stag		E1	PS	Р	w	PR	DP	DC	E1
	Read	k	src2							
	Writt	ten								
	Bran Take									
	Unit	in use	.S2							

Instruction Tures	Dranah
Instruction Type	Branch
Delay Slots	5
Example	Table 3-9 gives the program counter values and actions for the following code example. In this example, the B10 register holds the value 1000 000Ch.
	B10 1000 000Ch
	10000000B.S2B1010000004ADD.L1A1, A2, A310000008 ADD.L2B1, B2, B31000000CMPY.M1XA3, B3, A410000010 SUB.D1A5, A6, A610000014MPY.M1A3, A6, A510000018MPY.M1A6, A7, A81000001CSHR.S1A4, 15, A410000020ADD.D1A4, A6, A4

Table 3-9. Program Counter Values for Example Branch Using a Register

Cycle	Program Counter Value	Action
Cycle 0	1000 0000h	Branch command executes (target code fetched)
Cycle 1	1000 0004h	
Cycle 2	1000 000Ch	
Cycle 3	1000 0014h	
Cycle 4	1000 0018h	
Cycle 5	1000 001Ch	
Cycle 6	1000 000Ch	Branch target code executes
Cycle 7	1000 0014h	

B IRP	Branch Using an Interrupt Return Pointer	
Syntax	3 (.unit) IRP	
	unit = .S2	
Opcode		
31 29 28 27 creg Z ds 3 1 5	0 0 1 1 0 0 0 0 0 x 0 0 0 1 1 1 0 0 0	1 0 s p 1 1
	Opcode map field used For operand type Unit	
	src2 xsint .S2	
Description	RP is placed in the program fetch counter (PFC). This instruction also me he PGIE bit value to the GIE bit. The PGIE bit is unchanged. If two branches are in the same execute packet and are both taken, beha is undefined. Two conditional branches can be in the same execute packet if one branches a displacement and the other uses a register, IRP, or NRP. As long as one branch has a true condition, the code executes in a well-defined wa f (cond) IRP → PFC else nop	avior anch sonly
	Notes:	
	 This instruction executes on .S2 only. PFC is the program fetch cour Refer to Chapter 5, <i>Interrupts</i>, for more information on IRP, PGIE, a GIE. 	
	3) The execute packets in the delay slots of a branch cannot be interrupt This is true regardless of whether the branch is taken.	ted.
	 See section 3.4.2 on page 3-9 for information on branching into middle of an execute packet. 	the

Dinalina								
Pipeline				•	Target In	structior	ı	
	Pipeline Stage	E1	PS	PW	PR	DP	DC	E1
	Read	IRP						
	Written							
	Branch Taken							
	Unit in use	.S2						
Instruction Type	Branch							
Delay Slots	5							
Example	Table 3-10 gi code example	•	-			actions	for the f	ollowing
	PC = 0000	1000	IRP = 00	00 1000]			
	$\begin{array}{cccc} 0000 & 0020 \\ 0000 & 0024 \\ 0000 & 0028 \\ 0000 & 002C \\ 0000 & 0030 \\ 0000 & 0034 \\ 0000 & 0038 \end{array}$	B ADD MPY NOP SHR ADD ADD	.S2 IRP .S1 A0, .M1 A1, .S1 A1, .L1 A1, .L2 B1,	A0, A1 15, A1 A2, A1				

Table 3-10. Program Counter Values for B IRP Instruction

Cycle	Program Counter Value	Action
Cycle 0	0000 0020	Branch command executes (target code fetched)
Cycle 1	0000 0024	
Cycle 2	0000 0028	
Cycle 3	0000 002C	
Cycle 4	0000 0030	
Cycle 5	0000 0034	
Cycle 6	0000 1000	Branch target code executes

3-48 Instruction Set

B NRP	Branch Using NMI Return Pointer	
Syntax	B (.unit) NRP	
	.unit = .S2	
Opcode		
31 29 28 27	23 22 18 17 13 12 11 6 5 4 3 2 1	-
creg z	dst 0 0 1 1 1 0 0 0 0 0 x 0 0 0 0 1 1 1 0 0 0 s	1'
3 1	5 1 1	1 1
	Opcode map field used For operand type Unit	
	src2 xsint .S2	
Execution	is undefined. Two conditional branches can be in the same execute packet if one bra uses a displacement and the other uses a register, IRP, or NRP. As long as c one branch has a true condition, the code executes in a well-defined wa if (cond) NRP \rightarrow PFC else nop	onl
	·	
	Notes:	
	1) This instruction executes on .S2 only. PFC is program fetch counter	
	2) Refer to Chapter 5, <i>Interrupts</i> , for more information on NRP and NM	
	 The execute packets in the delay slots of a branch cannot be interrupte This is true regardless of whether the branch is taken. 	ed.
	 See section 3.4.2 on page 3-9 for information on branching into t middle of an execute packet. 	the

Pipeline			Target Instruction						
	Pipeline Stage	E1	PS	PW	PR	DP	DC	E1	
	Read	NRP							
	Written								
	Branch Taken								
	Unit in use	.S2							
Instruction Type	Branch								
Delay Slots	5								
Example	Table 3-11 giv code example		-			actions	for the f	following	
	PC = 0000	1000	NRP = 000	00 1000]				
	0000 0020 0000 0024 0000 0028 0000 002C 0000 0030 0000 0034 0000 0038	B ADD MPY NOP SHR ADD ADD	.S2 NRP .S1 A0, .M1 A1, .S1 A1, .L1 A1, .L2 B1,	A0, A1 15, A1 A2, A1					

Table 3-11. Program Counter Values for B NRP Instruction

Cycle	Program Counter Value	Action
Cycle 0	0000 0020	Branch command executes (target code fetched)
Cycle 1	0000 0024	
Cycle 2	0000 0028	
Cycle 3	0000 002C	
Cycle 4	0000 0030	
Cycle 5	0000 0034	
Cycle 6	0000 1000	Branch target code executes

3-50 Instruction Set

CLR	Clear a Bit Field	
Syntax	CLR (.unit) <i>src2</i> , <i>csta</i> , <i>cstb</i> , <i>dst</i> or CLR (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i> .unit = .S1 or .S2	
Opcode	Constant form	
31 29 28 27	23 22 18 17 13 12 8 7 6 5	4 3 2 1 0
creg z ds	st src2 csta cstb 1 1 0	0 1 0 <i>s p</i>
3 1 5	5 5 5 5	1 1
	Opcode map field used For operand type	Unit
	src2 uint .S	Unit 61, .S2
	src2 uint .S csta ucst5	
	src2 uint .S	
	src2 uint .S csta ucst5 cstb ucst5	
Opcode	src2 uint .S csta ucst5 cstb ucst5	
Opcode 31 29 28 27	src2 uint .S csta ucst5 cstb ucst5 dst uint	S1, .S2
31 29 28 27	src2uint.Scstaucst5cstbucst5dstuint	61, .S2

Opcode map field used	For operand type	Unit
src2	xuint	.S1, .S2
src1	uint	
dst	uint	

Description The field in src2, specified by csta and cstb, is cleared to zero. csta and cstb may be specified as constants or as the ten LSBs of the src1 registers, with cstb being bits 0-4 and csta bits 5-9. csta signifies the bit location of the LSB in the field and *cstb* signifies the bit location of the MSB in the field. In other words, csta and cstb represent the beginning and ending bits, respectively, of the field to be cleared. The LSB location of src2 is 0 and the MSB location of src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs are valid for the register version of the instruction. If any of the 22 MSBs are non-zero, the result is invalid.

Execution	If the const	tant form is used:
	if (cond) else nop	src2 clear csta, cstb \rightarrow dst
	If the regis	ter form is used:
	if (cond) else nop	src2 clear src1 ₉₅ , src1 ₄₀ \rightarrow dst
Pipeline	Pipeline	

ipeline	Pipeline Stage	E1
	Read	src1, src2
	Written	dst
	Unit in use	.S

Instruction Type	Single-cycle
Delay Slots	0
See Also	SET

3-52 Instruction Set

CMPEQ	Compare for Equality, Signed Integers

Syntax CMPEQ (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

_	31	29	28	27	:	23	22	18	17		13	12	11	5	4	3	2	1	0
	creg		Ζ		dst		src2			src1/cst		х	ор		1	1	0	s	р
1	3		1		5		5			5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1	sint	.L1, .L2	101 0011
src2	xsint		
dst	uint		
src1	scst5	.L1, .L2	101 0010
src2	xsint		
dst	uint		
src1	xsint	.L1, .L2	101 0001
src2	slong		
dst	uint		
src1	scst5	.L1, .L2	101 0000
src2	slong		
dst	uint		

Description	Compares 0 is written		<i>rc1</i> equals <i>src2</i> , then 1 is written to <i>dst</i> ; otherwise,
Execution	if (cond) else nop	{ if (<i>src1</i> == <i>src</i> , else 0 → }	
Pipeline	Pipeline Stage	E1	
	Read	src1, src2	
	Written	dst	
	Unit in use	.L	

Instruction Set 3-54

CMPGT		Comp	pare for Greate	r Than, Signe	d Int	egers	
Syntax		СМРС	GT (.unit) <i>src1</i> , si	rc2, dst			
		.unit =	: .L1 or .L2				
Opcode							
31 29	28 27	23	22 18	17 1	3 12	11	5 4 3 2 1 0
creg	z	dst	src2	src1/cst	х	ор	1 1 0 <i>s p</i>

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	sint xsint uint	.L1, .L2	100 0111
src1 src2 dst	scst5 xsint uint	.L1, .L2	100 0110
src1 src2 dst	xsint slong uint	.L1, .L2	100 0101
src1 src2 dst	scst5 slong uint	.L1, .L2	100 0100

	Meter
	The CMPGT instruction allows using a 5-bit constant as <i>src1</i> . If <i>src2</i> is a 5-bi constant, as in
	CMPGT .L1 A4, 5, A0
	Then to implement this operation, the assembler converts this instruction to
	CMPLT .L1 5, A4, A0
	These two instructions are equivalent, with the second instruction using the conventional operand types for <i>src1</i> and <i>src2</i> .
	Similarly, the CMPGT instruction allows a cross path operand to be used as <i>src2</i> . If <i>src1</i> is a cross path operand as in
	CMPGT .L1x B4, A5, A0
	Then to implement this operation the assembler converts this instruction to
	CMPLT .L1x A5, B4, A0
	In both of these operations the listing file (.lst) will have the first implementa- tion, and the second implementation will appear in the debugger.
	L
Execution	if (cond) { if (src1 > src2) 1 \rightarrow dst else 0 \rightarrow dst
Execution	if (cond) { if (src1 > src2) 1 \rightarrow dst
Execution Pipeline	if (cond) { if (src1 > src2) 1 \rightarrow dst else 0 \rightarrow dst }
	if (cond) {
	if (cond) {
	if (cond) {
	if (cond) { if (src1 > src2) 1 \rightarrow dst else 0 \rightarrow dst } else nop $\frac{Pipeline}{Stage} = \frac{E1}{Read} = \frac{src1, src2}{src2}$ Written dst
Pipeline	if (cond) { if (src1 > src2) 1 \rightarrow dst else 0 \rightarrow dst } else nop $\frac{Pipeline}{Stage} = E1$ Read src1, src2 Written dst Unit in use .L

1 cycle after instruction **Before instruction** A1 0000 0023h 35 A1 0000 0023h A2 0000 0000h A2 xxxx xxxxh Example 4 CMPGT .L1X A1,B1,A2 **Before instruction** 1 cycle after instruction

false

3-58 Instruction Set

CMPGTUCompare for Greater Than, Unsigned Integers

Syntax

CMPGTU (.unit) *src1*, *src2*, *dst* .unit = .L1 or .L2

Opcode

_	31	29	28	27	23	22 18	17	7 1	13	12	11	5	4	3	2	1	0
	creg		Ζ		dst	src2		src1/cst		х	ор		1	1	0	s	р
1	3		1		5	5		5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.L1, .L2	100 1111
src2	xuint		
dst	uint		
src1	ucst4	.L1, .L2	100 1110
src2	xuint		
dst	uint		
src1	xuint	.L1, .L2	100 1101
src2	ulong		
dst	uint		
src1	ucst4	.L1, .L2	100 1100
src2	ulong		
dst	uint		

Description	Performs an unsigned comparison of <i>src1</i> to <i>src2</i> . If <i>src1</i> is greater than <i>src2</i> ,
	then a 1 is written to <i>dst</i> ; otherwise, a 0 is written to <i>dst</i> . Only the four LSBs
	are valid in the 5-bit dst field when the ucst4 operand is used. If the MSB of the
	dst field is nonzero, the result is invalid.

Execution	if (cond)	{ if $(src1 > src2) 1 \rightarrow dst$ else $0 \rightarrow dst$
	else nop	}
Pipeline	Pipeline Stage	E1
	Read	src1, src2
	Written	dst

Unit in use

.L

Instruction Type	Single-cycle	
Delay Slots	0	
See Also	CMPGT, CMPLTU	
Example 1	CMPGTU .L1 A1,A2,A3	
	Before instruction	1 cycle after instruction
	A1 0000 0128h 296 [†]	A1 0000 0128h
	A2 FFFF FFDEh 4294967262 [†]	A2 FFFF FFDEh
	A3 xxxx xxxxh	A3 0000 0000h false
[†] Unsigned 32-bit integer		
Example 2	CMPGTU .L1 0Ah,A1,A2	
	Before instruction	1 cycle after instruction
	A1 0000 0005h 5 [†]	A1 0000 0005h
	A2 xxxx xxxxh	A2 0000 0001h true
[†] Unsigned 32-bit integer		
Example 3	CMPGTU .L1 0Eh,A3:A2,A4	
Before instruc	tion	1 cycle after instruction
A3:A2 0000 0000h	0000 000Ah 10 [‡] A3:	A2 0000 0000h 0000 000Ah
A4 xxxx xxxxh	7	A4 0000 0001h true
[‡] Unsigned 40-bit (long) inte	 ger	

CMPLT Compare for Less Than, Signed Integers

Syntax

CMPLT (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

:	31 29	28	27	23	22	18	17		13	12	11	5	4	3	2	1	0
	creg	Ζ	dst		src2			src1/cst		х	ор		1	1	0	s	р
	3	1	5		5			5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	sint xsint uint	.L1, .L2	101 0111
src1 src2 dst	scst5 xsint uint	.L1, .L2	101 0110
src1 src2 dst	xsint slong uint	.L1, .L2	101 0101
src1 src2 dst	scst5 slong uint	.L1, .L2	101 0100

Description	Performs a signed comparison of <i>src1</i> to <i>src2</i> . If <i>src1</i> is less than <i>src2</i> , then 1 is written to <i>dst</i> ; otherwise, 0 is written to <i>dst</i> .								
	Note:								
	The CMPLT instruction allows using a 5-bit constant as <i>src1</i> . If <i>src2</i> is a 5-bit constant, as in								
	CMPLT .L1 A4, 5, A0 Then to implement this operation, the assembler converts this instruction to								
	CMPGT .L1 5, A4, A0								
	These two instructions are equivalent, with the second instruction using the conventional operand types for <i>src1</i> and <i>src2</i> .								
	Similarly, the CMPLT instruction allows a cross path operand to be used as <i>src2</i> . If <i>src1</i> is a cross path operand as in								
	CMPLT .L1x B4, A5, A0								
	Then to implement this operation, the assembler converts this instruction to								
	CMPGT .L1x A5, B4, A0								
	In both of these operations the listing file (.lst) will have the first implementa- tion, and the second implementation will appear in the debugger.								
Execution	if (cond) { if (src1 < src2) 1 \rightarrow dst else 0 \rightarrow dst }								
	else nop								
Pipeline	Pipeline Stage E1								
	Read src1, src2								
	Written dst								
	Unit in use .L								
Instruction Type	Single-cycle								
Delay Slots	0								
See Also	CMPEQ, CMPGT, CMPLTU								
3-62 Instruction Se	et SPRU731A								

CMPLTU Compare for Less Than, Unsigned Integers

Syntax CMPLTU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

_	31 2	92	8	27	23	22	18	17		13	12	11	5	4	3	2	1	0
	creg	Z	<u> </u>	dst		src2			src1/cst		х	ор		1	1	0	s	р
1	3	1	1	5		5			5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.L1, .L2	101 1111
src2	xuint		
dst	uint		
src1	ucst4	.L1, .L2	101 1110
src2	xuint		
dst	uint		
src1	xuint	.L1, .L2	101 1101
src2	ulong		
dst	uint		
src1	ucst4	.L1, .L2	101 1100
src2	ulong		
dst	uint		

Description	Performs an unsigned comparison of <i>src1</i> to <i>src2</i> . If <i>src1</i> is less than <i>src2</i> , then
	1 is written to <i>dst</i> ; otherwise, 0 is written to <i>dst</i> .

Execution if (cond) { if $(src1 < src2) 1 \rightarrow dst$

		else 0 \rightarrow dst
	else nop	J
Pipeline	Pipeline Stage	E1
	Read	src1, src2
	Written	dst
	Unit in use	.L

3-64 Instruction Set

[†] Unsigned 32-bit integer

[‡] Unsigned 40-bit (long) integer

EXT				Extra	ct and Sigr	-Exte	end a Bit F	ield							
Syntax				EXT(.unit =	.unit) <i>src2</i> , c or .unit) <i>src2</i> , s S1 or .S2										
Opcode				Const	ant form										
31 29	28	27		23	22	18	17	13	12		8	7	654	32	10
creg	z		dst		src2		csta		6	stb		0	1 0 0	1 0	s p
3	1		5		5		5			5					1 1
				Орсо	de map field	used	l For op	eran	d type.				Ur	nit	
				src2 csta cstb dst			sint ucst5 ucst5 sint						.S1,	.S2	
Opcode 31 29	28	27		Regis	ter form	18	17	13	12 11				654	3 2	1 0
creg	z		dst		src2		src1		x 1	0	1 1	1	1 1 0	0 0	s p
3	1	•	5		5		5		1						1 1
				Орсо	de map field	used	I For op	eran	d type.				Ur	nit	
				src2 src1 dst			xsint uint sint						.S1,	.S2	

Description The field in *src2*, specified by *csta* and *cstb*, is extracted and sign-extended to 32 bits. The extract is performed by a shift left followed by a signed shift right. *csta* and *cstb* are the shift left amount and shift right amount, respectively. This can be thought of in terms of the LSB and MSB of the field to be extracted. Then *csta* = 31 – MSB of the field and *cstb* = *csta* + LSB of the field. The shift left and shift right amounts may also be specified as the ten LSBs of the *src1* register with *cstb* being bits 0–4 and *csta* bits 5–9. In the example below, *csta* is 12 and *cstb* is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the instruction. If any of the 22 MSBs are non-zero, the result is invalid.

Execution If the constant form is used: if (cond) $src2 \text{ ext } csta, cstb \rightarrow dst$ else nop If the register form is used:

> if (cond) $src2 \operatorname{ext} src1_{9..5}, src1_{4..0} \rightarrow dst$ else nop

Pipeline

Pipeline Stage	E1
Read	src1, src2
Written	dst
Unit in use	.S

EXTU			Extra	Extract and Zero-Extend a Bit Field														
Syntax				XTU (.unit) <i>src2</i> , <i>csta</i> , <i>cstb</i> , <i>dst</i> or XTU (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>														
			.unit =	unit = .S1 or .S2														
Opcode			Const	Constant width and offset form:														
31 29	28	27	23	22	18	17	13	12		8	7	6	5	4	3	2	1	0
creg	Ζ	ds	t	src2		csta			cstb		0	0	0	0	1	0	s	р
3	1	5		5		5			5								1	1
			0	de men field.					_									

Opcode map field used	For operand type	Unit
src2	uint	.S1, .S2
csta	ucst5	
cstb	ucst5	
dst	uint	

Opcode

Register width and offset form:

;	31 29	28	27	23	22 18	17	13	12	11					6	5	4	3	2	1	0
l	creg	Z		dst	src2	src1		х	1	0	1	0	1	1	1	0	0	0	s	р
	3	1		5	5	5		1											1	1

Opcode map field used	For operand type	Unit
src2	xuint	.S1, .S2
src1	uint	
dst	uint	

Description	The field in <i>src2</i> , specified by <i>csta</i> and <i>cstb</i> , is extracted and zero extended to 32 bits. The extract is performed by a shift left followed by an unsigned shift right. <i>csta</i> and <i>cstb</i> are the amounts to shift left and shift right, respectively. This can be thought of in terms of the LSB and MSB of the field to be extracted. Then <i>csta</i> = 31 – MSB of the field and <i>cstb</i> = <i>csta</i> + LSB of the field. The shift left and shift right amounts may also be specified as the ten LSBs of the <i>src1</i> register with <i>cstb</i> being bits 0-4 and <i>csta</i> bits 5-9. In the example below, <i>csta</i> is 12 and <i>cstb</i> is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the instruction. If any of the 22 MSBs are non-zero, the result is invalid.
<i>src2</i> 1)	csta cstb
2)	1 0 1 1 0 1 x
↓ dst 3)	0 0
Execution	If the constant form is used:
	if (cond) $src2$ extu $csta$, $cstb \rightarrow dst$ else nop
	If the register width and offset form is used:
	if (cond) $src2 \operatorname{extu} src1_{95}, src1_{40} \rightarrow dst$ else nop
Pipeline	Pipeline
	Stage E1
	Read src1, src2
	Written dst
	Unit in use .S

3-70 Instruction Set

IDLE	Multicycle NOP With No Termination Until Interrupt																			
Syntax	IDLE																			
	.unit = none																			
Opcode																				
31	1	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved		0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	s	р
Description	Performs an infinite interrupt, or a branch of a branch.			-										•					-	

Instruction	Туре	NOP
-------------	------	-----

Delay Slots 0

LDB(U)	Load Byte From Memory With a 5 Register Offset	5-Bit Unsigned Constant Offset or
Syntax	Register Offset	Unsigned Constant Offset

LDB (.unit) *+baseR[offsetR], dst or LDBU (.unit) *+baseR[offsetR], dst LDBU (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Opcode

31	29	28	27	23	22	18	17 13	12	9	8	7	6	4	3	2	1	0
	creg	Ζ		dst	baseR		offsetR/ucst5	mode		0	у	ор		0	1	s	р
	3	1		5	5		5	4			1	3				1	1

Description Loads a byte from memory to a general-purpose register (*dst*). Table 3-12 summarizes the data types supported by loads. Table 3-6 (page 3-19) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*). If an offset is not given, the assembler assigns an offset of zero.

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is the address to be accessed in memory.

Table 3-12.	Data Types Support	ed by LDB(U) Instruction
-------------	--------------------	--------------------------

Mnemonic	<i>op</i> Field	Load Data Type	Size	Left Shift of Offset
LDB	0 1 0	Load byte	8	0 bits
LDBU	001	Load byte unsigned	8	0 bits

SPRU731A

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **LDB(U)**, the values are loaded into the 8 LSBs of *dst*. For **LDB**, the upper 24 bits of *dst* values are sign-extended; for **LDBU**, the upper 24 bits of *dst* are zero-filled. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no bracketed register or constant is specified. Loads that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Execution	if (cond)	mem → <i>dst</i>
	else nop	

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	baseR offsetR				
	Written	baseR				dst
	Unit in use	.D				

Instruction Type	Load
Delay Slots	4 for loaded value

Delay Slots	4 lor loaded value
	0 for address modification from pre/post increment/decrement
	For more information on delay slots for a load, see Chapter 4.

See Also LDH, LDW

3-74 Instruction Set

LDB(U)	Load Byte From Memory With a 15-Bit Unsigned Constant Offset
Syntax	LDB (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i> or LDBU (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i>
	.unit = .D2
Opcode	

Opcode	
--------	--

(31 :	29 2	8 27	7 23	22	8	7	6	4	3	2	1	0
	creg	Z	·	dst	ucst15		У	ор		1	1	s	р
	3	1		5	15		1	3				1	1

Description

Loads a byte from memory to a general-purpose register (dst). Table 3-13 summarizes the data types supported by loads. The memory address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (ucst15). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 0 bits. After scaling, ucst15 is added to baseR. Subtraction is not supported. The result of the calculation is the address sent to memory. The addressing arithmetic is always performed in linear mode.

For LDB(U), the values are loaded into the 8 LSBs of dst. For LDB, the upper 24 bits of dst values are sign-extended; for LDBU, the upper 24 bits of dst are zero-filled. The s bit determines which file dst will be loaded into: s = 0 indicates dst will be loaded in the A register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [], indicate that the ucst15 offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Table 3-13. Data Types Supported by LDB(U) Instruction (15-Bit Offset)

Mnemonic	<i>op</i> Field	Load Data Type	Slze	Left Shift of Offset
LDB	010	Load byte	8	0 bits
LDBU	001	Load byte unsigned	8	0 bits

Execution

if (cond) mem $\rightarrow dst$ else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	B14 / B15				
	Written					dst
	Unit in use	.D2				

LDH(U)	n a 5-Bit Unsigned Constant Offset	
Syntax	Register Offset	Unsigned Constant Offset
	LDH (.unit) *+ <i>baseR[offsetR], dst</i> or LDHU (.unit) *+ <i>baseR[offsetR], dst</i>	LDH (.unit) *+ <i>baseR[ucst5], dst</i> or LDHU (.unit) *+ <i>baseR[ucst5], dst</i>
	.unit = .D1 or .D2	
Opcode		

з	1 29	28	27	23	22	18	17 13	12		9	8	7	6	4	3	2	1	0
	creg	z		dst	baseR		offsetR/ucst5		mode		0	у	ор		0	1	s	р
	3	1		5	5		5		4			1	3				1	1

Description Loads a halfword from memory to a general-purpose register (*dst*). Table 3–14 summarizes the data types supported by halfword loads. Table 3–6 (page 3-19) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*). If an offset is not given, the assembler assigns an offset of zero.

