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About This Manual

The TMS320C6000 digital signal processor (DSP) platform is part of the
TMS320 DSP family. The TMS320C62x DSP generation and the
TMS320C64x DSP generation comprise fixed-point devices in the
C6000 DSP platform, and the TMS320C67x DSP generation comprises
floating-point devices in the C6000 DSP platform.

The TMS320C67x+ DSP is an enhancement of the C67x DSP with added
functionality and an expanded instruction set. This document describes the
CPU architecture, pipeline, instruction set, and interrupts of the C67x and
C67x+ DSPs.

Notational Conventions

This document uses the following conventions.

� Any reference to the C67x DSP or C67x CPU also applies, unless other-
wise noted, to the C67x+ DSP and C67x+ CPU, respectively.

� Hexadecimal numbers are shown with the suffix h. For example, the
following number is 40 hexadecimal (decimal 64): 40h.

Related Documentation From Texas Instruments

The following documents describe the C6000 devices and related support
tools. Copies of these documents are available on the Internet at www.ti.com.
Tip: Enter the literature number in the search box provided at www.ti.com.

The current documentation that describes the C6000 devices, related periph-
erals, and other technical collateral, is available in the C6000 DSP product
folder at: www.ti.com/c6000.

TMS320C6000 DSP Peripherals Overview Reference Guide  (literature
number SPRU190) describes the peripherals available on the
TMS320C6000 DSPs.

http://www-s.ti.com/sc/techlit/spru190


Trademarks
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TMS320C672x DSP Peripherals Overview Reference Guide  (literature
number SPRU723) describes the peripherals available on the
TMS320C672x DSPs.

TMS320C6000 Technical Brief  (literature number SPRU197) gives an
introduction to the TMS320C62x and TMS320C67x DSPs, development
tools, and third-party support.

TMS320C6000 Programmer’s Guide  (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6000 Code Composer Studio Tutorial (literature number
SPRU301) introduces the Code Composer Studio integrated develop-
ment environment and software tools.

Code Composer Studio Application Programming Interface Reference
Guide  (literature number SPRU321) describes the Code Composer
Studio application programming interface (API), which allows you to pro-
gram custom plug-ins for Code Composer.

TMS320C6x Peripheral Support Library Programmer’s Reference
(literature number SPRU273) describes the contents of the
TMS320C6000 peripheral support library of functions and macros. It lists
functions and macros both by header file and alphabetically, provides a
complete description of each, and gives code examples to show how
they are used.

TMS320C6000 Chip Support Library API Reference Guide  (literature
number SPRU401) describes a set of application programming interfaces
(APIs) used to configure and control the on-chip peripherals.

Trademarks

Code Composer Studio, C6000, C64x, C67x, C67x+, TMS320C2000,
TMS320C5000, TMS320C6000, TMS320C62x, TMS320C64x,
TMS320C67x, TMS320C67x+, TMS320C672x, and VelociTI are trademarks
of Texas Instruments.

Trademarks are the property of their respective owners.

Related Documentation From Texas Instruments / Trademarks

http://www-s.ti.com/sc/techlit/spru1723
http://www-s.ti.com/sc/techlit/spru197
http://www-s.ti.com/sc/techlit/spru198
http://www-s.ti.com/sc/techlit/spru301
http://www-s.ti.com/sc/techlit/spru321
http://www-s.ti.com/sc/techlit/spru273
http://www-s.ti.com/sc/techlit/spru401
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The TMS320C6000 digital signal processor (DSP) platform is part of the
TMS320 DSP family. The TMS320C62x DSP generation and the
TMS320C64x DSP generation comprise fixed-point devices in the C6000
DSP platform, and the TMS320C67x DSP generation comprises floating-
point devices in the C6000 DSP platform. All three DSP generations use the
VelociTI architecture, a high-performance, advanced very long instruction
word (VLIW) architecture, making these DSPs excellent choices for multi-
channel and multifunction applications.

The TMS320C67x+ DSP is an enhancement of the C67x DSP with added
functionality and an expanded instruction set.

Any reference to the C67x DSP or C67x CPU also applies, unless otherwise
noted, to the C67x+ DSP and C67x+ CPU, respectively.
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1.1 TMS320 DSP Family Overview

The TMS320 DSP family consists of fixed-point, floating-point, and multipro-
cessor digital signal processors (DSPs). TMS320 DSPs have an architec-
ture designed specifically for real-time signal processing.

Table 1−1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.

1.2 TMS320C6000 DSP Family Overview

With a performance of up to 6000 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6000 DSPs give system architects
unlimited possibilities to differentiate their products. High performance, ease
of use, and affordable pricing make the C6000 generation the ideal solution
for multichannel, multifunction applications, such as:

� Pooled modems
� Wireless local loop base stations
� Remote access servers (RAS)
� Digital subscriber loop (DSL) systems
� Cable modems
� Multichannel telephony systems

The C6000 generation is also an ideal solution for exciting new applications;
for example:

� Personalized home security with face and hand/fingerprint recognition

� Advanced cruise control with global positioning systems (GPS) navigation
and accident avoidance

� Remote medical diagnostics

� Beam-forming base stations

� Virtual reality 3-D graphics

� Speech recognition

� Audio

� Radar

� Atmospheric modeling

� Finite element analysis

� Imaging (examples: fingerprint recognition, ultrasound, and MRI)

TMS320 DSP Family Overview / TMS320C6000 DSP Family Overview



TMS320C6000 DSP Family Overview

1-3IntroductionSPRU733A

Table 1−1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General-Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D transformations
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement 
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56�600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications

systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail
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1.3 TMS320C67x DSP Features and Options  

The C6000 devices execute up to eight 32-bit instructions per cycle. The C67x
CPU consists of 32 general-purpose 32-bit registers and eight functional units.
These eight functional units contain:

� Two multipliers
� Six ALUs

The C6000 generation has a complete set of optimized development tools,
including an efficient C compiler, an assembly optimizer for simplified
assembly-language programming and scheduling, and a Windows based
debugger interface for visibility into source code execution characteristics. A
hardware emulation board, compatible with the TI XDS510 and XDS560
emulator interface, is also available. This tool complies with IEEE Standard
1149.1−1990, IEEE Standard Test Access Port and Boundary-Scan
Architecture.

Features of the C6000 devices include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the
performance of typical DSPs

� Allows designers to develop highly effective RISC-like code for fast
development time

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption

� Conditional execution of all instructions

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Efficient code execution on independent functional units

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelization

� 8/16/32-bit data support, providing efficient memory support for a variety
of applications
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� 40-bit arithmetic options add extra precision for vocoders and other
computationally intensive applications

� Saturation and normalization provide support for key arithmetic
operations

� Field manipulation and instruction extract, set, clear, and bit counting
support common operation found in control and data manipulation
applications.

The C67x devices include these additional features:

� Hardware support for single-precision (32-bit) and double-precision
(64-bit) IEEE floating-point operations.

� 32 × 32-bit integer multiply with 32-bit or 64-bit result.

In addition to the features of the C67x device, the C67x+ device is enhanced
for code size improvement and floating-point performance. These additional
features include:

� Execute packets can span fetch packets.

� Register file size is increased to 64 registers (32 in each datapath).

� Floating-point addition and subtraction capability in the .S unit.

� Mixed-precision multiply instructions.

� 32-KByte instruction cache that supports execution from both on-chip
RAM and ROM as well as from external memory through a VBUSP-based
external memory interface (EMIF).

� Unified memory controller features support for flat on-chip data RAM and
ROM organizations for zero wait-state accesses from both load store units
of the CPU. The memory controller supports different banking organiza-
tions for RAM and ROM arrays. The memory controller also supports
VBUSP interfaces (two master and one slave) for transfer of data from the
system peripherals to and from the CPU and internal memory. A VBUSP-
based DMA controller can interface to the CPU for programmable bulk
transfers through the VBUSP slave port.
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The VelociTI architecture of the C6000 platform of devices make them the first
off-the-shelf DSPs to use advanced VLIW to achieve high performance
through increased instruction-level parallelism. A traditional VLIW architecture
consists of multiple execution units running in parallel, performing multiple
instructions during a single clock cycle. Parallelism is the key to extremely high
performance, taking these DSPs well beyond the performance capabilities of
traditional superscalar designs. VelociTI is a highly deterministic architecture,
having few restrictions on how or when instructions are fetched, executed, or
stored. It is this architectural flexibility that is key to the breakthrough efficiency
levels of the TMS320C6000 Optimizing C compiler. VelociTI’s advanced
features include:

� Instruction packing: reduced code size
� All instructions can operate conditionally: flexibility of code
� Variable-width instructions: flexibility of data types
� Fully pipelined branches: zero-overhead branching.
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1.4 TMS320C67x DSP Architecture

Figure 1−1 is the block diagram for the C67x DSP. The C6000 devices come
with program memory, which, on some devices, can be used as a program
cache. The devices also have varying sizes of data memory. Peripherals such
as a direct memory access (DMA) controller, power-down logic, and external
memory interface (EMIF) usually come with the CPU, while peripherals such
as serial ports and host ports are on only certain devices. Check the data sheet
for your device to determine the specific peripheral configurations you have.

Figure 1−1. TMS320C67x DSP Block Diagram
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1.4.1 Central Processing Unit (CPU)

The C67x CPU, in Figure 1−1, is common to all the C62x/C64x/C67x devices.
The CPU contains:

� Program fetch unit
� Instruction dispatch unit
� Instruction decode unit
� Two data paths, each with four functional units
� 32 32-bit registers
� Control registers
� Control logic
� Test, emulation, and interrupt logic

The program fetch, instruction dispatch, and instruction decode units can
deliver up to eight 32-bit instructions to the functional units every CPU clock
cycle. The processing of instructions occurs in each of the two data paths (A
and B), each of which contains four functional units (.L, .S, .M, and .D) and 16
32-bit general-purpose registers. The data paths are described in more detail
in Chapter 2. A control register file provides the means to configure and control
various processor operations. To understand how instructions are fetched,
dispatched, decoded, and executed in the data path, see Chapter 4.

1.4.2 Internal Memory

The C67x DSP has a 32-bit, byte-addressable address space. Internal
(on-chip) memory is organized in separate data and program spaces. When
off-chip memory is used, these spaces are unified on most devices to a single
memory space via the external memory interface (EMIF).

The C67x DSP has two 32-bit internal ports to access internal data memory.
The C67x DSP has a single internal port to access internal program memory,
with an instruction-fetch width of 256 bits.

1.4.3 Memory and Peripheral Options

A variety of memory and peripheral options are available for the C6000
platform:

� Large on-chip RAM, up to 7M bits

� Program cache

� 2-level caches

� 32-bit external memory interface supports SDRAM, SBSRAM, SRAM,
and other asynchronous memories for a broad range of external memory
requirements and maximum system performance.
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� DMA Controller (C6701 DSP only) transfers data between address ranges
in the memory map without intervention by the CPU. The DMA controller
has four programmable channels and a fifth auxiliary channel.

� EDMA Controller performs the same functions as the DMA controller. The
EDMA has 16 programmable channels, as well as a RAM space to hold
multiple configurations for future transfers.

� HPI is a parallel port through which a host processor can directly access
the CPU’s memory space. The host device has ease of access because
it is the master of the interface. The host and the CPU can exchange infor-
mation via internal or external memory. In addition, the host has direct
access to memory-mapped peripherals.

� Expansion bus is a replacement for the HPI, as well as an expansion of
the EMIF. The expansion provides two distinct areas of functionality (host
port and I/O port) which can co-exist in a system. The host port of the
expansion bus can operate in either asynchronous slave mode, similar to
the HPI, or in synchronous master/slave mode. This allows the device to
interface to a variety of host bus protocols. Synchronous FIFOs and
asynchronous peripheral I/O devices may interface to the expansion bus.

� McBSP (multichannel buffered serial port) is based on the standard serial
port interface found on the TMS320C2000 and TMS320C5000
devices. In addition, the port can buffer serial samples in memory auto-
matically with the aid of the DMA/EDNA controller. It also has multichannel
capability compatible with the T1, E1, SCSA, and MVIP networking
standards.

� Timers in the C6000 devices are two 32-bit general-purpose timers used
for these functions:

� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA/EDMA controller.

� Power-down logic allows reduced clocking to reduce power consumption.
Most of the operating power of CMOS logic dissipates during circuit
switching from one logic state to another. By preventing some or all of the
chip’s logic from switching, you can realize significant power savings with-
out losing any data or operational context.

For an overview of the peripherals available on the C6000 DSP, refer to the
TM320C6000 DSP Peripherals Overview Reference Guide (SPRU190).
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This chapter focuses on the CPU, providing information about the data paths and
control registers. The two register files and the data cross paths are described.
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2.1 Introduction

The components of the data path for the TMS320C67x CPU are shown in
Figure 2−1. These components consist of:

� Two general-purpose register files (A and B)
� Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)
� Two load-from-memory data paths (LD1 and LD2)
� Two store-to-memory data paths (ST1 and ST2)
� Two data address paths (DA1 and DA2)
� Two register file data cross paths (1X and 2X)

2.2 General-Purpose Register Files

There are two general-purpose register files (A and B) in the C6000 data paths.
For the C67x DSP, each of these files contains 16 32-bit registers (A0–A15 for
file A and B0–B15 for file B), as shown in Table 2−1. For the C67x+ DSP, the
register file size is doubled to 32 32-bit registers (A0–A31 for file A and B0–B21
for file B), as shown in Table 2−1. The general-purpose registers can be used
for data, data address pointers, or condition registers.

The C67x DSP general-purpose register files support data ranging in size from
packed 16-bit data through 40-bit fixed-point and 64-bit floating point data.
Values larger than 32 bits, such as 40-bit long and 64-bit float quantities, are
stored in register pairs. In these the 32 LSBs of data are placed in an even-
numbered register and the remaining 8 or 32 MSBs in the next upper register
(that is always an odd-numbered register). Packed data types store either four
8-bit values or two 16-bit values in a single 32-bit register, or four 16-bit values
in a 64-bit register pair.

There are 16 valid register pairs for 40-bit and 64-bit data in the C67x DSP
cores. In assembly language syntax, a colon between the register names
denotes the register pairs, and the odd-numbered register is specified first.

 The additional registers are addressed by using the previously unused fifth
(msb) bit of the source and register specifiers. All 64-bit register writes and
reads are performed over 2 cycles as per the current C67x devices.

Figure 2−2 shows the register storage scheme for 40-bit long data. Operations
requiring a long input ignore the 24 MSBs of the odd-numbered register.
Operations producing a long result zero-fill the 24 MSBs of the odd-numbered
register. The even-numbered register is encoded in the opcode.

Introduction / General-Purpose Register Files
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Figure 2−1. TMS320C67x CPU Data Paths
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Table 2−1. 40-Bit/64-Bit Register Pairs

Register Files

A B Devices

A1:A0 B1:B0 C67x DSP

A3:A2 B3:B2

A5:A4 B5:B4

A7:A6 B7:B6

A9:A8 B9:B8

A11:A10 B11:B10

A13:A12 B13:B12

A15:A14 B15:B14

A17:A16 B17:B16 C67x+ DSP only

A19:A18 B19:B18

A21:A20 B21:B20

A23:A22 B23:B22

A25:A24 B25:B24

A27:A26 B27:B26

A29:A28 B29:B28

A31:A30 B31:B30

Figure 2−2. Storage Scheme for 40-Bit Data in a Register Pair
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2.3 Functional Units

The eight functional units in the C6000 data paths can be divided into two
groups of four; each functional unit in one data path is almost identical to the
corresponding unit in the other data path. The functional units are described
in Table 2−2.

Most data lines in the CPU support 32-bit operands, and some support long
(40-bit) and double word (64-bit) operands. Each functional unit has its own
32-bit write port into a general-purpose register file (Refer to Figure 2−1). All
units ending in 1 (for example, .L1) write to register file A, and all units ending
in 2 write to register file B. Each functional unit has two 32-bit read ports for
source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an
extra 8-bit-wide port for 40-bit long writes, as well as an 8-bit input for 40-bit
long reads. Because each unit has its own 32-bit write port, when performing
32-bit operations all eight units can be used in parallel every cycle.

See Appendix B for a list of the instructions that execute on each functional
unit.

Table 2−2. Functional Units and Operations Performed

Functional Unit Fixed-Point Operations Floating-Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations

32-bit logical operations

Leftmost 1 or 0 counting for 32 bits

Normalization count for 32 and 40 bits

Arithmetic operations

DP → SP, INT → DP, INT → SP
   conversion operations

.S unit (.S1, .S2) 32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations

32-bit logical operations

Branches

Constant generation

Register transfers to/from control register
   file (.S2 only)

Compare

Reciprocal and reciprocal square-root
   operations

Absolute value operations

SP → DP conversion operations

SPand DP adds and subtracts

SP and DP reverse subtracts (src2 − src1)

.M unit (.M1, .M2) 16 × 16-bit multiply operations

32 × 32-bit multiply operations

Floating-point multiply operations

Mixed-precision multiply operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular
   address calculation

Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant
   offset (.D2 only)

Load doubleword with 5-bit constant
offset
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2.4 Register File Cross Paths

Each functional unit reads directly from and writes directly to the register file
within its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register
file A and the .L2, .S2, .D2, and .M2 units write to register file B. The register
files are connected to the opposite-side register file’s functional units via the
1X and 2X cross paths. These cross paths allow functional units from one data
path to access a 32-bit operand from the opposite side register file. The 1X
cross path allows the functional units of data path A to read their source from
register file B, and the 2X cross path allows the functional units of data path
B to read their source from register file A.

On the C67x DSP, six of the eight functional units have access to the register
file on the opposite side, via a cross path. The .M1, .M2, .S1, and .S2 units’ src2
units are selectable between the cross path and the same side register file. In
the case of the .L1 and .L2, both src1 and src2 inputs are also selectable
between the cross path and the same-side register file.

Only two cross paths, 1X and 2X, exist in the C6000 architecture. Thus, the
limit is one source read from each data path’s opposite register file per cycle,
or a total of two cross path source reads per cycle. In the C67x DSP, only one
functional unit per data path, per execute packet, can get an operand from the
opposite register file.

2.5 Memory, Load, and Store Paths

The C67x DSP has two 32-bit paths for loading data from memory to the regis-
ter file: LD1 for register file A, and LD2 for register file B. The C67x DSP also
has a second 32-bit load path for both register files A and B. This allows the
LDDW instruction to simultaneously load two 32-bit values into register file A
and two 32-bit values into register file B. For side A, LD1a is the load path for
the 32 LSBs and LD1b is the load path for the 32 MSBs. For side B, LD2a is
the load path for the 32 LSBs and LD2b is the load path for the 32 MSBs. There
are also two 32-bit paths, ST1 and ST2, for storing register values to memory
from each register file.

On the C6000 architecture, some of the ports for long and doubleword oper-
ands are shared between functional units. This places a constraint on which
long or doubleword operations can be scheduled on a data path in the same
execute packet. See section 3.7.5.

Register File Cross Paths / Memory, Load, and Store Paths



Data Address Paths

2-7CPU Data Paths and ControlSPRU733A

2.6 Data Address Paths

The data address paths (DA1 and DA2) are each connected to the .D units in
both data paths. This allows data addresses generated by any one path to
access data to or from any register.

The DA1 and DA2 resources and their associated data paths are specified as
T1 and T2, respectively. T1 consists of the DA1 address path and the LD1 and
ST1 data paths. For the C67x DSP, LD1 is comprised of LD1a and LD1b to
support 64-bit loads. Similarly, T2 consists of the DA2 address path and the
LD2 and ST2 data paths. For the C67x DSP, LD2 is comprised of LD2a and
LD2b to support 64-bit loads.

The T1 and T2 designations appear in the functional unit fields for load and
store instructions. For example, the following load instruction uses the .D1 unit
to generate the address but is using the LD2 path resource from DA2 to place
the data in the B register file. The use of the DA2 resource is indicated with the
T2 designation.

LDW  .D1T2   *A0[3],B1

2.7 Control Register File

Table 2−3 lists the control registers contained in the control register file.

Table 2−3. Control Registers

Acronym Register Name Section

AMR Addressing mode register 2.7.3

CSR Control status register 2.7.4

ICR Interrupt clear register 2.7.5

IER Interrupt enable register 2.7.6

IFR Interrupt flag register 2.7.7

IRP Interrupt return pointer register 2.7.8

ISR Interrupt set register 2.7.9

ISTP Interrupt service table pointer register 2.7.10

NRP Nonmaskable interrupt return pointer register 2.7.11

PCE1 Program counter, E1 phase 2.7.12

Data Address Paths / Control Register File
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2.7.1 Register Addresses for Accessing the Control Registers

Table 2−4 lists the register addresses for accessing the control register file.
One unit (.S2) can read from and write to the control register file. Each control
register is accessed by the MVC instruction. See the MVC instruction descrip-
tion, page 3-179, for information on how to use this instruction.

Additionally, some of the control register bits are specially accessed in other
ways. For example, arrival of a maskable interrupt on an external interrupt pin,
INTm, triggers the setting of flag bit IFRm. Subsequently, when that interrupt
is processed, this triggers the clearing of IFRm and the clearing of the global
interrupt enable bit, GIE. Finally, when that interrupt processing is complete,
the B IRP instruction in the interrupt service routine restores the pre-interrupt
value of the GIE. Similarly, saturating instructions like SADD set the SAT
(saturation) bit in the control status register (CSR).

Table 2−4. Register Addresses for Accessing the Control Registers

Acronym Register Name Address Read/ Write

AMR Addressing mode register 00000 R, W

CSR Control status register 00001 R, W

FADCR Floating-point adder configuration 10010 R, W

FAUCR Floating-point auxiliary configuration 10011 R, W

FMCR Floating-point multiplier configuration 10100 R, W

ICR Interrupt clear register 00011 W

IER Interrupt enable register 00100 R, W

IFR Interrupt flag register 00010 R

IRP Interrupt return pointer 00110 R, W

ISR Interrupt set register 00010 W

ISTP Interrupt service table pointer 00101 R, W

NRP Nonmaskable interrupt return pointer 00111 R, W

PCE1 Program counter, E1 phase 10000 R

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction
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2.7.2 Pipeline/Timing of Control Register Accesses

All MVC instructions are single-cycle instructions that complete their access
of the explicitly named registers in the E1 pipeline phase. This is true whether
MVC is moving a general register to a control register, or conversely. In all
cases, the source register content is read, moved through the .S2 unit, and
written to the destination register in the E1 pipeline phase.

Pipeline Stage E1

Read src2

Written dst

Unit in use .S2

Even though MVC modifies the particular target control register in a single
cycle, it can take extra clocks to complete modification of the non-explicitly
named register. For example, the MVC cannot modify bits in the IFR directly.
Instead, MVC can only write 1’s into the ISR or the ICR to specify setting or
clearing, respectively, of the IFR bits. MVC completes this ISR/ICR write in a
single (E1) cycle but the modification of the IFR bits occurs one clock later. For
more information on the manipulation of ISR, ICR, and IFR, see section 2.7.9,
section 2.7.5, and section 2.7.7.

Saturating instructions, such as SADD, set the saturation flag bit (SAT) in CSR
indirectly. As a result, several of these instructions update the SAT bit one full
clock cycle after their primary results are written to the register file. For exam-
ple, the SMPY instruction writes its result at the end of pipeline stage E2; its
primary result is available after one delay slot. In contrast, the SAT bit in CSR
is updated one cycle later than the result is written; this update occurs after two
delay slots. (For the specific behavior of an instruction, refer to the description
of that individual instruction).

The B IRP and B NRP instructions directly update the GIE and NMIE,
respectively. Because these branches directly modify CSR and IER,
respectively, there are no delay slots between when the branch is issued and
when the control register updates take effect.
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2.7.3 Addressing Mode Register (AMR)

For each of the eight registers (A4–A7, B4–B7) that can perform linear or circu-
lar addressing, the addressing mode register (AMR) specifies the addressing
mode. A 2-bit field for each register selects the address modification mode:
linear (the default) or circular mode. With circular addressing, the field also
specifies which BK (block size) field to use for a circular buffer. In addition, the
buffer must be aligned on a byte boundary equal to the block size. The mode
select fields and block size fields are shown in Figure 2−3 and described in
Table 2−5.

Figure 2−3. Addressing Mode Register (AMR)

31 26 25 21 20 16

Reserved BK1 BK0

R-0 R/W-0 R/W-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B7 MODE B6 MODE B5 MODE B4 MODE A7 MODE A6 MODE A5 MODE A4 MODE

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2−5. Addressing Mode Register (AMR) Field Descriptions  

Bit Field Value Description

31−26 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to
this field has no effect.

25−21 BK1 0−1Fh Block size field 1. A 5-bit value used in calculating block sizes for circular
addressing. Table 2−6 shows block size calculations for all 32 possibilities.

Block size (in bytes) = 2(N+1), where N is the 5-bit value in BK1

20−16 BK0 0−1Fh Block size field 0. A 5-bit value used in calculating block sizes for circular
addressing. Table 2−6 shows block size calculations for all 32 possibilities.

Block size (in bytes) = 2(N+1), where N is the 5-bit value in BK0

15−14 B7 MODE 0−3h Address mode selection for register file B7.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved
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Table 2−5. Addressing Mode Register (AMR) Field Descriptions (Continued)

Bit DescriptionValueField

13−12 B6 MODE 0−3h Address mode selection for register file B6.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

11−10 B5 MODE 0−3h Address mode selection for register file B5.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

9−8 B4 MODE 0−3h Address mode selection for register file B4.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

7−6 A7 MODE 0−3h Address mode selection for register file A7.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

5−4 A6 MODE 0−3h Address mode selection for register file A6.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved



Control Register File

CPU Data Paths and Control2-12 SPRU733A

Table 2−5. Addressing Mode Register (AMR) Field Descriptions (Continued)

Bit DescriptionValueField

3−2 A5 MODE 0−3h Address mode selection for register file a5.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

1−0 A4 MODE 0−3h Address mode selection for register file A4.

0 Linear modification (default at reset)

1h Circular addressing using the BK0 field

2h Circular addressing using the BK1 field

3h Reserved

Table 2−6. Block Size Calculations

BKn Value Block Size BKn Value Block Size

00000 2 10000 131 072

00001 4 10001 262 144

00010 8 10010 524 288

00011 16 10011 1 048 576

00100 32 10100 2 097 152

00101 64 10101 4 194 304

00110 128 10110 8 388 608

00111 256 10111 16 777 216

01000 512 11000 33 554 432

01001 1 024 11001 67 108 864

01010 2 048 11010 134 217 728

01011 4 096 11011 268 435 456

01100 8 192 11100 536 870 912

01101 16 384 11101 1 073 741 824

01110 32 768 11110 2 147 483 648

01111 65 536 11111 4 294 967 296

Note: When n is 11111, the behavior is identical to linear addressing.
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2.7.4 Control Status Register (CSR)

The control status register (CSR) contains control and status bits. The CSR
is shown in Figure 2−4 and described in Table 2−7. For the PWRD, EN, PCC,
and DCC fields, see the device-specific data manual to see if it supports the
options that these fields control.

The power-down modes and their wake-up methods are programmed by the
PWRD field (bits 15−10) of CSR. The PWRD field of CSR is shown in
Figure 2−5. When writing to CSR, all bits of the PWRD field should be
configured at the same time. A logic 0 should be used when writing to the
reserved bit (bit 15) of the PWRD field.

Figure 2−4. Control Status Register (CSR)

31 24 23 16

CPU ID REVISION ID

R-0 R-x†

15 10 9 8 7 5 4 2 1 0

PWRD SAT EN PCC DCC PGIE GIE

R/W-0 R/WC-0 R-x R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; WC = Bit is cleared on write; -n = value
after reset; -x = value is indeterminate after reset

† See the device-specific data manual for the default value of this field.

Figure 2−5. PWRD Field of Control Status Register (CSR)

15 14 13 12 11 10

Reserved Enabled or nonenabled interrupt wake Enabled interrupt wake PD3 PD2 PD1

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset



Control Register File

CPU Data Paths and Control2-14 SPRU733A

Table 2−7. Control Status Register (CSR) Field Descriptions  

Bit Field Value Description

31−24 CPU ID 0−FFh Identifies the CPU of the device. Not writable by the MVC instruction.

0−1h Reserved

2h C67x CPU

3h C67x+ CPU

4h−FFh Reserved

23−16 REVISION ID 0−FFh Identifies silicon revision of the CPU. For the most current silicon
revision information, see the device-specific data manual. Not writable
by the MVC instruction.

15−10 PWRD 0−3Fh Power-down mode field. See Figure 2−5. Writable by the MVC instruction.

0 No power-down.

1h−8h Reserved

9h Power-down mode PD1; wake by an enabled interrupt.

Ah−10h Reserved

11h Power-down mode PD1; wake by an enabled or nonenabled interrupt.

12h−19h Reserved

1Ah Power-down mode PD2; wake by a device reset.

1Bh Reserved

1Ch Power-down mode PD3; wake by a device reset.

1D−3Fh Reserved

9 SAT Saturate bit. Can be cleared only by the MVC instruction and can be set
only by a functional unit. The set by a functional unit has priority over a
clear (by the MVC instruction), if they occur on the same cycle. The SAT
bit is set one full cycle (one delay slot) after a saturate occurs. The SAT
bit will not be modified by a conditional instruction whose condition is false.

0 Any unit does not perform a saturate.

1 Any unit performs a saturate.

8 EN Endian mode. Not writable by the MVC instruction.

0 Big endian

1 Little endian
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Table 2−7. Control Status Register (CSR) Field Descriptions (Continued)

Bit DescriptionValueField

7−5 PCC 0−7h Program cache control mode. Writable by the MVC instruction. See the
TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide
(SPRU609).

0 Direct-mapped cache enabled

1h Reserved

2h Direct-mapped cache enabled

3h−7h Reserved

4−2 DCC 0−7h Data cache control mode. Writable by the MVC instruction. See the
TMS320C621x/C671x DSP Two-Level Internal Memory Reference Guide
(SPRU609).

0 2-way cache enabled

1h Reserved

2h 2-way cache enabled

3h−7h Reserved

1 PGIE Previous GIE (global interrupt enable). Copy of GIE bit at point when
interrupt is taken. Physically the same bit as SGIE bit in the interrupt task
state register (ITSR). Writeable by the MVC instruction.

0 Disables saving GIE bit when an interrupt is taken.

1 Enables saving GIE bit when an interrupt is taken.

0 GIE Global interrupt enable. Physically the same bit as GIE bit in the task state
register (TSR). Writable by the MVC instruction.

0 Disables all interrupts, except the reset interrupt and NMI (nonmaskable
interrupt).

1 Enables all interrupts.
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2.7.5 Interrupt Clear Register (ICR)

The interrupt clear register (ICR) allows you to manually clear the maskable
interrupts (INT15−INT4) in the interrupt flag register (IFR). Writing a 1 to any
of the bits in ICR causes the corresponding interrupt flag (IFn) to be cleared
in IFR. Writing a 0 to any bit in ICR has no effect. Incoming interrupts have
priority and override any write to ICR. You cannot set any bit in ICR to affect
NMI or reset. The ISR is shown in Figure 2−6 and described in Table 2−8.

Note:

Any write to ICR (by the MVC instruction) effectively has one delay slot
because the results cannot be read (by the MVC instruction) in IFR until two
cycles after the write to ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in the
interrupt set register (ISR).

Figure 2−6. Interrupt Clear Register (ICR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

IC15 IC14 IC13 IC12 IC11 IC10 IC9 IC8 IC7 IC6 IC5 IC4 Reserved

W-0 R-0

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2−8. Interrupt Clear Register (ICR) Field Descriptions

Bit Field Value Description

31−16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15−4 ICn Interrupt clear.

0 Corresponding interrupt flag (IFn) in IFR is not cleared.

1 Corresponding interrupt flag (IFn) in IFR is cleared.

3−0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.
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2.7.6 Interrupt Enable Register (IER)

The interrupt enable register (IER) enables and disables individual interrupts.
The IER is shown in Figure 2−7 and described in Table 2−9.

Figure 2−7. Interrupt Enable Register (IER)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE15 IE14 IE13 IE12 IE11 IE10 IE9 IE8 IE7 IE6 IE5 IE4 Reserved NMIE 1

R/W-0 R-0 R/W-0 R-1

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2−9. Interrupt Enable Register (IER) Field Descriptions

Bit Field Value Description

31−16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15−4 IEn Interrupt enable. An interrupt triggers interrupt processing only if the
corresponding bit is set to 1.

0 Interrupt is disabled.

1 Interrupt is enabled.

3−2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

1 NMIE Nonmaskable interrupt enable. An interrupt triggers interrupt processing only if
the bit is set to 1.

The NMIE bit is cleared at reset. After reset, you must set the NMIE bit to
enable the NMI and to allow INT15−INT4 to be enabled by the GIE bit in CSR
and the corresponding IER bit. You cannot manually clear the NMIE bit; a write
of 0 has no effect. The NMIE bit is also cleared by the occurrence of an NMI.

0 All nonreset interrupts are disabled.

1 All nonreset interrupts are enabled. The NMIE bit is set only by completing a
B NRP instruction or by a write of 1 to the NMIE bit.

0 1 1 Reset interrupt enable. You cannot disable the reset interrupt.
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2.7.7 Interrupt Flag Register (IFR)

The interrupt flag register (IFR) contains the status of INT4−INT15 and NMI
interrupt. Each corresponding bit in the IFR is set to 1 when that interrupt
occurs; otherwise, the bits are cleared to 0. If you want to check the status of
interrupts, use the MVC instruction to read the IFR. (See the MVC instruction
description, page 3-179, for information on how to use this instruction.) The
IFR is shown in Figure 2−8 and described in Table 2−10.

Figure 2−8. Interrupt Flag Register (IFR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IF15 IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 Reserved NMIF 0

R-0 R-0 R-0 R-0

Legend: R = Readable by the MVC instruction; -n = value after reset

Table 2−10. Interrupt Flag Register (IFR) Field Descriptions

Bit Field Value Description

31−16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15−4 IFn Interrupt flag. Indicates the status of the corresponding maskable interrupt. An
interrupt flag may be manually set by setting the corresponding bit (ISn) in the
interrupt set register (ISR) or manually cleared by setting the corresponding bit
(ICn) in the interrupt clear register (ICR).

0 Interrupt has not occurred.

1 Interrupt has occurred.

3−2 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

1 NMIF Nonmaskable interrupt flag.

0 Interrupt has not occurred.

1 Interrupt has occurred.

0 0 0 Reset interrupt flag.
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2.7.8 Interrupt Return Pointer Register (IRP)

The interrupt return pointer register (IRP) contains the return pointer that
directs the CPU to the proper location to continue program execution after
processing a maskable interrupt. A branch using the address in IRP (B IRP)
in your interrupt service routine returns to the program flow when interrupt
servicing is complete. The IRP is shown in Figure 2−9.

The IRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a maskable interrupt. Although you can
write a value to IRP, any subsequent interrupt processing may overwrite that
value.

Figure 2−9. Interrupt Return Pointer Register (IRP)

31 0

IRP

R/W-x

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset
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2.7.9 Interrupt Set Register (ISR)

The interrupt set register (ISR) allows you to manually set the maskable inter-
rupts (INT15−INT4) in the interrupt flag register (IFR). Writing a 1 to any of the
bits in ISR causes the corresponding interrupt flag (IFn) to be set in IFR. Writ-
ing a 0 to any bit in ISR has no effect. You cannot set any bit in ISR to affect
NMI or reset. The ISR is shown in Figure 2−10 and described in Table 2−11.

Note:

Any write to ISR (by the MVC instruction) effectively has one delay slot
because the results cannot be read (by the MVC instruction) in IFR until two
cycles after the write to ISR.

Any write to the interrupt clear register (ICR) is ignored by a simultaneous
write to the same bit in ISR.

Figure 2−10. Interrupt Set Register (ISR)

31 16

Reserved

R-0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

IS15 IS14 IS13 IS12 IS11 IS10 IS9 IS8 IS7 IS6 IS5 IS4 Reserved

W-0 R-0

Legend: R = Read only; W = Writeable by the MVC instruction; -n = value after reset

Table 2−11. Interrupt Set Register (ISR) Field Descriptions

Bit Field Value Description

31−16 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

15−4 ISn Interrupt set.

0 Corresponding interrupt flag (IFn) in IFR is not set.

1 Corresponding interrupt flag (IFn) in IFR is set.

3−0 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.
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2.7.10 Interrupt Service Table Pointer Register (ISTP)

The interrupt service table pointer register (ISTP) is used to locate the interrupt
service routine (ISR). The ISTB field identifies the base portion of the address
of the interrupt service table (IST) and the HPEINT field identifies the specific
interrupt and locates the specific fetch packet within the IST. The ISTP is
shown in Figure 2−11 and described in Table 2−12. See section 5.1.2.2 on
page 5-9 for a discussion of the use of the ISTP.

Figure 2−11.Interrupt Service Table Pointer Register (ISTP)

31 16

ISTB

R/W-0

15 10 9 5 4 3 2 1 0

ISTB HPEINT 0 0 0 0 0

R/W-0 R-0 R-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2−12. Interrupt Service Table Pointer Register (ISTP) Field Descriptions

Bit Field Value Description

31−10 ISTB 0−3F FFFFh Interrupt service table base portion of the IST address. This field is cleared
to 0 on reset; therefore, upon startup the IST must reside at address 0. After
reset, you can relocate the IST by writing a new value to ISTB. If relocated,
the first ISFP (corresponding to RESET) is never executed via interrupt
processing, because reset clears the ISTB to 0. See Example 5−1.

9−5 HPEINT 0−1Fh Highest priority enabled interrupt that is currently pending. This field indicates
the number (related bit position in the IFR) of the highest priority interrupt (as
defined in Table 5−1 on page 5-3) that is enabled by its bit in the IER. Thus,
the ISTP can be used for manual branches to the highest priority enabled in-
terrupt. If no interrupt is pending and enabled, HPEINT contains the value 0.
The corresponding interrupt need not be enabled by NMIE (unless it is NMI)
or by GIE.

4−0 − 0 Cleared to 0 (fetch packets must be aligned on 8-word (32-byte) boundaries).
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2.7.11 Nonmaskable Interrupt (NMI) Return Pointer Register (NRP)

The NMI return pointer register (NRP) contains the return pointer that directs
the CPU to the proper location to continue program execution after NMI
processing. A branch using the address in NRP (B NRP) in your interrupt
service routine returns to the program flow when NMI servicing is complete.
The NRP is shown in Figure 2−12.

The NRP contains the 32-bit address of the first execute packet in the program
flow that was not executed because of a nonmaskable interrupt. Although you
can write a value to NRP, any subsequent interrupt processing may overwrite
that value.

Figure 2−12. NMI Return Pointer Register (NRP)

31 0

NRP

R/W-x

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -x = value is indeterminate after reset

2.7.12 E1 Phase Program Counter (PCE1)

The E1 phase program counter (PCE1), shown in Figure 2−13, contains the
32-bit address of the fetch packet in the E1 pipeline phase.

Figure 2−13. E1 Phase Program Counter (PCE1)

31 0

PCE1

R-x

Legend: R = Readable by the MVC instruction; -x = value is indeterminate after reset
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2.8 Control Register File Extensions

The C67x DSP has three additional configuration registers to support floating-
point operations. The registers specify the desired floating-point rounding
mode for the .L and .M units. They also contain fields to warn if src1 and src2
are NaN or denormalized numbers, and if the result overflows, underflows, is
inexact, infinite, or invalid. There are also fields to warn if a divide by 0 was
performed, or if a compare was attempted with a NaN source. Table 2−13 lists
the additional registers used. The OVER, UNDER, INEX, INVAL, DENn,
NANn, INFO, UNORD and DIV0 bits within these registers will not be modified
by a conditional instruction whose condition is false.

Table 2−13. Control Register File Extensions

Acronym Register Name Section

FADCR Floating-point adder configuration register 2.8.1

FAUCR Floating-point auxiliary configuration register 2.8.2

FMCR Floating-point multiplier configuration register 2.8.3

2.8.1 Floating-Point Adder Configuration Register (FADCR)

The floating-point adder configuration register (FADCR) contains fields that
specify underflow or overflow, the rounding mode, NaNs, denormalized
numbers, and inexact results for instructions that use the .L functional units.
FADCR has a set of fields specific to each of the .L units: .L2 uses bits 31−16
and .L1 uses bits 15−0. FADCR is shown in Figure 2−14 and described in
Table 2−14.

Note:

For the C67x+ DSP, the ADDSP, ADDDP, SUBSP, and SUBDP instructions
executing in the .S functional unit use the rounding mode from and set the
warning bits in FADCR. The warning bits in FADCR are the logical-OR of the
warnings produced on the .L functional unit and the warnings produced by
the ADDSP/ADDDP/SUBSP/SUBDP instructions on the .S functional unit
(but not other instructions executing on the .S functional unit).
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Figure 2−14. Floating-Point Adder Configuration Register (FADCR)

31 27 26 25 24 23 22 21 20 19 18 17 16

Reserved RMODE UNDER INEX OVER INFO INVAL DEN2 DEN1 NAN2 NAN1

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RMODE UNDER INEX OVER INFO INVAL DEN2 DEN1 NAN2 NAN1

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2−14. Floating-Point Adder Configuration Register (FADCR)
Field Descriptions  

Bit Field Value Description

31−27 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

26−25 RMODE 0−3h Rounding mode select for .L2.

0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)

24 UNDER Result underflow status for .L2.

0 Result does not underflow.

1 Result underflows.

23 INEX Inexact results status for .L2.

0

1 Result differs from what would have been computed had the exponent range
and precision been unbounded; never set with INVAL.

22 OVER Result overflow status for .L2.

0 Result does not overflow.

1 Result overflows.

21 INFO Signed infinity for .L2.

0 Result is not signed infinity.

1 Result is signed infinity.
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Table 2−14. Floating-Point Adder Configuration Register (FADCR)
Field Descriptions (Continued)

Bit DescriptionValueField

20 INVAL

0 A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer
conversion or when infinity is subtracted from infinity.

19 DEN2 Denormalized number select for .L2 src2.

0 src2 is not a denormalized number.

1 src2 is a denormalized number.

18 DEN1 Denormalized number select for .L2 src1.

0 src1 is not a denormalized number.

1 src1 is a denormalized number.

17 NAN2 NaN select for .L2 src2.

0 src2 is not NaN.

1 src2 is NaN.

16 NAN1 NaN select for .L2 src1.

0 src1 is not NaN.

1 src1 is NaN.

15−11 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

10−9 RMODE 0−3h Rounding mode select for .L1.

0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)

8 UNDER Result underflow status for .L1.

0 Result does not underflow.

1 Result underflows.
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Table 2−14. Floating-Point Adder Configuration Register (FADCR)
Field Descriptions (Continued)

Bit DescriptionValueField

7 INEX Inexact results status for .L1.

0

1 Result differs from what would have been computed had the exponent range
and precision been unbounded; never set with INVAL.

6 OVER Result overflow status for .L1.

0 Result does not overflow.

1 Result overflows.

5 INFO Signed infinity for .L1.

0 Result is not signed infinity.

1 Result is signed infinity.

4 INVAL

0 A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer
conversion or when infinity is subtracted from infinity.

3 DEN2 Denormalized number select for .L1 src2.

0 src2 is not a denormalized number.

1 src2 is a denormalized number.

2 DEN1 Denormalized number select for .L1 src1.

0 src1 is not a denormalized number.

1 src1 is a denormalized number.

1 NAN2 NaN select for .L1 src2.

0 src2 is not NaN.

1 src2 is NaN.

0 NAN1 NaN select for .L1 src1.

0 src1 is not NaN.

1 src1 is NaN.
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2.8.2 Floating-Point Auxiliary Configuration Register (FAUCR)

The floating-point auxiliary register (FAUCR) contains fields that specify
underflow or overflow, the rounding mode, NaNs, denormalized numbers, and
inexact results for instructions that use the .S functional units. FAUCR has a
set of fields specific to each of the .S units: .S2 uses bits 31−16 and .S1 uses
bits 15−0. FAUCR is shown in Figure 2−15 and described in Table 2−15.

Note:

For the C67x+ DSP, the ADDSP, ADDDP, SUBSP, and SUBDP instructions
executing in the .S functional unit use the rounding mode from and set the
warning bits in the floating-point adder configuration register (FADCR). The
warning bits in FADCR are the logical-OR of the warnings produced on the
.L functional unit and the warnings produced by the ADDSP/ADDDP/
SUBSP/SUBDP instructions on the .S functional unit (but not other instruc-
tions executing on the .S functional unit).

Figure 2−15. Floating-Point Auxiliary Configuration Register (FAUCR)

31 27 26 25 24 23 22 21 20 19 18 17 16

Reserved DIV0 UNORD UND INEX OVER INFO INVAL DEN2 DEN1 NAN2 NAN1

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DIV0 UNORD UND INEX OVER INFO INVAL DEN2 DEN1 NAN2 NAN1

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2−15. Floating-Point Auxiliary Configuration Register (FAUCR)
Field Descriptions  

Bit Field Value Description

31−27 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

26 DIV0 Source to reciprocal operation for .S2.

0 0 is not source to reciprocal operation.

1 0 is source to reciprocal operation.
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Table 2−15. Floating-Point Auxiliary Configuration Register (FAUCR)
Field Descriptions (Continued)

Bit DescriptionValueField

25 UNORD Source to a compare operation for .S2

0 NaN is not a source to a compare operation.

1 NaN is a source to a compare operation.

24 UND Result underflow status for .S2.

0 Result does not underflow.

1 Result underflows.

23 INEX Inexact results status for .S2.

0

1 Result differs from what would have been computed had the exponent range
and precision been unbounded; never set with INVAL.

22 OVER Result overflow status for .S2.

0 Result does not overflow.

1 Result overflows.

21 INFO Signed infinity for .S2.

0 Result is not signed infinity.

1 Result is signed infinity.

20 INVAL

0 A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer
conversion or when infinity is subtracted from infinity.

19 DEN2 Denormalized number select for .S2 src2.

0 src2 is not a denormalized number.

1 src2 is a denormalized number.

18 DEN1 Denormalized number select for .S2 src1.

0 src1 is not a denormalized number.

1 src1 is a denormalized number.
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Table 2−15. Floating-Point Auxiliary Configuration Register (FAUCR)
Field Descriptions (Continued)

Bit DescriptionValueField

17 NAN2 NaN select for .S2 src2.

0 src2 is not NaN.

1 src2 is NaN.

16 NAN1 NaN select for .S2 src1.

0 src1 is not NaN.

1 src1 is NaN.

15−11 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

10 DIV0 Source to reciprocal operation for .S1.

0 0 is not source to reciprocal operation.

1 0 is source to reciprocal operation.

9 UNORD Source to a compare operation for .S1

0 NaN is not a source to a compare operation.

1 NaN is a source to a compare operation.

8 UND Result underflow status for .S1.

0 Result does not underflow.

1 Result underflows.

7 INEX Inexact results status for .S1.

0

1 Result differs from what would have been computed had the exponent range
and precision been unbounded; never set with INVAL.