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is the address to be accessed in memory.

Table 3-14.	Data Types Supported by LDH(U)	Instruction
-------------	--------------------------------	-------------

Mnemonic	<i>op</i> Field	Load Data Type	Slze	Left Shift of Offset
LDH	100	Load halfword	16	1 bit
LDHU	0 0 0	Load halfword unsigned	16	1 bit

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **LDH(U)**, the values are loaded into the 16 LSBs of *dst*. For **LDH**, the upper 16 bits of *dst* are sign-extended; for **LDHU**, the upper 16 bits of *dst* are zero-filled. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no bracketed register or constant is specified. Loads that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution	if (cond)	mem <i>→ dst</i>
	else nop	

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	baseR offsetR				
	Written	baseR				dst
	Unit in use	.D				

Instruction Type	Load
Delay Slots	4 for loaded value 0 for address modification from pre/post increment/decrement For more information on delay slots for a load, see Chapter 4.
See Also	LDB, LDW

LDF	ł(U)	Load Halfword From Memory With a 15-Bit Unsigned Constant Offset					
Synt	ax	LDH (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i> or					
		LDHU (.unit) *+B14/B15[<i>ucst15</i>], <i>dst</i>					
		.unit = .D2					
Орсо	ode						
31	29 28 27	23 22 8 7 6 4 3 2 1 0					

_	31	29 4	28	21 23	22	8	1	0	4	3	2	1	0
	creg		z	dst	ucst15		y	ор		1	1	s	р
	3		1	5	15		1	3				1	1

Description

Loads a halfword from memory to a general-purpose register (*dst*). Table 3–15 summarizes the data types supported by loads. The memory address is formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset, which is a 15-bit unsigned constant (*ucst15*). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction operates only on the .D2 unit.

The offset, *ucst15*, is scaled by a left shift of 1 bit. After scaling, *ucst15* is added to *baseR*. Subtraction is not supported. The result of the calculation is the address sent to memory. The addressing arithmetic is always performed in linear mode.

For **LDH(U)**, the values are loaded into the 16 LSBs of *dst*. For **LDH**, the upper 16 bits of *dst* are sign-extended; for **LDHU**, the upper 16 bits of *dst* are zero-filled. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file.

Square brackets, [], indicate that the *ucst*15 offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Table 3–15. Data Types Supported by LDH(U) Instruction (15-Bit Offset)

Mnemonic	<i>op</i> Field	Load Data Type	Slze	Left Shift of Offset
LDH	1 0 0	Load halfword	16	1 bit
LDHU	0 0 0	Load halfword unsigned	16	1 bit

LDH(U) Load Halfword From Memory With a 15-Bit Unsigned Constant Offset

Execution

if (cond) mem $\rightarrow dst$ else nop

Note:

L

This instruction executes only on the B side (.D2).

Pipeline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	B14 / B15				
	Written					dst
	Unit in use	.D2				

See Also	LDB, LDW
Delay Slots	4
Instruction Type	Load

1

LDW	Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

Syntax	Register Offset	Unsigned Constant Offset
	LDW (.unit) *+baseR[offsetR], dst	LDW (.unit) *+baseR[ucst5], dst
	.unit = .D1 or .D2	

Opcode

31	29	28	27	23	22	18	17 13	12	!	9	8	7	6		4	3	2	1	0
	creg	Ζ		dst	baseR		offsetR/ucst5		mode		0	y	1	1	0	0	1	s	р
	3	1		5	5		5		4			1						1	1

Description

Loads a word from memory to a general-purpose register (*dst*). Table 3–6 (page 3-19) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*). If an offset is not given, the assembler assigns an offset of zero.

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **LDW**, the entire 32 bits fills *dst*. *dst* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *dst* will be loaded into: s = 0 indicates *dst* will be loaded in the A register file and s = 1 indicates *dst* will be loaded in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no bracketed register or constant is specified. Loads that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 2. Parentheses, (), can be used to set a nonscaled, constant offset. For example, **LDW** (.unit) *+*baseR* (12) *dst* represents an offset of 12 bytes; whereas, **LDW** (.unit) *+*baseR* [12] *dst* represents an offset of 12 words, or 48 bytes. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution	if (cond)	mem → <i>dst</i>
	else nop	

Pipeline

Pipeline Stage	E1	E2	E3	E4	E5
Read	baseR offsetR				
Written	baseR				dst
Unit in use	.D				

See Also	LDB, LDH
Delay Slots	4 for loaded value 0 for address modification from pre/post increment/decrement For more information on delay slots for a load, see Chapter 4.
Instruction Type	Load

LDW	L	oad Wor	d From Memory Witl	ו a 15-Bit Unsigi	ned C	onsta	ant Oi	ffset
Syntax	L	. DW (.unit) *+B14/B15[<i>ucst15</i>], c	lst				
	.L	unit = .D2						
Opcode								
31 29 28 27		23 22			87	6	4 3	2 1 0
creg z	dst		ucst15		У	1 1	0 1	1 <i>s p</i>
3 1	5		15		1			1 1
Description	a th ir T a th	ddress is f in offset, w nis format nstruction The offset, idded to <i>ba</i>	rd from memory to a g formed from a base add which is a 15-bit unsigned only when the constant operates only on the . <i>ucst15,</i> is scaled by a <i>aseR.</i> Subtraction is no s sent to memory. The ode.	dress register B14 ed constant (<i>ucst1</i> nt is larger than fiv D2 unit. a left shift of 2 bits ot supported. The	(y = 0) 5). The ve bits s. After result o	or B asse in ma scal	15 (y = embler agnitue ing, <i>u</i> e calcu	= 1) and r selects de. This <i>cst15</i> is lation is
	d ir P L Y Y	etermines on the A reg oquare bra Parenthese DW (.unit DW (.unit) You must the ou use the	he entire 32 bits fills ds which file dst will be lo pister file and $s = 1$ indicates, ackets, [], indicate thes, (), can be used to set) *+B14/B15(60), dst re ype either brackets or e optional offset parameters be aligned	baded into: $s = 0$ in cates <i>dst</i> will be lo nat the <i>ucst</i> 15 of et a nonscaled, cor represents an offset presents an offset parentheses around	ndicate paded ir ffset is nstant c set of 6 of 60 w und the	s <i>dst</i> n the offset. 60 by vords e spec	will be B regi Shifte For e tes; w , or 24 cified	e loaded ster file. d by 2. xample, /hereas, 0 bytes. offset, if

Execution if (cond) mem $\rightarrow dst$ else nop

L

Note:

This instruction executes only on the B side (.D2).

peline	Pipeline Stage	E1	E2	E3	E4	E5
	Read	B14 / B15				
	Written					dst
	Unit in use	.D2				

See Also	LDB, LDH
Delay Slots	4
Instruction Type	Load

	LMB	D			L	eftm	ost	Bit Dete	ectic	on												
	Synta	x			L	.MBC) (.ui	nit) <i>src1</i>	. src	2. d	st											
		-					•	or .L2	,	_,												
(Орсос	de																				
	31	29	28	27		23	22		18	17		13	12	11			5	4	3	2	1	
	cre	g	Ζ		dst			src2			src1/cst		х		0	р		1	1	0	s	I
	3		1		5			5			5		1			7					1	

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	uint xuint uint	.L1, .L2	110 1011
src1 src2 dst	cst5 xuint uint	.L1, .L2	110 1010

DescriptionThe LSB of the *src1* operand determines whether to search for a leftmost 1 or 0
in *src2*. The number of bits to the left of the first 1 or 0 when searching for a 1
or 0, respectively, is placed in *dst*.

The following diagram illustrates the operation of LMBD for several cases.

When searching for 0 in *src2*, LMBD returns 0:

0	1	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

When searching for 1 in src2, LMBD returns 4:

0 0 0 1 x x x x x x x x x x x x x x x x	хх	ххх	x x x x x
---	----	-----	-----------

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When searching for 0 in src2, LMBD returns 32:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	1
---	--	-----	---

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3-88 Instruction Set

SPRU731A

Execution	if (cond)	{ if (<i>src1</i> ₀ == 0) lmb0(<i>src2</i> if (<i>src1</i> ₀ == 1) lmb1(<i>src2</i>	
	else nop	}	
Pipeline	Pipeline Stage	E1	
	Read	src1, src2	
	Written	dst	
	Unit in us	e.L	
Instruction Type	Single-cyc	cle	
Delay Slots	0		
Example	LMBD .L1	A1,A2,A3	
	Befo	pre instruction	1 cycle after instruction
	A1 000	0 0001h	A1 0000 0001h
	A2 0091	E 3A81h	A2 009E 3A81h
	A3 xxx	x xxxxh	A3 0000 0008h

MPY	Multiply Signed 16 LSB	× Signed 16 LSB	
Syntax	MPY (.unit) src1, src2, ds	t	
	.unit = .M1 or .M2		
Opcode			
- 31 29 28 27	23 22 18 17	13 12 11	7 6 5 4 3 2 1 0
creg z	dst src2	src1/cst x op	0 0 0 0 <i>s p</i>
3 1	5 5	5 1 5	1 1
	Opcode map field used	For operand type	Unit Opfield
	src1 src2 dst	slsb16 xslsb16 sint	.M1, .M2 11001
	src1 src2 dst	scst5 xslsb16 sint	.M1, .M2 11000
Execution	if (cond) lsb16(<i>src1</i>) × else nop	$lsb16(src2) \rightarrow dst$	
Pipeline	Pipeline Stage E1		
	Read src1, src2		
	Written	dst	
	Unit in use .M		
Instruction Type	Multiply (16 × 16)		
Delay Slots	1		
See Also	MPYU, MPYSU, MPYUS	SMPY	
3-90 Instruction	n Set		SPRU731A

МРҮН	Multiply Signed 16 MSB × Signed 16 MSB										
Syntax	MPYH (.unit) src1, src2, dst										
	.unit = .M1 or .M2										
Opcode											
31 29 28 27	23 22 18 17	13 12 11	7 6 5 4 3 2 1 0								
creg z ds		/ _/	0 0 1 0 0 0 0 <i>s p</i>								
3 1 5	5	5 1	1 1								
	Opcode map field used	For operand type	Unit								
	src1 src2	smsb16 xsmsb16	.M1, .M2								
	dst	sint									
Description	The source operands are	signed by default.	d. The result is placed in <i>dst</i> .								
Execution	if (cond) msb16(<i>src1</i>) else nop	$\times \text{ msb16}(src2) \rightarrow dst$									
Pipeline	Pipeline Stage E1	E2									
	Read src1, src2										
	Written	dst									
	Unit in use .M										
Instruction Type	Multiply (16 × 16)										
Delay Slots	1										
See Also	MPYHU, MPYHSU, MPYHUS, SMPYH										
Example	MPYH .M1 A1,A2,A3										
	Before instruction	2 cy	cles after instruction								
	A1 0023 0000h 35	5 [†] A1 002	3 0000h								
	A2 FFA7 1234h -8	39 [†] A2 FFA	7 1234h								
	A3 xxxx xxxxh	A3 FFF	F F3D5h -3115								
	[†] Signed 16-MSB integer										

3-92 Instruction Set

SPRU731A

MPYHL	Multiply Signed 16 MSB × Signed 16 LSB											
Syntax	MPYHL (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>											
	.unit = .M1 or .M2											
Opcode												
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0											
creg z	dst src2 src1 x 0 1 0 0 1 0 0 0 s p											
3 1	5 5 5 1 1 1											
	Opcode map field used For operand type Unit											
	<i>src1</i> smsb16 .M1, .M2											
	src2 xslsb16 dst sint											
Description	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed in <i>dst</i> . The source operands are signed by default.											
Execution	if (cond) msb16(<i>src1</i>) × lsb16(<i>src2</i>) \rightarrow <i>dst</i> else nop											
Pipeline	Pipeline Stage E1 E2											
	Read src1, src2											
	Written dst											
	Unit in use .M											
Instruction Type	Multiply (16 × 16)											
Delay Slots	1											
See Also	MPYHLU, MPYHSLU, MPYHULS, SMPYHL											
Example	MPYHL .M1 A1,A2,A3											
	Before instruction 2 cycles after instruction											
	A1 008A 003Eh 138 [†] A1 008A 003Eh											
	A2 21FF 00A7h 167 [‡] A2 21FF 00A7h											
	A3 xxxx xxxxh A3 0000 5A06h 23046											
	[†] Signed 16-MSB integer [‡] Signed 16-LSB integer											

MPYHLU	Multiply Unsigned 16 MSB × Unsigned 16 LSB	
Syntax	MPYHLU (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>	
	.unit = .M1 or .M2	
Opcode		
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1	0
creg z d	st src2 src1 x 0 1 1 1 1 0 0 0 0 s	p
3 1	5 5 1 1	1
	Opcode map field used For operand type Unit	
	src1 umsb16 .M1, .M2	
	src2 xulsb16 dst uint	
Pipeline	if (cond) msb16(<i>src1</i>) × lsb16(<i>src2</i>) \rightarrow dst else nop	
Fipelille	Pipeline Stage E1 E2	
	Read src1, src2	
	Written dst	
	Unit in use .M	
Instruction Type	Multiply (16 × 16)	
Delay Slots	1	
See Also	MPYHL, MPYHSLU, MPYHULS	

3-94 Instruction Set

MPYHSLU	Multiply	Signed 16 MSE	3 × Unsigned	16 LSB							
Syntax	MPYHSL	MPYHSLU (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .M1 or .M2									
	.unit = .M										
Opcode											
31 29 28 27	23 22	18 17	13	12 11	7 6 5 4 3 2 1 0						
creg z	dst	src2	src1	x 0 1 0 1	1 0 0 0 0 0 <i>s p</i>						
3 1	5	5	5	1	1 1						
	Opcode r	nap field used	For opera	and type	Unit						
	src1 src2 dst		smsb16 xulsb16 sint		.M1, .M2						
Description Execution	is placed i	•	eeded in the m igned operan	nnemonic to sp ds are used.	perand <i>src2</i> . The result pecify a signed operand						
Pipeline	Pipeline Stage	E1	E2	-							
	Read	src1, src2		-							
	Written		dst								
	Unit in us	se .M		-							
Instruction Type	Multiply (16 × 16)									
Delay Slots	1										

See Also MPYHL, MPYHLU, MPYHULS

MPYHSU	Multiply Signed 16 MSB × Unsigned 16 MSB										
Syntax MPYHSU (.unit) src1, src2, dst											
-,	.unit = .M1 or .M2										
Opcode											
- 31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0										
creg z ds	st src2 src1 x 0 0 0 1 1 0 0 0 0 s p										
3 1 5	5 5 1 1 1										
	Opcode map field used For operand type Unit										
	<i>src1</i> smsb16 .M1, .M2 <i>src2</i> xumsb16										
	dst sint										
Description	The signed operand $src1$ is multiplied by the unsigned operand $src2$. The result is placed in dst . The S is needed in the mnemonic to specify a signed operand when both signed and unsigned operands are used.										
Execution	if (cond) msb16(<i>src1</i>) × msb16(<i>src2</i>) \rightarrow <i>dst</i> else nop										
Pipeline	Pipeline Stage E1 E2										
	Read src1, src2										
	Written dst										
	Unit in use .M										
Instruction Type	 Multiply (16 × 16)										
Delay Slots	1										
See Also	MPYH, MPYHU, MPYHUS										
Example	MPYHSU .M1 A1,A2,A3										
	Before instruction 2 cycles after instruction										
	A1 0023 0000h 35 [†] A1 0023 0000h										
	A2 FFA7 FFFFh 65447 [‡] A2 FFA7 FFFFh										
	A3 xxxx xxxxh A3 0022 F3D5h 2290645										
	[†] Signed 16-MSB integer										

[†] Signed 16-MSB integer [‡] Unsigned 16-MSB integer

3-96 Instruction Set

SPRU731A

MPYHU	Multiply Unsigned 16 MSB × Unsigned 16 MSB										
Syntax	MPYHU (.unit) src1, src2, dst										
	.unit = .M1 or .M2										
Opcode											
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0										
	dst src2 src1 x 0 0 1 1 1 0 0 0 0 s p										
3 1	5 5 5 1 1 1										
	Opcode map field used For operand type Unit										
	src1 umsb16 .M1, .M2										
	src2 xumsb16 dst uint										
Description	The <i>src1</i> operand is multiplied by the <i>src2</i> operand. The result is placed in <i>dst</i> . The source operands are unsigned by default.										
Execution	if (cond) msb16(<i>src1</i>) × msb16(<i>src2</i>) \rightarrow <i>dst</i> else nop										
Pipeline	Pipeline Stage E1 E2										
	Read src1, src2										
	Written dst										
	Unit in use .M										
Instruction Type	Multiply (16 × 16)										
Delay Slots	1										
See Also	MPYH, MPYHSU, MPYHUS										
Example	MPYHU .M1 A1,A2,A3										
	Before instruction 2 cycles after instruction										
	A1 0023 0000h 35 [‡] A1 0023 0000h										
	A2 FFA7 1234h 65447 [‡] A2 FFA7 1234h										
	A3 xxxx xxxxh A3 0022 F3D5h 2290645 [§]										
	[‡] Unsigned 16-MSB integer [§] Unsigned 32-bit integer										

MPYHULS	Multiply Unsigned 16 MSB × Signed 16 LSB												
Syntax	MPYHULS (.unit) <i>src</i>	1, src2, dst											
	.unit = .M1 or .M2												
Opcode													
• 31 29 28 27	23 22 18	3 17 13 12	11 7	6543210									
creg z c	dst src2	src1 x	0 1 1 0 1	00000 <i>s</i> p									
3 1	5 5	5 1		1 1									
	Opcode map field use	ed For operand	type	Unit									
	src1 src2 dst	umsb16 xslsb16 sint		.M1, .M2									
Execution	is placed in <i>dst</i> . The S when both signed and if (cond) msb16(<i>si</i> else nop		are used.	cify a signed operand									
Pipeline	Pipeline Stage E1	E2											
	Read src1, s	rc2											
	Written	dst											
	Unit in use .M												
Instruction Type Delay Slots See Also	Multiply (16 × 16) 1 MPYHL, MPYHLU, N												
566 AISU													

3-98 Instruction Set

	Multiply Unsigned 16 MSB × Signed 16 MSB											
Syntax	MPYHUS (.unit) src1, src2, dst											
	.unit = .M1 or .	M2										
Opcode												
31 29 28 27	23 22	18 17	1	3 12	11			7	65	54	32	1 0
creg z d	st sro		src1	х	0	0	10	1	0	0 0	0 0	s p
3 1	5 5		5	1								1 1
	Opcode map f	eld used	For op	eranc	d typ	e				Uni	t	
	src1 src2		umsb1 xsmsb						.1	VI1, .I	M2	
	dst		sint									
	it (cond) m	h16(cro1)	v meh16/er			US6 det						
Execution Pipeline	else nop Pipeline		× msb16(<i>sr</i>									
	else nop	E1 src1, src2	× msb16(<i>sr</i> E2									
	else nop Pipeline Stage	E1										
	else nop Pipeline Stage Read	E1	E2									

MPYLH Multiply Signed 16 LSB × Signed										d 16	MS	В						
Syn	tax				MPYLH (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> .unit = .M1 or .M2													
Орс	ode																	
31	29	28	27		23	22	18	17		13 1	2 11			7	65	4 3	2 1	0
С	reg	Ζ		dst			src2		src1)	K 1	0	0 0	1	0 0	00	0 <i>s</i>	p
	3	1		5			5		5		1						1	1
					Орсо	de ma	p field use	d	For o	operar	nd ty	ре			ι	Jnit		
					src1 src2				slsb1 xsms						.M	1, .M2	2	
					dst				sint	5610								
Des	criptio	on					erand is m operands		-		-	eran	d. The	e res	ult is	plac	ed in (dst.
Exe	cutior	ו			if (con else n		lsb16(<i>src</i>	1) × m:	sb16(<i>s</i> /	rc2) ·	→ a	lst						
Pipe	eline				Pipel Stage		E1		E2									
					Read		src1, sr	c2										
					Writte	en			dst									
					Unit i	n use	.М											
Inst	ructio	n T	уре		Multiply (16 × 16)													
Dela	ay Slo	ts			1													
See	Also				MPYLHU, MPYLSHU, MPYLUHS, SMPYLH													
Exa	mple				MPYLH .M1 A1,A2,A3													
						Befo	re instruct	ion				2 cy	cles	after	inst	ructio	on	
					A1	0900	000Eh	14†		A	1	090	0 00	0Eh				
					A2	0029	00A7h	41 [‡]		A	2	002	9 002	A7h				
					А3	XXXX	x xxxxh]		A	3	000	0 02	3Eh	5	74		
					[†] Signed 16-LSB integer [‡] Signed 16-MSB integer													
MPYLHU Multiply Unsigned 16 LSB × Unsigned 16 MSB

Syntax

MPYLHU (.unit) *src1*, *src2*, *dst*

.unit = .M1 or .M2

Opcode

creg z dst src2 src1 x 1 0 1 1		
	1 0 0 0	0 0 <i>s p</i>
3 1 5 5 5 1		1 1

Opcode map field used	For operand type	Unit
src1	ulsb16	.M1, .M2
src2	xumsb16	
dst	uint	

DescriptionThe src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution	if (cond)	$lsb16(src1) \times msb16(src2) \rightarrow ds$	st
	else nop		

Pipeline	Pipeline Stage	E1	E2
	Read	src1, src2	
	Written		dst
	Unit in use	.М	

Instruction Type	Multiply (16 × 16)
Delay Slots	1

See Also MPYLH, MPYLSHU, MPYLUHS

Suntay	MPYLSHU (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>										
Syntax	MPYLSHO (.unit) src1, src2, dst										
	.unit = .M1 or .	M2									
Opcode											
31 29 28 27	23 22	18 17	13	12 11		7 6 5 4 3 2	1 0				
creg z d	dst sro	<i>2</i>	src1	x 1	0 0		s p				
3 1	5 5		5	1			1 1				
	Opcode map fi	eld used	For oper	and typ	ре	Unit					
	src1		slsb16			.M1, .M2					
	src2 dst		xumsb16 sint	5							
	is placed in <i>dst</i> when both sigr if (cond) lst	. The S is ne	eded in the gned operar	mnemo nds are	onic to usec	ed operand <i>src2</i> . The r o specify a signed ope d.					
Execution	is placed in <i>dst</i> when both sigr	. The S is ne ned and unsi	eded in the gned operar	mnemo nds are	onic to usec	specify a signed ope					
Execution	is placed in <i>dst</i> when both sigr if (cond) lst	. The S is ne ned and unsi	eded in the gned operar	mnemo nds are	onic to usec	specify a signed ope					
Execution	is placed in <i>dst</i> when both sigr if (cond) Ist else nop Pipeline	t. The S is ne ned and unsi p16(<i>src1</i>) × r	eded in the gned operar nsb16(<i>src2</i>)	mnemo nds are	onic to usec	specify a signed ope					
Description Execution Pipeline	is placed in <i>dst</i> when both sign if (cond) Isk else nop Pipeline Stage	t. The S is ne ned and unsi p16(<i>src1</i>) × r E1	eded in the gned operar nsb16(<i>src2</i>)	mnemo nds are	onic to usec	specify a signed ope					
Execution	is placed in <i>dst</i> when both sign if (cond) Isk else nop Pipeline Stage Read	t. The S is ne ned and unsi p16(<i>src1</i>) × r E1	eded in the gned operar nsb16(<i>src2</i>) E2	mnemo nds are	onic to usec	specify a signed ope					
Execution	is placed in <i>dst</i> when both sign if (cond) Isk else nop Pipeline Stage Read Written	E1 <u>src1, src2</u>	eded in the gned operar nsb16(<i>src2</i>) E2	mnemo nds are	onic to usec	specify a signed ope					
Execution Pipeline	is placed in <i>dst</i> when both sign if (cond) Isk else nop Pipeline Stage Read Written	E1 Src1, src2 .M	eded in the gned operar nsb16(<i>src2</i>) E2	mnemo nds are	onic to usec	specify a signed ope					
Execution	is placed in <i>dst</i> when both sign if (cond) Isk else nop Pipeline Stage Read Written Unit in use	E1 Src1, src2 .M	eded in the gned operar nsb16(<i>src2</i>) E2	mnemo nds are	onic to usec	specify a signed ope					

MPYLUHS	Multiply Unsigned 16	LSB × Signed 16 MS	В									
Syntax	MPYLUHS (.unit) src1	MPYLUHS (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>										
	.unit = .M1 or .M2											
Opcode												
31 29 28 27	23 22 18	17 13 12 11	7 6 5 4 3 2 1 0									
Ů,	dst src2		0 1 0 1 0 0 0 0 0 <i>s p</i>									
3 1	5 5	5 1	1 1									
	Opcode map field used	For operand type.	Unit									
	src1 src2 dst	ulsb16 xsmsb16 sint	.M1, .M2									
	ast	Sint										
Execution Pipeline	if (cond) Isb16(<i>src1</i> else nop	unsigned operands are u) × msb16(<i>src2</i>) → <i>dst</i>										
Pipeille	Pipeline Stage E1	E2										
	Read src1, src	2										
	Written	dst										
	Unit in use .M											
Instruction Type	Multiply (16 16)											
Instruction Type	Multiply (16×16)											
Delay Slots	1											
See Also	MPYLH, MPYLHU, MF	PYLSHU										

MPYSU	Multiply Signed 16 L	Multiply Signed 16 LSB × Unsigned 16 LSB										
Syntax	MPYSU (.unit) <i>src1, s</i>	rc2, dst										
-	.unit = .M1 or .M2	unit = .M1 or .M2										
Opcode												
- 31 29 28 27	23 22 18	17 13 12 11	12 11 7 6 5 4 3 2 1 0									
creg z d	st src2	src1 x op	0 0 0 0 0 <i>s p</i>									
3 1 5	5 5	5 1 5	1 1									
	Opcode map field used	I For operand type	Unit Opfield									
	src1 src2 dst	slsb16 xulsb16 sint	.M1, .M2 11011									
	src1 src2 dst	scst5 xulsb16 sint	.M1, .M2 11110									
Execution	when both signed and	is needed in the mnemonic to unsigned operands are used () \times lsb16(<i>src2</i>) \rightarrow <i>dst</i>										
Pipeline	Pipeline Stage E1	E2										
	Read src1, src	c2										
	Written	dst										
	Unit in use .M											
Instruction Type	Multiply (16 × 16)											
Delay Slots	1											
See Also	MPY, MPYU, MPYUS											
3-104 Instruction	Set		SPRU731A									

[‡] Unsigned 16-LSB integer

MPYU				Multip	oly Une	signed 16	6 LSB	x Uns	signe	ed :	16 L	.SE	3						
Syntax				MPYL	J (.unit)) src1, src	2, dst												
				.unit =	.M1 o	r .M2													
Opcode																			
31 29	28	27		23	22	18	17		13	12	11			7	65	54	32	2 1	0
creg	z		dst		5	src2		src1		х	1 1	1	1	1	0	0 0	0 0)	р
3	1		5			5		5		1								1	1
				Орсо	de map	field used	l	For o	pera	nd 1	ype.					Uni	t		
				src1				ulsb1							.1	V 1,.	M2		
				src2 dst				xulsb uint	10										
Description Execution					ource c	erand is mu operands a lsb16(<i>src1</i>	are uns	signed I	by d	efai	ult.	nd.	The	e res	ult	is pla	aced	l in a	lst.
				else n		,	,	,	,										
Pipeline				Pipel Stage		E1		E2		-									
				Read		src1, src	c2			-									
				Writte	ən			dst											
				Unit i	n use	.M													
Instructio	n T	ype		Multip	oly (16 >	× 16)				-									
Delay Slo	ts			1															
See Also				MPY,	MPYS	U, MPYUS	S												
Example				MPYU	.M1	A1,A2,A	3												
					Before	e instructi	on				2 (сус	les a	after	' ins	struc	tion		
				A1	0000	0123h	291 [‡]			A1	00	00	01	23h					
				A2	0F12	FA81h	64129	ŧ		A2	0F	'12	FA8	81h					
				A3	xxxx	xxxxh				A3	01	1C	C02	A3		1866	5153	9§	

[‡] Unsigned 16-LSB integer

3-106 Instruction Set

MPYUS	Multiply Unsigned 16 LSB × Signed 16 LSB								
Syntax	MPYUS (.unit) <i>src1, src2, dst</i>								
	.unit = .M1 or .M2								
Opcode									
31 29 28 27	23 22 18 17 13 12 11 7 6 5 4 3 2 1 0								
creg z	dst src2 src1 x 1 1 1 0 1 0 0 0 0 s p								
3 1	5 5 5 1 1 1								
	Opcode map field used For operand type Unit								
	<i>src1</i> ulsb16 .M1, .M2 <i>src2</i> xslsb16								
	dst sint								
Description	The unsigned operand <i>src1</i> is multiplied by the signed operand <i>src2</i> . The result is placed in <i>dst</i> . The S is needed in the mnemonic to specify a signed operand when both signed and unsigned operands are used.								
Execution	if (cond) $lsb16(src1) \times lsb16(src2) \rightarrow dst$ else nop								
Pipeline	Pipeline Stage E1 E2								
	Read src1, src2								
	Written dst								
	Unit in use .M								
Instruction Type	Multiply (16 × 16)								
Delay Slots	1								
See Also	MPY, MPYU, MPYSU								
Example	MPYUS .M1 A1,A2,A3								
	Before instruction 2 cycles after instruction								
	A1 1234 FFA1h 65441 [‡] A1 1234 FFA1h								
	A2 1234 FFA1h -95 [†] A2 1234 FFA1h								
	A3 xxxx xxxxh A3 FFA1 2341h -6216895								
	[†] Signed 16-LSB integer [‡] Unsigned 16-LSB integer								

[‡] Unsigned 16-LSB integer

MV Move From Register to Register

			-		_	_	_		_													
MV				Move	Fror	n Reg	ister	r to	Re	gis	ter											
Syntax				MV (.u	unit) ร	src2, d	st															
				.unit =	:.L1,	.L2, .S	61, .S	62, .	D1,	.D	2											
Opcode				.L unit	:																	
31 29	28	27		23	22		18	17				13	12	11					5	4 3	2 1	0
creg	z		dst			src2		0	0	0	0	0	х			ор)			1 1	0 s	p
3	1		5			5							1			7					1	1
				Орсо	de ma	ap field	used	I	For	ор	erar	nd t	ype			Un	it			Op	field	
				src2 dst					xsir sint							L1,	.L2			000	0010	
				src2 dst					slor slor							L1,	.L2			010	0000	
Opcode 31 29 creg 3	28 <i>Z</i> 1	27	dst 5	.S uni 23	22	<i>src2</i>	18	17 0	0	0	0	13 0	12 X		0	0 1	1			4 3 0 0	2 1 0 <i>s</i> 1	p
				Орсо	de m	ap field	d use	d	F	or o	ope	ran	d ty	pe						Uni	it	
				src2 dst						sint int										.S1, .	S2	
Opcode				.D uni	t																	
31 29	28			23	22		18	17					12					-			2 1	
creg 3	2 1		dst 5			5 src2		0	0	U	U	0	0	1	0	0 1	0	1	0	00		1
				0000	de m	ap field	luse	d	F	or	ope	ran	d tv	pe.						Uni	it	
				src2					s	int				1						.D1, .		
				dst					S	int												

Description	The MV pseudo-operation moves a value from one register to another. The assembler uses the ADD (.unit) 0, <i>src2</i> , <i>dst</i> operation to perform this task.
Execution	if (cond) $0 + src2 \rightarrow dst$ else nop
Instruction Type	Single-cycle
Delay Slots	0

MVC	Move Between	Move Between Control File and Register File					
Syntax	MVC (.unit) <i>src2</i> ,	dst					
	.unit = .S2						
Opcode							
31 29 28 27	23 22	18 17	13 12 11	6 5 4 3 2 1 0			
creg z	dst src2	0 0 0 0	0 x <i>op</i>	1000 <i>s</i> p			
3 1	5 5		1 6	1 1			

Operands when moving from the control file to the register file:

Opcode map field used	For operand type	Unit	Opfield
src2	uint	.S2	00 1111
dst	uint		

DescriptionThe src2 register is moved from the control register file to the register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3-16 (page 3-112).

Operands when moving from the register file to the control file:

Opcode map field used	For operand type	Unit	Opfield
src2 dst	xuint uint	.S2	00 1110

Description The *src2* register is moved from the register file to the control register file. Valid values for *src2* are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3–16 (page 3-112).

Execution

if (cond) $src2 \rightarrow dst$ else nop

Note:

The **MVC** instruction executes only on the B side (.S2).

Refer to the individual control register descriptions for specific behaviors and restrictions in accesses via the **MVC** instruction.

Pipeline	Pipeline Stage	E1		
	Read	src2		
	Written	dst		
	Unit in use	.S2		
Instruction Type	Single-cycle			
	slot because	the results car		uction) effectively has one delay e MVC instruction) in the IFR until
Delay Slots	0			
Example	MVC .S2	B1,AMR		
	Before	e instruction		1 cycle after instruction
	B1 F009	0001h	B1	F009 0001h
	AMR 0000	0000h	AMR	0009 0001h

Note:

The six MSBs of the AMR are reserved and therefore are not written to.

Acronym	Register Name	Address	Read/ Write		
AMR	Addressing mode register	00000	R, W		
CSR	Control status register	00001 R, W			
ICR	Interrupt clear register	00011	W		
IER	Interrupt enable register	00100	R, W		
IFR	Interrupt flag register	00010	R		
IRP	Interrupt return pointer	00110	R, W		
ISR	Interrupt set register	00010	W		
ISTP	Interrupt service table pointer	00101 R, W			
NRP	Nonmaskable interrupt return pointer	00111	R, W		
PCE1	Program counter, E1 phase	10000	R		

Table 3-16. Register Addresses for Accessing the Control Registers

Legend: R = Readable by the **MVC** instruction; W = Writeable by the **MVC** instruction

MVK		Move Signed C	Constant Into Register and S	ign Extend					
Syntax		MVK (.unit) cst,	MVK (.unit) <i>cst</i> , <i>dst</i>						
		.unit = .S1 or .S2	2						
Opcode									
31 29	28 27	23 22		7 6 5 4 3 2 1 0					
creg	z	dst	cst16	0 1 0 1 0 <i>s p</i>					
3	1	5	16	1 1					
		Opcode map fiel	Id used For operand type	Unit					
		cst16 dst	scst16 sint	.S1, .S2					
Descriptio	n	The 16-bit signe	d constant, <i>cst</i> , is sign extende	d and placed in <i>dst</i>					
		when a constant of MVK .S, a wa	he C6000 assembler and linke is outside the range supported arning is issued whenever the c 2768 to 32767 (or FFFF 8000h	by the instruction. In the case onstant is outside the signed					
		For example:							
		MVK .S1 0x	x00008000X, A0						
		will generate a w	varning; whereas:						
		MVK .S1 0x	xFFFF8000, A0						
		will not generate	e a warning.						
Execution		if (cond) scst → else nop	dst						
Pipeline		Pipeline							
		Stage	E1						
		Read							
		Written	dst						

Instruction Type	Single cycle						
Delay Slots							
See Also	VKH, MVKL, MVKLH						
Example 1	MVK .S2 -5,B8						
	Before instruction	1 cycle after instruction					
	B8 xxxx xxxxh B8	FFFF FFFBh					
Example 2	MVK .S2 14,B8						
	Before instruction	1 cycle after instruction					
	B8 xxxx xxxxh B8	0000 000Eh					

MVKH/MV				
Syntax		MVKH (.unit) <i>cst</i> ,	dst	
		or MVKLH (.unit) <i>cst</i>	, dst	
		.unit = .S1 or .S2		
Opcode				
31 29 2	28 27	23 22		7 6 5 4 3 2 1 0
-		dst	cst16	1 1 0 1 0 <i>s p</i>
3	1	5	16	1 1
		Opcode map field	used For operand type	Unit
		cst16 dst	uscst16 sint	.S1, .S2
Descriptior	ı	of <i>dst</i> are unchang 16 MSBs of a 32-bi instruction, the as	nt, <i>cst16</i> , is loaded into the uppe ged. For the MVKH instruction, it constant into the <i>cst16</i> field of t sembler encodes the 16 LSBs	the assembler encodes the the opcode . For the MVKLH
Descriptior Execution	ı	of <i>dst</i> are unchang 16 MSBs of a 32-bi instruction, the as field of the opcode For the MVKLH in if (cond)((<i>cst</i> ₁₅₀) else nop	ged. For the MVKH instruction, it constant into the <i>cst16</i> field of the sembler encodes the 16 LSBs be. Instruction: $<< 16$) or (<i>dst</i> ₁₅₀) \rightarrow <i>dst</i>	the assembler encodes the the opcode . For the MVKLH
·	ı	of <i>dst</i> are unchang 16 MSBs of a 32-bi instruction, the as field of the opcode For the MVKLH in if (cond)((<i>cst</i> ₁₅₀) else nop For the MVKH ins if (cond)((<i>cst</i> ₃₁₁₆)	ged. For the MVKH instruction, it constant into the <i>cst16</i> field of the sembler encodes the 16 LSBs be. Instruction: $<< 16$) or (<i>dst</i> ₁₅₀) \rightarrow <i>dst</i>	the assembler encodes the the opcode . For the MVKLH
·	ı	of <i>dst</i> are unchang 16 MSBs of a 32-bi instruction, the as- field of the opcode For the MVKLH in if (cond)((<i>cst</i> _{15.0}) - else nop For the MVKH ins	ged. For the MVKH instruction, it constant into the <i>cst16</i> field of the sembler encodes the 16 LSBs e. Anstruction: $<< 16$) or (<i>dst</i> ₁₅₀) \rightarrow <i>dst</i> Attruction:	the assembler encodes the the opcode . For the MVKLH
·	ı	of <i>dst</i> are unchang 16 MSBs of a 32-bi instruction, the as- field of the opcode For the MVKLH in if (cond)((<i>cst</i> ₁₅₀) - else nop For the MVKH ins if (cond)((<i>cst</i> ₃₁₁₆) else nop	ged. For the MVKH instruction, it constant into the <i>cst16</i> field of the sembler encodes the 16 LSBs e. Anstruction: $<< 16$) or (<i>dst</i> ₁₅₀) \rightarrow <i>dst</i> Attruction:	the assembler encodes the the opcode . For the MVKLH
Execution	ı	of <i>dst</i> are unchang 16 MSBs of a 32-bi instruction, the as- field of the opcode For the MVKLH in if (cond)((<i>cst</i> ₁₅₀) - else nop For the MVKH ins if (cond)((<i>cst</i> ₃₁₁₆) else nop	ged. For the MVKH instruction, it constant into the <i>cst16</i> field of the sembler encodes the 16 LSBs is the semble of the sem	the assembler encodes the the opcode . For the MVKLH
Execution	ı	of <i>dst</i> are unchang 16 MSBs of a 32-bi instruction, the as field of the opcode For the MVKLH in if (cond)((<i>cst</i> ₁₅₀) else nop For the MVKH ins if (cond)((<i>cst</i> ₃₁₁₆) else nop Pipeline Stage Read	ged. For the MVKH instruction, it constant into the <i>cst16</i> field of the sembler encodes the 16 LSBs is the semble of the sem	the assembler encodes the the opcode . For the MVKLH

MVKH/MVKLH	Move 16-Bit Constant Into	Upper Bits of Register
------------	---------------------------	------------------------

Instruction Type	Single-cycle
Delay Slots	0
	Note:
	Use the MVK instruction (page 3-113) to load 16-bit constants. The assembler generates a warning for any constant over 16 bits. To load 32-bit constants, such as 1234 5678h, use the following pair of instructions:
	MVKL 0x12345678 MVKH 0x12345678
	If you are loading the address of a label, use:
	MVKL label MVKH label
	L
See Also	MVK, MVKL
Example 1	MVKH .S1 0A329123h,A1
	Before instruction 1 cycle after instruction
	A1 0000 7634h A1 0A32 7634h
Example 2	MVKLH .S1 7A8h,A1
	Before instruction 1 cycle after instruction
	A1 FFFF F25Ah A1 07A8 F25Ah

MVKL	Move Signed Constant Into Register and Sign Extend
Syntax	MVKL (.unit) <i>cst</i> , <i>dst</i>
	.unit = .S1 or .S2
Opcode	

3	1 29	28	27	23	22 7	6	5	4	3	2	1	0
	creg	Ζ	ds	st	cst16	0	1	0	1	0	s	р
_	3	1	5		16						1	1

Opcode map field used	For operand type	Unit
cst16	scst16	.S1, .S2
dst	sint	

Description The **MVKL** pseudo-operation sign extends the 16-bit constant, *cst16*, and places it in *dst*.

The **MVKL** instruction is equivalent to the **MVK** instruction (page 3-113), except that the **MVKL** instruction disables the constant range checking normally performed by the assembler/linker. This allows the **MVKL** instruction to be paired with the **MVKH** instruction (page 3-115) to generate 32-bit constants.

To load 32-bit constants, such as 1234 ABCDh, use the following pair of instructions:

MVKL .S1 0x0ABCD, A4 MVKLH .S1 0x1234, A4

This could also be used:

MVKL .S1 0x1234ABCD, A4 MVKH .S1 0x1234ABCD, A4

Use this to load the address of a label:

MVKL .S2 label, B5 MVKH .S2 label, B5

Execution

if (cond) $scst \rightarrow dst$ else nop

SPRU731A

NEG	Negate											
Syntax	NEG (.unit) si	rc2, dst										
	.unit = .L1, .L	2, .S1, .S2	2									
Opcode	.S unit											
• 31 29 28 27	23 22	18	17	13	12	11				6	54321	0
creg z d			0 0 0			0	1	0 1	1		10005	p
3 1	•	5			1						1	1
	Opcode map	field used.	For op	erand	type			Uni	t			
	src2		xsint					S1, .				
	dst		sint									
Opcode	.L unit											
31 29 28 27	23 22	18	17	13	12	11					5 4 3 2 1	0
		1										
			0 0 0				_	ор			1 1 0 s	p
	st si	5			X			<i>ор</i> 7			1 1 0 <i>s</i>	р 1
		5	0 0 0	0 0	1				t			
	I	5	0 0 0	0 0	1			7			1	
5	Opcode map	5	0 0 0 For op xsint	0 0	1			7 Uni	_2		Opfield	
5	Opcode map src2 dst src2	5	0 0 0	0 0	1			7 Uni L1, .I	_2		1 Opfield 000 0110	
	Opcode map src2 dst src2	⁵ field used.	0 0 0 For op xsint slong slong	0 0 erand	type	and	d pl	7 Uni L1, .I L1, .I	_2 _2		1 Opfield 000 0110 010 0100 esult in <i>dst</i> . T	
3 1	Opcode map src2 dst src2 dst The NEG pse	field used eudo-oper es SUB (.	0 0 0 For op xsint slong slong ration neg .unit) 0, s	0 0 erand	type	and	d pl	7 Uni L1, .I L1, .I	_2 _2		1 Opfield 000 0110 010 0100 esult in <i>dst</i> . T	
3 1 Description	Opcode map src2 dst src2 dst The NEG pse assembler us if (cond) 0 -s	field used eudo-oper es SUB (.	0 0 0 For op xsint slong slong ration neg .unit) 0, s	0 0 erand	type	and	d pl	7 Uni L1, .I L1, .I	_2 _2		1 Opfield 000 0110 010 0100 esult in <i>dst</i> . T	

NOP	No Operation														-
Syntax	NOP [count]														
	.unit = none														
Opcode															
31	18	17	16	13	12	11	10	9	87	6	5	4	32	1 0	
Res	erved	0	src		0	0	0	0	0 0	0	0	0	0 0	0 p	,
	14		4			-								1	
	Opcode map field use	d	For ope	eran	d ty	vpe.					Un	nit			-
	src		ucst4						none						-
Description	<i>src</i> is encoded as <i>count –</i> 1. For <i>src</i> + 1 cycles, no operation is performed. The maximum value for <i>count</i> is 9. NOP with no operand is treated like NOP 1 with <i>src</i> encoded as 0000.														
	A multicycle NOP will not finish if a branch is completed first. For example a branch is initiated on cycle n and a NOP 5 instruction is initiated on cy n + 3, the branch is complete on cycle $n + 6$ and the NOP is executed only fr cycle $n + 3$ to cycle $n + 5$. A single-cycle NOP in parallel with other instruction does not affect operation.												cycle y fron	e n	
Execution	No operation for count	t cyc	les												
Instruction Type	NOP														
Delay Slots	0														

Example 1	NOP MVK .S1 125h,A1		
	Before NOP	1 cycle after NOP (No operation executes)	1 cycle after MVK
	Al 1234 5678h	A1 1234 5678h A1	0000 0125h
Example 2	MVK .S1 1,A1		
	MVKLH .S1 0,A1 NOP 5		
	ADD .L1 A1,A2,A1	1 cycle after ADD	
	Before NOP 5	instruction (6 cycles after NOP 5)	
	A1 0000 0001h	A1 0000 0004h	
	A2 0000 0003h	A2 0000 0003h	

Norm	nalize Integer					
.unit :	= .L1 or .L2					
23	22 18	17	13	12 1	1	5 4 3 2 1 0
dst		0 0 0	0 0	х	ор	1 1 0 <i>s p</i>
5	5			1	7	1 1
Орсе	ode map field use	d For c	peran	d typ	e Unit	Opfield
src2 dst		xsint uint			.L1, .L2	110 0011
src2 dst		slong uint			.L1, .L2	110 0000
In this rc2 0 1 31 30 2 In this rc2 0 0 31 30 2 In thi rc2 1 1 31 30 2	a case, NORM ref x	x x x x 2 21 20 19 18 2 21 20 19 18 2 21 20 19 18 2 21 20 19 18 2 21 20 19 18 eturns 30: 30: 30: 1 1 1 1 1	x x x 17 16 15 x x x x 17 16 15 17 16 15 17 16 15	x x 14 13 14 13	x x x x x x x 12 11 10 9 8 7 6 1 1 1 1 1 1 1 1	
r	NOR .unit = 23 dst 5 Opco $src2dstsrc2dstsrc2dstThe rare slIn thisc2$ 01 31 30 2 In this c2 11 31 30 2	.unit = .L1 or .L2 23 22 18 dst src2 5 5 $\overline{Opcode map field user}$ src2 dst src2 dst src2 dst src2 dst dst src2 src2	NORM (.unit) $src2$, dst .unit = .L1 or .L2 23 22 18 17 dst src2 0 0 0 0 5 Opcode map field used For colspan="2">For colspan="2">For colspan="2">Src2 src2 xsint uint dst uint The number of redundant sign bit are shown in the following diagram in this case, NORM returns 0: C2 0 1 0 1 are shown in the following diagram in this case, NORM returns 0: C2 0 1<	NORM (.unit) $src2$, dst .unit = .L1 or .L2 23 22 18 17 13 dst $src2 0 0 0 0 0 0 0 0$ 5 5 Opcode map field used For operand string dist unit src2 xsint unit src2 slong dst unit The number of redundant sign bits of sr are shown in the following diagram. In this case, NORM returns 0: C2 0 1 × × × × × × × × × × × × × × × × × ×	NORM (.unit) $src2$, dst .unit = .L1 or .L2 23 22 18 17 13 12 1 dst $src2 0 0 0 0 0 0 0 x$ 5 5 1 Opcode map field used For operand type src2 xsint dst uint src2 slong dst uint src2 slong dst uint The number of redundant sign bits of $src2$ is are shown in the following diagram. In this case, NORM returns 0: C2 0 1 × × × × × × × × × × × × × × × × × ×	NORM (.unit) $src2$, dst .unit = .L1 or .L2 23 22 18 17 13 12 11 dst $src2$ 0 0 0 0 0 $src2$ 5 5 1 7 Opcode map field used For operand type Unit src2 xsint dst The number of redundant sign bits of $src2$ is placed in dst . Sea are shown in the following diagram. In this case, NORM returns 0: C2 0 1 × × × × × × × × × × × × × × × × × ×

Execution	if (cond) norm(<i>src</i>) → <i>dst</i> else nop	
Pipeline	Pipeline Stage E1	
	Read src2	
	Written dst	
	Unit in use .L	
Instruction Type	Single-cycle	
Delay Slots	0	
Example 1	NORM .L1 A1,A2	
	Before instruction	1 cycle after instruction
	A1 02A3 469Fh	A1 02A3 469Fh
	A2 xxxx xxxxh	A2 0000 0005h 5
Example 2	NORM .L1 A1,A2	
	Before instruction	1 cycle after instruction
	A1 FFFF F25Ah	A1 FFFF F25Ah

1		
A2	xxxx	xxxxh

A1	FFFF	F25Ah	
A2	0000	0013h	19

ΝΟΤ	Bitwise NOT									
Syntax	NOT (.unit) <i>src2, dst</i>									
oynux	.unit = .L1, .L2, .S1, .S2									
Opcode	.L unit									
31 29 28 27	23 22 18 17 13 12 11 5 4 3 2 1 0									
creg z	dst src2 1 1 1 1 1 x 1 1 0 1 1 1 0 s p									
3 1	5 5 1 1 1									
	Opcode map field used For operand type Unit									
	src2 xuint .L1, .L2 dst uint									
Opcode	.S unit									
opoode										
31 29 28 27										
3 1	dst src2 1 1 1 1 x 0 0 1 0 0 s p 5 5 1									
0										
	Opcode map field used For operand type Unit									
	src2 xuint .S1, .S2 dst uint									
Description	The NOT pseudo-operation performs a bitwise NOT on the <i>src2</i> operand and places the result in <i>dst</i> . The assembler uses XOR (.unit) -1 , <i>src2</i> , <i>dst</i> to perform this operation.									
Execution	if (cond) −1 XOR <i>src2 → dst</i> else nop									
Instruction Type	Single-cycle									
	Single-cycle 0									

OR			Bitwise OR										
Syntax			OR (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i>										
			.unit = .	L1, .L2,	.S1, .S2								
Opcode			.L unit										
31 29	9 28	27	23	22	18	17		13	12	11	5	4 3 2	2 1 0
creg	z	d	st	SI	rc2		src1/cst		х	0	Ø	110) s p
3	1	ŧ	ō		5		5		1	-	,		1 1
Opcode map field used For operand type										U	nit	Opfie	eld

Opcode map field used	For operand type	Unit	Opfield	
src1	uint	.L1, .L2	111 1111	
src2	xuint			
dst	uint			
src1	scst5	.L1, .L2	111 1110	
src2	xuint	,		
dst	uint			

Opcode

.S unit

31	29	28	27	23	22	18	17		13	12	11	65	4 3	2 1	0
creg		Ζ	dst		src2			src1/cst		х	ор	1	00	0 s	; p
3		1	5		5			5		1	6			1	1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.S1, .S2	01 1011
src2	xuint		
dst	uint		
src1	scst5	.S1, .S2	01 1010
src2	xuint		
dst	uint		

DescriptionPerforms a bitwise OR operation between src1 and src2. The result is placed
in dst. The scst5 operands are sign extended to 32 bits.