6 OVER Result overflow status for .S1.

0 Result does not overflow.

1 Result overflows.
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Table 2−15. Floating-Point Auxiliary Configuration Register (FAUCR)
Field Descriptions (Continued)

Bit DescriptionValueField

5 INFO Signed infinity for .S1.

0 Result is not signed infinity.

1 Result is signed infinity.

4 INVAL

0 A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer
conversion or when infinity is subtracted from infinity.

3 DEN2 Denormalized number select for .S1 src2.

0 src2 is not a denormalized number.

1 src2 is a denormalized number.

2 DEN1 Denormalized number select for .S1 src1.

0 src1 is not a denormalized number.

1 src1 is a denormalized number.

1 NAN2 NaN select for .S1 src2.

0 src2 is not NaN.

1 src2 is NaN.

0 NAN1 NaN select for .S1 src1.

0 src1 is not NaN.

1 src1 is NaN.
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2.8.3 Floating-Point Multiplier Configuration Register (FMCR)

The floating-point multiplier configuration register (FMCR) contains fields that
specify underflow or overflow, the rounding mode, NaNs, denormalized
numbers, and inexact results for instructions that use the .M functional units.
FMCR has a set of fields specific to each of the .M units: .M2 uses bits 31−16
and .M1 uses bits 15−0. FMCR is shown in Figure 2−16 and described in
Table 2−16.

Figure 2−16. Floating-Point Multiplier Configuration Register (FMCR)

31 27 26 25 24 23 22 21 20 19 18 17 16

Reserved RMODE UNDER INEX OVER INFO INVAL DEN2 DEN1 NAN2 NAN1

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

15 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RMODE UNDER INEX OVER INFO INVAL DEN2 DEN1 NAN2 NAN1

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction; -n = value after reset

Table 2−16. Floating-Point Multiplier Configuration Register (FMCR)
Field Descriptions  

Bit Field Value Description

31−27 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

26−25 RMODE 0−3h Rounding mode select for .M2.

0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)

24 UNDER Result underflow status for .M2.

0 Result does not underflow.

1 Result underflows.
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Table 2−16. Floating-Point Multiplier Configuration Register (FMCR)
Field Descriptions (Continued)

Bit DescriptionValueField

23 INEX Inexact results status for .M2.

0

1 Result differs from what would have been computed had the exponent range
and precision been unbounded; never set with INVAL.

22 OVER Result overflow status for .M2.

0 Result does not overflow.

1 Result overflows.

21 INFO Signed infinity for .M2.

0 Result is not signed infinity.

1 Result is signed infinity.

20 INVAL

0 A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer
conversion or when infinity is subtracted from infinity.

19 DEN2 Denormalized number select for .M2 src2.

0 src2 is not a denormalized number.

1 src2 is a denormalized number.

18 DEN1 Denormalized number select for .M2 src1.

0 src1 is not a denormalized number.

1 src1 is a denormalized number.

17 NAN2 NaN select for .M2 src2.

0 src2 is not NaN.

1 src2 is NaN.

16 NAN1 NaN select for .M2 src1.

0 src1 is not NaN.

1 src1 is NaN.
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Table 2−16. Floating-Point Multiplier Configuration Register (FMCR)
Field Descriptions (Continued)

Bit DescriptionValueField

15−11 Reserved 0 Reserved. The reserved bit location is always read as 0. A value written to this
field has no effect.

10−9 RMODE 0−3h Rounding mode select for .M1.

0 Round toward nearest representable floating-point number

1h Round toward 0 (truncate)

2h Round toward infinity (round up)

3h Round toward negative infinity (round down)

8 UNDER Result underflow status for .M1.

0 Result does not underflow.

1 Result underflows.

7 INEX Inexact results status for .M1.

0

1 Result differs from what would have been computed had the exponent range
and precision been unbounded; never set with INVAL.

6 OVER Result overflow status for .M1.

0 Result does not overflow.

1 Result overflows.

5 INFO Signed infinity for .M1.

0 Result is not signed infinity.

1 Result is signed infinity.

4 INVAL

0 A signed NaN (SNaN) is not a source.

1 A signed NaN (SNaN) is a source. NaN is a source in a floating-point to integer
conversion or when infinity is subtracted from infinity.

3 DEN2 Denormalized number select for .M1 src2.

0 src2 is not a denormalized number.

1 src2 is a denormalized number.
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Table 2−16. Floating-Point Multiplier Configuration Register (FMCR)
Field Descriptions (Continued)

Bit DescriptionValueField

2 DEN1 Denormalized number select for .M1 src1.

0 src1 is not a denormalized number.

1 src1 is a denormalized number.

1 NAN2 NaN select for .M1 src2.

0 src2 is not NaN.

1 src2 is NaN.

0 NAN1 NaN select for .M1 src1.

0 src1 is not NaN.

1 src1 is NaN.
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This chapter describes the assembly language instructions of the
TMS320C67x DSP. Also described are parallel operations, conditional
operations, resource constraints, and addressing modes.

The C67x floating-point DSP uses all of the instructions available to the
TMS320C62x DSP but it also uses other instructions that are specific to the
C67x DSP. These specific instructions are for 32-bit integer multiply, double-
word load, and floating-point operations, including addition, subtraction, and
multiplication.
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3.1 Instruction Operation and Execution Notations

Table 3−1 explains the symbols used in the instruction descriptions.

Table 3−1. Instruction Operation and Execution Notations  

Symbol Meaning

abs(x) Absolute value of x

and Bitwise AND

−a Perform 2s-complement subtraction using the addressing mode defined by the AMR

+a Perform 2s-complement addition using the addressing mode defined by the AMR

bi Select bit i of source/destination b

bit_count Count the number of bits that are 1 in a specified byte

bit_reverse Reverse the order of bits in a 32-bit register

byte0 8-bit value in the least-significant byte position in 32-bit register (bits 0-7)

byte1 8-bit value in the next to least-significant byte position in 32-bit register (bits 8-15)

byte2 8-bit value in the next to most-significant byte position in 32-bit register (bits 16-23)

byte3 8-bit value in the most-significant byte position in 32-bit register (bits 24-31)

bv2 Bit vector of two flags for s2 or u2 data type

bv4 Bit vector of four flags for s4 or u4 data type

by..z Selection of bits y through z of bit string b

cond Check for either creg equal to 0 or creg not equal to 0

creg 3-bit field specifying a conditional register, see section 3.6

cstn n-bit constant field (for example, cst5)

dint 64-bit integer value (two registers)

dp Double-precision floating-point register value

dp(x) Convert x to dp

dst_h or dst_o msb32 of dst (placed in odd-numbered register of 64-bit register pair)

dst_l or dst_e lsb32 of dst (placed in even-numbered register of a 64-bit register pair)

dws4 Four packed signed 16-bit integers in a 64-bit register pair

dwu4 Four packed unsigned 16-bit integers in a 64-bit register pair
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Table 3−1. Instruction Operation and Execution Notations  (Continued)

Symbol Meaning

gmpy Galois Field Multiply

i2 Two packed 16-bit integers in a single 32-bit register

i4 Four packed 8-bit integers in a single 32-bit register

int 32-bit integer value

int(x) Convert x to integer

lmb0(x) Leftmost 0 bit search of x

lmb1(x) Leftmost 1 bit search of x

long 40-bit integer value

lsbn or LSBn n least-significant bits (for example, lsb16)

msbn or MSBn n most-significant bits (for example, msb16)

nop No operation

norm(x) Leftmost nonredundant sign bit of x

not Bitwise logical complement

op Opfields

or Bitwise OR

R Any general-purpose register

rcp(x) Reciprocal approximation of x

ROTL Rotate left

sat Saturate

sbyte0 Signed 8-bit value in the least-significant byte position in 32-bit register (bits 0−7)

sbyte1 Signed 8-bit value in the next to least-significant byte position in 32-bit register (bits 8−15)

sbyte2 Signed 8-bit value in the next to most-significant byte position in 32-bit register (bits 16−23)

sbyte3 Signed 8-bit value in the most-significant byte position in 32-bit register (bits 24−31)

scstn n-bit signed constant field

sdint Signed 64-bit integer value (two registers)

se Sign-extend
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Table 3−1. Instruction Operation and Execution Notations  (Continued)

Symbol Meaning

sint Signed 32-bit integer value

slong Signed 40-bit integer value

sllong Signed 64-bit integer value

slsb16 Signed 16-bit integer value in lower half of 32-bit register

smsb16 Signed 16-bit integer value in upper half of 32-bit register

sp Single-precision floating-point register value that can optionally use cross path

sp(x) Convert x to sp

sqrcp(x) Square root of reciprocal approximation of x

src1_h msb32 of src1

src1_l lsb32 of src1

src2_h msb32 of src2

src2_l lsb32 of src2

s2 Two packed signed 16-bit integers in a single 32-bit register

s4 Four packed signed 8-bit integers in a single 32-bit register

−s Perform 2s-complement subtraction and saturate the result to the result size, if an overflow
occurs

+s Perform 2s-complement addition and saturate the result to the result size, if an overflow
occurs

ubyte0 Unsigned 8-bit value in the least-significant byte position in 32-bit register (bits 0−7)

ubyte1 Unsigned 8-bit value in the next to least-significant byte position in 32-bit register (bits 8−15)

ubyte2 Unsigned 8-bit value in the next to most-significant byte position in 32-bit register (bits 16−23)

ubyte3 Unsigned 8-bit value in the most-significant byte position in 32-bit register (bits 24−31)

ucstn n-bit unsigned constant field (for example, ucst5)

uint Unsigned 32-bit integer value

ulong Unsigned 40-bit integer value

ullong Unsigned 64-bit integer value

ulsb16 Unsigned 16-bit integer value in lower half of 32-bit register
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Table 3−1. Instruction Operation and Execution Notations  (Continued)

Symbol Meaning

umsb16 Unsigned 16-bit integer value in upper half of 32-bit register

u2 Two packed unsigned 16-bit integers in a single 32-bit register

u4 Four packed unsigned 8-bit integers in a single 32-bit register

x clear b,e Clear a field in x, specified by b (beginning bit) and e (ending bit)

x ext l,r Extract and sign-extend a field in x, specified by l (shift left value) and r (shift right value)

x extu l,r Extract an unsigned field in x, specified by l (shift left value) and r (shift right value)

x set b,e Set field in x to all 1s, specified by b (beginning bit) and e (ending bit)

xint 32-bit integer value that can optionally use cross path

xor Bitwise exclusive-OR

xsint Signed 32-bit integer value that can optionally use cross path

xslsb16 Signed 16 LSB of register that can optionally use cross path

xsmsb16 Signed 16 MSB of register that can optionally use cross path

xsp Single-precision floating-point register value that can optionally use cross path

xs2 Two packed signed 16-bit integers in a single 32-bit register that can optionally use cross path

xs4 Four packed signed 8-bit integers in a single 32-bit register that can optionally use cross path

xuint Unsigned 32-bit integer value that can optionally use cross path

xulsb16 Unsigned 16 LSB of register that can optionally use cross path

xumsb16 Unsigned 16 MSB of register that can optionally use cross path

xu2 Two packed unsigned 16-bit integers in a single 32-bit register that can optionally use cross path

xu4 Four packed unsigned 8-bit integers in a single 32-bit register that can optionally use cross path

→ Assignment

+ Addition

++ Increment by 1

× Multiplication

− Subtraction

== Equal to



Instruction Operation and Execution Notations

Instruction Set3-6 SPRU733A

Table 3−1. Instruction Operation and Execution Notations  (Continued)

Symbol Meaning

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<< Shift left

>> Shift right

>>s Shift right with sign extension

>>z Shift right with a zero fill

~ Logical inverse

& Logical AND
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3.2 Instruction Syntax and Opcode Notations

Table 3−2 explains the syntaxes and opcode fields used in the instruction
descriptions.

The C64x CPU 32-bit opcodes are mapped in Appendix C through Appendix G.

Table 3−2. Instruction Syntax and Opcode Notations  

Symbol Meaning

baseR base address register

CC

creg 3-bit field specifying a conditional register, see section 3.6

cst constant

csta constant a

cstb constant b

cstn n-bit constant field

dst destination

dstms

dw doubleword; 0 = word, 1 = doubleword

iin bit n of the constant ii

ld/st load or store; 0 = store, 1 = load

mode addressing mode, see section 3.8

offsetR register offset

op opfield; field within opcode that specifies a unique instruction

opn bit n of the opfield

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is
executed in parallel

r LDDW instruction

rsv reserved

s side A or B for destination; 0 = side A, 1 = side B.

sc scaling mode; 0 = nonscaled, offsetR/ucst5 is not shifted; 1 = scaled, offsetR/ucst5 is shifted

scstn n-bit signed constant field
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Table 3−2. Instruction Syntax and Opcode Notations  (Continued)

Symbol Meaning

scstn bit n of the signed constant field

sn sign

src source

src1 source 1

src2 source 2

srcms

stgn bit n of the constant stg

t side of source/destination (src/dst) register; 0 = side A, 1 = side B

ucstn n-bit unsigned constant field

ucstn bit n of the unsigned constant field

unit unit decode

x cross path for src2; 0 = do not use cross path, 1 = use cross path

y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit

z test for equality with zero or nonzero
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3.3 Overview of IEEE Standard Single- and Double-Precision Formats

Floating-point operands are classified as single-precision (SP) and double-
precision (DP). Single-precision floating-point values are 32-bit values stored
in a single register. Double-precision floating-point values are 64-bit values
stored in a register pair. The register pair consists of consecutive even and odd
registers from the same register file. The 32 least-significant-bits are loaded
into the even register; the 32 most-significant-bits containing the sign bit and
exponent are loaded into the next register (that is always the odd register). The
register pair syntax places the odd register first, followed by a colon, then the
even register (that is, A1:A0, B1:B0, A3:A2, B3:B2, etc.).

Instructions that use DP sources fall in two categories: instructions that read
the upper and lower 32-bit words on separate cycles, and instructions that
read both 32-bit words on the same cycle. All instructions that produce a
double-precision result write the low 32-bit word one cycle before writing the
high 32-bit word. If an instruction that writes a DP result is followed by an
instruction that uses the result as its DP source and it reads the upper and low-
er words on separate cycles, then the second instruction can be scheduled on
the same cycle that the high 32-bit word of the result is written. The lower result
is written on the previous cycle. This is because the second instruction reads
the low word of the DP source one cycle before the high word of the DP source.

IEEE floating-point numbers consist of normal numbers, denormalized
numbers, NaNs (not a number), and infinity numbers. Denormalized numbers
are nonzero numbers that are smaller than the smallest nonzero normal
number. Infinity is a value that represents an infinite floating-point number.
NaN values represent results for invalid operations, such as (+infinity +
(−infinity)).

Normal single-precision values are always accurate to at least six decimal
places, sometimes up to nine decimal places. Normal double-precision values
are always accurate to at least 15 decimal places, sometimes up to 17 decimal
places.

Table 3−3 shows notations used in discussing floating-point numbers.
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Table 3−3. IEEE Floating-Point Notations

Symbol Meaning

s Sign bit

e Exponent field

f Fraction (mantissa) field

x Can have value of 0 or 1 (don’t care)

NaN Not-a-Number (SNaN or QNaN)

SNaN Signal NaN

QNaN Quiet NaN

NaN_out QNaN with all bits in the f field = 1

Inf Infinity

LFPN Largest floating-point number

SFPN Smallest floating-point number

LDFPN Largest denormalized floating-point number

SDFPN Smallest denormalized floating-point number

signed Inf +infinity or −infinity

signed NaN_out NaN_out with s = 0 or 1
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Figure 3−1 shows the fields of a single-precision floating-point number repre-
sented within a 32-bit register.

Figure 3−1. Single-Precision Floating-Point Fields

31

e

23 22 030

s f

Legend : s sign bit (0 = positive, 1 = negative)
e 8-bit exponent ( 0 < e < 255)
f 23-bit fraction 

0 < f < 1*2−1 + 1*2−2 + ... + 1*2−23 or
0 < f < ((223)−1)/(223)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 255) and denormalized (e is 0). The following
formulas define how to translate the s, e, and f fields into a single-precision
floating-point number.

Normalized:

−1s × 2(e−127) × 1.f     0 < e < 255

Denormalized (Subnormal):

−1s × 2−126 × 0.f      e = 0; f nonzero

Table 3−4 shows the s,e, and f values for special single-precision floating-
point numbers.

Table 3−4. Special Single-Precision Values

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Symbol ÁÁÁÁÁ
ÁÁÁÁÁ

Sign (s) ÁÁÁÁÁ
ÁÁÁÁÁ

Exponent (e)ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Fraction (f)

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

+0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ−0

ÁÁÁÁÁ
ÁÁÁÁÁ1

ÁÁÁÁÁ
ÁÁÁÁÁ0

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

+Inf
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

255
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

−Inf ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

NaN ÁÁÁÁÁ
ÁÁÁÁÁ

x ÁÁÁÁÁ
ÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

nonzero
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

QNaN
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

x
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

255
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1xx..x

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SNaN ÁÁÁÁÁ
ÁÁÁÁÁ

x ÁÁÁÁÁ
ÁÁÁÁÁ

255 ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0xx..x and nonzero
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Table 3−5 shows hexadecimal and decimal values for some single-precision
floating-point numbers.

Figure 3−2 shows the fields of a double-precision floating-point number repre-
sented within a pair of 32-bit registers.

Table 3−5. Hexadecimal and Decimal Representation for Selected Single-Precision Values

Symbol Hex Value Decimal Value

NaN_out 7FFF FFFF QNaN

0 0000 0000 0.0

−0 8000 0000 −0.0

1 3F80 0000 1.0

2 4000 0000 2.0

LFPN 7F7F FFFF 3.40282347e+38

SFPN 0080 0000 1.17549435e−38

LDFPN 007F FFFF 1.17549421e−38

SDFPN 0000 0001 1.40129846e−45

Figure 3−2. Double-Precision Floating-Point Fields

31

e

20 19 0 31 030

s

Odd register Even register

f f

Legend : s sign bit (0 = positive, 1 = negative)
e 11-bit exponent ( 0 < e < 2047)
f 52-bit fraction

0 < f < 1*2−1 + 1*2−2 + ... + 1*2−52 or 
0 < f < ((252)−1)/(252)

The floating-point fields represent floating-point numbers within two ranges:
normalized (e is between 0 and 2047) and denormalized (e is 0). The following
formulas define how to translate the s, e, and f fields into a double-precision
floating-point number.
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Normalized:

−1s × 2(e−1023) × 1.f     0 < e < 2047

Denormalized (Subnormal):

−1s × 2−1022 × 0.f      e = 0; f nonzero

Table 3−6 shows the s, e, and f values for special double-precision floating-
point numbers.

Table 3−6. Special Double-Precision Values

Symbol Sign (s) Exponent (e) Fraction (f)

+0 0 0 0

−0 1 0 0

+Inf 0 2047 0

−Inf 1 2047 0

NaN x 2047 nonzero

QNaN x 2047 1xx..x

SNaN x 2047 0xx..x and nonzero

Table 3−7 shows hexadecimal and decimal values for some double-precision
floating-point numbers.

Table 3−7. Hexadecimal and Decimal Representation for Selected Double-Precision Values

Symbol Hex Value Decimal Value

NaN_out 7FFF FFFF FFFF FFFF QNaN

0 0000 0000 0000 0000 0.0

−0 8000 0000 0000 0000 −0.0

1 3FF0 0000 0000 0000 1.0

2 4000 0000 0000 0000 2.0

LFPN 7FEF FFFF FFFF FFFF 1.7976931348623157e+308

SFPN 0010 0000 0000 0000 2.2250738585072014e−308

LDFPN 000F FFFF FFFF FFFF 2.2250738585072009e−308

SDFPN 0000 0000 0000 0001 4.9406564584124654e−324
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3.4 Delay Slots
The execution of floating-point instructions can be defined in terms of delay
slots and functional unit latency. The number of delay slots is equivalent to
the number of additional cycles required after the source operands are read
for the result to be available for reading. For a single-cycle type instruction,
operands are read on cycle i and produce a result that can be read on cycle
i + 1. For a 4-cycle instruction, operands are read on cycle i and produce a
result that can be read on cycle i + 4. Table 3−8 shows the number of delay
slots associated with each type of instruction.

The functional unit latency is equivalent to the number of cycles that must pass
before the functional unit can start executing the next instruction. The double-
precision floating-point addition, subtraction, multiplication, compare, and the
32-bit integer multiply instructions have a functional unit latency that is greater
than 1. Most instructions have a functional unit latency of 1, meaning that the
next instruction can begin execution in cycle i + 1. The ADDDP instruction has
a functional unit latency of 2. Operands are read on cycle i and cycle i + 1.
Therefore, a new instruction cannot begin until cycle i + 2, rather than i + 1.
ADDDP produces a result that can be read on cycle i + 7, because it has six
delay slots.

Table 3−8. Delay Slot and Functional Unit Latency

Instruction Type
Delay
Slots

Functional
Unit Latency Read Cycles †

Write
Cycles †

Single cycle 0 1 i i

2-cycle DP 1 1 i i, i + 1

DP compare 1 2 i, i + 1 1 + 1

4-cycle 3 1 i i + 3

INTDP 4 1 i i + 3, i + 4

Load 4 1 i i, i + 4‡

MPYSP2DP 4 2 i i + 3, i + 4

ADDDP/SUBDP 6 2 i, i + 1 i + 5, i + 6

MPYSPDP 6 3 i, i + 1 i + 5, i + 6

MPYI 8 4 i, i + 1, 1 + 2, i + 3 i + 8

MPYID 9 4 i, i + 1, 1 + 2, i + 3 i + 8, i + 9

MPYDP 9 4 i, i + 1, 1 + 2, i + 3 i + 8, i + 9

† Cycle i is in the E1 pipeline phase.
‡ A write on cycle i + 4 uses a separate write port from other .D unit instructions.
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3.5 Parallel Operations

Instructions are always fetched eight at a time. This constitutes a fetch packet.
The basic format of a fetch packet is shown in Figure 3−3. Fetch packets are
aligned on 256-bit (8-word) boundaries.

Figure 3−3. Basic Format of a Fetch Packet

p p p p p p p p

Instruction
A

00000b

Instruction
B

00100b

Instruction
C

01000b

Instruction
D

01100b

Instruction
E

10000b

Instruction
F

10100b

Instruction
G

11000b

Instruction
H

11100b
LSBs of
the byte
address

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

The execution of the individual instructions is partially controlled by a bit in
each instruction, the p-bit. The p -bit (bit 0) determines whether the instruction
executes in parallel with another instruction. The p-bits are scanned from left
to right (lower to higher address). If the p -bit of instruction i is 1, then instruction
i + 1 is to be executed in parallel with (in the the same cycle as) instruction i.
If the p-bit of instruction i is 0, then instruction i + 1 is executed in the cycle after
instruction i. All instructions executing in parallel constitute an execute packet.
An execute packet can contain up to eight instructions. Each instruction in an
execute packet must use a different functional unit.

On the C67x DSP, an execute packet cannot cross an 8-word boundary;
therefore, the last p-bit in a fetch packet is always cleared to 0, and each fetch
packet starts a new execute packet. On the C67x+ DSP, an execute packet
can cross an 8-word boundary.

There are three types of p -bit patterns for fetch packets. These three p -bit pat-
terns result in the following execution sequences for the eight instructions:

� Fully serial
� Fully parallel
� Partially serial

Example 3−1 through Example 3−3 show the conversion of a p-bit sequence
into a cycle-by-cycle execution stream of instructions.
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Example 3−1. Fully Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

0 0 0 0 0 0 0 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A

2 B

3 C

4 D

5 E

6 F

7 G

8 H

The eight instructions are executed sequentially.

Example 3−2. Fully Parallel p-Bit Pattern in a Fetch Packet

This p-bit pattern:

1 1 1 1 1 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0

results in this execution sequence:

Cycle/Execute
Packet Instructions

1 A B C D E F G H

All eight instructions are executed in parallel.
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Example 3−3. Partially Serial p-Bit Pattern in a Fetch Packet

This p-bit pattern:

31 0 31 0 31 0 31 0

0 0 1 1

31 0 31 0 31 0 31 0

0 1 1 0

Instruction
A

Instruction
B

Instruction
C

Instruction
D

Instruction
E

Instruction
F

Instruction
G

Instruction
H

results in this execution sequence:

Cycle/Execute Packet Instructions

1 A

2 B

3 C D E

4 F G H

Note: Instructions C, D, and E do not use any of the same functional units, cross paths, or
other data path resources. This is also true for instructions F, G, and H.

3.5.1 Example Parallel Code

The vertical bars || signify that an instruction is to execute in parallel with the
previous instruction. The code for the fetch packet in Example 3−3 would be
represented as this:

instruction A

instruction B

instruction C
|| instruction D
|| instruction E

instruction F
|| instruction G
|| instruction H

3.5.2 Branching Into the Middle of an Execute Packet

If a branch into the middle of an execute packet occurs, all instructions at lower
addresses are ignored. In Example 3−3, if a branch to the address containing
instruction D occurs, then only D and E execute. Even though instruction C is
in the same execute packet, it is ignored. Instructions A and B are also ignored
because they are in earlier execute packets. If your result depends on execut-
ing A, B, or C, the branch to the middle of the execute packet will produce an
erroneous result.
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3.6 Conditional Operations

Most instructions can be conditional. The condition is controlled by a 3-bit
opcode field (creg) that specifies the condition register tested, and a 1-bit field
(z) that specifies a test for zero or nonzero. The four MSBs of every opcode
are creg and z. The specified condition register is tested at the beginning of
the E1 pipeline stage for all instructions. For more information on the pipeline,
see Chapter 4. If z = 1, the test is for equality with zero; if z = 0, the test is for
nonzero. The case of creg = 0 and z = 0 is treated as always true to allow
instructions to be executed unconditionally. The creg field is encoded in the
instruction opcode as shown in Table 3−9.

Table 3−9. Registers That Can Be Tested by Conditional Operations

Specified 
Conditional

creg z
Conditional
Register Bit 31 30 29 28

Unconditional 0 0 0 0

Reserved† 0 0 0 1

B0 0 0 1 z

B1 0 1 0 z

B2 0 1 1 z

A1 1 0 0 z

A2 1 0 1 z

Reserved 1 1 x‡ x‡

† This value is reserved for software breakpoints that are used for emulation purposes.
‡ x can be any value.

Conditional instructions are represented in code by using square brackets, [  ],
surrounding the condition register name. The following execute packet
contains two ADD instructions in parallel. The first ADD is conditional on B0
being nonzero. The second ADD is conditional on B0 being zero. The charac-
ter ! indicates the inverse of the condition.

[B0] ADD .L1 A1,A2,A3
|| [!B0] ADD .L2 B1,B2,B3

The above instructions are mutually exclusive, only one will execute. If they
are scheduled in parallel, mutually exclusive instructions are constrained as
described in section 3.7. If mutually exclusive instructions share any resources
as described in section 3.7, they cannot be scheduled in parallel (put in the
same execute packet), even though only one will execute.
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3.7 Resource Constraints

No two instructions within the same execute packet can use the same
resources. Also, no two instructions can write to the same register during the
same cycle. The following sections describe how an instruction can use each
of the resources.

3.7.1 Constraints on Instructions Using the Same Functional Unit

Two instructions using the same functional unit cannot be issued in the same
execute packet.

The following execute packet is invalid:

    ADD .S1 A0, A1, A2 ;.S1 is used for
||  SHR .S1 A3, 15, A4 ;...both instructions

The following execute packet is valid:

    ADD .L1 A0, A1, A2 ;Two different functional
||  SHR .S1 A3, 15, A4 ;...units are used

3.7.2 Constraints on the Same Functional Unit Writing in the Same Instruction Cycle

Two instructions using the same functional unit cannot write their results in the
same instruction cycle.
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3.7.3 Constraints on Cross Paths (1X and 2X)

One unit (either a .S, .L, or .M unit) per data path, per execute packet, can read
a source operand from its opposite register file via the cross paths (1X and 2X).

For example, the .S1 unit can read both its operands from the A register file; or
it can read an operand from the B register file using the 1X cross path and the
other from the A register file. The use of a cross path is denoted by an X following
the functional unit name in the instruction syntax (as in S1X).

The following execute packet is invalid because the 1X cross path is being
used for two different B register operands:

   MV .S1X B0, A0 ; \ Invalid. Instructions are using the 1X cross path

|| MV .L1X B1, A1 ; / with different B registers

The following execute packet is valid because all uses of the 1X cross path are
for the same B register operand, and all uses of the 2X cross path are for the
same A register operand:

    ADD .L1X A0,B1,A1 ; \ Instructions use the 1X with B1

 || SUB .S1X A2,B1,A2 ; / 1X cross paths using B1

 || AND .D1  A4,A1,A3 ;

 || MPY .M1  A6,A1,A4 ;

 || ADD .L2  B0,B4,B2 ;

 || SUB .S2X B4,A4,B3 ; / 2X cross paths using A4

 || AND .D2X B5,A4,B4 ; / 2X cross paths using A4

 || MPY .M2  B6,B4,B5 ;

The operand comes from a register file opposite of the destination, if the x bit
in the instruction field is set.
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3.7.4 Constraints on Loads and Stores

Load and store instructions can use an address pointer from one register file
while loading to or storing from the other register file. Two load and store
instructions using a destination/source from the same register file cannot be
issued in the same execute packet. The address register must be on the same
side as the .D unit used.

The following execute packet is invalid:

LDW.D1  *A0,A1 ; \ .D2 unit must use the address
|| LDW.D2  *A2,B2 ; / register from the B register file

The following execute packet is valid:

LDW.D1 *A0,A1 ; \ Address registers from correct
|| LDW.D2 *B0,B2 ; / register files

Two loads and/or stores loading to and/or storing from the same register file
cannot be issued in the same execute packet.

The following execute packet is invalid:

LDW.D1  *A4,A5 ; \ Loading to and storing from the
|| STW.D2  A6,*B4 ; / same register file

The following execute packets are valid:

LDW.D1 *A4,B5 ; \ Loading to, and storing from
|| STW.D2  A6,*B4 ; / different register files

LDW.D1 *A0,B2 ; \ Loading to
|| LDW.D2  *B0,A1 ; / different register files
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3.7.5 Constraints on Long (40-Bit) Data

Because the .S and .L units share a read register port for long source operands
and a write register port for long results, only one long result may be issued
per register file in an execute packet. All instructions with a long result on the
.S and .L units have zero delay slots. See section 2.2 for the order for long
pairs.

The following execute packet is invalid:

   ADD.L1 A5:A4,A1,A3:A2 ; \ Two long writes
|| SHL.S1   A8,A9,A7:A6  ; / on A register file

The following execute packet is valid:

   ADD.L1 A5:A4,A1,A3:A2  ; \ One long write for
|| SHL.S2 B8,B9,B7:B6  ; / each register file

Because the .L and .S units share their long read port with the store port,
operations that read a long value cannot be issued on the .L and/or .S units
in the same execute packet as a store.

The following execute packet is invalid:

   ADD.L1 A5:A4,A1,A3:A2 ; \ Long read operation and a
|| STW.D1 A8,*A9 ; / store

The following execute packet is valid:

   ADD.L1 A4, A1, A3:A2 ; \ No long read with
|| STW.D1 A8,*A9 ; / the store

On the C67x DSP, doubleword load instructions conflict with long results from
the .S units. All stores conflict with a long source on the .S unit. The following
execute packet is invalid, because the .D unit store on the T1 path conflicts with
the long source on the .S1 unit:

   ADD .S1   A1,A5:A4, A3:A2  ; \ Long source on .S unit and a store
|| STW .D1T1 A8,*A9  ; / on the T1 path of the .D unit

The following code sequence is invalid:

LDDW .D1T1 *A16,A11:A10 ; \ Double word load written to
                        ;   A11:A10 on .D1
NOP 3                   ;   conflicts after 3 cycles
SHL  .S1   A8,A9,A7:A6  ; / with write to A7:A6 on .S1

The following execute packets are valid:

ADD .L1  A1,A5:A4,A3:A2  ; \ One long write for
|| SHL .S2  B8,B9,B7:B6  ; / each register file

ADD .L1    A4, A1, A3:A2 ; \ No long read with
|| STW .D1T1  A8,*A9 ; / the store on T1 path of .D1
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3.7.6 Constraints on Register Reads

More than four reads of the same register cannot occur on the same cycle.
Conditional registers are not included in this count.

The following execute packets are invalid:

   MPY  .M1   A1, A1, A4  ; five reads of register A1

|| ADD  .L1   A1, A1, A5

|| SUB  .D1   A1, A2, A3

   MPY  .M1   A1, A1, A4  ; five reads of register A1

|| ADD  .L1   A1, A1, A5

|| SUB  .D2x  A1, B2, B3

The following execute packet is valid:

          MPY  .M1  A1, A1, A4  ; only four reads of A1

|| [A1]   ADD  .L1  A0, A1, A5

||        SUB  .D1  A1, A2, A3
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3.7.7 Constraints on Register Writes

Two instructions cannot write to the same register on the same cycle. Two
instructions with the same destination can be scheduled in parallel as long as
they do not write to the destination register on the same cycle. For example,
an MPY issued on cycle i followed by an ADD on cycle i + 1 cannot write to the
same register because both instructions write a result on cycle i + 1. Therefore,
the following code sequence is invalid unless a branch occurs after the MPY,
causing the ADD not to be issued.

MPY .M1  A0, A1, A2

ADD .L1  A4, A5, A2

However, this code sequence is valid:

   MPY  .M1  A0, A1, A2

|| ADD  .L1  A4, A5, A2

Figure 3−4 shows different multiple-write conflicts. For example, ADD and
SUB in execute packet L1 write to the same register. This conflict is easily
detectable.

MPY in packet L2 and ADD in packet L3 might both write to B2 simultaneously;
however, if a branch instruction causes the execute packet after L2 to be
something other than L3, a conflict would not occur. Thus, the potential conflict
in L2 and L3 might not be detected by the assembler. The instructions in L4
do not constitute a write conflict because they are mutually exclusive. In
contrast, because the instructions in L5 may or may not be mutually exclusive,
the assembler cannot determine a conflict. If the pipeline does receive
commands to perform multiple writes to the same register, the result is
undefined.

Figure 3−4. Examples of the Detectability of Write Conflicts by the Assembler

L1: ADD.L2 B5,B6,B7 ; \ detectable, conflict
|| SUB.S2 B8,B9,B7 ; /

L2: MPY.M2 B0,B1,B2 ; \ not detectable

L3: ADD.L2 B3,B4,B2 ; /

L4:[!B0] ADD.L2 B5,B6,B7 ; \ detectable, no conflict
|| [B0] SUB.S2 B8,B9,B7 ; /

L5:[!B1] ADD.L2 B5,B6,B7 ; \ not detectable
|| [B0] SUB.S2 B8,B9,B7 ; /



Resource Constraints

3-25Instruction SetSPRU733A

3.7.8 Constraints on Floating-Point Instructions

If an instruction has a multicycle functional unit latency, it locks the functional
unit for the necessary number of cycles. Any new instruction dispatched to that
functional unit during this locking period causes undefined results. If an
instruction with a multicycle functional unit latency has a condition that is evalu-
ated as false during E1, it still locks the functional unit for subsequent cycles.

An instruction of the following types scheduled on cycle i has the following
constraints:

DP compare No other instruction can use the functional unit on cycles
i and i + 1.

ADDDP/SUBDP No other instruction can use the functional unit on cycles
i and i + 1.

MPYI No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYID No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYDP No other instruction can use the functional unit on cycles
i, i + 1, i + 2, and i + 3.

MPYSPDP No other instruction can use the functional unit on cycles
i and  i + 1.

MPYSP2DP No other instruction can use the functional unit on cycles
i and  i + 1.

If a cross path is used to read a source in an instruction with a multicycle func-
tional unit latency, you must ensure that no other instructions executing on the
same side uses the cross path.

An instruction of the following types scheduled on cycle i using a cross path
to read a source, has the following constraints:

DP compare No other instruction on the same side can used the cross
path on cycles i and i + 1.

ADDDP/SUBDP No other instruction on the same side can use the cross
path on cycles i and i + 1.

MPYI No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYID No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.
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MPYDP No other instruction on the same side can use the cross
path on cycles i, i + 1, i + 2, and i + 3.

MPYSPDP No other instruction on the same side can use the cross
path on cycles i and  i + 1.

Other hazards exist because instructions have varying numbers of delay slots,
and need the functional unit read and write ports of varying numbers of cycles.
A read or write hazard exists when two instructions on the same functional unit
attempt to read or write, respectively, to the register file on the same cycle.

An instruction of the following types scheduled on cycle i has the following
constraints:

2-cycle DP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 1 due to a write hazard on cycle
i + 1.

Another 2-cycle DP instruction cannot be scheduled on
that functional unit on cycle i + 1 due to a write hazard on
cycle i + 1.

4-cycle A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 3 due to a write hazard on cycle
i + 3.

A multiply (16 × 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 2 due to a write hazard
on cycle i + 3.

ADDDP/SUBDP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 5 or i + 6 due to a write hazard
on cycle i + 5 or i + 6, respectively.

A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3 due to a write hazard on
cycle i + 5 or i + 6, respectively.

An INTDP instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3 due to a write hazard on
cycle i + 5 or i + 6, respectively.

INTDP A single-cycle instruction cannot be scheduled on that
functional unit on cycle i + 3 or i + 4 due to a write hazard
on cycle i + 3 or i + 4, respectively.

An INTDP instruction cannot be scheduled on that func-
tional unit on cycle i + 1 due to a write hazard on cycle
 i + 1.

A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 1 due to a write hazard on cycle 
i + 1.
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MPYI A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYSPDP instruction cannot be scheduled on that
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYSP2DP instruction cannot be scheduled on that
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 × 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 6 due to a write hazard
on cycle i + 7.

MPYID A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYDP instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYSPDP instruction cannot be scheduled on that
functional unit on cycle i + 4, i + 5, or i + 6.

A MPYSP2DP instruction cannot be scheduled on that
functional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 × 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 7 or i + 8 due to a write
hazard on cycle i + 8 or i + 9, respectively.

MPYDP A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A MPYI instruction cannot be scheduled on that function-
al unit on cycle i + 4, i + 5, or i + 6.

A MPYID instruction cannot be scheduled on that func-
tional unit on cycle i + 4, i + 5, or i + 6.

A multiply (16 × 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 7 or i + 8 due to a write
hazard on cycle i + 8 or i + 9, respectively.
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MPYSPDP A 4-cycle instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3.

A MPYI instruction cannot be scheduled on that function-
al unit on cycle i + 2 or i + 3.

A MPYID instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3.

A MPYDP instruction cannot be scheduled on that func-
tional unit on cycle i + 2 or i + 3.

A MPYSP2DP instruction cannot be scheduled on that
functional unit on cycle i + 2 or i + 3.

A multiply (16 × 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 4 or i + 5 due to a write
hazard on cycle i + 5 or i + 6, respectively.

MPYSP2DP A multiply (16 × 16-bit) instruction cannot be scheduled
on that functional unit on cycle i + 2 or i + 3 due to a write
hazard on cycle i + 3 or i + 4, respectively.

All of the above cases deal with double-precision floating-point instructions or
the MPYI or MPYID instructions except for the 4-cycle case. A 4-cycle instruc-
tion consists of both single- and double-precision floating-point instructions.
Therefore, the 4-cycle case is important for the following single-precision float-
ing-point instructions:

� ADDSP
� SUBSP
� SPINT
� SPTRUNC
� INTSP
� MPYSP

The .S and .L units share their long write port with the load port for the 32 most
significant bits of an LDDW load. Therefore, the LDDW instruction and the .S
or .L unit writing a long result cannot write to the same register file on the same
cycle. The LDDW writes to the register file on pipeline phase E5. Instructions
that use a long result and use the .L and .S unit write to the register file on pipe-
line phase E1. Therefore, the instruction with the long result must be sched-
uled later than four cycles following the LDDW instruction if both instructions
use the same side.
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3.8 Addressing Modes

The addressing modes on the C67x DSP are linear, circular using BK0, and
circular using BK1. The addressing mode is specified by the addressing mode
register (AMR), described in section 2.7.3.

All registers can perform linear addressing. Only eight registers can perform
circular addressing: A4−A7 are used by the .D1 unit and B4−B7 are used by
the .D2 unit. No other units can perform circular addressing.
LDB(U)/LDH(U)/LDW , STB/STH/STW, ADDAB/ADDAH/ADDAW/ADDAD ,
and SUBAB/SUBAH/SUBAW  instructions all use AMR to determine what
type of address calculations are performed for these registers.

3.8.1 Linear Addressing Mode

3.8.1.1 LD and ST Instructions 

For load and store instructions, linear mode simply shifts the offsetR/cst
operand to the left by 3, 2, 1, or 0 for doubleword, word, halfword, or byte
access, respectively; and then performs an add or a subtract to baseR
(depending on the operation specified).

For the preincrement, predecrement, positive offset, and negative offset
address generation options, the result of the calculation is the address to be
accessed in memory. For postincrement or postdecrement addressing, the
value of baseR before the addition or subtraction is the address to be accessed
from memory.

3.8.1.2 ADDA and SUBA Instructions 

For integer addition and subtraction instructions, linear mode simply shifts the
src1/cst operand to the left by 3, 2, 1, or 0 for doubleword, word, halfword, or
byte data sizes, respectively, and then performs the add or subtract specified.
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3.8.2 Circular Addressing Mode

The BK0 and BK1 fields in AMR specify the block sizes for circular addressing,
see section 2.7.3.

3.8.2.1 LD and ST Instructions 

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0
according to the data size, and is then added to or subtracted from baseR to
produce the final address. Circular addressing modifies this slightly by only
allowing bits N through 0 of the result to be updated, leaving bits 31 through
N + 1 unchanged after address arithmetic. The resulting address is bounded
to 2(N + 1) range, regardless of the size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block-size of 8 is
8 bytes, not 8 times the data size (byte, halfword, word). So, to perform circular
addressing on an array of 8 words, a size of 32 should be specified, or N = 4.
Example 3−4 shows an LDW performed with register A4 in circular mode and
BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value in
AMR for this example is 0004 0001h.

Example 3−4. LDW Instruction in Circular Mode

LDW .D1 *++A4[9],A1

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A1 XXXX XXXXh A1 XXXX XXXXh A1 1234 5678h

mem 104h 1234 5678h mem 104h 1234 5678h mem 104h 1234 5678h

Note: 9h words is 24h bytes. 24h bytes is 4 bytes beyond the 32-byte (20h) boundary 100h−11Fh; thus, it is wrapped around to
(124h − 20h = 104h).
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3.8.2.2 ADDA and SUBA Instructions 

As with linear address arithmetic, offsetR/cst is shifted left by 3, 2, 1, or 0
according to the data size, and is then added to or subtracted from baseR to
produce the final address. Circular addressing modifies this slightly by only
allowing bits N through 0 of the result to be updated, leaving bits 31 through
N + 1 unchanged after address arithmetic. The resulting address is bounded
to 2(N + 1) range, regardless of the size of the offsetR/cst.

The circular buffer size in AMR is not scaled; for example, a block size of 8 is
8 bytes, not 8 times the data size (byte, halfword, word). So, to perform circular
addressing on an array of 8 words, a size of 32 should be specified, or N = 4.
Example 3−5 shows an ADDAH  performed with register A4 in circular mode
and BK0 = 4, so the buffer size is 32 bytes, 16 halfwords, or 8 words. The value
in AMR for this example is 0004 0001h.

Example 3−5. ADDAH Instruction in Circular Mode

ADDAH .D1 A4,A1,A4

Before ADDAH 1 cycle after ADDAH

A4 0000 0100h A4 0000 0106h

A1 0000 0013h A1 0000 0013h

Note: 13h halfwords is 26h bytes. 26h bytes is 6 bytes beyond the 32-byte (20h) boundary 100h−11Fh; thus, it is wrapped
around to (126h − 20h = 106h).

3.8.3 Syntax for Load/Store Address Generation

The C64x DSP has a load/store architecture, which means that the only way
to access data in memory is with a load or store instruction. Table 3−10 shows
the syntax of an indirect address to a memory location. Sometimes a large off-
set is required for a load/store. In this case, you can use the B14 or B15 register
as the base register, and use a 15-bit constant (ucst15) as the offset.

Table 3−11 describes the addressing generator options. The memory address
is formed from a base address register (baseR) and an optional offset that is
either a register (offsetR) or a 5-bit unsigned constant (ucst5).
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Table 3−10. Indirect Address Generation for Load/Store

Addressing Type
No Modification of 
Address Register

Preincrement or
Predecrement of 
Address Register

Postincrement or
Postdecrement of
Address Register

Register indirect *R *++R
*− −R

*R++
*R− −

Register relative *+R[ucst5]
*−R[ucst5]

*++R[ucst5]
*− −R[ucst5]

*R++[ucst5]
*R− −[ucst5]

Register relative with
15-bit constant offset

*+B14/B15[ucst15] not supported not supported

Base + index *+R[offsetR]
*−R[offsetR]

*++R[offsetR]
*− −R[offsetR]

*R++[offsetR]
*R− −[offsetR]

Table 3−11. Address Generator Options for Load/Store

Mode Field Syntax Modification Performed

0 0 0 0 *−R[ucst5] Negative offset

0 0 0 1 *+R[ucst5] Positive offset

0 1 0 0 *−R[offsetR] Negative offset

0 1 0 1 *+R[offsetR] Positive offset

1 0 0 0 *− −R[ucst5] Predecrement

1 0 0 1 *++R[ucst5] Preincrement

1 0 1 0 *R− −[ucst5] Postdecrement

1 0 1 1 *R++[ucst5] Postincrement

1 1 0 0 *−−R[offsetR] Predecrement

1 1 0 1 *++R[offsetR] Preincrement

1 1 1 0 *R− −[offsetR] Postdecrement

1 1 1 1 *R++[offsetR] Postincrement
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3.9 Instruction Compatibility

The C62x, C64x, and C67x DSPs share an instruction set. All of the instruc-
tions valid for the C62x DSP are also valid for the C67x DSP. See Appendix A
for a list of the instructions that are common to the C62x, C64x, and C67x
DSPs.

3.10 Instruction Descriptions

This section gives detailed information on the instruction set. Each instruction
may present the following information:

� Assembler syntax
� Functional units
� Compatibility
� Operands
� Opcode
� Description
� Execution
� Pipeline
� Instruction type
� Delay slots
� Functional Unit Latency
� Examples

The ADD instruction is used as an example to familiarize you with the way
each instruction is described. The example describes the kind of information
you will find in each part of the individual instruction description and where to
obtain more information.

Instruction Compatibility / Instruction Descriptions
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The way each instruction is described.Example

Syntax EXAMPLE (.unit) src, dst
.unit = .L1, .L2, .S1, .S2, .D1, .D2

src and dst indicate source and destination, respectively. The (.unit) dictates
which functional unit the instruction is mapped to (.L1, .L2, .S1, .S2, .M1, .M2,
.D1, or .D2).

A table is provided for each instruction that gives the opcode map fields, units
the instruction is mapped to, types of operands, and the opcode.