Execution if (cond) $src1 \text{ OR } src2 \rightarrow dst$ else nop

Pipeline	Pipeline Stage	E1		
	Read	src1, src2		
	Written	dst		
	Unit in use	.L or .S		
Instruction Type	Single-cycle			
Delay Slots	0			
See Also	AND, XOR			
Example 1	OR .S1	A3,A4,A5		
	Before i	nstruction		1 cycle after
	A3 08A3 A4	9Fh	A3	08A3 A49Fh
	A4 00FF 37	5Ah	A4	00FF 375Ah
	A5 xxxx xx	xxh	A5	08FF B7DFh
Example 2	OR .L2	-12,B2,B8		

Before instruction

В2	0000	3A41h	

xxxx xxxxh

В8

1 cycle after instruction

1 cycle after instruction

В2	0000	3A41h
В8	FFFF	FFF5h

0 p

	SAD	D				Add T	Two	Signed	Inte	egei	rs With S	Sati	ırat	ion						
ę	Synta	x			:	SADE) (.ui	nit) <i>src1</i>	, src.	2, d	st									
						unit =	: .L1	or .L2												
(Орсо	de																		
	31	29	28	27		23	22		18	17		13	12	11		5	4	3	2	1
	cre	g	z		dst			src2			src1/cst		х		ор		1	1	0	s
1	3		1		5			5			5		1		7					1

Opcode map field used	For operand type	Unit	Opfield
src1	sint	.L1, .L2	001 0011
src2	xsint		
dst	sint		
src1	xsint	.L1, .L2	011 0001
src2	slong		
dst	slong		
src1	scst5	.L1, .L2	001 0010
src2	xsint		
dst	sint		
src1	scst5	.L1, .L2	011 0000
src2	slong		
dst	slong		

Description	<i>src1</i> is added to <i>src2</i> and saturated, if an overflow occurs according to the following rules:							
	1) If the <i>dst</i> is an int and <i>src1</i> + <i>src2</i> > 2^{31} - 1, then the result is 2^{31} - 1. 2) If the <i>dst</i> is an int and <i>src1</i> + <i>src2</i> < -2^{31} , then the result is -2^{31} .							
	3) If the <i>dst</i> is a long and <i>src1</i> + <i>src2</i> > 2^{39} - 1, then the result is 2^{39} - 1.							
	4) If the dst is a long and src1 + src2 < -2^{39} , then the result is -2^{39} .							
	The result is placed in det. If a saturate occurs, the SAT hit in the control status							

The result is placed in *dst*. If a saturate occurs, the SAT bit in the control status register (CSR) is set one cycle after *dst* is written.

Execution if (cond) $src1 + ssc2 \rightarrow dst$ else nop

3-128 Instruction Set

SPRU731A

SAT	Saturate a 4	0-Bit Intege	er to a	32-Bi	it In	teg	er					
Syntax	SAT (.unit) <i>sr</i>											
- ,	.unit = .L1 or											
Opcode												
31 29 28 27	23 22	18 17		13	12	11				5	43	2 1 0
creg z ds	t si	<i>rc2</i> 0	0 0	0 0	х	1	0 (0 0	0 (0 0	1 1	0 s p
3 1 5		5			1							1 1
	Opcode map	field used	For c	operar	nd ty	/pe	•			Un	it	
	src2 dst		slong sint	J						.L1, .	.L2	
Description	A 40-bit <i>src2</i> w than what can in <i>dst</i> . If a sat set one cycle	be represer urate occurs	nted in 3 s, the S	82-bits	s, sra	c2 is	satu	urate	d. T	he re	sultis	placed
Execution	e	$(src2 > (2^{31})$ $(2^{31} - 1)$ lse if (src2 -2^{31} $\rightarrow c$ lse src2 ₃₁₀	→ dst -2 ³¹) dst									
Pipeline	Pipeline Stage	E1	_									
	Read	src2	_									
	Written	dst										
	Unit in use	.L	_									
Instruction Type	Single-cycle											
Delay Slots	0											
3-130 Instruction S	et										SPI	RU731A

SET				Set a	Bit F	ield																
Syntax				SET (T (.unit) <i>src2</i> , <i>csta</i> , <i>cstb</i> , <i>dst</i> or T (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i> it = .S1 or .S2																	
Opcode				Const	instant form:																	
31 29	28	27		23	22	18	17		13	12				8	7	6	5	4		2	1	0
creg	z		dst			src2		csta			С	stb			1	0	0	0	1	0	s	р
3	1		5			5		5				5									1	1
				Орсс	de ma	p field use	ed	For op	peran	d ty	pe.						Ur	nit				
				src2 csta cstb dst				uint ucst5 ucst5 uint								.:	S1,	.S	2			
Opcode				Regis	ter for	m:																
31 29	28	27		23	22	18	17		13	1	11					6	-	4	3	T	T	0
creg	Ζ		dst			src2	I	src1		х	1	1	1	0	1	1	1	0	0	0	_	р
3	1		5			5		5		1											1	1
				Орсо	de ma	p field use	ed	For op	peran	d ty	pe.						Ur	nit				—
				src2 src1 dst				xuint uint uint									S1,	.S	2			

DescriptionThe field in src2, specified by csta and cstb, is set to all 1s. The csta and cstb
operands may be specified as constants or in the ten LSBs of the src1 register,
with cstb being bits 0-4 and csta bits 5-9. csta signifies the bit location of the
LSB of the field and cstb signifies the bit location of the MSB of the field. In other
words, csta and cstb represent the beginning and ending bits, respectively, of
the field to be set to all 1s. The LSB location of src2 is 0 and the MSB location
of src2 is 31. In the example below, csta is 15 and cstb is 23. Only the ten LSBs
are valid for the register version of the instruction. If any of the 22 MSBs are
non-zero, the result is invalid.

Execution	If the constant form is used:						
	if (cond) else nop	src2 SET csta, cstb \rightarrow dst					
	If the register form is used:						
	if (cond) else nop	src2 SET src1 ₉₅ , src1 ₄₀ \rightarrow dst					
Pipeline	Pipeline Stage	E1					
	Read	src1, src2					

dst

.S

Instruction Type	Single-cycle
Delay Slots	0

Written

Unit in use

See Also CLR

SPRU731A

Example 1	SET .S1 A0,7,21,A1	
	Before instruction	1 cycle after instruction
	A0 4B13 4A1Eh	A0 4B13 4A1Eh
	Al xxxx xxxxh	A1 4B3F FF9Eh
Example 2	SET .S2 B0,B1,B2	
	Before instruction	1 cycle after instruction
	B0 9ED3 1A31h	B0 9ED3 1A31h
	B1 0000 C197h	B1 0000 C197h
	B2 xxxx xxxxh	B2 9EFF FA31h

SHL	Arithmetic Shift Left

Syntax SHL (.unit) *src2*, *src1*, *dst*

.unit = .S1 or .S2

Opcode

_	31	29	28	27	23	22 18	17	13	31	12	11	6	5	4	3	2	1	0
	cre	g	z		dst	src2		src1/cst		x	ор		1	0	0	0		р
1	3		1		5	5		5		1	6						1	1

Opcode map field used	For operand type	Unit	Opfield
src2	xsint	.S1, .S2	11 0011
src1	uint		
dst	sint		
src2	slong	.S1, .S2	11 0001
src1	uint		
dst	slong		
src2	xuint	.S1, .S2	01 0011
src1	uint		
dst	ulong		
src2	xsint	.S1, .S2	11 0010
src1	ucst5		
dst	sint		
src2	slong	.S1, .S2	11 0000
src1	ucst5		
dst	slong		
src2	xuint	.S1, .S2	01 0010
src1	ucst5		
dst	ulong		

DescriptionThe src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0-40. When an immediate is used, valid shift amounts are 0-31.If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.Executionif (cond) $src2 << src1 \rightarrow dst$
else nop

SHR Arithmetic Shift Right													
Syntax			SHR (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>										
			.unit = .	S1 or .S2									
Opcode													
31 29	28 27		23 2	2	18 17		13	12 11		6	54	3 2 1	0
creg	z	dst		src2		src1/cst		х	ор		1 0	0 0 s	p
3	1	5		5		5		1	6			1	1
			Opcod	e map field ι	used	For ope	rand	l type		Unit			ł
			src2			xsint			.8	61, .S2		11 0111	J
			src1			uint							
			dst			sint							
			src2			slong			.8	S1, .S2		11 010	1
			src1			uint							
			dst			slong							
			src2			xsint			.8	S1, .S2		11 0110)
			src1			ucst5							
			dst			sint							
			src2			slong			.8	S1, .S2		11 0100)
			src1			ucst5							
			dst			slong							
Descriptio	on		result is amount shift am If 39 < <i>s</i>	2 operand is s placed in <i>d</i> t and valid v nounts are 0 <i>rc1 <</i> 64, <i>src.</i> y the shifter,	<i>st</i> . Wh alues a –31. <i>2</i> is shi	en a regist are 0-40. \ fted to the	ter i Whe righ	s used, en an ir nt by 40	, the six mmedia . Only t	t LSBs ate valu he six l	spec ue is LSBs	ify the s used, v of <i>src1</i>	shif ⁄alic
Executior	ı		if (cond else no		s src1	→ dst							
Pipeline			Pipelin			-							
			Stage		1	_							
			Stage Read		src2	-							
				src1,		-							
			Read	src1, 1 d	src2	-							

SHRU	Logic	al Shift Right								
Syntax	SHRU	SHRU (.unit) src2, src1, dst								
-		= .S1 or .S2								
Opcode										
31 29 28 27	23	22 18	17	13 12 11	6 5	4 3 2 1 0				
creg z	dst	src2	src1/cst	х	<i>op</i> 1	0 0 0 <i>s p</i>				
3 1	5	5	5	1	6	1 1				
	Орсо	ode map field use	d For opera	and type	Unit	Opfield				
	src2 src1 dst		xuint uint uint		.S1, .S2	10 0111				
	src2 src1 dst		ulong uint ulong		.S1, .S2	10 0101				
	src2 src1 dst		xuint ucst5 uint		.S1, .S2	10 0110				
	src2 src1 dst		ulong ucst5 ulong		.S1, .S2	10 0100				
Description	zero- speci is use If 39 <	<i>src2</i> operand is extended result i fy the shift amour ed, valid shift amo src1 < 64, src2 is by the shifter, so	s placed in <i>dst</i> nt and valid valu ounts are 0–31 s shifted to the r	. When a ues are 0– right by 40	register is used 40. When an in . Only the six L	d, the six LSBs nmediate value SBs of <i>src1</i> are				

Execution if (cond) $src2 >> z src1 \rightarrow dst$ else nop

Pipeline

Pipeline Stage	E1
Read	src1, src2
Written	dst
Unit in use	.S

Instruction Type	Single-cycle	
Delay Slots	0	
See Also	SHL, SHR	
Example	SHRU.S1 A0,8,A1	
	Before instruction	1 cycle after instruction
	A0 F123 63D1h	A0 F123 63D1h
	A1 xxxx xxxxh	A1 00F1 2363h

SMPY	Multiply Signed 16 LSB × Signed 16 LSB With Left Shift and Saturation								
Syntax	SMPY (.unit) src1, src2, ds	t						
	.unit = .M1 c	or .M2							
Opcode									
31 29 28 27	23 22	18 17	13	12 11	7 6 5 4 3 2 1 0				
creg z		src2		x 1 1 0 1	0000005p				
3 1	5	5	5	1	1 1				
	Opcode ma	o field used	For opera	nd type	Unit				
	src1		slsb16		.M1, .M2				
	src2 dst		xslsb16 sint						
Execution	is written. Th if (cond)	ne source opera { if (((lsb16(<i>src1</i>)	ands are sign) $ imes$ lsb16(srd 1) $ imes$ lsb16(s	ed by default.					
Pipeline	Pipeline								
-	Stage	E1	E2						
	Read	src1, src2							
	Written		dst						
	Unit in use	.М							
Instruction Type	Single-cycle	e (16 × 16)							
Delay Slots	1								
See Also	MPY, SMPY	Ή, SMPYHL, S	MPYLH						
	,								

SMPYH	Multiply Signed 16 MSB × Signed 16 MSB With Left Shift and Saturation							
Syntax	SMPYH (.unit) src1, s	src2, dst						
	.unit = .M1 or .M2							
Opcode								
• 31 29 28 27	23 22 1	8 17 13 12 11	7 6 5 4 3 2 1 0					
creg z c	dst src2	src1 x 0	0 0 1 0 0 0 0 0 <i>s p</i>					
3 1	5 5	5 1	1 1					
	Opcode map field use	ed For operand typ	De Unit					
	src1	smsb16	.M1, .M2					
	src2 dst	xsmsb16 sint						
Description			nultiplied by the most significant shifted by 1 and placed in <i>dst</i> . If					
	the left-shifted resu	It is 8000 0000h, the	n the result is saturated to					
		urce operands are signed	oit in CSR is set one cycle after d by default.					
Execution	if (cond) {							
		16(src1) $ imes \ $ msb16(src2) b16(src1) $ imes \ $ msb16(src						
	else							
	}	FFFFh → <i>dst</i>						
	else nop							
Pipeline	Pipeline Stage E1	E2						
	Read src1, s	rc2						
	Written	dst						
	Unit in use .M							
Instruction Type	Single-cycle (16 × 16)						
Delay Slots	1							
See Also	MPYH, SMPY, SMPY	/HL, SMPYLH						

SMPYH	SMPYHL Multiply Signed 16 MSB × Signed 16 LSB With Left Shift and Saturation								ration					
Syntax			SMPY	′ HL (.unit) <i>src1</i> , s	src2. dst									
- ,				.M1 or .M2	,									
Opcode														
31 29	28 27		23	22 18	17 13	12	11				7	6	5432	2 1 0
creg	Z	ds	t	src2	src1	х	0	1	0	1	0	0	000	0 <i>s p</i>
3	1	5		5	5	1								1 1
			Орсо	de map field used	I For ope	rand	l typ	ю					Unit	
			src1 src2 dst		smsb16 xslsb16 sint								.M1, .M2	
Descripti	DescriptionThe most significant 16 bits of the <i>src1</i> operand is multiplied by the least sign cant bits of the <i>src2</i> operand. The result is left shifted by 1 and placed in a If the left-shifted result is 8000 0000h, then the result is saturated 7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set one cycle af dst is written.							l in <i>dst</i> . ated to						
Executio	n		if (con	if (((msb16 ((msb else	6(src1) × lsb16 16(src1) × lsb1 FFFFh → dst								0000h)	
			else n	}										
Pipeline			Pipeli	ne	E2									
			Read	src1, src	:2									
			Writte Unit i		dst									
Instructio						_								
Instructio			1	-cycle (16 × 16)										
See Also														
Jee Aiso				IL, SMPY, SMP	ſ Π, ϿΙΫΙ Ρ Ϊ LΠ									

3-144 Instruction Set

Example

SMPYLH Multiply Signed 16 LSB × Signed 16 MSB With Left Shift and Saturation								
Syntax	SMPYLH (.u	ınit) <i>src1</i> , <i>src</i>	2, dst					
-	.unit = .M1 o							
Opcode								
• 31 29 28 27	23 22	18 17	, 13	12 11	1	7 6 5 4 3 2 1 0		
creg z c	lst	src2	src1	x 1	0 0	1 0 0 0 0 0 0 <i>s p</i>		
3 1	5	5	5	1		1 1		
	Opcode map	field used	For oper	rand ty	/pe	Unit		
	src1 src2 dst		slsb16 xsmsb16 sint	6		.M1, .M2		
DescriptionThe least significant 16 bits of the <i>src1</i> operand is multiplied by the most si cant 16 bits of the <i>src2</i> operand. The result is left shifted by 1 and plac dst. If the left-shifted result is 8000 0000h, then the result is saturate 7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set one cycle dst is written.								
Execution	, , ,		c1) $ imes msb16$ src1) $ imes msb1$			= 8000 0000h) → dst		
			FFh <i>→ dst</i>					
	else nop	}						
Pipeline	Pipeline Stage	E1	E2	_				
	Read	src1, src2						
	Written		dst					
	Unit in use	.M		_				
Instruction Type	Single-cycle	(16 × 16)						
Delay Slots	1							
See Also	MPYLH, SM	РҮ, ЅМРҮН	, SMPYHL					

3-146 Instruction Set

[†] Signed 16-MSB integer [‡] Signed 16-LSB integer

Example

SSHL	Shift Left With Saturation									
Syntax	SSHL (.un	it) <i>src2</i> , <i>src1</i>	1, dst							
	.unit = .S1	or .S2								
Opcode										
31 29 28 27	23 22	18	17	13 12	11	6	5 4 3 2 1 0			
creg z ds	t	src2	src1/cst	х	ομ	D	1000 <i>sp</i>			
3 1 5		5	5	1	6	i	1 1			
	Opcode m	ap field use	d For ope	erand ty	/pe	Unit	Opfield			
	src2 src1		xsint uint			.S1, .S2	10 0011			
	dst		sint							
	src2		xsint			.S1, .S2	10 0010			
	src1 dst		ucst5 sint							
Description	in <i>dst</i> . Whe specify the shift is inve	en a register shift amou alid if the sh to 32 bits. If	is used to sp nt. Valid valu ift amount is	ecify the es are greate	e shift, the 0 through r than 31	e five leas 1 31, and . The res	e result is placed st significant bits the result of the ult of the shift is is set one cycle			
Execution	if (cond) else nop	dst = s else if (src satura else if (src	te <i>dst</i> to 7FF	F FFF	=h;	are all 1s	s or all 0s)			
Pipeline	Pipeline									
-	Stage	E1								
	Read	src1, src	2							
	Written	dst								
	Unit in use	e.S								

3-148 Instruction Set

Example 2

SSHL .S1 A0,A1,A2

SSUB			Subi	ract Two Signed	I Integers With	Sa	turatior	ו	
Syntax			SSU	B (.unit) <i>src1</i> , <i>src2</i>	2, dst				
			.unit	= .L1 or .L2					
Opcode									
31 29	28	27	23	22 18	17 13	12	11		5 4 3 2 1 0
creg	z	ds	t	src2	src1/cst	х		ор	1 1 0 <i>s p</i>
3	1	5		5	5	. 1		7	1 1
			Орс	ode map field used	d For operan	d ty	/pe	Unit	Opfield
			src1		sint			.L1, .L2	000 1111
			src2		xsint				
			dst		sint				
			src1		xsint			.L1, .L2	001 1111
			src2		sint				
			dst		sint				
			src1		scst5			.L1, .L2	000 1110
			src2		xsint			,	
			dst		sint				
			src1		scst5			.L1, .L2	010 1100
			src2		slong			,	
			dst		slong				
Descriptic	on			is subtracted from ving rules:	<i>src1</i> and is satu	rate	d to the	result size	according to the
			2) I	f the result is an ir f the result is an ir f the result is a lor	nt and <i>src1 – src</i>	2 <	-2 ³¹ , tł	nen the res	sult is -2 ³¹ .

3) If the result is a long and $src1 - src2 > 2^{39} - 1$, then the result is $2^{39} - 1$. 4) If the result is a long and $src1 - src2 < -2^{39}$, then the result is -2^{39} .

The result is placed in *dst*. If a saturate occurs, the SAT bit in CSR is set one cycle after *dst* is written.

Execution if (cond) $src1 - s src2 \rightarrow dst$ else nop

3-150 Instruction Set

STB	Store Byte to Memory N Register Offset	With a 5-Bit Unsigned C	onstant Offset or						
Syntax	Register Offset	Unsigned C	Unsigned Constant Offset						
	STB (.unit) <i>src</i> , *+ <i>base</i> F	R[offsetR] STB (.unit) s	STB (.unit) <i>src</i> , *+ <i>baseR</i> [<i>ucst5</i>]						
	.unit = .D1 or .D2								
Opcode									
31 29 28 27	23 22 18 17	13 12 9	8 7 6 4 3 2 1 0						
creg z s	c baseR c	offsetR/ucst5 mode	0 y 0 1 1 0 1 s p						
3 1	5	5 4	1 1 1						

Description Stores a byte to memory from a general-purpose register (*src*). Table 3–6 (page 3-19) describes the addressing generator options. The memory address is formed from a base address register (*baseR*) and an optional offset that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **STB**, the 8 LSBs of the *src* register are stored. *src* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *src* is read from: s = 0 indicates *src* will be in the A register file and s = 1 indicates *src* will be in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to zero when no bracketed register or constant is specified. Stores that do no modification to the baseR can use the syntax *R. Square brackets, [], indicate that the ucst5 offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Execution		if (cond) else nop	src → I	nem		
Pipeline		Pipeline Stage		E1		
		Read	base	R, offsetR, src		
		Written		baseR		
		Unit in use		.D2		
Instruction Ty	vpe	Store				
Delay Slots		0 For more in	formatic	n on delay slots	s for a store, s	ee Chapter 4.
See Also		STH, STW				
Example		STB .D1	A1,*A	10		
Before instructi		-		1 cycle after instruction		3 cycles after instruction
A1	9A32 7	634h	A1	9A32 7634h	A1	9A32 7634h
A10	0000 0	100h	A10	0000 0100h	A10	0000 0100h

11h

mem 100h

mem 100h

11h

mem 100h

34h

STB	Store Byte to Memory With a 15-Bit Unsigned Constant Offset						
Syntax	STB (.unit) <i>src</i> , *+B14/B15[<i>ucst15</i>]						
-	.unit = .D2						
Opcode							
31 29 28 27 <i>creg z sra</i>	23 22 8 7 6 4 3 2 1 0 ucst15 y 0 1 1 1 1 s p						
3 1 5	<u>ucst15</u> y 0 1 1 1 1 s p 15 1 1 1 1 1						
Description	Stores a byte to memory from a general-purpose register (<i>src</i>). The memory address is formed from a base address register B14 ($y = 0$) or B15 ($y = 1$) and an offset, which is a 15-bit unsigned constant (<i>ucst15</i>). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction executes only on the .D2 unit.						
	The offset, <i>ucst15</i> , is scaled by a left-shift of 0 bits. After scaling, <i>ucst15</i> is added to <i>baseR</i> . The result of the calculation is the address that is sent to memory. The addressing arithmetic is always performed in linear mode.						
	For STB , the 8 LSBs of the <i>src</i> register are stored. <i>src</i> can be in either register file. The <i>s</i> bit determines which file <i>src</i> is read from: $s = 0$ indicates <i>src</i> is in the A register file and $s = 1$ indicates <i>src</i> is in the B register file.						
	Square brackets, [], indicate that the <i>ucst15</i> offset is left-shifted by 0. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.						
Execution	if (cond) $src \rightarrow mem$ else nop						
	Note: This instruction executes only on the B side (.D2).						
Pipeline	Pipeline Stage E1						
	Read B14/B15, src						
	Written						
	Unit in use .D2						
0 1 E A Instruction C							

3-154 Instruction Set

STH	Store Halfword to M Register Offset	lemory With a 5	-Bit Unsigned	d Cor	nstani	t Oi	ffse	et o	r
Syntax	Register Offset		Unsigned Co	nstar	nt Off	set			
	STH (.unit) <i>src</i> , *+ <i>baseR[offsetR]</i> STH (.unit) <i>src</i> , *+ <i>baseR[ucst5</i>					st5]			
	.unit = .D1 or .D2								
Opcode									
31 29 28 27	23 22 18	17 13	12 9 8	76	i 4	3	2	1	0
creg z s	rc baseR	offsetR/ucst5	mode C) <i>y</i> 1	01	0	1	s	р
3 1	5	5	4	1				1	1

DescriptionStores a halfword to memory from a general-purpose register (*src*). Table 3–6
(page 3-19) describes the addressing generator options. The memory
address is formed from a base address register (*baseR*) and an optional offset
that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **STH**, the 16 LSBs of the *src* register are stored. *src* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *src* is read from: s = 0 indicates *src* will be in the A register file and s = 1 indicates *src* will be in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to zero when no bracketed register or constant is specified. Stores that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 1. Parentheses, (), can be used to set a nonscaled, constant offset. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution	if (cond)	<i>src</i> \rightarrow mem
	else nop	

Pipeline	Dinalina	
•	Pipeline Stage	E1
	Read	baseR, offsetR, src
	Written	baseR
	Unit in use	.D2

Instruction Type	Store		
Delay Slots	0 For more in	formation on delay slots for a	store, see Chapter 4.
See Also	STB, STW		
Example 1	STH .D1	A1,*+A10(4)	
—	efore truction	1 cycle after instruction	3 cycles after instruction

STH	Store Halfword to Memory With a 15-Bit U	Insigned Constant Offset							
Syntax	STH (.unit) <i>src</i> , *+B14/B15[<i>ucst15</i>]								
	.unit = .D2								
Opcode									
31 29 28 27	23 22	876 43210							
creg z	src ucst15	y 1 0 1 1 1 s p							
3 1	5 15	1 1 1							
Description	Stores a halfword to memory from a gener memory address is formed from a base ad B15 ($y = 1$) and an offset, which is a 15-bit ur assembler selects this format only when the co magnitude. This instruction executes only on	dress register B14 ($y = 0$) or nsigned constant (<i>ucst15</i>). The postant is larger than five bits in							
	The offset, <i>ucst15</i> , is scaled by a left-shift of 1 b to <i>baseR</i> . The result of the calculation is the a The addressing arithmetic is always performe	address that is sent to memory.							
	For STH , the 16 LSBs of the <i>src</i> register are sto file. The <i>s</i> bit determines which file <i>src</i> is read f A register file and $s = 1$ indicates <i>src</i> is in the	from: $s = 0$ indicates <i>src</i> is in the							
	Square brackets, [], indicate that the <i>ucsi</i> Parentheses, (), can be used to set a nonsca type either brackets or parentheses around the optional offset parameter.	aled, constant offset. You must							
	Halfword addresses must be aligned on halfw	vord (LSB is 0) boundaries.							
Execution	if (cond) $src \rightarrow mem$ else nop								
	Note:								
	This instruction executes only on the B side	(.D2).							
Pipeline	Pipeline Stage E1								
	Read B14/B15, src								
	Written								
	Unit in use .D2								

Instruction TypeStoreDelay Slots0See AlsoSTB, STW

STW	Store Word to Memory With a 5-Bit Unsigned Constant Offset or Register Offset							
Syntax	Register Offset		Unsigned Co	onstant Offset				
	STW (.unit) <i>src</i> , *+ <i>baseR[offsetR]</i> STW (.unit) <i>src</i> , *+ <i>baseR[ucst5]</i>							
	.unit = .D1 or .D2							
Opcode								
31 29 28 27	23 22 18	17 13	12 9	8 7 6 4 3 2 1 0				
creg z sr	c baseR	offsetR/ucst5	mode	0 y 1 1 1 0 1 s p				
3 1 5	5	5	4	1 1 1				

DescriptionStores a word to memory from a general-purpose register (*src*). Table 3-6
(page 3-19) describes the addressing generator options. The memory
address is formed from a base address register (*baseR*) and an optional offset
that is either a register (*offsetR*) or a 5-bit unsigned constant (*ucst5*).

offsetR and *baseR* must be in the same register file and on the same side as the .D unit used. The *y* bit in the opcode determines the .D unit and register file used: y = 0 selects the .D1 unit and *baseR* and *offsetR* from the A register file, and y = 1 selects the .D2 unit and *baseR* and *offsetR* from the B register file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For the preincrement, predecrement, positive offset, and negative offset address generator options, the result of the calculation is the address to be accessed in memory. For postincrement or postdecrement addressing, the value of baseR before the addition or subtraction is sent to memory.

The addressing arithmetic that performs the additions and subtractions defaults to linear mode. However, for A4–A7 and for B4–B7, the mode can be changed to circular mode by writing the appropriate value to the AMR (see section 2.7.3, page 2-10).

For **STW**, the entire 32-bits of the *src* register are stored. *src* can be in either register file, regardless of the .D unit or *baseR* or *offsetR* used. The *s* bit determines which file *src* is read from: s = 0 indicates *src* will be in the A register file and s = 1 indicates *src* will be in the B register file. The *r* bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to zero when no bracketed register or constant is specified. Stores that do no modification to the *baseR* can use the syntax *R. Square brackets, [], indicate that the *ucst5* offset is left-shifted by 2. Parentheses, (), can be used to set a nonscaled, constant offset. For example, **STW** (.unit) *src*, *+*baseR*(12) represents an offset of 12 bytes; whereas, **STW** (.unit) *src*, *+*baseR*[12] represents an offset of 12 words, or 48 bytes. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution	if (cor else r	,	mem		
Pipeline	Pipe Stag				
	Read	base	eR, offsetR, src		
	Writt	en	baseR		
	Unit	in use	.D2		
Instruction T	ype Store				
Delay Slots	0 For m	nore information	on on delay slots	for a store, s	ee Chapter 4.
See Also	STB,	STH			
Example	STW	.D1 A1,*·	++A10[1]		
	Before instruction		1 cycle after instruction		3 cycles after instruction
A1	9A32 7634h	A1	9A32 7634h	A1	9A32 7634h
A10	0000 0100h	A10	0000 0104h	A10	0000 0104h
mem 100h	1111 1134h	mem 100h	1111 1134h	mem 100h	1111 1134h
mem 104h	0000 1111h	mem 104h	0000 1111h	mem 104h	9A32 7634h

STW			Store	Store Word to Memory With a 15-Bit Unsigned Constant Offset										
Syntax			STW (.unit) <i>src</i> , *+B14/B15[<i>ucst15</i>]											
.unit = .D2														
Opcode														
31 29	28	27	23	22		8	7	6		4	3	2	1	0
creg	Ζ	SI	rc	ucst15			у	1	1	1	1	1	s	р
3	1	Ę	5	15			1						1	1

Description	Stores a word to memory from a general-purpose register (<i>src</i>). The memory address is formed from a base address register B14 ($y = 0$) or B15 ($y = 1$) and an offset, which is a 15-bit unsigned constant (<i>ucst15</i>). The assembler selects this format only when the constant is larger than five bits in magnitude. This instruction executes only on the .D2 unit.
	The offset, <i>ucst15</i> , is scaled by a left-shift of 2 bits. After scaling, <i>ucst15</i> is added to <i>baseR</i> . The result of the calculation is the address that is sent to memory. The addressing arithmetic is always performed in linear mode.
	For STW , the entire 32-bits of the <i>src</i> register are stored. <i>src</i> can be in either register file. The <i>s</i> bit determines which file <i>src</i> is read from: $s = 0$ indicates <i>src</i> is in the A register file and $s = 1$ indicates <i>src</i> is in the B register file.
	Square brackets, [], indicate that the <i>ucst15</i> offset is left-shifted by 2. Paren- theses, (), can be used to set a nonscaled, constant offset. For example, STW (.unit) <i>src</i> , *+B14/B15(60) represents an offset of 12 bytes; whereas, STW (.unit) <i>src</i> , *+B14/B15[60] represents an offset of 60 words, or 240 bytes. You must type either brackets or parentheses around the specified offset, if you use the optional offset parameter.
	Word addresses must be aligned on word (two LSBs are 0) boundaries.
Execution	if (cond) <i>src</i> → mem else nop
	Note:
	This instruction executes only on the B side (.D2).

Pipeline	Pipeline Stage E1				
	Read	B14/B15, <i>src</i>			
	Written				
	Unit in use	.D2			
Instruction Type	Store				
Delay Slots	0				
See Also	STB, STH				

SUB	Subtract Two Signed	d Integers Withou	t Saturation	
Syntax	SUB (.unit) <i>src1, src2</i> or SUB (.D1 or .D2) <i>src2</i>			
	.unit = .L1, .L2, .S1, .S	32		
Opcode	.L unit			
31 29 28 27	23 22 18	17 13 12	2 11	5 4 3 2 1 0
creg z da	st src2	src1/cst x	ор	1 1 0 <i>s p</i>
3 1 5	5	5 1	7	1 1

Opcode map field used	For operand type	Unit	Opfield
src1	sint	.L1, .L2	000 0111
src2	xsint		
dst	sint		
src1	xsint	.L1, .L2	001 0111
src2	sint		
dst	sint		
src1	sint	.L1, .L2	010 0111
src2	xsint		
dst	slong		
src1	xsint	.L1, .L2	011 0111
src2	sint		
dst	slong		
src1	scst5	.L1, .L2	000 0110
src2	xsint		
dst	sint		
src1	scst5	.L1, .L2	010 0100
src2	slong		
dst	slong		

Description for .L1, .L2 and .S1, .S2 Opcodes

src2 is subtracted from *src1*. The result is placed in *dst*.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) $src1 - src2 \rightarrow dst$ else nop

Opcode

.D unit

31		29	28	27		23	22	18	17	13	12		7	6	5	4	3	2	1 0
	creg		Ζ		dst		src2			src1/cst		ор		1	0	0	0	0	s p
	3		1		5		5			5		6							1 1
						Орсо	de map field	lused	I	For ope	rand type	e	U	Init			0	pfie	ld
						src2				sint			.D1	, .C)2		01	00	01
						src1				sint									
						dst				sint									
						src2				sint			.D1	, .C)2		01	00	11
						src1				ucst5									
						dst				sint									

Description for .D1, .D2 Opcodes

src1 is subtracted from src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes

if (cond) $src2 - src1 \rightarrow dst$ else nop

3-166 Instruction Set

Note:

Subtraction with a signed constant on the .L and .S units allows either the first or the second operand to be the signed 5-bit constant.

SUB (.unit) *src1*, *scst5*, *dst* is encoded as **ADD** (.unit) *-scst5*, *src2*, *dst* where the *src1* register is now *src2* and *scst5* is now *-scst5*.

However, the .D unit provides only the second operand as a constant since it is an unsigned 5-bit constant. *ucst5* allows a greater offset for addressing with the .D unit.

Pipeline		
Fibenne	Pipeline Stage	E1
	Read	src1, src2
	Written	dst
	Unit in use	.L, .S, or .D
Instruction Type	Single-cycle	
Delay Slots	0	

See Also ADD, SSUB, SUBC, SUBU, SUB2

Example

A3

SUB .L1 A1,A2,A3

Before instruction

xxxx xxxxh

- A1 0000 325Ah 12810 A2 FFFF FF12h -238
- 1 cycle after instruction

SUBAB	Subtract U		¥							
Syntax	SUBAB (.ur	SUBAB (.unit) <i>src2</i> , <i>src1</i> , <i>dst</i>								
	.unit = .D1 c	or .D2								
Opcode										
31 29 28 27	23 22	18 17								
creg z o 3 1	dst 5	src2	src1/cst	0p 1	0000 <i>sp</i>					
5 1	J	5	5	0						
	Opcode ma	p field used	. For operand t	ype Unit	Opfield					
	src2 src1		sint sint	.D1, .D2	11 0001					
	dst		sint							
	src2		sint	.D1, .D2	11 0011					
	src1 dst		ucst5 sint							
Description	The subtrac B4-B7, the	tion defaults mode can be	to linear mode. changed to circ	e addressing mode However, if <i>src2</i> is ular mode by writir ge 2-10). The resu	s one of A4-A7 or ng the appropriate					
Description Execution	The subtrac B4-B7, the value to the	tion defaults mode can be	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
Execution	The subtrac B4-B7, the value to the if (cond)	tion defaults mode can be AMR (see s	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
Execution	The subtract B4-B7, the value to the if (cond) else nop Pipeline	tion defaults mode can be AMR (see s <i>src2 -</i> a <i>src1</i>	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
Execution	The subtrac B4-B7, the value to the if (cond) else nop Pipeline Stage	tion defaults mode can be AMR (see s <i>src2 -</i> a <i>src1</i> E1	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
Execution	The subtrac B4-B7, the value to the if (cond) else nop Pipeline Stage Read	tion defaults mode can be AMR (see s src2 -a src1 <u>E1</u> src1, src2	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
Execution	The subtract B4-B7, the value to the if (cond) else nop Pipeline Stage Read Written	tion defaults mode can be AMR (see s src2 -a src1 <u>E1</u> src1, src2 dst	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
Execution Pipeline	The subtract B4-B7, the value to the if (cond) else nop Pipeline Stage Read Written	tion defaults mode can be AMR (see s src2 -a src1 <u>E1</u> src1, src2 dst .D	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
Execution Pipeline Instruction Type	The subtract B4-B7, the value to the if (cond) else nop Pipeline Stage Read Written Unit in use	tion defaults mode can be AMR (see s src2 -a src1 <u>E1</u> src1, src2 dst .D	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					
	The subtract B4-B7, the value to the if (cond) else nop Pipeline Stage Read Written Unit in use Single-cycle 0	tion defaults mode can be AMR (see s src2 -a src1 <u>E1</u> src1, src2 dst .D	to linear mode. changed to circ ection 2.7.3, pag	However, if <i>src2</i> is ular mode by writir	s one of A4-A7 or ng the appropriate					

SUBAH	Subtract Using Halfwor	d Addressing Mod	e					
Syntax SUBAH (.unit) src2, src1, dst								
	.unit = .D1 or .D2							
Opcode								
31 29 28 27	23 22 18 17	13 12	7 6 5 4 3 2 1 0					
	dst src2	src1/cst	op 1 0 0 0 s p					
3 1	5 5	5	6 1 1					
	Opcode map field used	For operand type	Unit Opfield					
	src2 src1	sint sint	.D1, .D2 11 0101					
	dst	sint						
	src2	sint	.D1, .D2 11 0111					
	src1 dst	ucst5 sint						
Execution		e section 2.7.3, page d by 1. The result is	ar mode by writing the appropri- 2-10). If circular addressing is placed in <i>dst</i> .					
Pipeline	Pipeline Stage E1	_						
	Read src1, src2	_						
	Written dst							
	Unit in use .D	_						
Instruction Type	Single-cycle							
Delay Slots	0							
See Also	SUB, SUBAB, SUBAW							
3-170 Instruction	Set		SPRU731A					

SUBAW	Subtract Using Word	Addressing Mode		
Syntax	SUBAW (.unit) src2, src	e1, dst		
	.unit = .D1 or .D2			
Opcode				
31 29 28 27	23 22 18	17 13 12	7 6	5 4 3 2 1 0
creg z	dst src2	src1/cst	ор 1	0 0 0 0 <i>s p</i>
3 1	5 5	5	6	1 1
	Opcode map field used	For operand type	Unit	Opfield
	src2	sint	.D1, .D2	11 1001
	src1 dst	sint sint		
	src2	sint	.D1, .D2	11 1011
	src1 dst	ucst5 sint		
Execution	ate value to the AMR (s enabled, <i>src1</i> is left shif if (cond) <i>src2</i> -a <i>src</i> else nop	ted by 2. The result is		
Pipeline	Pipeline Stage E1	_		
	Read src1, src2	,		
	Written dst			
	Unit in use .D			
Instruction Type	Single-cycle			
Delay Slots	0			
See Also	SUB, SUBAB, SUBAH			

Example SUBAW .D1 A5,2,A3 1 cycle after instruction **Before instruction** 0000 0108h A3 xxxx xxxxh A3 A5 0000 0100h 0000 0100h A5 AMR 0003 0004h 0003 0004h AMR BKO = 3 \rightarrow size = 16 A5 in circular addressing mode using BK0
SUBC	Subtract Conditionally a	and Shift—Used for Divis	sion
Syntax	SUBC (.unit) <i>src1</i> , <i>src2</i> , <i>c</i>	lst	
-	.unit = .L1 or .L2		
Opcode			
31 29 28 27	23 22 18 17	13 12 11	5 4 3 2 1 0
creg z c	dst src2	<i>src1</i> x 1 0 0	1 0 1 1 1 1 0 <i>s p</i>
3 1	5 5	5 1	1 1
	Opcode map field used	For operand type	Unit
	src1 src2	uint xuint	.L1, .L2
	dst	uint	
Description	by 1, add 1 to it, and place	f result is greater than or e e it in <i>dst.</i> If result is less th ep is commonly used in di	an 0, left shift <i>src1</i> by 1,
Execution	if (cond) { if (<i>src1 - src2</i> ((<i>src1 - s</i> else <i>src1 <<</i> 1 } else nop	$src2$ $<< 1$ $+ 1 \rightarrow dst$	
Pipeline	Pipeline Stage E1	-	
	Read src1, src2	_	
	Written dst		
	Unit in use .L	_	
Instruction Type	Single-cycle		
Delay Slots	0		
See Also	ADD, SSUB, SUB, SUBI	J, SUB2	
SPRU731A		h	nstruction Set 3-173

SUBU Subtract Two Unsigned Integers With	out Saturation
--	----------------

Syntax SUBU (.unit) src1, src2, dst

.unit = .L1 or .L2

Opcode

Execution

_	31 :	29	28	27	23	22	1	8	17	13	12	11	5	4	3	2	1	0
	creg		z		dst		src2		src	1	х	ор		1	1	0	s	р
1	3		1		5		5		5		1	7					1	1

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	uint xuint ulong	.L1, .L2	010 1111
src1 src2 dst	xuint uint ulong	.L1, .L2	011 1111

Description *src2* is subtracted from *src1*. The result is placed in *dst*.

if (cond) *src1 – src2 → dst* else nop

Pipeline	Pipeline Stage	E1
	Read	src1, src2
	Written	dst
	Unit in use	.L

See Also	ADDU, SSUB, SUB, SUBC, SUB2
Delay Slots	0
Instruction Type	Single-cycle

Example

SUBU .L1 A1,A2,A5:A4

[†] Unsigned 32-bit integer

[‡] Signed 40-bit (long) integer

SUB2 Subtract Two 16-Bit Integers on Upper and Lower Register Halves	5
--	---

Syntax

SUB2 (.unit) *src1*, *src2*, *dst* .unit = .S1 or .S2

Opcode

31	29	28	27		23	22	18	17		13	12	11				6	5	4	3	2	1	0
Cre	∋g	Ζ		dst		sra	2		src1		х	0	1	0 (0 0	1	1	0	0	0	s	р
3	3	1		5		5			5		1										1	1

Opcode map field used	For operand type	Unit
src1	sint	.S1, .S2
src2	xsint	
dst	sint	

Description The upper and lower halves of *src2* are subtracted from the upper and lower halves of *src1* and the result is placed in *dst*. Any borrow from the lower-half subtraction does not affect the upper-half subtraction. Specifically, the upper-half of *src2* is subtracted from the upper-half of *src1* and placed in the upper-half of *src1* and placed in the lower-half of *src1* and placed in the lower-half of *src1* and placed in the lower-half of *dst*.

SPRU731A

Pipeline Pipeline Stage E1 Read src1, src2 Written dst Unit in use .S **Instruction Type** Single-cycle **Delay Slots** 0 See Also ADD2, SSUB, SUB, SUBC, SUBU Example 1 SUB2 .S1 A3, A4, A5 **Before instruction** 1 cycle after instruction A3 1105 6E30h 4357 28208 1105 6E30h 4357 28208 Α3 4357 27008 1105 6980h 4357 27008 1105 6980h Α4 A4 0000 04B0h 0 1200 Α5 xxxx xxxxh Α5 Example 2 SUB2 .S2X B1,A0,B2 **Before instruction** 1 cycle after instruction A0 0021 3271h †33 12913[‡] A0 0021 3271h

†58

6984[‡]

[†] Signed 16-MSB integer

003A 1B48h

xxxx xxxxh

В1

в2

[‡] Signed 16-LSB integer

XOR	Bitwise Exclusive OR								
Syntax	XOR (.unit) src1, src2, dst								
.unit = .L1, .L2, .S1, .S2									
Opcode	.L unit								
31 29 28 27	23 22 18 17 13 12 11	1 543210							
creg z	dst src2 src1/cst x	op 1110 <i>s</i> p							
3 1	5 5 5 1	7 1 1							

Opcode map field used	For operand type	Unit	Opfield
src1 src2 dst	uint xuint uint	.L1, .L2	110 1111
src1 src2 dst	scst5 xuint uint	.L1, .L2	110 1110

Opcode

.S unit

-

31	29	28	27 23	22 18	17 13	12	11 6	5 4 3 2 1 0
	creg	Ζ	dst	src2	src1/cst	х	ор	1000 <i>sp</i>
	3	1	5	5	5	1	6	1 1

Opcode map field used	For operand type	Unit	Opfield
src1	uint	.S1, .S2	00 1011
src2	xuint		
dst	uint		
src1	scst5	.S1, .S2	00 1010
src2	xuint		
dst	uint		

Description Performs a bitwise exclusive-OR (**XOR**) operation between *src1* and *src2*. The result is placed in *dst.* The *scst5* operands are sign extended to 32 bits.

Execution if (cond) src1 XOR src2 \rightarrow dst else nop

Pipeline	Pipeline	
-	Stage E1	
	Read src1, src2	
	Written dst	
	Unit in use .L or .S	
Instruction Type	Single-cycle	
Delay Slots	0	
See Also	AND, OR	
Example 1	XOR .S1 A3, A4, A5	
	Before instruction	1 cycle after instruction
	A3 0721 325Ah	A3 0721 325Ah
	A4 0019 0F12h	A4 0019 0F12h
	A5 xxxx xxxxh	A5 0738 3D48h
Example 2	XOR.L2 B1, 0dh, B8	
	Before instruction	1 cycle after instruction
	B1 0000 1023h	B1 0000 1023h

B8

xxxx xxxxh

B8

0000 102Eh

ZERO	Zero a Register			
Syntax	ZERO (.unit) dst			
	.unit = .L1, .L2, .D1, .D2, .	.S1, .S2		
Opcode				
	Opcode map field used	For operand type	Unit	Opfield
	dst	sint	.L1, .L2	001 0111
	dst	sint	.D1, .D2	01 0001
	dst	sint	.S1, .S2	01 0111
	dst	slong	.L1, .L2	011 0111
Description Execution	The ZERO pseudo-operat from itself and placing the In the case where dst is instruction. In the case where SUB (.unit) <i>src1</i> , <i>src2</i> , <i>dst</i> if (cond) $dst - dst \rightarrow case$ else nop	e result in the <i>dst</i> . s sint, the assembler <i>dst</i> is slong, th <i>t</i> instruction.	uses the M	∕K (.unit) 0, <i>dst</i>
Instruction Type	' Single-cycle			
Delay Slots	0			
See Also	MVK, SUB			
Example	ZERO .D1 A1			
	Before instruction	1 cy	cle after insti	ruction
	Al B174 6CAlh	A1 000	0 0000h	

Chapter 4

Pipeline

The C62x DSP pipeline provides flexibility to simplify programming and improve performance. These two factors provide this flexibility:

- 1) Control of the pipeline is simplified by eliminating pipeline interlocks.
- 2) Increased pipelining eliminates traditional architectural bottlenecks in program fetch, data access, and multiply operations. This provides single-cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

- The pipeline can dispatch eight parallel instructions every cycle.
- Parallel instructions proceed simultaneously through each pipeline phase.
- Serial instructions proceed through the pipeline with a fixed relative phase difference between instructions.
- Load and store addresses appear on the CPU boundary during the same pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and decode, but require a varying number of execute phases. This chapter contains a description of the number of execution phases for each type of instruction.

Finally, this chapter contains performance considerations for the pipeline. These considerations include the occurrence of fetch packets that contain multiple execute packets, execute packets that contain multicycle **NOP**s, and memory considerations for the pipeline. For more information about fully optimizing a program and taking full advantage of the pipeline, see the *TMS320C6000 Programmer's Guide* (SPRU198).

Торі	c Page
4.1	Pipeline Operation Overview 4-2
4.2	Pipeline Execution of Instruction Types 4-11
4.3	Performance Considerations 4-18

4.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

- Fetch
- Decode
- Execute

All instructions in the C62x DSP instruction set flow through the fetch, decode, and execute stages of the pipeline. The fetch stage of the pipeline has four phases for all instructions, and the decode stage has two phases for all instructions. The execute stage of the pipeline requires a varying number of phases, depending on the type of instruction. The stages of the C62x DSP pipeline are shown in Figure 4–1.

Figure 4-1. Pipeline Stages

4.1.1 Fetch

The fetch phases of the pipeline are:

- **PG:** Program address generate
- **PS:** Program address send
- PW: Program access ready wait
- **PR:** Program fetch packet receive

The C62x DSP uses a fetch packet (FP) of eight words. All eight of the words proceed through fetch processing together, through the PG, PS, PW, and PR phases. Figure 4–2(a) shows the fetch phases in sequential order from left to right. Figure 4–2(b) is a functional diagram of the flow of instructions through the fetch phases. During the PG phase, the program address is generated in the CPU. In the PS phase, the program address is sent to memory. In the PW phase, a memory read occurs. Finally, in the PR phase, the fetch packet is received at the CPU. Figure 4–2(c) shows fetch packets flowing through the phases of the fetch stage of the pipeline. In Figure 4–2(c), the first fetch packet (in PR) is made up of four execute packets, and the second and third fetch packets (in PW and PS) contain two execute packets each. The last fetch packet (in PG) contains a single execute packet of eight instructions.

Figure 4-2. Fetch Phases of the Pipeline

(C)

Fetch		256									
	LDW	LDW	SHR	SHR	SMPYH	SMPYH	MV	NOP	PG		
	LDW	LDW	SMPYH	SMPY	SADD	SADD	В	MVK	PS		
	LDW	LDW	MVKLH	MV	SMPYH	SMPY	В	MVK	PW		
	LDW	LDW	MVK	ADD	SHL	LDW	LDW	MVK	PR		
				De	code						

4.1.2 Decode

The decode phases of the pipeline are:

- DP: Instruction dispatch
- **DC:** Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute packets. Execute packets consist of one instruction or from two to eight parallel instructions. During the DP phase, the instructions in an execute packet are assigned to the appropriate functional units. In the DC phase, the the source registers, destination registers, and associated paths are decoded for the execution of the instructions in the functional units. Figure 4–3(a) shows the decode phases in sequential order from left to right. Figure 4–3(b) shows a fetch packet that contains two execute packets as they are processed through the decode stage of the pipeline. The last six instructions of the fetch packet (FP) are parallel and form an execute packet (EP). This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate each instruction's assigned functional unit for execution during the same cycle. The **NOP** instruction in the eighth slot of the FP is not dispatched to a functional unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute packet of two parallel instructions that were dispatched on the previous cycle. This execute packet contains two **MPY** instructions that are now in decode (DC) one cycle before execution. There are no instructions decoded for the .L, .S, and .D functional units for the situation illustrated.

[†] NOP is not dispatched to a functional unit.

4.1.3 Execute

The execute portion of the pipeline is subdivided into five phases (E1–E5). Different types of instructions require different numbers of these phases to complete their execution. These phases of the pipeline play an important role in your understanding the device state at CPU cycle boundaries. The execution of different types of instructions in the pipeline is described in section 4.2, *Pipeline Execution of Instruction Types*. Figure 4–4(a) shows the execute phases of the pipeline in sequential order from left to right. Figure 4–4(b) shows the portion of the functional block diagram in which execution occurs.

4.1.4 Pipeline Operation Summary

Figure 4–5 shows all the phases in each stage of the C62x DSP pipeline in sequential order, from left to right.