The opcode shows the various fields that make up each instruction. These
fields are described in Table 3−2 on page 3-7.

There are instructions that can be executed on more than one functional unit.
Table 3−12 shows how this is documented for the ADD instruction. This
instruction has three opcode map fields: src1, src2, and dst. In the seventh
group, the operands have the types cst5, long, and long for src1, src2, and dst,
respectively. The ordering of these fields implies cst5 + long � long, where +
represents the operation being performed by the ADD. This operation can be
done on .L1 or .L2 (both are specified in the unit column). The s in front of each
operand signifies that src1 (scst5), src2 (slong), and dst (slong) are all signed
values.

In the third group, src1, src2, and dst are int, int, and long, respectively. The
u in front of each operand signifies that all operands are unsigned. Any
operand that begins with x can be read from a register file that is different from
the destination register file. The operand comes from the register file opposite
the destination, if the x bit in the instruction is set (shown in the opcode map).
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Table 3−12. Relationships Between Operands, Operand Size, Signed/Unsigned,
Functional Units, and Opfields for Example Instruction (ADD)

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 0011

src1
src2
dst

sint
xsint
slong

.L1, .L2 010 0011

src1
src2
dst

xsint
slong
slong

.L1, .L2 010 0001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 0010

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 0000

src1
src2
dst

sint
xsint
sint

.S1, .S2 00 0111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 00 0110

src2
src1
dst

sint
sint
sint

.D1, .D2 01 0000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 01 0010
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Compatibility The C62x, C64x, and C67x DSPs share an instruction set. All of the
instructions valid for the C62x DSP are also valid for the C67x DSP. This
section identifies which DSP family the instruction is valid.

Description Instruction execution and its effect on the rest of the processor or memory
contents are described. Any constraints on the operands imposed by the
processor or the assembler are discussed. The description parallels and
supplements the information given by the execution block.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond) src1 + src2 → dst
else nop

Execution for .D1, .D2 Opcodes

if (cond) src2 + src1 → dst
else nop

The execution describes the processing that takes place when the instruction
is executed. The symbols are defined in Table 3−1 (page 3-2).

Pipeline This section contains a table that shows the sources read from, the destina-
tions written to, and the functional unit used during each execution cycle of the
instruction.

Instruction Type This section gives the type of instruction. See section 4.2 (page 4-12) for
information about the pipeline execution of this type of instruction.

Delay Slots This section gives the number of delay slots the instruction takes to execute
See section 3.4 (page 3-14) for an explanation of delay slots.

Functional Unit Latency

This section gives the number of cycles that the functional unit is in use during
the execution of the instruction.

Example Examples of instruction execution. If applicable, register and memory values
are given before and after instruction execution.
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Absolute Value With SaturationABS

Syntax ABS  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 001 1010

src2
dst

slong
slong

.L1, L2 011 1000

Description The absolute value of src2 is placed in dst.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 when src2 is an sint is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � −231, then −src2 → dst
3) If src2 = −231, then 231 − 1 → dst

The absolute value of src2 when src2 is an slong is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0 and src2 � −239, then −src2 → dst
3) If src2 = −239, then 239 − 1 → dst

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .L

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

See Also ABSDP, ABSSP

Example 1 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 8000 4E3Dh −2147463619 A1 8000 4E3Dh −2147463619

A5 xxxx xxxxh A5 7FFF B1C3h 2147463619

Example 2 ABS .L1 A1,A5

Before instruction 1 cycle after instruction

A1 3FF6 0010h 1073086480 A1 3FF6 0010h 1073086480

A5 xxxx xxxxh A5 3FF6 0010h 1073086480
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Absolute Value, Double-Precision Floating-PointABSDP

Syntax ABSDP  (.unit) src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 reserved x 1 0 1 1 0 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Description The absolute value of src2 is placed in dst. The 64-bit double-precision
operand is read in one cycle by using the src2 port for the 32 MSBs and the
src1 port for the 32 LSBs.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0, then −src2 → dst

Notes:

1) If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is denormalized, +0 is placed in dst and the INEX and DEN2 bits
are set.

4) If src2 is +infinity or −infinity, +infinity is placed in dst and the INFO bit is
set.
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Pipeline 
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

See Also ABS, ABSSP

Example ABSDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 C004 0000h 0000 0000h −2.5 A1:A0 c004 0000h 0000 0000h −2.5

A3:A2 xxxx xxxxh xxxx xxxxh A3:A2 4004 0000h 0000 0000h 2.5

Pipeline
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Absolute Value, Single-Precision Floating-PointABSSP

Syntax ABSSP  (.unit) src2, dst

.unit = . S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Description The absolute value in src2 is placed in dst.

Execution if (cond) abs(src2) → dst
else nop

The absolute value of src2 is determined as follows:

1) If src2 � 0, then src2 → dst
2) If src2 � 0, then −src2 → dst

Notes:

1) If scr2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is denormalized, +0 is placed in dst and the INEX and DEN2 bits
are set.

4) If src2 is +infinity or −infinity, +infinity is placed in dst and the INFO bit is
set.
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Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

See Also ABS, ABSDP

Example ABSSP .S1X B1,A5

Before instruction 1 cycle after instruction

B1 c020 0000h −2.5 B1 c020 0000h −2.5

A5 xxxx xxxxh A5 4020 0000h 2.5

Pipeline
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Add Two Signed Integers Without SaturationADD

Syntax ADD  (.unit) src1, src2, dst
or

ADD (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 0011

src1
src2
dst

sint
xsint
slong

.L1, .L2 010 0011

src1
src2
dst

xsint
slong
slong

.L1, .L2 010 0001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 0010

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 0000
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Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.S1, .S2 00 0111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 00 0110

Description for .L1, .L2 and .S1, .S2 Opcodes

src2 is added to src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond)
src1 + src2 → dst

else nop
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Opcode .D unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 01 0000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 01 0010

Description for .D1, .D2 Opcodes

src1 is added to src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes

if (cond)
src2 + src1 → dst

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADDDP, ADDK, ADDSP, ADDU, ADD2, SADD, SUB

Pipeline
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Example 1 ADD .L2X A1,B1,B2

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

B1 FFFF FF12h −238 B1 FFFF FF12h

B2 xxxx xxxxh B2 0000 316Ch 12652

Example 2 ADD .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h −228§ A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0§ A5:A4 0000 0000h 0000 316Ch 12652§

§ Signed 40-bit (long) integer

Example 3 ADD .L1 −13,A1,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 xxxx xxxxh A6 0000 324Dh 12877

Example 4 ADD .D1 A1,26,A6

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A6 xxxx xxxxh A6 0000 3274h 12916
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Add Using Byte Addressing ModeADDAB

Syntax ADDAB  (.unit) src2, src1, dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0010

Description src1 is added to src2 using the byte addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4−A7 or B4−B7,
the mode can be changed to circular mode by writing the appropriate value to
the AMR (see section 2.7.3, page 2-10). The result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline 
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDAD, ADDAH, ADDAW

Pipeline
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Example 1 ADDAB .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0103h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

Example 2 ADDAB .D1X B14,42h,A4

Before instruction 1 cycle after instruction

B14 0020 1000h A4 0020 1042h

Example 3 ADDAB .D2 B14,7FFFh,B4

Before instruction 1 cycle after instruction

B14 0010 0000h B4 0010 7FFFh
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Add Using Doubleword Addressing ModeADDAD

Syntax ADDAD  (.unit) src2, src1, dst

.unit = . D1 or .D2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 1100

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 1101

Description src1 is added to src2 using the doubleword addressing mode specified for
src2. The addition defaults to linear mode. However, if src2 is one of A4−A7
or B4−B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.7.3, page 2-10). src1 is left shifted by 3
due to doubleword data sizes. The result is placed in dst.

Note:

There is no SUBAD instruction.

Execution if (cond) src2 +(src1 �� 3) → dst
else nop

Pipeline 
stage E1

Read src1, src2

Written dst

Unit in use .D

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

See Also ADD, ADDAB, ADDAH, ADDAW

Example ADDAD .D1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 1234h 4660 A1 0000 1234h 4660

A2 0000 0002h    2 A2 0000 0002h    2

A3 xxxx xxxxh A3 0000 1244h 4676
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Add Using Halfword Addressing ModeADDAH

Syntax ADDAH  (.unit) src2, src1, dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0100

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0110

Description src1 is added to src2 using the halfword addressing mode specified for src2.
The addition defaults to linear mode. However, if src2 is one of A4−A7 or
B4−B7, the mode can be changed to circular mode by writing the appropriate
value to the AMR (see section 2.7.3, page 2-10). src1 is left shifted by 1. The
result is placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline 
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDAB, ADDAD, ADDAW

Pipeline
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Example 1 ADDAH .D1 A4,A2,A4

Before instruction 1 cycle after instruction

A2 0000 000Bh A2 0000 000Bh

A4 0000 0100h A4 0000 0106h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

Example 2 ADDAH .D1X B14,42h,A4

Before instruction 1 cycle after instruction

B14 0020 1000h A4 0020 1084h

Example 3 ADDAH .D2 B14,7FFFh,B4

Before instruction 1 cycle after instruction

B14 0010 0000h B4 0010 FFFEh
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Add Using Word Addressing ModeADDAW

Syntax ADDAW  (.unit) src2, src1, dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 1000

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 1010

Description src1 is added to src2 using the word addressing mode specified for src2. The
addition defaults to linear mode. However, if src2 is one of A4−A7 or B4−B7,
the mode can be changed to circular mode by writing the appropriate value to
the AMR (see section 2.7.3, page 2-10). src1 is left shifted by 2. The result is
placed in dst.

Execution if (cond) src2 +a src1 → dst
else nop

Pipeline 
stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDAB, ADDAD, ADDAH

Pipeline
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Example 1 ADDAW .D1 A4,2,A4

Before instruction 1 cycle after instruction

A4 0002 0000h A4 0002 0000h

AMR 0002 0001h AMR 0002 0001h

BK0 = 2 → size = 8
A4 in circular addressing mode using BK0

Example 2 ADDAW .D1X B14,42h,A4

Before instruction 1 cycle after instruction

B14 0020 1000h A4 0020 1108h

Example 3 ADDAW .D2 B14,7FFFh,B4

Before instruction 1 cycle after instruction

B14 0010 0000h B4 0011 FFFCh
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Add Two Double-Precision Floating-Point ValuesADDDP

Syntax ADDDP  (.unit) src1, src2, dst (C67x and C67x+ CPU)
.unit = .L1 or .L2
or
ADDDP (.unit) src1, src2, dst (C67x+ CPU only)
.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

dp
xdp
dp

.L1, .L2 001 1000

src1
src2
dst

dp
xdp
dp

.S1, .S2 111 0010

Description src2 is added to src1. The result is placed in dst.

Execution if (cond) src1 + src2 → dst
else nop
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Notes:

1) This instruction takes the rounding mode from and sets the warning bits
in FADCR, not FAUCR as for other .S unit instructions.

2) If rounding is performed, the INEX bit is set.

3) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set, also.

4) If one source is +infinity and the other is −infinity, the result is NaN_out
and the INVAL bit is set.

5) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the opposite sign, the result is signed infinity and
the INFO bit is set.

6) If overflow occurs, the INEX and OVER bits are set and the results are
rounded as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +infinity +LFPN +infinity +LFPN

− −infinity −LFPN −LFPN −infinity

7) If underflow occurs, the INEX and UNDER bits are set and the results
are rounded as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +0 +0 +SFPN +0

− −0 −0 −0 −SFPN

8) If the sources are equal numbers of opposite sign, the result is +0 unless
the rounding mode is −infinity, in which case the result is −0.

9) If the sources are both 0 with the same sign or both are denormalized
with the same sign, the sign of the result is negative for negative sources
and positive for positive sources.

10) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is set.
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Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L or .S .L or .S

For the C67x CPU, if dst is used as the source for the ADDDP, CMPEQDP,
CMPLTDP, CMPGTDP, MPYDP, or SUBDP instruction, the number of delay
slots can be reduced by one, because these instructions read the lower word
of the DP source one cycle before the upper word of the DP source.

For the C67x+ CPU, the low half of the result is written out one cycle earlier
than the high half. If dst is used as the source for the ADDDP, CMPEQDP,
CMPLTDP, CMPGTDP, MPYDP, MPYSPDP, MPYSP2DP, or SUBDP
instruction, the number of delay slots can be reduced by one, because these
instructions read the lower word of the DP source one cycle before the upper
word of the DP source.

Instruction Type ADDDP/SUBDP

Delay Slots 6

Functional Unit
Latency

2

See Also ADD, ADDSP, ADDU, SUBDP

Example ADDDP .L1X B1:B0,A3:A2,A5:A4

Before instruction 7 cycles after instruction

B1:B0 4021 3333h 3333 3333h 8.6 B1:B0 4021 3333h 4021 3333h 8.6

A3:A2 C004 0000h 0000 0000h −2.5 A3:A2 C004 0000h 0000 0000h −2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 4018 6666h 6666 6666h 6.1

Pipeline
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Add Signed 16-Bit Constant to RegisterADDK

Syntax ADDK  (.unit) cst, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 1 0 1 0 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

scst16
uint

.S1, .S2

Description A 16-bit signed constant, cst16, is added to the dst register specified. The
result is placed in dst.

Execution if (cond) cst + dst → dst
else nop

Pipeline 
Stage E1

Read cst16

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Example ADDK .S1 15401,A1

Before instruction 1 cycle after instruction

A1 0021 37E1h 2176993 A1 0021 740Ah 2192394

Pipeline
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Add Two Single-Precision Floating-Point ValuesADDSP

Syntax ADDSP (.unit) src1, src2, dst (C67x and C67x+ CPU)
.unit = .L1 or .L2
or
ADDSP (.unit) src1, src2, dst (C67x+ CPU only)

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sp
xsp
sp

.L1, .L2 001 0000

src1
src2
dst

sp
xsp
sp

.S1, .S2 111 0000

Description src2 is added to src1. The result is placed in dst.

Execution if (cond) src1 + src2 → dst
else nop
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Notes:

1) This instruction takes the rounding mode from and sets the warning bits
in FADCR, not FAUCR as for other .S unit instructions.

2) If rounding is performed, the INEX bit is set.

3) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

4) If one source is +infinity and the other is −infinity, the result is NaN_out
and the INVAL bit is set.

5) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the opposite sign, the result is signed infinity and
the INFO bit is set.

6) If overflow occurs, the INEX and OVER bits are set and the results are
rounded as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +infinity +LFPN +infinity +LFPN

− −infinity −LFPN −LFPN −infinity

7) If underflow occurs, the INEX and UNDER bits are set and the results
are rounded as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +0 +0 +SFPN +0

− −0 −0 −0 −SFPN

8) If the sources are equal numbers of opposite sign, the result is +0 unless
the rounding mode is −infinity, in which case the result is −0.

9) If the sources are both 0 with the same sign or both are denormalized
with the same sign, the sign of the result is negative for negative sources
and positive for positive sources.

10) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.
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Pipeline 
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L or .S

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also ADD, ADDDP, ADDU, SUBSP

Example ADDSP .L1 A1,A2,A3

Before instruction 4 cycles after instruction

A1 C020 0000h −2.5 A1 C020 0000h −2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 xxxx xxxxh A3 40C3 3334h 6.1

Pipeline
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Add Two Unsigned Integers Without SaturationADDU

Syntax ADDU  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
ulong

.L1, .L2 010 1011

src1
src2
dst

xuint
ulong
ulong

.L1, .L2 010 1001

Description src2 is added to src1. The result is placed in dst.

Execution if (cond)
src1 + src2 → dst

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SADD, SUBU

Pipeline



 Add Two Unsigned Integers Without Saturation ADDU

3-63 Instruction SetSPRU733A

Example 1 ADDU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890† A1 0000 325Ah

A2 FFFF FF12h 4294967058† A2 FFFF FF12h

A5:A4 xxxx xxxxh A5:A4 0000 0001h 0000 316Ch 4294979948‡

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

Example 2 ADDU .L1 A1,A3:A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12890 A1 0000 325Ah

A3:A2 0000 00FFh FFFF FF12h 1099511627538‡ A3:A2 0000 00FFh FFFF FF12h

A5:A4 0000 0000h 0000 0000h 0 A5:A4 0000 0000h 0000 316Ch 12652‡

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer
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Add Two 16-Bit Integers on Upper and Lower Register HalvesADD2

Syntax ADD2  (.unit) src1, src2, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Description The upper and lower halves of the src1 operand are added to the upper and
lower halves of the src2 operand. The values in src1 and src2 are treated as
signed, packed 16-bit data and the results are written in signed, packed 16-bit
format into dst.

For each pair of signed packed 16-bit values found in the src1 and src2, the
sum between the 16-bit value from src1 and the 16-bit value from src2 is
calculated to produce a16-bit result. The result is placed in the corresponding
positions in the dst. The carry from the lower half add does not affect the upper
half add.

31                  16 15     0

a_hi a_lo src1

ADD2

b_hi b_lo src2

31                  16 15     0

a_hi + b_hi a_lo + b_lo dst
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Execution if (cond) {
msb16(src1) + msb16(src2) → msb16(dst);
lsb16(src1) + lsb16(src2) → lsb16(dst);
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, ADDU, SUB2

Example ADD2 .S1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0021 37E1h 33 14305 A1 0021 37E1h

A2 xxxx xxxxh A2 03BB 1C99h 955 7321

B1 039A E4B8h 922 58552 B1 039A E4B8h

Pipeline
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Bitwise ANDAND

Syntax AND  (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 111 1011

src1
src2
dst

scst5
xuint
uint

.L1, .L2 111 1010

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.S1, .S2 01 1111

src1
src2
dst

scst5
xuint
uint

.S1, .S2 01 1110

Description Perrforms a bitwise AND operation between src1 and src2. The result is
placed in dst. The scst5 operands are sign extended to 32 bits.

Execution if (cond) src1 AND src2 → dst
else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

See Also OR, XOR

Example 1 AND .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 F7A1 302Ah A1 F7A1 302Ah

A2 xxxx xxxxh A2 02A0 2020h

B1 02B6 E724h B1 02B6 E724h

Example 2 AND .L1 15,A1,A3

Before instruction 1 cycle after instruction

A1 32E4 6936h A1 32E4 6936h

A3 xxxx xxxxh A3 0000 0006h

Pipeline
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Branch Using a DisplacementB

Syntax B  (.unit) label

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 7 6 5 4 3 2 1 0

creg z cst21 0 0 1 0 0 s p

3 1 21 1 1

Opcode map field used... For operand type... Unit

cst21 scst21 .S1, .S2

Description A 21-bit signed constant, cst21, is shifted left by 2 bits and is added to the
address of the first instruction of the fetch packet that contains the branch
instruction. The result is placed in the program fetch counter (PFC). The
assembler/linker automatically computes the correct value for cst21 by the
following formula:

cst21 = (label − PCE1) >> 2

If two branches are in the same execute packet and both are taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) cst21  << 2 + PCE1 → PFC
else nop

Notes:

1) PCE1 (program counter) represents the address of the first instruction
in the fetch packet in the E1 stage of the pipeline. PFC is the program
fetch counter.

2) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

3) See section 3.5.2 on page 3-17 for information on branching into the
middle of an execute packet.
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Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read

Written

Branch
Taken

�

Unit in use .S

Instruction Type Branch

Delay Slots 5

Example Table 3−13 gives the program counter values and actions for the following
code example.

0000 0000 B .S1 LOOP
0000 0004 ADD .L1 A1, A2, A3
0000 0008 || ADD .L2 B1, B2, B3
0000 000C LOOP: MPY .M1X A3, B3, A4
0000 0010 || SUB .D1 A5, A6, A6
0000 0014 MPY .M1 A3, A6, A5
0000 0018 MPY .M1 A6, A7, A8
0000 001C SHR .S1 A4, 15, A4
0000 0020 ADD .D1 A4, A6, A4

Table 3−13. Program Counter Values for Example Branch Using a Displacement

Cycle Program Counter Value Action

Cycle 0 0000 0000h Branch command executes
(target code fetched)

Cycle 1 0000 0004h

Cycle 2 0000 000Ch

Cycle 3 0000 0014h

Cycle 4 0000 0018h

Cycle 5 0000 001Ch

Cycle 6 0000 000Ch Branch target code executes

Cycle 7 0000 0014h

Pipeline
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Branch Using a RegisterB

Syntax B  (.unit) src2

.unit = .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z 0 0 0 0 0 src2 0 0 0 0 0 x 0 0 1 1 0 1 1 0 0 0 s p

3 1 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xuint .S2

Description src2 is placed in the program fetch counter (PFC).

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) src2 → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

3) See section 3.5.2 on page 3-17 for information on branching into the
middle of an execute packet.
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Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Example Table 3−14 gives the program counter values and actions for the following
code example. In this example, the B10 register holds the value 1000 000Ch.

B10 1000 000Ch

1000 0000 B .S2 B10
1000 0004 ADD .L1 A1, A2, A3
1000 0008 || ADD .L2 B1, B2, B3
1000 000C MPY .M1X A3, B3, A4
1000 0010 || SUB .D1 A5, A6, A6
1000 0014 MPY .M1 A3, A6, A5
1000 0018 MPY .M1 A6, A7, A8
1000 001C SHR .S1 A4, 15, A4
1000 0020 ADD .D1 A4, A6, A4

Table 3−14. Program Counter Values for Example Branch Using a Register

Cycle Program Counter Value Action

Cycle 0 1000 0000h Branch command executes
(target code fetched)

Cycle 1 1000 0004h

Cycle 2 1000 000Ch

Cycle 3 1000 0014h

Cycle 4 1000 0018h

Cycle 5 1000 001Ch

Cycle 6 1000 000Ch Branch target code executes

Cycle 7 1000 0014h

Pipeline
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Branch Using an Interrupt Return PointerB IRP

Syntax B  (.unit) IRP

.unit = .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst 0 0 1 1 0 0 0 0 0 0 x 0 0 0 0 1 1 1 0 0 0 s p

3 1 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S2

Description IRP is placed in the program fetch counter (PFC). This instruction also moves
the PGIE bit value to the GIE bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) IRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is the program fetch counter.

2) Refer to the chapter on interrupts for more information on IRP, PGIE, and
GIE.

3) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

4) See section 3.5.2 on page 3-17 for information on branching into the
middle of an execute packet.
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Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read IRP

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Example Table 3−15 gives the program counter values and actions for the following
code example. Given that an interrupt occurred at

PC = 0000 1000 IRP = 0000 1000

0000 0020 B .S2 IRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3−15. Program Counter Values for B IRP Instruction

Cycle Program Counter Value Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

Pipeline
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Branch Using NMI Return PointerB NRP

Syntax B  (.unit) NRP

.unit = .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst 0 0 1 1 1 0 0 0 0 0 x 0 0 0 0 1 1 1 0 0 0 s p

3 1 5 1 1 1

Opcode map field used... For operand type... Unit

src2 xsint .S2

Description NRP is placed in the program fetch counter (PFC). This instruction also sets
the NMIE bit. The PGIE bit is unchanged.

If two branches are in the same execute packet and are both taken, behavior
is undefined.

Two conditional branches can be in the same execute packet if one branch
uses a displacement and the other uses a register, IRP, or NRP. As long as only
one branch has a true condition, the code executes in a well-defined way.

Execution if (cond) NRP → PFC
else nop

Notes:

1) This instruction executes on .S2 only. PFC is program fetch counter.

2) Refer to the chapter on interrupts for more information on NRP and
NMIE.

3) The execute packets in the delay slots of a branch cannot be interrupted.
This is true regardless of whether the branch is taken.

4) See section 3.5.2 on page 3-17 for information on branching into the
middle of an execute packet.
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Target Instruction
Pipeline 
Stage E1 PS PW PR DP DC E1

Read NRP

Written

Branch
Taken

�

Unit in use .S2

Instruction Type Branch

Delay Slots 5

Example Table 3−16 gives the program counter values and actions for the following
code example. Given that an interrupt occurred at

PC = 0000 1000 NRP = 0000 1000

0000 0020 B .S2 NRP
0000 0024 ADD .S1 A0, A2, A1
0000 0028 MPY .M1 A1, A0, A1
0000 002C NOP
0000 0030 SHR .S1 A1, 15, A1
0000 0034 ADD .L1 A1, A2, A1
0000 0038 ADD .L2 B1, B2, B3

Table 3−16. Program Counter Values for B NRP Instruction

Cycle Program Counter Value Action

Cycle 0 0000 0020 Branch command executes
(target code fetched)

Cycle 1 0000 0024

Cycle 2 0000 0028

Cycle 3 0000 002C

Cycle 4 0000 0030

Cycle 5 0000 0034

Cycle 6 0000 1000 Branch target code executes

Pipeline
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Clear a Bit FieldCLR

Syntax CLR  (.unit) src2, csta, cstb, dst
or
CLR (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode Constant form

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 1 0 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

Opcode Register form

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xuint
uint
uint

.S1, .S2
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Description For cstb > csta, the field in src2 as specified by csta to cstb is cleared to all 0s
in dst. The csta and cstb operands may be specified as constants or in the
10 LSBs of the src1 register, with cstb being bits 0−4 (src14..0) and csta being
bits 5−9 (src19..5). csta is the LSB of the field and cstb is the MSB of the field.
In other words, csta and cstb represent the beginning and ending bits, respec-
tively, of the field to be cleared to all 0s in dst. The LSB location of src2 is bit 0
and the MSB location of src2 is bit 31.

In the following example, csta is 15 and cstb is 23. For the register version of
the instruction, only the 10 LSBs of the src1 register are valid. If any of the
22 MSBs are non-zero, the result is invalid.

src2

dst

0x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0

0x x x x x x x x x x x x x x x x x x x x x x x0 0 0 0 00 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

For cstb < csta, the src2 register is copied to dst. The csta and cstb operands
may be specified as constants or in the 10 LSBs of the src1 register, with cstb
being bits 0−4 (src14..0) and csta being bits 5−9 (src19..5).

Execution If the constant form is used when cstb > csta:

if (cond) src2 clear csta, cstb → dst
else nop

If the register form is used when cstb > csta:

if (cond) src2 clear src19..5, src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

See Also SET

Example 1 CLR .S1 A1,4,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 07A0 000Ah

Example 2 CLR .S2 B1,B3,B2

Before instruction 1 cycle after instruction

B1 03B6 E7D5h B1 03B6 E7D5h

B2 xxxx xxxxh B2 03B0 0001h

B3 0000 0052h B3 0000 0052h
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Compare for Equality, Signed IntegersCMPEQ

Syntax CMPEQ  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 101 0011

src1
src2
dst

scst5
xsint
uint

.L1, .L2 101 0010

src1
src2
dst

xsint
slong
uint

.L1, .L2 101 0001

src1
src2
dst

scst5
slong
uint

.L1, .L2 101 0000

Description Compares src1 to src2. If src1 equals src2, then 1 is written to dst; otherwise,
0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst

else 0 → dst
}

else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQDP, CMPEQSP, CMPGT, CMPLT

Example 1 CMPEQ .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 04B8h 1208 A1 0000 04B8h

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 04B7h 1207 B1 0000 04B7h

Example 2 CMPEQ .L1 Ch,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Ch 12 A1 0000 000Ch

A2 xxxx xxxxh A2 0000 0001h true

Example 3 CMPEQ .L2X A1,B3:B2,B1

Before instruction 1 cycle after instruction

A1 F23A 3789h A1 F23A 3789h

B1 xxxx xxxxh B1 0000 0001h true

B3:B2 0000 00FFh F23A 3789h B3:B2 0000 00FFh F23A 3789h

Pipeline
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Compare for Equality, Double-Precision Floating-Point ValuesCMPEQDP

Syntax CMPEQDP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Description Compares src1 to src2. If src1 equals src2, then 1 is written to dst; otherwise,
0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input FAUCR Bits

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 0

don’t care NaN 0 1 0

NaN NaN 0 1 0

+/−denormalized +/−0 1 0 0

+/−0 +/−denormalized 1 0 0

+/−0 +/−0 1 0 0

+/−denormalized +/−denormalized 1 0 0

+infinity +infinity 1 0 0

+infinity other 0 0 0

−infinity −infinity 1 0 0

−infinity other 0 0 0
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Notes:

1) In the case of NaN compared with itself, the result is false.

2) No configuration bits besides those in the preceding table are set, except
the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

See Also CMPEQ, CMPEQSP, CMPGTDP, CMPLTDP

Example CMPEQDP .S1 A1:A0,A3:A2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A3:A2 C004 0000h 0000 0000h −2.5 A3:A2 C004 0000h 0000 0000h −2.5

A4 xxxx xxxxh A4 0000 0000h false

Pipeline
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Compare for Equality, Single-Precision Floating-Point ValuesCMPEQSP

Syntax CMPEQSP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Description Compares src1 to src2. If src1 equals src2, then 1 is written to dst; otherwise,
0 is written to dst.

Execution if (cond) {
if (src1 == src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input FAUCR Bits

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 0

don’t care NaN 0 1 0

NaN NaN 0 1 0

+/−denormalized +/−0 1 0 0

+/−0 +/−denormalized 1 0 0

+/−0 +/−0 1 0 0

+/−denormalized +/−denormalized 1 0 0

+infinity +infinity 1 0 0

+infinity other 0 0 0

−infinity −infinity 1 0 0

−infinity other 0 0 0
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Notes:

1) In the case of NaN compared with itself, the result is false.

2) No configuration bits besides those shown in the preceding table are set,
except for the NaNn and DENn bits when appropriate.

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

See Also CMPEQ, CMPEQDP, CMPGTSP, CMPLTSP

Example CMPEQSP .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h −2.5 A1 C020 0000h −2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 xxxx xxxxh A3 0000 0000h false

Pipeline
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Compare for Greater Than, Signed IntegersCMPGT

Syntax CMPGT  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 100 0111

src1
src2
dst

scst5
xsint
uint

.L1, .L2 100 0110

src1
src2
dst

xsint
slong
uint

.L1, .L2 100 0101

src1
src2
dst

scst5
slong
uint

.L1, .L2 100 0100
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Description Performs a signed comparison of src1 to src2. If src1 is greater than src2, then
a 1 is written to dst; otherwise, a 0 is written to dst.

Note:

The CMPGT instruction allows using a 5-bit constant as src1. If src2 is a 5-bit
constant, as in

CMPGT  .L1   A4, 5, A0

Then to implement this operation, the assembler converts this instruction to

CMPLT  .L1   5, A4, A0

These two instructions are equivalent, with the second instruction using the
conventional operand types for src1 and src2.

Similarly, the CMPGT instruction allows a cross path operand to be used as
src2. If src1 is a cross path operand as in

CMPGT  .L1x   B4, A5, A0

Then to implement this operation the assembler converts this instruction to

CMPLT  .L1x   A5, B4, A0

In both of these operations the listing file (.lst) will have the first implementa-
tion, and the second implementation will appear in the debugger.

Execution if (cond) {
if (src1 > src2) 1 → dst

else 0 → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPGTDP, CMPGTSP, CMPGTU, CMPLT

Pipeline
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Example 1 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 01B6h 438 A1 0000 01B6h

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 08BDh 2237 B1 0000 08BDh

Example 2 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 FFFF FE91h −367 A1 FFFF FE91h

A2 xxxx xxxxh A2 0000 0001h true

B1 FFFF FDC4h −572 B1 FFFF FDC4h

Example 3 CMPGT .L1 8,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0023h 35 A1 0000 0023h

A2 xxxx xxxxh A2 0000 0000h false

Example 4 CMPGT .L1X A1,B1,A2

Before instruction 1 cycle after instruction

A1 0000 00EBh 235 A1 0000 00EBh

A2 xxxx xxxxh A2 0000 0000h false

B1 0000 00EBh 235 B1 0000 00EBh
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Compare for Greater Than, Double-Precision Floating-Point ValuesCMPGTDP

Syntax CMPGTDP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Description Compares src1 to src2. If src1 is greater than src2, then 1 is written to dst;
otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input FAUCR Bits

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/−denormalized +/−0 0 0 0

+/−0 +/−denormalized 0 0 0

+/−0 +/−0 0 0 0

+/−denormalized +/−denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 1 0 0

−infinity −infinity 0 0 0

−infinity other 0 0 0
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Note:

No configuration bits other than those shown above are set, except the NaNn
and DENn bits when appropriate.

Pipeline 
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

See Also CMPEQDP, CMPGT, CMPGTSP, CMPGTU, CMPLTDP

Example CMPGTDP .S1 A1:A0,A3:A2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A3:A2 c004 0000h 0000 0000h −2.5 A3:A2 c004 0000h 0000 0000h −2.5

A4 XXXX XXXXh A4 0000 0001h true

Pipeline
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Compare for Greater Than, Single-Precision Floating-Point ValuesCMPGTSP

Syntax CMPGTSP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Description Compares src1 to src2. If src1 is greater than src2, then 1 is written to dst;
otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 > src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input FAUCR Fields

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/−denormalized +/−0 0 0 0

+/−0 +/−denormalized 0 0 0

+/−0 +/−0 0 0 0

+/−denormalized +/−denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 1 0 0

−infinity −infinity 0 0 0

−infinity other 0 0 0
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Note:

No configuration bits other than those shown above are set, except for the
NaNn and DENn bits when appropriate.

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

See Also CMPEQSP, CMPGT, CMPGTDP, CMPGTU, CMPLTSP

Example CMPGTSP .S1X A1,B2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h −2.5 A1 C020 0000h −2.5

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A3 XXXX XXXXh A3 0000 0000h false

Pipeline
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Compare for Greater Than, Unsigned IntegersCMPGTU

Syntax CMPGTU  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 100 1111

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 100 1110

src1
src2
dst

xuint
ulong
uint

.L1, .L2 100 1101

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 100 1100

Description Performs an unsigned comparison of src1 to src2. If src1 is greater than src2,
then a 1 is written to dst; otherwise, a 0 is written to dst. Only the four LSBs
are valid in the 5-bit dst field when the ucst4 operand is used. If the MSB of the
dst field is nonzero, the result is invalid.

Execution if (cond) {
if (src1 > src2) 1 → dst

else 0 → dst
}

else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPGT, CMPGTDP, CMPGTSP, CMPLTU

Example 1 CMPGTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0128h 296† A1 0000 0128h

A2 FFFF FFDEh 4294967262† A2 FFFF FFDEh

A3 xxxx xxxxh A3 0000 0000h false

† Unsigned 32-bit integer

Example 2 CMPGTU .L1 0Ah,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5† A1 0000 0005h

A2 xxxx xxxxh A2 0000 0001h true

† Unsigned 32-bit integer

Example 3 CMPGTU .L1 0Eh,A3:A2,A4

Before instruction 1 cycle after instruction

A3:A2 0000 0000h 0000 000Ah 10‡ A3:A2 0000 0000h 0000 000Ah

A4 xxxx xxxxh A4 0000 0001h true

‡ Unsigned 40-bit (long) integer

Pipeline



CMPLT Compare for Less Than, Signed Integers

3-94   Instruction Set SPRU733A

Compare for Less Than, Signed IntegersCMPLT

Syntax CMPLT  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
uint

.L1, .L2 101 0111

src1
src2
dst

scst5
xsint
uint

.L1, .L2 101 0110

src1
src2
dst

xsint
slong
uint

.L1, .L2 101 0101

src1
src2
dst

scst5
slong
uint

.L1, .L2 101 0100
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Description Performs a signed comparison of src1 to src2. If src1 is less than src2, then
1 is written to dst; otherwise, 0 is written to dst.

Note:

The CMPLT instruction allows using a 5-bit constant as src1. If src2 is a 5-bit
constant, as in

CMPLT  .L1   A4, 5, A0

Then to implement this operation, the assembler converts this instruction to

CMPGT  .L1   5, A4, A0

These two instructions are equivalent, with the second instruction using the
conventional operand types for src1 and src2.

Similarly, the CMPLT instruction allows a cross path operand to be used as
src2. If src1 is a cross path operand as in

CMPLT  .L1x   B4, A5, A0

Then to implement this operation, the assembler converts this instruction to

CMPGT  .L1x   A5, B4, A0

In both of these operations the listing file (.lst) will have the first implementa-
tion, and the second implementation will appear in the debugger.

Execution if (cond) {
if (src1 < src2) 1 → dst

else 0 → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPEQ, CMPGT, CMPLTDP, CMPLTSP, CMPLTU

Pipeline
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Example 1 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 07E2h 2018 A1 0000 07E2h

A2 0000 0F6Bh 3947 A2 0000 0F6Bh

A3 xxxx xxxxh A3 0000 0001h true

Example 2 CMPLT .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 FFFF FED6h −298 A1 FFFF FED6h

A2 0000 000Ch 12 A2 0000 000Ch

A3 xxxx xxxxh A3 0000 0001h true

Example 3 CMPLT .L1 9,A1,A2

Before instruction 1 cycle after instruction

A1 0000 0005h 5 A1 0000 0005h

A2 xxxx xxxxh A2 0000 0000h false
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Compare for Less Than, Double-Precision Floating-Point ValuesCMPLTDP

Syntax CMPLTDP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
xdp
sint

.S1, .S2

Description Compares src1 to src2. If src1 is less than src2, then 1 is written to dst; other-
wise, 0 is written to dst.

Execution if (cond) {
if (src1 � src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input FAUCR Bits

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/−denormalized +/−0 0 0 0

+/−0 +/−denormalized 0 0 0

+/−0 +/−0 0 0 0

+/−denormalized +/−denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 0 0 0

−infinity −infinity 0 0 0

−infinity other 1 0 0
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Note:

No configuration bits other than those above are set, except for the NaNn
and DENn bits when appropriate.

Pipeline 
Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Instruction Type DP compare

Delay Slots 1

Functional Unit
Latency

2

See Also CMPEQDP, CMPGTDP, CMPLT, CMPLTSP, CMPLTU

Example CMPLTDP .S1X A1:A0,B3:B2,A4

Before instruction 2 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

B3:B2 c004 0000h 0000 0000h −2.5 B3:B2 c004 0000h 0000 0000h −2.5

A4 xxxx xxxxh A4 0000 0000h false

Pipeline



 Compare for Less Than, Single-Precision Floating-Point Values CMPLTSP

3-99 Instruction SetSPRU733A

Compare for Less Than, Single-Precision Floating-Point ValuesCMPLTSP

Syntax CMPLTSP  (.unit) src1, src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sint

.S1, .S2

Description Compares src1 to src2. If src1 is less than src2, then 1 is written to dst; other-
wise, 0 is written to dst.

Execution if (cond) {
if (src1 � src2) 1 → dst
else 0 → dst
}

else nop

Special cases of inputs:

Input FAUCR Bits

src1 src2 Output UNORD INVAL

NaN don’t care 0 1 1

don’t care NaN 0 1 1

NaN NaN 0 1 1

+/−denormalized +/−0 0 0 0

+/−0 +/−denormalized 0 0 0

+/−0 +/−0 0 0 0

+/−denormalized +/−denormalized 0 0 0

+infinity +infinity 0 0 0

+infinity other 0 0 0

−infinity −infinity 0 0 0

−infinity other 1 0 0
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Note:

No configuration bits other than those above are set, except for the NaNn
and DENn bits when appropriate.

Pipeline 
Stage E1

Read src1
src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

See Also CMPEQSP, CMPGTSP, CMPLT, CMPLTDP, CMPLTU

Example CMPLTSP .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 C020 0000h −2.5 A1 C020 0000h −2.5

A2 4109 999Ah 8.6 A2 4109 999Ah 8.6

A3 xxxx xxxxh A3 0000 0001h true

Pipeline
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Compare for Less Than, Unsigned IntegersCMPLTU

Syntax CMPLTU  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 101 1111

src1
src2
dst

ucst4
xuint
uint

.L1, .L2 101 1110

src1
src2
dst

xuint
ulong
uint

.L1, .L2 101 1101

src1
src2
dst

ucst4
ulong
uint

.L1, .L2 101 1100

Description Performs an unsigned comparison of src1 to src2. If src1 is less than src2, then
1 is written to dst; otherwise, 0 is written to dst.

Execution if (cond) {
if (src1 < src2) 1 → dst

else 0 → dst
}

else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also CMPGTU, CMPLT, CMPLTDP, CMPLTSP

Example 1 CMPLTU .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 289Ah 10394† A1 0000 289Ah

A2 FFFF F35Eh 4294964062† A2 FFFF F35Eh

A3 xxxx xxxxh A3 0000 0001h true

† Unsigned 32-bit integer

Example 2 CMPLTU .L1 14,A1,A2

Before instruction 1 cycle after instruction

A1 0000 000Fh 15† A1 0000 000Fh

A2 xxxx xxxxh A2 0000 0001h true

† Unsigned 32-bit integer

Example 3 CMPLTU .L1 A1,A5:A4,A2

Before instruction 1 cycle after instruction

A1 003B 8260h 3900000† A1 003B 8260h

A2 xxxx xxxxh A2 0000 0000h false

A5:A4 0000 0000h 003A 0002h 3801090‡ A5:A4 0000 0000h 003A 0002h

† Unsigned 32-bit integer
‡ Unsigned 40-bit (long) integer

Pipeline
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Convert Double-Precision Floating-Point Value to IntegerDPINT

Syntax DPINT  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 1 0 0 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

dp
sint

.L1, .L2

Description The 64-bit double-precision value in src2 is converted to an integer and placed
in dst. The operand is read in one cycle by using the src2 port for the 32 MSBs
and the src1 port for the 32 LSBs.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER bits
are set. Overflow occurs if src2 is greater than 231 − 1 or less than −231.

3) If src2 is denormalized, 0000 0000h is placed in dst and the INEX and
DEN2 bits are set.

4) If rounding is performed, the INEX bit is set.
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Pipeline 
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also DPSP, DPTRUNC, INTDP, SPINT

Example DPINT .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A4 xxxx xxxxh A4 0000 0009h 9

Pipeline



 Convert Double-Precision Floating-Point Value to Single-Precision Floating-Point Value DPSP

3-105 Instruction SetSPRU733A

Convert Double-Precision Floating-Point Value to Single-Precision
Floating-Point Value

DPSP

Syntax DPSP  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 1 0 0 1 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

dp
sp

.L1, .L2

Description The double-precision 64-bit value in src2 is converted to a single-precision
value and placed in dst. The operand is read in one cycle by using the src2 port
for the 32 MSBs and the src1 port for the 32 LSBs.

Execution if (cond) sp(src2) → dst
else nop

Notes:

1) If rounding is performed, the INEX bit is set.

2) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

3) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

4) If src2 is a signed denormalized number, signed 0 is placed in dst and
the INEX and DEN2 bits are set.

5) If src2 is signed infinity, the result is signed infinity and the INFO bit is set.

6) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +infinity +LFPN +infinity +LFPN

− −infinity −LFPN −LFPN −infinity
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7) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +0 +0 +SFPN +0

− −0 −0 −0 −SFPN

Pipeline 
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also DPINT, DPTRUNC, INTSP, SPDP

Example DPSP .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

A4 xxxx xxxxh A4 4109 999Ah 8.6

Pipeline
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Convert Double-Precision Floating-Point Value to Integer
With Truncation

DPTRUNC

Syntax DPTRUNC  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 0 0 0 1 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

dp
sint

.L1, .L2

Description The 64-bit double-precision value in src2 is converted to an integer and placed
in dst. This instruction operates like DPINT except that the rounding modes in
the FADCR are ignored; round toward zero (truncate) is always used. The
64-bit operand is read in one cycle by using the src2 port for the 32 MSBs and
the src1 port for the 32 LSBs.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER bits
are set. Overflow occurs if src2 is greater than 231 − 1 or less than −231.

3) If src2 is denormalized, 0000 0000h is placed in dst and the INEX and
DEN2 bits are set.

4) If rounding is performed, the INEX bit is set.
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Pipeline 
Stage E1 E2 E3 E4

Read src2_l
src2_h

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also DPINT, DPSP, SPTRUNC

Example DPTRUNC .L1 A1:A0,A4

Before instruction 4 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 3333 3333h 8.6

A4 xxxx xxxxh A4 0000 0008h 8

Pipeline
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Extract and Sign-Extend a Bit FieldEXT

Syntax EXT  (.unit) src2, csta, cstb, dst
or
EXT (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode Constant form

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 0 1 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

sint
ucst5
ucst5
sint

.S1, .S2

Opcode Register form

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xsint
uint
sint

.S1, .S2
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Description The field in src2, specified by csta and cstb, is extracted and sign-extended
to 32 bits. The extract is performed by a shift left followed by a signed shift right.
csta and cstb are the shift left amount and shift right amount, respectively. This
can be thought of in terms of the LSB and MSB of the field to be extracted. Then
csta = 31 − MSB of the field and cstb = csta + LSB of the field. The shift left and
shift right amounts may also be specified as the ten LSBs of the src1 register
with cstb being bits 0−4 and csta bits 5−9. In the example below, csta is 12 and
cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register version of the
instruction. If any of the 22 MSBs are non-zero, the result is invalid.

csta

x

cstb − csta

src2

dst

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0

1 1 0 1 0 0 1 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 ext csta, cstb → dst
else nop

If the register form is used:

if (cond) src2 ext src19..5, src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

See Also EXTU

Example 1 EXT .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 FFFF F21Fh

Example 2 EXT .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0073h A2 0000 0073h

A3 xxxx xxxxh A3 0000 03B6h
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Extract and Zero-Extend a Bit FieldEXTU

Syntax EXTU  (.unit) src2, csta, cstb, dst
or
EXTU (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode Constant width and offset form:

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 0 0 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

Opcode Register width and offset form:

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xuint
uint
uint

.S1, .S2
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Description The field in src2, specified by csta and cstb, is extracted and zero extended
to 32 bits. The extract is performed by a shift left followed by an unsigned shift
right. csta and cstb are the amounts to shift left and shift right, respectively.
This can be thought of in terms of the LSB and MSB of the field to be extracted.
Then csta = 31 − MSB of the field and cstb = csta + LSB of the field. The shift
left and shift right amounts may also be specified as the ten LSBs of the src1
register with cstb being bits 0−4 and csta bits 5−9. In the example below, csta
is 12 and cstb is 11 + 12 = 23. Only the ten LSBs are valid for the register
version of the instruction. If any of the 22 MSBs are non-zero, the result is
invalid.

0 1 0 1 0 0 1 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x

csta cstb − cst a

x x x x x x x x 1 1 0 1 x x x x x x x x x x xx x 0 1 0x 1 0src2

dst

x x x 0 0 0 001 1 1 1 10 0 0 x x x x x x x x 00 0 00 0 00

Shifts left by 12 to produce:

Then shifts right by 23 to produce:

1)

2)

3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution If the constant form is used:

if (cond) src2 extu csta, cstb → dst
else nop

If the register width and offset form is used:

if (cond) src2 extu src19..5, src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

See Also EXT

Example 1 EXTU .S1 A1,10,19,A2

Before instruction 1 cycle after instruction

A1 07A4 3F2Ah A1 07A4 3F2Ah

A2 xxxx xxxxh A2 0000 121Fh

Example 2 EXTU .S1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 03B6 E7D5h A1 03B6 E7D5h

A2 0000 0156h A2 0000 0156h

A3 xxxx xxxxh A3 0000 036Eh



 Multicycle NOP With No Termination Until Interrupt IDLE

3-115 Instruction SetSPRU733A

Multicycle NOP With No Termination Until InterruptIDLE

Syntax IDLE

.unit = none

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 s p

14 1 1

Description Performs an infinite multicycle NOP that terminates upon servicing an
interrupt, or a branch occurs due to an IDLE instruction being in the delay slots
of a branch.

Instruction Type NOP

Delay Slots 0
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Convert Signed Integer to Double-Precision Floating-Point ValueINTDP

Syntax INTDP  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 1 1 1 0 0 1 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsint
dp

.L1, .L2

Description The signed integer value in src2 is converted to a double-precision value and
placed in dst.

Execution if (cond) dp(src2) → dst
else nop

You cannot set configuration bits with this instruction.

Pipeline 
Stage E1 E2 E3 E4 E5

Read src2

Written dst_l dst_h

Unit in use .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type INTDP

Delay Slots 4

Functional Unit
Latency

1

See Also DPINT, INTDPU, INTSP, INTSPU

Pipeline
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Example INTDP .L1x  B4,A1:A0

Before instruction 5 cycles after instruction

B4 1965 1127h 426053927 B4 1965 1127h 426053927

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 41B9 6511h 2700 0000h 4.2605393 E08
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Convert Unsigned Integer to Double-Precision Floating-Point ValueINTDPU

Syntax INTDPU  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 1 1 1 0 1 1 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xuint
dp

.L1, .L2

Description The unsigned integer value in src2 is converted to a double-precision value
and placed in dst.

Execution if (cond) dp(src2) → dst
else nop

You cannot set configuration bits with this instruction.

Pipeline 
Stage E1 E2 E3 E4 E5

Read src2

Written dst_l dst_h

Unit in use .L

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type INTDP

Delay Slots 4

Functional Unit
Latency

1

See Also INTDP, INTSP, INTSPU

Pipeline
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Example INTDPU .L1 A4,A1:A0

Before instruction 5 cycles after instruction

A4 FFFF FFDEh 4294967262 A4 FFFF FFDEh 4294967262

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 41EF FFFFh FBC0 0000h 4.2949673 E09
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Convert Signed Integer to Single-Precision Floating-Point ValueINTSP

Syntax INTSP  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 0 0 1 0 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsint
sp

.L1, .L2

Description The signed integer value in src2 is converted to single-precision value and
placed in dst.

Execution if (cond) sp(src2) → dst
else nop

The only configuration bit that can be set is the INEX bit and only if the mantissa
is rounded.

Pipeline 
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also INTDP, INTDPU, INTSPU

Example INTSP .L1 A1,A2

Before instruction 4 cycles after instruction

A1 1965 1127h 426053927 A1 1965 1127h 426053927

A2 xxxx xxxxh A2 4DCB 2889h 4.2605393 E08

Pipeline
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Convert Unsigned Integer to Single-Precision Floating-Point ValueINTSPU

Syntax INTSPU  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 0 0 1 0 0 1 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xuint
sp

.L1, .L2

Description The unsigned integer value in src2 is converted to single-precision value and
placed in dst.

Execution if (cond) sp(src2) → dst
else nop

The only configuration bit that can be set is the INEX bit and only if the mantissa
is rounded.

Pipeline 
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also INTDP, INTDPU, INTSP

Example INTSPU .L1X B1,A2

Before instruction 4 cycles after instruction

B1 FFFF FFDEh 4294967262 B1 C020 0000h 4294967262

A2 xxxx xxxxh A2 4F80 0000h 4.2949673 E09

Pipeline
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Load Byte From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

LDB(U)

Syntax Register Offset

LDB  (.unit) *+baseR[offsetR], dst
or
LDBU  (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDB  (.unit) *+baseR[ucst5], dst
or
LDBU  (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode   

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y op 0 1 s p

3 1 5 5 5 4 1 3 1 1

Description Loads a byte from memory to a general-purpose register (dst). Table 3−17
summarizes the data types supported by loads. Table 3−11 (page 3-32)
describes the addressing generator options. The memory address is formed
from a base address register (baseR) and an optional offset that is either a
register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset is not given,
the assembler assigns an offset of zero.

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement, pos-
itive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed in memory.

Table 3−17. Data Types Supported by LDB(U) Instruction

Mnemonic
op

Field Load Data Type SIze
Left Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits
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The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4−A7 and for B4−B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For LDB(U) , the values are loaded into the 8 LSBs of dst. For LDB , the upper
24 bits of dst values are sign-extended; for LDBU , the upper 24 bits of dst are
zero-filled. The s bit determines which file dst will be loaded into: s = 0 indicates
dst will be loaded in the A register file and s = 1 indicates dst will be loaded in
the B register file. The r bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that do no modification to the
baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5 offset
is left-shifted by 0. Parentheses, ( ), can be used to set a nonscaled, constant
offset. You must type either brackets or parentheses around the specified
offset, if you use the optional offset parameter.

Execution if (cond) mem → dst
else nop

Pipeline 
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.

See Also LDH, LDW

Pipeline
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Example LDB .D1 *−A5[4],A7

Before LDB 1 cycle after LDB 5 cycles after LDB

A5 0000 0204h A5 0000 0204h A5 0000 0204h

A7 1951 1970h A7 1951 1970h A7 FFFF FFE1h

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 200h E1h mem 200h E1h mem 200h E1h
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Load Byte From Memory With a 15-Bit Unsigned Constant OffsetLDB(U)

Syntax LDB  (.unit) *+B14/B15[ucst15], dst
or
LDBU  (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst ucst15 y op 1 1 s p

3 1 5 15 1 3 1 1

Description Loads a byte from memory to a general-purpose register (dst). Table 3−18
summarizes the data types supported by loads. The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset,
which is a 15-bit unsigned constant (ucst15). The assembler selects this for-
mat only when the constant is larger than five bits in magnitude. This instruc-
tion operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 0 bits. After scaling, ucst15 is
added to baseR. Subtraction is not supported. The result of the calculation is
the address sent to memory. The addressing arithmetic is always performed
in linear mode.

For LDB(U) , the values are loaded into the 8 LSBs of dst. For LDB , the upper
24 bits of dst values are sign-extended; for LDBU , the upper 24 bits of dst are
zero-filled. The s bit determines which file dst will be loaded into: s = 0 indicates
dst will be loaded in the A register file and s = 1 indicates dst will be loaded in
the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 0.
Parentheses, ( ), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Table 3−18. Data Types Supported by LDB(U) Instruction (15-Bit Offset)

Mnemonic
op

Field Load Data Type SIze

Left
Shift of
Offset

LDB 0 1 0 Load byte 8 0 bits

LDBU 0 0 1 Load byte unsigned 8 0 bits
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Execution if (cond) mem → dst
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline 
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDH, LDW

Example LDB .D2 *+B14[36],B1

Before LDB 1 cycle after LDB

B1 XXXX XXXXh B1 XXXX XXXXh

B14 0000 0100h B14 0000 0100h

mem  124−127h 4E7A FF12h mem  124−127h 4E7A FF12h

mem  124h 12h mem  124h 12h

5 cycles after LDB

B1 0000 0012h

B14 0000 0100h

mem  124−127h 4E7A FF12h

mem  124h 12h

Pipeline
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Load Doubleword From Memory With an Unsigned Constant Offset
or Register Offset

LDDW

Syntax Register Offset

LDDW (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDDW (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 1 y 1 1 0 0 1 s p

3 1 5 5 5 4 1 1 1

Description Loads a doubleword from memory into a register pair dst_o:dst_e. Table 3−11
(page 3-32) describes the addressing generator options. The memory
address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

Both offsetR and baseR must be in the same register file and on the same side
as the .D unit used. The y bit in the opcode determines the .D unit and the regis-
ter file used: y = 0 selects the .D1 unit and the baseR and offsetR from the
A register file, and y = 1 selects the .D2 unit and baseR and offsetR from the
B register file. The s bit determines the register file into which the dst is loaded:
s = 0 indicates that dst is in the A register file, and s = 1 indicates that dst is
in the B register file. The r bit has a value of 1 for the LDDW instruction. The
dst field must always be an even value because the LDDW instruction loads
register pairs. Therefore, bit 23 is always zero.

The offsetR/ucst5 is scaled by a left-shift of 3 to correctly represent double-
words. After scaling, offsetR/ucst5 is added to or subtracted from baseR. For
the preincrement, predecrement, positive offset, and negative offset address
generator options, the result of the calculation is the address to be accessed
in memory. For postincrement or postdecrement addressing, the shifted value
of baseR before the addition or subtraction is the address to be accessed in
memory.
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Increments and decrements default to 1 and offsets default to 0 when no
bracketed register, bracketed constant, or constant enclosed in parentheses
is specified. Square brackets, [  ], indicate that ucst5 is left shifted by 3.
Parentheses, (  ), indicate that ucst5 is not left shifted. In other words,
parentheses indicate a byte offset rather than a doubleword offset. You must
type either brackets or parenthesis around the specified offset if you use the
optional offset parameter.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4−A7 and for B4−B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR (see
section 2.7.3, page 2-10).

The destination register pair must consist of a consecutive even and odd
register pair from the same register file. The instruction can be used to load
a double-precision floating-point value (64 bits), a pair of single-precision
floating-point words (32 bits), or a pair of 32-bit integers. The least-significant
32 bits are loaded into the even-numbered register and the most-significant
32 bits (containing the sign bit and exponent) are loaded into the next register
(which is always odd-numbered register). The register pair syntax places the
odd register first, followed by a colon, then the even register (that is, A1:A0,
B1:B0, A3:A2, B3:B2, etc.).

All 64 bits of the double-precision floating point value are stored in big- or little-
endian byte order, depending on the mode selected. When the LDDW instruc-
tion is used to load two 32-bit single-precision floating-point values or two
32-bit integer values, the order is dependent on the endian mode used. In little-
endian mode, the first 32-bit word in memory is loaded into the even register.
In big-endian mode, the first 32-bit word in memory is loaded into the odd regis-
ter. Regardless of the endian mode, the doubleword address must be on a
doubleword boundary (the three LSBs are zero).

Execution if (cond) mem → dst
else nop

Pipeline 
Stage E1 E2 E3 E4 E5

Read baseR,
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Pipeline
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Delay Slots 4

Functional Unit
Latency

1

See Also LDB, LDH, LDW

Example 1 LDDW .D2 *+B10[1],A1:A0

Before instruction 5 cycles after instruction

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 4021 3333h 3333 3333h

B10 0000 0010h 16 B10 0000 0010h 16

mem 18h 3333 3333h 4021 3333h 8.6 mem 18h 3333 3333h 4021 3333h 8.6

Little-endian mode

Example 2 LDDW .D1 *++A10[1],A1:A0

Before instruction 1 cycle after instruction

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 xxxx xxxxh xxxx xxxxh

A10 0000 0010h 16 A10 0000 0018h 24

mem 18h 4021 3333h 3333 3333h 8.6 mem 18h 4021 3333h 3333 3333h 8.6

5 cycles after instruction

A1:A0 4021 3333h 3333 3333h

A10 0000 0018h 24

mem 18h 4021 3333h 3333 3333h 8.6

Big-endian mode



LDH(U) Load Halfword From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-130   Instruction Set SPRU733A

Load Halfword From Memory With a 5-Bit Unsigned Constant Offset
or Register Offset

LDH(U)

Syntax Register Offset

LDH (.unit) *+baseR[offsetR], dst
or
LDHU (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDH (.unit) *+baseR[ucst5], dst
or
LDHU (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode   

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y op 0 1 s p

3 1 5 5 5 4 1 3 1 1

Description Loads a halfword from memory to a general-purpose register (dst). Table 3−19
summarizes the data types supported by halfword loads. Table 3−11
(page 3-32) describes the addressing generator options. The memory
address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset
is not given, the assembler assigns an offset of zero.

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed in memory.

Table 3−19. Data Types Supported by LDH(U) Instruction

Mnemonic
op

Field Load Data Type SIze
Left Shift of
Offset

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit
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The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4−A7 and for B4−B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper
16 bits of dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-
filled. The s bit determines which file dst will be loaded into: s = 0 indicates dst
will be loaded in the A register file and s = 1 indicates dst will be loaded in the
B register file. The r bit should be cleared to 0.

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that do no modification to the
baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5 offset
is left-shifted by 1. Parentheses, ( ), can be used to set a nonscaled, constant
offset. You must type either brackets or parentheses around the specified
offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution if (cond) mem → dst
else nop

Pipeline 
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.

See Also LDB, LDW

Pipeline
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Example LDH .D1 *++A4[A1],A8

Before LDH 1 cycle after LDH 5 cycles after LDH

A1 0000 0002h A1 0000 0002h A1 0000 0002h

A4 0000 0020h A4 0000 0024h A4 0000 0024h

A8 1103 51FFh A8 1103 51FFh A8 FFFF A21Fh

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 24h A21Fh mem 24h A21Fh mem 24h A21Fh
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Load Halfword From Memory With a 15-Bit Unsigned Constant OffsetLDH(U)

Syntax LDH  (.unit) *+B14/B15[ucst15], dst
or
LDHU (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst ucst15 y op 1 1 s p

3 1 5 15 1 3 1 1

Description Loads a halfword from memory to a general-purpose register (dst). Table 3−20
summarizes the data types supported by loads. The memory address is
formed from a base address register B14 (y = 0) or B15 (y = 1) and an offset,
which is a 15-bit unsigned constant (ucst15). The assembler selects this for-
mat only when the constant is larger than five bits in magnitude. This instruc-
tion operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 1 bit. After scaling, ucst15 is added
to baseR. Subtraction is not supported. The result of the calculation is the
address sent to memory. The addressing arithmetic is always performed in
linear mode.

For LDH(U), the values are loaded into the 16 LSBs of dst. For LDH, the upper
16 bits of dst are sign-extended; for LDHU, the upper 16 bits of dst are zero-
filled. The s bit determines which file dst will be loaded into: s = 0 indicates dst
will be loaded in the A register file and s = 1 indicates dst will be loaded in the
B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 1.
Parentheses, ( ), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.
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Table 3−20. Data Types Supported by LDH(U) Instruction (15-Bit Offset)

Mnemonic
op

Field Load Data Type SIze
Left Shift of
Offset

LDH 1 0 0 Load halfword 16 1 bit

LDHU 0 0 0 Load halfword unsigned 16 1 bit

Execution if (cond) mem → dst
else nop

Note:

This instruction executes only on the B side (.D2).

Pipeline 
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDB, LDW

Pipeline
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Load Word From Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

LDW

Syntax Register Offset

LDW (.unit) *+baseR[offsetR], dst

Unsigned Constant Offset

LDW (.unit) *+baseR[ucst5], dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode  

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst baseR offsetR/ucst5 mode 0 y 1 1 0 0 1 s p

3 1 5 5 5 4 1 1 1

Description Loads a word from memory to a general-purpose register (dst). Table 3−11
(page 3-32) describes the addressing generator options. The memory
address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5). If an offset
is not given, the assembler assigns an offset of zero.

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is the address to be accessed in memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4−A7 and for B4−B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For LDW, the entire 32 bits fills dst. dst can be in either register file, regardless
of the .D unit or baseR or offsetR used. The s bit determines which file dst will
be loaded into: s = 0 indicates dst will be loaded in the A register file and s = 1
indicates dst will be loaded in the B register file. The r bit should be cleared to
0.



LDW Load Word From Memory With a 5-Bit Unsigned Constant Offset or Register Offset

3-136   Instruction Set SPRU733A

Increments and decrements default to 1 and offsets default to 0 when no
bracketed register or constant is specified. Loads that do no modification to the
baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5 offset
is left-shifted by 2. Parentheses, ( ), can be used to set a nonscaled, constant
offset. For example, LDW (.unit) *+baseR (12) dst represents an offset of
12 bytes; whereas, LDW (.unit) *+baseR [12] dst represents an offset of
12 words, or 48 bytes. You must type either brackets or parentheses around
the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) mem → dst
else nop

Pipeline 
Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Instruction Type Load

Delay Slots 4 for loaded value
0 for address modification from pre/post increment/decrement
For more information on delay slots for a load, see Chapter 4.

See Also LDB, LDDW, LDH

Pipeline
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Example 1 LDW .D1 *A10,B1

Before LDW 1 cycle after LDW 5 cycles after LDW

B1 0000 0000h B1 0000 0000h B1 21F3 1996h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 21F3 1996h mem 100h 21F3 1996h mem 100h 21F3 1996h

Example 2 LDW .D1 *A4++[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 4321h A6 1234 4321h A6 0798 F25Ah

AMR 0000 0000h AMR 0000 0000h AMR 0000 0000h

mem 100h 0798 F25Ah mem 100h 0798 F25Ah mem 100h 0798 F25Ah

mem 104h 1970 19F3h mem 104h 1970 19F3h mem 104h 1970 19F3h

Example 3 LDW .D1 *++A4[1],A6

Before LDW 1 cycle after LDW 5 cycles after LDW

A4 0000 0100h A4 0000 0104h A4 0000 0104h

A6 1234 5678h A6 1234 5678h A6 0217 6991h

AMR 0000 0000h 0000 0000h AMR 0000 0000h

mem 104h 0217 6991h mem 104h 0217 6991h mem 104h 0217 6991h
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Load Word From Memory With a 15-Bit Unsigned Constant OffsetLDW

Syntax LDW  (.unit) *+B14/B15[ucst15], dst

.unit = .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z dst ucst15 y 1 1 0 1 1 s p

3 1 5 15 1 1 1

Description Load a word from memory to a general-purpose register (dst). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and
an offset, which is a 15-bit unsigned constant (ucst15). The assembler selects
this format only when the constant is larger than five bits in magnitude. This
instruction operates only on the .D2 unit.

The offset, ucst15, is scaled by a left shift of 2 bits. After scaling, ucst15 is
added to baseR. Subtraction is not supported. The result of the calculation is
the address sent to memory. The addressing arithmetic is always performed
in linear mode.

For LDW, the entire 32 bits fills dst. dst can be in either register file. The s bit
determines which file dst will be loaded into: s = 0 indicates dst will be loaded
in the A register file and s = 1 indicates dst will be loaded in the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 2.
Parentheses, ( ), can be used to set a nonscaled, constant offset. For example,
LDW (.unit) *+B14/B15(60), dst represents an offset of 60 bytes; whereas,
LDW (.unit) *+B14/B15[60], dst represents an offset of 60 words, or 240 bytes.
You must type either brackets or parentheses around the specified offset, if
you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) mem → dst
else nop

Note:

This instruction executes only on the B side (.D2).
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Pipeline 
Stage E1 E2 E3 E4 E5

Read B14 / B15

Written dst

Unit in use .D2

Instruction Type Load

Delay Slots 4

See Also LDB, LDH

Pipeline
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Leftmost Bit DetectionLMBD

Syntax LMBD  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1/cst5 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 110 1011

src1
src2
dst

cst5
xuint
uint

.L1, .L2 110 1010

Description The LSB of the src1 operand determines whether to search for a leftmost 1 or 0
in src2. The number of bits to the left of the first 1 or 0 when searching for a 1
or 0, respectively, is placed in dst.

The following diagram illustrates the operation of LMBD  for several cases.

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x0 1 x x x x x x x x x x x x x x x x x x x x xx x x x xx x x

x x x x x x x00 0 x x x0 1 x x x x x x x x x xx x xx x xx

When searching for 1 in src2, LMBD  returns 4:

When searching for 0 in src2, LMBD  returns 32:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

When searching for 0 in src2, LMBD  returns 0:
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Execution if (cond) {
if (src10 == 0) lmb0(src2) → dst
if (src10 == 1) lmb1(src2) → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example LMBD .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 0001h A1 0000 0001h

A2 009E 3A81h A2 009E 3A81h

A3 xxxx xxxxh A3 0000 0008h

Pipeline
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Multiply Signed 16 LSB � Signed 16 LSBMPY

Syntax MPY  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

slsb16
xslsb16
sint

.M1, .M2 11001

src1
src2
dst

scst5
xslsb16
sint

.M1, .M2 11000

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYU, MPYSU, MPYUS, SMPY

Pipeline
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Example 1 MPY .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291† A1 0000 0123h

A2 01E0 FA81h −1407† A2 01E0 FA81h

A3 xxxx xxxxh A3 FFF9 C0A3 −409437

† Signed 16-LSB integer

Example 2 MPY .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h −13† A1 3497 FFF3h

A2 xxxx xxxxh A2 FFFF FF57h −163

† Signed 16-LSB integer
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Multiply Two Double-Precision Floating-Point ValuesMPYDP

Syntax MPYDP  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

dp
dp
dp

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the
exclusive-OR of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

5) If rounding is performed, the INEX bit is set.
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Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1_l
src2_l

src1_l
src2_h

src1_h
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .M .M .M .M

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type MPYDP

Delay Slots 9

Functional Unit
Latency

4

See Also MPY, MPYSP

Example MPYDP .M1 A1:A0,A3:A2,A5:A4

Before instruction 10 cycles after instruction

A1:A0 4021 3333h 3333 3333h 8.6 A1:A0 4021 3333h 4021 3333h 8.6

A3:A2 C004 0000h 0000 0000 −2.5 A3:A2 C004 0000h 0000 0000h −2.5

A5:A4 XXXX XXXXh XXXX XXXXh A5:A4 C035 8000h 0000 0000h −21.5

Pipeline
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Multiply Signed 16 MSB � Signed 16 MSBMPYH

Syntax MPYH  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHU, MPYHSU, MPYHUS, SMPYH

Pipeline
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Example MPYH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 1234h −89† A2 FFA7 1234h

A3 xxxx xxxxh A3 FFFF F3D5h −3115

† Signed 16-MSB integer
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Multiply Signed 16 MSB � Signed 16 LSBMPYHL

Syntax MPYHL  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHLU, MPYHSLU, MPYHULS, SMPYHL

Pipeline
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Example MPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 003Eh 138† A1 008A 003Eh

A2 21FF 00A7h 167‡ A2 21FF 00A7h

A3 xxxx xxxxh A3 0000 5A06h 23046

† Signed 16-MSB integer
‡ Signed 16-LSB integer
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Multiply Unsigned 16 MSB � Unsigned 16 LSBMPYHLU

Syntax MPYHLU (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xulsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHSLU, MPYHULS

Pipeline



 Multiply Signed 16 MSB x Unsigned 16 LSB MPYHSLU

3-151 Instruction SetSPRU733A

Multiply Signed 16 MSB � Unsigned 16 LSBMPYHSLU

Syntax MPYHSLU (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xulsb16
sint

.M1, .M2

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHLU, MPYHULS

Pipeline



MPYHSU Multiply Signed 16 MSB x Unsigned 16 MSB

3-152   Instruction Set SPRU733A

Multiply Signed 16 MSB � Unsigned 16 MSBMPYHSU

Syntax MPYHSU  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xumsb16
sint

.M1, .M2

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHU, MPYHUS

Example MPYHSU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35† A1 0023 0000h

A2 FFA7 FFFFh 65447‡ A2 FFA7 FFFFh

A3 xxxx xxxxh A3 0022 F3D5h 2290645

† Signed 16-MSB integer
‡ Unsigned 16-MSB integer

Pipeline



 Multiply Unsigned 16 MSB x Unsigned 16 MSB MPYHU

3-153 Instruction SetSPRU733A

Multiply Unsigned 16 MSB � Unsigned 16 MSBMPYHU

Syntax MPYHU  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xumsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHSU, MPYHUS

Example MPYHU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0023 0000h 35‡ A1 0023 0000h

A2 FFA7 1234h 65447‡ A2 FFA7 1234h

A3 xxxx xxxxh A3 0022 F3D5h 2290645§

‡ Unsigned 16-MSB integer
§ Unsigned 32-bit integer

Pipeline



MPYHULS Multiply Unsigned 16 MSB x Signed 16 LSB

3-154   Instruction Set SPRU733A

Multiply Unsigned 16 MSB � Signed 16 LSBMPYHULS

Syntax MPYHULS (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xslsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYHL, MPYHLU, MPYHSLU

Pipeline



 Multiply Unsigned 16 MSB x Signed 16 MSB MPYHUS

3-155 Instruction SetSPRU733A

Multiply Unsigned 16 MSB � Signed 16 MSBMPYHUS

Syntax MPYHUS  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

umsb16
xsmsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) msb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYH, MPYHU, MPYHSU

Pipeline



MPYI Multiply 32-Bit x 32-Bit Into 32-Bit Result

3-156   Instruction Set SPRU733A

Multiply 32-Bit � 32-Bit Into 32-Bit ResultMPYI

Syntax MPYI  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.M1, .M2 00100

src1
src2
dst

cst5
xsint
sint

.M1, .M2 00110

Description The src1 operand is multiplied by the src2 operand. The lower 32 bits of the
result are placed in dst.

Execution if (cond) lsb32(src1 � src2) → dst
else nop

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst

Unit in use .M .M .M .M

Instruction Type MPYI

Delay Slots 8

Pipeline



 Multiply 32-Bit x 32-Bit Into 32-Bit Result MPYI

3-157 Instruction SetSPRU733A

Functional Unit
Latency

4

See Also MPYID

Example MPYI .M1X A1,B2,A3

Before instruction 9 cycles after instruction

A1 0034 5678h 3430008 A1 0034 5678h 3430008

B2 0011 2765h 1124197 B2 0011 2765h 1124197

A3 xxxx xxxxh A3 CBCA 6558h −875928232



MPYID Multiply 32-Bit x 32-Bit Into 64-Bit Result

3-158   Instruction Set SPRU733A

Multiply 32-Bit � 32-Bit Into 64-Bit ResultMPYID

Syntax MPYID  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sdint

.M1, .M2 01000

src1
src2
dst

cst5
xsint
sdint

.M1, .M2 01100

Description The src1 operand is multiplied by the src2 operand. The 64-bit result is placed
in the dst register pair.

Execution if (cond) lsb32(src1 � src2) → dst_l
msb32(src1 � src2) → dst_h

else nop

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst_l dst_h

Unit in use .M .M .M .M

Instruction Type MPYID

Delay Slots 9 (8 if dst_l is src of next instruction)

Pipeline



 Multiply 32-Bit x 32-Bit Into 64-Bit Result MPYID

3-159 Instruction SetSPRU733A

Functional Unit
Latency

4

See Also MPYI

Example MPYID .M1 A1,A2,A5:A4

Before instruction 10 cycles after instruction

A1 0034 5678h 3430008 A1 0034 5678h 3430008

A2 0011 2765h 1124197 A2 0011 2765h 1124197

A5:A4 xxxx xxxxh xxxx xxxxh A5:A4 0000 0381h CBCA 6558h 3856004703576



MPYLH Multiply Signed 16 LSB x Signed 16 MSB

3-160   Instruction Set SPRU733A

Multiply Signed 16 LSB � Signed 16 MSBMPYLH

Syntax MPYLH  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are signed by default.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLHU, MPYLSHU, MPYLUHS, SMPYLH

Pipeline



 Multiply Signed 16 LSB x Signed 16 MSB MPYLH

3-161 Instruction SetSPRU733A

Example MPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0900 000Eh 14† A1 0900 000Eh

A2 0029 00A7h 41‡ A2 0029 00A7h

A3 xxxx xxxxh A3 0000 023Eh 574

† Signed 16-LSB integer
‡ Signed 16-MSB integer



MPYLHU Multiply Unsigned 16 LSB x Unsigned 16 MSB

3-162   Instruction Set SPRU733A

Multiply Unsigned 16 LSB � Unsigned 16 MSBMPYLHU

Syntax MPYLHU  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xumsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLSHU, MPYLUHS

Pipeline



 Multiply Signed 16 LSB x Unsigned 16 MSB MPYLSHU

3-163 Instruction SetSPRU733A

Multiply Signed 16 LSB � Unsigned 16 MSBMPYLSHU

Syntax MPYLSHU  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xumsb16
sint

.M1, .M2

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLHU, MPYLUHS

Pipeline



MPYLUHS Multiply Unsigned 16 LSB x Signed 16 MSB

3-164   Instruction Set SPRU733A

Multiply Unsigned 16 LSB � Signed 16 MSBMPYLUHS

Syntax MPYLUHS  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xsmsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × msb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPYLH, MPYLHU, MPYLSHU

Pipeline



 Multiply Two Single-Precision Floating-Point Values MPYSP

3-165 Instruction SetSPRU733A

Multiply Two Single-Precision Floating-Point ValuesMPYSP

Syntax MPYSP  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sp

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the
exclusive-OR of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

5) If rounding is performed, the INEX bit is set.



MPYSP Multiply Two Single-Precision Floating-Point Values

3-166   Instruction Set SPRU733A

Pipeline 
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .M

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also MPY, MPYDP, MPYSP2DP

Example MPYSP .M1X A1,B2,A3

Before instruction 4 cycles after instruction

A1 C020 0000h −2.5 A1 C020 0000h −2.5

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A3 xxxx xxxxh A3 C1AC 0000h −21.5

Pipeline



 Multiply Single-Precision Value x Double-Precision Value (C67x+ CPU) MPYSPDP

3-167 Instruction SetSPRU733A

Multiply Single-Precision Floating-Point Value � Double-Precision
Floating-Point Value

MPYSPDP

Syntax MPYSPDP  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C67x+ CPU only

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 1 0 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sp

.M1, .M2

Description The single-precision src1 operand is multiplied by the double-precision src2
operand to produce a double-precision result. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the
exclusive-OR of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

5) If rounding is performed, the INEX bit is set.



MPYSPDP Multiply Single-Precision Value x Double-Precision Value (C67x+ CPU)

3-168   Instruction Set SPRU733A

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7

Read src1
src2_l

src1
src2_h

Written dst_l dst_h

Unit in use .M .M

The low half of the result is written out one cycle earlier than the high half. If
dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP, CMPGTDP,
MPYDP, MPYSPDP, MPYSP2DP, or SUBDP instruction, the number of delay
slots can be reduced by one, because these instructions read the lower word
of the DP source one cycle before the upper word of the DP source.

Instruction Type MPYSPDP

Delay Slots 6

Functional Unit
Latency

3

See Also MPY, MPYDP, MPYSP, MPYSP2DP

Pipeline



 Multiply Two Single-Precision Floating-Point Values for Double-Precision Result (C67x+ CPU) MPYSP2DP

3-169 Instruction SetSPRU733A

Multiply Two Single-Precision Floating-Point Values for
Double-Precision Result

MPYSP2DP

Syntax MPYSP2DP  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C67x+ CPU only

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 1 1 1 1 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sp
xsp
sp

.M1, .M2

Description The src1 operand is multiplied by the src2 operand to produce a
double-precision result. The result is placed in dst.

Execution if (cond) src1 � src2 → dst
else nop

Notes:

1) If one source is SNaN or QNaN, the result is a signed NaN_out. If either
source is SNaN, the INVAL bit is set also. The sign of NaN_out is the
exclusive-OR of the input signs.

2) Signed infinity multiplied by signed infinity or a normalized number (other
than signed 0) returns signed infinity. Signed infinity multiplied by
signed 0 returns a signed NaN_out and sets the INVAL bit.

3) If one or both sources are signed 0, the result is signed 0 unless the other
source is NaN or signed infinity, in which case the result is signed
NaN_out.

4) A denormalized source is treated as signed 0 and the DENn bit is set.
The INEX bit is set except when the other source is signed infinity, signed
NaN, or signed 0. Therefore, a signed infinity multiplied by a denormal-
ized number gives a signed NaN_out and sets the INVAL bit.

5) If rounding is performed, the INEX bit is set.



MPYSP2DP Multiply Two Single-Precision Floating-Point Values for Double-Precision Result (C67x+ CPU)

3-170   Instruction Set SPRU733A

Pipeline 
Stage E1 E2 E3 E4 E5

Read src1
src2

Written dst_l dst_h

Unit in use .M

The low half of the result is written out one cycle earlier than the high half. If
dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP, CMPGTDP,
MPYDP, MPYSPDP, MPYSP2DP, or SUBDP instruction, the number of delay
slots can be reduced by one, because these instructions read the lower word
of the DP source one cycle before the upper word of the DP source.

Instruction Type 5-cycle

Delay Slots 4

Functional Unit
Latency

2

See Also MPY, MPYDP, MPYSP, MPYSPDP

Pipeline



 Multiply Signed 16 LSB x Unsigned 16 LSB MPYSU

3-171 Instruction SetSPRU733A

Multiply Signed 16 LSB � Unsigned 16 LSBMPYSU

Syntax MPYSU  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x op 0 0 0 0 0 s p

3 1 5 5 5 1 5 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

slsb16
xulsb16
sint

.M1, .M2 11011

src1
src2
dst

scst5
xulsb16
sint

.M1, .M2 11110

Description The signed operand src1 is multiplied by the unsigned operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

Pipeline



MPYSU Multiply Signed 16 LSB x Unsigned 16 LSB

3-172   Instruction Set SPRU733A

See Also MPY, MPYU, MPYUS

Example MPYSU .M1 13,A1,A2

Before instruction 2 cycles after instruction

A1 3497 FFF3h 65523‡ A1 3497 FFF3h

A2 xxxx xxxxh A2 000C FF57h 851779

‡ Unsigned 16-LSB integer



 Multiply Unsigned 16 LSB x Unsigned 16 LSB MPYU

3-173 Instruction SetSPRU733A

Multiply Unsigned 16 LSB � Unsigned 16 LSBMPYU

Syntax MPYU  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 1 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xulsb16
uint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is placed in dst.
The source operands are unsigned by default.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYSU, MPYUS

Pipeline



MPYU Multiply Unsigned 16 LSB x Unsigned 16 LSB

3-174   Instruction Set SPRU733A

Example MPYU .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 0F12 FA81h 64129‡ A2 0F12 FA81h

A3 xxxx xxxxh A3 011C C0A3 18661539§

‡ Unsigned 16-LSB integer



 Multiply Unsigned 16 LSB x Signed 16 LSB MPYUS

3-175 Instruction SetSPRU733A

Multiply Unsigned 16 LSB � Signed 16 LSBMPYUS

Syntax MPYUS (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

ulsb16
xslsb16
sint

.M1, .M2

Description The unsigned operand src1 is multiplied by the signed operand src2. The result
is placed in dst. The S is needed in the mnemonic to specify a signed operand
when both signed and unsigned operands are used.

Execution if (cond) lsb16(src1) × lsb16(src2) → dst
else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Multiply (16 × 16)

Delay Slots 1

See Also MPY, MPYU, MPYSU

Pipeline
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Example MPYUS .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 1234 FFA1h 65441‡ A1 1234 FFA1h

A2 1234 FFA1h −95† A2 1234 FFA1h

A3 xxxx xxxxh A3 FFA1 2341h −6216895

† Signed 16-LSB integer
‡ Unsigned 16-LSB integer
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Move From Register to RegisterMV

Syntax MV (.unit) src2, dst

.unit = .L1, .L2, .S1, .S2, .D1, .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 000 0010

src2
dst

slong
slong

.L1, .L2 010 0000

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 1 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsint
sint

.S1, .S2
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Opcode .D unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 s p

3 1 5 5 1 1

Opcode map field used... For operand type... Unit

src2
dst

sint
sint

.D1, .D2

Description The MV pseudo-operation moves a value from one register to another. The
assembler uses the operation ADD (.unit) 0, src2, dst to perform this task.

Execution if (cond) 0 + src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0
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Move Between Control File and Register FileMVC

Syntax MVC  (.unit) src2, dst

.unit = .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 0 0 0 s p

3 1 5 5 1 6 1 1

Operands when moving from the control file to the register file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

uint
uint

.S2 00 1111

Description The src2 register is moved from the control register file to the register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3−21
(page 3-181).

Operands when moving from the register file to the control file:

Opcode map field used... For operand type... Unit Opfield

src2
dst

xuint
uint

.S2 00 1110

Description The src2 register is moved from the register file to the control register file. Valid
values for src2 are any register listed in the control register file.

Register addresses for accessing the control registers are in Table 3−21
(page 3-181).
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Execution if (cond) src2 → dst
else nop

Note:

The MVC instruction executes only on the B side (.S2).

Refer to the individual control register descriptions for specific behaviors and
restrictions in accesses via the MVC instruction.

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S2

Instruction Type Single-cycle

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in the IFR until
two cycles after the write to the ISR or ICR.

Delay Slots 0

Example MVC .S2 B1,AMR

Before instruction 1 cycle after instruction

B1 F009 0001h B1 F009 0001h

AMR 0000 0000h AMR 0009 0001h

Note:

The six MSBs of the AMR are reserved and therefore are not written to.

Pipeline
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Table 3−21. Register Addresses for Accessing the Control Registers

Acronym Register Name Address Read/ Write

AMR Addressing mode register 00000 R, W

CSR Control status register 00001 R, W

FADCR Floating-point adder configuration 10010 R, W

FAUCR Floating-point auxiliary configuration 10011 R, W

FMCR Floating-point multiplier configuration 10100 R, W

ICR Interrupt clear register 00011 W

IER Interrupt enable register 00100 R, W

IFR Interrupt flag register 00010 R

IRP Interrupt return pointer 00110 R, W

ISR Interrupt set register 00010 W

ISTP Interrupt service table pointer 00101 R, W

NRP Nonmaskable interrupt return pointer 00111 R, W

PCE1 Program counter, E1 phase 10000 R

Legend: R = Readable by the MVC instruction; W = Writeable by the MVC instruction
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Move Signed Constant Into Register and Sign ExtendMVK

Syntax MVK  (.unit) cst, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 0 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

scst16
sint

.S1, .S2

Description The 16-bit signed constant, cst, is sign extended and placed in dst.

In most cases, the C6000 assembler and linker issue a warning or an error
when a constant is outside the range supported by the instruction. In the case
of MVK .S, a warning is issued whenever the constant is outside the signed
16-bit range, −32768 to 32767 (or FFFF 8000h to 0000 7FFFh).

For example:

MVK  .S1   0x00008000X, A0

will generate a warning; whereas:

MVK  .S1   0xFFFF8000, A0

will not generate a warning.

Execution if (cond)  scst → dst
else nop

Pipeline 
Stage E1

Read

Written dst

Unit in use .S

Pipeline
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Instruction Type Single cycle

Delay Slots 0

See Also MVKH, MVKL, MVKLH

Example 1 MVK .L2 −5,B8

Before instruction 1 cycle after instruction

B8 xxxx xxxxh B8 FFFF FFFBh

Example 2 MVK .D2 14,B8

Before instruction 1 cycle after instruction

B8 xxxx xxxxh B8 0000 000Eh
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Move 16-Bit Constant Into Upper Bits of RegisterMVKH/MVKLH

Syntax MVKH  (.unit) cst, dst
or
MVKLH  (.unit) cst, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 1 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

uscst16
sint

.S1, .S2

Description The 16-bit constant, cst16 , is loaded into the upper 16 bits of dst. The 16 LSBs
of dst are unchanged. For the MVKH instruction, the assembler encodes the
16 MSBs of a 32-bit constant into the cst16 field of the opcode . For the MVKLH
instruction, the assembler encodes the 16 LSBs of a constant into the cst16
field of the opcode.

Execution For the MVKLH  instruction:

if (cond)((cst15..0) << 16) or (dst15..0) → dst
else nop

For the MVKH instruction:

if (cond)((cst31..16) << 16) or (dst15..0) → dst
else nop

Pipeline 
Stage E1

Read

Written dst

Unit in use .S

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

Note:

Use the MVK instruction (page 3-182) to load 16-bit constants. The assem-
bler generates a warning for any constant over 16 bits. To load 32-bit
constants, such as 1234 5678h, use the following pair of instructions:

MVKL 0x12345678
MVKH 0x12345678

If you are loading the address of a label, use:

MVKL label
MVKH label

Example 1 MVKH .S1 0A329123h,A1

Before instruction 1 cycle after instruction

A1 0000 7634h A1 0A32 7634h

Example 2 MVKLH .S1 7A8h,A1

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 07A8 F25Ah
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Move Signed Constant Into Register and Sign ExtendMVKL

Syntax MVKL  (.unit) cst, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 0 1 0 1 0 s p

3 1 5 16 1 1

Opcode map field used... For operand type... Unit

cst16
dst

scst16
sint

.S1, .S2

Description The MVKL pseudo-operation sign extends the 16-bit constant, cst16, and
places it in dst.

The MVKL  instruction is equivalent to the MVK instruction (page 3-182),
except that the MVKL  instruction disables the constant range checking
normally performed by the assembler/linker. This allows the MVKL  instruction
to be paired with the MVKH instruction (page 3-184) to generate 32-bit
constants.

To load 32-bit constants, such as 1234 ABCDh, use the following pair of
instructions:

MVKL  .S1 0x0ABCD, A4
MVKLH .S1 0x1234, A4

This could also be used:

MVKL  .S1 0x1234ABCD, A4
MVKH  .S1 0x1234ABCD, A4

Use this to load the address of a label:

MVKL .S2 label, B5
MVKH .S2 label, B5

Execution if (cond)  scst → dst
else nop
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Pipeline 
Stage E1

Read

Written dst

Unit in use .S

Instruction Type Single cycle

Delay Slots 0

See Also MVK, MVKH, MVKLH

Example 1 MVKL .S1 5678h,A8

Before instruction 1 cycle after instruction

A8 xxxx xxxxh A8 0000 5678h

Example 2 MVKL .S1 0C678h,A8

Before instruction 1 cycle after instruction

A8 xxxx xxxxh A8 FFFF C678h

Pipeline
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NegateNEG

Syntax NEG  (.unit) src2, dst

.unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 1 0 1 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsint
sint

.S1, .S2

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
sint

.L1, .L2 000 0110

src2
dst

slong
slong

.L1, .L2 010 0100

Description The NEG pseudo-operation negates src2 and places the result in dst. The
assembler uses SUB (.unit) 0, src2, dst to perform this operation.

Execution if (cond) 0 −s src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0
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No OperationNOP

Syntax NOP  [count]

.unit = none

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved 0 src 0 0 0 0 0 0 0 0 0 0 0 0 p

14 4 1

Opcode map field used... For operand type... Unit

src ucst4 none

Description src is encoded as count − 1. For src + 1 cycles, no operation is performed. The
maximum value for count is 9. NOP with no operand is treated like NOP 1 with
src encoded as 0000.

A multicycle NOP will not finish if a branch is completed first. For example, if
a branch is initiated on cycle n and a NOP 5 instruction is initiated on cycle
n + 3, the branch is complete on cycle n + 6 and the NOP is executed only from
cycle n + 3 to cycle n + 5. A single-cycle NOP in parallel with other instructions
does not affect operation.

Execution No operation for count cycles

Instruction Type NOP

Delay Slots 0
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Example 1 NOP

MVK .S1 125h,A1

Before NOP

1 cycle after NOP
(No operation
executes)

1 cycle after
      MVK

A1 1234 5678h A1 1234 5678h A1 0000 0125h

Example 2 MVK .S1 1,A1

MVKLH .S1 0,A1

NOP 5

ADD .L1 A1,A2,A1

Before NOP 5

1 cycle after ADD
instruction (6 cycles
after NOP 5)

A1 0000 0001h A1 0000 0004h

A2 0000 0003h A2 0000 0003h
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Normalize IntegerNORM

Syntax NORM (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x op 1 1 0 s p

3 1 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src2
dst

xsint
uint

.L1, .L2 110 0011

src2
dst

slong
uint

.L1, .L2 110 0000

Description The number of redundant sign bits of src2 is placed in dst. Several examples
are shown in the following diagram.

1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x0 1 x x x x x x x x x x x x x x x x x x x x xx x x x xx x x

In this case, NORM returns 3:

In this case, NORM returns 30:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

In this case, NORM returns 0:

In this case, NORM returns 31:

x0 0 0 0 1 x x x x x x x x x x x x x x x x x xx x x x xx x x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

src2

src2

src2

src2
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Execution if (cond) norm(src) → dst
else nop

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Example 1 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 02A3 469Fh A1 02A3 469Fh

A2 xxxx xxxxh A2 0000 0005h 5

Example 2 NORM .L1 A1,A2

Before instruction 1 cycle after instruction

A1 FFFF F25Ah A1 FFFF F25Ah

A2 xxxx xxxxh A2 0000 0013h 19

Pipeline
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Bitwise NOTNOT

Syntax NOT  (.unit) src2, dst

.unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 1 1 0 1 1 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xuint
uint

.L1, .L2

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 1 1 1 1 1 x 0 0 1 0 1 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xuint
uint

.S1, .S2

Description The NOT pseudo-operation performs a bitwise NOT on the src2 operand and
places the result in dst. The assembler uses XOR (.unit) −1, src2, dst to
perform this operation.

Execution if (cond)   −1 XOR src2 → dst
else nop

Instruction Type Single-cycle

Delay Slots 0
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Bitwise OROR

Syntax OR (.unit) src1, src2, dst

.unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 111 1111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 111 1110

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.S1, .S2 01 1011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 01 1010

Description Performs a bitwise OR operation between src1 and src2. The result is placed
in dst. The scst5 operands are sign extended to 32 bits.
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Execution if (cond) src1 OR src2 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

See Also AND, XOR

Example 1 OR .S1 A3,A4,A5

Before instruction 1 cycle after instruction

A3 08A3 A49Fh A3 08A3 A49Fh

A4 00FF 375Ah A4 00FF 375Ah

A5 xxxx xxxxh A5 08FF B7DFh

Example 2 OR .L2 −12,B2,B8

Before instruction 1 cycle after instruction

B2 0000 3A41h B2 0000 3A41h

B8 xxxx xxxxh B8 FFFF FFF5h

Pipeline
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Double-Precision Floating-Point Reciprocal ApproximationRCPDP

Syntax RCPDP  (.unit) src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 reserved x 1 0 1 1 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Description The 64-bit double-precision floating-point reciprocal approximation value of
src2 is placed in dst. The operand is read in one cycle by using the src1 port
for the 32 LSBs and the src2 port for the 32 MSBs.

The RCPDP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less
than 2−8). This estimate can be used as a seed value for an algorithm to
compute the reciprocal to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n + 1] = x[n](2 − v × x[n])

where v = the number whose reciprocal is to be found.

x[0], the seed value for the algorithm, is given by RCPDP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is 32 bits; with the third itera-
tion, the accuracy is the full 52 bits.

Execution if (cond) rcp(src2) → dst
else nop
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Note:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.

4) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set.

5) If src2 is signed infinity, signed 0 is placed in dst.

6) If the result underflows, signed 0 is placed in dst and the INEX and
UNDER bits are set. Underflow occurs when 21022 � src2 � infinity.

Pipeline 
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

See Also RCPSP, RSQRDP

Example RCPDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 4010 0000h 0000 0000h A1:A0 4010 0000h 0000 0000h 4.00

A3:A2 xxxx xxxxh xxxx xxxxh A3:A2 3FD0 0000h 0000 0000h 0.25

Pipeline
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Single-Precision Floating-Point Reciprocal ApproximationRCPSP

Syntax RCPSP  (.unit) src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 1 1 1 0 1 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Description The single-precision floating-point reciprocal approximation value of src2 is
placed in dst.