Figure 4-5. Pipeline Phases

Figure 4–6 shows an example of the pipeline flow of consecutive fetch packets that contain eight parallel instructions. In this case, where the pipeline is full, all instructions in a fetch packet are in parallel and split into one execute packet per fetch packet. The fetch packets flow in lockstep fashion through each phase of the pipeline.

For example, examine cycle 7 in Figure 4–6. When the instructions from FPn reach E1, the instructions in the execute packet from FPn +1 are being decoded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are each in one of four phases of program fetch. See section 4.3, page 4-18, for additional detail on code flowing through the pipeline. Table 4–1 summarizes the pipeline phases and what happens in each phase.

Clock cycle Fetch packet 2 3 4 5 6 7 8 9 10 12 1 11 13 n PG PS PW PR DP DC E1 E2 E3 E4 E5 n+1 PG PS PW PR DP DC E1 E2 E3 E4 E5 n+2 PW PR E2 E5 PG PS DP DC E1 E3 E4 n+3 PG PS PW PR DP DC E1 E2 E3 E4 n+4 PG PS PW PR DP DC E1 E2 E3 n+5 PS PW DP PG PR DC E1 E2 n+6 PG PS PW DP E1 PR DC n+7 PG PS PW PR DP DC n+8 PS PW PR PG DP n+9 PS PW PR PG n+10 PG PS PW

Figure 4-6. Pipeline Operation: One Execute Packet per Fetch Packet

Stage	Phase	Symbol	During This Phase	Instruction Type Completed
Program fetch	Program address generate	PG	The address of the fetch packet is determined.	
	Program address send	PS	The address of the fetch packet is sent to memory.	
	Program wait	PW	A program memory access is performed.	
	Program data receive	PR	The fetch packet is at the CPU boundary.	
Program decode	Dispatch	DP	The next execute packet in the fetch packet is deter- mined and sent to the appropriate functional units to be decoded.	
	Decode	DC	Instructions are decoded in functional units.	
Execute	Execute 1	E1	For all instruction types, the conditions for the instructions are evaluated and operands are read.	Single cycle
			For load and store instructions, address generation is performed and address modifications are written to a register file. [†]	
			For branch instructions, branch fetch packet in PG phase is affected. [†]	
			For single-cycle instructions, results are written to a register file. †	
	Execute 2	E2	For load instructions, the address is sent to memory. For store instructions, the address and data are sent to memory. [†]	
			Single-cycle instructions that saturate results set the SAT bit in the control status register (CSR) if saturation occurs. [†]	
			For single 16 \times 16 multiply instructions, results are written to a register file. †	Multiply
	Execute 3	E3	Data memory accesses are performed. Any multiply instruction that saturates results sets the SAT bit in the control status register (CSR) if saturation occurs. [†]	Store
	Execute 4	E4	For load instructions, data is brought to the CPU. †	Load
	Execute 5	E5	For load instructions, data is written into a register. [†]	Load

Table 4-1. Operations Occurring During Pipeline Phases

[†] This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction does not write any results or have any pipeline operation after E1.

Figure 4-7 shows a functional block diagram of the pipeline stages.

Figure 4-7. Pipeline Phases Block Diagram

The pipeline operation is based on CPU cycles. A CPU cycle is the period during which a particular execute packet is in a particular pipeline phase. CPU cycle boundaries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts of the C62x DSP. Figure 4–7 shows a full pipeline with a fetch packet in every phase of fetch. One execute packet of eight instructions is being dispatched at the same time that a 7-instruction execute packet is in decode. The arrows between DP and DC correspond to the functional units identified in the code in Example 4–1.

In the DC phase portion of Figure 4–7, one box is empty because a **NOP** was the eighth instruction in the fetch packet in DC and no functional unit is needed for a **NOP**. Finally, Figure 4–7 shows six functional units processing code during the same cycle of the pipeline.

Registers used by the instructions in E1 are shaded in Figure 4–7. The multiplexers used for the input operands to the functional units are also shaded in the figure. The bold crosspaths are used by the **MPY** instructions.

Most C62x DSP instructions are single-cycle instructions, which means they have only one execution phase (E1). A small number of instructions require more than one execute phase. The types of instructions, each of which require different numbers of execute phases, are described in section 4.2.

	SADD	.L1	A2,A7,A2	; El Phase
	SADD	.L2	B2,B7,B2	
l ii	SMPYH	.M2X	B3,A3,B2	
l ii	SMPY	.M1X	B3,A3,A2	
l ii	В	.S1	LOOP1	
l ii	MVK	.S2	117,B1	
	LDW	.D2	*B4++,B3	; DC Phase
	LDW	.D1	*A4++,A3	
l ii	MV	.L2X	A1,B0	
	SMPYH	.M1	A2,A2,A0	
	SMPYH	.M2	B2,B2,B10	
l ii	SHR	.S1	A2,16,A5	
l ii	SHR	.S2	B2,16,B5	
LOOP1	:			
	STH	.D1	A5,*A8++[2]	; DP, PW, and PG Phases
	STH	.D2	B5,*B8++[2]	
l ii	SADD	.L1	A2,A7.A2	
l ii	SADD	.L2	B2,B7,B2	
l ii	SMPYH	.M2X	B3,A3,B2	
l ii	SMPY	.M1X	B3,A3,A2	
[B	1] В	.S1	LOOP1	
[B	1] SUB	.S2	B1,1,B1	
	-			
	LDW	.D2	*B4++,B3	: PR and PS Phases
	LDW	.D1	*A4++,A3	
l ii	SADD	.L1	A0,A1,A1	
l ii	SADD	.L2	В10, В0, В0	
l İİ	SMPYH	.M1	A2,A2,A0	
l ii	SMPYH	.M2	B2,B2,B10	
l ii	SHR	.S1	A2,16,A5	
l ii	SHR	.S2	B2,16,B5	

Example 4-1. Execute Packet in Figure 4-7

4.2 Pipeline Execution of Instruction Types

The pipeline operation of the C62x DSP instructions can be categorized into six instruction types. Five of these are shown in Table 4-2 (**NOP** is not included in the table), which is a mapping of operations occurring in each execution phase for the different instruction types. The delay slots associated with each instruction type are also listed.

The execution of instructions is defined in terms of delay slots. A delay slot is a CPU cycle that occurs after the first execution phase (E1) of an instruction. Results from instructions with delay slots are not available until the end of the last delay slot. For example, a multiply instruction has one delay slot, which means that one CPU cycle elapses before the results of the multiply are available for use by a subsequent instruction. However, results are available from other instructions finishing execution during the same CPU cycle in which the multiply is in a delay slot.

	Instruction Type									
Execution phases	Single Cycle	16 × 16 Single Multiply	Store	Load	Branch					
E1	Compute result and write to register	Read operands and start computations	Compute address	Compute address	Target code in PG [‡]					
E2		Compute result and write to register	Send address and data to memory	Send address to memory						
E3			Access memory	Access memory						
E4				Send data back to CPU						
E5				Write data into register						
Delay slots	0	1	0†	4†	5 [‡]					

Table 4-2. Execution Stage Length Description for Each Instruction Type

[†] See sections 4.2.3 and 4.2.4 for more information on execution and delay slots for stores and loads.

[‡] See section 4.2.5 for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.

4.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipeline. Figure 4–8 shows the fetch, decode, and execute phases of the pipeline that the single-cycle instructions use.

Figure 4–9 shows the single-cycle execution diagram. The operands are read, the operation is performed, and the results are written to a register, all during E1. Single-cycle instructions have no delay slots.

Figure 4-9. Single-Cycle Instruction Execution Block Diagram

4.2.2 Two-Cycle Instructions

Two-cycle or multiply instructions use both the E1 and E2 phases of the pipeline to complete their operations. Figure 4–10 shows the fetch, decode, and execute phases of the pipeline that the two-cycle instructions use.

Figure 4–11 shows the operations occurring in the pipeline for a multiply instruction. In the E1 phase, the operands are read and the multiply begins. In the E2 phase, the multiply finishes, and the result is written to the destination register. Multiply instructions have one delay slot.

Figure 4-11. Single 16 × 16 Multiply Instruction Execution Block Diagram

4.2.3 Store Instructions

Store instructions require phases E1 through E3 of the pipeline to complete their operations. Figure 4–12 shows the fetch, decode, and execute phases of the pipeline that the store instructions use.

Figure 4–13 shows the operations occurring in the pipeline phases for a store instruction. In the E1 phase, the address of the data to be stored is computed. In the E2 phase, the data and destination addresses are sent to data memory. In the E3 phase, a memory write is performed. The address modification is performed in the E1 stage of the pipeline. Even though stores finish their execution in the E3 phase of the pipeline, they have no delay slots. There is additional explanation of why stores have zero delay slots in section 4.2.4.

Figure 4-12. Store Instruction Phases

Figure 4-13. Store Instruction Execution Block Diagram

When you perform a load and a store to the same memory location, these rules apply (i = cycle):

When a load is executed before a store, the old value is loaded and the new value is stored.

i	LDW
<i>i</i> + 1	STW

□ When a store is executed before a load, the new value is stored and the new value is loaded.

i	STW
<i>i</i> + 1	LDW

- □ When the instructions are executed in parallel, the old value is loaded first and then the new value is stored, but both occur in the same phase.
 - i STW
 - i || LDW

4-14 Pipeline

4.2.4 Load Instructions

Data loads require all five, E1–E5, of the pipeline execute phases to complete their operations. Figure 4–14 shows the fetch, decode, and execute phases of the pipeline that the load instructions use.

Figure 4–15 shows the operations occurring in the pipeline phases for a load. In the E1 phase, the data address pointer is modified in its register. In the E2 phase, the data address is sent to data memory. In the E3 phase, a memory read at that address is performed.

Figure 4-14. Load Instruction Phases

Figure 4-15. Load Instruction Execution Block Diagram

In the E4 stage of a load, the data is received at the CPU core boundary. Finally, in the E5 phase, the data is loaded into a register. Because data is not written to the register until E5, load instructions have four delay slots. Because pointer results are written to the register in E1, there are no delay slots associated with the address modification.

In the following code, pointer results are written to the A4 register in the first execute phase of the pipeline and data is written to the A3 register in the fifth execute phase.

```
LDW .D1 *A4++,A3
```

Because a store takes three execute phases to write a value to memory and a load takes three execute phases to read from memory, a load following a store accesses the value placed in memory by that store in the cycle after the store is completed. This is why the store is considered to have zero delay slots.

4.2.5 Branch Instructions

Although branch instructions take one execute phase, there are five delay slots between the execution of the branch and execution of the target code. Figure 4–16 shows the pipeline phases used by the branch instruction and branch target code. The delay slots are shaded.

Figure 4–17 shows a branch instruction execution block diagram. If a branch is in the E1 phase of the pipeline (in the .S2 unit in the figure), its branch target is in the fetch packet that is in PG during that same cycle (shaded in the figure). Because the branch target has to wait until it reaches the E1 phase to begin execution, the branch takes five delay slots before the branch target code executes.

Figure 4-16. Branch Instruction Phases

Figure 4-17. Branch Instruction Execution Block Diagram

SPRU731A

4.3 Performance Considerations

The C62x DSP pipeline is most effective when it is kept as full as the algorithms in the program allow it to be. It is useful to consider some situations that can affect pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into from one to eight execute packets (EPs). Each EP contains instructions that execute in parallel. Each instruction executes in an independent functional unit. The effect on the pipeline of combinations of EPs that include varying numbers of parallel instructions, or just a single instruction that executes serially with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of instructions through the pipeline. Another defining factor is the instruction types in the EP. Each type of instruction has a fixed number of execute cycles that determines when this instruction's operations are complete. Section 4.3.2 covers the effect of including a multicycle **NOP** in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is considered. The access of program and data memory is discussed, along with memory stalls.

4.3.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Referring to Figure 4–6 on page 4-6, pipeline operation is shown with eight instructions in every fetch packet. Figure 4–18, however, shows the pipeline operation with a fetch packet that contains multiple execute packets. Code for Figure 4–18 might have this layout:

instruction A ; EP k FP n instruction B ; instruction C ; EP k + 1FP n instruction D instruction E instruction F ; EP k + 2FP n instruction G instruction H instruction I ; EP k + 3 FP n + 1instruction J instruction K instruction L instruction M instruction N instruction 0 instruction P ... continuing with EPs k + 4 through k + 8, which have eight instructions in parallel, like k + 3.

			Clock cycle											
Fetch packet (FP)	Execute packet (EP)	1	2	3	4	5	6	7	8	9	10	11	12	13
n	k	PG	PS	PW	PR	DP	DC	E1	E2	E3	E4	E5		
n	k+1						DP	DC	E1	E2	E3	E4	E5	
n	k+2							DP	DC	E1	E2	E3	E4	E5
n+1	k+3		PG	PS	PW	PR			DP	DC	E1	E2	E3	E4
n+2	k+4			PG	PS	PW	Pipe	eline	PR	DP	DC	E1	E2	E3
n+3	k+5				PG	PS	st	all	PW	PR	DP	DC	E1	E2
n+4	k+6					PG			PS	PW	PR	DP	DC	E1
n+5	k+7								PG	PS	PW	PR	DP	DC
n+6	k+8									PG	PS	PW	PR	DP

Figure 4-18. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets

In Figure 4–18, fetch packet n, which contains three execute packets, is shown followed by six fetch packets (n + 1 through n + 6), each with one execute packet (containing eight parallel instructions). The first fetch packet (n) goes through the program fetch phases during cycles 1–4. During these cycles, a program fetch phase is started for each of the fetch packets that follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the *p*-bits and detects that there are three execute packets (k through k + 2) in fetch packet n. This forces the pipeline to stall, which allows the DP phase to start for execute packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have time to perform the DP phase for each of the three execute packets (k through k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7: it was not allowed to enter the PG phase until after the pipeline stall was released in cycle 8. The pipeline continues operation as shown with fetch packets n + 5 and n + 6 until another fetch packet containing multiple execution packets enters the DP phase, or an interrupt occurs.

4.3.2 Multicycle NOPs

The **NOP** instruction has an optional operand, *count*, that allows you to issue a single instruction for multicycle **NOP**s. A **NOP 2**, for example, fills in extra delay slots for the instructions in its execute packet and for all previous execute packets. If a **NOP 2** is in parallel with an **MPY** instruction, the **MPY** result is available for use by instructions in the next execute packet.

Figure 4–19 shows how a multicycle **NOP** drives the execution of other instructions in the same execute packet. Figure 4–19(a) shows a **NOP** in an execute packet (in parallel) with other code. The results of the **LD**, **ADD**, and **MPY** is available during the proper cycle for each instruction. Hence, **NOP** has no effect on the execute packet.

Figure 4–19(b) shows the replacement of the single-cycle **NOP** with a multicycle **NOP** (**NOP 5**) in the same execute packet. The **NOP 5** causes no operation to perform other than the operations from the instructions inside its execute packet. The results of the LD, ADD, and **MPY** cannot be used by any other instructions until the **NOP 5** period has completed.

Figure 4-19. Multicycle NOP in an Execute Packet

4-20 Pipeline

Figure 4–20 shows how a multicycle **NOP** can be affected by a branch. If the delay slots of a branch finish while a multicycle **NOP** is still dispatching **NOP**s into the pipeline, the branch overrides the multicycle **NOP** and the branch target begins execution five delay slots after the branch was issued.

Figure 4-20. Branching and Multicycle NOPs

[†] Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The **NOP 5** in EP6 forces the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch coincide with cycles 2 through 6. Once the target code reaches E1 in cycle 7, it executes.

4.3.3 Memory Considerations

The C62x DSP has a memory configuration with program memory in one physical space and data memory in another physical space. Data loads and program fetches have the same operation in the pipeline, they just use different phases to complete their operations. With both data loads and program fetches, memory accesses are broken into multiple phases. This enables the C62x DSP to access memory at a high speed. These phases are shown in Figure 4–21.

Figure 4-21. Pipeline Phases Used During Memory Accesses

To understand the memory accesses, compare data loads and instruction fetches/dispatches. The comparison is valid because data loads and program fetches operate on internal memories of the same speed on the C62x DSP and perform the same types of operations (listed in Table 4–3) to accommodate those memories. Table 4–3 shows the operation of program fetches pipeline versus the operation of a data load.

Table 4-3. Program Memory Accesses Versus Data Load Accesses

Operation	Program Memory Access Phase	Data Load Access Phase
Compute address	PG	E1
Send address to memory	PS	E2
Memory read/write	PW	E3
Program memory: receive fetch packet at CPU boundary Data load: receive data at CPU boundary	PR	E4
Program memory: send instruction to functional units Data load: send data to register	DP	E5

Depending on the type of memory and the time required to complete an access, the pipeline may stall to ensure proper coordination of data and instructions. This is discussed in section 4.3.3.1.

In the instance where multiple accesses are made to a single ported memory, the pipeline stalls to allow the extra access to occur. This is called a memory bank hit and is discussed in section 4.3.3.2.

4.3.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from the CPU. This access occurs during the PW phase for a program memory access and during the E3 phase for a data memory access. The memory stall causes all of the pipeline phases to lengthen beyond a single clock cycle, causing execution to take additional clock cycles to finish. The results of the program execution are identical whether a stall occurs or not. Figure 4–22 illustrates this point.

	Clock cycle															
Fetch packet (FP)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
n	PG	PS	PW	PR	DP	DC	E1			E2	E3				E4	E5
n+1		PG	PS	PW	PR	DP	DC			E1	E2				E3	E4
n+2			PG	PS	PW	PR	DP	Prog	Iram	DC	E1				E2	E3
n+3				PG	PS	PW	PR	memo	ry stall	DP	DC		Data		E1	E2
n+4					PG	PS	PW			PR	DP	m	emory st	all	DC	E1
n+5						PG	PS			PW	PR				DP	DC
n+6							PG			PS	PW				PR	DP
n+7										PG	PS				PW	PR
n+8											PG				PS	PW
n+9															PG	PS
n+10		0		0			0				0			0		PG

Figure 4-22. Program and Data Memory Stalls

4.3.3.2 Memory Bank Hits

Most C62x devices use an interleaved memory bank scheme, as shown in Figure 4–23; however, the C6211 DSP uses a two-level cache memory scheme. Each number in Figure 4–23 represents a byte address. A load byte (**LDB**) instruction from address 0 loads byte 0 in bank 0. A load halfword (**LDH**) from address 0 loads the halfword value in bytes 0 and 1, which are also in bank 0. A load word (**LDW**) from address 0 loads bytes 0 through 3 in banks 0 and 1.

Because each of these banks is single-ported memory, only one access to each bank is allowed per cycle. Two accesses to a single bank in a given cycle result in a memory stall that halts all pipeline operation for one cycle, while the second value is read from memory. Two memory operations per cycle are allowed without any stall, as long as they do not access the same bank.

Consider the code in Example 4–2. Because both loads are trying to access the same bank at the same time, one load must wait. The first **LDW** accesses bank 0 on cycle i + 2 (in the E3 phase) and the second **LDW** accesses bank 0 on cycle i + 3 (in the E3 phase). See Table 4–4 for identification of cycles and phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate this extra phase, the loads must access data from different banks (B4 address would need to be in bank 1). For more information on programming topics, see the *TMS320C6000 Programmer's Guide* (SPRU198).

Example 4-2.	Load From	Memory Banks
--------------	-----------	--------------

LDW	.D1	*A4++ , A5	; load 1, A4 address is in bank 0	
LDW	.D2	*B4++,B5	; load 2, B4 address is in bank 0	

	i	<i>i</i> + 1	i + 2	<i>i</i> + 3	<i>i</i> + 4	<i>i</i> + 5
LDW .D1 Bank 0	E1	E2	E3	t	E4	E5
LDW .D2 Bank 0	E1	E2	t	E3	E4	E5

Table 4-4. Loads in Pipeline From Example 4-2

[†] Stall due to memory bank hit

For devices that have more than one memory space (see Figure 4–24), an access to bank 0 in one space does not interfere with an access to bank 0 in another memory space, and no pipeline stall occurs.

The internal memory of the C62x family of DSPs varies from device to device. See your device-specific datasheet to determine the memory spaces in your device.

Figure 4-24. 4-Bank Interleaved Memory With Two Memory Spaces

Chapter 5

Interrupts

This chapter describes CPU interrupts, including reset and the nonmaskable interrupt (NMI). It details the related CPU control registers and their functions in controlling interrupts. It also describes interrupt processing, the method the CPU uses to detect automatically the presence of interrupts and divert program execution flow to your interrupt service code. Finally, the chapter describes the programming implications of interrupts.

Topio	C	Page
5.1	Overview	. 5-2
5.2	Globally Enabling and Disabling Interrupts	5-10
5.3	Individual Interrupt Control	5-12
5.4	Interrupt Detection and Processing	5-15
5.5	Performance Considerations	5-20
5.6	Programming Considerations	5-21

5.1 Overview

Typically, DSPs work in an environment that contains multiple external asynchronous events. These events require tasks to be performed by the DSP when they occur. An interrupt is an event that stops the current process in the CPU so that the CPU can attend to the task needing completion because of the event. These interrupt sources can be on chip or off chip, such as timers, analog-to-digital converters, or other peripherals.

Servicing an interrupt involves saving the context of the current process, completing the interrupt task, restoring the registers and the process context, and resuming the original process. There are eight registers that control servicing interrupts.

An appropriate transition on an interrupt pin sets the pending status of the interrupt within the interrupt flag register (IFR). If the interrupt is properly enabled, the CPU begins processing the interrupt and redirecting program flow to the interrupt service routine.

5.1.1 Types of Interrupts and Signals Used

There are three types of interrupts on the C6000 CPU.

- Reset
- Maskable
- Nonmaskable

These three types are differentiated by their priorities, as shown in Table 5-1. The reset interrupt has the highest priority and corresponds to the RESET signal. The nonmaskable interrupt (NMI) has the second highest priority and corresponds to the NMI signal. The lowest priority interrupts are interrupts 4-15 corresponding to the INT4-INT15 signals. RESET, NMI, and some of the INT4-INT15 signals are mapped to pins on C6000 devices. Some of the INT4-INT15 interrupt signals are used by internal peripherals and some may be unavailable or can be used under software control. Check your device-specific data manual to see your interrupt specifications.
Priority	Interrupt Name	Interrupt Type
Highest	Reset	Reset
	NMI	Nonmaskable
	INT4	Maskable
	INT5	Maskable
	INT6	Maskable
	INT7	Maskable
	INT8	Maskable
	INT9	Maskable
	INT10	Maskable
	INT11	Maskable
	INT12	Maskable
	INT13	Maskable
	INT14	Maskable
Lowest	INT15	Maskable

Table 5-1. Interrupt Priorities

5.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return it to a known state. The reset interrupt is unique in a number of ways:

- RESET is an active-low signal. All other interrupts are active-high signals.
- RESET must be held low for 10 clock cycles before it goes high again to reinitialize the CPU properly.
- ☐ The instruction execution in progress is aborted and all registers are returned to their default states.
- ☐ The reset interrupt service fetch packet must be located at a specific address which is specific to the specific device. See the device data manual for more information.
- RESET is not affected by branches.

5.1.1.2 Nonmaskable Interrupt (NMI)

NMI is the second-highest priority interrupt and is generally used to alert the CPU of a serious hardware problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in the interrupt enable register must be set to 1. If NMIE is set to 1, the only condition that can prevent NMI processing is if the NMI occurs during the delay slots of a branch (whether the branch is taken or not).

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared at the occurrence of an NMI to prevent another NMI from being processed. You cannot manually clear NMIE, but you can set NMIE to allow nested NMIs. While NMI is cleared, all maskable interrupts (INT4-INT15) are disabled.

5.1.1.3 Maskable Interrupts (INT4-INT15)

The CPUs of the C6000 DSPs have 12 interrupts that are maskable. These have lower priority than the NMI and reset interrupts. These interrupts can be associated with external devices, on-chip peripherals, software control, or not be available.

Assuming that a maskable interrupt does not occur during the delay slots of a branch (this includes conditional branches that do not complete execution due to a false condition), the following conditions must be met to process a maskable interrupt:

- The global interrupt enable bit (GIE) bit in the control status register (CSR) is set to1.
- The NMIE bit in the interrupt enable register (IER) is set to1.
- The corresponding interrupt enable (IE) bit in the IER is set to1.
- The corresponding interrupt occurs, which sets the corresponding bit in the interrupt flags register (IFR) to 1 and there are no higher priority interrupt flag (IF) bits set in the IFR.

5.1.1.4 Interrupt Acknowledgment (IACK) and Interrupt Number (INUMn)

The IACK and INUM*n* signals alert hardware external to the C6000 that an interrupt has occurred and is being processed. The IACK signal indicates that the CPU has begun processing an interrupt. The INUM*n* signal (INUM3-INUM0) indicates the number of the interrupt (bit position in the IFR) that is being processed. For example:

INUM3 = 0 (MSB) INUM2 = 1 INUM1 = 1 INUM0 = 1 (LSB)

Together, these signals provide the 4-bit value 0111, indicating INT7 is being processed.

5.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt service table (IST). The IST is a table of fetch packets that contain code for servicing the interrupts. The IST consists of 16 consecutive fetch packets. Each interrupt service fetch packet (ISFP) contains eight instructions. A simple interrupt service routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 5–1. Because each fetch packet contains eight 32-bit instruction words (or 32 bytes), each address in the table is incremented by 32 bytes (20h) from the one adjacent to it.

Figure 5-1. Interrupt Service Table

RESET ISFP
NMI ISFP
Reserved
Reserved
INT4 ISFP
INT5 ISFP
INT6 ISFP
INT7 ISFP
INT8 ISFP
INT9 ISFP
INT10 ISFP
INT11 ISFP
INT12 ISFP
INT13 ISFP
INT14 ISFP
INT15 ISFP

Program memory

5.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 5-2 shows an ISFP that contains an interrupt service routine small enough to fit in a single fetch packet (FP). To branch back to the main program, the FP contains a branch to the interrupt return pointer instruction (**B IRP**). This is followed by a **NOP 5** instruction to allow the branch target to reach the execution stage of the pipeline.

Note:

If the **NOP 5** was not in the routine, the CPU would execute the next five execute packets (some of which are likely to be associated with the next ISFP) because of the delay slots associated with the **B IRP** instruction. See section 4.2.5 for more information.

Figure 5-2. Interrupt Service Fetch Packet

Program memory

If the interrupt service routine for an interrupt is too large to fit in a single fetch packet, a branch to the location of additional interrupt service routine code is required. Figure 5–3 shows that the interrupt service routine for INT4 was too large for a single fetch packet, and a branch to memory location 1234h is required to complete the interrupt service routine.

Note:

The instruction **B LOOP** branches into the middle of a fetch packet and processes code starting at address 1234h. The CPU ignores code from address 1220h–1230h, even if it is in parallel to code at address 1234h.

Figure 5-3. Interrupt Service Table With Branch to Additional Interrupt Service Code Located Outside the IST

5.1.2.2 Interrupt Service Table Pointer (ISTP)

The reset fetch packet must be located at the default location (see device data manual for more information), but the rest of the IST can be at any program memory location that is on a 256-word boundary (that is, any 1K byte boundary). The location of the IST is determined by the interrupt service table base (ISTB) field of the interrupt service table pointer register (ISTP). The ISTP is shown in Figure 2-11 (page 2-21) and described in Table 2-12 (page 2-21). Example 5-1 shows the relationship of the ISTB to the table location.

Example 5-1. Relocation of Interrupt Service Table

			101
(a) Relocating the IST to	800h	0	RESET ISFP
1) Copy IST, located between 800h an	l between 0h and 200h, to the memory location d A00h.		
2) Write 800h to IST	P: MVK 800h, A2 MVC A2, ISTP	800h	RESET ISFP
		820h	NMI ISFP
ISTP = 800h = 1000	0000 0000b	840h	Reserved
(b) How the ISTP directs t	he CPU to the appropriate ISFP in the	860h	Reserved
relocated IST		880h	INT4 ISFP
		8A0h	INT5 ISFP
Assume: IFR = BBC0	0h = 101 <u>1</u> 10 <u>1</u> 1 1100 0000b	8C0h	INT6 ISFP
IER = 1230	h = 000 <u>1</u> 00 <u>1</u> 0 0011 0001b	8E0h	INT7 ISFP
2 enabled interrupts	pending: INT9 and INT12	900h	INT8 ISFP
		920h	INT9 ISFP
	e pending interrupts; the 1s in IER s that are enabled. INT9 has a higher priority	940h	INT10 ISFP
than INT12, so HPEINT is encoded with the value for INT9, 01001b.		96h0	INT11 ISFP
		980h	INT12 ISFP
	to bits 9–5 of the ISTP: 00b – 920b – address of INT9	9A0h	INT13 ISFP
	ISTP = 1001 0010 0000b = 920h = address of INT9		INT14 ISFP

IST

INT15 ISFP Program memory

9E0h

5.1.3 Summary of Interrupt Control Registers

Table 5-2 lists the interrupt control registers on the C62x CPU.

Table 5-2. Interrupt Control Registers

Acronym	Register Name	Description	Page
CSR	Control status register	Allows you to globally set or disable interrupts	2-13
ICR	Interrupt clear register	Allows you to clear flags in the IFR manually	2-16
IER	Interrupt enable register	Allows you to enable interrupts	2-17
IFR	Interrupt flag register	Shows the status of interrupts	2-18
IRP	Interrupt return pointer register	Contains the return address used on return from a maskable interrupt. This return is accomplished via the B IRP instruction.	2-19
ISR	Interrupt set register	Allows you to set flags in the IFR manually	2-20
ISTP	Interrupt service table pointer register	Pointer to the beginning of the interrupt service table	2-21
NRP	Nonmaskable interrupt return pointer register	Contains the return address used on return from a nonmaskable interrupt. This return is accomplished via the B NRP instruction.	2-22

5.2 Globally Enabling and Disabling Interrupts

The control status register (CSR) contains two fields that control interrupts: GIE and PGIE, as shown in Figure 2-4 (page 2-13) and described in Table 2-7 (page 2-14). The global interrupt enable (GIE) bit allows you to enable or disable all maskable interrupts:

- GIE = 1 enables the maskable interrupts so that they are processed.
- GIE = 0 disables the maskable interrupts so that they are not processed.

The CPU detects interrupts in parallel with instruction execution. As a result, the CPU may begin interrupt processing in the same cycle that an **MVC** instruction writes 0 to GIE to disable interrupts. The PGIE bit (bit 1 of CSR) records the value of GIE after the CPU begins interrupt processing, recording whether the program was in the process of disabling interrupts.

During maskable interrupt processing, the CPU finishes executing the current execute packet. The CPU then copies the current value of GIE to PGIE, overwriting the previous value of PGIE. The CPU then clears GIE to prevent another maskable interrupt from occurring before the handler saves the machine's state. (Section 5.6.2 discusses nesting interrupts.)

When the interrupt handler returns to the interrupted code with the **B IRP** instruction, the CPU copies PGIE back to GIE. When the interrupted code resumes, GIE reflects the last value written by the interrupted code.

Because interrupt detection occurs in parallel with CPU execution, the CPU can take an interrupt in the cycle immediately following an **MVC** instruction that clears GIE. The behavior of PGIE and the **B IRP** instruction ensures, however, that interrupts do not occur after subsequent execute packets. Consider the code in Example 5–2.

Example 5-2. Interrupts Versus Writes to GIE

;Ass	ume GIE = 1	
MVC	CSR,B0	;(1) Get CSR
AND	-2,B0,B0	;(2) Get ready to clear GIE
MVC	B0,CSR	;(3) Clear GIE
ADD	A0,A1,A2	;(4)
ADD	A3,A4,A5	;(5)

In Example 5-2, the CPU may service an interrupt between instructions 1 and 2, between instructions 2 and 3, or between instructions 3 and 4. The CPU will not service an interrupt between instructions 4 and 5.

If the CPU services an interrupt between instructions 1 and 2 or between instructions 2 and 3, the PGIE bit will hold the value 1 when arriving at the interrupt service routine. If the CPU services an interrupt between instructions 3 and 4, the PGIE bit will hold the value 0. Thus, when the interrupt service routine resumes the interrupted code, it will resume with GIE set as the interrupted code intended.

Programs must directly manipulate the GIE bit in CSR to disable and enable interrupts. Example 5–3 and Example 5–4 show code examples for disabling and enabling maskable interrupts globally, respectively.

Example 5-3. Code Sequence to Disable Maskable Interrupts Globally

t CSR t ready to clear GIE ear GIE
--

Example o 1. Code coquerice le Enable machable methaple alebany	Example 5-4	. Code Sequence	e to Enable Maska	ble Interrupts Globally
---	-------------	-----------------	-------------------	-------------------------

MVC	CSR,B0	; get CSR
OR	1,B0,B0	; get ready to set GIE
MVC	B0,CSR	; set GIE

5.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of interrupts: reset, nonmaskable, and maskable. Enabling and disabling individual interrupts is done with the interrupt enable register (IER). The status of pending interrupts is stored in the interrupt flag register (IFR). Manual interrupt processing can be accomplished through the use of the interrupt set register (ISR) and interrupt clear register (ICR). The interrupt return pointers restore context after servicing nonmaskable and maskable interrupts.

5.3.1 Enabling and Disabling Interrupts

You can enable and disable individual interrupts by setting and clearing bits in the IER that correspond to the individual interrupts. An interrupt can trigger interrupt processing only if the corresponding bit in the IER is set. Bit 0, corresponding to reset, is not writeable and is always read as 1, so the reset interrupt is always enabled. You cannot disable the reset interrupt. Bits IE4-IE15 can be written as 1 or 0, enabling or disabling the associated interrupt, respectively. The IER is shown in Figure 2-7 (page 2-17) and described in Table 2-9.

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption of an NMI. The NMIE bit is cleared at reset to prevent any interruption of process or initialization until you enable NMI. After reset, you must set the NMIE bit to enable the NMI and to allow INT15-INT4 to be enabled by the GIE bit in CSR and the corresponding IER bit. You cannot manually clear the NMIE bit; the NMIE bit is unaffected by a write of 0. The NMIE bit is also cleared by the occurrence of an NMI. If cleared, the NMIE bit is set only by completing a **B NRP** instruction or by a write of 1 to the NMIE bit. Example 5-5 and Example 5-6 show code for enabling and disabling individual interrupts, respectively.

Example 5-5.	Code Sec	uence to	Enable an	Individual	Interrupt	(INT9)

MVK	200h,B1	; set bit 9
MVC	IER,B0	; get IER
OR	B1,B0,B0	; get ready to set IE9
MVC	B0,IER	; set bit 9 in IER

Example 5-6.	Code Sequence to	o Disable an	Individual	Interrupt	(INT9)

MVK FDF MVC IER	Fh,B1 ; clear bit ,B0	9
AND B1, MVC B0,		y to clear IE9 2 9 in IER

5.3.2 Status of Interrupts

The interrupt flag register (IFR) contains the status of INT4-INT15 and NMI. Each interrupt's corresponding bit in IFR is set to 1 when that interrupt occurs; otherwise, the bits have a value of 0. If you want to check the status of interrupts, use the **MVC** instruction to read IFR. The IFR is shown in Figure 2-8 (page 2-18) and described in Table 2-10.

5.3.3 Setting and Clearing Interrupts

The interrupt set register (ISR) and the interrupt clear register (ICR) allow you to set or clear maskable interrupts manually in IFR. Writing a 1 to IS4-IS15 in ISR causes the corresponding interrupt flag to be set in IFR. Similarly, writing a 1 to a bit in ICR causes the corresponding interrupt flag to be cleared. Writing a 0 to any bit of either ISR or ICR has no effect. Incoming interrupts have priority and override any write to ICR. You cannot set or clear any bit in ISR or ICR to affect NMI or reset. The ISR is shown in Figure 2-10 (page 2-20) and described in Table 2-11. The ICR is shown in Figure 2-6 (page 2-16) and described in Table 2-8.

Note:

Any write to the ISR or ICR (by the **MVC** instruction) effectively has one delay slot because the results cannot be read (by the **MVC** instruction) in IFR until two cycles after the write to ISR or ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in ISR.

Example 5-7 and Example 5-8 show code examples to set and clear individual interrupts, respectively.

Example 5-7. Code to Set an Individual Interrupt (INT6) and Read the Flag Register

MVK	40h,B3
MVC	B3,ISR
NOP	
MVC	IFR,B4

Example 5-8.	Code to Clear an	Individual Interrupt	(INT6) a	and Read the Fla	aa Reaister
		mannada meenape	(ag i legielei

MVK	40h,B3
MVC	B3,ICR
NOP	
MVC	IFR,B4

5.3.4 Returning From Interrupt Servicing

After **RESET** goes high, the control registers are brought to a known value and program execution begins at address 0h. After nonmaskable and maskable interrupt servicing, use a branch to the corresponding return pointer register to continue the previous program execution.

5.3.4.1 CPU State After RESET

After RESET, the control registers and bits contain the following values:

- □ AMR, ISR, ICR, and IFR = 0h
- ISTP = Default value varies by device (See data manual for correct value)
- 🗋 IER = 1h
- □ IRP and NRP = undefined
- CSR bits 15-0 = 100h in little-endian mode

= 000h in big-endian mode

The program execution begins at the address specified by the ISTB field in ISTP.

5.3.4.2 Returning From Nonmaskable Interrupts

The NMI return pointer register (NRP), shown in Figure 2–12 (page 2-22), contains the return pointer that directs the CPU to the proper location to continue program execution after NMI processing. A branch using the address in NRP (**B NRP**) in your interrupt service routine returns to the program flow when NMI servicing is complete. Example 5–9 shows how to return from an NMI.

Example 5-9. Code to Return From NMI

В	NRP	; return, sets NMIE
NOP	5	; delay slots

5.3.4.3 Returning From Maskable Interrupts

The interrupt return pointer register (IRP), shown in Figure 2-9 (page 2-19), contains the return pointer that directs the CPU to the proper location to continue program execution after processing a maskable interrupt. A branch using the address in IRP (**B IRP**) in your interrupt service routine returns to the program flow when interrupt servicing is complete. Example 5-10 shows how to return from a maskable interrupt.

Example 5-10. Code to Return from a Maskable Interrupt

B IRP	; return, moves PGIE to GIE
NOP 5	; delay slots

5.4 Interrupt Detection and Processing

When an interrupt occurs, it sets a flag in the interrupt flag register (IFR). Depending on certain conditions, the interrupt may or may not be processed. This section discusses the mechanics of setting the flag bit, the conditions for processing an interrupt, and the order of operation for detecting and processing an interrupt. The similarities and differences between reset and nonreset interrupts are also discussed.

5.4.1 Setting the Nonreset Interrupt Flag

Figure 5-4 shows the processing of a nonreset interrupt (INTm). The flag (IFm) for INTm in the IFR is set following the low-to-high transition of the INTm signal on the CPU boundary. This transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory stalls that might extend a CPU cycle. Once there is a low-to-high transition on an external interrupt pin (cycle 1), it takes two clock cycles for the signal to reach the CPU boundary (cycle 3). When the interrupt signal enters the CPU, it is has been detected (cycle 4). Two clock cycles after detection, the interrupt's corresponding flag bit in the IFR is set (cycle 6).

In Figure 5-4, IFm is set during CPU cycle 6. You could attempt to clear IFm by using an **MVC** instruction to write a 1 to bit m of the ICR in execute packet n + 3 (during CPU cycle 4). However, in this case, the automated write by the interrupt detection logic takes precedence and IFm remains set.

Figure 5-4 assumes INTm is the highest-priority pending interrupt and is enabled by the GIE and NMIE bits, as necessary. If it is not the highest-priority pending interrupt, IFm remains set until either you clear it by writing a 1 to bit m of ICR or the processing of INTm occurs.

5.4.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 5–4, a nonreset interrupt in need of processing is detected. For this interrupt to be processed, the following conditions must be valid on the same clock cycle and are evaluated every clock cycle:

- □ IFm is set during CPU cycle 6. (This determination is made in CPU cycle 4 by the interrupt logic.)
- There is not a higher priority IFm bit set in the IFR.
- The corresponding bit in the IER is set (IEm = 1).
- GIE = 1
- □ NMIE = 1
- The five previous execute packets (n through n + 4) do not contain a branch (even if the branch is not taken) and are not in the delay slots of a branch.

Any pending interrupt will be taken as soon as pending branches are completed.

Clock cycle	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
External INTm at pin			•			•	†	, , , , , , , , , , , , , , , , , , ,	1		1				 	 	 	, , ,
IFm											1	ı 						
IACK				1				\frown								, ,		1 1
INUM Execute packet	0 '	0	0	0	0	0	0	m	0	0	0	0	0	0	0	0	0	0
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11	DP PR PW PS	DP PR PW PS	E1 DC DP PR PW	DP PR PW PS	E3 E1 DC DP PR PW	E4 E3 E1 DC DP PR PW PS	E2 E1 DC DP			E5	—] •]	Contai	ins no	branc	, h , , , , , , , , , ,			
		 					↓		rcles 6 terrupt di	proce sable ↓	essing	¦is ¦ ¦ ↓	↓ ↓	‡				' ' ' E5
ISFP CPU cycle	0	1	2	3	4	5	6	7	8	PW 9	10	<u>' DP</u> 11	DC 12	E1	E2	E3	E4 16	_ ⊑э 17

Figure 5-4. Nonreset Interrupt Detection and Processing: Pipeline Operation

[†] IFm is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of INTm.

[‡] After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are disabled when GIE = 0.

5.4.3 Actions Taken During Nonreset Interrupt Processing

During CPU cycles 6 through 12 of Figure 5–4, the following interrupt processing actions occur:

- Processing of subsequent nonreset interrupts is disabled.
- □ For all interrupts except NMI, the PGIE bit is set to the value of the GIE bit and then the GIE bit is cleared.
- Given For NMI, the NMIE bit is cleared.
- The next execute packets (from n + 5 on) are annulled. If an execute packet is annulled during a particular pipeline stage, it does not modify any CPU state. Annulling also forces an instruction to be annulled in future pipeline stages.
- ☐ The address of the first annulled execute packet (n + 5) is loaded in NRP (in the case of NMI) or IRP (for all other interrupts).
- □ A branch to the address held in ISTP (the pointer to the ISFP for INTm) is forced into the E1 phase of the pipeline during cycle 7.
- During cycle 7, IACK is asserted and the proper INUMn signals are asserted to indicate which interrupt is being processed. The timings for these signals in Figure 5-4 represent only the signals' characteristics inside the CPU. The external signals may be delayed and be longer in duration to handle external devices. Check the device-specific datasheet for your timing values.
- □ IFm is cleared during cycle 8.

5.4.4 Setting the RESET Interrupt Flag

RESET must be held low for a minimum of 10 clock cycles. Four clock cycles after RESET goes high, processing of the reset vector begins. The flag for RESET (IF0) in the IFR is set by the low-to-high transition of the RESET signal on the CPU boundary. In Figure 5–5, IF0 is set during CPU cycle 15. This transition is detected on a clock-cycle by clock-cycle basis and is not affected by memory stalls that might extend a CPU cycle.

Figure 5-5. RESET Interrupt Detection and Processing: Pipeline Operation

[†] IF0 is set on the next CPU cycle boundary after a 4-clock cycle delay after the rising edge of RESET.

[‡] After this point, interrupts are still disabled. All nonreset interrupts are disabled when NMIE = 0. All maskable interrupts are disabled when GIE = 0.

5.4.5 Actions Taken During RESET Interrupt Processing

A low signal on the RESET pin is the only requirement to process a reset. Once RESET makes a high-to-low transition, the pipeline is flushed and CPU registers are returned to their reset values. The GIE bit, the NMIE bit, and the ISTB bits in ISTP are cleared. For the CPU state after reset, see section 5.3.4.1.

During CPU cycles 15 through 21 of Figure 5–5, the following reset processing actions occur:

- Processing of subsequent nonreset interrupts is disabled because the GIE and NMIE bits are cleared.
- □ A branch to the address held in ISTP (the pointer to the ISFP for INT0) is forced into the E1 phase of the pipeline during cycle 16.
- During cycle 16, IACK is asserted and the proper INUM*n* signals are asserted to indicate a reset is being processed.
- □ IF0 is cleared during cycle 17.

Note:

Code that starts running after reset must explicitly enable the GIE bit, the NMIE bit, and IER to allow interrupts to be processed.

5.5 Performance Considerations

The interaction of the C62x CPU and sources of interrupts present performance issues for you to consider when you are developing your code.

5.5.1 General Performance

- Overhead. Overhead for all CPU interrupts is 7 cycles. You can see this in Figure 5-4, where no new instructions are entering the E1 pipeline phase during CPU cycles 6 through 12.
- □ Latency. Interrupt latency is 11 cycles (21 cycles for RESET). In Figure 5-4, although the interrupt is active in cycle 2, execution of interrupt service code does not begin until cycle 13.
- □ Frequency. The logic clears the nonreset interrupt (IFm) on cycle 8, with any incoming interrupt having highest priority. Thus, an interrupt is can be recognized every second cycle. Also, because a low-to-high transition is necessary, an interrupt can occur only every second cycle. However, the frequency of interrupt processing depends on the time required for interrupt service and whether you reenable interrupts during processing, thereby allowing nested interrupts. Effectively, only two occurrences of a specific interrupt can be recognized in two cycles.

5.5.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC and subsequent phases of the pipeline, no conflicts between code parallelism and interrupts exist. There are three operations or conditions that can affect or are affected by interrupts:

- Branches. Nonreset interrupts are delayed, if any execute packets n through n + 4 in Figure 5-4 contain a branch or are in the delay slots of a branch.
- □ **Memory stalls.** Memory stalls delay interrupt processing, because they inherently extend CPU cycles.
- Multicycle NOPs. Multicycle NOPs (including the IDLE instruction) operate like other instructions when interrupted, except when an interrupt causes annulment of any but the first cycle of a multicycle NOP. In that case, the address of the next execute packet in the pipeline is saved in NRP or IRP. This prevents returning to an IDLE instruction or a multicycle NOP that was interrupted.

5.6 Programming Considerations

The interaction of the C62x CPUs and sources of interrupts present programming issues for you to consider when you are developing your code.

5.6.1 Single Assignment Programming

Using the same register to store different variables (called here: multiple assignment) can result in unpredictable operation when the code can be interrupted.

To avoid unpredictable operation, you must employ the single assignment method in code that can be interrupted. When an interrupt occurs, all instructions entering E1 prior to the beginning of interrupt processing are allowed to complete execution (through E5). All other instructions are annulled and refetched upon return from interrupt. The instructions encountered after the return from the interrupt do not experience any delay slots from the instructions prior to the instructions after the interrupt can appear, to the instructions after the interrupt, to have fewer delay slots than they actually have.

Example 5-11 shows a code fragment which stores two variables into A1 using multiple assignment. Example 5-12 shows equivalent code using the single assignment programming method which stores the two variables into two different registers.

For example, suppose that register A1 contains 0 and register A0 points to a memory location containing a value of 10 before reaching the code in Example 5-11. The **ADD** instruction, which is in a delay slot of the **LDW**, sums A2 with the value in A1 (0) and the result in A3 is just a copy of A2. If an interrupt occurred between the **LDW** and **ADD**, the **LDW** would complete the update of A1 (10), the interrupt would be processed, and the **ADD** would sum A1 (10) with A2 and place the result in A3 (equal to A2 + 10). Obviously, this situation produces incorrect results.

In Example 5–12, the single assignment method is used. The register A1 is assigned only to the **ADD** input and not to the result of the **LDW**. Regardless of the value of A6 with or without an interrupt, A1 does not change before it is summed with A2. Result A3 is equal to A2.

Example 5-11. Code Without Single Assignment: Multiple Assignment of A1

LDW	.D1	*A0,A1	
ADD	.L1	A1,A2,A3	
NOP	3		
MPY	.M1	A1,A4,A5	; uses new Al

Example 5-12. Code Using Single Assignment

LDW	.D1	*A0,A6	
ADD	.L1	A1,A2,A3	
NOP	3		
MPY	.M1	A6,A4,A5	; uses A6

5.6.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are disabled. However, when the interrupt service routine is for one of the maskable interrupts (INT4–INT15), an NMI can interrupt processing of the maskable interrupt. In other words, an NMI can interrupt a maskable interrupt, but neither an NMI nor a maskable interrupt can interrupt an NMI.

There may be times when you want to allow an interrupt service routine to be interrupted by another (particularly higher priority) interrupt. Even though the processor by default does not allow interrupt service routines to be interrupted unless the source is an NMI, it is possible to nest interrupts under software control. To allow nested interrupts, the interrupt service routine must perform the following initial steps in addition to its normal work of saving any registers (including control registers) that it modifies:

- 1) The contents of IRP (or NRP) must be saved
- 2) The contents of the PGIE bit must be saved
- 3) The GIE bit must be set to 1

Prior to returning from the interrupt service routine, the code must restore the registers saved above as follows:

- The GIE bit must be first cleared to 0
- 2) The PGIE bit saved value must be restored
- 3) The IRP (or NRP) saved value must be restored

Although steps 2 and 3 above may be performed in either order, it is important that the GIE bit is cleared first. This means that the GIE and PGIE bits must be restored with separate writes to CSR. If these bits are not restored separately, then it is possible that the PGIE bit is overwritten by nested interrupt processing just as interrupts are being disabled.

Example 5-13 shows a simple assembly interrupt handler that allows nested interrupts. This example saves its context to the compiler's stack, pointed to by B15. This assumes that the C runtime conventions are being followed. The example code is not optimized, to aid in readability.

Example 5-13. Assembly Interrupt Service Routine That Allows Nested Interrupts

isr: STW B0, *B15--[4] ; Save B0, allocate 4 words of stack STW B1, *B15[1] ; Save B1 on stack IRP, BO MVC ; Save IRP on stack STWB0, *B15[2] MVC CSR, BO STW B0, *B15[3] ; Save CSR (and thus PGIE) on stack OR B0, 1, B1 MVC B1, CSR ; Enable interrupts ; Interrupt service code goes here. ; Interrupts may occur while this code executes. MVC CSR, BO ; \ AND B0, -2, B1 ; |-- Disable interrupts. MVC B1, CSR ;/ (Set GIE to 0) LDW *B15[3], B0 ; get saved value of CSR into B0 NOP ; wait for LDW *B15[3] to finish 4 B0, CSR ; Restore PGIE MVC LDW *B15[2], B0 ; get saved value of IRP into B1 NOP 4 BO, IRP MVC ; Restore IRP ; Return from interrupt IRP в LDW *B15[1], B1 ; Restore B1 *++B15[4], B0 ; Restore B0, release stack. LDW NOP 4 ; wait for B IRP and LDW to complete.

Example 5-14 shows a C-based interrupt handler that allows nested interrupts. The steps are similar, although the compiler takes care of allocating the stack and saving CPU registers. For more information on using C to access control registers and write interrupt handlers, see the *TMS320C6000 Optimizing C Compiler Users Guide*, SPRU187.

Example 5-14 uses the interrupt keyword along with explicit context save and restore code. An alternative is to use the DSP/BIOS interrupt dispatcher that also provides an easy way to nest interrupt service routines.