The RCPSP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less
than 2−8). This estimate can be used as a seed value for an algorithm to
compute the reciprocal to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n + 1] = x[n](2 − v × x[n])

where v = the number whose reciprocal is to be found.

x[0], the seed value for the algorithm, is given by RCPSP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is the full 23 bits.

Execution if (cond) rcp(src2) → dst
else nop
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Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INFO, OVER, INEX, and DEN2 bits are set.

4) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set.

5) If src2 is signed infinity, signed 0 is placed in dst.

6) If the result underflows, signed 0 is placed in dst and the INEX and
UNDER bits are set. Underflow occurs when 2126 � src2 � infinity.

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

See Also RCPDP, RSQRSP

Example RCPSP .S1 A1,A2

Before instruction 1 cycle after instruction

A1 4080 0000h 4.0 A1 4080 0000h 4.0

A2 xxxx xxxxh A2 3E80 0000h 0.25

Pipeline
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Double-Precision Floating-Point Square-Root Reciprocal ApproximationRSQRDP

Syntax RSQRDP  (.unit) src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 reserved x 1 0 1 1 1 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

dp
dp

.S1, .S2

Description The 64-bit double-precision floating-point square-root reciprocal approxima-
tion value of src2 is placed in dst. The operand is read in one cycle by using
the src1 port for the 32 LSBs and the src2 port for the 32 MSBs.

The RSQRDP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less
than 2−8). This estimate can be used as a seed value for an algorithm to
compute the reciprocal square root to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n + 1] = x[n](1.5 − (v/2) × x[n] × x[n])

where v = the number whose reciprocal square root is to be found.

x[0], the seed value for the algorithm is given by RSQRDP. For each iteration
the accuracy doubles. Thus, with one iteration, the accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is 32 bits; with the third itera-
tion, the accuracy is the full 52 bits.

Execution if (cond) sqrcp(src2) → dst
else nop
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Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a negative, nonzero, nondenormalized number, NaN_out is
placed in dst and the INVAL bit is set.

4) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INEX, and DEN2 bits are set.

5) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set. The Newton-Rhapson approximation cannot be used to
calculate the square root of 0 because infinity multiplied by 0 is invalid.

6) If src2 is positive infinity, positive 0 is placed in dst.

Pipeline 
Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

See Also RCPDP, RSQRSP

Example RCPDP .S1 A1:A0,A3:A2

Before instruction 2 cycles after instruction

A1:A0 4010 0000h 0000 0000h 4.0 A1:A0 4010 0000h 0000 0000h 4.0

A3:A2 xxxx xxxxh xxxx xxxxh A3:A2 3FE0 0000h 0000 0000h 0.5

Pipeline
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Single-Precision Floating-Point Square-Root Reciprocal ApproximationRSQRSP

Syntax RSQRSP  (.unit) src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 1 1 1 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsp
sp

.S1, .S2

Description The single-precision floating-point square-root reciprocal approximation value
of src2 is placed in dst.

The RSQRSP instruction provides the correct exponent, and the mantissa is
accurate to the eighth binary position (therefore, mantissa error is less
than 2−8). This estimate can be used as a seed value for an algorithm to
compute the reciprocal square root to greater accuracy.

The Newton-Rhapson algorithm can further extend the mantissa’s precision:

x[n + 1] = x[n](1.5 − (v/2) × x[n] × x[n])

where v = the number whose reciprocal square root is to be found.

x[0], the seed value for the algorithm, is given by RSQRSP. For each iteration,
the accuracy doubles. Thus, with one iteration, accuracy is 16 bits in the
mantissa; with the second iteration, the accuracy is the full 23 bits.

Execution if (cond) sqrcp(src2) → dst
else nop
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Note:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a negative, nonzero, nondenormalized number, NaN_out is
placed in dst and the INVAL bit is set.

4) If src2 is a signed denormalized number, signed infinity is placed in dst
and the DIV0, INEX, and DEN2 bits are set.

5) If src2 is signed 0, signed infinity is placed in dst and the DIV0 and INFO
bits are set. The Newton-Rhapson approximation cannot be used to
calculate the square root of 0 because infinity multiplied by 0 is invalid.

6) If src2 is positive infinity, positive 0 is placed in dst.

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

Functional Unit
Latency

1

See Also RCPSP, RSQRDP

Example 1 RSQRSP .S1 A1,A2

Before instruction 1 cycle after instruction

A1 4080 0000h 4.0 A1 4080 0000h 4.0

A2 xxxx xxxxh A2 3F00 0000h 0.5

Example 2 RSQRSP .S2X A1,B2

Before instruction 1 cycle after instruction

A1 4109 999Ah 8.6 A1 4109 999Ah 8.6

B2 xxxx xxxxh B2 3EAE 8000h 0.34082031

Pipeline



SADD Add Two Signed Integers With Saturation
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Add Two Signed Integers With SaturationSADD

Syntax SADD (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 001 0011

src1
src2
dst

xsint
slong
slong

.L1, .L2 011 0001

src1
src2
dst

scst5
xsint
sint

.L1, .L2 001 0010

src1
src2
dst

scst5
slong
slong

.L1, .L2 011 0000

Description src1 is added to src2 and saturated, if an overflow occurs according to the
following rules:

1) If the dst is an int and src1 + src2 > 231 − 1, then the result is 231 − 1.
2) If the dst is an int and src1 + src2 < −231, then the result is −231.
3) If the dst is a long and src1 + src2 > 239 − 1, then the result is 239 − 1.
4) If the dst is a long and src1 + src2 < −239, then the result is −239.

The result is placed in dst. If a saturate occurs, the SAT bit in the control status
register (CSR) is set one cycle after dst is written.

Execution if (cond) src1 +s src2 → dst
else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SSUB

Example 1 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 012A 3FA2h 19546018 A2 012A 3FA2h A2 012A 3FA2h

A3 xxxx xxxxh A3 5B58 9145h 1532531013 A3 5B58 9145h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SADD .L1 A1,A2,A3

Before instruction 1 cycle after instruction 2 cycles after instruction

A1 4367 71F2h 1130852850 A1 4367 71F2h A1 4367 71F2h

A2 5A2E 51A3h 1512984995 A2 5A2E 51A3h A2 5A2E 51A3h

A3 xxxx xxxxh A3 7FFF FFFFh 2147483647 A3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Pipeline



SADD Add Two Signed Integers With Saturation
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Example 3 SADD .L1X B2,A5:A4,A7:A6

Before instruction 1 cycle after instruction

A5:A4 0000 0000h 7C83 39B1h 1922644401† A5:A4 0000 0000h 7C83 39B1h

A7:A6 xxxx xxxxh xxxx xxxxh A7:A6 0000 0000h 8DAD 7953h 2376956243†

B2 112A 3FA2h 287981474 B2 112A 3FA2h

CSR 0001 0100h CSR 0001 0100h

2 cycles after instruction

A5:A4 0000 0000h 7C83 39B1h

A7:A6 0000 0000h 83C3 7953h

B2 112A 3FA2h

CSR 0001 0100h Not saturated

† Signed 40-bit (long) integer



 Saturate a 40-Bit Integer to a 32-Bit Integer SAT
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Saturate a 40-Bit Integer to a 32-Bit IntegerSAT

Syntax SAT (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 1 0 0 0 0 0 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

slong
sint

.L1, .L2

Description A 40-bit src2 value is converted to a 32-bit value. If the value in src2 is greater
than what can be represented in 32-bits, src2 is saturated. The result is placed
in dst. If a saturate occurs, the SAT bit in the control status register (CSR) is
set one cycle after dst is written.

Execution if (cond) {
if (src2 > (231 − 1) )

(231 − 1) → dst
else if (src2 < −231)

−231 → dst
else src231..0 → dst
}

else nop

Pipeline 
Stage E1

Read src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

Pipeline
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Example 1 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 001Fh 3413 539Ah B1:B0 0000 001Fh 3413 539Ah B1:B0 0000 001Fh 3413 539Ah

B5 xxxx xxxxh B5 7FFF FFFFh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h B1:B0 0000 0000h A190 7321h

B5 xxxx xxxxh B5 7FFF FFFFh B5 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 3 SAT .L2 B1:B0,B5

Before instruction 1 cycle after instruction 2 cycles after instruction

B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h B1:B0 0000 00FFh A190 7321h

B5 xxxx xxxxh B5 A190 7321h B5 A190 7321h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated



 Set a Bit Field SET

3-209 Instruction SetSPRU733A

Set a Bit FieldSET

Syntax SET  (.unit) src2, csta, cstb, dst
or
SET (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode Constant form:

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb 1 0 0 0 1 0 s p

3 1 5 5 5 5 1 1

Opcode map field used... For operand type... Unit

src2
csta
cstb
dst

uint
ucst5
ucst5
uint

.S1, .S2

Opcode Register form:

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 1 0 1 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
src1
dst

xuint
uint
uint

.S1, .S2



SET Set a Bit Field
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Description For cstb > csta, the field in src2 as specified by csta to cstb is set to all 1s in
dst. The csta and cstb operands may be specified as constants or in the
10 LSBs of the src1 register, with cstb being bits 0−4 (src14..0) and csta being
bits 5−9 (src19..5). csta is the LSB of the field and cstb is the MSB of the field.
In other words, csta and cstb represent the beginning and ending bits, respec-
tively, of the field to be set to all 1s in dst. The LSB location of src2 is bit 0 and
the MSB location of src2 is bit 31.

In the following example, csta is 15 and cstb is 23. For the register version of
the instruction, only the 10 LSBs of the src1 register are valid. If any of the
22 MSBs are non-zero, the result is invalid.

src2

dst

0x x x x x x x x x x x x x x x x x x x x x x x1 1 1 1 10 0 0

x x x x x x x x x x x x x x x x x x x x x x x1 11 1 1 11 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

csta

cstb

For cstb < csta, the src2 register is copied to dst. The csta and cstb operands
may be specified as constants or in the 10 LSBs of the src1 register, with cstb
being bits 0−4 (src14..0) and csta being bits 5−9 (src19..5).

Execution If the constant form is used when cstb > csta:

if (cond) src2 SET csta, cstb → dst
else nop

If the register form is used when cstb > csta:

if (cond) src2 SET src19..5, src14..0 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

See Also CLR

Example 1 SET .S1 A0,7,21,A1

Before instruction 1 cycle after instruction

A0 4B13 4A1Eh A0 4B13 4A1Eh

A1 xxxx xxxxh A1 4B3F FF9Eh

Example 2 SET .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 9ED3 1A31h B0 9ED3 1A31h

B1 0000 0197h B1 0000 0197h

B2 xxxx xxxxh B2 9EFF FA31h



SHL Arithmetic Shift Left
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Arithmetic Shift LeftSHL

Syntax SHL  (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 11 0011

src2
src1
dst

slong
uint
slong

.S1, .S2 11 0001

src2
src1
dst

xuint
uint
ulong

.S1, .S2 01 0011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 11 0010

src2
src1
dst

slong
ucst5
slong

.S1, .S2 11 0000

src2
src1
dst

xuint
ucst5
ulong

.S1, .S2 01 0010

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used, the six LSBs specify the shift amount and valid
values are 0−40. When an immediate is used, valid shift amounts are 0−31.

If 39 < src1 < 64, src2 is shifted to the left by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 << src1 → dst
else nop



 Arithmetic Shift Left SHL
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHR, SSHL

Example 1 SHL .S1 A0,4,A1

Before instruction 1 cycle after instruction

A0 29E3 D31Ch A0 29E3 D31Ch

A1 xxxx xxxxh A1 9E3D 31C0h

Example 2 SHL .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 4197 51A5h B0 4197 51A5h

B1 0000 0009h B1 0000 0009h

B2 xxxx xxxxh B2 2EA3 4A00h

Example 3 SHL .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0009h 4197 51A5h B1:B0 0000 0009h 4197 51A5h

B2 0000 0022h B2 0000 0000h

B3:B2 xxxx xxxxh xxxx xxxxh B3:B2 0000 0094h 0000 0000h

Pipeline
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Arithmetic Shift RightSHR

Syntax SHR  (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 11 0111

src2
src1
dst

slong
uint
slong

.S1, .S2 11 0101

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 11 0110

src2
src1
dst

slong
ucst5
slong

.S1, .S2 11 0100

Description The src2 operand is shifted to the right by the src1 operand. The sign-extended
result is placed in dst. When a register is used, the six LSBs specify the shift
amount and valid values are 0−40. When an immediate value is used, valid
shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>s src1 → dst
else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHRU

Example 1 SHR .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 xxxx xxxxh A1 FFF1 2363h

Example 2 SHR .S2 B0,B1,B2

Before instruction 1 cycle after instruction

B0 1492 5A41h B0 1492 5A41h

B1 0000 0012h B1 0000 0012h

B2 xxxx xxxxh B2 0000 0524h

Example 3 SHR .S2 B1:B0,B2,B3:B2

Before instruction 1 cycle after instruction

B1:B0 0000 0012h 1492 5A41h B1:B0 0000 0012h 1492 5A41h

B2 0000 0019h B2 0000 090Ah

B3:B2 xxxx xxxxh xxxx xxxxh B3:B2 0000 0000h 0000 090Ah

Pipeline
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Logical Shift RightSHRU

Syntax SHRU  (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xuint
uint
uint

.S1, .S2 10 0111

src2
src1
dst

ulong
uint
ulong

.S1, .S2 10 0101

src2
src1
dst

xuint
ucst5
uint

.S1, .S2 10 0110

src2
src1
dst

ulong
ucst5
ulong

.S1, .S2 10 0100

Description The src2 operand is shifted to the right by the src1 operand. The
zero-extended result is placed in dst. When a register is used, the six LSBs
specify the shift amount and valid values are 0–40. When an immediate value
is used, valid shift amounts are 0–31.

If 39 < src1 < 64, src2 is shifted to the right by 40. Only the six LSBs of src1 are
used by the shifter, so any bits set above bit 5 do not affect execution.

Execution if (cond) src2 >>z src1 → dst
else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR

Example SHRU .S1 A0,8,A1

Before instruction 1 cycle after instruction

A0 F123 63D1h A0 F123 63D1h

A1 xxxx xxxxh A1 00F1 2363h

Pipeline
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Multiply Signed 16 LSB � Signed 16 LSB With Left Shift and SaturationSMPY

Syntax SMPY  (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xslsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is left shifted
by 1 and placed in dst. If the left-shifted result is 8000 0000h, then the result
is saturated to 7FFF FFFFh. If a saturate occurs, the SAT bit in CSR is set
one cycle after dst is written. The source operands are signed by default.

Execution if (cond) {
if (((src1 � src2) << 1) != 8000 0000h)

((src1 � src2) << 1) → dst
else

7FFF FFFFh → dst
}

else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPY, SMPYH, SMPYHL, SMPYLH

Pipeline
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Example SMPY .M1 A1,A2,A3

Before instruction 2 cycle after instruction

A1 0000 0123h 291‡ A1 0000 0123h

A2 01E0 FA81h −1407‡ A2 01E0 FA81h

A3 xxxx xxxxh A3 FFF3 8146h −818874

CSR 0001 0100h CSR 0001 0100h Not saturated

‡ Signed 16-LSB integer



SMPYH Multiply Signed 16 MSB x Signed 16 MSB With Left Shift and Saturation
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Multiply Signed 16 MSB � Signed 16 MSB With Left Shift and SaturationSMPYH

Syntax SMPYH (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 0 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xsmsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is left shifted
by 1 and placed in dst. If the left-shifted result is 8000 0000h, then the result
is saturated to 7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set
one cycle after dst is written. The source operands are signed by default.

Execution if (cond) {
if (((src1 � src2) << 1) != 8000 0000h)

((src1 � src2) << 1) → dst
else

7FFF FFFFh → dst
}

else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYH, SMPY, SMPYHL, SMPYLH

Pipeline



 Multiply Signed 16 MSB x Signed 16 LSB With Left Shift and Saturation SMPYHL
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Multiply Signed 16 MSB � Signed 16 LSB With Left Shift and SaturationSMPYHL

Syntax SMPYHL (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

smsb16
xslsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is left shifted
by 1 and placed in dst. If the left-shifted result is 8000 0000h, then the result
is saturated to 7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set
one cycle after dst is written.

Execution if (cond) {
if (((src1 � src2) << 1) != 8000 0000h)

((src1 � src2) << 1) → dst
else

7FFF FFFFh → dst
}

else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYHL, SMPY, SMPYH, SMPYLH

Pipeline
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Example SMPYHL .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 008A 0000h 138† A1 008A 0000h

A2 0000 00A7h 167‡ A2 0000 00A7h

A3 xxxx xxxxh A3 0000 B40Ch 46092

CSR 0001 0100h CSR 0001 0100h Not saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer
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Multiply Signed 16 LSB � Signed 16 MSB With Left Shift and SaturationSMPYLH

Syntax SMPYLH (.unit) src1, src2, dst

.unit = .M1 or .M2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 7 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 0 0 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

slsb16
xsmsb16
sint

.M1, .M2

Description The src1 operand is multiplied by the src2 operand. The result is left shifted
by 1 and placed in dst. If the left-shifted result is 8000 0000h, then the result
is saturated to 7FFF FFFFh. If a saturation occurs, the SAT bit in CSR is set
one cycle after dst is written.

Execution if (cond) {
if (((src1 � src2) << 1) != 8000 0000h)

((src1 � src2) << 1) → dst
else

7FFF FFFFh → dst
}

else nop

Pipeline 
Stage E1 E2

Read src1, src2

Written dst

Unit in use .M

Instruction Type Single-cycle (16 × 16)

Delay Slots 1

See Also MPYLH, SMPY, SMPYH, SMPYHL

Pipeline
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Example SMPYLH .M1 A1,A2,A3

Before instruction 2 cycles after instruction

A1 0000 8000h −32768‡ A1 0000 8000h

A2 8000 0000h −32768† A2 8000 0000h

A3 xxxx xxxxh A3 7FFF FFFFh 2147483647

CSR 0001 0100h CSR 0001 0300h Saturated

† Signed 16-MSB integer
‡ Signed 16-LSB integer
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Convert Single-Precision Floating-Point Value to Double-Precision
Floating-Point Value

SPDP

Syntax SPDP  (.unit) src2, dst

.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 0 1 0 1 0 0 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsp
dp

.S1, .S2

Description The single-precision value in src2 is converted to a double-precision value and
placed in dst.

Execution if (cond) dp(src2) → dst
else nop

Notes:

1) If src2 is SNaN, NaN_out is placed in dst and the INVAL and NAN2 bits
are set.

2) If src2 is QNaN, NaN_out is placed in dst and the NAN2 bit is set.

3) If src2 is a signed denormalized number, signed 0 is placed in dst and
the INEX and DEN2 bits are set.

4) If src2 is signed infinity, INFO bit is set.

5) No overflow or underflow can occur.
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Pipeline 
Stage E1 E2

Read src2

Written dst_l dst_h

Unit in use .S

If dst is used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type 2-cycle DP

Delay Slots 1

Functional Unit
Latency

1

See Also DPSP, INTDP, SPINT, SPTRUNC

Example SPDP .S1X B2,A1:A0

Before instruction 2 cycles after instruction

B2 4109 999Ah 8.6 B2 4109 999Ah 8.6

A1:A0 xxxx xxxxh xxxx xxxxh A1:A0 4021 3333h 4000 0000h 8.6

Pipeline
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Convert Single-Precision Floating-Point Value to IntegerSPINT

Syntax SPINT  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 1 0 1 0 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsp
sint

.L1, .L2

Description The single-precision value in src2 is converted to an integer and placed in dst.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 − 1 or less
than −231.

3) If src2 is denormalized, 0000 0000h is placed in dst and INEX and DEN2
bits are set.

4) If rounding is performed, the INEX bit is set.



SPINT Convert Single-Precision Floating-Point Value to Integer

3-228   Instruction Set SPRU733A

Pipeline 
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also DPINT, INTSP, SPDP, SPTRUNC

Example SPINT .L1 A1,A2

Before instruction 4 cycles after instruction

A1 4109 9999Ah 8.6 A1 4109 999Ah 8.6

A2 xxxx xxxxh A2 0000 0009h 9

Pipeline
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Convert Single-Precision Floating-Point Value to Integer With TruncationSPTRUNC

Syntax SPTRUNC  (.unit) src2, dst

.unit = .L1 or .L2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 0 0 0 0 0 x 0 0 0 1 0 1 1 1 1 0 s p

3 1 5 5 1 1 1

Opcode map field used... For operand type... Unit

src2
dst

xsp
sint

.L1, .L2

Description The single-precision value in src2 is converted to an integer and placed in dst.
This instruction operates like SPINT except that the rounding modes in the
FADCR are ignored, and round toward zero (truncate) is always used.

Execution if (cond) int(src2) → dst
else nop

Notes:

1) If src2 is NaN, the maximum signed integer (7FFF FFFFh or
8000 0000h) is placed in dst and the INVAL bit is set.

2) If src2 is signed infinity or if overflow occurs, the maximum signed integer
(7FFF FFFFh or 8000 0000h) is placed in dst and the INEX and OVER
bits are set. Overflow occurs if src2 is greater than 231 − 1 or less
than −231.

3) If src2 is denormalized, 0000 0000h is placed in dst and INEX and DEN2
bits are set.

4) If rounding is performed, the INEX bit is set.
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Pipeline 
Stage E1 E2 E3 E4

Read src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also DPTRUNC, SPDP, SPINT

Example SPTRUNC .L1X   B1,A2

Before instruction 4 cycles after instruction

B1 4109 9999Ah 8.6 B1 4109 999Ah 8.6

A2 xxxx xxxxh A2 0000 0008h 8

Pipeline



 Shift Left With Saturation SSHL

3-231 Instruction SetSPRU733A

Shift Left With SaturationSSHL

Syntax SSHL  (.unit) src2, src1, dst

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

xsint
uint
sint

.S1, .S2 10 0011

src2
src1
dst

xsint
ucst5
sint

.S1, .S2 10 0010

Description The src2 operand is shifted to the left by the src1 operand. The result is placed
in dst. When a register is used to specify the shift, the five least significant bits
specify the shift amount. Valid values are 0 through 31, and the result of the
shift is invalid if the shift amount is greater than 31. The result of the shift is
saturated to 32 bits. If a saturate occurs, the SAT bit in CSR is set one cycle
after dst is written.

Execution if (cond) {
if ( bit(31) through bit(31−src1) of src2 are all 1s or all 0s)

dst = src2 << src1;
else if (src2 > 0) 

saturate dst to 7FFF FFFFh;
else if (src2 < 0) 

saturate dst to 8000 0000h;
}

else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also SHL, SHR

Example 1 SSHL .S1 A0,2,A1

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 02E3 031Ch A0 02E3 031Ch A0 02E3 031Ch

A1 xxxx xxxxh A1 0B8C 0C70h A1 0B8C 0C70h

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Example 2 SSHL .S1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4719 1925h A0 4719 1925h A0 4719 1925h

A1 0000 0006h A1 0000 0006h A1 0000 0006h

A2 xxxx xxxxh A2 7FFF FFFFh A2 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Pipeline
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Subtract Two Signed Integers With SaturationSSUB

Syntax SSUB  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 1111

src1
src2
dst

xsint
sint
sint

.L1, .L2 001 1111

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 1110

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 1100

Description src2 is subtracted from src1 and is saturated to the result size according to the
following rules:

1) If the result is an int and src1 − src2 > 231 − 1, then the result is 231 − 1.
2) If the result is an int and src1 − src2 < −231, then the result is −231.
3) If the result is a long and src1 − src2 > 239 − 1, then the result is 239 − 1.
4) If the result is a long and src1 − src2 < −239, then the result is −239.

The result is placed in dst. If a saturate occurs, the SAT bit in CSR is set
one cycle after dst is written.

Execution if (cond) src1 −s src2 → dst
else nop
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Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also SUB

Example 1 SSUB .L2 B1,B2,B3

Before instruction 1 cycle after instruction 2 cycles after instruction

B1 5A2E 51A3h 1512984995 B1 5A2E 51A3h B1 5A2E 51A3h

B2 802A 3FA2h −2144714846 B2 802A 3FA2h B2 802A 3FA2h

B3 xxxx xxxxh B3 7FFF FFFFh 2147483647 B3 7FFF FFFFh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0300h Saturated

Example 2 SSUB .L1 A0,A1,A2

Before instruction 1 cycle after instruction 2 cycles after instruction

A0 4367 71F2h 1130852850 A0 4367 71F2h A0 4367 71F2h

A1 5A2E 51A3h 1512984995 A1 5A2E 51A3h A1 5A2E 51A3h

A2 xxxx xxxxh A2 E939 204Fh −382132145 A2 E939 204Fh

CSR 0001 0100h CSR 0001 0100h CSR 0001 0100h Not saturated

Pipeline
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Store Byte to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

STB

Syntax Register Offset

STB (.unit) src, *+baseR[offsetR]

Unsigned Constant Offset

STB (.unit) src, *+baseR[ucst5]

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode  

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 0 1 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a byte to memory from a general-purpose register (src). Table 3−11
(page 3-32) describes the addressing generator options. The memory
address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 0 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is sent to memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4−A7 and for B4−B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For STB, the 8 LSBs of the src register are stored. src can be in either register
file, regardless of the .D unit or baseR or offsetR used. The s bit determines
which file src is read from: s = 0 indicates src will be in the A register file and
s = 1 indicates src will be in the B register file. The r bit should be cleared to
0.
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Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5
offset is left-shifted by 0. Parentheses, ( ), can be used to set a nonscaled,
constant offset. You must type either brackets or parentheses around the
specified offset, if you use the optional offset parameter.

Execution if (cond) src → mem
else nop

Pipeline 
Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0
For more information on delay slots for a store, see Chapter 4.

See Also STH, STW

Example STB .D1 A1,*A10

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 100h 11h mem 100h 11h mem 100h 34h

Pipeline
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Store Byte to Memory With a 15-Bit Unsigned Constant OffsetSTB

Syntax STB  (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z src ucst15 y 0 1 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a byte to memory from a general-purpose register (src). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and
an offset, which is a 15-bit unsigned constant (ucst15). The assembler selects
this format only when the constant is larger than five bits in magnitude. This
instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 0 bits. After scaling, ucst15 is
added to baseR. The result of the calculation is the address that is sent to
memory. The addressing arithmetic is always performed in linear mode.

For STB, the 8 LSBs of the src register are stored. src can be in either register
file. The s bit determines which file src is read from: s = 0 indicates src is in the
A register file and s = 1 indicates src is in the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 0.
Parentheses, ( ), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Execution if (cond) src → mem
else nop

Note:

This instruction executes only on the B side (.D2).
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Pipeline 
Stage E1

Read B14/B15, src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

See Also STH, STW

Example STB .D2 B1,*+B14[40]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

B1 1234 5678h B1 1234 5678h B1 1234 5678h

B14 0000 1000h B14 0000 1000h B14 0000 1000h

mem 1028h 42h mem 1028h 42h mem 1028h 78h

Pipeline
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Store Halfword to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

STH

Syntax Register Offset

STH (.unit) src, *+baseR[offsetR]

Unsigned Constant Offset

STH (.unit) src, *+baseR[ucst5]

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode  

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 1 0 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a halfword to memory from a general-purpose register (src).
Table 3−11 (page 3-32) describes the addressing generator options. The
memory address is formed from a base address register (baseR) and an
optional offset that is either a register (offsetR) or a 5-bit unsigned constant
(ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 1 bit. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is sent to memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4−A7 and for B4−B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For STH, the 16 LSBs of the src register are stored. src can be in either register
file, regardless of the .D unit or baseR or offsetR used. The s bit determines
which file src is read from: s = 0 indicates src will be in the A register file and
s = 1 indicates src will be in the B register file. The r bit should be cleared to
0.
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Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5
offset is left-shifted by 1. Parentheses, ( ), can be used to set a nonscaled,
constant offset. You must type either brackets or parentheses around the
specified offset, if you use the optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution if (cond) src → mem
else nop

Pipeline 
Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0
For more information on delay slots for a store, see Chapter 4.

See Also STB, STW

Example 1 STH .D1 A1,*+A10(4)

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0100h A10 0000 0100h

mem 104h 1134h mem 104h 1134h mem 104h 7634h

Pipeline
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Example 2 STH .D1 A1,*A10−−[A11]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 2634h A1 9A32 2634h A1 9A32 2634h

A10 0000 0100h A10 0000 00F8h A10 0000 00F8h

A11 0000 0004h A11 0000 0004h A11 0000 0004h

mem F8h 0000h mem F8h 0000h mem F8h 0000h

mem 100h 0000 mem 100h 0000h mem 100h 2634h
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Store Halfword to Memory With a 15-Bit Unsigned Constant OffsetSTH

Syntax STH  (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z src ucst15 y 1 0 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a halfword to memory from a general-purpose register (src). The
memory address is formed from a base address register B14 (y = 0) or
B15 (y = 1) and an offset, which is a 15-bit unsigned constant (ucst15). The
assembler selects this format only when the constant is larger than five bits in
magnitude. This instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 1 bit. After scaling, ucst15 is added
to baseR. The result of the calculation is the address that is sent to memory.
The addressing arithmetic is always performed in linear mode.

For STH, the 16 LSBs of the src register are stored. src can be in either register
file. The s bit determines which file src is read from: s = 0 indicates src is in the
A register file and s = 1 indicates src is in the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 1.
Parentheses, ( ), can be used to set a nonscaled, constant offset. You must
type either brackets or parentheses around the specified offset, if you use the
optional offset parameter.

Halfword addresses must be aligned on halfword (LSB is 0) boundaries.

Execution if (cond) src → mem
else nop

Note:

This instruction executes only on the B side (.D2).
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Pipeline 
Stage E1

Read B14/B15, src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

See Also STB, STW

Pipeline
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Store Word to Memory With a 5-Bit Unsigned Constant Offset or
Register Offset

STW

Syntax Register Offset

STW (.unit) src, *+baseR[offsetR]

Unsigned Constant Offset

STW (.unit) src, *+baseR[ucst5]

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode  

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src baseR offsetR/ucst5 mode 0 y 1 1 1 0 1 s p

3 1 5 5 5 4 1 1 1

Description Stores a word to memory from a general-purpose register (src). Table 3−11
(page 3-32) describes the addressing generator options. The memory
address is formed from a base address register (baseR) and an optional offset
that is either a register (offsetR) or a 5-bit unsigned constant (ucst5).

offsetR and baseR must be in the same register file and on the same side as
the .D unit used. The y bit in the opcode determines the .D unit and register
file used: y = 0 selects the .D1 unit and baseR and offsetR from the A register
file, and y = 1 selects the .D2 unit and baseR and offsetR from the B register
file.

offsetR/ucst5 is scaled by a left-shift of 2 bits. After scaling, offsetR/ucst5 is
added to or subtracted from baseR. For the preincrement, predecrement,
positive offset, and negative offset address generator options, the result of the
calculation is the address to be accessed in memory. For postincrement or
postdecrement addressing, the value of baseR before the addition or subtrac-
tion is sent to memory.

The addressing arithmetic that performs the additions and subtractions
defaults to linear mode. However, for A4−A7 and for B4−B7, the mode can be
changed to circular mode by writing the appropriate value to the AMR
(see section 2.7.3, page 2-10).

For STW, the entire 32-bits of the src register are stored. src can be in either
register file, regardless of the .D unit or baseR or offsetR used. The s bit deter-
mines which file src is read from: s = 0 indicates src will be in the A register file
and s = 1 indicates src will be in the B register file. The r bit should be cleared
to 0.
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Increments and decrements default to 1 and offsets default to zero when no
bracketed register or constant is specified. Stores that do no modification to
the baseR can use the syntax *R. Square brackets, [ ], indicate that the ucst5
offset is left-shifted by 2. Parentheses, ( ), can be used to set a nonscaled,
constant offset. For example, STW (.unit) src, *+baseR(12) represents an
offset of 12 bytes; whereas, STW (.unit) src, *+baseR[12]  represents an offset
of 12 words, or 48 bytes. You must type either brackets or parentheses around
the specified offset, if you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) src → mem
else nop

Pipeline 
Stage E1

Read baseR, offsetR, src

Written baseR

Unit in use .D2

Instruction Type Store

Delay Slots 0
For more information on delay slots for a store, see Chapter 4.

See Also STB, STH

Example STW .D1 A1,*++A10[1]

Before
instruction

1 cycle after
instruction

3 cycles after
instruction

A1 9A32 7634h A1 9A32 7634h A1 9A32 7634h

A10 0000 0100h A10 0000 0104h A10 0000 0104h

mem 100h 1111 1134h mem 100h 1111 1134h mem 100h 1111 1134h

mem 104h 0000 1111h mem 104h 0000 1111h mem 104h 9A32 7634h

Pipeline
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Store Word to Memory With a 15-Bit Unsigned Constant OffsetSTW

Syntax STW  (.unit) src, *+B14/B15[ucst15]

.unit = .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z src ucst15 y 1 1 1 1 1 s p

3 1 5 15 1 1 1

Description Stores a word to memory from a general-purpose register (src). The memory
address is formed from a base address register B14 (y = 0) or B15 (y = 1) and
an offset, which is a 15-bit unsigned constant (ucst15). The assembler selects
this format only when the constant is larger than five bits in magnitude. This
instruction executes only on the .D2 unit.

The offset, ucst15, is scaled by a left-shift of 2 bits. After scaling, ucst15 is
added to baseR. The result of the calculation is the address that is sent to
memory. The addressing arithmetic is always performed in linear mode.

For STW, the entire 32-bits of the src register are stored. src can be in either
register file. The s bit determines which file src is read from: s = 0 indicates src
is in the A register file and s = 1 indicates src is in the B register file.

Square brackets, [ ], indicate that the ucst15 offset is left-shifted by 2. Paren-
theses, ( ), can be used to set a nonscaled, constant offset. For example,
STW (.unit) src, *+B14/B15(60) represents an offset of 12 bytes; whereas,
STW (.unit) src, *+B14/B15[60] represents an offset of 60 words, or 240 bytes.
You must type either brackets or parentheses around the specified offset, if
you use the optional offset parameter.

Word addresses must be aligned on word (two LSBs are 0) boundaries.

Execution if (cond) src → mem
else nop

Note:

This instruction executes only on the B side (.D2).
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Pipeline 
Stage E1

Read B14/B15, src

Written

Unit in use .D2

Instruction Type Store

Delay Slots 0

See Also STB, STH

Pipeline
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Subtract Two Signed Integers Without SaturationSUB

Syntax SUB  (.unit) src1, src2, dst
or

SUB (.D1 or .D2) src2, src1, dst

.unit = .L1, .L2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.L1, .L2 000 0111

src1
src2
dst

xsint
sint
sint

.L1, .L2 001 0111

src1
src2
dst

sint
xsint
slong

.L1, .L2 010 0111

src1
src2
dst

xsint
sint
slong

.L1, .L2 011 0111

src1
src2
dst

scst5
xsint
sint

.L1, .L2 000 0110

src1
src2
dst

scst5
slong
slong

.L1, .L2 010 0100
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Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sint
xsint
sint

.S1, .S2 01 0111

src1
src2
dst

scst5
xsint
sint

.S1, .S2 01 0110

Description for .L1, .L2 and .S1, .S2 Opcodes

src2 is subtracted from src1. The result is placed in dst.

Execution for .L1, .L2 and .S1, .S2 Opcodes

if (cond)
src1 − src2 → dst

else nop
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Opcode .D unit

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 01 0001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 01 0011

Description for .D1, .D2 Opcodes

src1 is subtracted from src2. The result is placed in dst.

Execution for .D1, .D2 Opcodes

if (cond)
src2 − src1 → dst

else nop

Note:

Subtraction with a signed constant on the .L and .S units allows either the first
or the second operand to be the signed 5-bit constant.

SUB (.unit) src1, scst5, dst is encoded as ADD (.unit) −scst5, src2, dst where
the src1 register is now src2 and scst5 is now −scst5.

However, the .D unit provides only the second operand as a constant since
it is an unsigned 5-bit constant. ucst5 allows a greater offset for addressing
with the .D unit.

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L, .S, or .D

Pipeline
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Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SSUB, SUBC, SUBDP, SUBSP, SUBU, SUB2

Example SUB .L1 A1,A2,A3

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810 A1 0000 325Ah

A2 FFFF FF12h −238 A2 FFFF FF12h

A3 xxxx xxxxh A3 0000 3348h 13128
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Subtract Using Byte Addressing ModeSUBAB

Syntax SUBAB  (.unit) src2, src1, dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0011

Description src1 is subtracted from src2 using the byte addressing mode specified for src2.
The subtraction defaults to linear mode. However, if src2 is one of A4−A7 or
B4−B7, the mode can be changed to circular mode by writing the appropriate
value to the AMR (see section 2.7.3, page 2-10). The result is placed in dst.

Execution if (cond) src2 −a src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAH, SUBAW

Pipeline
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Example SUBAB .D1 A5,A0,A5

Before instruction 1 cycle after instruction

A0 0000 0004h A0 0000 0004h

A5 0000 4000h A5 0000 400Ch

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0
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Subtract Using Halfword Addressing ModeSUBAH

Syntax SUBAH  (.unit) src2, src1, dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 0101

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 0111

Description src1 is subtracted from src2 using the halfword addressing mode specified for
src2. The subtraction defaults to linear mode. However, if src2 is one of A4−A7
or B4−B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.7.3, page 2-10). src1 is left shifted by 1.
The result is placed in dst.

Execution if (cond) src2 −a src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAB, SUBAW

Pipeline
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Subtract Using Word Addressing ModeSUBAW

Syntax SUBAW  (.unit) src2, src1, dst

.unit = .D1 or .D2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Opcode map field used... For operand type... Unit Opfield

src2
src1
dst

sint
sint
sint

.D1, .D2 11 1001

src2
src1
dst

sint
ucst5
sint

.D1, .D2 11 1011

Description src1 is subtracted from src2 using the word addressing mode specified for
src2. The subtraction defaults to linear mode. However, if src2 is one of A4−A7
or B4−B7, the mode can be changed to circular mode by writing the appropri-
ate value to the AMR (see section 2.7.3, page 2-10). src1 is left shifted by 2.
The result is placed in dst.

Execution if (cond) src2 −a src1 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .D

Instruction Type Single-cycle

Delay Slots 0

See Also SUB, SUBAB, SUBAH

Pipeline
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Example SUBAW .D1 A5,2,A3

Before instruction 1 cycle after instruction

A3 xxxx xxxxh A3 0000 0108h

A5 0000 0100h A5 0000 0100h

AMR 0003 0004h AMR 0003 0004h

BK0 = 3 → size = 16
A5 in circular addressing mode using BK0
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Subtract Conditionally and Shift—Used for DivisionSUBC

Syntax SUBC  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 0 1 0 1 1 1 1 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

uint
xuint
uint

.L1, .L2

Description Subtract src2 from src1. If result is greater than or equal to 0, left shift result
by 1, add 1 to it, and place it in dst. If result is less than 0, left shift src1 by 1,
and place it in dst. This step is commonly used in division.

Execution if (cond) {
if (src1 − src2 � 0) 

( (src1−src2) << 1) + 1 → dst
else src1 << 1 → dst
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADD, SSUB, SUB, SUBDP, SUBSP, SUBU, SUB2

Pipeline
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Example 1 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0000 125Ah 4698 A0 0000 024B4h 9396

A1 0000 1F12h 7954 A1 0000 1F12h

Example 2 SUBC .L1 A0,A1,A0

Before instruction 1 cycle after instruction

A0 0002 1A31h 137777 A0 0000 47E5h 18405

A1 0001 F63Fh 128575 A1 0001 F63Fh
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Subtract Two Double-Precision Floating-Point ValuesSUBDP

Syntax SUBDP  (.unit) src1, src2, dst (C67x and C67x+ CPU)
.unit = .L1 or .L2
or
SUBDP (.unit) src1, src2, dst (C67x+ CPU only)
.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

dp
xdp
dp

.L1, .L2 001 1001

src1
src2
dst

xdp
dp
dp

.L1, .L2 001 1101

src1
src2
dst

dp
xdp
dp

.S1, .S2 111 0011

src1
src2
dst

dp
xdp
dp

.S1, .S2 111 0111
src2 − src1

Note:

The assembly syntax allows a cross-path operand to be used for either src1
or src2. The assembler selects between the two opcodes based on which
source operand in the assembly instruction requires the cross path. If src1
requires the cross path, the assembler chooses the second (reverse) form
of the instruction syntax and reverses the order of the operands in the
encoded instruction.

Description src2 is subtracted from src1. The result is placed in dst.

Execution if (cond) src1 − src2 → dst
else nop
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Notes:

1) This instruction takes the rounding mode from and sets the warning bits
in FADCR, not FAUCR as for other .S unit instructions.

2) The source specific warning bits set in FADCR are set according to the
registers sources in the actual machine instruction and not according to
the order of the sources in the assembly form.

3) If rounding is performed, the INEX bit is set.

4) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

5) If both sources are +infinity or −infinity, the result is NaN_out and the
INVAL bit is set.

6) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the same sign, the result is signed infinity and
the INFO bit is set.

7) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +infinity +LFPN +infinity +LFPN

− −infinity −LFPN −LFPN −infinity

8) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +0 +0 +SFPN +0

− −0 −0 −0 −SFPN

9) If the sources are equal numbers of the same sign, the result is +0 unless
the rounding mode is −infinity, in which case the result is −0.

10) If the sources are both 0 with opposite signs or both denormalized with
opposite signs, the sign of the result is the same as the sign of src1.

11) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.
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Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L or .S .L or .S

For the C67x CPU, if dst is used as the source for the ADDDP, CMPEQDP,
CMPLTDP, CMPGTDP, MPYDP, or SUBDP instruction, the number of delay
slots can be reduced by one, because these instructions read the lower word
of the DP source one cycle before the upper word of the DP source.

For the C67x+ CPU, the low half of the result is written out one cycle earlier
than the high half. If dst is used as the source for the ADDDP, CMPEQDP,
CMPLTDP, CMPGTDP, MPYDP, MPYSPDP, MPYSP2DP, or SUBDP
instruction, the number of delay slots can be reduced by one, because these
instructions read the lower word of the DP source one cycle before the upper
word of the DP source.

Instruction Type ADDDP/SUBDP

Delay Slots 6

Functional Unit
Latency

2

See Also ADDDP, SUB, SUBSP, SUBU

Example SUBDP .L1X B1:B0,A3:A2,A5:A4

Before instruction 7 cycles after instruction

B1:B0 4021 3333h 3333 3333h 8.6 B1:B0 4021 3333h 3333 3333h 8.6

A3:A2 C004 0000h 0000 0000h −2.5 A3:A2 C004 0000h 0000 0000h −2.5

A5:A4 xxxx xxxxh xxxx xxxxh A5:A4 4026 3333h 3333 3333h 11.1

Pipeline
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Subtract Two Single-Precision Floating-Point ValuesSUBSP

Syntax SUBSP  (.unit) src1, src2, dst (C67x and C67x+ CPU)
.unit = .L1 or .L2
or
SUBSP (.unit) src1, src2, dst (C67x+ CPU only)
.unit = .S1 or .S2

Compatibility C67x and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

sp
xsp
sp

.L1, .L2 001 0001

src1
src2
dst

xsp
sp
sp

.L1, .L2 001 0101

src1
src2
dst

sp
xsp
sp

.S1, .S2 111 0001

src1
src2
dst

sp
xsp
sp

.S1, .S2 111 0101
src2 − src1

Note:

The assembly syntax allows a cross-path operand to be used for either src1
or src2. The assembler selects between the two opcodes based on which
source operand in the assembly instruction requires the cross path. If src1
requires the cross path, the assembler chooses the second (reverse) form
of the instruction syntax and reverses the order of the operands in the
encoded instruction.

Description src2 is subtracted from src1. The result is placed in dst.

Execution if (cond) src1 − src2 → dst
else nop
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Notes:

1) This instruction takes the rounding mode from and sets the warning bits
in FADCR, not FAUCR as for other .S unit instructions.

2) The source specific warning bits set in FADCR are set according to the
registers sources in the actual machine instruction and not according to
the order of the sources in the assembly form.

3) If rounding is performed, the INEX bit is set.

4) If one source is SNaN or QNaN, the result is NaN_out. If either source
is SNaN, the INVAL bit is set also.

5) If both sources are +infinity or −infinity, the result is NaN_out and the
INVAL bit is set.

6) If one source is signed infinity and the other source is anything except
NaN or signed infinity of the same sign, the result is signed infinity and
the INFO bit is set.

7) If overflow occurs, the INEX and OVER bits are set and the results are
set as follows (LFPN is the largest floating-point number):

Overflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +infinity +LFPN +infinity +LFPN

− −infinity −LFPN −LFPN −infinity

8) If underflow occurs, the INEX and UNDER bits are set and the results
are set as follows (SPFN is the smallest floating-point number):

Underflow Output Rounding Mode

Result Sign Nearest Even Zero +Infinity −Infinity

+ +0 +0 +SFPN +0

− −0 −0 −0 −SFPN

9) If the sources are equal numbers of the same sign, the result is +0 unless
the rounding mode is −infinity, in which case the result is −0.

10) If the sources are both 0 with opposite signs or both denormalized with
opposite signs, the sign of the result is the same as the sign of src1.

11) A signed denormalized source is treated as a signed 0 and the DENn bit
is set. If the other source is not NaN or signed infinity, the INEX bit is also
set.
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Pipeline 
Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L

Instruction Type 4-cycle

Delay Slots 3

Functional Unit
Latency

1

See Also ADDSP, SUB, SUBDP, SUBU

Example SUBSP .L1X A2,B1,A3

Before instruction 4 cycles after instruction

A2 4109 999Ah A2 4109 999Ah 8.6

B1 C020 0000h B1 C020 0000h −2.5

A3 XXXX XXXXh A3 4131 999Ah 11.1

Pipeline
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Subtract Two Unsigned Integers Without SaturationSUBU

Syntax SUBU  (.unit) src1, src2, dst

.unit = .L1 or .L2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
ulong

.L1, .L2 010 1111

src1
src2
dst

xuint
uint
ulong

.L1, .L2 011 1111

Description src2 is subtracted from src1. The result is placed in dst.

Execution if (cond)
src1 − src2 → dst

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L

Instruction Type Single-cycle

Delay Slots 0

See Also ADDU, SSUB, SUB, SUBC, SUBDP, SUBSP, SUB2

Pipeline
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Example SUBU .L1 A1,A2,A5:A4

Before instruction 1 cycle after instruction

A1 0000 325Ah 12810† A1 0000 325Ah

A2 FFFF FF12h 4294967058† A2 FFFF FF12h

A5:A4 xxxx xxxxh xxxx xxxxh A5:A4 0000 00FFh 0000 3348h −4294954168‡

† Unsigned 32-bit integer
‡ Signed 40-bit (long) integer
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Subtract Two 16-Bit Integers on Upper and Lower Register HalvesSUB2

Syntax SUB2  (.unit) src1, src2, dst 

.unit = .S1 or .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 1 0 0 0 1 1 0 0 0 s p

3 1 5 5 5 1 1 1

Opcode map field used... For operand type... Unit

src1
src2
dst

sint
xsint
sint

.S1, .S2

Description The upper and lower halves of src2 are subtracted from the upper and lower
halves of src1 and the result is placed in dst. Any borrow from the lower-half
subtraction does not affect the upper-half subtraction. Specifically, the
upper-half of src2 is subtracted from the upper-half of src1 and placed in the
upper-half of dst. The lower-half of src2 is subtracted from the lower-half of
src1 and placed in the lower-half of dst.

31                  16 15     0

a_hi a_lo src1

SUB2

b_hi b_lo src2

31                  16 15     0

a_hi − b_hi a_lo − b_lo dst
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Execution if (cond) {
(lsb16(src1) − lsb16(src2)) → lsb16(dst);
(msb16(src1) − msb16(src2)) → msb16(dst);
}

else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .S

Instruction Type Single-cycle

Delay Slots 0

See Also ADD2, SSUB, SUB, SUBC, SUBU

Example 1 SUB2 .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 1105 6E30h 4357 28208 A3 1105 6E30h 4357 28208

A4 1105 6980h 4357 27008 A4 1105 6980h 4357 27008

A5 xxxx xxxxh A5 0000 04B0h 0 1200

Example 2 SUB2 .S2X B1,A0,B2

Before instruction 1 cycle after instruction

A0 0021 3271h †33  12913‡ A0 0021 3271h

B1 003A 1B48h †58  6984‡ B1 003A 1B48h

B2 xxxx xxxxh B2 0019 E8D7h 25†  −5929‡

† Signed 16-MSB integer
‡ Signed 16-LSB integer

Pipeline
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Bitwise Exclusive ORXOR

Syntax XOR (.unit) src1, src2, dst

.unit =  .L1, .L2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode .L unit

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.L1, .L2 110 1111

src1
src2
dst

scst5
xuint
uint

.L1, .L2 110 1110

Opcode .S unit

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Opcode map field used... For operand type... Unit Opfield

src1
src2
dst

uint
xuint
uint

.S1, .S2 00 1011

src1
src2
dst

scst5
xuint
uint

.S1, .S2 00 1010

Description Performs a bitwise exclusive-OR (XOR) operation between src1 and src2.
The result is placed in dst. The scst5 operands are sign extended to 32 bits.
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Execution if (cond) src1 XOR src2 → dst
else nop

Pipeline 
Stage E1

Read src1, src2

Written dst

Unit in use .L or .S

Instruction Type Single-cycle

Delay Slots 0

See Also AND, OR

Example 1 XOR .S1 A3, A4, A5

Before instruction 1 cycle after instruction

A3 0721 325Ah A3 0721 325Ah

A4 0019 0F12h A4 0019 0F12h

A5 xxxx xxxxh A5 0738 3D48h

Example 2 XOR .L2 B1, 0dh, B8

Before instruction 1 cycle after instruction

B1 0000 1023h B1 0000 1023h

B8 xxxx xxxxh B8 0000 102Eh

Pipeline
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Zero a RegisterZERO

Syntax ZERO  (.unit) dst

.unit = .L1, .L2, .D1, .D2, .S1, .S2

Compatibility C62x, C64x, C67x, and C67x+ CPU

Opcode

Opcode map field used... For operand type... Unit Opfield

dst sint .L1, .L2 001 0111

dst slong .L1, .L2 011 0111

dst sint .D1, .D2 01 0001

dst sint .S1, .S2 01 0111

Description The ZERO pseudo-operation fills the dst register with 0s by subtracting the dst
from itself and placing the result in the dst.

In the case where dst is sint, the assembler uses the MVK (.unit) 0, dst
instruction.

In the case where dst is slong, the assembler uses the
SUB (.unit) src1, src2, dst instruction.

Execution if (cond) dst − dst → dst
else nop

Instruction Type Single-cycle

Delay Slots 0

Example ZERO .D1 A1

Before instruction 1 cycle after instruction

A1 B174 6CA1h A1 0000 0000h



4-1PipelineSPRU733A

��������

The C67x DSP pipeline provides flexibility to simplify programming and
improve performance. Two factors provide this flexibility:

� Control of the pipeline is simplified by eliminating pipeline interlocks.

� Increased pipelining eliminates traditional architectural bottlenecks in
program fetch, data access, and multiply operations. This provides single-
cycle throughput.

This chapter starts with a description of the pipeline flow. Highlights are:

� The pipeline can dispatch eight parallel instructions every cycle.

� Parallel instructions proceed simultaneously through each pipeline
phase.

� Serial instructions proceed through the pipeline with a fixed relative phase
difference between instructions.

� Load and store addresses appear on the CPU boundary during the same
pipeline phase, eliminating read-after-write memory conflicts.

All instructions require the same number of pipeline phases for fetch and
decode, but require a varying number of execute phases. This chapter
contains a description of the number of execution phases for each type of
instruction.

Finally, the chapter contains performance considerations for the pipeline.
These considerations include the occurrence of fetch packets that contain
multiple execute packets, execute packets that contain multicycle NOPs, and
memory considerations for the pipeline. For more information about fully
optimizing a program and taking full advantage of the pipeline, see the
TMS320C6000 Programmer’s Guide (SPRU198).
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4.1 Pipeline Operation Overview

The pipeline phases are divided into three stages:

� Fetch
� Decode
� Execute

All instructions in the C67x DSP instruction set flow through the fetch, decode,
and execute stages of the pipeline. The fetch stage of the pipeline has four
phases for all instructions, and the decode stage has two phases for all instruc-
tions. The execute stage of the pipeline requires a varying number of phases,
depending on the type of instruction. The stages of the C67x DSP pipeline are
shown in Figure 4−1.

Figure 4−1. Pipeline Stages

Fetch ExecuteDecode

4.1.1 Fetch

The fetch phases of the pipeline are:

� PG: Program address generate
� PS: Program address send
� PW: Program access ready wait
� PR: Program fetch packet receive

The C67x DSP uses a fetch packet (FP) of eight instructions. All eight of the
instructions proceed through fetch processing together, through the PG, PS,
PW, and PR phases. Figure 4−2(a) shows the fetch phases in sequential order
from left to right. Figure 4−2(b) is a functional diagram of the flow of instructions
through the fetch phases. During the PG phase, the program address is gener-
ated in the CPU. In the PS phase, the program address is sent to memory. In
the PW phase, a memory read occurs. Finally, in the PR phase, the fetch pack-
et is received at the CPU. Figure 4−2(c) shows fetch packets flowing through
the phases of the fetch stage of the pipeline. In Figure 4−2(c), the first fetch
packet (in PR) is made up of four execute packets, and the second and third
fetch packets (in PW and PS) contain two execute packets each. The last fetch
packet (in PG) contains a single execute packet of eight single-cycle instruc-
tions.
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Figure 4−2. Fetch Phases of the Pipeline
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Fetch
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4.1.2 Decode

The decode phases of the pipeline are:

� DP: Instruction dispatch
� DC: Instruction decode

In the DP phase of the pipeline, the fetch packets are split into execute pack-
ets. Execute packets consist of one instruction or from two to eight parallel
instructions. During the DP phase, the instructions in an execute packet are
assigned to the appropriate functional units. In the DC phase, the the source
registers, destination registers, and associated paths are decoded for the
execution of the instructions in the functional units.
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Figure 4−3(a) shows the decode phases in sequential order from left to right.
Figure 4−3(b) shows a fetch packet that contains two execute packets as they
are processed through the decode stage of the pipeline. The last six instruc-
tions of the fetch packet (FP) are parallel and form an execute packet (EP).
This EP is in the dispatch phase (DP) of the decode stage. The arrows indicate
each instruction’s assigned functional unit for execution during the same cycle.
The NOP instruction in the eighth slot of the FP is not dispatched to a functional
unit because there is no execution associated with it.

The first two slots of the fetch packet (shaded below) represent an execute
packet of two parallel instructions that were dispatched on the previous cycle.
This execute packet contains two MPY instructions that are now in decode
(DC) one cycle before execution. There are no instructions decoded for the .L,
.S, and .D functional units for the situation illustrated.

Figure 4−3. Decode Phases of the Pipeline

(b)

DCDP
(a)

DP
3232323232323232

NOP†ADDKSTWSTWADD

DC MPYHMPYH

.L1 .S1 .D1.M1 .L2.S2.D2 .M2

Decode

ADD

Functional
units

† NOP is not dispatched to a functional unit.
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4.1.3 Execute

The execute portion of the pipeline is subdivided into ten phases (E1−E10),
as compared to the five phases in a fixed-point pipeline. Different types of
instructions require different numbers of these phases to complete their
execution. These phases of the pipeline play an important role in your
understanding the device state at CPU cycle boundaries. The execution of dif-
ferent types of instructions in the pipeline is described in section 4.2, Pipeline
Execution of Instruction Types. Figure 4−4(a) shows the execute phases of
the pipeline in sequential order from left to right. Figure 4−4(b) shows the
portion of the functional block diagram in which execution occurs.

Figure 4−4. Execute Phases of the Pipeline

E4E3E2E1 E5(a)

(b)

Register file A Register file B
Data 2Data 1 3232

3232

(byte addressable)
Internal data memory

Data address 2Data address 1
98

76543210

16 161616

Data memory interface control

32

.L1
SADD

.S1
B

.M1
SMPY

0135 4 268 71012 11 91415 13 0123456789101112131415

.L2
SADD

.S2
SUBSMPYH

.M2

Execute E1

.D1
STH

.D2
STH

E9E8E7E6 E10
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4.1.4 Pipeline Operation Summary

Figure 4−5 shows all the phases in each stage of the C67x DSP pipeline in
sequential order, from left to right.

Figure 4−5. Pipeline Phases

Fetch ExecuteDecode

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Figure 4−6 shows an example of the pipeline flow of consecutive fetch packets
that contain eight parallel instructions. In this case, where the pipeline is full,
all instructions in a fetch packet are in parallel and split into one execute packet
per fetch packet. The fetch packets flow in lockstep fashion through each
phase of the pipeline.

For example, examine cycle 7 in Figure 4−6. When the instructions from FPn
reach E1, the instructions in the execute packet from FPn +1 are being
decoded. FP n + 2 is in dispatch while FPs n + 3, n + 4, n + 5, and n + 6 are
each in one of four phases of program fetch. See section 4.4, page 4-56, for
additional detail on code flowing through the pipeline. Table 4−1 summarizes
the pipeline phases and what happens in each phase.

Figure 4−6. Pipeline Operation: One Execute Packet per Fetch Packet
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Table 4−1. Operations Occurring During Pipeline Phases  

Stage Phase Symbol During This Phase

Instruction
Type

Completed

Program
fetch

Program address
generation

PG The address of the fetch packet is determined.

Program address
sent

PS The address of the fetch packet is sent to the memory.

Program wait PW A program memory access is performed.

Program data
receive

PR The fetch packet is at the CPU boundary.

Program
decode

Dispatch DP The next execute packet of the fetch packet is deter-
mined and sent to the appropriate functional unit to be
decoded.

Decode DC Instructions are decoded in functional units.

Execute Execute 1 E1 For all instruction types, the conditions for the
instructions are evaluated and operands are read.

For load and store instructions, address generation is
performed and address modifications are written to the
register file.†

For branch instructions, branch fetch packet in PG
phase is affected.†

For single-cycle instructions, results are written to a
register file.†

For DP compare, ADDDP/SUBDP, and MPYDP
instructions, the lower 32-bits of the sources are read.
For all other instructions, the sources are read.†

For MPYSPDP instruction, the src1 and the lower
32 bits of src2 are read.†

For 2-cycle DP instructions, the lower 32 bits of the
result are written to a register file.†

Single-cycle

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.
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Table 4−1. Operations Occurring During Pipeline Phases  (Continued)

Stage

Instruction
Type

CompletedDuring This PhaseSymbolPhase

Execute 2 E2 For load instructions, the address is sent to memory.
For store instructions, the address and data are sent
to memory.†

Single-cycle instructions that saturate results set the
SAT bit in the SCR if saturation occurs.†

For multiply, 2-cycle DP, and DP compare instruc-
tions, results are written to a register file.†

For DP compare and ADDDP/SUBDP instructions,
the upper 32 bits of the source are read.†

For MPYDP instruction, the lower 32 bits of src1 and
the upper 32 bits of src2 are read.†

For MPYI and MPYID instructions, the sources are
read.†

For MPYSPDP instruction, the src1 and the upper
32 bits of src2 are read.†

Multiply
2-cycle DP
DP compare

Execute 3 E3 Data memory accesses are performed. Any multiply
instruction that saturates results sets the SAT bit in
the CSR if saturation occurs.†

For MPYDP instruction, the upper 32 bits of src1 and
the lower 32 bits of src2 are read.†

For MPYI and MPYID instructions, the sources are
read.†

Store

Execute 4 E4 For load instructions, data is brought to the CPU
boundary

For MPYI and MPYID instructions, the sources are
read.†

For MPYDP instruction, the upper 32 bits of the
sources are read.†

For MPYI and MPYID instructions, the sources are
read.†

For 4-cycle instructions, results are written to a
register file.†

For INTDP and MPYSP2DP instructions, the lower
32 bits of the result are written to a register file.†

4-cycle

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.
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Table 4−1. Operations Occurring During Pipeline Phases  (Continued)

Stage

Instruction
Type

CompletedDuring This PhaseSymbolPhase

Execute 5 E5 For load instructions, data is written into a register
file.†

For INTDP and MPYSP2DP instructions, the upper
32 bits of the result are written to a register file.†

Load INTDP

MPYSP2DP

Execute 6 E6 For ADDDP/SUBDP and MPYSPDP instructions, the
lower 32 bits of the result are written to a register
file.†

ADDDP/
SUBDP,
MPYSPDP

Execute 7 E7 For ADDDP/SUBDP and MPYSPDP instructions, the
upper 32 bits of the result are written to a register
file.†

ADDDP/
SUBDP,
MPYSPDP

Execute 8 E8 Nothing is read or written.

Execute 9 E9 For MPYI instruction, the result is written to a
register file.†

For MPYDP and MPYID instructions, the lower
32 bits of the result are written to a register file.†

MPYI

MPYDP
MPYID

Execute 10 E10 For MPYDP and MPYID instructions, the upper
32 bits of the result are written to a register file.

MPYDP
MPYID

† This assumes that the conditions for the instructions are evaluated as true. If the condition is evaluated as false, the instruction
does not write an y results or have any pipeline operation after E1.

Figure 4−7 shows a functional block diagram of the pipeline stages. The pipe-
line operation is based on CPU cycles. A CPU cycle is the period during which
a particular execute packet is in a particular pipeline phase. CPU cycle bound-
aries always occur at clock cycle boundaries.

As code flows through the pipeline phases, it is processed by different parts
of the C67x DSP. Figure 4−7 shows a full pipeline with a fetch packet in every
phase of fetch. One execute packet of eight instructions is being dispatched
at the same time that a 7-instruction execute packet is in decode. The arrows
between DP and DC correspond to the functional units identified in the code
in Example 4−1.

In the DC phase portion of Figure 4−7, one box is empty because a NOP was
the eighth instruction in the fetch packet in DC, and no functional unit is needed
for a NOP. Finally, Figure 4−7 shows six functional units processing code
during the same cycle of the pipeline.
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Registers used by the instructions in E1 are shaded in Figure 4−7. The multi-
plexers used for the input operands to the functional units are also shaded in
the figure. The bold crosspaths are used by the MPY and SUBSP instructions.

Figure 4−7. Pipeline Phases Block Diagram
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Many C67x DSP instructions are single-cycle instructions, which means they
have only one execution phase (E1). The other instructions require more than
one execute phase. The types of instructions, each of which require different
numbers of execute phases, are described in section 4.2.

Example 4−1. Execute Packet in Figure 4−7

LDDW .D1 *A0−−[4],B5:B4 ; E1 Phase
|| ADDSP .L1 A9,A10,A12
|| SUBSP .L2X B12,A2,B12
|| MPYSP .M1X A6,B13,A11
|| MPYSP .M2 B5,B13,B11
|| ABSSP .S1 A12,A15

LDDW .D1 *A0++[5],A7:A6 ; DC Phase
|| ADDSP .L1 A12,A11,A12
|| ADDSP .L2 B10,B11,B12
|| MPYSP .M1X A4,B6,A9
|| MPYSP .M2X A7,B6,B9
|| CMPLTSP .S1 A15,A8,A1
|| ABSSP .S2 B12,B15

LOOP:
  [!B2] LDDW .D1 *A0++[2],A5:A4 ; DP and PS Phases
||[B2] ZERO .D2 B0
|| SUBSP .L1 A12,A2,A12
|| ADDSP .L2 B9,B12,B12
|| MPYSP .M1X A5,B7,A10
|| MPYSP .M2 B4,B7,B10
||[B0] B .S1 LOOP
||[!B1] CMPLTSP .S2 B15,B8,B1
  [!B2] LDDW .D1 *A0−−[4],B5:B4 ; PR and PG Phases
||[B0] SUB .D2 B0,2,B0
|| ADDSP .L1 A9,A10,A12
|| SUBSP .L2X B12,A2,B12
|| MPYSP .M1X A6,B13,A11
|| MPYSP .M2 B5,B13,B11
|| ABSSP .S1 A12,A15
||[A1] MVK .S2 1,B2

  [!B2] LDDW .D1 *A0++[5],A7:A6 ; PW Phase
||[B1] MV .D2 B1,B2
|| ADDSP .L1 A12,A11,A12
|| ADDSP .L2 B10,B11,B12
|| MPYSP .M1X A4,B6,A9
||[!A1] CMPLTSP .S1 A15,A8,A1
|| ABSSP .S2 B12,B15
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4.2 Pipeline Execution of Instruction Types

The pipeline operation of the C67x DSP instructions can be categorized into
fourteen instruction types. Thirteen of these are shown in Table 4−2 (NOP is
not included in the table), which is a mapping of operations occurring in each
execution phase for the different instruction types. The delay slots and
functional unit latency associated with each instruction type are listed in the
bottom row. See section 3.7.8 for any instruction constraints.

Table 4−2. Execution Stage Length Description for Each Instruction Type

Instruction Type

Execution
phases Single Cycle 16 � 16 Multiply Store Load Branch

E1 Compute result and
write to register

Read operands and
start computations

Compute address Compute
address

Target code
in PG‡

E2 Compute result and
write to register

Send address and
data to memory

Send address to
memory

E3 Access memory Access memory

E4 Send data back
to CPU

E5 Write data into
register

E6

E7

E8

E9

E10

Delay slots 0 1 0† 4† 5‡

Functional
unit latency

1 1 1 1 1

† See sections 4.2.3 And 4.2.4 for more information on execution and delay slots for stores and loads.
‡ See section 4.2.5 for more information on branches.

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.
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Table 4−2. Execution Stage Length Description for Each Instruction Type (Continued)

Instruction Type

Execution
phases 2-Cycle DP 4-Cycle INTDP DP Compare

E1 Compute the lower
results and write to
register

Read sources and
start computation

Read sources and start
computation

Read lower sources
and start computation

E2 Compute the upper
results and write to
register

Continue computation Continue computation Read upper sources,
finish computation,
and write results to
register

E3 Continue computation Continue computation

E4 Complete computation
and write results to
register

Continue computation
and write lower results
to register

E5 Complete computation
and write upper results
to register

E6

E7

E8

E9

E10

Delay slots 1 3 4 1

Functional
unit latency

1 1 1 2

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as false,
the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.



Pipeline Execution of Instruction Types

Pipeline4-14 SPRU733A

Table 4−2. Execution Stage Length Description for Each Instruction Type (Continued)

Instruction Type

Execution
phases ADDDP/SUBDP MPYI MPYID MPYDP

E1 Read lower sources
and start computation

Read sources and
start computation

Read sources and
start computation

Read lower sources
and start computation

E2 Read upper sources
and continue
computation

Read sources and
continue computation

Read sources and
continue computation

Read lower src1 and
upper src2 and
continue computation

E3 Continue computation Read sources and
continue computation

Read sources and
continue computation

Read lower src2 and
upper src1 and
continue computation

E4 Continue computation Read sources and
continue computation

Read sources and
continue computation

Read upper sources
and continue
computation

E5 Continue computation Continue computation Continue computation Continue computation

E6 Compute the lower
results and write to
register

Continue computation Continue computation Continue computation

E7 Compute the upper
results and write to
register

Continue computation Continue computation Continue computation

E8 Continue computation Continue computation Continue computation

E9 Complete computa-
tion and write results
to register

Continue computation
and write lower
results to register

Continue computation
and write lower
results to register

E10 Complete computa-
tion and write upper
results to register

Complete computa-
tion and write upper
results to register

Delay slots 6 8 9 9

Functional
unit latency

2 4 4 4

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as
false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.
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Table 4−2. Execution Stage Length Description for Each Instruction Type (Continued)

Instruction Type

Execution
phases MPYSPDP MPYSP2DP

E1 Read src1 and lower
src2 and start
computation

Read sources and
start computation

E2 Read src1 and upper
src2 and continue
computation

Continue computation

E3 Continue computation Continue computation

E4 Continue computation Continue computation
and write lower
results to register

E5 Continue computation Complete computa-
tion and write upper
results to register

E6 Continue computation
and write lower
results to register

E7 Complete computa-
tion and write upper
results to register

E8

E9

E10

Delay slots 6 4

Functional
unit latency

3 2

Notes: 1) This table assumes that the condition for each instruction is evaluated as true. If the condition is evaluated as
false, the instruction does not write any results or have any pipeline operation after E1.

2) NOP is not shown and has no operation in any of the execution phases.
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4.2.1 Single-Cycle Instructions

Single-cycle instructions complete execution during the E1 phase of the pipe-
line (see Table 4−3). Figure 4−8 shows the fetch, decode, and execute phases
of the pipeline that single-cycle instructions use.

Figure 4−9 shows the single-cycle execution diagram. The operands are read,
the operation is performed, and the results are written to a register, all during
E1. Single-cycle instructions have no delay slots.

Table 4−3. Single-Cycle Instruction Execution

Pipeline Stage E1

Read src1
src2

Written dst

Unit in use .L, .S., .M, or .D

Figure 4−8. Single-Cycle Instruction Phases

PG PS PW PR DP DC E1

Figure 4−9. Single-Cycle Instruction Execution Block Diagram
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Operands
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Write results
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ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.L, .S, .M,
or .D

E1
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4.2.2 16 � 16-Bit Multiply Instructions

The 16 × 16-bit multiply instructions use both the E1 and E2 phases of the
pipeline to complete their operations (see Table 4−4). Figure 4−10 shows the
fetch, decode, and execute phases of the pipeline that the multiply instructions
use.

Figure 4−11 shows the operations occurring in the pipeline for a multiply. In the
E1 phase, the operands are read and the multiply begins. In the E2 phase, the
multiply finishes, and the result is written to the destination register. Multiply
instructions have one delay slot.

Table 4−4. 16 ��16-Bit Multiply Instruction Execution

Pipeline Stage E1 E2

Read src1
src2

Written dst

Unit in use .M

Figure 4−10. Multiply Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot

Figure 4−11.Multiply Instruction Execution Block Diagram

(data)
Operands

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Register file

Write results

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Functional
unit

.M

E1

E2
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4.2.3 Store Instructions

Store instructions require phases E1 through E3 of the pipeline to complete
their operations (see Table 4−5). Figure 4−12 shows the fetch, decode, and
execute phases of the pipeline that the store instructions use.

Figure 4−13 shows the operations occurring in the pipeline phases for a store
instruction. In the E1 phase, the address of the data to be stored is computed.
In the E2 phase, the data and destination addresses are sent to data memory.
In the E3 phase, a memory write is performed. The address modification is
performed in the E1 stage of the pipeline. Even though stores finish their
execution in the E3 phase of the pipeline, they have no delay slots. There is
additional explanation of why stores have zero delay slots in section 4.2.4.

Table 4−5. Store Instruction Execution

Pipeline Stage E1 E2 E3

Read baseR,
offsetR

src

Written baseR

Unit in use .D2

Figure 4−12. Store Instruction Phases

PG PS PW PR DP DC E1 E2 E3
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Figure 4−13. Store Instruction Execution Block Diagram

Memory

E2

E3

Memory controller

Register file

E1

.D

Data

E2

Address

Functional
unit

When you perform a load and a store to the same memory location, these rules
apply (i = cycle):

� When a load is executed before a store, the old value is loaded and the
new value is stored.
i LDW
i + 1 STW

� When a store is executed before a load, the new value is stored and the
new value is loaded.
i STW
i + 1 LDW

� When the instructions are executed in parallel, the old value is loaded first
and then the new value is stored, but both occur in the same phase.
i STW
i || LDW
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4.2.4 Load Instructions

Data loads require five, E1−E5, of the pipeline execute phases to complete
their operations (see Table 4−6). Figure 4−14 shows the fetch, decode, and
execute phases of the pipeline that the load instructions use.

Figure 4−15 shows the operations occurring in the pipeline phases for a load.
In the E1 phase, the data address pointer is modified in its register. In the E2
phase, the data address is sent to data memory. In the E3 phase, a memory
read at that address is performed.

Table 4−6. Load Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5

Read baseR
offsetR

Written baseR dst

Unit in use .D

Figure 4−14. Load Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots
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Figure 4−15. Load Instruction Execution Block Diagram

E5

Address

E3

Memory

E2

E4
Memory controller

Register file

E1

.D

Functional
unit

Data

In the E4 stage of a load, the data is received at the CPU core boundary. Finally,
in the E5 phase, the data is loaded into a register. Because data is not written
to the register until E5, load instructions have four delay slots. Because pointer
results are written to the register in E1, there are no delay slots associated with
the address modification.

In the following code, pointer results are written to the A4 register in the first
execute phase of the pipeline and data is written to the A3 register in the fifth
execute phase.

LDW  .D1  *A4++,A3

Because a store takes three execute phases to write a value to memory and
a load takes three execute phases to read from memory, a load following a
store accesses the value placed in memory by that store in the cycle after the
store is completed. This is why the store is considered to have zero delay slots.
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4.2.5 Branch Instructions

Although branch takes one execute phase, there are five delay slots between
the execution of the branch and execution of the target code (see Table 4−7).
Figure 4−16 shows the pipeline phases used by the branch instruction and
branch target code. The delay slots are shaded.

Figure 4−17 shows a branch instruction execution block diagram. If a branch
is in the E1 phase of the pipeline (in the .S2 unit in the figure), its branch target
is in the fetch packet that is in PG during that same cycle (shaded in the figure).
Because the branch target has to wait until it reaches the E1 phase to begin
execution, the branch takes five delay slots before the branch target code
executes.

Table 4−7. Branch Instruction Execution

Pipeline Stage E1 PS PW PR DP DC E1

Read src2

Written

Branch Taken �

Unit in use .S2

Figure 4−16. Branch Instruction Phases

Branch
target

PG PS PW PR DP DC E1

PG PS PW PR DP DC E1

5 delay slots
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Figure 4−17. Branch Instruction Execution Block Diagram
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4.2.6 Two-Cycle DP Instructions

Two-cycle DP instructions use both the E1 and E2 phases of the pipeline to
complete their operations (see Table 4−8). The following instructions are
two-cycle DP instructions:

� ABSDP
� RCPDP
� RSQDP
� SPDP

The lower and upper 32 bits of the DP source are read on E1 using the src1
and src2 ports, respectively. The lower 32 bits of the DP source are written on
E1 and the upper 32 bits of the DP source are written on E2. The two-cycle DP
instructions are executed on the .S units. The status is written to the FAUCR
on E1. Figure 4−18 shows the fetch, decode, and execute phases of the pipe-
line that the two-cycle DP instructions use.

Table 4−8. Two-Cycle DP Instruction Execution

Pipeline Stage E1 E2

Read src2_l
src2_h

Written dst_l dst_h

Unit in use .S

Figure 4−18. Two-Cycle DP Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot
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4.2.7 Four-Cycle Instructions

Four-cycle instructions use the E1 through E4 phases of the pipeline to
complete their operations (see Table 4−9). The following instructions are
four-cycle instructions:

� ADDSP
� DPINT
� DPSP
� DPTRUNC
� INTSP
� MPYSP
� SPINT
� SPTRUNC
� SUBSP

The sources are read on E1 and the results are written on E4. The four-cycle
instructions are executed on the .M or .L units. The status is written to the
FMCR or FADCR on E4. Figure 4−19 shows the fetch, decode, and execute
phases of the pipeline that the four-cycle instructions use.

Table 4−9. Four-Cycle Instruction Execution

Pipeline Stage E1 E2 E3 E4

Read src1
src2

Written dst

Unit in use .L or .M

Figure 4−19. Four-Cycle Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4

3 delay slots
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4.2.8 INTDP Instruction

The INTDP instruction uses the E1 through E5 phases of the pipeline to
complete its operations (see Table 4−10). src2 is read on E1, the lower 32 bits
of the result are written on E4, and the upper 32 bits of the result are written
on E5. The INTDP instruction is executed on the .L unit. The status is written
to the FADCR on E4. Figure 4−20 shows the fetch, decode, and execute
phases of the pipeline that the INTDP instruction uses.

Table 4−10. INTDP Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5

Read src2

Written dst_l dst_h

Unit in use .L

Figure 4−20. INTDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots
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4.2.9 DP Compare Instructions

The DP compare instructions use the E1 and E2 phases of the pipeline to
complete their operations (see Table 4−11). The lower 32 bits of the sources
are read on E1, the upper 32 bits of the sources are read on E2, and the results
are written on E2. The following instructions are DP compare instructions:

� CMPEQDP
� CMPLTDP
� CMPGTDP

The DP compare instructions are executed on the .S unit. The functional unit
latency for DP compare instructions is 2. The status is written to the FAUCR
on E2. Figure 4−21 shows the fetch, decode, and execute phases of the pipe-
line that the DP compare instruction uses.

Table 4−11. DP Compare Instruction Execution

Pipeline Stage E1 E2

Read src1_l
src2_l

src1_h
src2_h

Written dst

Unit in use .S .S

Figure 4−21. DP Compare Instruction Phases

PG PS PW PR DP DC E1 E2 1 delay slot



Pipeline Execution of Instruction Types

Pipeline4-28 SPRU733A

4.2.10 ADDDP/SUBDP Instructions 

The ADDDP/SUBDP instructions use the E1 through E7 phases of the pipeline
to complete their operations (see Table 4−12). The lower 32 bits of the result
are written on E6, and the upper 32 bits of the result are written on E7. The
ADDDP/SUBDP instructions are executed on the .L unit. The functional unit
latency for ADDDP/SUBDP instructions is 2. The status is written to the
FADCR on E6. Figure 4−22 shows the fetch, decode, and execute phases of
the pipeline that the ADDDP/SUBDP instructions use.

Table 4−12. ADDDP/SUBDP Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5 E6 E7

Read src1_l
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .L or .S .L or .S

Figure 4−22. ADDDP/SUBDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7

6 delay slots
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4.2.11 MPYI Instruction

The MPYI instruction uses the E1 through E9 phases of the pipeline to
complete its operations (see Table 4−13). The sources are read on cycles E1
through E4 and the result is written on E9. The MPYI instruction is executed
on the .M unit. The functional unit latency for the MPYI instruction is 4.
Figure 4−23 shows the fetch, decode, and execute phases of the pipeline that
the MPYI instruction uses.

Table 4−13. MPYI Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5 E6 E7 E8 E9

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst

Unit in use .M .M .M .M

Figure 4−23. MPYI Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

8 delay slots
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4.2.12 MPYID Instruction

The MPYID instruction uses the E1 through E10 phases of the pipeline to
complete its operations (see Table 4−14). The sources are read on cycles E1
through E4, the lower 32 bits of the result are written on E9, and the upper
32 bits of the result are written on E10. The MPYID instruction is executed on
the .M unit. The functional unit latency for the MPYID instruction is 4.
Figure 4−24 shows the fetch, decode, and execute phases of the pipeline that
the MPYID instruction uses.

Table 4−14. MPYID Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1
src2

src1
src2

src1
src2

src1
src2

Written dst_l dst_h

Unit in use .M .M .M .M

Figure 4−24. MPYID Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

9 delay slots
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4.2.13 MPYDP Instruction

The MPYDP instruction uses the E1 through E10 phases of the pipeline to
complete its operations (see Table 4−15). The lower 32 bits of src1 are read
on E1 and E2, and the upper 32 bits of src1 are read on E3 and E4. The lower
32 bits of src2 are read on E1 and E3, and the upper 32 bits of src2 are read
on E2 and E4. The lower 32 bits of the result are written on E9, and the upper
32 bits of the result are written on E10. The MPYDP instruction is executed on
the .M unit. The functional unit latency for the MPYDP instruction is 4. The
status is written to the FMCR on E9. Figure 4−25 shows the fetch, decode, and
execute phases of the pipeline that the MPYDP instruction uses.

Table 4−15. MPYDP Instruction Execution

Pipeline 
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read src1_l
src2_l

src1_l
src2_h

src1_h
src2_l

src1_h
src2_h

Written dst_l dst_h

Unit in use .M .M .M .M

Figure 4−25. MPYDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

9 delay slots
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4.2.14 MPYSPDP Instruction

The MPYSPDP instruction uses the E1 through E7 phases of the pipeline to
complete its operations (see Table 4−16). src1 is read on E1 and E2. The lower
32 bits of src2 are read on E1, and the upper 32 bits of src2 are read on E2.
The lower 32 bits of the result are written on E6, and the upper 32 bits of the
result are written on E7. The MPYSPDP instruction is executed on the .M unit.
The functional unit latency for the MPYSPDP instruction is 3. Figure 4−26
shows the fetch, decode, and execute phases of the pipeline that the
MPYSPDP instruction uses.

Table 4−16. MPYSPDP Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5 E6 E7

Read src1
src2_l

src1
src2_h

Written dst_l dst_h

Unit in use .M .M

Figure 4−26. MPYSPDP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7

6 delay slots
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4.2.15 MPYSP2DP Instruction

The MPYSP2DP instruction uses the E1 through E5 phases of the pipeline to
complete its operations (see Table 4−17). src1 and src2 are read on E1. The
lower 32 bits of the result are written on E4, and the upper 32 bits of the result
are written on E5. The MPYSP2DP instruction is executed on the .M unit. The
functional unit latency for the MPYSP2DP instruction is 2. Figure 4−27 shows
the fetch, decode, and execute phases of the pipeline that the MPYSP2DP
instruction uses.

Table 4−17. MPYSP2DP Instruction Execution

Pipeline Stage E1 E2 E3 E4 E5

Read src1
src2

Written dst_l dst_h

Unit in use .M

Figure 4−27. MPYSP2DP Instruction Phases

PG PS PW PR DP DC E1 E2 E3 E4 E5

4 delay slots

4.3 Functional Unit Constraints

If you want to optimize your instruction pipeline, consider the instructions that
are executed on each unit. Sources and destinations are read and written
differently for each instruction. If you analyze these differences, you can make
further optimization improvements by considering what happens during the
execution phases of instructions that use the same functional unit in each
execution packet.

The following sections provide information about what happens during each
execute phase of the instructions within a category for each of the functional
units.

Pipeline Execution of Instruction Types / Functional Unit Constraints
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4.3.1 .S-Unit Constraints

Table 4−18 shows the instruction constraints for single-cycle instructions
executing on the .S unit.

Table 4−18. Single-Cycle .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

DP compare �

2-cycle DP �

ADDDP/SUBDP �

ADDSP/SUBSP �

Branch �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle �

Load �

Store �

INTDP �

ADDDP/SUBDP �

16 × 16 multiply �

4-cycle �

MPYI �

MPYID �

MPYDP �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle
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Table 4−19 shows the instruction constraints for DP compare instructions
executing on the .S unit.

Table 4−19. DP Compare .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3

DP compare R RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xrw �

DP compare Xr �

2-cycle DP Xrw �

ADDDP/SUBDP Xr �

ADDSP/SUBSP Xr �

Branch† Xr �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr �

Load Xr �

Store Xr �

INTDP Xr �

ADDDP/SUBDP Xr �

16 × 16 multiply Xr �

4-cycle Xr �

MPYI Xr �

MPYID Xr �

MPYDP Xr �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/
decode constraint; Xrw = Next instruction cannot enter E1 during cycle-read/decode/write constraint

† The branch on register instruction is the only branch instruction that reads a general-purpose register
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Table 4−20 shows the instruction constraints for 2-cycle DP instructions exe-
cuting on the .S unit.

Table 4−20. 2-Cycle DP .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3

2-cycle RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xw �

DP compare � �

2-cycle DP Xw �

ADDDP/SUBDP �

ADDSP/SUBSP �

Branch � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single cycle � �

Load � �

Store � �

INTDP � �

ADDDP/SUBDP � �

16 × 16 multiply � �

4-cycle � �

MPYI � �

MPYID � �

MPYDP � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write
constraint
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Table 4−21 shows the instruction constraints for ADDSP/SUBSP  instructions
executing on the .S unit.

Table 4−21. ADDSP/SUBSP .S-Unit Instruction Constraints 

Instruction Execution

Cycle 1 2 3 4

ADDSP/SUBSP R W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � Xw

2-cycle DP � Xw Xw

DP compare � Xw �

ADDDP/SUBDP � � �

ADDSP/SUBSP � � �

Branch � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle−write
constraint
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Table 4−22 shows the instruction constraints for ADDDP/SUBDP  instructions
executing on the .S unit.

Table 4−22. ADDDP/SUBDP .S-Unit Instruction Constraints 

Instruction Execution

Cycle 1 2 3 4 5 6 7

ADDDP/SUBDP R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xr � � � Xw Xw

2-cycle DP Xr � � Xw Xw Xw

DP compare Xr � � Xw Xw �

ADDDP/SUBDP Xr � � � � �

ADDSP/SUBSP Xr Xw Xw � � �

Branch Xr � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr � � � � �

DP compare Xr � � � � �

2-cycle DP Xr � � � � �

4-cycle Xr � � � � �

Load � � � � � �

Store � � � � � �

Branch Xr � � � � �

16 × 16 multiply Xr � � � � �

MPYI Xr � � � � �

MPYID Xr � � � � �

MPYDP Xr � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/
decode constraint; Xw = Next instruction cannot enter E1 during cycle−write constraint
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Table 4−23 shows the instruction constraints for branch instructions executing
on the .S unit.

Table 4−23. Branch .S-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8

Branch† R

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � � � � � �

DP compare � � � � � � �

2-cycle DP � � � � � � �

ADDDP/SUBDP � � � � � � �

ADDSP/SUBSP � � � � � � �

Branch � � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � � � � �

Load � � � � � � �

Store � � � � � � �

INTDP � � � � � � �

ADDDP/SUBDP � � � � � � �

16 × 16 multiply � � � � � � �

4-cycle � � � � � � �

MPYI � � � � � � �

MPYID � � � � � � �

MPYDP � � � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; � = Next instruction can enter E1
during cycle

† The branch on register instruction is the only branch instruction that reads a general-purpose register
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4.3.2 .M-Unit Constraints

Table 4−24 shows the instruction constraints for 16 × 16 multiply instructions
executing on the .M unit.

Table 4−24. 16 � 16 Multiply .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3

16 × 16 multiply R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 × 16 multiply � �

4-cycle � �

MPYI � �

MPYID � �

MPYDP � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � �

Load � �

Store � �

DP compare � �

2-cycle DP � �

Branch � �

4-cycle � �

INTDP � �

ADDDP/SUBDP � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle
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Table 4−25 shows the instruction constraints for 4-cycle instructions executing
on the .M unit.

Table 4−25. 4-Cycle .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5

4-cycle R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 × 16 multiply � Xw � �

4-cycle � � � �

MPYI � � � �

MPYID � � � �

MPYDP � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � �

Load � � � �

Store � � � �

DP compare � � � �

2-cycle DP � � � �

Branch � � � �

4-cycle � � � �

INTDP � � � �

ADDDP/SUBDP � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write
constraint
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Table 4−26 shows the instruction constraints for MPYI instructions executing
on the .M unit.

Table 4−26. MPYI .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10

MPYI R R R R W

Instruction Type Subsequent Same-Unit Instruction Executable

16 × 16 multiply Xr Xr Xr � � � Xw � �

4-cycle Xr Xr Xr Xu Xw Xu � � �

MPYI Xr Xr Xr � � � � � �

MPYID Xr Xr Xr � � � � � �

MPYDP Xr Xr Xr Xu Xu Xu � � �

MPYSPDP Xr Xr Xr Xu Xu Xu � � �

MPYSP2DP Xr Xr Xr Xw Xw Xu � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � �

Load � � � � � � � � �

Store � � � � � � � � �

DP compare Xr Xr Xr � � � � � �

2-cycle DP Xr Xr Xr � � � � � �

Branch Xr Xr Xr � � � � � �

4-cycle Xr Xr Xr � � � � � �

INTDP Xr Xr Xr � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle−read/
decode constraint; Xw = Next instruction cannot enter E1 during cycle−write constraint; Xu = Next instruction cannot
enter E1 during cycle−other resource conflict
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Table 4−27 shows the instruction constraints for MPYID instructions executing
on the .M unit.

Table 4−27. MPYID .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10 11

MPYID R R R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 × 16 multiply Xr Xr Xr � � � Xw Xw � �

4-cycle Xr Xr Xr Xu Xw Xw � � � �

MPYI Xr Xr Xr � � � � � � �

MPYID Xr Xr Xr � � � � � � �

MPYDP Xr Xr Xr Xu Xu Xu � � � �

MPYSPDP Xr Xr Xr Xw Xu Xu � � � �

MPYSP2DP Xr Xr Xr Xw Xw Xw � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � � �

Load � � � � � � � � � �

Store � � � � � � � � � �

DP compare Xr Xr Xr � � � � � � �

2-cycle DP Xr Xr Xr � � � � � � �

Branch Xr Xr Xr � � � � � � �

4-cycle Xr Xr Xr � � � � � � �

INTDP Xr Xr Xr � � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle−read/
decode constraint; Xw = Next instruction cannot enter E1 during cycle−write constraint; Xu = Next instruction cannot
enter E1 during cycle−other resource conflict
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Table 4−28 shows the instruction constraints for MPYDP instructions
executing on the .M unit.

Table 4−28. MPYDP .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7 8 9 10 11

MPYDP R R R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 × 16 multiply Xr Xr Xr � � � Xw Xw � �

4-cycle Xr Xr Xr Xu Xw Xw � � � �

MPYI Xr Xr Xr Xu Xu Xu � � � �

MPYID Xr Xr Xr Xu Xu Xu � � � �

MPYDP Xr Xr Xr � � � � � � �

MPYSPDP Xr Xr Xr Xw Xu Xu � � � �

MPYSP2DP Xr Xr Xr Xw Xw Xw � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr Xr Xr � � � � � � �

Load � � � � � � � � � �

Store � � � � � � � � � �

DP compare Xr Xr Xr � � � � � � �

2-cycle DP Xr Xr Xr � � � � � � �

Branch Xr Xr Xr � � � � � � �

4-cycle Xr Xr Xr � � � � � � �

INTDP Xr Xr Xr � � � � � � �

ADDDP/SUBDP Xr Xr Xr � � � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle−read/
decode constraint; Xw = Next instruction cannot enter E1 during cycle−write constraint; Xu = Next instruction cannot
enter E1 during cycle−other resource conflict
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Table 4−29 shows the instruction constraints for MPYSP instructions
executing on the .M unit.

Table 4−29. MPYSP .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4

MPYSP R W

Instruction Type Subsequent Same-Unit Instruction Executable

MPYSPDP � � �

MPYSP2DP � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � �

Load � � �

Store � � �

DP compare � � �

2-cycle DP � � �

Branch � � �

4-cycle � � �

INTDP � � �

ADDDP/SUBDP � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle
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Table 4−30 shows the instruction constraints for MPYSPDP instructions
executing on the .M unit.

Table 4−30. MPYSPDP .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6 7

MPYSPDP R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 × 16 multiply Xr � � Xw Xw �

MPYDP Xr Xu Xu � � �

MPYI Xr Xu Xu � � �

MPYID Xr Xu Xu � � �

MPYSP Xr Xw Xw � � �

MPYSPDP Xr Xu � � � �

MPYSP2DP Xr Xw Xw � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr � � � � �

Load Xr � � � � �

Store Xr � � � � �

DP compare Xr � � � � �

2-cycle DP Xr � � � � �

Branch Xr � � � � �

4-cycle Xr � � � � �

INTDP Xr � � � � �

ADDDP/SUBDP Xr � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle−read/
decode constraint; Xw = Next instruction cannot enter E1 during cycle−write constraint; Xu = Next instruction cannot
enter E1 during cycle−other resource conflict
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Table 4−31 shows the instruction constraints for MPYSP2DP instructions
executing on the .M unit.

Table 4−31. MPYSP2DP .M-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5

MPYSP2DP R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

16 × 16 multiply � Xw Xw �

MPYDP Xu � � �

MPYI Xu � � �

MPYID Xu � � �

MPYSP Xw � � �

MPYSPDP Xu � � �

MPYSP2DP Xw � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr � � �

Load Xr � � �

Store Xr � � �

DP compare Xr � � �

2-cycle DP Xr � � �

Branch Xr � � �

4-cycle Xr � � �

INTDP Xr � � �

ADDDP/SUBDP Xr � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle−read/
decode constraint; Xw = Next instruction cannot enter E1 during cycle−write constraint; Xu = Next instruction cannot
enter E1 during cycle−other resource conflict
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4.3.3 .L-Unit Constraints

Table 4−32 shows the instruction constraints for single-cycle instructions
executing on the .L unit.

Table 4−32. Single-Cycle .L-Unit Instruction Constraints

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

4-cycle �

INTDP �

ADDDP/SUBDP �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle �

DP compare �

2-cycle DP �

4-cycle �

Load �

Store �

Branch �

16 × 16 multiply �

MPYI �

MPYID �

MPYDP �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle



Functional Unit Constraints

4-49PipelineSPRU733A

Table 4−33 shows the instruction constraints for 4-cycle instructions executing
on the .L unit.

Table 4−33. 4-Cycle .L-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5

4-cycle R W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � Xw �

4-cycle � � � �

INTDP � � � �

ADDDP/SUBDP � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � �

DP compare � � � �

2-cycle DP � � � �

4-cycle � � � �

Load � � � �

Store � � � �

Branch � � � �

16 × 16 multiply � � � �

MPYI � � � �

MPYID � � � �

MPYDP � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write
constraint
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Table 4−34 shows the instruction constraints for INTDP instructions executing
on the .L unit.

Table 4−34. INTDP .L-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6

INTDP R W W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � Xw Xw �

4-cycle Xw � � � �

INTDP Xw � � � �

ADDDP/SUBDP � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle � � � � �

DP compare � � � � �

2-cycle DP � � � � �

4-cycle � � � � �

Load � � � � �

Store � � � � �

Branch � � � � �

16 × 16 multiply � � � � �

MPYI � � � � �

MPYID � � � � �

MPYDP � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write
constraint
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Table 4−35 shows the instruction constraints for ADDDP/SUBDP  instructions
executing on the .L unit.

Table 4−35. ADDDP/SUBDP .L-Unit Instruction Constraints 

Instruction Execution

Cycle 1 2 3 4 5 6 7 8

ADDDP/SUBDP R R W W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle Xr � � � Xw Xw �

4-cycle Xr Xw Xw � � � �

INTDP Xrw Xw Xw � � � �

ADDDP/SUBDP Xr � � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

Single-cycle Xr � � � � � �

DP compare Xr � � � � � �

2-cycle DP Xr � � � � � �

4-cycle Xr � � � � � �

Load � � � � � � �

Store � � � � � � �

Branch Xr � � � � � �

16 × 16 multiply Xr � � � � � �

MPYI Xr � � � � � �

MPYID Xr � � � � � �

MPYDP Xr � � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xr = Next instruction cannot enter E1 during cycle-read/
decode constraint; Xw = Next instruction cannot enter E1 during cycle−write constraint; Xrw = Next instruction cannot
enter E1 during cycle−read/decode/write constraint
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4.3.4 .D-Unit Instruction Constraints

Table 4−36 shows the instruction constraints for load instructions executing on
the .D unit.

Table 4−36. Load .D-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6

Load RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � � � �

Load � � � � �

Store � � � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 × 16 multiply � � � � �

MPYI � � � � �

MPYID � � � � �

MPYDP � � � � �

Single-cycle � � � � �

DP compare � � � � �

2-cycle DP � � � � �

Branch � � � � �

4-cycle � � � � �

INTDP � � � � �

ADDDP/SUBDP � � � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle
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Table 4−37 shows the instruction constraints for store instructions executing
on the .D unit.

Table 4−37. Store .D-Unit Instruction Constraints

Instruction Execution

Cycle 1 2 3 4

Store RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle � � �

Load � � �

Store � � �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 × 16 multiply � � �

MPYI � � �

MPYID � � �

MPYDP � � �

Single-cycle � � �

DP compare � � �

2-cycle DP � � �

Branch � � �

4-cycle � � �

INTDP � � �

ADDDP/SUBDP � � �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle
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Table 4−38 shows the instruction constraints for single-cycle instructions
executing on the .D unit.

Table 4−38. Single-Cycle .D-Unit Instruction Constraints

Instruction Execution

Cycle 1 2

Single-cycle RW

Instruction Type Subsequent Same-Unit Instruction Executable

Single-cycle �

Load �

Store �

Instruction Type Same Side, Different Unit, Both Using Cross Path Executable

16 × 16 multiply �

MPYI �

MPYID �

MPYDP �

Single-cycle �

DP compare �

2-cycle DP �

Branch �

4-cycle �

INTDP �

ADDDP/SUBDP �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle
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Table 4−39 shows the instruction constraints for LDDW instructions executing
on the .D unit.

Table 4−39. LDDW Instruction With Long Write Instruction Constraints

Instruction Execution

Cycle 1 2 3 4 5 6

LDDW RW W

Instruction Type Subsequent Same-Unit Instruction Executable

Instruction with long result � � � Xw �

Legend: �= E1 phase of the single-cycle instruction; R = Sources read for the instruction; W = Destinations written for the
instruction; � = Next instruction can enter E1 during cycle; Xw = Next instruction cannot enter E1 during cycle-write
constraint
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4.4 Performance Considerations
The C67x DSP pipeline is most effective when it is kept as full as the algorithms
in the program allow it to be. It is useful to consider some situations that can
affect pipeline performance.

A fetch packet (FP) is a grouping of eight instructions. Each FP can be split into
from one to eight execute packets (EPs). Each EP contains instructions that
execute in parallel. Each instruction executes in an independent functional
unit. The effect on the pipeline of combinations of EPs that include varying
numbers of parallel instructions, or just a single instruction that executes
serially with other code, is considered here.

In general, the number of execute packets in a single FP defines the flow of
instructions through the pipeline. Another defining factor is the instruction
types in the EP. Each type of instruction has a fixed number of execute cycles
that determines when this instruction’s operations are complete. Section 4.4.2
covers the effect of including a multicycle NOP in an individual EP.

Finally, the effect of the memory system on the operation of the pipeline is
considered. The access of program and data memory is discussed, along with
memory stalls.

4.4.1 Pipeline Operation With Multiple Execute Packets in a Fetch Packet

Referring to Figure 4−6, page 4-6, pipeline operation is shown with eight
instructions in every fetch packet. Figure 4−28, however, shows the pipeline
operation with a fetch packet that contains multiple execute packets. Code for
Figure 4−28 might have this layout:

instruction A ; EP k FP n
|| instruction B ;

instruction C ; EP k + 1 FP n
|| instruction D 
|| instruction E 

instruction F ; EP k + 2 FP n
|| instruction G 
|| instruction H 

instruction I ; EP k + 3 FP n + 1
|| instruction J 
|| instruction K 
|| instruction L 
|| instruction M 
|| instruction N 
|| instruction O 
|| instruction P 

... continuing with EPs k + 4 through k + 8, which have
eight instructions in parallel, like k + 3.
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Figure 4−28. Pipeline Operation: Fetch Packets With Different Numbers of Execute Packets

Clock cycle
Fetch
packet

(FP)

Execute
packet

(EP) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
n k PG PS PW PR ÉÉ

ÉÉ
DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

n k+1 ÉÉ
ÉÉ

DP DC E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

n k+2 ÉÉÉDP DC E1 E2 E3 E4 E5 E6 E7 E8 E9

n+1 k+3 PG PS PW PR DP DC E1 E2 E3 E4 E5 E6 E7 E8

n+2 k+4 PG PS PW Pipeline PR DP DC E1 E2 E3 E4 E5 E6 E7

n+3 k+5 PG PS stall PW PR DP DC E1 E2 E3 E4 E5 E6

n+4 k+6 PG PS PW PR DP DC E1 E2 E3 E4 E5

n+5 k+7 PG PS PW PR DP DC E1 E2 E3 E4

n+6 k+8 PG PS PW PR DP DC E1 E2 E3

In Figure 4−28, fetch packet n, which contains three execute packets, is
shown followed by six fetch packets (n + 1 through n + 6), each with one
execute packet (containing eight parallel instructions). The first fetch packet (n)
goes through the program fetch phases during cycles 1−4. During these
cycles, a program fetch phase is started for each of the fetch packets that
follow.

In cycle 5, the program dispatch (DP) phase, the CPU scans the p-bits and
detects that there are three execute packets (k through k + 2) in fetch packet n.
This forces the pipeline to stall, which allows the DP phase to start for execute
packets k + 1 and k + 2 in cycles 6 and 7. Once execute packet k + 2 is ready
to move on to the DC phase (cycle 8), the pipeline stall is released.

The fetch packets n + 1 through n + 4 were all stalled so the CPU could have
time to perform the DP phase for each of the three execute packets (k through
k + 2) in fetch packet n. Fetch packet n + 5 was also stalled in cycles 6 and 7:
it was not allowed to enter the PG phase until after the pipeline stall was
released in cycle 8. The pipeline continues operation as shown with fetch
packets n + 5 and n + 6 until another fetch packet containing multiple execu-
tion packets enters the DP phase, or an interrupt occurs.
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4.4.2 Multicycle NOPs

The NOP instruction has an optional operand, count, that allows you to issue
a single instruction for multicycle NOPs. A NOP 2, for example, fills in extra
delay slots for the instructions in its execute packet and for all previous execute
packets. If a NOP 2 is in parallel with an MPY instruction, the MPY results is
available for use by instructions in the next execute packet.

Figure 4−29 shows how a multicycle NOP can drive the execution of other
instructions in the same execute packet. Figure 4−29(a) shows a NOP in an
execute packet (in parallel) with other code. The results of the LD, ADD, and
MPY is available during the proper cycle for each instruction. Hence NOP has
no effect on the execute packet.

Figure 4−29(b) shows the replacement of the single-cycle NOP with a multi-
cycle NOP (NOP 5) in the same execute packet. The NOP 5 causes no opera-
tion to perform other than the operations from the instructions inside its
execute packet. The results of the LD, ADD, and MPY cannot be used by any
other instructions until the NOP 5 period has completed.

Figure 4−29. Multicycle NOP in an Execute Packet
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i
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i + 5
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i + 3
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i

All values available on i + 5

NOP 5MPYADDLD(b)
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Figure 4−30 shows how a multicycle NOP can be affected by a branch. If the
delay slots of a branch finish while a multicycle NOP is still dispatching NOPs
into the pipeline, the branch overrides the multicycle NOP and the branch
target begins execution five delay slots after the branch was issued.

Figure 4−30. Branching and Multicycle NOPs

EP7
Normal

Cycle #

11

10

9

8

7

6

5

4

3

2

1

Target

E1

DC

DP

PR

PW

PS

PG

Branch

E1

EP6

EP5

EP4

EP3

EP2

EP1

NOP5ADDMPYLD

EP without branch

EP without branch

. . .B

EP without branch

EP without branch

Branch will execute here

Pipeline Phase

†

†

†

†

†

Branch
EP7

See Figure 4−29(b)

† Delay slots of the branch

In one case, execute packet 1 (EP1) does not have a branch. The NOP 5 in
EP6 forces the CPU to wait until cycle 11 to execute EP7.

In the other case, EP1 does have a branch. The delay slots of the branch
coincide with cycles 2 through 6. Once the target code reaches E1 in cycle 7,
it executes.
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4.4.3 Memory Considerations

The C67x DSP has a memory configuration with program memory in one
physical space and data memory in another physical space. Data loads and
program fetches have the same operation in the pipeline, they just use differ-
ent phases to complete their operations. With both data loads and program
fetches, memory accesses are broken into multiple phases. This enables the
C67x DSP to access memory at a high speed. These phases are shown in
Figure 4−31.

Figure 4−31. Pipeline Phases Used During Memory Accesses

Program memory accesses use these pipeline phases

Data load accesses use these pipeline phases

PG PS PW PR DP

E1 E2 E3 E4 E5

To understand the memory accesses, compare data loads and instruction
fetches/dispatches. The comparison is valid because data loads and program
fetches operate on internal memories of the same speed on the C67x DSP and
perform the same types of operations (listed in Table 4−40) to accommodate
those memories. Table 4−40 shows the operation of program fetches pipeline
versus the operation of a data load.

Table 4−40. Program Memory Accesses Versus Data Load Accesses

Operation
Program Memory

Access Phase
Data Load

Access Phase

Compute address PG E1

Send address to memory PS E2

Memory read/write PW E3

Program memory: receive fetch packet at CPU boundary
Data load: receive data at CPU boundary

PR E4

Program memory: send instruction to functional units
Data load: send data to register

DP E5
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Depending on the type of memory and the time required to complete an
access, the pipeline may stall to ensure proper coordination of data and
instructions. This is discussed in section 4.4.3.1.

In the instance where multiple accesses are made to a single ported memory,
the pipeline will stall to allow the extra access to occur. This is called a memory
bank hit and is discussed in section 4.4.3.2.

4.4.3.1 Memory Stalls

A memory stall occurs when memory is not ready to respond to an access from
the CPU. This access occurs during the PW phase for a program memory
access and during the E3 phase for a data memory access. The memory stall
causes all of the pipeline phases to lengthen beyond a single clock cycle,
causing execution to take additional clock cycles to finish. The results of the
program execution are identical whether a stall occurs or not. Figure 4−32
illustrates this point.

Figure 4−32. Program and Data Memory Stalls
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4.4.3.2 Memory Bank Hits

Most C67x devices use an interleaved memory bank scheme, as shown in
Figure 4−33. Each number in the diagram represents a byte address. A load
byte (LDB ) instruction from address 0 loads byte 0 in bank 0. A load halfword
(LDH) instruction from address 0 loads the halfword value in bytes 0 and 1,
which are also in bank 0. A load word (LDW) instruction from address 0 loads
bytes 0 through 3 in banks 0 and 1. A load double-word (LDDW) instruction
from address 0 loads bytes 0 through 7 in banks 0 through 3.

Figure 4−33. 8-Bank Interleaved Memory
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30 31

Bank 7
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Because each of these banks is single-ported memory, only one access to
each bank is allowed per cycle. Two accesses to a single bank in a given cycle
result in a memory stall that halts all pipeline operation for one cycle, while the
second value is read from memory. Two memory operations per cycle are
allowed without any stall, as long as they do not access the same bank.

Consider the code in Example 4−2. Because both loads are trying to access
the same bank at the same time, one load must wait. The first LDW accesses
bank 0 on cycle i + 2 (in the E3 phase) and the second LDW accesses bank 0
on cycle i + 3 (in the E3 phase). See Table 4−41 for identification of cycles and
phases. The E4 phase for both LDW instructions is in cycle i + 4. To eliminate
this extra phase, the loads must access data from different banks (B4 address
would need to be in bank 1). For more information on programming topics, see
the TMS320C6000 Programmer’s Guide (SPRU198).

Example 4−2. Load From Memory Banks

LDW .D1 *A4++,A5 ; load 1, A4 address is in bank 0
|| LDW .D2 *B4++,B5 ; load 2, B4 address is in bank 0
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Table 4−41. Loads in Pipeline from Example 4−2

i i + 1 i + 2 i + 3 i + 4 i + 5

LDW .D1
Bank 0

E1 E2 E3 − E4 E5

LDW .D2
Bank 0

E1 E2 − E3 E4 E5

For devices that have more than one memory space (see Figure 4−34), an
access to bank 0 in one space does not interfere with an access to bank 0 in
another memory space, and no pipeline stall occurs.

The internal memory of the C67x DSP family varies from device to device. See
the device-specific data manual to determine the memory spaces in your device.

Figure 4−34. 8-Bank Interleaved Memory With Two Memory Spaces
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This chapter describes CPU interrupts, including reset and the nonmaskable
interrupt (NMI). It details the related CPU control registers and their functions
in controlling interrupts. It also describes interrupt processing, the method the
CPU uses to detect automatically the presence of interrupts and divert
program execution flow to your interrupt service code. Finally, the chapter
describes the programming implications of interrupts.
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5.1 Overview

Typically, DSPs work in an environment that contains multiple external
asynchronous events. These events require tasks to be performed by the DSP
when they occur. An interrupt is an event that stops the current process in the
CPU so that the CPU can attend to the task needing completion because of
the event. These interrupt sources can be on chip or off chip, such as timers,
analog-to-digital converters, or other peripherals.

Servicing an interrupt involves saving the context of the current process, com-
pleting the interrupt task, restoring the registers and the process context, and
resuming the original process. There are eight registers that control servicing
interrupts.

An appropriate transition on an interrupt pin sets the pending status of the
interrupt within the interrupt flag register (IFR). If the interrupt is properly
enabled, the CPU begins processing the interrupt and redirecting program
flow to the interrupt service routine.

5.1.1 Types of Interrupts and Signals Used

There are three types of interrupts on the CPUs of the TMS320C6000 DSPs.

� Reset
� Maskable
� Nonmaskable

These three types are differentiated by their priorities, as shown in Table 5−1.
The reset interrupt has the highest priority and corresponds to the RESET signal.
The nonmaskable interrupt has the second highest priority and corresponds
to the NMI signal. The lowest priority interrupts are interrupts 4−15
corresponding to the INT4−INT15 signals. RESET, NMI, and some of the
INT4−INT15 signals are mapped to pins on C6000 devices. Some of the
INT4−INT15 interrupt signals are used by internal peripherals and some may
be unavailable or can be used under software control. Check your device-
specific data manual to see your interrupt specifications.



Overview

5-3InterruptsSPRU733A

Table 5−1. Interrupt Priorities

Priority Interrupt Name Interrupt Type

Highest Reset Reset

NMI Nonmaskable

INT4 Maskable

INT5 Maskable

INT6 Maskable

INT7 Maskable

INT8 Maskable

INT9 Maskable

INT10 Maskable

INT11 Maskable

INT12 Maskable

INT13 Maskable

INT14 Maskable

Lowest INT15 Maskable

5.1.1.1 Reset (RESET)

Reset is the highest priority interrupt and is used to halt the CPU and return
it to a known state. The reset interrupt is unique in a number of ways:

� RESET is an active-low signal. All other interrupts are active-high signals.

� RESET must be held low for 10 clock cycles before it goes high again to
reinitialize the CPU properly.

� The instruction execution in progress is aborted and all registers are
returned to their default states.

� The reset interrupt service fetch packet must be located at address 0.

� RESET is not affected by branches.
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5.1.1.2 Nonmaskable Interrupt (NMI)

NMI is the second-highest priority interrupt and is generally used to alert the
CPU of a serious hardware problem such as imminent power failure.

For NMI processing to occur, the nonmaskable interrupt enable (NMIE) bit in
the interrupt enable register must be set to 1. If NMIE is set to 1, the only condi-
tion that can prevent NMI processing is if the NMI occurs during the delay slots
of a branch (whether the branch is taken or not).

NMIE is cleared to 0 at reset to prevent interruption of the reset. It is cleared
at the occurrence of an NMI to prevent another NMI from being processed. You
cannot manually clear NMIE, but you can set NMIE to allow nested NMIs.
While NMI is cleared, all maskable interrupts (INT4−INT15) are disabled.

5.1.1.3 Maskable Interrupts (INT4−INT15)

The CPUs of the C6000  DSPs have 12 interrupts that are maskable. These
have lower priority than the NMI and reset interrupts. These interrupts can be
associated with external devices, on-chip peripherals, software control, or not
be available.

Assuming that a maskable interrupt does not occur during the delay slots of
a branch (this includes conditional branches that do not complete execution
due to a false condition), the following conditions must be met to process a
maskable interrupt:

� The global interrupt enable bit (GIE) bit in the control status register (CSR) is
set to1.

� The NMIE bit in the interrupt enable register (IER) is set to1.

� The corresponding interrupt enable (IE) bit in the IER is set to1.

� The corresponding interrupt occurs, which sets the corresponding bit in
the interrupt flags register (IFR) to 1 and there are no higher priority
interrupt flag (IF) bits set in the IFR.
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5.1.1.4 Interrupt Acknowledgment (IACK) and Interrupt Number (INUM n)

The IACK and INUMn signals alert hardware external to the C6000 that an
interrupt has occurred and is being processed. The IACK signal indicates that
the CPU has begun processing an interrupt. The INUMn signal (INUM3−
INUM0) indicates the number of the interrupt (bit position in the IFR) that is
being processed. For example:

INUM3 = 0 (MSB)
INUM2 = 1
INUM1 = 1
INUM0 = 1 (LSB)

Together, these signals provide the 4-bit value 0111, indicating INT7 is being
processed.
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5.1.2 Interrupt Service Table (IST)

When the CPU begins processing an interrupt, it references the interrupt
service table (IST). The IST is a table of fetch packets that contain code for
servicing the interrupts. The IST consists of 16 consecutive fetch packets.
Each interrupt service fetch packet (ISFP) contains eight instructions. A simple
interrupt service routine may fit in an individual fetch packet.

The addresses and contents of the IST are shown in Figure 5−1. Because
each fetch packet contains eight 32-bit instruction words (or 32 bytes), each
address in the table is incremented by 32 bytes (20h) from the one adjacent
to it.

Figure 5−1. Interrupt Service Table
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5.1.2.1 Interrupt Service Fetch Packet (ISFP)

An ISFP is a fetch packet used to service an interrupt. Figure 5−2 shows an
ISFP that contains an interrupt service routine small enough to fit in a single
fetch packet (FP). To branch back to the main program, the FP contains a
branch to the interrupt return pointer instruction (B IRP). This is followed by a
NOP 5 instruction to allow the branch target to reach the execution stage of
the pipeline.

Note:

If the NOP 5 was not in the routine, the CPU would execute the next five
execute packets that are associated with the next ISFP.

Figure 5−2. Interrupt Service Fetch Packet
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Interrupt service table
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If the interrupt service routine for an interrupt is too large to fit in a single fetch
packet, a branch to the location of additional interrupt service routine code is
required. Figure 5−3 shows that the interrupt service routine for INT4 was too
large for a single fetch packet, and a branch to memory location 1234h is
required to complete the interrupt service routine.

Note:

The instruction B LOOP  branches into the middle of a fetch packet and
processes code starting at address 1234h. The CPU ignores code from
address 1220h−1230h, even if it is in parallel to code at address 1234h.

Figure 5−3. Interrupt Service Table With Branch to Additional Interrupt Service Code
Located Outside the IST
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INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP
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5.1.2.2 Interrupt Service Table Pointer (ISTP)

The reset fetch packet must be located at address 0, but the rest of the IST can
be at any program memory location that is on a 256-word boundary. The
location of the IST is determined by the interrupt service table base (ISTB) field
of the interrupt service table pointer register (ISTP). The ISTP is shown in
Figure 2−11 (page 2-21) and described in Table 2−12. Example 5−1 shows
the relationship of the ISTB to the table location.

Example 5−1. Relocation of Interrupt Service Table

IST

NMI ISFP

Reserved

Reserved

INT4 ISFP

INT5 ISFP

INT6 ISFP

INT7 ISFP

INT8 ISFP

INT9 ISFP

INT10 ISFP

INT11 ISFP

INT12 ISFP

INT13 ISFP

INT14 ISFP

INT15 ISFP

0

820h

840h

860h

880h

8A0h

8C0h

8E0h

900h

920h

940h

96h0

980h

9A0h

9C0h

9E0h

Program memory

800h

RESET ISFP

1) Copy the IST, located between 0h and 200h, to the memory
location between 800h and A00h.

2) Write 800h to ISTP: MVK 800h, A2
MVC A2, ISTP

ISTP = 800h = 1000 0000 0000b

RESET ISFP

Assume: IFR = BBC0h = 1011 1011 1100 0000b
 IER = 1230h = 0001 0010 0011 0001b

2 enabled interrupts pending: INT9 and INT12

The 1s in the IFR indicate pending interrupts; the 1s in the IER
indicate the interrupts that are enabled. INT9 has a higher priority
than INT12, so HPEINT is encoded with the value for INT9, 01001b.

HPEINT corresponds to bits 9−5 of the ISTP:
ISTP = 1001 0010 0000b = 920h = address of INT9

(b) How the ISTP directs the CPU to the appropriate ISFP in the
relocated IST

  

(a) Relocating the IST to 800h
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5.1.3 Summary of Interrupt Control Registers

Table 5−2 lists the interrupt control registers on the C67x CPU.

Table 5−2. Interrupt Control Registers

Acronym Register Name Description Page

CSR Control status register Allows you to globally set or disable interrupts 2-13

ICR Interrupt clear register Allows you to clear flags in the IFR manually 2-16

IER Interrupt enable register Allows you to enable interrupts 2-17

IFR Interrupt flag register Shows the status of interrupts 2-18

IRP Interrupt return pointer
register

Contains the return address used on return from a
maskable interrupt. This return is accomplished via
the B IRP instruction.

2-19

ISR Interrupt set register Allows you to set flags in the IFR manually 2-20

ISTP Interrupt service table pointer
register

Pointer to the beginning of the interrupt service
table

2-21

NRP Nonmaskable interrupt return
pointer register

Contains the return address used on return from a
nonmaskable interrupt. This return is accom-
plished via the B NRP instruction.

2-22
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5.2 Globally Enabling and Disabling Interrupts 

The control status register (CSR) contains two fields that control interrupts:
GIE and PGIE, as shown in Figure 2−4 (page 2-13) and described in
Table 2−7 (page 2-14). The global interrupt enable (GIE) allows you to enable
or disable all maskable interrupts:

� GIE = 1 enables the maskable interrupts so that they are processed.

� GIE = 0 disables the maskable interrupts so that they are not processed.

Bit 1 of CSR is the PGIE bit and holds the previous value of GIE when a mask-
able interrupt is processed. During maskable interrupt processing, the value
of the GIE bit is copied to the PGIE bit, and the GIE bit is cleared. The previous
value of the PGIE bit is lost. The GIE bit is cleared during a maskable interrupt
to prevent another maskable interrupt from occurring before the device state
has been saved. Upon returning from an interrupt, by way of the B IRP instruc-
tion, the content of the PGIE bit is copied back to the GIE bit. The PGIE bit
remains unchanged.

The purpose of the PGIE bit is to record the value of the GIE bit at the time the
interrupt processing begins. This is necessary because interrupts are
detected in parallel with instruction execution. Typically, the GIE bit is 1 when
an interrupt is taken. However, if an interrupt is detected in parallel with an
MVC instruction that clears the GIE bit, the GIE bit may be cleared by the
MVC instruction after the interrupt processing begins. Because the PGIE bit
records the state of the GIE bit after all instructions have completed execution,
the PGIE bit captures the fact that the GIE bit was cleared as the interrupt was
taken.

For example, suppose the GIE bit is set to 1 as the sequence of code shown
in Example 5−2 is entered. An interrupt occurs, and the CPU detects it just as
the CPU is executing the MVC instruction that writes a 0 to the GIE bit. Interrupt
processing begins. Meanwhile, the 0 is written to the GIE bit as the MVC in-
struction completes. During the interrupt dispatch, this updated value of the
GIE bit is copied to the PGIE bit, leaving the PGIE bit cleared to 0. Later, upon
returning from the interrupt (using the B IRP instruction), the PGIE bit is copied
to the GIE bit. As a result, the code following the MVC instruction recognizes
the GIE bit is cleared to 0, as directed by the MVC instruction, despite having
taken the interrupt.

Example 5−2 and Example 5−3 show code examples for disabling and enabling
maskable interrupts globally, respectively.
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Example 5−2. Code Sequence to Disable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
AND -2,B0,B0 ; get ready to clear GIE
MVC B0,CSR ; clear GIE

Example 5−3. Code Sequence to Enable Maskable Interrupts Globally

MVC CSR,B0 ; get CSR
OR 1,B0,B0 ; get ready to set GIE
MVC B0,CSR ; set GIE
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5.3 Individual Interrupt Control

Servicing interrupts effectively requires individual control of all three types of
interrupts: reset, nonmaskable, and maskable. Enabling and disabling individ-
ual interrupts is done with the interrupt enable register (IER). The status of
pending interrupts is stored in the interrupt flag register (IFR). Manual interrupt
processing can be accomplished through the use of the interrupt set register
(ISR) and interrupt clear register (ICR). The interrupt return pointers restore
context after servicing nonmaskable and maskable interrupts.

5.3.1 Enabling and Disabling Interrupts

You can enable and disable individual interrupts by setting and clearing bits
in the IER that correspond to the individual interrupts. An interrupt can trigger
interrupt processing only if the corresponding bit in the IER is set. Bit 0,
corresponding to reset, is not writeable and is always read as 1, so the reset
interrupt is always enabled. You cannot disable the reset interrupt. Bits
IE4−IE15 can be written as 1 or 0, enabling or disabling the associated
interrupt, respectively. The IER is shown in Figure 2−7 (page 2-17) and
described in Table 2−9.

When NMIE = 0, all nonreset interrupts are disabled, preventing interruption
of an NMI. The NMIE bit is cleared at reset to prevent any interruption of
process or initialization until you enable NMI. After reset, you must set the
NMIE bit to enable the NMI and to allow INT15−INT4 to be enabled by the GIE
bit in CSR and the corresponding IER bit. You cannot manually clear the NMIE
bit; the NMIE bit is unaffected by a write of 0. The NMIE bit is also cleared by
the occurrence of an NMI. If cleared, the NMIE bit is set only by completing a
B NRP instruction or by a write of 1 to the NMIE bit. Example 5−4 and
Example 5−5 show code for enabling and disabling individual interrupts,
respectively.

Example 5−4. Code Sequence to Enable an Individual Interrupt (INT9)

MVK 200h,B1 ; set bit 9
MVC IER,B0 ; get IER
OR B1,B0,B0 ; get ready to set IE9
MVC B0,IER ; set bit 9 in IER

Example 5−5. Code Sequence to Disable an Individual Interrupt (INT9)

MVK FDFFh,B1 ; clear bit 9
MVC IER,B0
AND B1,B0,B0 ; get ready to clear IE9
MVC B0,IER ; clear bit 9 in IER
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5.3.2 Status of Interrupts

The interrupt flag register (IFR) contains the status of INT4−INT15 and NMI.
Each interrupt’s corresponding bit in IFR is set to 1 when that interrupt occurs;
otherwise, the bits have a value of 0. If you want to check the status of inter-
rupts, use the MVC instruction to read IFR. The IFR is shown in Figure 2−8
(page 2-18) and described in Table 2−10.

5.3.3 Setting and Clearing Interrupts 

The interrupt set register (ISR) and the interrupt clear register (ICR) allow you
to set or clear maskable interrupts manually in IFR. Writing a 1 to IS4−IS15 in
ISR causes the corresponding interrupt flag to be set in IFR. Similarly, writing
a 1 to a bit in ICR causes the corresponding interrupt flag to be cleared. Writing
a 0 to any bit of either ISR or ICR has no effect. Incoming interrupts have prior-
ity and override any write to ICR. You cannot set or clear any bit in ISR or ICR
to affect NMI or reset. The ISR is shown in Figure 2−10 (page 2-20) and
described in Table 2−11. The ICR is shown in Figure 2−6 (page 2-16) and
described in Table 2−8.

Note:

Any write to the ISR or ICR (by the MVC instruction) effectively has one delay
slot because the results cannot be read (by the MVC instruction) in IFR until
two cycles after the write to ISR or ICR.

Any write to ICR is ignored by a simultaneous write to the same bit in ISR.

Example 5−6 and Example 5−7 show code examples to set and clear individu-
al interrupts, respectively.

Example 5−6. Code to Set an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ISR
NOP
MVC IFR,B4

Example 5−7. Code to Clear an Individual Interrupt (INT6) and Read the Flag Register

MVK 40h,B3
MVC B3,ICR
NOP
MVC IFR,B4
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5.3.4 Returning From Interrupt Servicing

After RESET goes high, the control registers are brought to a known value and
program execution begins at address 0h. After nonmaskable and maskable
interrupt servicing, use a branch to the corresponding return pointer register
to continue the previous program execution.

5.3.4.1 CPU State After RESET

After RESET, the control registers and bits contain the following values:

� AMR, ISR, ICR, IFR, and ISTP = 0
� IER = 1h
� IRP and NRP = undefined
� CSR bits 15−0 = 100h in little-endian mode 

= 000h in big-endian mode

5.3.4.2 Returning From Nonmaskable Interrupts

The NMI return pointer register (NRP), shown in Figure 2−12 (page 2-22),
contains the return pointer that directs the CPU to the proper location to contin-
ue program execution after NMI processing. A branch using the address in
NRP (B NRP) in your interrupt service routine returns to the program flow
when NMI servicing is complete. Example 5−8 shows how to return from an
NMI.

Example 5−8. Code to Return From NMI

B NRP ; return, sets NMIE
NOP 5 ; delay slots

5.3.4.3 Returning From Maskable Interrupts

The interrupt return pointer register (IRP), shown in Figure 2−9 (page 2-19),
contains the return pointer that directs the CPU to the proper location to contin-
ue program execution after processing a maskable interrupt. A branch using
the address in IRP (B IRP) in your interrupt service routine returns to the
program flow when interrupt servicing is complete. Example 5−9 shows how
to return from a maskable interrupt.

Example 5−9. Code to Return from a Maskable Interrupt

B IRP ; return, moves PGIE to GIE
NOP 5 ; delay slots
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5.4 Interrupt Detection and Processing
When an interrupt occurs, it sets a flag in the interrupt flag register (IFR).
Depending on certain conditions, the interrupt may or may not be processed.
This section discusses the mechanics of setting the flag bit, the conditions for
processing an interrupt, and the order of operation for detecting and proces-
sing an interrupt. The similarities and differences between reset and nonreset
interrupts are also discussed.

5.4.1 Setting the Nonreset Interrupt Flag

Figure 5−4 shows the processing of a nonreset interrupt (INTm). The flag
(IFm) for INTm in the IFR is set following the low-to-high transition of the INTm
signal on the CPU boundary. This transition is detected on a clock-cycle by
clock-cycle basis and is not affected by memory stalls that might extend a CPU
cycle. Once there is a low-to-high transition on an external interrupt pin
(cycle 1), it takes two clock cycles for the signal to reach the CPU boundary
(cycle 3). When the interrupt signal enters the CPU, it is has been detected
(cycle 4). Two clock cycles after detection, the interrupt’s corresponding flag
bit in the IFR is set (cycle 6).

In Figure 5−4, IFm is set during CPU cycle 6. You could attempt to clear IFm
by using an MVC instruction to write a 1 to bit m of the ICR in execute packet
n + 3 (during CPU cycle 4). However, in this case, the automated write by the
interrupt detection logic takes precedence and IFm remains set.

Figure 5−4 assumes INTm is the highest-priority pending interrupt and is
enabled by GIE and NMIE, as necessary. If it is not the highest-priority pending
interrupt, IFm remains set until either you clear it by writing a 1 to bit m of the
ICR or the processing of INTm occurs.

5.4.2 Conditions for Processing a Nonreset Interrupt

In clock cycle 4 of Figure 5−4, a nonreset interrupt in need of processing is
detected. For this interrupt to be processed, the following conditions must be
valid on the same clock cycle and are evaluated every clock cycle:

� IFm is set during CPU cycle 6. (This determination is made in CPU cycle 4
by the interrupt logic.)

� There is not a higher priority IFm bit set in the IFR.

� The corresponding bit in the IER is set (IEm = 1).

� GIE = 1

� NMIE = 1

� The five previous execute packets (n through n + 4) do not contain a
branch (even if the branch is not taken) and are not in the delay slots of
a branch.
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Any pending interrupt will be taken as soon as pending branches are
completed.

Figure 5−4. Nonreset Interrupt Detection and Processing: Pipeline Operation
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5.4.3 Actions Taken During Nonreset Interrupt Processing

During CPU cycles 6 through 14 of Figure 5−4, the following interrupt proces-
sing actions occur:

� Processing of subsequent nonreset interrupts is disabled.

� For all interrupts except NMI, the PGIE bit is set to the value of the GIE bit
and then the GIE bit is cleared.

� For NMI, the NMIE bit is cleared.

� The next execute packets (from n + 5 on) are annulled. If an execute
packet is annulled during a particular pipeline stage, it does not modify any
CPU state. Annulling also forces an instruction to be annulled in future
pipeline stages.

� The address of the first annulled execute packet (n + 5) is loaded in NRP
(in the case of NMI) or IRP (for all other interrupts).

� During cycle 7, IACK is asserted and the proper INUMn signals are
asserted to indicate which interrupt is being processed. The timings for
these signals in Figure 5−4 represent only the signals’ characteristics
inside the CPU. The external signals may be delayed and be longer in
duration to handle external devices. Check the device-specific
data manual for your timing values.

� IFm is cleared during cycle 8.

� A branch to the address held in ISTP (the pointer to the ISFP for INTm)
is forced into the E1 phase of the pipeline during cycle 9.
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5.4.4 Setting the RESET  Interrupt Flag

RESET must be held low for a minimum of 10 clock cycles. Four clock cycles
after RESET goes high, processing of the reset vector begins. The flag for
RESET (IF0) in the IFR is set by the low-to-high transition of the RESET signal
on the CPU boundary. In Figure 5−5, IF0 is set during CPU cycle 15. This tran-
sition is detected on a clock-cycle by clock-cycle basis and is not affected by
memory stalls that might extend a CPU cycle.

Figure 5−5. RESET Interrupt Detection and Processing: Pipeline Operation
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5.4.5 Actions Taken During RESET  Interrupt Processing

A low signal on the RESET pin is the only requirement to process a reset. Once
RESET makes a high-to-low transition, the pipeline is flushed and CPU regis-
ters are returned to their reset values. GIE, NMIE, and the ISTB in the ISTP
are cleared. For the CPU state after reset, see section 5.3.4.1.

During CPU cycles 15 through 21 of Figure 5−5, the following reset proces-
sing actions occur:

� Processing of subsequent nonreset interrupts is disabled because the
GIE and NMIE bits are cleared.

� A branch to the address held in ISTP (the pointer to the ISFP for INT0) is
forced into the E1 phase of the pipeline during cycle 16.

� During cycle 16, IACK is asserted and the proper INUMn signals are
asserted to indicate a reset is being processed.

� IF0 is cleared during cycle 17.

Note:

Code that starts running after reset must explicitly enable the GIE bit, the
NMIE bit, and IER to allow interrupts to be processed.
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5.5 Performance Considerations

The interaction of the C6000 CPU and sources of interrupts present perfor-
mance issues for you to consider when you are developing your code.

5.5.1 General Performance

� Overhead . Overhead for all CPU interrupts is 9 cycles. You can see this
in Figure 5−4, where no new instructions are entering the E1 pipeline
phase during CPU cycles 6 through 14.

� Latency . Interrupt latency is 13 cycles (21 cycles for RESET). In
Figure 5−4, although the interrupt is active in cycle 2, execution of interrupt
service code does not begin until cycle 15.

� Frequency . The logic clears the nonreset interrupt (IFm) on cycle 8, with
any incoming interrupt having highest priority. Thus, an interrupt is can be
recognized every second cycle. Also, because a low-to-high transition is
necessary, an interrupt can occur only every second cycle. However, the
frequency of interrupt processing depends on the time required for inter-
rupt service and whether you reenable interrupts during processing,
thereby allowing nested interrupts. Effectively, only two occurrences of a
specific interrupt can be recognized in two cycles.

5.5.2 Pipeline Interaction

Because the serial or parallel encoding of fetch packets does not affect the DC
and subsequent phases of the pipeline, no conflicts between code parallelism
and interrupts exist. There are three operations or conditions that can affect
or are affected by interrupts:

� Branches. Nonreset interrupts are delayed, if any execute packets n
through n + 4 in Figure 5−4 contain a branch or are in the delay slots of
a branch.

� Memory stalls. Memory stalls delay interrupt processing, because they
inherently extend CPU cycles.

� Multicycle NOPs.  Multicycle NOPs (including the IDLE instruction)
operate like other instructions when interrupted, except when an interrupt
causes annulment of any but the first cycle of a multicycle NOP. In that
case, the address of the next execute packet in the pipeline is saved in
NRP or IRP. This prevents returning to an IDLE instruction or a multicycle
NOP that was interrupted.



Programming Considerations

Interrupts5-22 SPRU733A

5.6 Programming Considerations

The interaction of the C6000 CPUs and sources of interrupts present program-
ming issues for you to consider when you are developing your code.

5.6.1 Single Assignment Programming

Using the same register to store different variables (called here: multiple
assignment) can result in unpredictable operation when the code can be
interrupted.

To avoid unpredictable operation, you must employ the single assignment
method in code that can be interrupted. When an interrupt occurs, all instruc-
tions entering E1 prior to the beginning of interrupt processing are allowed to
complete execution (through E5). All other instructions are annulled and
refetched upon return from interrupt. The instructions encountered after the
return from the interrupt do not experience any delay slots from the instructions
prior to processing the interrupt. Thus, instructions with delay slots prior to the
interrupt can appear, to the instructions after the interrupt, to have fewer delay
slots than they actually have.

Example 5−10 shows a code fragment which stores two variables into A1
using multiple assignment. Example 5−11 shows equivalent code using the
single assignment programming method which stores the two variables into
two different registers.

For example, suppose that register A1 contains 0 and register A0 points to a
memory location containing a value of 10 before reaching the code in
Example 5−10. The ADD instruction, which is in a delay slot of the LDW, sums
A2 with the value in A1 (0) and the result in A3 is just a copy of A2. If an interrupt
occurred between the LDW and ADD, the LDW would complete the update
of A1 (10), the interrupt would be processed, and the ADD would sum A1 (10)
with A2 and place the result in A3 (equal to A2 + 10). Obviously, this situation
produces incorrect results.

In Example 5−11, the single assignment method is used. The register A1 is
assigned only to the ADD input and not to the result of the LDW. Regardless
of the value of A6 with or without an interrupt, A1 does not change before it is
summed with A2. Result A3 is equal to A2.

Example 5−10. Code Without Single Assignment: Multiple Assignment of A1

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5 ; uses new A1
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Example 5−11. Code Using Single Assignment

LDW .D1 *A0,A6
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A6,A4,A5 ; uses A6

5.6.2 Nested Interrupts

Generally, when the CPU enters an interrupt service routine, interrupts are
disabled. However, when the interrupt service routine is for one of the
maskable interrupts (INT4−INT15), an NMI can interrupt processing of the
maskable interrupt. In other words, an NMI can interrupt a maskable interrupt,
but neither an NMI nor a maskable interrupt can interrupt an NMI.

There may be times when you want to allow an interrupt service routine to be
interrupted by another (particularly higher priority) interrupt. Even though the
processor by default does not allow interrupt service routines to be interrupted
unless the source is an NMI, it is possible to nest interrupts under software
control. To allow nested interrupts, the interrupt service routine must perform
the following initial steps in addition to its normal work of saving any registers
(including control registers) that it modifies:

1) The contents of IRP (or NRP) must be saved
2) The contents of the PGIE bit must be saved
3) The GIE bit must be set to 1

Prior to returning from the interrupt service routine, the code must restore the
registers saved above as follows:

1) The GIE bit must be first cleared to 0
2) The PGIE bit saved value must be restored
3) The IRP (or NRP) saved value must be restored

Although steps 2 and 3 above may be performed in any order, it is important
that the GIE bit is cleared first. This means that the GIE and PGIE bits must
be restored with separate writes to CSR. If these bits are not restored
separately, then it is possible that the PGIE bit is overwritten by nested
interrupt processing just as interrupts are being disabled.

Example 5−12 shows a simple assembly interrupt handler that allows nested
interrupts on the C67x CPU. This example saves its context to the system
stack, pointed to by B15. This assumes that the C runtime conventions are
being followed. The example code is not optimized, to aid in readability.
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Example 5−13 shows a C-based interrupt handler that allows nested
interrupts. The steps are similar, although the compiler takes care of allocating
the stack and saving CPU registers. For more information on using C to access
control registers and write interrupt handlers, see the TMS320C6000
Optimizing C Compiler Users Guide, SPRU187.

Example 5−12. Assembly Interrupt Service Routine That Allows Nested Interrupts

_isr:
STW B0, *B15−−[4] ; Save B0, allocate 4 words of stack
STW B1, *B15[1] ; Save B1 on stack

MVC IRP, B0
STW B0, *B15[2] ; Save IRP on stack

MVC CSR, B0
STW B0, *B15[3] ; Save CSR (and thus PGIE) on stack

OR B0, 1, B1
MVC B1, CSR ; Enable interrupts

; Interrupt service code goes here.
; Interrupts may occur while this code executes.

MVC CSR, B0 ;\
AND B0, −2, B1 ; |−− Disable interrupts.
MVC B1, CSR ;/    (Set GIE to 0)

LDW *B15[3], B0 ; get saved value of CSR into B0
NOP 4 ; wait for LDW *B15[3] to finish
MVC B0, CSR ; Restore PGIE

LDW *B15[2], B0 ; get saved value of IRP into B1
NOP 4
MVC B0, IRP ; Restore IRP

B IRP ; Return from interrupt
|| LDW *B15[1], B1 ; Restore B1

LDW *++B15[4], B0 ; Restore B0, release stack.

NOP 4 ; wait for B IRP and LDW to complete.
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Example 5−13. C Interrupt Service Routine That Allows Nested Interrupts

/* c6x.h contains declarations of the C6x control registers */
#include <c6x.h>

interrupt void isr(void)
{

unsigned old_csr;
unsigned old_irp;

old_irp = IRP ;/* Save IRP */
old_csr = CSR ;/* Save CSR (and thus PGIE) */

CSR = old_csr | 1 ;/* Enable interrupts */

/* Interrupt service code goes here. */
/* Interrupts may occur while this code executes */

CSR = CSR & −2 ;/* Disable interrupts */
CSR = old_csr ;/* Restore CSR (and thus PGIE) */
IRP = old_irp ;/* Restore IRP */

}

5.6.3 Manual Interrupt Processing

You can poll the IFR and IER to detect interrupts manually and then branch to
the value held in the ISTP as shown below in Example 5−14.

The code sequence begins by copying the address of the highest priority inter-
rupt from the ISTP to the register B2. The next instruction extracts the number
of the interrupt, which is used later to clear the interrupt. The branch to the
interrupt service routine comes next with a parallel instruction to set up the ICR
word.

The last five instructions fill the delay slots of the branch. First, the 32-bit return
address is stored in the B2 register and then copied to the interrupt return
pointer (IRP). Finally, the number of the highest priority interrupt, stored in B1,
is used to shift the ICR word in B1 to clear the interrupt.

Example 5−14. Manual Interrupt Processing

MVC ISTP,B2 ; get related ISFP address
EXTU B2,23,27,B1 ; extract HPEINT
[B1] B B2 ; branch to interrupt

|| [B1] MVK 1,A0 ; setup ICR word
[B1] MVK RET_ADR,B2 ; create return address
[B1] MVKH RET_ADR,B2 ;
[B1] MVC B2,IRP ; save return address
[B1] SHL A0,B1,B1 ; create ICR word
[B1] MVC B1,ICR ; clear interrupt flag
RET_ADR: (Post interrupt service routine Code)



Programming Considerations

Interrupts5-26 SPRU733A

5.6.4 Traps

A trap behaves like an interrupt, but is created and controlled with software.
The trap condition can be stored in any one of the conditional registers: A1,
A2, B0, B1, or B2. If the trap condition is valid, a branch to the trap handler
routine processes the trap and the return.

Example 5−15 and Example 5−16 show a trap call and the return code
sequence, respectively. In the first code sequence, the address of the trap
handler code is loaded into register B0 and the branch is called. In the delay
slots of the branch, the context is saved in the B0 register, the GIE bit is cleared
to disable maskable interrupts, and the return pointer is stored in the B1
register. If the trap handler were within the 21-bit offset for a branch using a
displacement, the MVKH instructions could be eliminated, thus shortening the
code sequence.

The trap is processed with the code located at the address pointed to by the
label TRAP_HANDLER. If the B0 or B1 registers are needed in the trap
handler, their contents must be stored to memory and restored before return-
ing. The code shown in Example 5−16 should be included at the end of the trap
handler code to restore the context prior to the trap and return to the
TRAP_RETURN address.

Example 5−15. Code Sequence to Invoke a Trap

[A1] MVK TRAP_HANDLER,B0 ; load 32-bit trap address
[A1] MVKH TRAP_HANDLER,B0
[A1] B B0 ; branch to trap handler
[A1] MVC CSR,B0 ; read CSR
[A1] AND -2,B0,B1 ; disable interrupts: GIE = 0
[A1] MVC B1,CSR ; write to CSR
[A1] MVK TRAP_RETURN,B1 ; load 32-bit return address
[A1] MVKH TRAP_RETURN,B1
TRAP_RETURN: (post-trap code)

Note: A1 contains the trap condition.

Example 5−16. Code Sequence for Trap Return

B B1 ; return
MVC B0,CSR ; restore CSR
NOP 4 ; delay slots
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Appendix A
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The C62x, C64x, and C67x DSPs share an instruction set. All of the instruc-
tions valid for the C62x DSP are also valid for the C67x and C67x+ DSPs. The
C67x DSP adds specific instructions for 32-bit integer multiply, doubleword
load, and floating-point operations. Table A−1 lists the instructions that are
common to the C62x, C64x, C67x, and C67x+ DSPs.

Table A−1. Instruction Compatibility Between C62x, C64x, C67x,
and C67x+ DSPs  

Instruction Page C62x DSP C64x DSP C67x DSP C67x+ DSP

ABS 3-37 � � � �

ABSDP 3-39 � �

ABSSP 3-41 � �

ADD 3-43 � � � �

ADDAB 3-47 � � � �

ADDAD 3-49 � �

ADDAH 3-51 � � � �

ADDAW 3-53 � � � �

ADDDP 3-55 � �

ADDK 3-58 � � � �

ADDSP 3-59 � �

ADDU 3-62 � � � �

ADD2 3-64 � � � �

AND 3-66 � � � �

Appendix A
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Table A−1. Instruction Compatibility Between C62x, C64x, C67x,
and C67x+ DSPs  (Continued)

Instruction C67x+ DSPC67x DSPC64x DSPC62x DSPPage

B displacement 3-68 � � � �

B register 3-70 � � � �

B IRP 3-72 � � � �

B NRP 3-74 � � � �

CLR 3-76 � � � �

CMPEQ 3-79 � � � �

CMPEQDP 3-81 � �

CMPEQSP 3-83 � �

CMPGT 3-85 � � � �

CMPGTDP 3-88 � �

CMPGTSP 3-90 � �

CMPGTU 3-92 � � � �

CMPLT 3-94 � � � �

CMPLTDP 3-97 � �

CMPLTSP 3-99 � �

CMPLTU 3-101 � � � �

DPINT 3-103 � �

DPSP 3-105 � �

DPTRUNC 3-107 � �

EXT 3-109 � � � �

EXTU 3-112 � � � �

IDLE 3-115 � � � �

INTDP 3-116 � �

INTDPU 3-118 � �
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Table A−1. Instruction Compatibility Between C62x, C64x, C67x,
and C67x+ DSPs  (Continued)

Instruction C67x+ DSPC67x DSPC64x DSPC62x DSPPage

INTSP 3-120 � �

INTSPU 3-121 � �

LDB memory 3-122 � � � �

LDB memory (15-bit offset) 3-125 � � � �

LDBU memory 3-122 � � � �

LDBU memory (15-bit offset) 3-125 � � � �

LDDW 3-127 � �

LDH memory 3-130 � � � �

LDH memory (15-bit offset) 3-133 � � � �

LDHU memory 3-130 � � � �

LDHU memory (15-bit offset) 3-133 � � � �

LDW memory 3-135 � � � �

LDW memory (15-bit offset) 3-138 � � � �

LMBD 3-140 � � � �

MPY 3-142 � � � �

MPYDP 3-144 � �

MPYH 3-146 � � � �

MPYHL 3-148 � � � �

MPYHLU 3-150 � � � �

MPYHSLU 3-151 � � � �

MPYHSU 3-152 � � � �

MPYHU 3-153 � � � �

MPYHULS 3-154 � � � �

MPYHUS 3-155 � � � �
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Table A−1. Instruction Compatibility Between C62x, C64x, C67x,
and C67x+ DSPs  (Continued)

Instruction C67x+ DSPC67x DSPC64x DSPC62x DSPPage

MPYI 3-156 � �

MPYID 3-158 � �

MPYLH 3-160 � � � �

MPYLHU 3-162 � � � �

MPYLSHU 3-163 � � � �

MPYLUHS 3-164 � � � �

MPYSP 3-165 � �

MPYSPDP 3-167 �

MPYSP2DP 3-169 �

MPYSU 3-171 � � � �

MPYU 3-173 � � � �

MPYUS 3-175 � � � �

MV 3-177 � � � �

MVC 3-179 � � � �

MVK 3-182 � � � �

MVKH 3-184 � � � �

MVKL 3-186 � � � �

MVKLH 3-184 � � � �

NEG 3-188 � � � �

NOP 3-189 � � � �

NORM 3-191 � � � �

NOT 3-193 � � � �

OR 3-194 � � � �

RCPDP 3-196 � �

RCPSP 3-198 � �
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Table A−1. Instruction Compatibility Between C62x, C64x, C67x,
and C67x+ DSPs  (Continued)

Instruction C67x+ DSPC67x DSPC64x DSPC62x DSPPage

RSQRDP 3-200 � �

RSQRSP 3-202 � �

SADD 3-204 � � � �

SAT 3-207 � � � �

SET 3-209 � � � �

SHL 3-212 � � � �

SHR 3-214 � � � �

SHRU 3-216 � � � �

SMPY 3-218 � � � �

SMPYH 3-220 � � � �

SMPYHL 3-221 � � � �

SMPYLH 3-223 � � � �

SPDP 3-225 � �

SPINT 3-227 � �

SPTRUNC 3-229 � �

SSHL 3-231 � � � �

SSUB 3-233 � � � �

STB memory 3-235 � � � �

STB memory (15-bit offset) 3-237 � � � �

STH memory 3-239 � � � �

STH memory (15-bit offset) 3-242 � � � �

STW memory 3-244 � � � �

STW memory (15-bit offset) 3-246 � � � �
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Table A−1. Instruction Compatibility Between C62x, C64x, C67x,
and C67x+ DSPs  (Continued)

Instruction C67x+ DSPC67x DSPC64x DSPC62x DSPPage

SUB 3-248 � � � �

SUBAB 3-252 � � � �

SUBAH 3-254 � � � �

SUBAW 3-255 � � � �

SUBC 3-257 � � � �

SUBDP 3-259 � �

SUBSP 3-262 � �

SUBU 3-265 � � � �

SUB2 3-267 � � � �

XOR 3-269 � � � �

ZERO 3-271 � � � �
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Appendix A

Mapping Between Instruction and
Functional Unit

Table B−1 lists the instructions that execute on each functional unit.

Table B−1. Functional Unit to Instruction Mapping  

Functional Unit

Instruction .L Unit .M Unit .S Unit .D Unit

ABS �

ABSDP �

ABSSP �

ADD � � �

ADDAB �

ADDAD �

ADDAH �

ADDAW �

ADDDP � �§

ADDK �

ADDSP � �§

ADDU �

ADD2 �

AND � �

† S2 only
‡ D2 only
§ C67x+ DSP-specific instruction

Appendix B
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Table B−1. Functional Unit to Instruction Mapping  (Continued)

Instruction

Functional Unit

Instruction .D Unit.S Unit.M Unit.L Unit

B displacement �

B register �†

B IRP �†

B NRP �†

CLR �

CMPEQ �

CMPEQDP �

CMPEQSP �

CMPGT �

CMPGTDP �

CMPGTSP �

CMPGTU �

CMPLT �

CMPLTDP �

CMPLTSP �

CMPLTU �

DPINT �

DPSP �

DPTRUNC �

EXT �

EXTU �

IDLE

† S2 only
‡ D2 only
§ C67x+ DSP-specific instruction
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Table B−1. Functional Unit to Instruction Mapping  (Continued)

Instruction

Functional Unit

Instruction .D Unit.S Unit.M Unit.L Unit

INTDP �

INTDPU �

INTSP �

INTSPU �

LDB memory �

LDB memory (15-bit offset) �‡

LDBU memory �

LDBU memory (15-bit offset) �‡

LDDW �

LDH memory �

LDH memory (15-bit offset) �‡

LDHU memory �

LDHU memory (15-bit offset) �‡

LDW memory �

LDW memory (15-bit offset) �‡

LMBD �

MPY �

MPYDP �

MPYH �

MPYHL �

MPYHLU �

MPYHSLU �

MPYHSU �

† S2 only
‡ D2 only
§ C67x+ DSP-specific instruction
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Table B−1. Functional Unit to Instruction Mapping  (Continued)

Instruction

Functional Unit

Instruction .D Unit.S Unit.M Unit.L Unit

MPYHU �

MPYHULS �

MPYHUS �

MPYI �

MPYID �

MPYLH �

MPYLHU �

MPYLSHU �

MPYLUHS �

MPYSP �

MPYSPDP§ �

MPYSP2DP§ �

MPYSU �

MPYU �

MPYUS �

MV � � �

MVC �†

MVK �

MVKH �

MVKL �

MVKLH �

NEG � �

NOP

† S2 only
‡ D2 only
§ C67x+ DSP-specific instruction
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Table B−1. Functional Unit to Instruction Mapping  (Continued)

Instruction

Functional Unit

Instruction .D Unit.S Unit.M Unit.L Unit

NORM �

NOT � �

OR � �

RCPDP �

RCPSP �

RSQRDP �

RSQRSP �

SADD �

SAT �

SET �

SHL �

SHR �

SHRU �

SMPY �

SMPYH �

SMPYHL �

SMPYLH �

SPDP �

SPINT �

SPTRUNC �

SSHL �

SSUB �

STB memory �

† S2 only
‡ D2 only
§ C67x+ DSP-specific instruction
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Table B−1. Functional Unit to Instruction Mapping  (Continued)

Instruction

Functional Unit

Instruction .D Unit.S Unit.M Unit.L Unit

STB memory (15-bit offset) �‡

STH memory �

STH memory (15-bit offset) �‡

STW memory �

STW memory (15-bit offset) �‡

SUB � � �

SUBAB �

SUBAH �

SUBAW �

SUBC �

SUBDP � �§

SUBSP � �§

SUBU � �

SUB2 �

XOR � �

ZERO � � �

† S2 only
‡ D2 only
§ C67x+ DSP-specific instruction
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This appendix lists the instructions that execute in the .D functional unit and
illustrates the opcode maps for these instructions.

Topic Page
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C.2 Opcode Map Symbols and Meanings C-3. . . . . . . . . . . . . . . . . . . . . . . . . . . 

C.3 32-Bit Opcode Maps C-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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C.1 Instructions Executing in the .D Functional Unit

Table C−1 lists the instructions that execute in the .D functional unit.

Table C−1. Instructions Executing in the .D Functional Unit

Instruction Instruction

ADD LDW memory

ADDAB LDW memory (15-bit offset)‡

ADDAD MV

ADDAH STB memory

ADDAW STB memory (15-bit offset)‡

LDB memory STH memory

LDB memory (15-bit offset)‡ STH memory (15-bit offset)‡

LDBU memory STW memory

LDBU memory (15-bit offset)‡ STW memory (15-bit offset)‡

LDDW SUB

LDH memory SUBAB

LDH memory (15-bit offset)‡ SUBAH

LDHU memory SUBAW

LDHU memory (15-bit offset)‡ ZERO

† S2 only
‡ D2 only
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C.2 Opcode Map Symbols and Meanings

Table C−2 lists the symbols and meanings used in the opcode maps.

Table C−2. .D Unit Opcode Map Symbol Definitions

Symbol Meaning

baseR base address register

creg 3-bit field specifying a conditional register

dst destination. For compact instructions, dst is coded as an offset from either A16 or B16
depending on the value of the t bit.

mode addressing mode, see Table C−3

offsetR register offset

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is
executed in parallel

r LDDW instruction

s side A or B for destination; 0 = side A, 1 = side B. For compact instructions, side of base ad-
dress (ptr) register; 0 = side A, 1 = side B.

src source. For compact instructions, src is coded as an offset from either A16 or B16 depending
on the value of the t bit.

src1 source 1

src2 source 2

x cross path for src2; 0 = do not use cross path, 1 = use cross path

y .D1 or .D2 unit; 0 = .D1 unit, 1 = .D2 unit

z test for equality with zero or nonzero
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Table C−3. Address Generator Options for Load/Store

mode  Field Syntax Modification Performed

0 0 0 0 *−R[ucst5] Negative offset

0 0 0 1 *+R[ucst5] Positive offset

0 1 0 0 *−R[offsetR] Negative offset

0 1 0 1 *+R[offsetR] Positive offset

1 0 0 0 *− −R[ucst5] Predecrement

1 0 0 1 *++R[ucst5] Preincrement

1 0 1 0 *R− −[ucst5] Postdecrement

1 0 1 1 *R++[ucst5] Postincrement

1 1 0 0 *−−R[offsetR] Predecrement

1 1 0 1 *++R[offsetR] Preincrement

1 1 1 0 *R− −[offsetR] Postdecrement

1 1 1 1 *R++[offsetR] Postincrement
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C.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .D unit are mapped in Figure C−1
through Figure C−4.

Figure C−1. 1 or 2 Sources Instruction Format

31 29 28 27 23 22 18 17 13 12 7 6 5 4 3 2 1 0

creg z dst src2 src1 op 1 0 0 0 0 s p

3 1 5 5 5 6 1 1

Figure C−2. Extended .D Unit 1 or 2 Sources Instruction Format

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 0 op 1 1 0 0 s p

3 1 5 5 5 1 4 1 1

Figure C−3. Load/Store Basic Operations

31 29 28 27 23 22 18 17 13 12 9 8 7 6 4 3 2 1 0

creg z src/dst baseR offsetR mode r y op 1 0 s p

3 1 5 5 5 4 1 1 3 1 1

Figure C−4. Load/Store Long-Immediate Operations

31 29 28 27 23 22 8 7 6 4 3 2 1 0

creg z dst offsetR y op 1 1 s p

3 1 5 15 1 3 1 1



D-1.L Unit Instructions and Opcode MapsSPRU733A

Appendix A

�#��������	��������	�����!������"��	

This appendix lists the instructions that execute in the .L functional unit and
illustrates the opcode maps for these instructions.

Topic Page

D.1 Instructions Executing in the .L Functional Unit D-2. . . . . . . . . . . . . . . . . 

D.2 Opcode Map Symbols and Meanings D-3. . . . . . . . . . . . . . . . . . . . . . . . . . . 

D.3 32-Bit Opcode Maps D-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix D



Instructions Executing in the .L Functional Unit

.L Unit Instructions and Opcode MapsD-2 SPRU733A

D.1 Instructions Executing in the .L Functional Unit

Table D−1 lists the instructions that execute in the .L functional unit.

Table D−1. Instructions Executing in the .L Functional Unit

Instruction Instruction

ABS LMBD

ADD MV

ADDDP NEG

ADDSP NORM

ADDU NOT

AND OR

CMPEQ SADD

CMPGT SAT

CMPGTU SPINT

CMPLT SPTRUNC

CMPLTU SSUB

DPINT SUB

DPSP SUBC

DPTRUNC SUBDP

INTDP SUBSP

INTDPU SUBU

INTSP XOR

INTSPU ZERO
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D.2 Opcode Map Symbols and Meanings

Table D−2 lists the symbols and meanings used in the opcode maps.

Table D−2. .L Unit Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

dst destination

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is
executed in parallel

s side A or B for destination; 0 = side A, 1 = side B

src1 source 1

src2 source 2

x cross path for src2; 0 = do not use cross path, 1 = use cross path

z test for equality with zero or nonzero
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D.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .L unit are mapped in Figure D−1
through Figure D−3.

Figure D−1. 1 or 2 Sources Instruction Format

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 src1 x op 1 1 0 s p

3 1 5 5 5 1 7 1 1

Figure D−2. 1 or 2 Sources, Nonconditional Instruction Format

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x op 1 1 0 s p

5 5 5 1 7 1 1

Figure D−3. Unary Instruction Format

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 op x 0 0 1 1 0 1 0 1 1 0 s p

3 1 5 5 5 1 1 1
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This appendix lists the instructions that execute in the .M functional unit and
illustrates the opcode maps for these instructions.
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E.1 Instructions Executing in the .M Functional Unit

Table E−1 lists the instructions that execute in the .M functional unit.

Table E−1. Instructions Executing in the .M Functional Unit

Instruction Instruction

MPY MPYLHU

MPYDP MPYLSHU

MPYH MPYLUHS

MPYHL MPYSP

MPYHLU MPYSPDP§

MPYHSLU MPYSP2DP§

MPYHSU MPYSU

MPYHU MPYU

MPYHULS MPYUS

MPYHUS SMPY

MPYI SMPYH

MPYID SMPYHL

MPYLH SMPYLH

§ C67x+ DSP-specific instruction
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E.2 Opcode Map Symbols and Meanings

Table E−2 lists the symbols and meanings used in the opcode maps.

Table E−2. .M Unit Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

dst destination

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is
executed in parallel

s side A or B for destination; 0 = side A, 1 = side B

src1 source 1

src2 source 2

x cross path for src2; 0 = do not use cross path, 1 = use cross path

z test for equality with zero or nonzero
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E.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .M unit are mapped in Figure E−1
through Figure E−3.

Figure E−1. Extended M-Unit with Compound Operations

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

creg z dst src2 src1 x 0 op 1 1 0 0 s p

3 1 5 5 5 1 5 1 1

Figure E−2. Extended .M Unit 1 or 2 Sources, Nonconditional Instruction Format

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

0 0 0 1 dst src2 src1 x 0 op 1 1 0 0 s p

5 5 5 1 5 1 1

Figure E−3. Extended .M-Unit Unary Instruction Format

31 29 28 27 23 22 18 17 13 12 11 10 6 5 4 3 2 1 0

0 0 0 1 dst src2 op x 0 0 0 0 1 1 1 1 0 0 s p

5 5 5 1 1 1
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This appendix lists the instructions that execute in the .S functional unit and
illustrates the opcode maps for these instructions.
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F.1 Instructions Executing in the .S Functional Unit

Table F−1 lists the instructions that execute in the .S functional unit.

Table F−1. Instructions Executing in the .S Functional Unit

Instruction Instruction

ABSDP MVKH

ABSSP MVKL

ADD MVKLH

ADDDP§ NEG

ADDK NOT

ADDSP§ OR

ADD2 RCPDP

AND RCPSP

B displacement RSQRDP

B register† RSQRSP

B IRP† SET

B NRP† SHL

CLR SHR

CMPEQDP SHRU

CMPEQSP SPDP

CMPGTDP SSHL

CMPGTSP SUB

CMPLTDP SUBDP§

CMPLTSP SUBSP§

EXT SUBU

EXTU SUB2

MV XOR

MVC† ZERO

MVK

† S2 only
§ C67x+ DSP-specific instruction
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F.2 Opcode Map Symbols and Meanings

Table F−2 lists the symbols and meanings used in the opcode maps.

Table F−2. .S Unit Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

csta constant a

cstb constant b

cstn n-bit constant field

dst destination

h MVK or MVKH/MVKLH instruction; 0 = MVK, 1 = MVKH/MVKLH

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is
executed in parallel

s side A or B for destination; 0 = side A, 1 = side B

src1 source 1

src2 source 2

x cross path for src2; 0 = do not use cross path, 1 = use cross path

z test for equality with zero or nonzero
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F.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the .S unit are mapped in Figure F−1
through Figure F−11.

Figure F−1. 1 or 2 Sources Instruction Format

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z dst src2 src1 x op 1 0 0 0 s p

3 1 5 5 5 1 6 1 1

Figure F−2. Extended .S Unit 1 or 2 Sources Instruction Format

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

creg z dst src2 src1 x 1 1 op 1 1 0 0 s p

3 1 5 5 5 1 4 1 1

Figure F−3. Extended .S Unit 1 or 2 Sources, Nonconditional Instruction Format

31 29 28 27 23 22 18 17 13 12 11 10 9 6 5 4 3 2 1 0

0 0 0 z dst src2 src1 x 1 1 op 1 1 0 0 s p

1 5 5 5 1 4 1 1

Figure F−4. Unary Instruction Format

31 29 28 27 23 22 18 17 13 12 11 5 4 3 2 1 0

creg z dst src2 op x 1 1 1 1 0 0 1 0 0 0 s p

3 1 5 5 5 1 1 1

Figure F−5. Extended .S Unit Branch Conditional, Immediate Instruction Format

31 29 28 27 7 6 5 4 3 2 1 0

creg z cst21 0 0 1 0 0 s p

3 1 21 1 1
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Figure F−6. Call Unconditional, Immediate with Implied NOP 5 Instruction Format

31 29 28 27 7 6 5 4 3 2 1 0

0 0 0 z cst21 0 0 1 0 0 s p

1 21 1 1

Figure F−7. Branch with NOP Constant Instruction Format

31 29 28 27 16 15 13 12 11 6 5 4 3 2 1 0

creg z src2 src1 0 0 0 0 1 0 0 1 0 0 0 s p

3 1 12 3 1 1

Figure F−8. Branch with NOP Register Instruction Format

31 29 28 27 23 22 18 17 16 15 13 12 11 6 5 4 3 2 1 0

creg z 0 0 0 0 1 src2 0 0 src1 x 0 0 1 1 0 1 1 0 0 0 s p

3 1 5 3 1 1 1

Figure F−9. Branch Instruction Format

31 29 28 27 23 22 18 17 13 12 11 6 5 4 3 2 1 0

creg z 0 0 0 0 0 src2 0 0 0 0 0 x 0 0 1 1 0 1 1 0 0 0 s p

3 1 5 1 1 1

Figure F−10. MVK Instruction Format

31 29 28 27 23 22 7 6 5 4 3 2 1 0

creg z dst cst16 h 1 0 1 0 s p

3 1 5 16 1 1

Figure F−11.Field Operations

31 29 28 27 23 22 18 17 13 12 8 7 6 5 4 3 2 1 0

creg z dst src2 csta cstb op 0 0 1 0 s p

3 1 5 5 5 5 2 1 1
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This appendix lists the instructions that execute with no unit specified and
illustrates the opcode maps for these instructions.

For a list of the instructions that execute in the .D functional unit,
see Appendix C. For a list of the instructions that execute in the .L functional
unit, see Appendix D. For a list of the instructions that execute in the
.M functional unit, see Appendix E. For a list of the instructions that execute
in the .S functional unit, see Appendix F.
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Instructions Executing With No Unit Specified

No Unit Specified Instructions and Opcode MapsG-2 SPRU733A

G.1 Instructions Executing With No Unit Specified

Table G−1 lists the instructions that execute with no unit specified.

Table G−1. Instructions Executing With No Unit Specified

Instruction

IDLE

NOP

G.2 Opcode Map Symbols and Meanings

Table G−2 lists the symbols and meanings used in the opcode maps.

Table G−2. No Unit Specified Instructions Opcode Map Symbol Definitions

Symbol Meaning

creg 3-bit field specifying a conditional register

csta constant a

cstb constant b

cstn n-bit constant field

iin bit n of the constant ii

N3 3-bit field

op opfield; field within opcode that specifies a unique instruction

p parallel execution; 0 = next instruction is not executed in parallel, 1 = next instruction is
executed in parallel

s side A or B for destination; 0 = side A, 1 = side B.

stgn bit n of the constant stg

z test for equality with zero or nonzero

Instructions Executing With No Unit Specified / Opcode Map Symbols and Meanings



32-Bit Opcode Maps

G-3No Unit Specified Instructions and Opcode MapsSPRU733A

G.3 32-Bit Opcode Maps

The C67x CPU 32-bit opcodes used in the no unit instructions are mapped in
Figure G−1 through Figure G−3.

Figure G−1. Loop Buffer Instruction Format

31 29 28 27 23 22 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z cstb csta 1 op 0 0 0 0 0 0 0 0 0 0 0 s p

3 1 5 5 4 1 1

Figure G−2. NOP and IDLE Instruction Format

31 29 28 27 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 Reserved (0) 0 op 0 0 0 0 0 0 0 0 0 0 0 s p

10 4 1 1

Figure G−3. Emulation/Control Instruction Format

31 29 28 27 23 22 18 17 16 13 12 11 10 9 8 7 6 5 4 3 2 1 0

creg z Reserved (0) cst5 0 op 0 0 0 0 0 0 0 0 0 0 0 s p

3 1 5 5 4 1 1



H-1Revision HistorySPRU733A

Appendix A

��&�	����'�	����

Table H−1 lists the changes made since the previous version of this document.

Table H−1. Document Revision History  

Page Additions/Modifications/Deletions

3-14 Changed second paragraph.

Deleted third paragraph.

3-77 Changed Description.

3-210 Changed Description.

3-211 Changed B1 register value.

3-271 Added Example.
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1X and 2X paths 2-6

2-cycle DP instructions, .S-unit instruction
constraints 4-36

4-cycle instructions
.L-unit instruction constraints 4-49
.M-unit instruction constraints 4-41

A
A4 MODE bits 2-10

A5 MODE bits 2-10

A6 MODE bits 2-10

A7 MODE bits 2-10

ABS instruction 3-37

ABSDP instruction 3-39

absolute value
floating-point

double-precision (ABSDP) 3-39
single-precision (ABSSP) 3-41

with saturation (ABS) 3-37

ABSSP instruction 3-41

actions taken during nonreset interrupt
processing 5-18

actions taken during RESET interrupt
processing 5-20

add
floating-point

double-precision (ADDDP) 3-55
single-precision (ADDSP) 3-59

signed 16-bit constant to register (ADDK) 3-58
two 16-bit integers on upper and lower register

halves (ADD2) 3-64
using byte addressing mode (ADDAB) 3-47
using doubleword addressing mode

(ADDAD) 3-49
using halfword addressing mode (ADDAH) 3-51

using word addressing mode (ADDAW) 3-53
with saturation, two signed integers

(SADD) 3-204
without saturation

two signed integers (ADD) 3-43
two unsigned integers (ADDU) 3-62

ADD instruction 3-43
add instructions

using circular addressing 3-31
using linear addressing 3-29

ADD2 instruction 3-64
ADDAB instruction 3-47
ADDAD instruction 3-49
ADDAH instruction 3-51
ADDAW instruction 3-53
ADDDP instruction 3-55
ADDDP instruction

.L-unit instruction constraints 4-51

.S-unit instruction constraints 4-38
pipeline operation 4-28

ADDK instruction 3-58
address generation for load/store 3-31
address paths 2-7
addressing mode 3-29

circular mode 3-30
linear mode 3-29

addressing mode register (AMR) 2-10
ADDSP instruction 3-59

.S-unit instruction constraints 4-37
ADDU instruction 3-62
AMR 2-10
AND instruction 3-66
applications, TMS320 DSP family 1-3
architecture, TMS320C67x DSP 1-7
arithmetic shift left (SHL) 3-212
arithmetic shift right (SHR) 3-214
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B
B instruction

using a displacement 3-68
using a register 3-70

B IRP instruction 3-72
B NRP instruction 3-74
B4 MODE bits 2-10
B5 MODE bits 2-10

B6 MODE bits 2-10
B7 MODE bits 2-10
bit field

clear (CLR) 3-76
extract and sign-extend a bit field (EXT) 3-109
extract and zero-extend a bit field (EXTU) 3-112
set (SET) 3-209

bitwise AND (AND) 3-66

bitwise exclusive OR (XOR) 3-269
bitwise NOT (NOT) 3-193
bitwise OR (OR) 3-194
BK0 bits 2-10

BK1 bits 2-10
block diagram

branch instructions 4-23
decode pipeline phases 4-4
execute pipeline phases 4-5
fetch pipeline phases 4-3
load instructions 4-21
multiply instructions 4-17
pipeline phases 4-10
single-cycle instructions 4-16
store instructions 4-19
TMS320C67x CPU data path 2-3
TMS320C67x DSP 1-7

block size calculations 2-12
branch

using a displacement (B) 3-68
using a register (B) 3-70
using an interrupt return pointer (B IRP) 3-72
using NMI return pointer (B NRP) 3-74

branch instruction
.S-unit instruction constraints 4-39
block diagram 4-23
pipeline operation 4-22

branching
into the middle of an execute packet 3-17
performance considerations 5-21

to additional interrupt service routine 5-8

C
circular addressing, block size calculations 2-12
circular addressing mode

add instructions 3-31
block size specification 3-30
load instructions 3-30
store instructions 3-30
subtract instructions 3-31

clear a bit field (CLR) 3-76
clear an individual interrupt 5-14
clearing interrupts 5-14
CLR instruction 3-76
CMPEQ instruction 3-79
CMPEQDP instruction 3-81
CMPEQSP instruction 3-83
CMPGT instruction 3-85
CMPGTDP instruction 3-88
CMPGTSP instruction 3-90
CMPGTU instruction 3-92
CMPLT instruction 3-94
CMPLTDP instruction 3-97
CMPLTSP instruction 3-99
CMPLTU instruction 3-101
compare

for equality
double-precision floating-point values

(CMPEQDP) 3-81
signed integers (CMPEQ) 3-79
single-precision floating-point values

(CMPEQSP) 3-83
for greater than

double-precision floating-point values
(CMPGTDP) 3-88

signed integers (CMPGT) 3-85
single-precision floating-point values

(CMPGTSP) 3-90
unsigned integers (CMPGTU) 3-92

for less than
double-precision floating-point values

(CMPLTDP) 3-97
signed integers (CMPLT) 3-94
single-precision floating-point values

(CMPLTSP) 3-99
unsigned integers (CMPLTU) 3-101
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compare for equality
floating-point

double-precision values (CMPEQDP) 3-81
single-precision values (CMPEQSP) 3-83

signed integers (CMPEQ) 3-79

compare for greater than
floating-point

double-precision values (CMPGTDP) 3-88
single-precision values (CMPGTSP) 3-90

signed integers (CMPGT) 3-85
unsigned integers (CMPGTU) 3-92

compare for less than
floating-point

double-precision values (CMPLTDP) 3-97
single-precision values (CMPLTSP) 3-99

signed integers (CMPLT) 3-94
unsigned integers (CMPLTU) 3-101

conditional operations 3-18

conditional subtract and shift (SUBC) 3-257

conditions for processing a nonreset interrupt 5-16

constraints
.D unit

LDDW instruction with long write
instruction 4-55

load instruction 4-52
single-cycle instruction 4-54
store instruction 4-53

.L unit
4-cycle instruction 4-49
ADDDP instruction 4-51
INTDP instruction 4-50
single-cycle instruction 4-48
SUBDP instruction 4-51

.M unit
4-cycle instruction 4-41
MPYDP instruction 4-44
MPYI instruction 4-42
MPYID instruction 4-43
MPYSP instruction 4-45
MPYSPDP instruction 4-46
MPYSP2DP instruction 4-47
multiply instruction 4-40

.S unit
2-cycle DP instruction 4-36
ADDDP instruction 4-38
ADDSP instruction 4-37
branch instruction 4-39
DP compare instruction 4-35
single-cycle instruction 4-34

SUBDP instruction 4-38
SUBSP instruction 4-37

on cross paths 3-20
on floating-point instructions 3-25
on instructions using the same functional

unit 3-19
on loads and stores 3-21
on long data 3-22
on register reads 3-23
on register writes 3-24
on the same functional unit writing in the same

instruction cycle 3-19
pipeline 4-33

control, individual interrupts 5-13

control register, interrupts 5-10

control status register (CSR) 2-13

convert
double-precision floating-point value

to integer (DPINT) 3-103
to integer with truncation (DPTRUNC) 3-107
to single-precision floating-point value

(DPSP) 3-105
signed integer

to double-precision floating-point value
(INTDP) 3-116

to single-precision floating-point value
(INTSP) 3-120

single-precision floating-point value
to double-precision floating-point value

(SPDP) 3-225
to integer (SPINT) 3-227
to integer with truncation (SPTRUNC) 3-229

unsigned integer
to double-precision floating-point value

(INTDPU) 3-118
to single-precision floating-point value

(INTSPU) 3-121

CPU
control register file 2-7
control register file extensions 2-23
data paths 2-3
functional units 2-5
general-purpose register files 2-2
introduction 1-8
load and store paths 2-6

CPU data paths
relationship to register files 2-6
TMS320C67x DSP 2-3

CPU ID bits 2-13
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cross paths 2-6
CSR 2-13

D
DA1 and DA2 2-7
data address paths 2-7
DC pipeline phase 4-3
DCC bits 2-13
decoding instructions 4-3
delay slots 3-14
DEN1 bit

in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

DEN2 bit
in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

detection and processing, interrupts 5-16
disabling an individual interrupt 5-13
disabling maskable interrupts globally 5-12
DIV0 bit 2-27
double-precision data format 3-9
DP compare instruction, pipeline operation 4-27
DP compare instructions, .S-unit instruction

constraints 4-35
DP pipeline phase 4-3
DPINT instruction 3-103
DPSP instruction 3-105
DPTRUNC instruction 3-107

E
E1 phase program counter (PCE1) 2-22
E1−E5 pipeline phases 4-5
EN bit 2-13
enabling an individual interrupt 5-13
enabling maskable interrupts globally 5-12
execute packet pipeline operation 4-56
execution notations 3-2
EXT instruction 3-109
extract and sign-extend a bit field (EXT) 3-109
extract and zero-extend a bit field (EXTU) 3-112
EXTU instruction 3-112

F
FADCR 2-23
FAUCR 2-27
features

TMS320C67x DSP 1-4
TMS320C67x+ DSP 1-4

fetch packet 3-15
fetch packet (FP) 5-7
fetch packets

fully parallel 3-16
fully serial 3-16
partially serial 3-17

fetch pipeline phase 4-2
floating-point adder configuration register

(FADCR) 2-23
floating-point auxiliary configuration register

(FAUCR) 2-27
floating-point multiplier configuration register

(FMCR) 2-31
floating-point operands

double precision (DP) 3-9
single precision (SP) 3-9

FMCR 2-31
four-cycle instructions, pipeline operation 4-25
functional unit to instruction mapping B-1
functional units 2-5

G
general-purpose register files

cross paths 2-6
data address paths 2-7
description 2-2
memory, load, and store paths 2-6

GIE bit 2-13

H
HPEINT bits 2-21

I
ICn bit 2-16
ICR 2-16
IDLE instruction 3-115
IEEE standard formats 3-9
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IEn bit 2-17

IER 2-17
IFn bit 2-18

IFR 2-18

INEX bit
in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

INFO bit
in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

instruction compatibility 3-33 A-1

instruction descriptions 3-33
instruction execution

.D unit C-2

.L unit D-2

.M unit E-2

.S unit F-2
no unit instructions G-2

instruction operation, notations 3-2
instruction to functional unit mapping B-1

instruction types
ADDDP instruction 4-28
branch instructions 4-22
DP compare 4-27
four-cycle 4-25
INTDP instruction 4-26
load instructions 4-20
MPYDP instruction 4-31
MPYI instruction 4-29
MPYID instruction 4-30
MPYSPDP instruction 4-32
MPYSP2DP instruction 4-33
multiply instructions 4-17
single-cycle 4-16
store instructions 4-18
SUBDP instruction 4-28
two-cycle DP 4-24

INTDP instruction 3-116
.L-unit instruction constraints 4-50
pipeline operation 4-26

INTDPU instruction 3-118

interleaved memory bank scheme 4-62
8-bank memory

single memory space 4-62
with two memory spaces 4-63

interrupt clear register (ICR) 2-16

interrupt enable register (IER) 2-17

interrupt flag register (IFR) 2-18

interrupt return pointer register (IRP) 2-19

interrupt service fetch packet (ISFP) 5-7

interrupt service table (IST) 5-6

interrupt service table pointer (ISTP), overview 5-9

interrupt service table pointer register (ISTP) 2-21

interrupt set register (ISR) 2-20

interrupts
clearing 5-14
control 5-13
control registers 5-10
detection and processing 5-16

actions taken during nonreset interrupt
processing 5-18

actions taken during RESET interrupt
processing 5-20

conditions for processing a nonreset
interrupt 5-16

setting the nonreset interrupt flag 5-16
setting the RESET interrupt flag 5-19

disabling 5-13
enabling 5-13
global control 5-11
globally disabling 5-11
globally enabling 5-11
overview 5-2
performance considerations 5-21

frequency 5-21
latency 5-21
overhead 5-21
pipeline interaction 5-21

pipeline interaction
branches 5-21
code parallelism 5-21
memory stalls 5-21
multicycle NOPs 5-21

priorities 5-3
programming considerations 5-22

manual interrupt processing 5-25
nested interrupts 5-23
single assignment 5-22
traps 5-26

returning from interrupt servicing 5-15
setting 5-14
signals used 5-2
status 5-14
types of 5-2

INTSP instruction 3-120
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INTSPU instruction 3-121
INVAL bit

in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

IRP 2-19
ISn bit 2-20
ISR 2-20
ISTB bits 2-21
ISTP 2-21

L
latency 3-14
LDB instruction

5-bit unsigned constant offset or register
offset 3-122

15-bit unsigned constant offset 3-125
LDBU instruction

5-bit unsigned constant offset or register
offset 3-122

15-bit constant offset 3-125
LDDW instruction 3-127

constraints 3-28
LDDW instruction with long write instruction, .D-unit

instruction constraints 4-55
LDH instruction

5-bit unsigned constant offset or register
offset 3-130

15-bit unsigned constant offset 3-133
LDHU instruction

5-bit unsigned constant offset or register
offset 3-130

15-bit unsigned constant offset 3-133
LDW instruction

5-bit unsigned constant offset or register
offset 3-135

15-bit unsigned constant offset 3-138
leftmost bit detection (LMBD) 3-140
linear addressing mode 3-29

add instructions 3-29
load instructions 3-29
store instructions 3-29
subtract instructions 3-29

LMBD instruction 3-140

load
byte

from memory with a 5-bit unsigned constant
offset or register offset (LDB and
LDBU) 3-122

from memory with a 15-bit unsigned constant
offset (LDB and LDBU) 3-125

doubleword from memory with an unsigned
constant offset or register offset
(LDDW) 3-127

halfword
from memory with a 5-bit unsigned constant

offset or register offset (LDH and
LDHU) 3-130

from memory with a 15-bit unsigned constant
offset (LDH and LDHU) 3-133

word
from memory with a 5-bit unsigned constant

offset or register offset (LDW) 3-135
from memory with a 15-bit unsigned constant

offset (LDW) 3-138
load and store paths, CPU 2-6
load instructions

.D-unit instruction constraints 4-52
block diagram 4-21
conflicts 3-21
pipeline operation 4-20
syntax for indirect addressing 3-31
using circular addressing 3-30
using linear addressing 3-29

load or store to the same memory location,
rules 4-19

load paths 2-6
logical shift right (SHRU) 3-216

M
memory

introduction 1-8
paths 2-6

memory bank hits 4-62
memory considerations 4-60

memory bank hits 4-62
memory stalls 4-61

memory paths 2-6
memory stalls 4-61
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move
16-bit constant into upper bits of register (MVKH

and MVKLH) 3-184
between control file and register file

(MVC) 3-179
from register to register (MV) 3-177
signed constant into register and sign extend

(MVK) 3-182
signed constant into register and sign extend

(MVKL) 3-186

MPY instruction 3-142

MPYDP instruction 3-144
.M-unit instruction constraints 4-44
pipeline operation 4-31

MPYH instruction 3-146

MPYHL instruction 3-148

MPYHLU instruction 3-150

MPYHSLU instruction 3-151

MPYHSU instruction 3-152

MPYHU instruction 3-153

MPYHULS instruction 3-154

MPYHUS instruction 3-155

MPYI instruction 3-156
.M-unit instruction constraints 4-42
pipeline operation 4-29

MPYID instruction 3-158
.M-unit instruction constraints 4-43
pipeline operation 4-30

MPYLH instruction 3-160

MPYLHU instruction 3-162

MPYLSHU instruction 3-163

MPYLUHS instruction 3-164

MPYSP instruction 3-165
.M-unit instruction constraints 4-45

MPYSPDP instruction 3-167
.M-unit instruction constraints 4-46
pipeline operation 4-32

MPYSP2DP instruction 3-169
.M-unit instruction constraints 4-47
pipeline operation 4-33

MPYSU instruction 3-171

MPYU instruction 3-173

MPYUS instruction 3-175

multicycle NOP with no termination until interrupt
(IDLE) 3-115

multicycle NOPs 4-58

multiply
32-bit by 32-bit

into 32-bit result (MPYI) 3-156
into 64-bit result (MPYID) 3-158

floating-point
double-precision (MPYDP) 3-144
single-precision (MPYSP) 3-165
single-precision by double-precision

(MPYSPDP) 3-167
single-precision for double-precision result

(MPYSP2DP) 3-169
signed by signed

signed 16 LSB by signed 16 LSB
(MPY) 3-142

signed 16 LSB by signed 16 LSB with left shift
and saturation (SMPY) 3-218

signed 16 LSB by signed 16 MSB
(MPYLH) 3-160

signed 16 LSB by signed 16 MSB with left
shift and saturation (SMPYLH) 3-223

signed 16 MSB by signed 16 LSB
(MPYHL) 3-148

signed 16 MSB by signed 16 LSB with left
shift and saturation (SMPYHL) 3-221

signed 16 MSB by signed 16 MSB
(MPYH) 3-146

signed 16 MSB by signed 16 MSB with left
shift and saturation (SMPYH) 3-220

signed by unsigned
signed 16 LSB by unsigned 16 LSB

(MPYSU) 3-171
signed 16 LSB by unsigned 16 MSB

(MPYLSHU) 3-163
signed 16 MSB by unsigned 16 LSB

(MPYHSLU) 3-151
signed 16 MSB by unsigned 16 MSB

(MPYHSU) 3-152
unsigned by signed

unsigned 16 LSB by signed 16 LSB
(MPYUS) 3-175

unsigned 16 LSB by signed 16 MSB
(MPYLUHS) 3-164

unsigned 16 MSB by signed 16 LSB
(MPYHULS) 3-154

unsigned 16 MSB by signed 16 MSB
(MPYHUS) 3-155
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multiply (continued)
unsigned by unsigned

unsigned 16 LSB by unsigned 16 LSB
(MPYU) 3-173

unsigned 16 LSB by unsigned 16 MSB
(MPYLHU) 3-162

unsigned 16 MSB by unsigned 16 LSB
(MPYHLU) 3-150

unsigned 16 MSB by unsigned 16 MSB
(MPYHU) 3-153

multiply instructions
.M-unit instruction constraints 4-40
block diagram 4-17
pipeline operation 4-17

MV instruction 3-177

MVC instruction 3-179

MVK instruction 3-182

MVKH instruction 3-184

MVKL instruction 3-186

MVKLH instruction 3-184

N
NAN1 bit

in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

NAN2 bit
in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

NEG instruction 3-188

negate (NEG) 3-188

nested interrupts 5-23

NMI return pointer register (NRP) 2-22

NMIE bit 2-17

NMIF bit 2-18

no operation (NOP) 3-189

NOP instruction 3-189

NORM instruction 3-191

normalize integer (NORM) 3-191

NOT instruction 3-193

notational conventions iii

NRP 2-22

O
opcode, fields and meanings 3-7
opcode map

.D unit C-3

.L unit D-3

.M unit E-3

.S unit F-3
32-bit

.D unit C-5

.L unit D-4

.M unit E-4

.S unit F-4
no unit instructions G-3

no unit instructions G-2
symbols and meanings

.D unit C-3

.L unit D-3

.M unit E-3

.S unit F-3
no unit instructions G-2

operands, examples 3-34
options 1-4
OR instruction 3-194
OVER bit

in FADCR 2-24
in FAUCR 2-27
in FMCR 2-31

overview
interrupts 5-2
TMS320 DSP family 1-2
TMS320C6000 DSP family 1-2

P
parallel code 3-17
parallel fetch packets 3-16
parallel operations 3-15

branch into the middle of an execute
packet 3-17

parallel code 3-17
partially serial fetch packets 3-17
PCC bits 2-13
PCE1 2-22
performance considerations

interrupts 5-21
pipeline 4-56

PG pipeline phase 4-2
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PGIE bit 2-13

pipeline
decode stage 4-3
execute stage 4-5
execution 4-12
factors that provide programming flexibility 4-1
fetch stage 4-2
functional unit constraints 4-33
overview 4-2
performance considerations 4-56
phases 4-2
stages 4-2
summary 4-6

pipeline execution 4-12

pipeline operation
ADDDP instruction 4-28
branch instructions 4-22
DP compare instruction 4-27
four-cycle instructions 4-25
INTDP instruction 4-26
load instructions 4-20
MPYDP instruction 4-31
MPYI instruction 4-29
MPYID instruction 4-30
MPYSPDP instruction 4-32
MPYSP2DP instruction 4-33
multiple execute packets in a fetch packet 4-56
multiply instructions 4-17
one execute packet per fetch packet 4-6
single-cycle instructions 4-16
store instructions 4-18
SUBDP instruction 4-28
two-cycle DP instructions 4-24

pipeline phases
block diagram 4-10
used during memory accesses 4-60

PR pipeline phase 4-2
programming considerations, interrupts 5-22

PS pipeline phase 4-2

PW pipeline phase 4-2
PWRD bits 2-13

R
RCPDP instruction 3-196
RCPSP instruction 3-198

reciprocal approximation
double-precision floating-point (RCPDP) 3-196

single-precision floating-point (RCPSP) 3-198
square-root

double-precision floating-point
(RSQRDP) 3-200

single-precision floating-point
(RSQRSP) 3-202

register files
cross paths 2-6
data address paths 2-7
general-purpose 2-2
memory, load, and store paths 2-6
relationship to data paths 2-6

registers
addresses for accessing 2-8
addressing mode register (AMR) 2-10
control register file 2-7
control register file extensions 2-23
control status register (CSR) 2-13
E1 phase program counter (PCE1) 2-22
floating-point adder configuration register

(FADCR) 2-23
floating-point auxiliary configuration register

(FAUCR) 2-27
floating-point multiplier configuration register

(FMCR) 2-31
interrupt clear register (ICR) 2-16
interrupt enable register (IER) 2-17
interrupt flag register (IFR) 2-18
interrupt return pointer register (IRP) 2-19
interrupt service table pointer register

(ISTP) 2-21
interrupt set register (ISR) 2-20
NMI return pointer register (NRP) 2-22
read constraints 3-23
write constraints 3-24

related documentation from Texas Instruments iii

resource constraints 3-19
cross paths 3-20
floating-point instructions 3-25
on loads and stores 3-21
on long data 3-22
on register reads 3-23
on register writes 3-24
on the same functional unit writing in the same

instruction cycle 3-19
using the same functional unit 3-19

return from maskable interrupt 5-15

return from NMI 5-15

returning from interrupt servicing 5-15
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revision history H-1
REVISION ID bits 2-13
RMODE bits

in FADCR 2-24
in FMCR 2-31

RSQRDP instruction 3-200
RSQRSP instruction 3-202

S
SADD instruction 3-204
SAT bit 2-13
SAT instruction 3-207
saturate a 40-bit integer to a 32-bit integer

(SAT) 3-207
serial fetch packets 3-16
set a bit field (SET) 3-209
set an individual interrupt 5-14
SET instruction 3-209
setting interrupts 5-14
setting the nonreset interrupt flag 5-16
setting the RESET interrupt flag 5-19
shift

arithmetic shift left (SHL) 3-212
arithmetic shift right (SHR) 3-214
logical shift right (SHRU) 3-216
shift left with saturation (SSHL) 3-231

shift left with saturation (SSHL) 3-231
SHL instruction 3-212
SHR instruction 3-214
SHRU instruction 3-216
single-cycle instructions

.D-unit instruction constraints 4-54

.L-unit instruction constraints 4-48

.S-unit instruction constraints 4-34
block diagram 4-16
pipeline operation 4-16

single-precision data format 3-9
SMPY instruction 3-218
SMPYH instruction 3-220
SMPYHL instruction 3-221
SMPYLH instruction 3-223
SPDP instruction 3-225
SPINT instruction 3-227
SPTRUNC instruction 3-229

square-root reciprocal approximation
double-precision floating-point

(RSQRDP) 3-200
single-precision floating-point (RSQRSP) 3-202

SSHL instruction 3-231
SSUB instruction 3-233
STB instruction
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