Example 5-14. C Interrupt Service Routine That Allows Nested Interrupts

```
/* c6x.h contains declarations of the C6x control registers
                                                                                      */
#include <c6x.h>
interrupt void isr(void)
{
       unsigned old csr;
       unsigned old irp;
       old irp = IRP
                              ;/* Save IRP
                                                                                      */
       old_csr = CSR
                              ;/* Save CSR (and thus PGIE)
                                                                                      */
       CSR = old_csr | 1 ;/* Enable interrupts
                                                                                      */
       /* Interrupt service code goes here.
                                                                                      */
       /* Interrupts may occur while this code executes
                                                                                      */
       CSR = CSR & -2 ;/* Disable interrupts
CSR = old_csr ;/* Restore CSR (and thus PGIE)
IRP = old_irp ;/* Restore IRP
                                                                                      */
                                                                                      */
                                                                                      */
```

5.6.3 Manual Interrupt Processing

You can poll the IFR and IER to detect interrupts manually and then branch to the value held in the ISTP as shown below in Example 5–15.

The code sequence begins by copying the address of the highest priority interrupt from the ISTP to the register B2. The next instruction extracts the number of the interrupt, which is used later to clear the interrupt. The branch to the interrupt service routine comes next with a parallel instruction to set up the ICR word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return address is stored in the B2 register and then copied to the interrupt return pointer (IRP). Finally, the number of the highest priority interrupt, stored in B1, is used to shift the ICR word in B1 to clear the interrupt.

Example 5-15. Manual Interrupt Processing

MVC		ISTP,B2	; get related ISF	P address
EXTU		B2,23,27,B1	; extract HPEINT	
[B1]	В	В2	; branch to inter	rupt
[B1]	MVK	1,A0	; setup ICR word	
[B1]	MVK	RET_ADR, B2	; create return a	ddress
[B1]	MVKH	RET_ADR,B2	;	
[B1]	MVC	B2,IRP	; save return add	ress
[B1]	SHL	A0,B1,B1	; create ICR word	
[B1]	MVC	B1,ICR	; clear interrupt	flag
RET_ADR:		(Post interrupt s	vice routine Code)	

5.6.4 Traps

A trap behaves like an interrupt, but is created and controlled with software. The trap condition can be stored in any one of the conditional registers: A1, A2, B0, B1, or B2. If the trap condition is valid, a branch to the trap handler routine processes the trap and the return.

Example 5-16 and Example 5-17 show a trap call and the return code sequence, respectively. In the first code sequence, the address of the trap handler code is loaded into register B0 and the branch is called. In the delay slots of the branch, the context is saved in the B0 register, the GIE bit is cleared to disable maskable interrupts, and the return pointer is stored in the B1 register. If the trap handler were within the 21-bit offset for a branch using a displacement, the **MVKH** instructions could be eliminated, thus shortening the code sequence.

The trap is processed with the code located at the address pointed to by the label TRAP_HANDLER. If the B0 or B1 registers are needed in the trap handler, their contents must be stored to memory and restored before returning. The code shown in Example 5–17 should be included at the end of the trap handler code to restore the context prior to the trap and return to the TRAP_RETURN address.

Example 5-16. Code Sequence to Invoke a Trap

[A1] [A1]	MVK MVKH	TRAP_HANDLER,B0 TRAP HANDLER,B0	;	load 32-bit trap address
[A1]	В	B0	;	branch to trap handler
[A1]	MVC	CSR,B0	;	read CSR
[A1]	AND	-2,B0,B1	;	disable interrupts:GIE=0
[A1]	MVC	B1,CSR	;	write to CSR
[A1]	MVK	TRAP_RETURN, B1	;	load 32-bit return address
[A1]	MVKH	TRAP_RETURN, B1		
TRAP_RE	TURN:	(post-trap code)		

Note: A1 contains the trap condition.

Example 5-17. Code Sequence for Trap Return

В	B1	; return
MVC	B0,CSR	; restore CSR
NOP	4	; delay slots

Appendix A

Mapping Between Instruction and Functional Unit

Table A-1 lists the instructions that execute on each functional unit.

			Functio	nal Unit	
Instruction	Page	.L Unit	.M Unit	.S Unit	.D Unit
ABS	3-24				
ADD	3-26	1-			\checkmark
ADDAB	3-30				
ADDAH	3-32				
ADDAW	3-34				
ADDK	3-36			\checkmark	
ADDU	3-37				
ADD2	3-39			\mathcal{V}	
AND	3-41	\sim			
B displacement	3-43			\checkmark	
B register	3-45			∕ ∕†	
B IRP	3-47			∕ ∕†	
B NRP	3-49			∕ ∕†	
CLR	3-51				
CMPEQ	3-54	1			
CMPGT	3-56	\sim			

† S2 only

[‡] D2 only

		Functional Unit			
Instruction	Page	.L Unit	.M Unit	.S Unit	.D Unit
CMPGTU	3-59	\sim			
CMPLT	3-61	\sim			
CMPLTU	3-64	\sim			
EXT	3-66			1	
EXTU	3-69				
IDLE	3-72		No	unit	
LDB memory	3-73				
LDB memory (15-bit offset)	3-76				▶ ‡
LDBU memory	3-73				
LDBU memory (15-bit offset)	3-76				▶ ‡
LDH memory	3-78				
LDH memory (15-bit offset)	3-81				₩‡
LDHU memory	3-78				
LDHU memory (15-bit offset)	3-81				▶ ‡
LDW memory	3-83				
LDW memory (15-bit offset)	3-86				▶ ‡
LMBD	3-88				
MPY	3-90				
MPYH	3-92				
MPYHL	3-93				
MPYHLU	3-94				
MPYHSLU	3-95				
MPYHSU	3-96				
MPYHU	3-97		\checkmark		

Table A-1. Instruction to Functional Unit Mapping (Continued)

[†] S2 only [‡] D2 only

		Functional Unit			
Instruction	Page	.L Unit	.M Unit	.S Unit	.D Unit
MPYHULS	3-98				
MPYHUS	3-99		\checkmark		
MPYLH	3-100		\checkmark		
MPYLHU	3-101		\checkmark		
MPYLSHU	3-102				
MPYLUHS	3-103		\sim		
MPYSU	3-104				
MPYU	3-106				
MPYUS	3-107		\sim		
MV	3-108			\sim	
MVC	3-110			/ _†	
MVK	3-113			\sim	
MVKH	3-115				
MVKL	3-117			1	
MVKLH	3-115			1	
NEG	3-119			1	
NOP	3-120		No	unit	
NORM	3-122				
NOT	3-124				
OR	3-125				
SADD	3-127				
SAT	3-130				
SET	3-132				

Table A-1. Instruction to Functional Unit Mapping (Continued)

[†] S2 only [‡] D2 only

		Functional Unit			
Instruction	Page	.L Unit	.M Unit	.S Unit	.D Unit
SHL	3-135			\checkmark	
SHR	3-137			\checkmark	
SHRU	3-139			~	
SMPY	3-141		\checkmark		
SMPYH	3-143		\checkmark		
SMPYHL	3-144				
SMPYLH	3-146				
SSHL	3-148				
SSUB	3-150				
STB memory	3-152				
STB memory (15-bit offset)	3-154				/ ≁‡
STH memory	3-156				
STH memory (15-bit offset)	3-159				∕∕ ‡
STW memory	3-161				
STW memory (15-bit offset)	3-163				₩‡
SUB	3-165				
SUBAB	3-168				
SUBAH	3-170				
SUBAW	3-171				1
SUBC	3-173				
SUBU	3-175				
SUB2	3-177				
XOR	3-179				
ZERO	3-181				1

Table A-1. Instruction to Functional Unit Mapping (Continued)

[†] S2 only [‡] D2 only

Mapping Between Instruction and Functional Unit A-4

Index

1X and 2X paths 2-6

Α

A4 MODE bits 2-10 A5 MODE bits 2-10 A6 MODE bits 2-10 A7 MODE bits 2-10 ABS instruction 3-24 absolute value, with saturation (ABS) 3-24 actions taken during nonreset interrupt processing 5-17 actions taken during RESET interrupt processing 5-19 add signed 16-bit constant to register (ADDK) 3-36 two 16-bit integers on upper and lower register halves (ADD2) 3-39 using byte addressing mode (ADDAB) 3-30 using halfword addressing mode (ADDAH) 3-32 using word addressing mode (ADDAW) 3-34 with saturation, two signed integers (SADD) 3-127 without saturation two signed integers (ADD) 3-26 two unsigned integers (ADDU) 3-37 ADD instruction 3-26 add instructions using circular addressing 3-18 using linear addressing 3-16 ADD2 instruction 3-39 ADDAB instruction 3-30 ADDAH instruction 3-32 ADDAW instruction 3-34 ADDK instruction 3-36 address generation for load/store 3-18

address paths 2-7 addressing mode 3-16 circular mode 3-17 linear mode 3-16 addressing mode register (AMR) 2-10 ADDU instruction 3-37 AMR 2-10 AND instruction 3-41 applications, TMS320 DSP family 1-3 architecture, TMS320C62x DSP 1-6 arithmetic shift left (SHL) 3-135 arithmetic shift right (SHR) 3-137

Β

B instruction using a displacement 3-43 using a register 3-45 B IRP instruction 3-47 B NRP instruction 3-49 B4 MODE bits 2-10 B5 MODE bits 2-10 B6 MODE bits 2-10 B7 MODE bits 2-10 bit field clear (CLR) 3-51 extract and sign-extend a bit field (EXT) 3-66 extract and zero-extend a bit field (EXTU) 3-69 set (SET) 3-132 bitwise AND (AND) 3-41 bitwise exclusive OR (XOR) 3-179 bitwise NOT (NOT) 3-124 bitwise OR (OR) 3-125 BK0 bits 2-10 BK1 bits 2-10

block diagram branch instructions 4-17 decode pipeline phases 4-4 execute pipeline phases 4-5 fetch pipeline phases 4-3 load instructions 4-15 multiply instructions 4-13 pipeline phases 4-8 single-cycle instructions 4-12 store instructions 4-14 TMS320C62x CPU data path 2-3 TMS320C62x DSP 1-6 block size calculations 2-12 branch using a displacement (B) 3-43 using a register (B) 3-45 using an interrupt return pointer (B IRP) 3-47 using NMI return pointer (B NRP) 3-49 branch instruction block diagram 4-17 pipeline operation 4-17 branching into the middle of an execute packet 3-9 performance considerations 5-20 to additional interrupt service routine 5-7

С

circular addressing, block size calculations 2-12 circular addressing mode add instructions 3-18 block size specification 3-17 load instructions 3-17 store instructions 3-17 subtract instructions 3-18 clear a bit field (CLR) 3-51 clear an individual interrupt 5-13 clearing interrupts 5-13 CLR instruction 3-51 CMPEQ instruction 3-54 CMPGT instruction 3-56 CMPGTU instruction 3-59 CMPLT instruction 3-61 CMPLTU instruction 3-64

compare for equality, signed integers (CMPEQ) 3-54 for greater than signed integers (CMPGT) 3-56 unsigned integers (CMPGTU) 3-59 for less than signed integers (CMPLT) 3-61 unsigned integers (CMPLTU) 3-64 compare for equality, signed integers (CMPEQ) 3-54 compare for greater than signed integers (CMPGT) 3-56 unsigned integers (CMPGTU) 3-59 compare for less than signed integers (CMPLT) 3-61 unsigned integers (CMPLTU) 3-64 conditional operations 3-10 conditional subtract and shift (SUBC) 3-173 conditions for processing a nonreset interrupt 5-15 constraints on cross paths 3-11 on instructions using the same functional unit 3-11 on loads and stores 3-12 on long data 3-13 on register reads 3-14 on register writes 3-15 control, individual interrupts 5-12 control register, interrupts 5-9 control status register (CSR) 2-13 CPU control register file 2-7 data paths 2-3 functional units 2-5 general-purpose register files 2-2 introduction 1-7 load and store paths 2-6 CPU data paths relationship to register files 2-6 TMS320C62x DSP 2-3 CPU ID bits 2-13 cross paths 2-6 CSR 2-13

Index

D

DA1 and DA2 2-7 data address paths 2-7 DC pipeline phase 4-3 DCC bits 2-13 decoding instructions 4-3 delay slots 3-6 disabling an individual interrupt 5-12 disabling maskable interrupts globally 5-11 DP pipeline phase 4-3

Ε

E1 phase program counter (PCE1) 2-22 E1-E5 pipeline phases 4-5 EN bit 2-13 enabling an individual interrupt 5-12 enabling maskable interrupts globally 5-11 execute packet, pipeline operation 4-18 execution notations 3-2 EXT instruction 3-66 extract and sign-extend a bit field (EXT) 3-66 extract and zero-extend a bit field (EXTU) 3-69 EXTU instruction 3-69

F

features, TMS320C62x DSP 1-4 fetch packet 3-7, 5-6 fetch packets fully parallel 3-8 fully serial 3-8 partially serial 3-9 fetch pipeline phase 4-2 functional unit to instruction mapping A-1 functional units 2-5

G

general-purpose register files cross paths 2-6 data address paths 2-7 description 2-2 memory, load, and store paths 2-6 GIE bit 2-13

Η

HPEINT bits 2-21

ICn bit 2-16 ICR 2-16 IDLE instruction 3-72 IEn bit 2-17 IER 2-17 IFn bit 2-18 IFR 2-18 individual interrupt control 5-12 instruction compatibility 3-20 instruction descriptions 3-20 instruction operation, notations 3-2 instruction to functional unit mapping A-1 instruction types branch instructions 4-17 load instructions 4-15 multiply instructions 4-13 single-cycle 4-12 store instructions 4-13 two-cycle 4-13 interleaved memory bank scheme 4-24 interrupt clear register (ICR) 2-16 interrupt detection and processing 5-15 interrupt enable register (IER) 2-17 interrupt flag register (IFR) 2-18 interrupt return pointer register (IRP) 2-19 interrupt service fetch packet (ISFP) 5-6 interrupt service table (IST) 5-5 interrupt service table pointer (ISTP), overview 5-8 interrupt service table pointer register (ISTP) 2-21 interrupt set register (ISR) 2-20

interrupts clearing 5-13 control 5-12 control registers 5-9 detection 5-15 detection and processing actions taken during nonreset interrupt processing 5-17 actions taken during RESET interrupt processing 5-19 conditions for processing a nonreset interrupt 5-15 setting the nonreset interrupt flag 5-15 setting the RESET interrupt flag 5-18 disabling 5-12 enabling 5-12 global control 5-10 globally disabling 5-10 globally enabling 5-10 manual interrupt processing 5-24 overview 5-2 performance considerations 5-20 frequency 5-20 latency 5-20 overhead 5-20 pipeline interaction 5-20 pipeline interaction branches 5-20 code parallelism 5-20 memory stalls 5-20 multicycle NOPs 5-20 priorities 5-3 processing 5-15 programming considerations 5-21 nested interrupts 5-22 single assignment 5-21 traps 5-25 returning from interrupt servicing 5-14 setting 5-13 signals used 5-2 status 5-13 types of 5-2 invoking a trap 5-25 IRP 2-19 IRP bits 2-19 ISFP 5-6 ISn bit 2-20 ISR 2-20

IST 5-5 ISTB bits 2-21 ISTP 2-21

latency 3-6 LDB instruction 5-bit unsigned constant offset or register offset 3-73 15-bit unsigned constant offset 3-76 LDBU instruction 5-bit unsigned constant offset or register offset 3-73 15-bit constant offset 3-76 LDH instruction 5-bit unsigned constant offset or register offset 3-78 15-bit unsigned constant offset 3-81 LDHU instruction 5-bit unsigned constant offset or register offset 3-78 15-bit unsigned constant offset 3-81 LDW instruction 5-bit unsigned constant offset or register offset 3-83 15-bit unsigned constant offset 3-86 leftmost bit detection (LMBD) 3-88 linear addressing mode 3-16 add instructions 3-16 load instructions 3-16 store instructions 3-16 subtract instructions 3-16 LMBD instruction 3-88 load byte from memory with a 5-bit unsigned constant offset or register offset (LDB and LDBU) 3-73 from memory with a 15-bit unsigned constant offset (LDB and LDBU) 3-76 halfword from memory with a 5-bit unsigned constant offset or register offset (LDH and LDHU) 3-78 from memory with a 15-bit unsigned constant offset (LDH and LDHU) 3-81

Index-4

load (continued) word from memory with a 5-bit unsigned constant offset or register offset (LDW) 3-83 from memory with a 15-bit unsigned constant offset (LDW) 3-86 load and store paths CPU 2-6 load instructions block diagram 4-15 conflicts 3-12 pipeline operation 4-15 syntax for indirect addressing 3-18 using circular addressing 3-17 using linear addressing 3-16 load or store to the same memory location, rules 4-14 load paths 2-6 logical shift right (SHRU) 3-139

Ν

memory introduction 1-7 paths 2-6 memory bank hits 4-24 memory considerations 4-22 memory bank hits 4-24 memory stalls 4-23 memory paths 2-6 memory stalls 4-23 move 16-bit constant into upper bits of register (MVKH and MVKLH) 3-115 between control file and register file (MVC) 3-110 from register to register (MV) 3-108 signed constant into register and sign extend (MVK) 3-113 signed constant into register and sign extend (MVKL) 3-117 MPY instruction 3-90 MPYH instruction 3-92 MPYHL instruction 3-93 MPYHLU instruction 3-94 MPYHSLU instruction 3-95 MPYHSU instruction 3-96

MPYHU instruction 3-97 MPYHULS instruction 3-98 MPYHUS instruction 3-99 MPYLH instruction 3-100 MPYLHU instruction 3-101 MPYLSHU instruction 3-102 MPYLUHS instruction 3-103 MPYSU instruction 3-104 MPYU instruction 3-106 MPYUS instruction 3-107 multicycle NOP with no termination until interrupt (IDLE) 3-72 multicycle NOPs 4-20 multiply signed by signed signed 16 LSB by signed 16 LSB (MPY) 3-90 signed 16 LSB by signed 16 LSB with left shift and saturation (SMPY) 3-141 signed 16 LSB by signed 16 MSB (MPYLH) 3-100 signed 16 LSB by signed 16 MSB with left shift and saturation (SMPYLH) 3-146 signed 16 MSB by signed 16 LSB (MPYHL) 3-93 signed 16 MSB by signed 16 LSB with left shift and saturation (SMPYHL) 3-144 signed 16 MSB by signed 16 MSB (MPYH) 3-92 signed 16 MSB by signed 16 MSB with left shift and saturation (SMPYH) 3-143 signed by unsigned signed 16 LSB by unsigned 16 LSB (MPYSU) 3-104 signed 16 LSB by unsigned 16 MSB (MPYLSHU) 3-102 signed 16 MSB by unsigned 16 LSB (MPYHSLU) 3-95 signed 16 MSB by unsigned 16 MSB (MPYHSU) 3-96 unsigned by signed unsigned 16 LSB by signed 16 LSB (MPYUS) 3-107 unsigned 16 LSB by signed 16 MSB (MPYLUHS) 3-103 unsigned 16 MSB by signed 16 LSB (MPYHULS) 3-98 unsigned 16 MSB by signed 16 MSB (MPYHUS) 3-99

multiply (continued) unsigned by unsigned unsigned 16 LSB by unsigned 16 LSB (MPYU) 3-106 unsigned 16 LSB by unsigned 16 MSB (MPYLHU) 3-101 unsigned 16 MSB by unsigned 16 LSB (MPYHLU) 3-94 unsigned 16 MSB by unsigned 16 MSB (MPYHU) 3-97 multiply instructions block diagram 4-13 pipeline operation 4-13 MV instruction 3-108 MVC instruction 3-110 MVK instruction 3-113 MVKH instruction 3-115 MVKL instruction 3-117 MVKLH instruction 3-115

Ν

NEG instruction 3-119 negate (NEG) 3-119 nested interrupts 5-22 NMI return pointer register (NRP) 2-22 NMIE bit 2-17 NMIF bit 2-18 no operation (NOP) 3-120 NOP instruction 3-120 NORM instruction 3-122 normalize integer (NORM) 3-122 NOT instruction 3-124 notational conventions iii NRP 2-22 NRP bits 2-22

0

opcode, fields and meanings 3-5 operands, examples 3-21 options, TMS320C62x DSP 1-4 OR instruction 3-125 overview interrupts 5-2 pipeline 4-2 TMS320 DSP family 1-2 TMS320C6000 DSP family 1-2

P

parallel code 3-9 parallel fetch packets 3-8 parallel operations 3-7 branch into the middle of an execute packet 3-9 parallel code 3-9 partially serial fetch packets 3-9 PCC bits 2-13 PCE1 2-22 PCE1 bits 2-22 performance considerations interrupts 5-20 pipeline 4-18 PG pipeline phase 4-2 PGIE bit 2-13 pipeline decode stage 4-3 execute stage 4-5 execution 4-11 fetch stage 4-2 overview 4-2 performance considerations 4-18 phases 4-2 stages 4-2 summary 4-6 pipeline execution 4-11 pipeline operation branch instructions 4-17 load instructions 4-15 multiple execute packets in a fetch packet 4-18 multiply instructions 4-13 one execute packet per fetch packet 4-6 single-cycle instructions 4-12 store instructions 4-13 two-cycle instructions 4-13 pipeline phases block diagram 4-8 used during memory accesses 4-22 PR pipeline phase 4-2 programming considerations, interrupts 5-21 PS pipeline phase 4-2

Index-6

PW pipeline phase 4-2 PWRD bits 2-13

R

register files cross paths 2-6 data address paths 2-7 general-purpose 2-2 memory, load, and store paths 2-6 relationship to data paths 2-6 registers addresses for accessing 2-8 addressing mode register (AMR) 2-10 control register file 2-7 control status register (CSR) 2-13 E1 phase program counter (PCE1) 2-22 interrupt clear register (ICR) 2-16 interrupt enable register (IER) 2-17 interrupt flag register (IFR) 2-18 interrupt return pointer register (IRP) 2-19 interrupt service table pointer register (ISTP) 2-21 interrupt set register (ISR) 2-20 NMI return pointer register (NRP) 2-22 read constraints 3-14 write constraints 3-15 related documentation from Texas Instruments iii resource constraints 3-11 cross paths 3-11 on loads and stores 3-12 on long data 3-13 on register reads 3-14 on register writes 3-15 using the same functional unit 3-11 return from NMI 5-14 returning from a trap 5-25 returning from interrupt servicing 5-14 returning from maskable interrupts 5-14 returning from nonmaskable interrupts 5-14 REVISION ID bits 2-13

S

SADD instruction 3-127 SAT bit 2-13 SAT instruction 3-130 saturate a 40-bit integer to a 32-bit integer (SAT) 3-130 serial fetch packets 3-8 set a bit field (SET) 3-132 set an individual interrupt 5-13 SET instruction 3-132 setting interrupts 5-13 setting the nonreset interrupt flag 5-15 setting the RESET interrupt flag 5-18 shift arithmetic shift left (SHL) 3-135 arithmetic shift right (SHR) 3-137 logical shift right (SHRU) 3-139 shift left with saturation (SSHL) 3-148 shift left with saturation (SSHL) 3-148 SHL instruction 3-135 SHR instruction 3-137 SHRU instruction 3-139 single-cycle instructions block diagram 4-12 pipeline operation 4-12 SMPY instruction 3-141 SMPYH instruction 3-143 SMPYHL instruction 3-144 SMPYLH instruction 3-146 SSHL instruction 3-148 SSUB instruction 3-150 STB instruction 5-bit unsigned constant offset or register offset 3-152 15-bit unsigned constant offset 3-154 STH instruction 5-bit unsigned constant offset or register offset 3-156 15-bit unsigned constant offset 3-159 store byte to memory with a 5-bit unsigned constant offset or register offset (STB) 3-152 to memory with a 15-bit unsigned constant offset (STB) 3-154 halfword to memory with a 5-bit unsigned constant offset or register offset (STH) 3-156 to memory with a 15-bit unsigned constant

offset (STH) 3-159

Index

store (continued) word to memory with a 5-bit unsigned constant offset or register offset (STW) 3-161 to memory with a 15-bit unsigned constant offset (STW) 3-163 store instructions block diagram 4-14 conflicts 3-12 pipeline operation 4-13 syntax for indirect addressing 3-18 using circular addressing 3-17 using linear addressing 3-16 store or load to the same memory location, rules 4-14 store paths 2-6 STW instruction 5-bit unsigned constant offset or register offset 3-161 15-bit unsigned constant offset 3-163 SUB instruction 3-165 SUB2 instruction 3-177 SUBAB instruction 3-168 SUBAH instruction 3-170 SUBAW instruction 3-171 SUBC instruction 3-173 subtract conditionally and shift (SUBC) 3-173 two 16-bit integers on upper and lower register halves (SUB2) 3-177 using byte addressing mode (SUBAB) 3-168 using halfword addressing mode (SUBAH) 3-170 using word addressing mode (SUBAW) 3-171 with saturation, two signed integers (SSUB) 3-150 without saturation two signed integers (SUB) 3-165 two unsigned integers (SUBU) 3-175

subtract instructions using circular addressing 3-18 using linear addressing 3-16 SUBU instruction 3-175 syntax, fields and meanings 3-5

TMS320 DSP family applications 1-3 overview 1-2 TMS320C6000 DSP family, overview 1-2 TMS320C62x DSP architecture 1-6 block diagram 1-6 features 1-4 options 1-4 trademarks iv two 16-bit integers add on upper and lower register halves (ADD2) 3-39 subtract on upper and lower register halves (SUB2) 3-177 two-cycle instructions, pipeline operation 4-13

VelociTI architecture 1-1 VLIW (very long instruction word) architecture 1-1

XOR instruction 3-179

zero a register (ZERO) 3-181 ZERO instruction 3-181

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated