
TILE-GX

INSTRUCTION

SET ARCHITECTURE

REL. 1.2
DOC. NO. UG401

FEBRUARY 2013
TILERA CORPORATION

Copyright © 2010-2013 Tilera Corporation. All rights reserved. Printed in the United States of America.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, except as may be expressly permitted by the applicable copyright statutes or in writing by the
Publisher.

The following are registered trademarks of Tilera Corporation: Tilera and the Tilera logo.

The following are trademarks of Tilera Corporation: Embedding Multicore, The Multicore Company, Tile Processor, TILE Architecture,
TILE64, TILEPro, TILEPro36, TILEPro64, TILExpress, TILExpress-64, TILExpressPro-64, TILExpress-20G, TILExpressPro-20G,
TILExpressPro-22G, iMesh, TileDirect, TILExtreme-Gx, TILExtreme-Gx Duo, TILEmpower, TILEmpower-Gx, TILEncore, TILEncorePro,
TILEncore-Gx, TILE-Gx, TILE-Gx9, TILE-Gx16, TILE-Gx36, TILE-Gx72, TILE-Gx3000, TILE-Gx5000, TILE-Gx8000, TILE-Gx8009,
TILE-Gx8016, TILE-Gx8036, TILE-Gx3036, DDC (Dynamic Distributed Cache), Multicore Development Environment, Gentle Slope
Programming, iLib, TMC (Tilera Multicore Components), hardwall, Zero Overhead Linux (ZOL), MiCA (Multicore iMesh Coprocessing
Accelerator), and mPIPE (multicore Programmable Intelligent Packet Engine). All other trademarks and/or registered trademarks are the
property of their respective owners.

Third-party software: The Tilera IDE makes use of the BeanShell scripting library. Source code for the BeanShell library can be found at the
BeanShell website (http://www.beanshell.org/developer.html).

This document contains advance information on Tilera products that are in development, sampling or initial production phases. This
information and specifications contained herein are subject to change without notice at the discretion of Tilera Corporation.

No license, express or implied by estoppels or otherwise, to any intellectual property is granted by this document. Tilera disclaims any
express or implied warranty relating to the sale and/or use of Tilera products, including liability or warranties relating to fitness for a
particular purpose, merchantability or infringement of any patent, copyright or other intellectual property right.

Products described in this document are NOT intended for use in medical, life support, or other hazardous uses where malfunction could
result in death or bodily injury.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. Tilera assumes no liability for damages
arising directly or indirectly from any use of the information contained in this document.

Publishing Information:

Contact Information:

Document Number UG401

Document Release 1.2

Date 26 February 2013

Tilera Corporation

Information info@tilera.com
Web Site http://www.tilera.com

TILE-Gx Instruction Set Architecture iii

Contents

CHAPTER 1 PROCESSOR ENGINE ARCHITECTURE

1.1 VLIW Nature of the Processor Engine ... 1
1.2 Atomicity of Bundles ... 1
1.3 Register Set .. 2
1.4 Program Counter .. 3
1.5 Special Purpose Registers ... 3
1.6 TILE-Gx Processing Engine Pipeline ... 4

1.6.1 Fetch .. 4
1.6.2 RegisterFile (RF) .. 4
1.6.3 Execute Stages (EX0, EX1) .. 5
1.6.4 WriteBack (WB) ... 5
1.6.5 Instruction/Pipeline Latencies .. 5

CHAPTER 2 TILE-GX ENGINE INSTRUCTION SET

2.1 Overview .. 7
2.1 Instruction Reference .. 7

2.1.1 Instruction Organization and Format .. 7
2.1.1.1 X Instruction Formats ... 8
2.1.1.2 Y Instruction Formats ... 14

2.1.2 Definitions and Semantics ... 17
2.1.2.1 Constants .. 18
2.1.2.2 Types ... 19
2.1.2.3 Functions ... 19

2.1.3 Master List of Main Processor Instructions ... 24
2.1.4 Pseudo Instructions ... 44

CHAPTER 3 ARITHMETIC INSTRUCTIONS

3.1 Overview .. 47
3.2 Instructions .. 48

CHAPTER 4 BIT MANIPULATION INSTRUCTIONS

4.1 Overview .. 77
4.2 Instructions .. 78

CHAPTER 5 COMPARE INSTRUCTIONS

5.1 Overview .. 93
5.2 Instructions .. 94

Contents

iv TILE-Gx Instruction Set Architecture

CHAPTER 6 CONTROL INSTRUCTIONS

6.1 Overview ..111
6.2 Instructions ..112

CHAPTER 7 FLOATING POINT INSTRUCTIONS

7.1 Overview ..135
7.2 Instructions ..136

CHAPTER 8 LOGICAL INSTRUCTIONS

8.1 Overview ..151
8.2 Instructions ..153

CHAPTER 9 MEMORY MAINTENANCE INSTRUCTIONS

9.1 Overview ..199
9.2 Instructions ..200

CHAPTER 10 MEMORY INSTRUCTIONS

10.1 Overview ..207
10.2 Instructions ..209

CHAPTER 11 MULTIPLY INSTRUCTIONS

11.1 Overview ..267
11.2 Instructions ..269

CHAPTER 12 NOP INSTRUCTIONS

12.1 Overview ..299
12.2 Instructions ..300

CHAPTER 13 PSEUDO INSTRUCTIONS

13.1 Overview ..305
13.2 Instructions ..306

CHAPTER 14 SIMD INSTRUCTIONS

14.1 Overview ..331
14.2 Instructions ..334

CHAPTER 15 SYSTEM INSTRUCTIONS

15.1 Overview ..479
15.2 Instructions ..480

GLOSSARY .. 491

INDEX ... 493

TILE-Gx Instruction Set Architecture 1

CHAPTER 1 PROCESSOR ENGINE
ARCHITECTURE

This chapter describes the processor engine in detail. The processor engine is the primary compu-
tational resource inside a tile. The processor engine is an asymmetric very long instruction word
(VLIW) processor.

1.1 VLIW Nature of the Processor Engine
The processor engine contains three computational pipelines.

Each instruction bundle is 64-bits wide and can encode either two or three instructions. Some
instructions can be encoded in either two-wide or three-wide bundles, and some can be encoded
in two-wide bundles only.The most common instructions and those with short immediates can be
encoded in a three instruction format.

1.2 Atomicity of Bundles
The TILE-Gx Processor architecture has a well defined, precise interrupt model with well defined
instruction ordering. A bundle of instructions executes atomically. Thus either all of the instruc-
tions in the bundle are executed or none of the instructions in a bundle are executed. Inside of a
single bundle, the different instructions can be dependent on many resources. In order for a bun-
dle to execute, all of the resources upon which a bundle is dependent on must be available and
ready. If one instruction in a bundle causes an exception, none of the instructions in that bundle
commit state changes. Register access within a bundle is an all-or-nothing endeavor. This distinc-
tion is important for register reads as well as register writes, as register reads/writes can both
modify network state when accessing network mapped registers. Memory operations are likewise
atomic with respect to an instruction bundle completing.

Individual instructions within a bundle must comply with certain register semantics.
Read-after-write (RAW) dependencies are enforced between instruction bundles. There is no
ordering within a bundle, and the numbering of pipelines or instruction slots within a bundle is
only used for convenience and does not imply any ordering. Within an instruction bundle, it is
valid to encode an output operand that is the same as an input operand. Because there is explicitly
no implied dependency within a bundle, the semantics for this specify that the input operands for
all instructions in a bundle are read before any of the output operands are written.
Write-after-write (WAW) semantics between two bundles are defined as: the latest write over-
writes earlier writes.

Within a bundle, WAW dependencies are forbidden. If more than one instruction in a bundle
writes to the same output operand register, unpredictable results for any destination operand
within that bundle can occur. Also, implementations are free to signal this case as an illegal
instruction. There is one exception to this rule—multiple instructions within a bundle may legally
target the zero register. Lastly, some instructions, such as instructions that implicitly write the
link register, implicitly write registers. If an instruction implicitly writes to a register that another
instruction in the same bundle writes to, unpredictable results can occur for any output register
used by that bundle and/or an illegal instruction interrupt can occur.

Chapter 1 Processor Engine Architecture

2 TILE-Gx Instruction Set Architecture

1.3 Register Set
The TILE-Gx Processor architecture contains 64 architected registers. Each register is 64-bits wide.
Of the 64 registers, some are general purpose registers and others allow access to the on-chip
networks.

Table 1 presents the registers available to be used in instructions. The first 55 registers are general
purpose registers. The stack pointer sp is included in the 55 general purpose registers and is spec-
ified as a stack pointer only by software convention. Register lr can be used as a general purpose
register. Control-transfer instructions that link have the effect of writing the value PC+8 into lr.
Thus instructions bundled with jal, jalp, jalr, and jalrp must not write to lr. Note that the
LNK instruction will write to lr only if lr is specified as the destination register. Registers idn0
and idn1 provide access to the two demultiplexed IDN networks. All writes to the IDN should use
idn0; the result of writing to idn1 is undefined. Registers udn0, udn1, udn2, and udn3 allow
access to the four demultiplexed ports of the UDN. All writes to the UDN should use udn0; the
result of writing to udn1-udn3 is undefined. The final register, zero, is a register that contains no
state and always reads 0. Writes to register 63 (zero) have no effect on the register file; however,
instructions that target this register might have other results, such as effecting data prefetches or
causing exceptions.

Note: Note that register r0 and register zero are distinct; register r0 is a general purpose
register.

Table 1 presents the register identifier mapping.

In order to reduce latency for tile-to-tile communications and reduce instruction occupancy, the
TILE-Gx Processor architecture provides access to the on-chip networks through register access.
Any instruction executed in the processor engine can read or write to the following networks:
UDN and IDN. There are no restrictions on the number of networks that can be written or read in
a particular bundle. Each demultiplexing queue counts as an independent network for reads. For
network writes, both networks (UDN and IDN) can be written to in a given instruction bundle. It
is illegal for multiple instructions in a bundle to write to the same network, as this is a violation of
WAW ordering for processor registers. The same network register can appear in multiple source

Table 1. Register Numbers

Register Numbers Short Name Purpose

0 - 53 r0-r53 General Purpose Registers

54 sp Stack Pointer

55 lr Link Register

56 r56 Reserved

57 idn0 IDN Port 0

58 idn1 IDN Port 1

59 udn0 UDN Port 0

60 udn1 UDN Port 1

61 udn2 UDN Port 2

62 udn3 UDN Port 3

63 zero Always Returns Zero

TILE-Gx Instruction Set Architecture 3

Program Counter

fields in one instruction or inside of one bundle. When a single network (or demultiplex queue) is
read multiple times in one bundle, only one value is dequeued from the network (demux queue)
and every instruction inside of a bundle receives the same value. Network operations are atomic
with respect to bundle execution.

Reading and writing networks can cause the processor to stall. If no data are available on a net-
work port when an instruction tries to read from the corresponding network-mapped register, the
entire bundle stalls waiting for the input to arrive. Likewise, if a bundle writes to a network and
the output network is full, the bundle stalls until there is room in the output queue. Listing 1-1.
contains example code for network reads and writes.

Listing 1-1. Network Reads and Writes

// add writes to udn0, sub reads
// idn0 and idn1 and writes to idn
{addi udn0, r5, 10; sub idn0, idn0, idn1}
// increment the data coming from
// udn0, add registers, and load
{addi udn0, udn0, 1; add r5, r6, r7; ld r8, r9}
// mask low bit of udn0 into r5 and
// mask second bit into r6. reads only
// one value from udn.
{andi r5, udn0, 1; andi r6, udn0, 2}

1.4 Program Counter
Each processor engine contains a program counter that denotes the location of the instruction
bundle that is being executed. Instruction bundles are 64 bits, thus the program counter must be
aligned to 8 bytes. The program counter is modified in the natural course of program execution
by branches and jumps. Also, the program counter is modified when an interrupt is signaled or
when a return from interrupt instruction iret is executed. Instructions that link — jal, jalr,
jalrp, and lnk — read the contents of the program counter for the current instruction bundle,
add 8 (the length of an instruction), and write the result into a register. For jal, jalr, and
jalrp, the register written with the link address is always lr; for lnk, the destination register is
specified explicitly. Jumps that link are useful for sub-routine calls and the lnk instruction is use-
ful for position independent code.

For more information, see “Control Instructions” on page 111.

1.5 Special Purpose Registers
The processor engine contains special purpose registers (SPRs) that are used to control many fea-
tures of a tile. The processor engine can read an SPR with the mfspr instruction and write to an
SPR with the mtspr instruction. Most SPRs are used by system software for tile configuration or
for accessing context switching state.

Special purpose registers are a mixture of state and a generalized interface to control structures.
Some of the special purpose registers simply hold state and provide a location to store data that is
not in the general purpose register file or memory. Other special purpose registers hold no state
but serve as a convenient word-oriented interface to control structures within a tile. Some SPRs
possess a mixture of machine hardware status state and control functions. The act of reading or
writing an SPR can cause side effects. SPRs are also the main access control mechanism for pro-
tected state in the TILE-Gx Processor architecture. The SPR space is designed so that groups of
SPRs require different protection levels to access it.

Chapter 1 Processor Engine Architecture

4 TILE-Gx Instruction Set Architecture

1.6 TILE-Gx Processing Engine Pipeline
The TILE-Gx Processor Engine has three execution pipelines (P2, P1, P0) of two stages (EX0, EX1)
each. Both modes of bundling instructions, namely the X mode and the Y mode, can issue instruc-
tions into any of the three of the execution pipelines (P2, P1, P0). Y-mode uses all three pipelines
simultaneously. One of the pipelines remains in IDLE mode during X-mode issue. P0 is capable of
executing all arithmetic and logical operations, bit and byte manipulation, selects, and all multi-
ply and fused multiply instructions. P1 can execute all of the arithmetic and logical operations,
SPR reads and writes, conditional branches, and jumps. P2 can service memory operations only:
loads, stores, and test-and-set instructions.

The Processor Engine uses a short, in-order pipeline aimed at low branch latency and low
load-to-use latency. The basic pipeline consists of five stages: Fetch, RegisterFile, Execute0,
Execute1, and WriteBack.

1.6.1 Fetch
The Fetch pipeline stage runs the complete loop from updating the Program Counter (PC)
through fetching an instruction to selecting a new PC. The PC provides an index into several
structures in parallel: the icache data and tag arrays, the merged Branch Target Buffer and line
prediction array, and the ITLB. The fetch address multiplexor must then predict the next PC based
on any of several inputs: the next sequential instruction, line prediction or branch prediction, an
incorrectly-predicted branch, or an interrupt.

1.6.2 RegisterFile (RF)
There are three instruction pipelines, one for each of the instructions in a bundle. These pipelines
are designated as P0, P1 and P2. Bundles containing two instructions will always result in one
instruction being issued in P0. The second instruction will be issued in either P1 or P2, depending
on the type of instruction.

The RF stage produces valid source operands for the instructions. This operation involves four
steps: decoding the two or three instructions contained in the bundle, as provided by the Fetch
stage each cycle; accessing the source operands from the register file and/or network ports; check-
ing instruction dependencies; and bypassing operand data from earlier instructions. A
three-instruction bundle can require up to seven source register operands and three destination
register operands — three source operands to support the fused MulAdd and conditional transfer
operations, two source operands each for the other two instruction pipelines.

Figure 1. Processor Pipeline

Fetch RF EX0 EX1 WB

EX0 EX1 WB

L1Tag/Dat L1CMP WB

ARB MAF, L2
Tag/CMP L2 Dat Drive

Commit

TILE-Gx Instruction Set Architecture 5

TILE-Gx Processing Engine Pipeline

1.6.3 Execute Stages (EX0, EX1)
The EX0 pipeline stage is the instruction commit point of the processor; if no exception occurs,
then the architectural state can be modified. The early commit point allows the processor to trans-
mit values computed in one tile to another tile with extremely low, register-like latencies.
Single-cycle operations can bypass from the output of EX0 into the subsequent EX0. Two-cycle
operations are fully pipelined and can bypass from the output of EX1 into the input of EX0.

1.6.4 WriteBack (WB)
Destination operands from P1 and P0 are written back to the Register File in the WB stage. Load
data returning from memory is also written back to the Register File in the WB stage. The Register
File is write-through, eliminating a bypass requirement from the output of WB into EX0.

1.6.5 Instruction/Pipeline Latencies
In a pipelined processor, multiple operations can overlap in time. In the Tile Architecture instruc-
tions that have longer latencies are fully-pipelined.

Table 2. TILE-Gx Instruction/Pipeline Latencies

Operation Latency

Branch Mispredict 2 cycles

Load to Use - L1 hit 2 cycles

Load to Use - L1 miss, L2 hit 11 cycles

Load to Use - L1/L2 Miss, adjacent Distributed Coherent Cache (DDC™) hit 41 cycles

Load to Use - L1/L2 Miss, DDR3 page open, typical 85 cycles

Load to Use - L1/L2 Miss, DDR3 page close, typical 100 cycles

Load to Use - L1/L2 Miss, DDR3 page miss, typical ??? cycles

fsingle_{add1, sub1, mul1} 1 cycle

Other floating point, *mul*, *sad*, *adiff* instructions 2 cycles

All other instructions 1 cycle

Chapter 1 Processor Engine Architecture

6 TILE-Gx Instruction Set Architecture

TILE-Gx Instruction Set Architecture 7

CHAPTER 2 TILE-GX ENGINE INSTRUCTION
SET

2.1 Overview
This chapter describes the Instruction Set Architecture (ISA) for the TILE-Gx Processor, Tilera’s
next-generation processor architecture. For a complete list of instructions, refer to “Master List of
Main Processor Instructions” on page 24.

2.1 Instruction Reference
The TILE-Gx Architecture instructions can be categorized into 12 major groups:

• Arithmetic Instructions

• Bit Manipulation Instructions

• Compare Instructions

• Control Instructions

• Floating Point Instructions

• Logical Instructions

• Memory Instructions

• Memory Maintenance Instructions

• Multiply Instructions

• Nop Instructions

• SIMD Instructions

• System Instructions

2.1.1 Instruction Organization and Format
The TILE-Gx Processor architecture utilizes a 64-bit instruction bundle to specify instructions.
While the bundle is a large encoding format, this encoding provides a compiler with a relatively
orthogonal instruction space that aids in compilation. Likewise, the large register namespace
facilitates the allocation of data into registers, but comes at the cost of extra encoding bits in an
instruction word.

The TILE-Gx Processor architecture is capable of encoding up to three instructions in a bundle. In
order to achieve this level of encoding density, some of the less common or large immediate oper-
and instructions are encoded in a two instruction bundle. The bundle format is determined by the
Mode bits 63:62. When the Mode bits are 00, the bundle format is a X format bundle, and when the
Mode bits are non-zero, the bundle is a Y bundle.

Bundles that are in the Y format can encode three simultaneous operations where one is a memory
operation, one is an arithmetic or jump register operation, and the last one is a arithmetic or mul-
tiplication operation. The Y bundle format contains only a simple set of instructions with 8-bit
immediates. The X mode bundle is capable of encoding a superset of the instructions that can be

Chapter 2 TILE-Gx Engine Instruction Set

8 TILE-Gx Instruction Set Architecture

encoded in Y mode, however only two instructions can be encoded in each bundle. X mode bun-
dles are capable of encoding all instructions, including complex instructions such as control
transfers and long immediate instructions.

Y mode instructions contain three encoding slots, Y2, Y1, and Y0. Y2 is the pipeline which exe-
cutes loads and stores, Y1 is capable of executing arithmetic, logical, and jump register
instructions, and Y0 is capable of executing multiply, arithmetic, and logical instructions.
Figure 2-20 through Figure 2-28 present the instruction formats and encodings for the Y pipelines.
X mode contains two encoding slots, X1 and X0. The X1 pipeline is capable of executing load,
store, branches, arithmetic, and logical instructions by merging Y2 and Y1 pipelines. Pipeline X0 is
capable of executing multiply, arithmetic, and logical instructions. Figure 2-3 through Figure 2-17
present the instruction formats and encodings for the X pipelines.

Some instruction formats, or specific instructions, contain unused fields. It is strongly recom-
mended that these contain zeros, as future versions of the architecture may decide to assign
meanings to nonzero values in these fields. Implementations are permitted, but not required, to
take an Illegal Instruction interrupt when detecting a nonzero value in an unused instruction
field.

Instruction formats are described in the sections that follow.

2.1.1.1 X Instruction Formats
Figure 2-1 and Figure 2-2 show the basic X format instruction encodings.

Figure 2-1: X1 Specific Format

Figure 2-2: X0 Specific Format

TILE-Gx Instruction Set Architecture 9

Instruction Reference

X1 Instruction Formats
The X1 RRR format encodes an operation, which requires a destination register and two source
operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 2-3: X1 RRR Format (X1_RRR)

The X1_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 2-4: X1 Immediate Format (X1_Imm8)

The X1 Immediate MTSPR format writes an SPR with the value from a source register.For
example:

// Move the contents of register 0 into SPR SPR_IPI_EVENT_0
{ mtspr SPR_IPI_EVENT_0, r0 }

Figure 2-5: X1 Immediate MTSPR Format (X1_MT_Imm14)

Chapter 2 TILE-Gx Engine Instruction Set

10 TILE-Gx Instruction Set Architecture

The X1 Immediate MFSPR format is used to move the contents of an SPR into a destination regis-
ter. For example:

{mfspr r0, SPR_IPI_EVENT_0}// Move the contents of the SPR SPR_IPI_EVENT_0 into
r0

Figure 2-6: X1 Immediate MFSPR Format (X1_MF_Imm14)

The X1 Long Immediate Format is used for instructions which require a destination register, a
source register and a signed 16-bit immediate operand. For example:

// Add 0x1234 to the contents of register 1 and place the result in register 0
{ addli r0, r1, 0x1234 }

Figure 2-7: X1 Long Immediate Format (X1_Imm16)

The X1 Unary format is used for instructions which require a destination register, and a single
operand register. For example:

{ ld r0, r1 } // Load the contents of the word addressed by r1 into r0

Figure 2-8: X1 Unary Format (X1_Unary)

TILE-Gx Instruction Set Architecture 11

Instruction Reference

The X1 Shift Format is used for instructions that require a destination register, a source register,
and a 6-bit shift count. For example:

// Left shift the contents of r1 5 bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 2-9: X1 Shift Format (X1_Shift)

The X1 branch format is used to encode branches. The branch offset is represented as a signed
16-bit bundle offset. For example:

{ bnez r0, br_target}// Branch to br_target if the contents of r0 is not zero

Figure 2-10: X1 Branch Format (X1_Br)

The X1 Jump format is used to encode forward or backwards jumps. The jump offset is repre-
sented as an unsigned 28-bit bundle offset. For example:

{ j jump_target }// Jump to jump_target

Figure 2-11: X1 Jump Format (X1_J)

Chapter 2 TILE-Gx Engine Instruction Set

12 TILE-Gx Instruction Set Architecture

X0 Instruction Formats
The X0 RRR format encodes an operation, which requires a destination register and two source
operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 2-12: X0 RRR Format (X0_RRR)

The X0_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 2-13: X0 Immediate Format (X0_Imm8)

The X0 Long Immediate Format is used for instructions that require a destination register, a
source register, and a signed 16-bit immediate operand. For example:

// Add 0x1234 to the contents of register 1 and place the result in register 0
{ addli r0, r1, 0x1234 }

Figure 2-14: X0 Long Immediate Format (X0_Imm16)

TILE-Gx Instruction Set Architecture 13

Instruction Reference

The X0 Unary format is used for instructions that require a destination register and a single oper-
and register. For example:

{ revbytes r0, r1 }// Exchange the bytes in r1 and place the result in r0

Figure 2-15: X0 Unary Format (X0_Unary)

The X0 Shift Format is used for instructions that require a destination register, a source register,
and a 6-bit shift count. For example:

// Left shift the contents of r1 5 bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 2-16: X0 Shift Format (X0_Shift)

The X0 Masked Merge format is used for the masked merge instruction. For example:

// Merge bits 5 through 7 of r1 into the contents of r2
//and place the result in r0
{ mm, r0, r1, r2, 5, 7 }

Figure 2-17: X0 Masked Merge Format (X0_MM)

Chapter 2 TILE-Gx Engine Instruction Set

14 TILE-Gx Instruction Set Architecture

2.1.1.2 Y Instruction Formats

Figure 2-18: Y1 Specific Format

Figure 2-19: Y0 Specific Format

Y2 Instruction Formats
The Y2 Load Store Format is used to encode load or store instructions. Examples:

{ ld r0, r1 }// Load the contents of the word addressed by r1 into r0
{ st r0, r1}// Store the contents of register r1 into the word
// addressed by r0

Figure 2-20: Y2 Load Store Format (Y2_LS)

TILE-Gx Instruction Set Architecture 15

Instruction Reference

Y1 Instruction Formats
The Y1 RRR format encodes an operation which requires a destination register, and two source
registers. The Y1 RRR format encodes an operation, which requires a destination register and two
source operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 2-21: Y1 RRR Format (Y1_RRR)

The Y1_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 2-22: Y1 Immediate Format (Y1_Imm8)

The Y1 Unary format is used for instructions that require a destination register, and a single oper-
and register. For example:

{lnk r1} // Load address of the next PC into R1

Figure 2-23: Y1 Unary Format (Y1_Unary)

Chapter 2 TILE-Gx Engine Instruction Set

16 TILE-Gx Instruction Set Architecture

The Y1 Shift Format is used for instructions that require a destination register, a source register,
and a 6-bit shift count. For example:

// Left shift the contents of r1 5 bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 2-24: Y1 Shift Format (Y1_Shift)

Y0 Instruction Formats
The Y0 RRR format encodes an operation, which requires a destination register and two source
operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 2-25: Y0 RRR Format (Y0_RRR)

The Y0_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 2-26: Y0 Immediate Format (Y0_Imm8)

TILE-Gx Instruction Set Architecture 17

Instruction Reference

The Y0 Unary format is used for instructions that require a destination register and a single oper-
and register. For example:

{ revbytes r0, r1 }// Exchange the bytes in r1 and place the result in r0

Figure 2-27: Y0 Unary Format (Y0_Unary)

The Y0 Shift Format is used for instructions that require a destination register, a source register,
and a 6-bit shift count. For example:

// Left shift the contents of r1 5 bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 2-28: Y0 Shift Format (Y0_Shift)

2.1.2 Definitions and Semantics
Throughout the main processor’s instruction reference, several function calls, types, and con-
stants are utilized to define the function of a particular instruction. This section describes the
functionality and values of each of these functions, types, and constants. Unless otherwise stated,
operators and precedence in the instruction reference follow the same rules as ANSI C.

Chapter 2 TILE-Gx Engine Instruction Set

18 TILE-Gx Instruction Set Architecture

2.1.2.1 Constants

WORD_SIZE 64 The size of a machine word in bits. The
TILE-Gx Processor is a 64-bit machine.

WORD_MASK 0xFFFFffffFFFFffff A mask to represent all of the bits in a word.

WORD_ADDR_MASK 0xFFFFffffFFFFfff8 A mask that represents the portion of an
address that forms a word aligned mask.

BYTE_SIZE 8 The number of bits in a byte.

BYTE_SIZE_LOG_2 3 The logarithm base 2 of the number of bits in
a byte.

BYTE_MASK 0xFF A mask to represent all of the bits in a byte.

INSTRUCTION_SIZE 64 The length in bits of an instruction (bundle)
in the TILE-Gx Processor architecture.

INSTRUCTION_SIZE_LOG_2 6 The logarithm base 2 of the length in bits of
an instruction (bundle) in the TILE-Gx Pro-
cessor.

ALIGNED_INSTRUCTION_MASK
0xFFFFffffFFFFfff8

A mask that selects the relevant bits for the
address of an aligned instruction.

BYTE_16_ADDR_MASK 0xFFFFffffFFFFfff0 A mask that represents the portion of an
address that forms a 16-byte aligned block

ZERO_REGISTER 63 The ZERO_REGISTER always reads as 0,
and ignores all writes.

NUMBER_OF_REGISTERS 64 The number of architecturally visible general
purpose registers in the main processor.

LINK_REGISTER 55 The LINK_REGISTER is used as an
implicit destination for some control instruc-
tions.

EX_CONTEXT_SPRF_OFFSET The starting SPR address of the interrupt
context save blocks. The save blocks are
indexed by protection level of the interrupt
handler being invoked.

EX_CONTEXT_SIZE The length of the interrupt context save
block.

PC_EX_CONTEXT_OFFSET The register offset of the saved PC in the
interrupt save context block.

PROTECTION_LEVEL_EX_CONTEXT_OFFSET The register offset of the saved protection
level in the interrupt save context block.

INTERRUPT_MASK_EX_CONTEXT_OFFSET The register offset of the saved interrupt
mask in the interrupt save context block.

MASK16 0xFFFF A mask of the 16 low-order bits

TILE-Gx Instruction Set Architecture 19

Instruction Reference

2.1.2.2 Types

2.1.2.3 Functions
Functions are arranged by group:

• General Functions

• Memory Access Functions

• Instruction-Specific Functions

General Functions
These functions are used in the description of many instructions and perform the described
operation.

Table 2-1. Types

Function Description

SignedMachineWord This is a signed WORD_SIZE type.

UnsignedMachineWord This is a unsigned WORD_SIZE type.

RegisterFileEntry This type represents a register file entry.
This type can be cast to a UnsignedMa-
chineWord. This type has the assignment
operator overloaded for assignments of
UnsignedMachineWord.

Table 2-2. General Functions

Function Description

signExtend17 Sign extends a 17-bit value up to the
machine’s word length WORD_SIZE. The
type of the returned value of this function is
SignedMachineWord;

signExtend16 Sign extends a 16-bit value up to the
machine’s word length WORD_SIZE. The
type of the returned value of this function is
SignedMachineWord.

signExtend8 Sign extends an 8-bit value up to the
machine’s word length WORD_SIZE. The
type of the returned value of this function is
SignedMachineWord.

signExtend1 Sign extends an 1-bit value up to the
machine’s word length WORD_SIZE. The
type of the returned value of this function is
SignedMachineWord.

setNextPC Set the program counter to this function’s
parameter.

Chapter 2 TILE-Gx Engine Instruction Set

20 TILE-Gx Instruction Set Architecture

getCurrentPC Return as an UnsignedMachineWord
the current program counter.

branchHintedCorrect Denote that a control flow event has
occurred that has been hinted correctly.

branchHintedIncorrect Denote that a control flow event has
occurred what has been hinted incorrectly.

getCurrentProtectionLevel Returns as an UnsignedMachineWord
the current protection level.

setProtectionLevel Sets the current protection level from the
first parameter.

setInterruptCriticalSection Sets the current interrupt critical section bit
from the first parameter.

flushCacheLine Flushes the cache line from a tile’s local
cache which contains the address passed to
this function as a parameter.

invalidataCacheLine Invalidates the cache line from a tile’s local
cache which contains the address passed to
this function as a parameter.

flushAndInvalidataCacheLine Flushes and invalidates the cache line from
a tile’s local cache which contains the
address passed to this function as a parame-
ter.

rf[] Returns the indexed register file entry with
type RegisterFileEntry. The index is
an integer in the range of 0 to
NUMBER_OF_REGISTERS - 1.

sprf[] Returns the indexed special purpose regis-
ter file entry. The index is an integer in the
range of 0 to 215 - 1.

pushReturnStack Pushes the parameter onto the return pre-
diction stack.

popReturnStack Returns the top of the return prediction
stack and pops the stack.

indirectBranchHintedIncorrect Denote that an indirect branch has occurred
and has been hinted incorrectly.

indirectBranchHintedCorrect Denote that an indirect branch has occurred
and has been hinted correctly.

getHighHalfWordUnsigned Returns the high-order half word of the
parameter.

Table 2-2. General Functions (continued)

Function Description

TILE-Gx Instruction Set Architecture 21

Instruction Reference

Memory Access Functions
These functions are used in instructions which perform memory operations. Functions which end
in “NA” do not cause alignment traps, and access the Double word which contains the byte spec-
ified by the address. Functions which end in “NonTemporal” supply a hint to the cache
subsystem that this storage will not be accessed again within a short time period. The cache sub-
system typically allocates storage, such that it will be reused very quickly, thus preserving
capacity for other storage elements.

getLowHalfWordUnsigned Returns the low-order half word of the
parameter.

illegalInstruction Denotes that an illegal instruction has
occurred.

softwareInterrupt Denotes that a software interrupt has
occurred. The parameter specifies which
software interrupt will be generated.

Table 2-3. Memory Access Functions

Function Description

memoryReadDoubleWord
memoryReadDoubleWordNA
memoryReadDoubleWordNonTemporal

Returns the 8-byte value stored in memory
at the address passed to the function. The
value is a UnsignedMachineWord.
The address passed as a parameter to this
function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

memoryReadHalfWord Returns the 2-byte value stored in memory
at the address passed to the function. The
value is 0-extended to a UnsignedMachine-
Word. The address passed as a parameter to
this function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

memoryReadByte Returns the 1-byte value stored in memory
at the address passed to the function. The
value is 0-extended to a UnsignedMachine-
Word. The address passed as a parameter to
this function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

Table 2-2. General Functions (continued)

Function Description

Chapter 2 TILE-Gx Engine Instruction Set

22 TILE-Gx Instruction Set Architecture

memoryReadWord Returns the 4-byte value stored in memory
at the address passed to the function. The
value is 0-extended to a UnsignedMachine-
Word. The address passed as a parameter to
this function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

memoryWriteWord
memoryWriteWordNonTemporal

Writes to memory 4-byte value of the sec-
ond parameter into the address passed to
this function as the first parameter. The
address passed as the first parameter to this
function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

memoryWriteDoubleWord Writes to memory 8-byte value of the sec-
ond parameter into the address passed to
this function as the first parameter.
The address passed as the first parameter to
this function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

memoryWriteHalfWord Writes to memory 2-byte value of the sec-
ond parameter into the address passed to
this function as the first parameter. The
address passed as the first parameter to this
function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

memoryWriteByte Writes to memory 1-byte value of the sec-
ond parameter into the address passed to
this function as the first parameter. The
address passed as the first parameter to this
function is processed depending on the
memory mode and contents of the TLB. The
TILE-Gx Processor is a little endian
machine.

Table 2-3. Memory Access Functions (continued)

Function Description

TILE-Gx Instruction Set Architecture 23

Instruction Reference

Instruction-Specific Functions
These functions are used by one or two instructions. The function performed is described in the
instruction definition.

Table 2-4. Instruction-Specific Functions

Function Description

dtlbProbe See “dtlbpr” on page 200.

memoryFence See “mf” on page 205.

iCoherent See “icoh” on page 481.

fnop See “fnop” on page 300.

nop See “nop” on page 302.

drain See “drain” on page 480.

nap See “nap” on page 486.

fsingle_addsub1 See “fsingle_add1” on page 144 and
“fsingle_sub1” on page 150.

fsingle_addsub2 See “fsingle_addsub2” on page 145.

fsingle_mul1 See “fsingle_mul1” on page 146.

fsingle_mul2 See “fsingle_mul2” on page 147.

fsingle_pack1 See “fsingle_pack1” on page 148.

fsingle_pack2 See “fsingle_pack2” on page 149.

fdouble_pack1 See “fdouble_pack1” on page 139.

fdouble_pack2 See “fdouble_pack2” on page 140.

fdouble_mul_flags See “fdouble_mul_flags” on page 138.

fdouble_addsub_flags See “fdouble_add_flags” on page 136 and
“fdouble_addsub” on page 137.

fdouble_addsub See “fdouble_addsub” on page 137.

fdouble_unpack_minmax See “fdouble_unpack_min” on page 143
and “fdouble_unpack_max” on page 142.

Chapter 2 TILE-Gx Engine Instruction Set

24 TILE-Gx Instruction Set Architecture

2.1.3 Master List of Main Processor Instructions
Table 3 provides a complete list of instructions in alphabetic order. Pseudo Instructions are listed
on page 44. In the table, the Slots columns indicate Valid Execution Slots. Type indicates Instruc-
tion Type abbreviated as follows:

Note: Instructions with “Extend” in the description operate on half words.

Abbreviation Description Abbreviation Description

A Arithmetic ML Multiply

B Bit Manipulation MM Memory Maintenance

CM Compare N NOP

CT Control PS Pseudo Instructions

FP Floating Point S System

L Logical SM SIMD

M Memory

Table 3. Master List of Main Processor Instructions

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

add Add Arithmetic A X X X X page 48

addi Add Immediate A X X X X page 50

addli Add Long Immediate A X X page 52

addx Add and Extend A X X X X page 53

addxi Add and Extend
Immediate

A X X X X page 55

addxli Add and Extend
Long Immediate

A X X page 57

addxsc Add Signed Clamped
and Extend

A X X page 58

and And L X X X X page 153

andi And Immediate L X X X X page 155

beqz Branch Equal Zero CT X page 112

TILE-Gx Instruction Set Architecture 25

Instruction Reference

beqzt Branch Zero Predict
Taken

CT X page 114

bfexts Bit field Extract
Signed

L X page 157

bfextu Bit field Extract
Unsigned

L X page 158

bfins Bit field Insert L X page 159

bgez Branch Greater Than
or Equal to Zero

CT X page 113

bgezt Branch Greater Than
or Equal to Zero Pre-
dict Taken

CT X page 114

bgtz Branch Greater Than
Zero

CT X page 116

bgtzt Branch Greater Than
Zero Predict Taken

CT X page 117

blbc Branch Low Bit Clear CT X page 118

blbct Branch Low Bit Clear
Taken

CT X page 119

blbs Branch Low Bit Set CT X page 120

blbst Branch Low Bit Set
Taken

CT X page 121

blez Branch Less Than or
Equal to Zero

CT X page 122

blezt Branch Less Than or
Equal to Zero Taken

CT X page 123

bltz Branch Less Than
Zero

CT X page 124

bltzt Branch Less Than
Zero Taken

CT X page 125

bnez Branch Not Equal
Zero

CT X page 126

bnezt Branch Not Equal
Zero Predict Taken

CT X page 127

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

26 TILE-Gx Instruction Set Architecture

bpt Breakpoint PS X page 306

clz Count Leading Zeros B X X page 78

cmoveqz Conditional Move If
Equal Zero

L X X page 160

cmovnez Conditional Move If
Not Equal Zero

L X X page 161

cmpeq Compare Equal CM X X X X page 94

cmpeqi Compare Equal
Immediate

CM X X X X page 96

cmpexch Compare and
Exchange

M X page 209

cmpexch4 Compare and
Exchange Four
Bytes

M X page 210

cmples Compare Less Than
or Equal Signed

CM X X X X page 98

cmpleu Compare Less Than
or Equal Unsigned

CM X X X X page 100

cmplts Compare Less Than
Signed

CM X X X X page 102

cmpltsi Compare Less Than
Signed Immediate

CM X X X X page 102

cmpltu Compare Less Than
Unsigned

CM X X X X page 106

cmpltui Compare Less Than
Unsigned Immediate

CM X X page 108

cmpne Compare Not Equal CM X X X X page 109

cmul Complex Multiply ML X page 269

cmula Complex Multiply
Accumulate

ML X page 270

cmulaf Complex Multiply
Accumulate Fixed
Point

ML X page 271

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 27

Instruction Reference

cmulf Complex Multiply
Fixed Point

ML X page 272

cmulfr Complex Multiply
Fixed Point Round

ML X page 273

cmulh Complex Multiply
High Result

ML X page 274

cmulhr Complex Multiply
High Result Round

ML X page 275

crc32_32 CRC32 32-bit Step B X page 80

crc32_8 CRC32 8-bit Step B X page 81

ctz Count Trailing Zeros B X X page 82

dblalign Double Align B X page 84

dblalign2 Double Align by Two
Bytes

B X X page 85

dblalign4 Double Align by Four
Bytes

B X X page 86

dblalign6 Double Align by Six
Bytes

B X X page 87

drain Drain Instruction S X page 480

dtlbpr Data TLB Probe MM X page 200

exch Exchange M X page 211

exch4 Exchange Four
Bytes

M X page 212

fdouble_add_flags Floating Point Dou-
ble Precision Add
Flags

FP X page 136

fdouble_addsub Floating Point Dou-
ble Precision Add or
Subtract

FP X page 137

fdouble_mul_flags Floating Point Dou-
ble Precision Multiply
Flags

FP X page 138

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

28 TILE-Gx Instruction Set Architecture

fdouble_pack1 Floating Point Dou-
ble Precision Pack
Part 1

FP X page 139

fdouble_pack2 Floating Point Dou-
ble Precision Pack
Part 2

FP X page 140

fdouble_sub_flags Floating Point Dou-
ble Precision Sub-
tract Flags

FP X page 141

fdouble_unpack_max Floating Point Dou-
ble Precision Unpack
Max

FP X page 142

fdouble_unpack_min Floating Point Dou-
ble Precision Unpack
Min

FP X page 143

fetchadd Fetch and Add M X page 213

fetchadd4 Fetch and Add Four
Bytes

M X page 214

fetchaddgez Fetch and Add if
Greater or Equal
Zero

M X page 215

fetchaddgez4 Fetch and Add if
Greater or Equal
Zero Four Bytes

M X page 216

fetchand Fetch and And M X page 217

fetchand4 Fetch and And Four
Bytes

M X page 218

fetchor Fetch and Or M X page 219

fetchor4 Fetch and Or Four
Bytes

M X page 220

finv Flush and Invalidate
Cache Line

MM X page 201

flush Flush Cache Line MM X page 202

flushwb Flush Write Buffers MM X page 203

fnop Filler No Operation N X X X X page 300

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 29

Instruction Reference

fsingle_add1 Floating Point Single
Precision Add Part 1

FP X page 144

fsingle_addsub2 Floating Point Single
Precision Add or
Subtract Part 2

FP X page 145

fsingle_mul1 Floating Point Single
Precision Multiply
Part 1

FP X page 146

fsingle_mul2 Floating Point Single
Precision Multiply
Part 2

FP X page 147

fsingle_pack1 Floating Point Single
Precision Pack Part
1

FP X X page 148

fsingle_pack2 Floating Point Single
Precision Pack Part
2

FP X page 149

fsingle_sub1 Floating Point Single
Precision Subtract
Part 1

FP X page 150

icoh Instruction Stream
Coherence

S X page 481

ill Illegal Instruction S X X page 482

info Informational Note PS X X X X page 307

infol Long Informational
Note

PS X X page 309

inv Invalidate Cache
Line

MM X page 204

iret Interrupt Return S X page 483

j Jump CT X page 128

jal Jump and Link CT X page 129

jalr Jump and Link Reg-
ister

CT X X page 130

jalrp Jump and Link Reg-
ister Predict

CT X X page 131

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

30 TILE-Gx Instruction Set Architecture

jr Jump Register CT X X page 132

jrp Jump Register Pre-
dict

CT X X page 133

ld Load M X X page 221

ld_add Load and Add M X page 234

ld1s Load One Byte
Signed

M X X page 222

ld1s_add Load One Byte
Signed and Add

M X page 223

ld1u Load One Byte
Unsigned

M X X page 224

ld1u_add Load One Byte
Unsigned and Add

M X page 225

ld2s Load Two Bytes
Signed

M X X page 226

ld2s_add Load Two Bytes
Signed and Add

M X page 227

ld2u Load Two Bytes
Unsigned

M X X page 228

ld2u_add Load Two Bytes
Unsigned and Add

M X page 229

ld4s Load Four Bytes
Signed

M X X page 230

ld4s_add Load Four Bytes
Signed and Add

M X page 231

ld4u Load Four Bytes
Unsigned

M X X page 232

ld4u_add Load Four Bytes
Unsigned and Add

M X page 234

ld_add Load and Add M X page 234

ldna Load No Alignment
Trap

M X page 235

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 31

Instruction Reference

ldna_add Load No Alignment
Trap and Add

M X page 236

ldnt Load Non-Temporal M X page 237

ldnt_add Load Non-Temporal
and Add

M X page 250

ldnt1s Load Non-Temporal
One Byte Signed

M X page 238

ldnt1s_add Load Non-Temporal
One Byte Signed and
Add

M X page 239

ldnt1u Load Non-Temporal
One Byte Unsigned

M X page 240

ldnt1u_add Load Non-Temporal
One Byte Unsigned
and Add

M X page 241

ldnt2s Load Non-Temporal
Two Bytes Signed

M X page 242

ldnt2s_add Load Non-Temporal
Two Bytes Signed
and Add

M X page 243

ldnt2u Load Non-Temporal
Two Bytes Unsigned

M X page 244

ldnt2u_add Load Non-Temporal
Two Bytes Unsigned
and Add

M X page 245

ldnt4s Load Non-Temporal
Four Bytes Signed

M X page 246

ldnt4s_add Load Non-Temporal
Four Bytes Signed
and Add

M X page 247

ldnt4u Load Non-Temporal
Four Bytes Unsigned

M X page 248

ldnt4u_add Load Non-Temporal
Four Bytes Unsigned
and Add

M X page 249

lnk Link CT X X page 134

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

32 TILE-Gx Instruction Set Architecture

mf Memory Fence MM X page 205

mfspr Move from Special
Purpose Register
Word

S X page 484

mm Masked Merge L X page 162

mnz Mask Not Zero L X X X X page 163

move Move PS X X X X page 312

movei Move Immediate
Word

PS X X X X page 314

moveli Move Long Immedi-
ate Word

PS X X page 316

mtspr Move to Special Pur-
pose Register Word

S X page 485

mul_hs_hs Multiply High Signed
High Signed

ML X X page 276

mul_hs_hu Multiply High Signed
High Unsigned

ML X page 277

mul_hs_ls Multiply High Signed
Low Signed

ML X page 278

mul_hs_lu Multiply High Signed
Low Unsigned

ML X page 279

mul_hu_hu Multiply High
Unsigned High
Unsigned

ML X X page 280

mul_hu_ls Multiply High
Unsigned Low
Signed

ML X page 281

mul_hu_lu Multiply High
Unsigned Low
Unsigned

ML X page 282

mul_ls_ls Multiply Low Signed
Low Signed

ML X X page 283

mul_ls_lu Multiply Low Signed
Low Unsigned

ML X page 284

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 33

Instruction Reference

mul_lu_lu Multiply Low
Unsigned Low
Unsigned

ML X X page 285

mula_hs_hs Multiply Accumulate
High Signed High
Signed

ML X X page 286

mula_hs_hu Multiply Accumulate
High Signed High
Unsigned

ML X page 287

mula_hs_ls Multiply Accumulate
High Signed Low
Signed

ML X page 288

mula_hs_lu Multiply Accumulate
High Signed Low
Unsigned

ML X page 289

mula_hu_hu Multiply Accumulate
High Unsigned High
Unsigned

ML X X page 290

mula_hu_ls Multiply Accumulate
High Unsigned Low
Signed

ML X page 291

mula_hu_lu Multiply Accumulate
High Unsigned Low
Unsigned

ML X page 292

mula_ls_ls Multiply Accumulate
Low Signed Low
Signed

ML X X page 293

mula_ls_lu Multiply Accumulate
Low Signed Low
Unsigned

ML X page 294

mula_lu_lu Multiply Accumulate
Low Unsigned Low
Unsigned

ML X X page 295

mulax Multiply Accumulate
and Extend

ML X X page 296

mulx Multiply and Extend ML X X page 297

mz Mask Zero L X X X X page 165

nap Nap S X page 486

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

34 TILE-Gx Instruction Set Architecture

nop Architectural No
Operation

N X X X X page 302

nor Nor L X X X X page 167

or Or L X X X X page 169

ori Or Immediate L X X page 171

pcnt Population Count B X X page 88

prefetch Prefetch to L1 with
No Faults

PS X X page 317

prefetch_add_l1 Prefetch to L1 and
Add with No Faults

PS X page 318

prefetch_add_l1_fault Prefetch to L1 and
Add with Faults

PS X page 319

prefetch_add_l2 Prefetch to L2 and
Add with No Faults

PS X page 320

prefetch_add_l2_fault Prefetch to L2 and
Add with Faults

PS X page 321

prefetch_add_l3 Prefetch to L3 and
Add with No Faults

PS X page 322

prefetch_add_l3_fault Prefetch to L3 and
Add with Faults

PS X page 323

prefetch_l1 Prefetch to L1 with
No Faults

PS X X page 324

prefetch_l1_fault Prefetch to L1 with
Faults

PS X X page 325

prefetch_l2 Prefetch to L2 with
No Faults

PS X X page 326

prefetch_l2_fault Prefetch to L2 with
Faults

PS X X page 327

prefetch_l3 Prefetch to L3 with
No Faults

PS X X page 328

prefetch_l3_fault Prefetch to L3 with
Faults

PS X X page 329

raise Raise Signal PS X page 330

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 35

Instruction Reference

revbits Reverse Bits B X X page 89

revbytes Reverse Bytes B X X page 90

rotl Rotate Left L X X X X page 172

rotli Rotate Left Immedi-
ate

L X X X X page 174

shl Shift Left L X X X X page 176

shl16insli Shift left 16 Insert
Long Immediate

A X X page 59

shl1add Shift Left One and
Add

A X X X X page 60

shl1addx Shift Left One Add
and Extend

A X X X X page 62

shl2add Shift Left Two Add A X X X X page 64

shl2addx Shift Left Two Add
and Extend

A X X X X page 66

shl3add Shift Left Three Add A X X X X page 68

shl3addx Shift Left Three Add
and Extend

A X X X X page 70

shli Shift Left Immediate L X X X X page 178

shlx Shift Left and Extend L X X page 180

shlxi Shift Left and Extend
Immediate

L X X page 181

shrs Shift Right Signed L X X X X page 182

shrsi Shift Right Signed
Immediate

L X X X X page 184

shru Shift Right Unsigned L X X X X page 186

shrui Shift Right Unsigned
Immediate

L X X X X page 188

shrux Shift Right Unsigned
and Extend

L X X page 190

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

36 TILE-Gx Instruction Set Architecture

shruxi Shift Right Unsigned
and Extend Immedi-
ate

L X X page 191

shufflebytes Shuffle Bytes B X page 92

st Store M X X page 251

st_add Store and Add M X page 258

st1 Store Byte M X X page 252

st1_add Store Byte and Add M X page 253

st2 Store Two bytes M X X page 254

st2_add Store Two Bytes and
Add

M X page 255

st4 Store Four Bytes M X X page 256

st4_add Store Four Bytes and
Add

M X page 257

stnt Store Non-Temporal M X page 259

stnt_add Store Non-Temporal
and Add

M X page 266

stnt1 Store Non-Temporal
Byte

M X page 260

stnt1_add Store Non-Temporal
Byte and Add

M X page 261

stnt2 Store Non-Temporal
Two bytes

M X page 262

stnt2_add Store Non-Temporal
Two Bytes and Add

M X page 263

stnt4 Store Non-Temporal
Four Bytes

M X page 264

stnt4_add Store Non-Temporal
Four Bytes and Add

M X page 265

sub Subtract A X X X X page 72

subx Subtract and Extend A X X X X page 74

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 37

Instruction Reference

subxsc Subtract Signed
Clamped and Extend

A X X page 76

swint0 Software Interrupt 0 S X page 487

swint1 Software Interrupt 1 S X page 488

swint2 Software Interrupt 2 S X page 489

swint3 Software Interrupt 3 S X page 490

tblidxb0 Table Index Byte 0 L X X page 192

tblidxb1 Table Index Byte 1 L X X page 193

tblidxb2 Table Index Byte 2 L X X page 194

tblidxb3 Table Index Byte 3 L X X page 195

v1add Vector One Byte Add SM X X page 334

v1addi Vector One Byte Add
Immediate

SM X X page 336

v1adduc Vector One Byte Add
Unsigned Clamped

SM X X page 337

v1adiffu Vector One Byte
Absolute Difference
Unsigned

SM X page 339

v1avgu Vector One Byte
Average Unsigned

SM X page 340

v1cmpeq Vector One Byte Set
Equal To

SM X X page 341

v1cmpeqi Vector One Byte Set
Equal To Immediate

SM X X page 343

v1cmples Vector One Byte Set
Less Than or Equal

SM X X page 344

v1cmpleu Vector One Byte Set
Less Than or Equal
Unsigned

SM X X page 346

v1cmplts Vector One Byte Set
Less Than

SM X X page 348

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

38 TILE-Gx Instruction Set Architecture

v1cmpltsi Vector One Byte Set
Less Than Immedi-
ate

SM X X page 350

v1cmpltu Vector One Byte Set
Less Than Unsigned

SM X X page 351

v1cmpltui Vector One Byte Set
Less Than Unsigned
Immediate

SM X X page 353

v1cmpne Vector One Byte Set
Not Equal To

SM X X page 354

v1ddotpu Vector One Byte
Dual Dot Product
Unsigned

SM X page 356

v1ddotpua Vector One Byte
Dual Dot Product
Unsigned and Accu-
mulate

SM X page 357

v1ddotpus Vector One Byte
Dual Dot Product
Unsigned Signed

SM X page 358

v1ddotpusa Vector One Byte
Dual Dot Product
Unsigned Signed
and Accumulate

SM X page 359

v1dotp Vector One Byte Dot
Product

SM X page 360

v1dotpa Vector One Byte Dot
Product and Accu-
mulate

SM X page 361

v1dotpu Vector One Byte Dot
Product Unsigned

SM X page 362

v1dotpua Vector One Byte Dot
Product Unsigned
and Accumulate

SM X page 363

v1dotpus Vector One Byte Dot
Product Unsigned
Signed

S X page 364

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 39

Instruction Reference

v1dotpusa Vector One Byte Dot
Product Unsigned
Signed and Accumu-
late

S X page 365

v1int_h Vector One Byte
Interleave High

SM X X page 366

v1int_l Vector One Byte
Interleave Low

SM X X page 368

v1maxu Vector One Byte
Maximum Unsigned

SM X X page 370

v1maxui Vector One Byte
Maximum Unsigned
Immediate

SM X X page 372

v1minu Vector One Byte Min-
imum Unsigned

SM X X page 370

v1minui Vector One Byte Min-
imum Unsigned
Immediate

SM X X page 374

v1mnz Vector One Byte
Mask Not Zero

SM X X page 375

v1multu Vector One Byte Mul-
tiply and Truncate
Unsigned

SM X page 376

v1mulu Vector One Byte Mul-
tiply Unsigned

SM X page 377

v1mulus Vector One Byte Mul-
tiply Unsigned
Signed

SM X page 378

v1mz Vector One Byte
Mask Zero

SM X X page 379

v1sadau Vector One Byte
Sum of Absolute Dif-
ference Accumulate
Unsigned

SM X page 380

v1sadu Vector One Byte
Sum of Absolute Dif-
ference Unsigned

SM X page 381

v1shl Vector One Byte
Shift Left

SM X X page 382

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

40 TILE-Gx Instruction Set Architecture

v1shli Vector One Byte
Shift Left Immediate

SM X X page 383

v1shrs Vector One Byte
Shift Right Signed

SM X X page 385

v1shrsi Vector One Byte
Shift Right Signed
Immediate

SM X X page 387

v1shru Vector One Byte
Shift Right Unsigned

SM X X page 389

v1shrui Vector One Byte
Shift Right Unsigned
Immediate

SM X X page 390

v1sub Vector One Byte
Subtract

SM X X page 392

v1subuc Vector One Byte
Subtract Unsigned
Clamped

SM X X page 393

v2add Vector Two Byte Add SM X X page 395

v2addi Vector Two Byte Add
Immediate

SM X X page 396

v2addsc Vector Two Byte Add
Signed Clamped

SM X X page 397

v2adiffs Vector Two Byte
Absolute Difference
Signed

SM X page 399

v2avgs Vector Two Byte
Average Signed

SM X page 400

v2cmpeq Vector Two Byte Set
Equal To

SM X X page 401

v2cmpeqi Vector Two Byte Set
Equal To Immediate

SM X X page 403

v2cmples Vector Two Byte Set
Less Than or Equal

SM X X page 404

v2cmpleu Vector Two Byte Set
Less Than or Equal
Unsigned

SM X X page 406

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 41

Instruction Reference

v2cmplts Vector Two Byte Set
Less Than

SM X X page 408

v2cmpltsi Vector Two Byte Set
Less Than Immedi-
ate

SM X X page 410

v2cmpltu Vector Two Byte Set
Less Than Unsigned

SM X X page 411

v2cmpltui Vector Two Byte Set
Less Than Unsigned
Immediate

SM X X page 413

v2cmpne Vector Two Byte Set
Not Equal To

SM X X page 414

v2dotp Vector Two Byte Dot
Product

SM X page 416

v2dotpa Vector Two Byte Dot
Product and Accu-
mulate

SM X page 417

v2int_h Vector Two Byte
Interleave High

SM X X page 418

v2int_l Vector Two Byte
Interleave Low

SM X X page 420

v2maxs Vector Two Byte
Maximum Signed

SM X X page 422

v2maxsi Vector Two Byte
Maximum Signed
Immediate

SM X X page 423

v2mins Vector Two Byte Min-
imum Signed

SM X X page 424

v2minsi Vector Two Byte Min-
imum Signed Imme-
diate

SM X X page 425

v2mnz Vector Two Byte
Mask Not Zero

SM X X page 426

v2mulfsc Vector Two Byte Mul-
tiply Fixed point
Signed Clamped

SM X page 427

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

42 TILE-Gx Instruction Set Architecture

v2muls Vector Two Byte Mul-
tiply Signed

SM X page 428

v2mults Vector Two Byte Mul-
tiply and Truncate
Signed

SM X page 429

v2mz Vector Two Byte
Mask Zero

SM X X page 430

v2packh Vector Two Bytes
Pack High Byte

SM X X page 431

v2packl Vector Two Byte
Pack Low Byte

SM X X page 433

v2packuc Vector Two Byte
Pack Unsigned
Clamped

SM X X page 435

v2sadas Vector Two Byte Sum
of Absolute Differ-
ence Accumulate
Signed

SM X page 437

v2sadau Vector Two Byte Sum
of Absolute Differ-
ence Accumulate
Unsigned

SM X page 438

v2sads Vector Two Byte Sum
of Absolute Differ-
ence Signed

SM X page 439

v2sadu Vector Two Byte Sum
of Absolute Differ-
ence Unsigned

SM X page 440

v2shl Vector Two Byte Shift
Left

SM X X page 441

v2shli Vector Two Byte Shift
Left Immediate

SM X X page 443

v2shlsc Vector Two Byte Shift
Left Signed Clamped

SM X X page 445

v2shrs Vector Two Byte Shift
Right Signed

SM X X page 447

v2shrsi Vector Two Byte Shift
Right Signed Imme-
diate

SM X X page 448

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 43

Instruction Reference

v2shru Vector Two Byte Shift
Right Unsigned

SM X X page 450

v2shrui Vector Two Byte Shift
Right Unsigned
Immediate

SM X X page 452

v2sub Vector Two Byte
Subtract

SM X X page 454

v2subsc Vector Two Byte
Subtract Signed
Clamped

SM X X page 456

v4add Vector Four Byte Add SM X X page 458

v4addsc Vector Four Byte Add
Signed Clamped

SM X X page 459

v4int_h Vector Four Byte
Interleave High

SM X X page 461

v4int_l Vector Four Byte
Interleave Low

SM X X page 463

v4packsc Vector Four Byte
Pack Signed
Clamped

SM X X page 465

v4shl Vector Four Byte
Shift Left

SM X X page 467

v4shlsc Vector Four Byte
Shift Left Signed
Clamped

SM X X page 469

v4shrs Vector Four Byte
Shift Right Signed

SM X X page 471

v4shru Vector Four Byte
Shift Right Unsigned

SM X X page 473

v4sub Vector Four Byte
Subtract

SM X X page 475

v4subsc Vector Four Byte
Subtract Signed
Clamped

SM X X page 477

wh64 Write Hint 64 Bytes MM X page 206

xor Exclusive Or L X X X X page 196

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

Chapter 2 TILE-Gx Engine Instruction Set

44 TILE-Gx Instruction Set Architecture

2.1.4 Pseudo Instructions
Tilera’s assembler supports several pseudo-instructions for the convenience of the programmer.
Each of these instructions shares an encoding with a standard ISA instruction.

xori Exclusive Or Immedi-
ate

L X X page 198

Table 2-1. Pseudo Instructions

Pseudo Instruction Canonical Form

move dst,src or dst, src, zero

moveidst,simm8 addi dst, zero, simm8

movelidst,simm16 addli dst, zero, simm16

prefetch1src ld1u zero, src

prefetch_l1 ld1u zero, src

prefetch_add_l1 ld1u_add zero, src

prefetch_l1_fault ld1s zero, src

prefetch_add_l1_fault ld1s_add zero, src

prefetch_l2 ld2u zero, src

prefetch_add_l2 ld2u_add zero, src

prefetch_l2_fault ld2s zero, src

prefetch_add_l2_fault ld2s_add zero, src

prefetch_l3 ld4u zero, src

prefetch_add_l3 ld4u_add zero, src

prefetch_l3_fault ld4s zero, src

prefetch_add_l3_fault ld4s_add zero, src

bpt2 ill

Table 3. Master List of Main Processor Instructions (continued)

Instruction Description Type

Slots

PageX0 X1 YO Y1 Y2

TILE-Gx Instruction Set Architecture 45

Instruction Reference

INFO operations are generated by the compiler and are used to convey information about the
state of the stack frame at various points in the code of a function. The backtrace library interprets
these operations when performing stack unwinding.

In order to perform stack unwinding, the backtrace library requires that code conform to the stack
frame conventions specified in the ABI. In the presence of compiler optimizations, however, the
code may deviate from these conventions. In this case, the compiler automatically inserts INFO
operations in the code to compensate.

Intrinsics, including the INFO operation, are a set of functions whose names have the format
__insn_xxxx(), where xxxx is an instruction in the ISA.

raise3 ill

info simm8 andi zero, zero,simm8

infolsimm16 shl16inslizero,zero,simm16

1 For performance reasons, loads to the zero register do not result in the register file being written. Such instructions are
killed entirely if they would cause DTLB_MISS or DTLB_ACCESS interrupts. The TILE architecture does not guarantee
that every prefetch instruction will cause the caches to be loaded. Thus prefetch (indeed, any load to the zero register)
should be considered merely a hint to the hardware.

2 The TILE architecture does not provide an explicit breakpoint instruction. Instead, bpt is encoded as an illegal instruction
with non-zero values in the implicit immediate fields. Thus bpt does not have exactly the same hardware encoding as
the ill or raise instruction.

3 The TILE-Gx architecture does not provide an explicit synchronous exception instruction. Instead raise is encoded as an
illegal instruction with non-zero values in the implicit immediate fields. Thus raise does not have exactly the same hard-
ware encoding as the ill or bpt instruction.

Table 2-1. Pseudo Instructions (continued)

Pseudo Instruction Canonical Form

Chapter 2 TILE-Gx Engine Instruction Set

46 TILE-Gx Instruction Set Architecture

TILE-Gx Instruction Set Architecture 47

CHAPTER 3 ARITHMETIC INSTRUCTIONS

3.1 Overview
The following sections provide detailed descriptions of arithmetic instructions listed
alphabetically.

add Add

addi Add Immediate

addli Add Long Immediate

addx Add and Extend

addxi Add and Extend Immediate

addxli Add and Extend Long Immediate

addxsc Add Signed Clamped and Extend

shl16insli Shift Left 16 Insert Long Immediate

shl1add Shift Left One and Add

shl1addx Shift Left One Add and Extend

shl2add Shift Left Two Add

shl2addx Shift Left Two Add and Extend

shl3add Shift Left Three Add

shl3addx Shift Left Three Add and Extend

sub Subtract

subx Subtract and Extend

subxsc Subtract Signed Clamped and Extend

Chapter 3 Arithmetic Instructions

48 TILE-Gx Instruction Set Architecture

3.2 Instructions
Arithmetic instructions are described in the sections that follow.

add

Add

Syntax
add Dest, SrcA, SrcB

Example
add r5, r6, r7

Description

Adds the two operands together.

Functional Description
rf[Dest] = rf[SrcA] + rf[SrcB];

Valid Pipelines

Encoding

Figure 3-29: add in X0 Bits Encoding

Figure 3-30: add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 49

Instructions

Figure 3-31: add in Y0 Bits Encoding

Figure 3-32: add in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

50 TILE-Gx Instruction Set Architecture

addi

Add Immediate

Syntax
addi Dest, SrcA, Imm8

Example
addi r5, r6, 5

Description

Adds one operand with a sign extended immediate.

Functional Description
rf[Dest] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 3-33: addi in X0 Bits Encoding

Figure 3-34: addi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 51

Instructions

Figure 3-35: addi in Y0 Bits Encoding

Figure 3-36: addi in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

52 TILE-Gx Instruction Set Architecture

addli

Add Long Immediate

Syntax
addli Dest, SrcA, Imm16

Example
addli r5, r6, 0x1234

Description

Adds one operand with a sign extended long immediate.

Functional Description
rf[Dest] = rf[SrcA] + signExtend16 (Imm16);

Valid Pipelines

Encoding

Figure 3-37: addli in X0 Bits Encoding

Figure 3-38: addli in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 53

Instructions

addx

Add and Extend

Syntax
addx Dest, SrcA, SrcB

Example
addx r5, r6, r7

Description

Adds the two 4-byte operands together and sign-extends the result.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] + rf[SrcB]);

Valid Pipelines

Encoding

Figure 3-39: addx in X0 Bits Encoding

Figure 3-40: addx in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 3 Arithmetic Instructions

54 TILE-Gx Instruction Set Architecture

Figure 3-41: addx in Y0 Bits Encoding

Figure 3-42: addx in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 55

Instructions

addxi

Add and Extend Immediate

Syntax
addxi Dest, SrcA, Imm8

Example
addxi r5, r6, 5

Description

Adds one 4-byte operand with a sign extended immediate and sign-extends the result.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] + signExtend8 (Imm8));

Valid Pipelines

Encoding

Figure 3-43: addxi in X0 Bits Encoding

Figure 3-44: addxi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 3 Arithmetic Instructions

56 TILE-Gx Instruction Set Architecture

Figure 3-45: addxi in Y0 Bits Encoding

Figure 3-46: addxi in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 57

Instructions

addxli

Add and Extend Long Immediate

Syntax

addxli Dest, SrcA, Imm16

Example

addxli r5, r6, 0x1234

Description

Adds one 4-byte operand with a sign extended long immediate and sign-extends the result.

Functional Description

rf[Dest] = signExtend32 (rf[SrcA] + signExtend16 (Imm16));

Valid Pipelines

Encoding

Figure 3-47: addxli in X0 Bits Encoding

Figure 3-48: addxli in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 3 Arithmetic Instructions

58 TILE-Gx Instruction Set Architecture

addxsc

Add Signed Clamped and Extend

Syntax
addxsc Dest, SrcA, SrcB

Example
addxsc r5, r6, r7

Description

Adds two 4-byte operands together saturating the result at the minimum negative value or the
maximum positive 4-byte value. The result is then sign-extended.

Functional Description
rf[Dest] =
signExtend32 (signed_saturate32
 (signExtend32 (rf[SrcA]) + signExtend32 (rf[SrcB])));

Valid Pipelines

Encoding

Figure 3-49: addxsc in X0 Bits Encoding

Figure 3-50: addxsc in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 59

Instructions

shl16insli

Shift Left 16 Insert Long Immediate

Syntax
shl16insli Dest, SrcA, Imm16

Example
shl16insli r5, r6, 0x1234

Description

Shifts the first source operand 16 bits left and inserts the 16 bit long immediate into least signifi-
cant bits.

Functional Description
rf[Dest] = (rf[SrcA] << 16) | (Imm16 & MASK16);

Valid Pipelines

Encoding

Figure 3-51: shl16insli in X0 Bits Encoding

Figure 3-52: shl16insli in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 3 Arithmetic Instructions

60 TILE-Gx Instruction Set Architecture

shl1add

Shift Left One and Add

Syntax
shl1add Dest, SrcA, SrcB

Example
shl1add r5, r6, r7

Description

Shifts the first operand left by one bit and then adds the second source operand.

Functional Description
rf[Dest] = (rf[SrcA] << 1) + rf[SrcB];

Valid Pipelines

Encoding

Figure 3-53: shl1add in X0 Bits Encoding

Figure 3-54: shl1add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 61

Instructions

Figure 3-55: shl1add in Y0 Bits Encoding

Figure 3-56: shl1add in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

62 TILE-Gx Instruction Set Architecture

shl1addx

Shift Left One Add and Extend

Syntax
shl1addx Dest, SrcA, SrcB

Example
shl1addx r5, r6, r7

Description

Shifts the first 4-byte operand left by one bit and then adds the second 4-byte source operand. The
4-byte result is sign-extended.

Functional Description
rf[Dest] = signExtend32 ((rf[SrcA] << 1) + rf[SrcB]);

Valid Pipelines

Encoding

Figure 3-57: shl1addx in X0 Bits Encoding

Figure 3-58: shl1addx in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 63

Instructions

Figure 3-59: shl1addx in Y0 Bits Encoding

Figure 3-60: shl1addx in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

64 TILE-Gx Instruction Set Architecture

shl2add

Shift Left Two Add

Syntax
shl2add Dest, SrcA, SrcB

Example
shl2add r5, r6, r7

Description

Shifts the first operand left by two bits and then adds the second source operand.

Functional Description
rf[Dest] = (rf[SrcA] << 2) + rf[SrcB];

Valid Pipelines

Encoding

Figure 3-61: shl2add in X0 Bits Encoding

Figure 3-62: shl2add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 65

Instructions

Figure 3-63: shl2add in Y0 Bits Encoding

Figure 3-64: shl2add in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

66 TILE-Gx Instruction Set Architecture

shl2addx

Shift Left Two Add and Extend

Syntax
shl2addx Dest, SrcA, SrcB

Example
shl2addx r5, r6, r7

Description

Shifts the first 4-byte operand left by two bits and then adds the second 4-byte source operand.
The 4-byte result is sign-extended.

Functional Description
rf[Dest] = signExtend32 ((rf[SrcA] << 2) + rf[SrcB]);

Valid Pipelines

Encoding

Figure 3-65: shl2addx in X0 Bits Encoding

Figure 3-66: shl2addx in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 67

Instructions

Figure 3-67: shl2addx in Y0 Bits Encoding

Figure 3-68: shl2addx in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

68 TILE-Gx Instruction Set Architecture

shl3add

Shift Left Three Add

Syntax
shl3add Dest, SrcA, SrcB

Example
shl3add r5, r6, r7

Description

Shifts the first operand left by three bits and then adds the second source operand.

Functional Description
rf[Dest] = (rf[SrcA] << 3) + rf[SrcB];

Valid Pipelines

Encoding

Figure 3-69: shl3add in X0 Bits Encoding

Figure 3-70: shl3add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 69

Instructions

Figure 3-71: shl3add in Y0 Bits Encoding

Figure 3-72: shl3add in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

70 TILE-Gx Instruction Set Architecture

shl3addx

Shift Left Three Add and Extend

Syntax
shl3addx Dest, SrcA, SrcB

Example
shl3addx r5, r6, r7

Description

Shifts the first 4-byte operand left by three bits and then adds the second 4-byte source operand.
The 4-byte result is sign-extended.

Functional Description
rf[Dest] = signExtend32 ((rf[SrcA] << 3) + rf[SrcB]);

Valid Pipelines

Encoding

Figure 3-73: shl3addx in X0 Bits Encoding

Figure 3-74: shl3addx in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 71

Instructions

Figure 3-75: shl3addx in Y0 Bits Encoding

Figure 3-76: shl3addx in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

72 TILE-Gx Instruction Set Architecture

sub

Subtract

Syntax
sub Dest, SrcA, SrcB

Example
sub r5, r6, r7

Description

Subtracts the second operand from the first.

Functional Description
rf[Dest] = rf[SrcA] - rf[SrcB];

Valid Pipelines

Encoding

Figure 3-77: sub in X0 Bits Encoding

Figure 3-78: sub in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 73

Instructions

Figure 3-79: sub in Y0 Bits Encoding

Figure 3-80: sub in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

74 TILE-Gx Instruction Set Architecture

subx

Subtract and Extend

Syntax
subx Dest, SrcA, SrcB

Example
subx r5, r6, r7

Description

Subtract the second 4-byte operand from the first 4-byte operand and sign-extend the result.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] - rf[SrcB]);

Valid Pipelines

Encoding

Figure 3-81: subx in X0 Bits Encoding

Figure 3-82: subx in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 75

Instructions

Figure 3-83: subx in Y0 Bits Encoding

Figure 3-84: subx in Y1 Bits Encoding

Chapter 3 Arithmetic Instructions

76 TILE-Gx Instruction Set Architecture

subxsc

Subtract Signed Clamped and Extend

Syntax
subxsc Dest, SrcA, SrcB

Example
subxsc r5, r6, r7

Description

Subtracts the second 4-byte operand from the first 4-byte operand, saturating the result at the
minimum negative value or the maximum positive 4-byte value. The result is then sign-extended.

Functional Description
rf[Dest] =
signExtend32 (signed_saturate32
 (signExtend32 (rf[SrcA]) - signExtend32 (rf[SrcB])));

Valid Pipelines

Encoding

Figure 3-85: subxsc in X0 Bits Encoding

Figure 3-86: subxsc in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 77

CHAPTER 4 BIT MANIPULATION
INSTRUCTIONS

4.1 Overview
The following sections provide detailed descriptions of bit manipulation instructions listed
alphabetically.

clz Count Leading Zeros

crc32_32 CRC32 32-bit Step

crc32_8 CRC32 8-bit Step

ctz Count Trailing Zeros

dblalign Double Align

dblalign2 Double Align by Two Bytes

dblalign4 Double Align by Four Bytes

dblalign6 Double Align by Six Bytes

pcnt Population Count

revbits Reverse Bits

revbytes Reverse Bytes

shufflebytes Shuffle Bytes

Chapter 4 Bit Manipulation Instructions

78 TILE-Gx Instruction Set Architecture

4.2 Instructions
Bit manipulation instructions are described in the sections that follow.

clz

Count Leading Zeros

Syntax
clz Dest, SrcA

Example
clz r5, r6

Description

Returns the number leading zeros in a word before a bit is set (1). This instruction scans the input
word from the most significant bit to the least significant bit. The result of this operation can
range from 0 to WORD_SIZE.

Functional Description
unsigned int counter;
for (counter = 0; counter < WORD_SIZE; counter++)
 {
 if ((rf[SrcA] >> (WORD_SIZE - 1 - counter)) & 0x1)
 {
break;
 }
 }

rf[Dest] = counter;

Valid Pipelines

Encoding

Figure 4-87: clz in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 79

Instructions

Figure 4-88: clz in Y0 Bits Encoding

Chapter 4 Bit Manipulation Instructions

80 TILE-Gx Instruction Set Architecture

crc32_32

CRC32 32-bit Step

Syntax
crc32_32 Dest, SrcA, SrcB

Example
crc32_32 r5, r6, r7

Description

Updates a CRC32 value in the first operand with the second operand.

Functional Description
uint32_t accum = rf[SrcA];
uint32_t input = rf[SrcB];
for (unsigned int Counter = 0; Counter < 32; Counter++)
 {
 accum =
 (accum >> 1) ^ (((input & 1) ^ (accum & 1)) ? 0xEDB88320 : 0x00000000);
 input = input >> 1;
 } rf[Dest] = accum;

Valid Pipelines

Encoding

Figure 4-89: crc32_32 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 81

Instructions

crc32_8

CRC32 8-bit Step

Syntax
crc32_8 Dest, SrcA, SrcB

Example
crc32_8 r5, r6, r7

Description

Updates a CRC32 value in the first operand with the low-order 8 bits of the second operand.

Functional Description
uint32_t accum = rf[SrcA];
uint32_t input = rf[SrcB];
for (unsigned int Counter = 0; Counter < 8; Counter++)
 {
 accum =
 (accum >> 1) ^ (((input & 1) ^ (accum & 1)) ? 0xEDB88320 : 0x00000000);
 input = input >> 1;
 } rf[Dest] = accum;

Valid Pipelines

Encoding

Figure 4-90: crc32_8 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 4 Bit Manipulation Instructions

82 TILE-Gx Instruction Set Architecture

ctz

Count Trailing Zeros

Syntax
ctz Dest, SrcA

Example
ctz r5, r6

Description

Returns the number trailing zeros in a word before a bit is set (1). This instruction scans the input
word from the least significant bit to the most significant bit. The result of this operation can
range from 0 to WORD_SIZE.

Functional Description
unsigned int counter;
for (counter = 0; counter < WORD_SIZE; counter++)
 {
 if ((rf[SrcA] >> counter) & 0x1)
 {
break;
 }
 }

rf[Dest] = counter;

Valid Pipelines

Encoding

Figure 4-91: ctz in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 83

Instructions

Figure 4-92: ctz in Y0 Bits Encoding

Chapter 4 Bit Manipulation Instructions

84 TILE-Gx Instruction Set Architecture

dblalign

Double Align

Syntax
dblalign Dest, SrcA, SrcB

Example
dblalign r5, r6, r7

Description

Shift a 128-bit value by the number of bytes specified by the bottom three bits of the second source
operand. The shift direction is to the right when the processor is in little-endian mode, and to the
left if the processor is in big-endian mode. The 128-bit source value is constructed from the concat-
enation of the first source operand and the destination register.

Functional Description
int shift = (rf[SrcB] & 7) * BYTE_SIZE;
uint64_t a = rf[SrcA];
uint64_t b = rf[Dest];
rf[Dest] = (little_endian ()? (shift == 0

 ? b
 : ((a << (64 - shift)) | (b >> shift)))

 : (shift == 0 ? b : ((b << shift) | (a >> (64 - shift)))));

Valid Pipelines

Encoding

Figure 4-93: dblalign in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 85

Instructions

dblalign2

Double Align by Two Bytes

Syntax
dblalign2 Dest, SrcA, SrcB

Example
dblalign2 r5, r6, r7

Description

Shift a 128-bit value by two bytes. The shift direction is to the right when the processor is in lit-
tle-endian mode, and to the left if the processor is in big-endian mode. The 128-bit source value is
constructed from the concatenation of the first source operand and the second source register.

Functional Description

uint64_t a = rf[SrcA];
uint64_t b = rf[SrcB];
rf[Dest] =
 (little_endian ()? ((a << (64 - 2 * BYTE_SIZE)) | (b >> 2 * BYTE_SIZE))
 : ((b << 2 * BYTE_SIZE) | (a >> (64 - 2 * BYTE_SIZE))));

Valid Pipelines

Encoding

Figure 4-94: dblalign2 in X0 Bits Encoding

Figure 4-95: dblalign2 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 4 Bit Manipulation Instructions

86 TILE-Gx Instruction Set Architecture

dblalign4

Double Align by Four Bytes

Syntax
dblalign4 Dest, SrcA, SrcB

Example
dblalign4 r5, r6, r7

Description

Shift a 128-bit value by four bytes. The shift direction is to the right when the processor is in lit-
tle-endian mode, and to the left if the processor is in big-endian mode. The 128-bit source value is
constructed from the concatenation of the first source operand and the second source register.

Functional Description

uint64_t a = rf[SrcA];
uint64_t b = rf[SrcB];
rf[Dest] =
 (little_endian ()? ((a << (64 - 4 * BYTE_SIZE)) | (b >> 4 * BYTE_SIZE))
 : ((b << 4 * BYTE_SIZE) | (a >> (64 - 4 * BYTE_SIZE))));

Valid Pipelines

Encoding

Figure 4-96: dblalign4 in X0 Bits Encoding

Figure 4-97: dblalign4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 87

Instructions

dblalign6

Double Align by Six Bytes

Syntax
dblalign6 Dest, SrcA, SrcB

Example
dblalign6 r5, r6, r7

Description

Shift a 128-bit value by six bytes. The shift direction is to the right when the processor is in lit-
tle-endian mode, and to the left if the processor is in big-endian mode. The 128-bit source value is
constructed from the concatenation of the first source operand and the second source register.

Functional Description

uint64_t a = rf[SrcA];
uint64_t b = rf[SrcB];
rf[Dest] =
 (little_endian ()? ((a << (64 - 6 * BYTE_SIZE)) | (b >> 6 * BYTE_SIZE))
 : ((b << 6 * BYTE_SIZE) | (a >> (64 - 6 * BYTE_SIZE))));

Valid Pipelines

Encoding

Figure 4-98: dblalign6 in X0 Bits Encoding

Figure 4-99: dblalign6 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 4 Bit Manipulation Instructions

88 TILE-Gx Instruction Set Architecture

pcnt

Population Count

Syntax
pcnt Dest, SrcA

Example
pcnt r5, r6

Description

Returns the number of bits set (1) in the source operand. The result of this operation can range
from 0 to WORD_SIZE.

Functional Description
unsigned int counter;
int numberOfOnes = 0;
for (counter = 0; counter < WORD_SIZE; counter++)
 {
 numberOfOnes += (rf[SrcA] >> counter) & 0x1;
 }

rf[Dest] = numberOfOnes;

Valid Pipelines

Encoding

Figure 4-100: pcnt in X0 Bits Encoding

Figure 4-101: pcnt in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 89

Instructions

revbits

Reverse Bits

Syntax
revbits Dest, SrcA

Example
revbits r5, r6

Description

Reorders a word such that the most significant bit becomes the least significant bit in the output,
the second most significant bit becomes the second least significant bit in the output, and the n'th
most significant bit becomes n'th least significant bit in the output.

Functional Description
uint64_t output = 0;
unsigned int counter;
for (counter = 0; counter < (WORD_SIZE); counter++)
 {
 output |=
 (((rf[SrcA] >> (counter)) & 0x1) << ((WORD_SIZE - 1) - counter));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-102: revbits in X0 Bits Encoding

Figure 4-103: revbits in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 4 Bit Manipulation Instructions

90 TILE-Gx Instruction Set Architecture

revbytes

Reverse Bytes

Syntax
revbytes Dest, SrcA

Example
revbytes r5, r6

Description

Reorders a word such that the most significant byte becomes the least significant byte in the out-
put, the second most significant byte becomes the second least significant byte in the output, and
the n'th most significant byte becomes n'th least significant byte in the output.

Functional Description
uint64_t output = 0;
unsigned int counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output |=
 (((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK) <<
 ((((WORD_SIZE / BYTE_SIZE) - 1) - counter) * BYTE_SIZE));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-104: revbytes in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 91

Instructions

Figure 4-105: revbytes in Y0 Bits Encoding

Chapter 4 Bit Manipulation Instructions

92 TILE-Gx Instruction Set Architecture

shufflebytes

Shuffle Bytes

Syntax
shufflebytes Dest, SrcA, SrcB

Example
shufflebytes r5, r6, r7

Description

Set each byte in the destination to a byte extracted from the destination operand or the first source
operand. The selected byte is specified by a byte number in the corresponding byte of the second
operand. Byte specification between 0 and 7 correspond to selecting bytes from the destination
operand, and byte numbers between 8 and 15 correspond to selecting bytes from the first source
operand.

Functional Description

uint64_t a = rf[SrcA];
uint64_t b = rf[SrcB];
uint64_t d = rf[Dest];
uint64_t output = 0;
unsigned int counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int sel = getByte (b, counter) & 0xf;
 uint8_t byte = (sel < 8) ? getByte (d, sel) : getByte (a, (sel - 8));
 output = setByte (output, counter, byte);
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-106: shufflebytes in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 93

CHAPTER 5 COMPARE INSTRUCTIONS

5.1 Overview
The following sections provide detailed descriptions of compare instructions listed alphabetically.

cmpeq Compare Equal

cmpeqi Compare Equal Immediate

cmples Compare Less Than or Equal Signed

cmpleu Compare Less Than or Equal Unsigned

cmplts Compare Less Than Signed

cmpltsi Compare Less Than Signed Immediate

cmpltu Compare Less Than Unsigned

cmpltui Compare Less Than Unsigned Immediate

cmpne Compare Not Equal

Chapter 5 Compare Instructions

94 TILE-Gx Instruction Set Architecture

5.2 Instructions
Compare instructions are described in the sections that follow.

cmpeq

Compare Equal

Syntax
cmpeq Dest, SrcA, SrcB

Example
cmpeq r5, r6, r7

Description

Sets the result to 1 if the first source operand is equal to the second source operand. Otherwise the
result is set to 0.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] == (uint64_t) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-107: cmpeq in X0 Bits Encoding

Figure 5-108: cmpeq in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 95

Instructions

Figure 5-109: cmpeq in Y0 Bits Encoding

Figure 5-110: cmpeq in Y1 Bits Encoding

Chapter 5 Compare Instructions

96 TILE-Gx Instruction Set Architecture

cmpeqi

Compare Equal Immediate

Syntax
cmpeqi Dest, SrcA, Imm8

Example
cmpeqi r5, r6, 5

Description

Sets the result to 1 if the first source operand is equal to a sign extended immediate. Otherwise the
result is set to 0.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] == (uint64_t) signExtend8 (Imm8)) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-111: cmpeqi in X0 Bits Encoding

Figure 5-112: cmpeqi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 97

Instructions

Figure 5-113: cmpeqi in Y0 Bits Encoding

Figure 5-114: cmpeqi in Y1 Bits Encoding

Chapter 5 Compare Instructions

98 TILE-Gx Instruction Set Architecture

cmples

Compare Less Than or Equal Signed

Syntax
cmples Dest, SrcA, SrcB

Example
cmples r5, r6, r7

Description

Sets the result to 1 if the first source operand is less than or equal to the second source operand.
Otherwise the result is set to 0. This instruction treats both source operands as signed values.

Functional Description
rf[Dest] = ((int64_t) rf[SrcA] <= (int64_t) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-115: cmples in X0 Bits Encoding

Figure 5-116: cmples in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 99

Instructions

Figure 5-117: cmples in Y0 Bits Encoding

Figure 5-118: cmples in Y1 Bits Encoding

Chapter 5 Compare Instructions

100 TILE-Gx Instruction Set Architecture

cmpleu

Compare Less Than or Equal Unsigned

Syntax
cmpleu Dest, SrcA, SrcB

Example
cmpleu r5, r6, r7

Description

Sets the result to 1 if the first source operand is less than or equal to the second source operand.
Otherwise the result is set to 0. This instruction treats both source operands as unsigned values.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] <= (uint64_t) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-119: cmpleu in X0 Bits Encoding

Figure 5-120: cmpleu in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 101

Instructions

Figure 5-121: cmpleu in Y0 Bits Encoding

Figure 5-122: cmpleu in Y1 Bits Encoding

Chapter 5 Compare Instructions

102 TILE-Gx Instruction Set Architecture

cmplts

Compare Less Than Signed

Syntax
cmplts Dest, SrcA, SrcB

Example
cmplts r5, r6, r7

Description

Sets the result to 1 if the first source operand is less than the second source operand. Otherwise
the result is set to 0. This instruction treats both source operands as signed values.

Functional Description
rf[Dest] = ((int64_t) rf[SrcA] < (int64_t) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-123: cmplts in X0 Bits Encoding

Figure 5-124: cmplts in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 103

Instructions

Figure 5-125: cmplts in Y0 Bits Encoding

Figure 5-126: cmplts in Y1 Bits Encoding

Chapter 5 Compare Instructions

104 TILE-Gx Instruction Set Architecture

cmpltsi

Compare Less Than Signed Immediate

Syntax
cmpltsi Dest, SrcA, Imm8

Example
cmpltsi r5, r6, 5

Description

Sets the result to 1 if the first source operand is less than a sign extended immediate. Otherwise
the result is set to 0. This instruction treats both source operands as signed values.

Functional Description
rf[Dest] = ((int64_t) rf[SrcA] < ((int64_t) signExtend8 (Imm8))) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-127: cmpltsi in X0 Bits Encoding

Figure 5-128: cmpltsi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 105

Instructions

Figure 5-129: cmpltsi in Y0 Bits Encoding

Figure 5-130: cmpltsi in Y1 Bits Encoding

Chapter 5 Compare Instructions

106 TILE-Gx Instruction Set Architecture

cmpltu

Compare Less Than Unsigned

Syntax
cmpltu Dest, SrcA, SrcB

Example
cmpltu r5, r6, r7

Description

Sets the result to 1 if the first source operand is less than the second source operand or sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source operands
as unsigned values.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] < (uint64_t) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-131: cmpltu in X0 Bits Encoding

Figure 5-132: cmpltu in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 107

Instructions

Figure 5-133: cmpltu in Y0 Bits Encoding

Figure 5-134: cmpltu in Y1 Bits Encoding

Chapter 5 Compare Instructions

108 TILE-Gx Instruction Set Architecture

cmpltui

Compare Less Than Unsigned Immediate

Syntax
cmpltui Dest, SrcA, Imm8

Example
cmpltui r5, r6, 5

Description

Sets the result to 1 if the first source operand is less than a sign extended immediate. Otherwise
the result is set to 0. This instruction treats both source operands as unsigned values.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] < ((uint64_t) signExtend8 (Imm8))) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-135: cmpltui in X0 Bits Encoding

Figure 5-136: cmpltui in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 109

Instructions

cmpne

Compare Not Equal

Syntax
cmpne Dest, SrcA, SrcB

Example
cmpne r5, r6, r7

Description

Sets the result to 1 if the first source operand is not equal to the second source operand. Otherwise
the result is set to 0.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] != (uint64_t) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 5-137: cmpne in X0 Bits Encoding

Figure 5-138: cmpne in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 5 Compare Instructions

110 TILE-Gx Instruction Set Architecture

Figure 5-139: cmpne in Y0 Bits Encoding

Figure 5-140: cmpne in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 111

CHAPTER 6 CONTROL INSTRUCTIONS

6.1 Overview
The following sections provide detailed descriptions of control instructions listed alphabetically.

beqz Branch Equal Zero

beqzt Branch Zero Predict Taken

bgez Branch Greater Than or Equal to Zero

bgezt Branch Greater Than or Equal to Zero Predict Taken

bgtz Branch Greater Than Zero

bgtzt Branch Greater Than Zero Predict Taken

blbc Branch Low Bit Clear

blbct Branch Low Bit Clear Taken

blbs Branch Low Bit Set

blbst Branch Low Bit Set Taken

blez Branch Less Than or Equal to Zero

blezt Branch Less Than or Equal to Zero Taken

bltz Branch Less Than Zero

bltzt Branch Less Than Zero Taken

bnez Branch Not Equal Zero

bnezt Branch Not Equal Zero Predict Taken

j Jump

jal Jump and Link

jalr Jump and Link Register

jalrp Jump and Link Register Predict

jr Jump Register

jrp Jump Register Predict

lnk Link

Chapter 6 Control Instructions

112 TILE-Gx Instruction Set Architecture

6.2 Instructions
Control instructions are described in the sections that follow.

beqz

Branch Equal Zero

Syntax
beqz SrcA, BrOff

Example
beqz r5, target

Description

Branches to the target if the source operand is equal to zero. Otherwise, the program counter
advances to the next instruction in program order. Branch zero hints to a branch prediction mech-
anism that the branch is not taken. This branch does an implicit move of the source operand to
register ZERO_REGISTER.

Functional Description
if (rf[SrcA] == 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-141: beqz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 113

Instructions

bgez

Branch Greater Than or Equal to Zero

Syntax
bgez SrcA, BrOff

Example
bgez r5, target

Description

Branches to the target if the source operand is greater than or equal to zero. Otherwise, the pro-
gram counter advances to the next instruction in program order. Branch greater than or equal to
zero hints to a branch prediction mechanism that the branch is not taken. This branch does an
implicit move of the source operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] >= 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-142: bgez in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

114 TILE-Gx Instruction Set Architecture

beqzt

Branch Zero Predict Taken

Syntax
beqzt SrcA, BrOff

Example
beqzt r5, target

Description

Branches to the target if the source operand is equal to zero. Otherwise, the program counter
advances to the next instruction in program order. Branch zero predict taken hints to a branch
prediction mechanism that the branch is taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] == 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-143: beqzt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 115

Instructions

bgezt

Branch Greater Than or Equal to Zero Predict Taken

Syntax
bgezt SrcA, BrOff

Example
bgezt r5, target

Description

Branches to the target if the source operand is greater than or equal to zero. Otherwise, the pro-
gram counter advances to the next instruction in program order. Branch greater than or equal to
zero predict taken hints to a branch prediction mechanism that the branch is taken. This branch
does an implicit move of the source operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] >= 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-144: bgezt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

116 TILE-Gx Instruction Set Architecture

bgtz

Branch Greater Than Zero

Syntax
bgtz SrcA, BrOff

Example
bgtz r5, target

Description

Branches to the target if the source operand is greater than zero. Otherwise, the program counter
advances to the next instruction in program order. Branch greater than zero hints to a branch pre-
diction mechanism that the branch is not taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] > 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-145: bgtz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 117

Instructions

bgtzt

Branch Greater Than Zero Predict Taken

Syntax
bgtzt SrcA, BrOff

Example
bgtzt r5, target

Description

Branches to the target if the source operand is greater than zero. Otherwise, the program counter
advances to the next instruction in program order. Branch greater than zero predict taken hints to
a branch prediction mechanism that the branch is taken. This branch does an implicit move of the
source operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] > 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-146: bgtzt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

118 TILE-Gx Instruction Set Architecture

blbc

Branch Low Bit Clear

Syntax
blbc SrcA, BrOff

Example
blbc r5, target

Description

Branches to the target if the source operand’s bit zero is clear (0). Otherwise, the program counter
advances to the next instruction in program order. Branch bit not set hints to a branch prediction
mechanism that the branch is not taken. This branch does an implicit move of the source operand
to register ZERO_REGISTER.

Functional Description
if (!(rf[SrcA] & 0x1))
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-147: blbc in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 119

Instructions

blbct

Branch Low Bit Clear Taken

Syntax
blbct SrcA, BrOff

Example
blbct r5, target

Description

Branches to the target if the source operand’s bit zero is clear (0). Otherwise, the program counter
advances to the next instruction in program order. Branch bit not set predict taken hints to a
branch prediction mechanism that the branch is taken. This branch does an implicit move of the
source operand to register ZERO_REGISTER.

Functional Description
if (!(rf[SrcA] & 0x1))
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-148: blbct in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

120 TILE-Gx Instruction Set Architecture

blbs

Branch Low Bit Set

Syntax
blbs SrcA, BrOff

Example
blbs r5, target

Description

Branches to the target if the source operand’s bit zero is set (1). Otherwise, the program counter
advances to the next instruction in program order. Branch bit set hints to a branch prediction
mechanism that the branch is not taken. This branch does an implicit move of the source operand
to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] & 0x1)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-149: blbs in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 121

Instructions

blbst

Branch Low Bit Set Taken

Syntax
blbst SrcA, BrOff

Example
blbst r5, target

Description

Branches to the target if the source operand’s bit zero is set (1). Otherwise, the program counter
advances to the next instruction in program order. Branch bit set predict taken hints to a branch
prediction mechanism that the branch is taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] & 0x1)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-150: blbst in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

122 TILE-Gx Instruction Set Architecture

blez

Branch Less Than or Equal to Zero

Syntax
blez SrcA, BrOff

Example
blez r5, target

Description

Branches to the target if the source operand is less than or equal to zero. Otherwise, the program
counter advances to the next instruction in program order. Branch less than or equal to zero hints
to a branch prediction mechanism that the branch is not taken. This branch does an implicit move
of the source operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] <= 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-151: blez in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 123

Instructions

blezt

Branch Less Than or Equal to Zero Taken

Syntax
blezt SrcA, BrOff

Example
blezt r5, target

Description

Branches to the target if the source operand is less than or equal to zero. Otherwise, the program
counter advances to the next instruction in program order. Branch less than or equal to zero pre-
dict taken hints to a branch prediction mechanism that the branch is taken. This branch does an
implicit move of the source operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] <= 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-152: blezt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

124 TILE-Gx Instruction Set Architecture

bltz

Branch Less Than Zero

Syntax
bltz SrcA, BrOff

Example
bltz r5, target

Description

Branches to the target if the source operand is less than zero. Otherwise, the program counter
advances to the next instruction in program order. Branch less than zero hints to a branch predic-
tion mechanism that the branch is not taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] < 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-153: bltz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 125

Instructions

bltzt

Branch Less Than Zero Taken

Syntax
bltzt SrcA, BrOff

Example
bltzt r5, target

Description

Branches to the target if the source operand is less than zero. Otherwise, the program counter
advances to the next instruction in program order. Branch less than zero predict taken hints to a
branch prediction mechanism that the branch is taken. This branch does an implicit move of the
source operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] < 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-154: bltzt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

126 TILE-Gx Instruction Set Architecture

bnez

Branch Not Equal Zero

Syntax
bnez SrcA, BrOff

Example
bnez r5, target

Description

Branches to the target if the source operand is not equal to zero. Otherwise, the program counter
advances to the next instruction in program order. Branch not zero hints to a branch prediction
mechanism that the branch is not taken. This branch does an implicit move of the source operand
to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] != 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedIncorrect ();
 }
else
 {
 branchHintedCorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-155: bnez in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 127

Instructions

bnezt

Branch Not Equal Zero Predict Taken

Syntax
bnezt SrcA, BrOff

Example
bnezt r5, target

Description

Branches to the target if the source operand is not equal to zero. Otherwise, the program counter
advances to the next instruction in program order. Branch not zero predict taken hints to a branch
prediction mechanism that the branch is taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description
if (rf[SrcA] != 0)
 {
 setNextPC (getCurrentPC () +
 (signExtend17 (BrOff) <<

(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
 branchHintedCorrect ();
 }
else
 {
 branchHintedIncorrect ();
 }

rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 6-156: bnezt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

128 TILE-Gx Instruction Set Architecture

j

Jump

Syntax
j JumpOff

Example
j target

Description

Unconditionally jumps to a target. The jump hints to the prediction mechanism that this jump is
taken.

Functional Description
setNextPC (getCurrentPC () +
 (signExtend27 (JumpOff) <<
 (INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
jumped ();

Valid Pipelines

Encoding

Figure 6-157: j in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 129

Instructions

jal

Jump and Link

Syntax
jal JumpOff

Example
jal target

Description

Unconditionally jumps to a target and puts the address of the subsequent instruction into register
LINK_REGISTER. The jump hints to the prediction mechanism that this jump is taken. Signals to
the hardware that it should attempt to push the link address on the return stack if available.

Functional Description
rf[LINK_REGISTER] = getCurrentPC () + (INSTRUCTION_SIZE / BYTE_SIZE);
pushReturnStack (getCurrentPC () + (INSTRUCTION_SIZE / BYTE_SIZE));
setNextPC (getCurrentPC () +
 (signExtend27 (JumpOff) <<
 (INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
jumped ();

Valid Pipelines

Encoding

Figure 6-158: jal in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 6 Control Instructions

130 TILE-Gx Instruction Set Architecture

jalr

Jump and Link Register

Syntax
jalr SrcA

Example
jalr r5

Description

Unconditionally jumps to an address stored in a register and puts the address of the subsequent
instruction into register LINK_REGISTER. Signals to the hardware that it should attempt to push
the link address on the return stack if available.

Functional Description
rf[LINK_REGISTER] = getCurrentPC () + (INSTRUCTION_SIZE / BYTE_SIZE);
pushReturnStack (getCurrentPC () + (INSTRUCTION_SIZE / BYTE_SIZE));
setNextPC (rf[SrcA] & ALIGNED_INSTRUCTION_MASK);
indirectBranchHintedIncorrect ();

Valid Pipelines

Encoding

Figure 6-159: jalr in X1 Bits Encoding

Figure 6-160: jalr inY1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 131

Instructions

jalrp

Jump and Link Register Predict

Syntax
jalrp SrcA

Example
jalrp r5

Description

Unconditionally jumps to an address stored in a register and puts the address of the subsequent
instruction into register LINK_REGISTER. Signals to the hardware that it should attempt to pre-
dict the target with an address stack if available.

Functional Description
UnsignedMachineWord predictAddress = popReturnStack ();
rf[LINK_REGISTER] = getCurrentPC () + (INSTRUCTION_SIZE / BYTE_SIZE);
pushReturnStack (getCurrentPC () + (INSTRUCTION_SIZE / BYTE_SIZE));
setNextPC (rf[SrcA] & ALIGNED_INSTRUCTION_MASK);
if (predictAddress == (rf[SrcA] & ALIGNED_INSTRUCTION_MASK))
 {
 indirectBranchHintedCorrect ();
 }
else
 {
 indirectBranchHintedIncorrect ();
 }

Valid Pipelines

Encoding

Figure 6-161: jalrp in X1 Bits Encoding

Figure 6-162: jalrp in Y1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 6 Control Instructions

132 TILE-Gx Instruction Set Architecture

jr

Jump Register

Syntax
jr SrcA

Example
jr r5

Description

Unconditionally jumps to an address stored in a register.

Functional Description
setNextPC (rf[SrcA] & ALIGNED_INSTRUCTION_MASK);
indirectBranchHintedIncorrect ();

Valid Pipelines

Encoding

Figure 6-163: jr in X1 Bits Encoding

Figure 6-164: jr in Y1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 133

Instructions

jrp

Jump Register Predict

Syntax
jrp SrcA

Example
jrp r5

Description

Unconditionally jumps to an address stored in a register. Signals to the hardware that it should
attempt to predict the target with an address stack if available.

Functional Description
setNextPC (rf[SrcA] & ALIGNED_INSTRUCTION_MASK);
if (popReturnStack () == (rf[SrcA] & ALIGNED_INSTRUCTION_MASK))
 {
 indirectBranchHintedCorrect ();
 }
else
 {
 indirectBranchHintedIncorrect ();
 }

Valid Pipelines

Encoding

Figure 6-165: jrp in X1 Bits Encoding

Figure 6-166: jrp in Y1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 6 Control Instructions

134 TILE-Gx Instruction Set Architecture

lnk

Link

Syntax
lnk Dest

Example
lnk r5

Description

Moves the address of the subsequent instruction into the destination operand. Does not effect the
address stack if available.

Functional Description
rf[Dest] = getCurrentPC () + (INSTRUCTION_SIZE / BYTE_SIZE);

Valid Pipelines

Encoding

Figure 6-167: lnk in X1 Bits Encoding

Figure 6-168: lnk in Y1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 135

CHAPTER 7 FLOATING POINT
INSTRUCTIONS

7.1 Overview
The following sections provide detailed descriptions of floating point instructions listed
alphabetically.

The fsingle_add1, fsingle_sub1, fdouble_add_flags, and fdouble_sub_flags instructions set flags
in the destination register, which are used to implement floating point comparison operators. The
flags are described in Table 7-2.

fdouble_add_flags Floating Point Double Precision Add Flags

fdouble_addsub Floating Point Double Precision Add or Subtract

fdouble_mul_flags Floating Point Double Precision Multiply Flags

fdouble_pack1 Floating Point Double Precision Pack Part 1

fdouble_pack2 Floating Point Double Precision Pack Part 2

fdouble_sub_flags Floating Point Double Precision Subtract Flags

fdouble_unpack_max Floating Point Double Precision Unpack Max

fdouble_unpack_min Floating Point Double Precision Unpack Min

fsingle_add1 Floating Point Single Precision Add Part 1

fsingle_addsub2 Floating Point Single Precision Add or Subtract Part 2

fsingle_mul1 Floating Point Single Precision Multiply Part 1

fsingle_mul2 Floating Point Single Precision Multiply Part 2

fsingle_pack1 Floating Point Single Precision Pack Part 1

fsingle_pack2 Floating Point Single Precision Pack Part 2

fsingle_sub1 Floating Point Single Precision Subtract Part 1

Table 7-2. Floating Point Comparison Flags

Bit Name Description

25 unordered The two operands are unordered.

26 lt The first operand is less than the second.

27 le The first operand is less than or equal to the second.

Chapter 7 Floating Point Instructions

136 TILE-Gx Instruction Set Architecture

7.2 Instructions
Floating point instructions are described in the sections that follow.

fdouble_add_flags

Floating Point Double Precision Add Flags

Syntax
fdouble_add_flags Dest, SrcA, SrcB

Example
fdouble_add_flags r5, r6, r7

Description

Compute the flags for a floating point double precision add. The flags are computed from the
same operands as are used in fdouble_unpack instructions (fdouble_unpack_max or
fdouble_unpack_min). The computed flags include the floating point comparison flags listed
in Table 7-2 on page 135.

Functional Description
rf[Dest] = fdouble_addsub_flags (rf[SrcA], rf[SrcB], false);

Valid Pipelines

Encoding

Figure 7-169: fdouble_add_flags in X0 Bits Encoding

28 gt The first operand is greater than the second.

29 ge The first operand is greater than or equal to the second.

30 eq The two operands are equal.

31 ne The two operands are not equal.

X0 X1 Y0 Y1 Y2

X

Table 7-2. Floating Point Comparison Flags (continued)

Bit Name Description

TILE-Gx Instruction Set Architecture 137

Instructions

fdouble_addsub

Floating Point Double Precision Add or Subtract

Syntax
fdouble_addsub Dest, SrcA, SrcB

Example
fdouble_addsub r5, r6, r7

Description

Performs the floating point double precision add or subtract after the arguments are unpacked
and the flags are computed. The first operand is the unpacked addend with smaller magnitude,
and the second operand is the computed flags.

Functional Description
rf[Dest] = fdouble_addsub (rf[Dest], rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-170: fdouble_addsub in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 7 Floating Point Instructions

138 TILE-Gx Instruction Set Architecture

fdouble_mul_flags

Floating Point Double Precision Multiply Flags

Syntax
fdouble_mul_flags Dest, SrcA, SrcB

Example
fdouble_mul_flags r5, r6, r7

Description

Compute the flags for a floating point double precision multiply. The flags are computed from the
same operands as are used in fdouble_unpack instructions (fdouble_unpack_max or
fdouble_unpack_min).

Functional Description
rf[Dest] = fdouble_mul_flags (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-171: fdouble_mul_flags in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 139

Instructions

fdouble_pack1

Floating Point Double Precision Pack Part 1

Syntax
fdouble_pack1 Dest, SrcA, SrcB

Example
fdouble_pack1 r5, r6, r7

Description

Performs the first part of a floating point double precision normalize and pack.

Functional Description
rf[Dest] = fdouble_pack1 (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-172: fdouble_pack1 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 7 Floating Point Instructions

140 TILE-Gx Instruction Set Architecture

fdouble_pack2

Floating Point Double Precision Pack Part 2

Syntax
fdouble_pack2 Dest, SrcA, SrcB

Example
fdouble_pack2 r5, r6, r7

Description

Performs the second and final part of a floating point double precision normalize and pack.

Functional Description
rf[Dest] = fdouble_pack2 (rf[Dest], rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-173: fdouble_pack2 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 141

Instructions

fdouble_sub_flags

Floating Point Double Precision Subtract Flags

Syntax
fdouble_sub_flags Dest, SrcA, SrcB

Example
fdouble_sub_flags r5, r6, r7

Description

Compute the flags for a floating point double precision subtract. The flags are computed from the
same operands as are used in fdouble_unpack instructions (fdouble_unpack_max or
fdouble_unpack_min). The computed flags include the floating point comparison flags listed
in Table 7-2 on page 135.

Functional Description
rf[Dest] = fdouble_addsub_flags (rf[SrcA], rf[SrcB], true);

Valid Pipelines

Encoding

Figure 7-174: fdouble_sub_flags in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 7 Floating Point Instructions

142 TILE-Gx Instruction Set Architecture

fdouble_unpack_max

Floating Point Double Precision Unpack Max

Syntax
fdouble_unpack_max Dest, SrcA, SrcB

Example
fdouble_unpack_max r5, r6, r7

Description

Extracts the mantissa of the source operand, which has the largest magnitude.

Functional Description
rf[Dest] = fdouble_unpack_minmax (rf[SrcA], rf[SrcB], false);

Valid Pipelines

Encoding

Figure 7-175: fdouble_unpack_max in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 143

Instructions

fdouble_unpack_min

Floating Point Double Precision Unpack Min

Syntax
fdouble_unpack_min Dest, SrcA, SrcB

Example
fdouble_unpack_min r5, r6, r7

Description

Extracts the mantissa of the source operand, which has the smallest magnitude.

Functional Description
rf[Dest] = fdouble_unpack_minmax (rf[SrcA], rf[SrcB], true);

Valid Pipelines

Encoding

Figure 7-176: fdouble_unpack_min in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 7 Floating Point Instructions

144 TILE-Gx Instruction Set Architecture

fsingle_add1

Floating Point Single Precision Add Part 1

Syntax
fsingle_add1 Dest, SrcA, SrcB

Example
fsingle_add1 r5, r6, r7

Description

Performs the first part of a floating point single precision add. This instruction also sets the float-
ing point comparison flags in the destination register (see Table 7-2 on page 135).

Functional Description
rf[Dest] = fsingle_addsub1 (rf[SrcA], rf[SrcB], false);

Valid Pipelines

Encoding

Figure 7-177: fsingle_add1 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 145

Instructions

fsingle_addsub2

Floating Point Single Precision Add or Subtract Part 2

Syntax
fsingle_addsub2 Dest, SrcA, SrcB

Example
fsingle_addsub2 r5, r6, r7

Description

Performs the second part of a floating point single precision add or subtract.

Functional Description
rf[Dest] = fsingle_addsub2 (rf[Dest], rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-178: fsingle_addsub2 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 7 Floating Point Instructions

146 TILE-Gx Instruction Set Architecture

fsingle_mul1

Floating Point Single Precision Multiply Part 1

Syntax
fsingle_mul1 Dest, SrcA, SrcB

Example
fsingle_mul1 r5, r6, r7

Description

Performs the first part of a floating point single precision multiply.

Functional Description
rf[Dest] = fsingle_mul1 (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-179: fsingle_mul1 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 147

Instructions

fsingle_mul2

Floating Point Single Precision Multiply Part 2

Syntax
fsingle_mul2 Dest, SrcA, SrcB

Example
fsingle_mul2 r5, r6, r7

Description

Performs the first part of a floating point single precision multiply.

Functional Description
rf[Dest] = fsingle_mul2 (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-180: fsingle_mul2 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 7 Floating Point Instructions

148 TILE-Gx Instruction Set Architecture

fsingle_pack1

Floating Point Single Precision Pack Part 1

Syntax
fsingle_pack1 Dest, SrcA

Example
fsingle_pack1 r5, r6

Description

Performs the first part of a floating point single precision normalize and pack.

Functional Description
rf[Dest] = fsingle_pack1 (rf[SrcA]);

Valid Pipelines

Encoding

Figure 7-181: fsingle_pack1 in X0 Bits Encoding

Figure 7-182: fsingle_pack1 in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 149

Instructions

fsingle_pack2

Floating Point Single Precision Pack Part 2

Syntax
fsingle_pack2 Dest, SrcA, SrcB

Example
fsingle_pack2 r5, r6, r7

Description

Performs the second and final part of a floating point single precision normalize and pack.

Functional Description
rf[Dest] = fsingle_pack2 (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 7-183: fsingle_pack2 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 7 Floating Point Instructions

150 TILE-Gx Instruction Set Architecture

fsingle_sub1

Floating Point Single Precision Subtract Part 1

Syntax
fsingle_sub1 Dest, SrcA, SrcB

Example
fsingle_sub1 r5, r6, r7

Description

Performs the first part of a floating point single precision subtract. This instruction also sets the
floating point comparison flags in the destination register (see Table 7-2 on page 135).

Functional Description
rf[Dest] = fsingle_addsub1 (rf[SrcA], rf[SrcB], true);

Valid Pipelines

Encoding

Figure 7-184: fsingle_sub1 in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 151

CHAPTER 8 LOGICAL INSTRUCTIONS

8.1 Overview
The following sections provide detailed descriptions of logical instructions listed alphabetically.

and And

andi And Immediate

bfexts Bit Field Extract Signed

bfextu Bit field Extract Unsigned

bfins Bit field Insert

cmoveqz Conditional Move If Equal Zero

cmovnez Conditional Move If Not Equal Zero

mm Masked Merge

mnz Mask Not Zero

mz Mask Zero

nor Nor

or Or

ori Or Immediate

rotl Rotate Left

rotli Rotate Left Immediate

shl Shift Left

shli Shift Left Immediate

shlx Shift Left and Extend

shlxi Shift Left and Extend Immediate

shrs Shift Right Signed

shrsi Shift Right Signed Immediate

shru Shift Right Unsigned

shrui Shift Right Unsigned Immediate

shrux Shift Right Unsigned and Extend

shruxi Shift Right Unsigned and Extend Immediate

tblidxb0 Table Index Byte 0

Chapter 8 Logical Instructions

152 TILE-Gx Instruction Set Architecture

tblidxb1 Table Index Byte 1

tblidxb2 Table Index Byte 2

tblidxb3 Table Index Byte 3

xor Exclusive Or

xori Exclusive Or Immediate

TILE-Gx Instruction Set Architecture 153

Instructions

8.2 Instructions
Logical instructions are described in the sections that follow.

and

And

Syntax
and Dest, SrcA, SrcB

Example
and r5, r6, r7

Description

Compute the boolean AND of two operands.

Functional Description
rf[Dest] = rf[SrcA] & rf[SrcB];

Valid Pipelines

Encoding

Figure 8-185: and in X0 Bits Encoding

Figure 8-186: and in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 8 Logical Instructions

154 TILE-Gx Instruction Set Architecture

Figure 8-187: and in Y0 Bits Encoding

Figure 8-188: and in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 155

Instructions

andi

And Immediate

Syntax
andi Dest, SrcA, Imm8

Example
andi r5, r6, 5

Description

Compute the boolean AND of an operand and a sign extended immediate.

Functional Description
rf[Dest] = rf[SrcA] & signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 8-189: andi in X0 Bits Encoding

Figure 8-190: andi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 8 Logical Instructions

156 TILE-Gx Instruction Set Architecture

Figure 8-191: andi in Y0 Bits Encoding

Figure 8-192: andi in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 157

Instructions

bfexts

Bit Field Extract Signed

Syntax
bfexts Dest, SrcA, BFStart, BFEnd

Example
bfexts r5, r6, 5, 7

Description

Extract, right justify and sign-extend the specified bit field of the destination operand. The bit
field is specified by the BFStart and BFEnd immediate operands, which contain the bit fields
starting and ending bit positions inclusive. If the start position is less than or equal to the end
position, then the field contains bits from start bit position up to and including the ending bit
position. If the start position is greater than the end position, then the field contains the bits start
bit position up to the WORD_SIZE bit position, and from the zero bit position up to the end bit
position.

Functional Description
uint64_t mask = 0;
int64_t background = ((rf[SrcA] >> BFEnd) & 1) ? -1ULL : 0ULL;
mask = ((-1ULL) ^ ((-1ULL << ((BFEnd - BFStart) & 63)) << 1));
uint64_t rot_src =
 (((uint64_t) rf[SrcA]) >> BFStart) | (rf[SrcA] << (64 - BFStart));
rf[Dest] = (rot_src & mask) | (background & ~mask);

Valid Pipelines

Encoding

Figure 8-193: bfexts in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 8 Logical Instructions

158 TILE-Gx Instruction Set Architecture

bfextu

Bit field Extract Unsigned

Syntax
bfextu Dest, SrcA, BFStart, BFEnd

Example
bfextu r5, r6, 5, 7

Description

Extract and right justify the specified bit field of the destination operand. The bit field is specified
by the BFStart and BFEnd immediate operands, which contain the bit fields starting and ending
bit positions. If the start position is less than or equal to the end position, then the field contains
bits from start bit position up to and including the ending bit position. If the start position is
greater than the end position, then the field contains the bits start bit position up to the
WORD_SIZE bit position, and from the zero bit position up to the end bit position.

Functional Description
uint64_t mask = 0;
mask = ((-1ULL) ^ ((-1ULL << ((BFEnd - BFStart) & 63)) << 1));
uint64_t rot_src =
 (((uint64_t) rf[SrcA]) >> BFStart) | (rf[SrcA] << (64 - BFStart));
rf[Dest] = rot_src & mask;

Valid Pipelines

Encoding

Figure 8-194: bfextu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 159

Instructions

bfins

Bit field Insert

Syntax
bfins Dest, SrcA, BFStart, BFEnd

Example
bfins r5, r6, 5, 7

Description

Insert the low-order bits of the source operand into the specified bit field of the destination oper-
and. The bit field is specified by the BFStart and BFEnd immediate operands, which contain the
bit fields starting and ending bit positions. If the start position is less than or equal to the end
position, then the field contains bits from start bit position up to and including the ending bit
position. If the start position is greater than the end position, then the field contains the bits start
bit position up to the WORD_SIZE bit position, and from the zero bit position up to the end bit
position.

Functional Description
uint64_t mask = 0;
int start;
int end;
start = BFStart;
end = BFEnd;
mask =
 (start <=
 end) ? ((-1ULL << start) ^ ((-1ULL << end) << 1)) : ((-1ULL << start) |

(-1ULL >>
 ((64 - 1) - end)));

uint64_t rot_src =
 (rf[SrcA] << start) | ((uint64_t) rf[SrcA] >> (64 - start));
rf[Dest] = (rot_src & mask) | (rf[Dest] & (-1ULL ^ mask));

Valid Pipelines

Encoding

Figure 8-195: bfins in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 8 Logical Instructions

160 TILE-Gx Instruction Set Architecture

cmoveqz

Conditional Move If Equal Zero

Syntax
cmoveqz Dest, SrcA, SrcB

Example
cmoveqz r5, r6, r7

Description

If the first source operand is zero, move the second operand to the destination. Otherwise, move
the contents of the destination register to the destination. This instruction unconditionally reads
the first input operand, the second input operand, and the destination operand.

Functional Description
uint64_t localSrcB = rf[SrcB];
uint64_t localDest = rf[Dest];
rf[Dest] = (rf[SrcA] == 0) ? (localSrcB) : (localDest);

Valid Pipelines

Encoding

Figure 8-196: cmoveqz in X0 Bits Encoding

Figure 8-197: cmoveqz in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 161

Instructions

cmovnez

Conditional Move If Not Equal Zero

Syntax
cmovnez Dest, SrcA, SrcB

Example
cmovnez r5, r6, r7

Description

If the first source operand is not zero, move the second operand to the destination. Otherwise,
move the contents of the destination register to the destination. This instruction unconditionally
reads the first input operand, the second input operand, and the destination operand.

Functional Description
uint64_t localSrcB = rf[SrcB];
uint64_t localDest = rf[Dest];
rf[Dest] = (rf[SrcA] != 0) ? (localSrcB) : (localDest);

Valid Pipelines

Encoding

Figure 8-198: cmovnez in X0 Bits Encoding

Figure 8-199: cmovnez in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 8 Logical Instructions

162 TILE-Gx Instruction Set Architecture

mm

Masked Merge

Syntax
mm Dest, SrcA, BFStart, BFEnd

Example
mm r5, r6, 5, 7

Description

Merge source operand and the destination operand based off of a running mask. The mask is
specified by the BFStart and BFEnd fields, which contain the mask’s starting and ending bit
positions inclusive. If the start position is less than or equal to the end position, then the mask
contains bits set (1) from start bit position up to and including the ending bit position. If the start
position is greater than the end position, then the mask contains the bits set (1) from the start bit
position up to the WORD_SIZE bit position, and from the zero bit position up to the end bit posi-
tion. The mask selects bits out of the destination operand and the inverse of the mask selects bits
out of the source operand.

Functional Description
uint64_t mask = 0;
int start;
int end;
start = BFStart;
end = BFEnd;
mask =
 (start <=
 end) ? ((-1ULL << start) ^ ((-1ULL << end) << 1)) : ((-1ULL << start) |

(-1ULL >>
 ((64 - 1) - end)));

rf[Dest] = (rf[Dest] & mask) | (rf[SrcA] & (-1ULL ^ mask));

Valid Pipelines

Encoding

Figure 8-200: mm in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 163

Instructions

mnz

Mask Not Zero

Syntax
mnz Dest, SrcA, SrcB

Example
mnz r5, r6, r7

Description

If the first operand is not zero, then compute the boolean AND of the second operand and a value
of all ones (1’s), otherwise return zero (0).

Functional Description
rf[Dest] = signExtend1 ((rf[SrcA] != 0) ? 1 : 0) & rf[SrcB];

Valid Pipelines

Encoding

Figure 8-201: mnz in X0 Bits Encoding

Figure 8-202: mnz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 8 Logical Instructions

164 TILE-Gx Instruction Set Architecture

Figure 8-203: mnz in Y0 Bits Encoding

Figure 8-204: mnz in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 165

Instructions

mz

Mask Zero

Syntax
mz Dest, SrcA, SrcB

Example
mz r5, r6, r7

Description

If the first operand is zero, then compute the boolean AND of the second operand and a value of
all ones (1’s), otherwise return zero (0).

Functional Description
rf[Dest] = signExtend1 ((rf[SrcA] == 0) ? 1 : 0) & rf[SrcB];

Valid Pipelines

Encoding

Figure 8-205: mz in X0 Bits Encoding

Figure 8-206: mz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 8 Logical Instructions

166 TILE-Gx Instruction Set Architecture

Figure 8-207: mz in Y0 Bits Encoding

Figure 8-208: mz in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 167

Instructions

nor

Nor

Syntax
nor Dest, SrcA, SrcB

Example
nor r5, r6, r7

Description

Computer the boolean NOR of two operands.

Functional Description
rf[Dest] = ~(rf[SrcA] | rf[SrcB]);

Valid Pipelines

Encoding

Figure 8-209: nor in X0 Bits Encoding

Figure 8-210: nor in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 8 Logical Instructions

168 TILE-Gx Instruction Set Architecture

Figure 8-211: nor in Y0 Bits Encoding

Figure 8-212: nor in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 169

Instructions

or

Or

Syntax
or Dest, SrcA, SrcB

Example
or r5, r6, r7

Description

Compute the boolean OR of two operands.

Functional Description
rf[Dest] = rf[SrcA] | rf[SrcB];

Valid Pipelines

Encoding

Figure 8-213: or in X0 Bits Encoding

Figure 8-214: or in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 8 Logical Instructions

170 TILE-Gx Instruction Set Architecture

Figure 8-215: or in Y0 Bits Encoding

Figure 8-216: or in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 171

Instructions

ori

Or Immediate

Syntax
ori Dest, SrcA, Imm8

Example
ori r5, r6, 5

Description

Compute the boolean OR of an operand and a sign extended immediate.

Functional Description
rf[Dest] = rf[SrcA] | signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 8-217: ori in X0 Bits Encoding

Figure 8-218: ori in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 8 Logical Instructions

172 TILE-Gx Instruction Set Architecture

rotl

Rotate Left

Syntax
rotl Dest, SrcA, SrcB

Example
rotl r5, r6, r7

Description

Rotate the first source operand to the left by the second source operand. The effective rotate
amount is the specified operand modulo the number of bits in a word.

Functional Description
rf[Dest] =
 (rf[SrcA] << (rf[SrcB] & 63)) | (((uint64_t) rf[SrcA]) >> (-rf[SrcB] & 63));

Valid Pipelines

Encoding

Figure 8-219: rotl in X0 Bits Encoding

Figure 8-220: rotl in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 173

Instructions

Figure 8-221: rotl in Y0 Bits Encoding

Figure 8-222: rotl in Y1 Bits Encoding

Chapter 8 Logical Instructions

174 TILE-Gx Instruction Set Architecture

rotli

Rotate Left Immediate

Syntax
rotli Dest, SrcA, ShAmt

Example
rotli r5, r6, 5

Description

Rotate the first source operand to the left by an immediate. The effective rotate amount is the
specified immediate modulo the number of bits in a word.

Functional Description
rf[Dest] = (rf[SrcA] << ShAmt) | (((uint64_t) rf[SrcA]) >> (-ShAmt & 63));

Valid Pipelines

Encoding

Figure 8-223: rotli in X0 Bits Encoding

Figure 8-224: rotli in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 175

Instructions

Figure 8-225: rotli in Y0 Bits Encoding

Figure 8-226: rotli in Y1 Bits Encoding

Chapter 8 Logical Instructions

176 TILE-Gx Instruction Set Architecture

shl

Shift Left

Syntax
shl Dest, SrcA, SrcB

Example
shl r5, r6, r7

Description

Shift the first source operand to the left by the second source operand. The effective shift amount
is the specified operand modulo the number of bits in a word. Left shifts shift zeros into the low
ordered bits in a word and is suitable to be used as unsigned multiplication by powers of two.

Functional Description
rf[Dest] = rf[SrcA] << (rf[SrcB] & 63);

Valid Pipelines

Encoding

Figure 8-227: shl in X0 Bits Encoding

Figure 8-228: shl in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 177

Instructions

Figure 8-229: shl in Y0 Bits Encoding

Figure 8-230: shl in Y1 Bits Encoding

Chapter 8 Logical Instructions

178 TILE-Gx Instruction Set Architecture

shli

Shift Left Immediate

Syntax
shli Dest, SrcA, ShAmt

Example
shli r5, r6, 5

Description

Shift the first source operand to the left by an immediate. The effective shift amount is the speci-
fied immediate modulo the number of bits in a word. Left shifts shift zeros into the low ordered
bits in a word and is suitable to be used as unsigned multiplication by powers of two.

Functional Description
rf[Dest] = rf[SrcA] << ShAmt;

Valid Pipelines

Encoding

Figure 8-231: shli in X0 Bits Encoding

Figure 8-232: shli in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 179

Instructions

Figure 8-233: shli in Y0 Bits Encoding

Figure 8-234: shli in Y1 Bits Encoding

Chapter 8 Logical Instructions

180 TILE-Gx Instruction Set Architecture

shlx

Shift Left and Extend

Syntax
shlx Dest, SrcA, SrcB

Example
shlx r5, r6, r7

Description

Shift the bottom 4 bytes of the first source operand to the left by the second source operand and
the 4-byte result is sign-extended. The effective shift amount is the specified operand modulo 32.
This instruction shifts zeros into the low ordered bits in a word and is suitable to be used as
unsigned multiplication by powers of two.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] << (rf[SrcB] & 31));

Valid Pipelines

Encoding

Figure 8-235: shlx in X0 Bits Encoding

Figure 8-236: shlx in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 181

Instructions

shlxi

Shift Left and Extend Immediate

Syntax
shlxi Dest, SrcA, ShAmt

Example
shlxi r5, r6, 5

Description

Shift the bottom four bytes of the first source operand to the left by an immediate and the 4-byte
result is sign-extended. If the shift amount is larger than 32, the effective shift amount is com-
puted to be the specified shift amount modulo 32. This instruction shift zeros into the low ordered
bits in a word and is suitable to be used as unsigned multiplication by powers of 2.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] << (ShAmt & 31));

Valid Pipelines

Encoding

Figure 8-237: shlxi in X0 Bits Encoding

Figure 8-238: shlxi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 8 Logical Instructions

182 TILE-Gx Instruction Set Architecture

shrs

Shift Right Signed

Syntax
shrs Dest, SrcA, SrcB

Example
shrs r5, r6, r7

Description

Shift the first source operand to the right by the second source operand. The effective shift amount
is the specified operand modulo the number of bits in a word. The first operand is treated as a
signed value and the high-ordered bit is shifted into the high ordered bits in a word.

Functional Description
rf[Dest] = ((int64_t) rf[SrcA]) >> (rf[SrcB] & 63);

Valid Pipelines

Encoding

Figure 8-239: shrs in X0 Bits Encoding

Figure 8-240: shrs in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 183

Instructions

Figure 8-241: shrs in Y0 Bits Encoding

Figure 8-242: shrs in Y1 Bits Encoding

Chapter 8 Logical Instructions

184 TILE-Gx Instruction Set Architecture

shrsi

Shift Right Signed Immediate

Syntax
shrsi Dest, SrcA, ShAmt

Example
shrsi r5, r6, 5

Description

Shift the first source operand to the right by an immediate. The effective shift amount is the speci-
fied immediate modulo the number of bits in a word. The first operand is treated as a signed
value and the high-ordered bit is shifted into the high ordered bits in a word.

Functional Description
rf[Dest] = ((int64_t) rf[SrcA]) >> ShAmt;

Valid Pipelines

Encoding

Figure 8-243: shrsi in X0 Bits Encoding

Figure 8-244: shrsi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 185

Instructions

Figure 8-245: shrsi in Y0 Bits Encoding

Figure 8-246: shrsi in Y1 Bits Encoding

Chapter 8 Logical Instructions

186 TILE-Gx Instruction Set Architecture

shru

Shift Right Unsigned

Syntax
shru Dest, SrcA, SrcB

Example
shru r5, r6, r7

Description

Shift the first source operand to the right by the second source operand. The effective shift amount
is the specified operand modulo the number of bits in a word. The first operand is treated as an
unsigned quantity and shift zeros into the high ordered bits in a word. This instruction is suitable
to be used as unsigned integer division by powers of two.

Functional Description
rf[Dest] = (uint64_t) rf[SrcA] >> (rf[SrcB] & 63);

Valid Pipelines

Encoding

Figure 8-247: shru in X0 Bits Encoding

Figure 8-248: shru in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 187

Instructions

Figure 8-249: shru in Y0 Bits Encoding

Figure 8-250: shru in Y1 Bits Encoding

Chapter 8 Logical Instructions

188 TILE-Gx Instruction Set Architecture

shrui

Shift Right Unsigned Immediate

Syntax
shrui Dest, SrcA, ShAmt

Example
shrui r5, r6, 5

Description

Shift the first source operand to the right by an immediate. The effective shift amount is the speci-
fied immediate modulo the number of bits in a word. The first operand is treated as an unsigned
quantity and zeros are shifted into the high ordered bits in a word. This instruction is suitable to
be used as unsigned integer division by powers of two.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA]) >> ShAmt;

Valid Pipelines

Encoding

Figure 8-251: shrui in X0 Bits Encoding

Figure 8-252: shrui in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 189

Instructions

Figure 8-253: shrui in Y0 Bits Encoding

Figure 8-254: shrui in Y1 Bits Encoding

Chapter 8 Logical Instructions

190 TILE-Gx Instruction Set Architecture

shrux

Shift Right Unsigned and Extend

Syntax
shrux Dest, SrcA, SrcB

Example
shrux r5, r6, r7

Description

Shift the bottom 4 bytes of the first source operand to the right by the second source operand and
the 4-byte result is sign-extended. The effective shift amount is the specified operand modulo 32.
The first operand is treated as an unsigned quantity and shift zeros into the high ordered bits.
This instruction is suitable to be used as unsigned integer division by powers of two.

Functional Description
rf[Dest] = signExtend32 ((uint32_t) rf[SrcA] >> (rf[SrcB] & 31));

Valid Pipelines

Encoding

Figure 8-255: shrux in X0 Bits Encoding

Figure 8-256: shrux in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 191

Instructions

shruxi

Shift Right Unsigned and Extend Immediate

Syntax
shruxi Dest, SrcA, ShAmt

Example
shruxi r5, r6, 5

Description

Shift the bottom 4 bytes of the first source operand to the right by an immediate and the 4-byte
result is sign-extended. The effective shift amount is the specified immediate modulo 32. The first
operand is treated as an unsigned quantity and zeros are shifted into the high ordered bits in a
word. This instruction is suitable to be used as unsigned integer division by powers of two.

Functional Description
rf[Dest] = signExtend32 (((uint32_t) rf[SrcA]) >> (ShAmt & 31));

Valid Pipelines

Encoding

Figure 8-257: shruxi in X0 Bits Encoding

Figure 8-258: shruxi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 8 Logical Instructions

192 TILE-Gx Instruction Set Architecture

tblidxb0

Table Index Byte 0

Syntax
tblidxb0 Dest, SrcA

Example
tblidxb0 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 0 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 7:0 of the source operand.

Functional Description
rf[Dest] = (rf[Dest] & ~0x3FC) | (((rf[SrcA] >> 0) & BYTE_MASK) << 2);

Valid Pipelines

Encoding

Figure 8-259: tblidxb0 in X0 Bits Encoding

Figure 8-260: tblidxb0 in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 193

Instructions

tblidxb1

Table Index Byte 1

Syntax
tblidxb1 Dest, SrcA

Example
tblidxb1 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 1 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 15:8 of the source operand.

Functional Description
rf[Dest] = (rf[Dest] & ~0x3FC) | (((rf[SrcA] >> 8) & BYTE_MASK) << 2);

Valid Pipelines

Encoding

Figure 8-261: tblidxb1 in X0 Bits Encoding

Figure 8-262: tblidxb1 in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 8 Logical Instructions

194 TILE-Gx Instruction Set Architecture

tblidxb2

Table Index Byte 2

Syntax
tblidxb2 Dest, SrcA

Example
tblidxb2 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 2 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 23:16 of the source operand.

Functional Description
rf[Dest] = (rf[Dest] & ~0x3FC) | (((rf[SrcA] >> 16) & BYTE_MASK) << 2);

Valid Pipelines

Encoding

Figure 8-263: tblidxb2 in X0 Bits Encoding

Figure 8-264: tblidxb2 in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 195

Instructions

tblidxb3

Table Index Byte 3

Syntax
tblidxb3 Dest, SrcA

Example
tblidxb3 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 3 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 31:24 of the source operand.

Functional Description
rf[Dest] = (rf[Dest] & ~0x3FC) | (((rf[SrcA] >> 24) & BYTE_MASK) << 2);

Valid Pipelines

Encoding

Figure 8-265: tblidxb3 in X0 Bits Encoding

Figure 8-266: tblidxb3 in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 8 Logical Instructions

196 TILE-Gx Instruction Set Architecture

xor

Exclusive Or

Syntax
xor Dest, SrcA, SrcB

Example
xor r5, r6, r7

Description

Compute the boolean XOR of two operands.

Functional Description
rf[Dest] = rf[SrcA] ^ rf[SrcB];

Valid Pipelines

Encoding

Figure 8-267: xor in X0 Bits Encoding

Figure 8-268: xor in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 197

Instructions

Figure 8-269: xor in Y0 Bits Encoding

Figure 8-270: xor in Y1 Bits Encoding

Chapter 8 Logical Instructions

198 TILE-Gx Instruction Set Architecture

xori

Exclusive Or Immediate

Syntax
xori Dest, SrcA, Imm8

Example
xori r5, r6, 5

Description

Compute the boolean XOR of an operand and a sign extended immediate.

Functional Description
rf[Dest] = rf[SrcA] ^ signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 8-271: xori in X0 Bits Encoding

Figure 8-272: xori in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 199

CHAPTER 9 MEMORY MAINTENANCE
INSTRUCTIONS

9.1 Overview
The following sections provide detailed descriptions of memory maintenance instructions listed
alphabetically.

dtlbpr Data TLB Probe

finv Flush and Invalidate Cache Line

flush Flush Cache Line

flushwb Flush Write Buffers

inv Invalidate Cache Line

mf Memory Fence

wh64 Write Hint 64 Bytes

Chapter 9 Memory Maintenance Instructions

200 TILE-Gx Instruction Set Architecture

9.2 Instructions
Memory maintenance instructions are described in the sections that follow.

dtlbpr

Data TLB Probe

Syntax
dtlbpr SrcA

Example
dtlbpr r5

Description

Probe the Data TLB and return the results as a unary encoded result for each matching entry into
the DTLB_MATCH_X SPR. This probe uses the data CPL and ignores the D_ASID.

Functional Description
dtlbProbe (rf[SrcA]);

Valid Pipelines

Encoding

Figure 9-273: dtlbpr in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 201

Instructions

finv

Flush and Invalidate Cache Line

Syntax
finv SrcA

Example
finv r5

Description

Flush and Invalidates the cache line in the data cache that contains the address stored in the
source operand. If a cache line that contains the address is not in the cache, this instruction has no
effect. The line size that is flushed and invalidated is at minimum 16B. An implementation is free
to flush and invalidate a larger region.

Functional Description
flushAndInvalidateCacheLine (rf[SrcA]);

Valid Pipelines

Encoding

Figure 9-274: finv in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 9 Memory Maintenance Instructions

202 TILE-Gx Instruction Set Architecture

flush

Flush Cache Line

Syntax
flush SrcA

Example
flush r5

Description

Flushes the cache line in the data cache that contains the address stored in the source operand. If a
cache line that contains the address is not in the cache, this instruction has no effect. If a cache line
that contains the address is not dirty in the cache, this instruction has no effect. The line size that
is flushed is at minimum 16B. An implementation is free to flush a larger region.

Functional Description
flushCacheLine (rf[SrcA]);

Valid Pipelines

Encoding

Figure 9-275: flush in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 203

Instructions

flushwb

Flush Write Buffers

Syntax
flushwb

Example
flushwb

Description

Flush all write buffers internal to the processor. This instruction is a hint to make all writes per-
formed by this processor visible to all other processors in the system as soon as possible.

Functional Description
flushWriteBuffers ();

Valid Pipelines

Encoding

Figure 9-276: flushwb in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 9 Memory Maintenance Instructions

204 TILE-Gx Instruction Set Architecture

inv

Invalidate Cache Line

Syntax
inv SrcA

Example
inv r5

Description

Invalidates the cache line in the data cache that contains the address stored in the source operand.
If a cache line that contains the address is not in the cache, this instruction has no effect. This
instruction causes an access violation if the current privilege level is not allowed to write to the
specified cache line. The line size that is invalidated is at minimum 16B. An implementation is free
to invalidate a larger region.

Functional Description
invalidateCacheLine (rf[SrcA] & BYTE_16_ADDR_MASK);

Valid Pipelines

Encoding

Figure 9-277: inv in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 205

Instructions

mf

Memory Fence

Syntax
mf

Example
mf

Description

The memory fence instruction is used to establish ordering between prior memory operations and
subsequent instructions. The exact orderings that are established depend on the page attributes of
the pages that the memory operations are targetting.

Functional Description
memoryFence ();

Valid Pipelines

Encoding

Figure 9-278: mf in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 9 Memory Maintenance Instructions

206 TILE-Gx Instruction Set Architecture

wh64

Write Hint 64 Bytes

Syntax
wh64 SrcA

Example
wh64 r5

Description

Hint that software intends to write every byte of the specified 64B cache line before reading it. The
processor may use this hint to allocate the 64B line into the cache without fetching the current con-
tents from main memory. The processor may set the contents of the block to any value that does
not introduce a security hole.

Functional Description
writeHint64Cache (rf[SrcA] & BYTE_64_ADDR_MASK);

Valid Pipelines

Encoding

Figure 9-279: wh64 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 207

CHAPTER 10 MEMORY INSTRUCTIONS

10.1Overview
The following sections provide detailed descriptions of memory instructions listed alphabetically.

cmpexch Compare and Exchange

cmpexch4 Compare and Exchange Four Bytes

exch Exchange

exch4 Exchange Four Bytes

fetchadd Fetch and Add

fetchadd4 Fetch and Add Four Bytes

fetchaddgez Fetch and Add if Greater or Equal Zero

fetchaddgez4 Fetch and Add if Greater or Equal Zero Four Bytes

fetchand Fetch and And

fetchand4 Fetch and And Four Bytes

fetchor Fetch and Or

fetchor4 Fetch and Or Four Bytes

ld Load

ld1s Load One Byte Signed

ld1s_add Load One Byte Signed and Add

ld1u Load One Byte Unsigned

ld1u_add Load One Byte Unsigned and Add

ld2s Load Two Bytes Signed

ld2s_add Load Two Bytes Signed and Add

ld2u Load Two Bytes Unsigned

ld2u_add Load Two Bytes Unsigned and Add

ld4s Load Four Bytes Signed

ld4s_add Load Four Bytes Signed and Add

ld4u Load Four Bytes Unsigned

ld4u_add Load Four Bytes Unsigned and Add

ld_add Load and Add

Chapter 10 Memory Instructions

208 TILE-Gx Instruction Set Architecture

ldna Load No Alignment Trap

ldna_add Load No Alignment Trap and Add

ldnt Load Non-Temporal

ldnt1s Load Non-Temporal One Byte Signed

ldnt1s_add Load Non-Temporal One Byte Signed and Add

ldnt1u Load Non-Temporal One Byte Unsigned

ldnt1u_add Load Non-Temporal One Byte Unsigned and Add

ldnt2s Load Non-Temporal Two Bytes Signed

ldnt2s_add Load Non-Temporal Two Bytes Signed and Add

ldnt2u Load Non-Temporal Two Bytes Unsigned

ldnt2u_add Load Non-Temporal Two Bytes Unsigned and Add

ldnt4s Load Non-Temporal Four Bytes Signed

ldnt4s_add Load Non-Temporal Four Bytes Signed and Add

ldnt4u Load Non-Temporal Four Bytes Unsigned

ldnt4u_add Load Non-Temporal Four Bytes Unsigned and Add

ldnt_add Load Non-Temporal and Add

st Store

st1 Store Byte

st1_add Store Byte and Add

st2 Store Two Bytes

st2_add Store Two Bytes and Add

st4 Store Four Bytes

st4_add Store Four Bytes and Add

st_add Store and Add

stnt Store Non-Temporal

stnt1 Store Non-Temporal Byte

stnt1_add Store Non-Temporal Byte and Add

stnt2 Store Non-Temporal Two Bytes

stnt2_add Store Non-Temporal Two Bytes and Add

stnt4 Store Non-Temporal Four Bytes

stnt4_add Store Non-Temporal Four Bytes and Add

stnt_add Store Non-Temporal and Add

TILE-Gx Instruction Set Architecture 209

Instructions

10.2Instructions
Memory instructions are described in the sections that follow.

cmpexch

Compare and Exchange

Syntax
cmpexch Dest, SrcA, SrcB

Example
cmpexch r5, r6, r7

Description

Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in memory at the
address held in the first source register. If the values are not equal, then no memory operation is
performed. If the values are equal, the 8-byte quantity from the second source register is written
into memory at the address held in the first source register. In either case, the result of the instruc-
tion is the value read from memory. The compare and write to memory are atomic and thus can be
used for synchronization purposes. This instruction only operates for addresses aligned to a
8-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
rf[Dest] = memVal;
if (memVal == SPR[CmpValueSPR])
 memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-280: cmpexch in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

210 TILE-Gx Instruction Set Architecture

cmpexch4

Compare and Exchange Four Bytes

Syntax
cmpexch4 Dest, SrcA, SrcB

Example
cmpexch4 r5, r6, r7

Description

Compare the 4-byte contents of the CmpValue SPR with the 4-byte value in memory at the
address held in the first source register. If the values are not equal, then no memory operation is
performed. If the values are equal, the 4-byte quantity from the second source register is written
into memory at the address held in the first source register. In either case, the result of the instruc-
tion is the value read from memory. The compare and write to memory are atomic and thus can
be used for synchronization purposes. This instruction only operates for addresses aligned to a
4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
rf[Dest] = memVal;
if (memVal == signExtend32 (SPR[CmpValueSPR]))
 memoryWriteWord (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-281: cmpexch4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 211

Instructions

exch

Exchange

Syntax
exch Dest, SrcA, SrcB

Example
exch r5, r6, r7

Description

Exchange the 8-byte quantity from the second source register with the value in memory at the
address held in the first source register. The exchange in memory is atomic and thus can be used
for synchronization purposes. This instruction only operates for addresses aligned to a 8-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
rf[Dest] = memoryReadDoubleWord (rf[SrcA]);
memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-282: exch in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

212 TILE-Gx Instruction Set Architecture

exch4

Exchange Four Bytes

Syntax
exch4 Dest, SrcA, SrcB

Example
exch4 r5, r6, r7

Description

Exchange the 4-byte quantity from the second source register with the value in memory at the
address held in the first source register. The exchange in memory is atomic and thus can be used
for synchronization purposes. This instruction only operates for addresses aligned to a 4-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
rf[Dest] = memoryReadWord (rf[SrcA]);
memoryWriteWord (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-283: exch4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 213

Instructions

fetchadd

Fetch and Add

Syntax
fetchadd Dest, SrcA, SrcB

Example
fetchadd r5, r6, r7

Description

Read and return the 8-byte value in memory at the address held in the first source register. The
value in memory is incremented by the 8-byte quantity from the second source register. The read
and increment are atomic thus this instruction can be used for synchronization purposes. This
instruction only operates for addresses aligned to a 8-byte boundary. Unaligned memory access
causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
rf[Dest] = memVal;
memoryWriteDoubleWord (rf[SrcA], memVal + rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-284: fetchadd in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

214 TILE-Gx Instruction Set Architecture

fetchadd4

Fetch and Add Four Bytes

Syntax
fetchadd4 Dest, SrcA, SrcB

Example
fetchadd4 r5, r6, r7

Description

Read and return the 4-byte value in memory at the address held in the first source register. The
value in memory is incremented by the 4-byte quantity from the second source register. The read
and increment are atomic thus this instruction can be used for synchronization purposes. This
instruction only operates for addresses aligned to a 4-byte boundary. Unaligned memory access
causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
rf[Dest] = memVal;
memoryWriteWord (rf[SrcA], memVal + rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-285: fetchadd4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 215

Instructions

fetchaddgez

Fetch and Add if Greater or Equal Zero

Syntax
fetchaddgez Dest, SrcA, SrcB

Example
fetchaddgez r5, r6, r7

Description

Read and return the 8-byte value in memory at the address held in the first source register. The
value in memory is incremented by the 8-byte quantity from the second source register if the
result would be greater or equal to zero. The read and increment are atomic thus this instruction
can be used for synchronization purposes. This instruction only operates for addresses aligned to
a 8-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
int64_t memVal = memoryReadDoubleWord (rf[SrcA]);
int64_t inc_result = memVal + rf[SrcB];
rf[Dest] = memVal;
if (inc_result >= 0)
 memoryWriteDoubleWord (rf[SrcA], inc_result);

Valid Pipelines

Encoding

Figure 10-286: fetchaddgez in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

216 TILE-Gx Instruction Set Architecture

fetchaddgez4

Fetch and Add if Greater or Equal Zero Four Bytes

Syntax
fetchaddgez4 Dest, SrcA, SrcB

Example
fetchaddgez4 r5, r6, r7

Description

Read and return the 4-byte value in memory at the address held in the first source register. The
value in memory is incremented by the 4-byte quantity from the second source register if the
result would be greater or equal to zero. The read and increment are atomic thus this instruction
can be used for synchronization purposes. This instruction only operates for addresses aligned to
a 4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
int64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
int32_t inc_result = memVal + rf[SrcB];
rf[Dest] = memVal;
if (inc_result >= 0)
 memoryWriteWord (rf[SrcA], inc_result);

Valid Pipelines

Encoding

Figure 10-287: fetchaddgez4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 217

Instructions

fetchand

Fetch and And

Syntax
fetchand Dest, SrcA, SrcB

Example
fetchand r5, r6, r7

Description

Read and return the 8-byte value in memory at the address held in the first source register. The
value in memory is logical ANDed with the 8-byte quantity from the second source register. The
read and logical AND are atomic thus this instruction can be used for synchronization purposes.
This instruction only operates for addresses aligned to a 8-byte boundary. Unaligned memory
access causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
rf[Dest] = memVal;
memoryWriteDoubleWord (rf[SrcA], memVal & rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-288: fetchand in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

218 TILE-Gx Instruction Set Architecture

fetchand4

Fetch and And Four Bytes

Syntax
fetchand4 Dest, SrcA, SrcB

Example
fetchand4 r5, r6, r7

Description

Read and return the 4-byte value in memory at the address held in the first source register. The
value in memory is logical ANDed with the 4-byte quantity from the second source register. The
read and logical AND are atomic thus this instruction can be used for synchronization purposes.
This instruction only operates for addresses aligned to a 4-byte boundary. Unaligned memory
access causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
rf[Dest] = memVal;
memoryWriteWord (rf[SrcA], memVal & rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-289: fetchand4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 219

Instructions

fetchor

Fetch and Or

Syntax
fetchor Dest, SrcA, SrcB

Example
fetchor r5, r6, r7

Description

Read and return the 8-byte value in memory at the address held in the first source register. The
value in memory is logical ORed with the 8-byte quantity from the second source register. The
read and logical OR are atomic thus this instruction can be used for synchronization purposes.
This instruction only operates for addresses aligned to a 8-byte boundary. Unaligned memory
access causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
rf[Dest] = memVal;
memoryWriteDoubleWord (rf[SrcA], memVal | rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-290: fetchor in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

220 TILE-Gx Instruction Set Architecture

fetchor4

Fetch and Or Four Bytes

Syntax
fetchor4 Dest, SrcA, SrcB

Example
fetchor4 r5, r6, r7

Description

Read and return the 4-byte value in memory at the address held in the first source register. The
value in memory is logical ORed with the 4-byte quantity from the second source register. The
read and logical OR are atomic thus this instruction can be used for synchronization purposes.
This instruction only operates for addresses aligned to a 4-byte boundary. Unaligned memory
access causes an Unaligned Data Reference interrupt.

Functional Description
uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
rf[Dest] = memVal;
memoryWriteWord (rf[SrcA], memVal | rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-291: fetchor4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 221

Instructions

ld

Load

Syntax
ld Dest, Src

Example
ld r5, r6

Description

Load an 8-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to an 8-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
rf[Dest] = memoryReadDoubleWord (rf[Src]);

Valid Pipelines

Encoding

Figure 10-292: ld in X1 Bits Encoding

Figure 10-293: ld in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 10 Memory Instructions

222 TILE-Gx Instruction Set Architecture

ld1s

Load One Byte Signed

Syntax
ld1s Dest, Src

Example
ld1s r5, r6

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is sign-extended to a complete word.

Functional Description
rf[Dest] = signExtend8 (memoryReadByte (rf[Src]));

Valid Pipelines

Encoding

Figure 10-294: ld1s in X1 Bits Encoding

Figure 10-295: ld1s in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 223

Instructions

ld1s_add

Load One Byte Signed and Add

Syntax
ld1s_add Dest, SrcA, Imm8

Example
ld1s_add r5, r6, 5

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is sign-extended to a complete word.
Add the signed immediate argument to the address register.

Functional Description
rf[Dest] = signExtend8 (memoryReadByte (rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-296: ld1s_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

224 TILE-Gx Instruction Set Architecture

ld1u

Load One Byte Unsigned

Syntax
ld1u Dest, Src

Example
ld1u r5, r6

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is zero extended to a complete word.

Functional Description
rf[Dest] = memoryReadByte (rf[Src]);

Valid Pipelines

Encoding

Figure 10-297: ld1u in X1 Bits Encoding

Figure 10-298: ld1u in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 225

Instructions

ld1u_add

Load One Byte Unsigned and Add

Syntax
ld1u_add Dest, SrcA, Imm8

Example
ld1u_add r5, r6, 5

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is zero-extended to a complete word.
Add the signed immediate argument to the address register.

Functional Description
rf[Dest] = memoryReadByte (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-299: ld1u_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

226 TILE-Gx Instruction Set Architecture

ld2s

Load Two Bytes Signed

Syntax
ld2s Dest, Src

Example
ld2s r5, r6

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is sign-extended to a complete word.

Functional Description
rf[Dest] = signExtend16 (memoryReadHalfWord (rf[Src]));

Valid Pipelines

Encoding

Figure 10-300: ld2s in X1 Bits Encoding

Figure 10-301: ld2s in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 227

Instructions

ld2s_add

Load Two Bytes Signed and Add

Syntax
ld2s_add Dest, SrcA, Imm8

Example
ld2s_add r5, r6, 5

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is sign-extended to a complete word. Add the signed immediate argument to
the address register.

Functional Description
rf[Dest] = signExtend16 (memoryReadHalfWord (rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-302: ld2s_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

228 TILE-Gx Instruction Set Architecture

ld2u

Load Two Bytes Unsigned

Syntax
ld2u Dest, Src

Example
ld2u r5, r6

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is zero extended to a complete word.

Functional Description
rf[Dest] = memoryReadHalfWord (rf[Src]);

Valid Pipelines

Encoding

Figure 10-303: ld2u in X1 Bits Encoding

Figure 10-304: ld2u in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 229

Instructions

ld2u_add

Load Two Bytes Unsigned and Add

Syntax
ld2u_add Dest, SrcA, Imm8

Example
ld2u_add r5, r6, 5

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is zero extended to a complete word. Add the signed immediate argument to
the address register.

Functional Description
rf[Dest] = memoryReadHalfWord (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-305: ld2u_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

230 TILE-Gx Instruction Set Architecture

ld4s

Load Four Bytes Signed

Syntax
ld4s Dest, Src

Example
ld4s r5, r6

Description

Load a 4-byte signed quantity from memory into the destination register. The address of the value
to be loaded is read from the source operand. This load only operates for addresses aligned to a
4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
rf[Dest] = signExtend32 (memoryReadWord (rf[Src]));

Valid Pipelines

Encoding

Figure 10-306: ld4s in X1 Bits Encoding

Figure 10-307: ld4s in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 231

Instructions

ld4s_add

Load Four Bytes Signed and Add

Syntax
ld4s_add Dest, SrcA, Imm8

Example
ld4s_add r5, r6, 5

Description

Load a 4-byte signed quantity from memory into the destination register. The address of the value
to be loaded is read from the source operand. This load only operates for addresses aligned to a
4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. Add
the signed immediate argument to the address register.

Functional Description
rf[Dest] = signExtend32 (memoryReadWord (rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-308: ld4s_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

232 TILE-Gx Instruction Set Architecture

ld4u

Load Four Bytes Unsigned

Syntax
ld4u Dest, Src

Example
ld4u r5, r6

Description

Load a 4-byte unsigned quantity from memory into the destination register. The address of the
value to be loaded is read from the source operand. This load only operates for addresses aligned
to a 4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
rf[Dest] = memoryReadWord (rf[Src]);

Valid Pipelines

Encoding

Figure 10-309: ld4u in X1 Bits Encoding

Figure 10-310: ld4u in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 233

Instructions

ld4u_add

Load Four Bytes Unsigned and Add

Syntax
ld4u_add Dest, SrcA, Imm8

Example
ld4u_add r5, r6, 5

Description

Load a 4-byte unsigned quantity from memory into the destination register. The address of the
value to be loaded is read from the source operand. This load only operates for addresses aligned
to a 4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.
Add the signed immediate argument to the address register.

Functional Description
rf[Dest] = memoryReadWord (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-311: ld4u_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

234 TILE-Gx Instruction Set Architecture

ld_add

Load and Add

Syntax
ld_add Dest, SrcA, Imm8

Example
ld_add r5, r6, 5

Description

Load an 8-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to an 8-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. Add the
signed immediate argument to the address register.

Functional Description
rf[Dest] = memoryReadDoubleWord (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-312: ld_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 235

Instructions

ldna

Load No Alignment Trap

Syntax
ldna Dest, Src

Example
ldna r5, r6

Description

Load an 8-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand and the bottom three bits are set to zero. No Unaligned
Data Reference interrupts are caused by this instruction.

Functional Description
rf[Dest] = memoryReadDoubleWordNA (rf[Src]);

Valid Pipelines

Encoding

Figure 10-313: ldna in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

236 TILE-Gx Instruction Set Architecture

ldna_add

Load No Alignment Trap and Add

Syntax
ldna_add Dest, SrcA, Imm8

Example
ldna_add r5, r6, 5

Description

Load an 8-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand and the bottom three bits are set to zero. No Unaligned
Data Reference interrupts are caused by this instruction. Add the signed immediate argument to
the address register.

Functional Description
rf[Dest] = memoryReadDoubleWordNA (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-314: ldna_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 237

Instructions

ldnt

Load Non-Temporal

Syntax
ldnt Dest, Src

Example
ldnt r5, r6

Description

Load an 8-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to an 8-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The cache
system is given an indication that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = memoryReadDoubleWordNonTemporal (rf[Src]);

Valid Pipelines

Encoding

Figure 10-315: ldnt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

238 TILE-Gx Instruction Set Architecture

ldnt1s

Load Non-Temporal One Byte Signed

Syntax
ldnt1s Dest, Src

Example
ldnt1s r5, r6

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is sign-extended to a complete word.
The cache system is given an indication that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = signExtend8 (memoryReadByteNonTemporal (rf[Src]));

Valid Pipelines

Encoding

Figure 10-316: ldnt1s in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 239

Instructions

ldnt1s_add

Load Non-Temporal One Byte Signed and Add

Syntax
ldnt1s_add Dest, SrcA, Imm8

Example
ldnt1s_add r5, r6, 5

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is sign-extended to a complete word.
Add the signed immediate argument to the address register. The cache system is given an indica-
tion that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = signExtend8 (memoryReadByteNonTemporal (rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-317: ldnt1s_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

240 TILE-Gx Instruction Set Architecture

ldnt1u

Load Non-Temporal One Byte Unsigned

Syntax
ldnt1u Dest, Src

Example
ldnt1u r5, r6

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is zero extended to a complete word.
The cache system is given an indication that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = memoryReadByteNonTemporal (rf[Src]);

Valid Pipelines

Encoding

Figure 10-318: ldnt1u in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 241

Instructions

ldnt1u_add

Load Non-Temporal One Byte Unsigned and Add

Syntax
ldnt1u_add Dest, SrcA, Imm8

Example
ldnt1u_add r5, r6, 5

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is zero-extended to a complete word.
Add the signed immediate argument to the address register. The cache system is given an indica-
tion that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = memoryReadByteNonTemporal (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-319: ldnt1u_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

242 TILE-Gx Instruction Set Architecture

ldnt2s

Load Non-Temporal Two Bytes Signed

Syntax
ldnt2s Dest, Src

Example
ldnt2s r5, r6

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is sign-extended to a complete word. The cache system is given an indication
that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = signExtend16 (memoryReadHalfWordNonTemporal (rf[Src]));

Valid Pipelines

Encoding

Figure 10-320: ldnt2s in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 243

Instructions

ldnt2s_add

Load Non-Temporal Two Bytes Signed and Add

Syntax
ldnt2s_add Dest, SrcA, Imm8

Example
ldnt2s_add r5, r6, 5

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is sign-extended to a complete word. Add the signed immediate argument to
the address register. The cache system is given an indication that the data will not be re-accessed
in the near future.

Functional Description
rf[Dest] = signExtend16 (memoryReadHalfWordNonTemporal (rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-321: ldnt2s_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

244 TILE-Gx Instruction Set Architecture

ldnt2u

Load Non-Temporal Two Bytes Unsigned

Syntax
ldnt2u Dest, Src

Example
ldnt2u r5, r6

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is zero extended to a complete word. The cache system is given an indication
that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = memoryReadHalfWordNonTemporal (rf[Src]);

Valid Pipelines

Encoding

Figure 10-322: ldnt2u in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 245

Instructions

ldnt2u_add

Load Non-Temporal Two Bytes Unsigned and Add

Syntax
ldnt2u_add Dest, SrcA, Imm8

Example
ldnt2u_add r5, r6, 5

Description

Load a 2-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to a 2-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The value
read from memory is zero extended to a complete word. Add the signed immediate argument to
the address register. The cache system is given an indication that the data will not be re-accessed
in the near future.

Functional Description
rf[Dest] = memoryReadHalfWordNonTemporal (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-323: ldnt2u_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

246 TILE-Gx Instruction Set Architecture

ldnt4s

Load Non-Temporal Four Bytes Signed

Syntax
ldnt4s Dest, Src

Example
ldnt4s r5, r6

Description

Load a 4-byte signed quantity from memory into the destination register. The address of the value
to be loaded is read from the source operand. This load only operates for addresses aligned to a
4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. The
cache system is given an indication that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = signExtend32 (memoryReadWordNonTemporal (rf[Src]));

Valid Pipelines

Encoding

Figure 10-324: ldnt4s in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 247

Instructions

ldnt4s_add

Load Non-Temporal Four Bytes Signed and Add

Syntax
ldnt4s_add Dest, SrcA, Imm8

Example
ldnt4s_add r5, r6, 5

Description

Load a 4-byte signed quantity from memory into the destination register. The address of the value
to be loaded is read from the source operand. This load only operates for addresses aligned to a
4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. Add
the signed immediate argument to the address register. The cache system is given an indication
that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = signExtend32 (memoryReadWordNonTemporal (rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-325: ldnt4s_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

248 TILE-Gx Instruction Set Architecture

ldnt4u

Load Non-Temporal Four Bytes Unsigned

Syntax
ldnt4u Dest, Src

Example
ldnt4u r5, r6

Description

Load a 4-byte unsigned quantity from memory into the destination register. The address of the
value to be loaded is read from the source operand. This load only operates for addresses aligned
to a 4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.
The cache system is given an indication that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = memoryReadWordNonTemporal (rf[Src]);

Valid Pipelines

Encoding

Figure 10-326: ldnt4u in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 249

Instructions

ldnt4u_add

Load Non-Temporal Four Bytes Unsigned and Add

Syntax
ldnt4u_add Dest, SrcA, Imm8

Example
ldnt4u_add r5, r6, 5

Description

Load a 4-byte unsigned quantity from memory into the destination register. The address of the
value to be loaded is read from the source operand. This load only operates for addresses aligned
to a 4-byte boundary. Unaligned memory access causes an Unaligned Data Reference interrupt.
Add the signed immediate argument to the address register. The cache system is given an indica-
tion that the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = memoryReadWordNonTemporal (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-327: ldnt4u_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

250 TILE-Gx Instruction Set Architecture

ldnt_add

Load Non-Temporal and Add

Syntax
ldnt_add Dest, SrcA, Imm8

Example
ldnt_add r5, r6, 5

Description

Load an 8-byte quantity from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for addresses aligned to an 8-byte
boundary. Unaligned memory access causes an Unaligned Data Reference interrupt. Add the
signed immediate argument to the address register. The cache system is given an indication that
the data will not be re-accessed in the near future.

Functional Description
rf[Dest] = memoryReadDoubleWordNonTemporal (rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-328: ldnt_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 251

Instructions

st

Store

Syntax
st SrcA, SrcB

Example
st r5, r6

Description

Store an 8-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to an 8-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-329: st in X1 Bits Encoding

Figure 10-330: st in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 10 Memory Instructions

252 TILE-Gx Instruction Set Architecture

st1

Store Byte

Syntax
st1 SrcA, SrcB

Example
st1 r5, r6

Description

Store a byte from the second source register into memory at the address held in the first source
register.

Functional Description
memoryWriteByte (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-331: st1 in X1 Bits Encoding

Figure 10-332: st1 in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 253

Instructions

st1_add

Store Byte and Add

Syntax
st1_add SrcA, SrcB, Imm8

Example
st1_add r5, r6, 5

Description

Store a byte from the second source register into memory at the address held in the first source
register. Add the signed immediate argument to the address register.

Functional Description
memoryWriteByte (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-333: st1_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

254 TILE-Gx Instruction Set Architecture

st2

Store Two Bytes

Syntax
st2 SrcA, SrcB

Example
st2 r5, r6

Description

Store a 2-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 2-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
memoryWriteHalfWord (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-334: st2 in X1 Bits Encoding

Figure 10-335: st2 in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 255

Instructions

st2_add

Store Two Bytes and Add

Syntax
st2_add SrcA, SrcB, Imm8

Example
st2_add r5, r6, 5

Description

Store a 2-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 2-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. Add the signed imme-
diate argument to the address register.

Functional Description
memoryWriteHalfWord (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-336: st2_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

256 TILE-Gx Instruction Set Architecture

st4

Store Four Bytes

Syntax
st4 SrcA, SrcB

Example
st4 r5, r6

Description

Store a 4-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 4-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt.

Functional Description
memoryWriteWord (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-337: st4 in X1 Bits Encoding

Figure 10-338: st4 in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 257

Instructions

st4_add

Store Four Bytes and Add

Syntax
st4_add SrcA, SrcB, Imm8

Example
st4_add r5, r6, 5

Description

Store a 4-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 4-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. Add the signed imme-
diate argument to the address register.

Functional Description
memoryWriteWord (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-339: st4_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

258 TILE-Gx Instruction Set Architecture

st_add

Store and Add

Syntax
st_add SrcA, SrcB, Imm8

Example
st_add r5, r6, 5

Description

Store an 8-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 8-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. Add the signed imme-
diate argument to the address register.

Functional Description
memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-340: st_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 259

Instructions

stnt

Store Non-Temporal

Syntax
stnt SrcA, SrcB

Example
stnt r5, r6

Description

Store an 8-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to an 8-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. The cache system is
given an indication that the data will not be re-accessed in the near future.

Functional Description
memoryWriteDoubleWordNonTemporal (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-341: stnt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

260 TILE-Gx Instruction Set Architecture

stnt1

Store Non-Temporal Byte

Syntax
stnt1 SrcA, SrcB

Example
stnt1 r5, r6

Description

Store a byte from the second source register into memory at the address held in the first source
register. The cache system is given an indication that the data will not be re-accessed in the near
future.

Functional Description
memoryWriteByteNonTemporal (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-342: stnt1 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 261

Instructions

stnt1_add

Store Non-Temporal Byte and Add

Syntax
stnt1_add SrcA, SrcB, Imm8

Example
stnt1_add r5, r6, 5

Description

Store a byte from the second source register into memory at the address held in the first source
register. Add the signed immediate argument to the address register. The cache system is given
an indication that the data will not be re-accessed in the near future.

Functional Description
memoryWriteByteNonTemporal (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-343: stnt1_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

262 TILE-Gx Instruction Set Architecture

stnt2

Store Non-Temporal Two Bytes

Syntax
stnt2 SrcA, SrcB

Example
stnt2 r5, r6

Description

Store a 2-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 2-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. The cache system is
given an indication that the data will not be re-accessed in the near future.

Functional Description
memoryWriteHalfWordNonTemporal (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-344: stnt2 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 263

Instructions

stnt2_add

Store Non-Temporal Two Bytes and Add

Syntax
stnt2_add SrcA, SrcB, Imm8

Example
stnt2_add r5, r6, 5

Description

Store a 2-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 2-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. Add the signed imme-
diate argument to the address register. The cache system is given an indication that the data will
not be re-accessed in the near future.

Functional Description
memoryWriteHalfWordNonTemporal (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-345: stnt2_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

264 TILE-Gx Instruction Set Architecture

stnt4

Store Non-Temporal Four Bytes

Syntax
stnt4 SrcA, SrcB

Example
stnt4 r5, r6

Description

Store a 4-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 4-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. The cache system is
given an indication that the data will not be re-accessed in the near future.

Functional Description
memoryWriteWordNonTemporal (rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 10-346: stnt4 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 265

Instructions

stnt4_add

Store Non-Temporal Four Bytes and Add

Syntax
stnt4_add SrcA, SrcB, Imm8

Example
stnt4_add r5, r6, 5

Description

Store a 4-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 4-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. Add the signed imme-
diate argument to the address register. The cache system is given an indication that the data will
not be re-accessed in the near future.

Functional Description
memoryWriteWordNonTemporal (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-347: stnt4_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 10 Memory Instructions

266 TILE-Gx Instruction Set Architecture

stnt_add

Store Non-Temporal and Add

Syntax
stnt_add SrcA, SrcB, Imm8

Example
stnt_add r5, r6, 5

Description

Store an 8-byte quantity from the second source register into memory at the address held in the
first source register. This store only operates for addresses aligned to a 8-byte boundary.
Unaligned memory access causes an Unaligned Data Reference interrupt. Add the signed imme-
diate argument to the address register. The cache system is given an indication that the data will
not be re-accessed in the near future.

Functional Description
memoryWriteDoubleWordNonTemporal (rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 10-348: stnt_add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 267

CHAPTER 11 MULTIPLY INSTRUCTIONS

11.1Overview
The following sections provide detailed descriptions of multiply instructions listed
alphabetically.

cmul Complex Multiply

cmula Complex Multiply Accumulate

cmulaf Complex Multiply Accumulate Fixed Point

cmulf Complex Multiply Fixed Point

cmulfr Complex Multiply Fixed Point Round

cmulh Complex Multiply High Result

cmulhr Complex Multiply High Result Round

mul_hs_hs Multiply High Signed High Signed

mul_hs_hu Multiply High Signed High Unsigned

mul_hs_ls Multiply High Signed Low Signed

mul_hs_lu Multiply High Signed Low Unsigned

mul_hu_hu Multiply High Unsigned High Unsigned

mul_hu_ls Multiply High Unsigned Low Signed

mul_hu_lu Multiply High Unsigned Low Unsigned

mul_ls_ls Multiply Low Signed Low Signed

mul_ls_lu Multiply Low Signed Low Unsigned

mul_lu_lu Multiply Low Unsigned Low Unsigned

mula_hs_hs Multiply Accumulate High Signed High Signed

mula_hs_hu Multiply Accumulate High Signed High Unsigned

mula_hs_ls Multiply Accumulate High Signed Low Signed

mula_hs_lu Multiply Accumulate High Signed Low Unsigned

mula_hu_hu Multiply Accumulate High Unsigned High Unsigned

mula_hu_ls Multiply Accumulate High Unsigned Low Signed

mula_hu_lu Multiply Accumulate High Unsigned Low Unsigned

mula_ls_ls Multiply Accumulate Low Signed Low Signed

mula_ls_lu Multiply Accumulate Low Signed Low Unsigned

Chapter 11 Multiply Instructions

268 TILE-Gx Instruction Set Architecture

mula_lu_lu Multiply Accumulate Low Unsigned Low Unsigned

mulax Multiply Accumulate and Extend

mulx Multiply and Extend

TILE-Gx Instruction Set Architecture 269

Instructions

11.2Instructions
Multiply instructions are described in the sections that follow.

cmul

Complex Multiply

Syntax
cmul Dest, SrcA, SrcB

Example
cmul r5, r6, r7

Description

Multiply the 32-bit complex number in the low half of the first operand by the 32-bit complex
number in the low half of the second operand, producing a 64-bit complex result. The 64-bit com-
plex number is represented as a 32-bit signed real value in the lowest-order 32-bits and a 32-bit
signed imaginary value in the high-order 32-bits.

Functional Description
uint64_t output = 0;
int32_t realA = signExtend16 (get2Byte (rf[SrcA], 0));
int32_t imagA = signExtend16 (get2Byte (rf[SrcA], 1));
int32_t realB = signExtend16 (get2Byte (rf[SrcB], 0));
int32_t imagB = signExtend16 (get2Byte (rf[SrcB], 1));
int32_t realRes = realA * realB - imagA * imagB;
int32_t imagRes = realA * imagB + imagA * realB;
output = set4Byte (output, 0, realRes);
output = set4Byte (output, 1, imagRes);
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 11-349: cmul in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

270 TILE-Gx Instruction Set Architecture

cmula

Complex Multiply Accumulate

Syntax
cmula Dest, SrcA, SrcB

Example
cmula r5, r6, r7

Description

Multiply the 32-bit complex number in the low half of the first operand by the 32-bit complex
number in the low half of the second operand, producing a 64-bit complex result. The 64-bit com-
plex number is represented as a 32-bit signed real value in the lowest-order 32-bits and a 32-bit
signed imaginary value in the high-order 32-bits. The complex multiply result is accumulated into
the 64-bit complex number in the destination operand.

Functional Description
uint64_t output = 0;
int32_t realA = signExtend16 (get2Byte (rf[SrcA], 0));
int32_t imagA = signExtend16 (get2Byte (rf[SrcA], 1));
int32_t realB = signExtend16 (get2Byte (rf[SrcB], 0));
int32_t imagB = signExtend16 (get2Byte (rf[SrcB], 1));
int32_t realRes = realA * realB - imagA * imagB;
int32_t imagRes = realA * imagB + imagA * realB;
output = set4Byte (output, 0, realRes + get4Byte (rf[Dest], 0));
output = set4Byte (output, 1, imagRes + get4Byte (rf[Dest], 1));
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 11-350: cmula in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 271

Instructions

cmulaf

Complex Multiply Accumulate Fixed Point

Syntax
cmulaf Dest, SrcA, SrcB

Example
cmulaf r5, r6, r7

Description

Multiply the 32-bit complex number in the low half of the first operand by the 32-bit complex
number in the low half of the second operand, producing a 32-bit complex result. The 32-bit com-
plex number is represented as a 16-bit signed real value in the lowest-order 16-bits and a 16-bit
signed imaginary value in the high-order 16-bits. The complex multiply result is accumulated
into the 32-bit complex number in the destination operand. The operands are treated as 16-bit
signed fractions with the decimal point below the sign bit.

Functional Description
uint64_t output = 0;
int32_t realA = signExtend16 (get2Byte (rf[SrcA], 0));
int32_t imagA = signExtend16 (get2Byte (rf[SrcA], 1));
int32_t realB = signExtend16 (get2Byte (rf[SrcB], 0));
int32_t imagB = signExtend16 (get2Byte (rf[SrcB], 1));
int32_t realRes = realA * realB - imagA * imagB;
int32_t imagRes = realA * imagB + imagA * realB;
output = set2Byte (output, 0, (realRes >> 15) + get2Byte (rf[Dest], 0));
output = set2Byte (output, 1, (imagRes >> 15) + get2Byte (rf[Dest], 1));
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 11-351: cmulaf in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

272 TILE-Gx Instruction Set Architecture

cmulf

Complex Multiply Fixed Point

Syntax
cmulf Dest, SrcA, SrcB

Example
cmulf r5, r6, r7

Description

Multiply the 32-bit complex number in the low half of the first operand by the 32-bit complex
number in the low half of the second operand, producing a 32-bit complex result. The 32-bit com-
plex number is represented as a 16-bit signed real value in the lowest-order 16-bits and a 16-bit
signed imaginary value in the high-order 16-bits. The operands are treated as 16-bit signed frac-
tions with the decimal point below the sign bit.

Functional Description
uint64_t output = 0;
int32_t realA = signExtend16 (get2Byte (rf[SrcA], 0));
int32_t imagA = signExtend16 (get2Byte (rf[SrcA], 1));
int32_t realB = signExtend16 (get2Byte (rf[SrcB], 0));
int32_t imagB = signExtend16 (get2Byte (rf[SrcB], 1));
int32_t realRes = realA * realB - imagA * imagB;
int32_t imagRes = realA * imagB + imagA * realB;
output = set2Byte (output, 0, (realRes >> 15));
output = set2Byte (output, 1, (imagRes >> 15));
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 11-352: cmulf in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 273

Instructions

cmulfr

Complex Multiply Fixed Point Round

Syntax
cmulfr Dest, SrcA, SrcB

Example
cmulfr r5, r6, r7

Description

Multiply the 32-bit complex number in the low half of the first operand by the 32-bit complex
number in the low half of the second operand, producing a rounded 32-bit complex result. The
32-bit complex number is represented as a 16-bit signed real value in the lowest-order 16-bits and
a 16-bit signed imaginary value in the high-order 16-bits. The operands are treated as 16-bit
signed fractions with the decimal point below the sign bit. The full-precision real and imaginary
components of the multiplication are both rounded up while being reduced to 16-bit wide results.

Functional Description
uint64_t output = 0;
int32_t realA = signExtend16 (get2Byte (rf[SrcA], 0));
int32_t imagA = signExtend16 (get2Byte (rf[SrcA], 1));
int32_t realB = signExtend16 (get2Byte (rf[SrcB], 0));
int32_t imagB = signExtend16 (get2Byte (rf[SrcB], 1));
int32_t realRes = realA * realB - imagA * imagB + (1 << 14);
int32_t imagRes = realA * imagB + imagA * realB + (1 << 14);
output = set2Byte (output, 0, (realRes >> 15));
output = set2Byte (output, 1, (imagRes >> 15));
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 11-353: cmulfr in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

274 TILE-Gx Instruction Set Architecture

cmulh

Complex Multiply High Result

Syntax
cmulh Dest, SrcA, SrcB

Example
cmulh r5, r6, r7

Description

Multiply the 32-bit complex number in the low half of the first operand by the 32-bit complex
number in the low half of the second operand, producing a 32-bit complex result. The 32-bit com-
plex number is represented as a 16-bit signed real value in the lowest-order 16-bits and a 16-bit
signed imaginary value in the high-order 16-bits. The 16-bit real and imaginary components of the
result are the high-order 16 bits of the full precision multiply result.

Functional Description
uint64_t output = 0;
int32_t realA = signExtend16 (get2Byte (rf[SrcA], 0));
int32_t imagA = signExtend16 (get2Byte (rf[SrcA], 1));
int32_t realB = signExtend16 (get2Byte (rf[SrcB], 0));
int32_t imagB = signExtend16 (get2Byte (rf[SrcB], 1));
int32_t realRes = realA * realB - imagA * imagB;
int32_t imagRes = realA * imagB + imagA * realB;
output = set2Byte (output, 0, (realRes >> 16));
output = set2Byte (output, 1, (imagRes >> 16));
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 11-354: cmulh in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 275

Instructions

cmulhr

Complex Multiply High Result Round

Syntax
cmulhr Dest, SrcA, SrcB

Example
cmulhr r5, r6, r7

Description

Multiply the 32-bit complex number in the low half of the first operand by the 32-bit complex
number in the low half of the second operand, producing a rounded 32-bit complex result. The
32-bit complex number is represented as a 16-bit signed real value in the lowest-order 16-bits and
a 16-bit signed imaginary value in the high-order 16-bits. The operands are treated as 16-bit
signed fractions with the decimal point below the sign bit. The 16-bit real and imaginary compo-
nents of the result are the high-order 16 bits of the rounded-up full precision multiply result.

Functional Description
uint64_t output = 0;
int32_t realA = signExtend16 (get2Byte (rf[SrcA], 0));
int32_t imagA = signExtend16 (get2Byte (rf[SrcA], 1));
int32_t realB = signExtend16 (get2Byte (rf[SrcB], 0));
int32_t imagB = signExtend16 (get2Byte (rf[SrcB], 1));
int32_t realRes = realA * realB - imagA * imagB + (1 << 15);
int32_t imagRes = realA * imagB + imagA * realB + (1 << 15);
output = set2Byte (output, 0, (realRes >> 16));
output = set2Byte (output, 1, (imagRes >> 16));
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 11-355: cmulhr in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

276 TILE-Gx Instruction Set Architecture

mul_hs_hs

Multiply High Signed High Signed

Syntax
mul_hs_hs Dest, SrcA, SrcB

Example
mul_hs_hs r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the high 32-bits of the second operand, producing
a 64-bit result. The input operands are interpreted as signed values.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] >> 32) * signExtend32 (rf[SrcB] >> 32);

Valid Pipelines

Encoding

Figure 11-356: mul_hs_hs in X0 Bits Encoding

Figure 11-357: mul_hs_hs in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 277

Instructions

mul_hs_hu

Multiply High Signed High Unsigned

Syntax
mul_hs_hu Dest, SrcA, SrcB

Example
mul_hs_hu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the high 32-bits of the second operand, producing
a 64-bit result. The first operand is interpreted as a signed value and the second operand is inter-
preted as an unsigned value.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] >> 32) * ((uint64_t) rf[SrcB] >> 32);

Valid Pipelines

Encoding

Figure 11-358: mul_hs_hu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

278 TILE-Gx Instruction Set Architecture

mul_hs_ls

Multiply High Signed Low Signed

Syntax
mul_hs_ls Dest, SrcA, SrcB

Example
mul_hs_ls r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand, producing
a 64-bit result. The input operands are interpreted as signed values.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] >> 32) * signExtend32 (rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-359: mul_hs_ls in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 279

Instructions

mul_hs_lu

Multiply High Signed Low Unsigned

Syntax
mul_hs_lu Dest, SrcA, SrcB

Example
mul_hs_lu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand, producing
a 64-bit result. The first operand is interpreted as a signed value and the second operand is inter-
preted as an unsigned value.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA] >> 32) * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-360: mul_hs_lu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

280 TILE-Gx Instruction Set Architecture

mul_hu_hu

Multiply High Unsigned High Unsigned

Syntax
mul_hu_hu Dest, SrcA, SrcB

Example
mul_hu_hu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the high 32-bits of the second operand, producing
a 64-bit result. The input operands are interpreted as unsigned values.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] >> 32) * ((uint64_t) rf[SrcB] >> 32);

Valid Pipelines

Encoding

Figure 11-361: mul_hu_hu in X0 Bits Encoding

Figure 11-362: mul_hu_hu in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 281

Instructions

mul_hu_ls

Multiply High Unsigned Low Signed

Syntax
mul_hu_ls Dest, SrcA, SrcB

Example
mul_hu_ls r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand, producing
a 64-bit result. The first operand is interpreted as an unsigned value and the second operand is
interpreted as a signed value.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] >> 32) * signExtend32 (rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-363: mul_hu_ls in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

282 TILE-Gx Instruction Set Architecture

mul_hu_lu

Multiply High Unsigned Low Unsigned

Syntax
mul_hu_lu Dest, SrcA, SrcB

Example
mul_hu_lu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand, producing
a 64-bit result. The input operands are interpreted as unsigned values.

Functional Description
rf[Dest] = ((uint64_t) rf[SrcA] >> 32) * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-364: mul_hu_lu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 283

Instructions

mul_ls_ls

Multiply Low Signed Low Signed

Syntax
mul_ls_ls Dest, SrcA, SrcB

Example
mul_ls_ls r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand, producing
a 64-bit result. The input operands are interpreted as signed values.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA]) * signExtend32 (rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-365: mul_ls_ls in X0 Bits Encoding

Figure 11-366: mul_ls_ls in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 11 Multiply Instructions

284 TILE-Gx Instruction Set Architecture

mul_ls_lu

Multiply Low Signed Low Unsigned

Syntax
mul_ls_lu Dest, SrcA, SrcB

Example
mul_ls_lu r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand, producing a
64-bit result. The first operand is interpreted as a signed value and the second operand is inter-
preted as an unsigned value.

Functional Description
rf[Dest] = signExtend32 (rf[SrcA]) * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-367: mul_ls_lu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 285

Instructions

mul_lu_lu

Multiply Low Unsigned Low Unsigned

Syntax
mul_lu_lu Dest, SrcA, SrcB

Example
mul_lu_lu r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand, producing
a 64-bit result. The input operands are interpreted as unsigned values.

Functional Description
rf[Dest] = (uint64_t) (uint32_t) rf[SrcA] * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-368: mul_lu_lu in X0 Bits Encoding

Figure 11-369: mul_lu_lu in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 11 Multiply Instructions

286 TILE-Gx Instruction Set Architecture

mula_hs_hs

Multiply Accumulate High Signed High Signed

Syntax
mula_hs_hs Dest, SrcA, SrcB

Example
mula_hs_hs r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the high 32-bits of the second operand and accu-
mulate the result into the destination operand. The input operands are interpreted as signed
values.

Functional Description
rf[Dest] =
 rf[Dest] + signExtend32 (rf[SrcA] >> 32) * signExtend32 (rf[SrcB] >> 32);

Valid Pipelines

Encoding

Figure 11-370: mula_hs_hs in X0 Bits Encoding

Figure 11-371: mula_hs_hs in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 287

Instructions

mula_hs_hu

Multiply Accumulate High Signed High Unsigned

Syntax
mula_hs_hu Dest, SrcA, SrcB

Example
mula_hs_hu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the high 32-bits of the second operand and accu-
mulate the result into the destination operand. The first operand is interpreted as a signed value
and the second operand is interpreted as an unsigned value.

Functional Description
rf[Dest] =
 rf[Dest] + signExtend32 (rf[SrcA] >> 32) * ((uint64_t) rf[SrcB] >> 32);

Valid Pipelines

Encoding

Figure 11-372: mula_hs_hu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

288 TILE-Gx Instruction Set Architecture

mula_hs_ls

Multiply Accumulate High Signed Low Signed

Syntax
mula_hs_ls Dest, SrcA, SrcB

Example
mula_hs_ls r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand and accu-
mulate the result into the destination operand. The input operands are interpreted as signed
values.

Functional Description
rf[Dest] = rf[Dest] + signExtend32 (rf[SrcA] >> 32) * signExtend32 (rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-373: mula_hs_ls in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 289

Instructions

mula_hs_lu

Multiply Accumulate High Signed Low Unsigned

Syntax
mula_hs_lu Dest, SrcA, SrcB

Example
mula_hs_lu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand and accu-
mulate the result into the destination operand. The first operand is interpreted as a signed value
and the second operand is interpreted as an unsigned value.

Functional Description
rf[Dest] =
 rf[Dest] + signExtend32 (rf[SrcA] >> 32) * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-374: mula_hs_lu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

290 TILE-Gx Instruction Set Architecture

mula_hu_hu

Multiply Accumulate High Unsigned High Unsigned

Syntax
mula_hu_hu Dest, SrcA, SrcB

Example
mula_hu_hu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the high 32-bits of the second operand and accu-
mulate the result into the destination operand. The input operands are interpreted as unsigned
values.

Functional Description
rf[Dest] =
 rf[Dest] + ((uint64_t) rf[SrcA] >> 32) * ((uint64_t) rf[SrcB] >> 32);

Valid Pipelines

Encoding

Figure 11-375: mula_hu_hu in X0 Bits Encoding

Figure 11-376: mula_hu_hu in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 291

Instructions

mula_hu_ls

Multiply Accumulate High Unsigned Low Signed

Syntax
mula_hu_ls Dest, SrcA, SrcB

Example
mula_hu_ls r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand and accu-
mulate the result into the destination operand. The first operand is interpreted as an unsigned
value and the second operand is interpreted as a signed value.

Functional Description
rf[Dest] = rf[Dest] + ((uint64_t) rf[SrcA] >> 32) * signExtend32 (rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-377: mula_hu_ls in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 11 Multiply Instructions

292 TILE-Gx Instruction Set Architecture

mula_hu_lu

Multiply Accumulate High Unsigned Low Unsigned

Syntax
mula_hu_lu Dest, SrcA, SrcB

Example
mula_hu_lu r5, r6, r7

Description

Multiply the high 32 bits of the first operand by the low 32-bits of the second operand and accu-
mulate the result into the destination operand. The input operands are interpreted as unsigned
values.

Functional Description
rf[Dest] =
 rf[Dest] + ((uint64_t) rf[SrcA] >> 32) * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-378: mula_hu_lu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 293

Instructions

mula_ls_ls

Multiply Accumulate Low Signed Low Signed

Syntax
mula_ls_ls Dest, SrcA, SrcB

Example
mula_ls_ls r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand and accu-
mulate the result into the destination operand. The input operands are interpreted as signed
values.

Functional Description
rf[Dest] = rf[Dest] + signExtend32 (rf[SrcA]) * signExtend32 (rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-379: mula_ls_ls in X0 Bits Encoding

Figure 11-380: mula_ls_ls in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 11 Multiply Instructions

294 TILE-Gx Instruction Set Architecture

mula_ls_lu

Multiply Accumulate Low Signed Low Unsigned

Syntax
mula_ls_lu Dest, SrcA, SrcB

Example
mula_ls_lu r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand and accumu-
late the result into the destination operand. The first operand is interpreted as a signed value and
the second operand is interpreted as an unsigned value.

Functional Description
rf[Dest] =
 rf[Dest] + signExtend32 (rf[SrcA]) * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-381: mula_ls_lu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 295

Instructions

mula_lu_lu

Multiply Accumulate Low Unsigned Low Unsigned

Syntax
mula_lu_lu Dest, SrcA, SrcB

Example
mula_lu_lu r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand and accu-
mulate the result into the destination operand. The input operands are interpreted as unsigned
values.

Functional Description
rf[Dest] =
 rf[Dest] + (uint64_t) (uint32_t) rf[SrcA] * (uint64_t) (uint32_t) rf[SrcB];

Valid Pipelines

Encoding

Figure 11-382: mula_lu_lu in X0 Bits Encoding

Figure 11-383: mula_lu_lu in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 11 Multiply Instructions

296 TILE-Gx Instruction Set Architecture

mulax

Multiply Accumulate and Extend

Syntax
mulax Dest, SrcA, SrcB

Example
mulax r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand, and add to
the destination operand producing a 32-bit result that is sign-extended.

Functional Description
rf[Dest] =
signExtend32 ((int32_t) rf[Dest] + (int32_t) rf[SrcA] * (int32_t) rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-384: mulax in X0 Bits Encoding

Figure 11-385: mulax in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 297

Instructions

mulx

Multiply and Extend

Syntax
mulx Dest, SrcA, SrcB

Example
mulx r5, r6, r7

Description

Multiply the low 32 bits of the first operand by the low 32-bits of the second operand, producing
a 32-bit result, which is sign-extended.

Functional Description
rf[Dest] = signExtend32 ((int32_t) rf[SrcA] * (int32_t) rf[SrcB]);

Valid Pipelines

Encoding

Figure 11-386: mulx in X0 Bits Encoding

Figure 11-387: mulx in Y0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 11 Multiply Instructions

298 TILE-Gx Instruction Set Architecture

TILE-Gx Instruction Set Architecture 299

CHAPTER 12 NOP INSTRUCTIONS

12.1Overview
The following sections provide detailed descriptions of nop instructions listed alphabetically.

fnop Filler No Operation

nop Architectural No Operation

Chapter 12 Nop Instructions

300 TILE-Gx Instruction Set Architecture

12.2Instructions
NOP instructions are described in the sections that follow.

fnop

Filler No Operation

Syntax
fnop

Example
fnop

Description

Indicate that the programmer, compiler, or tool was not able to fill this operation slot with a suit-
able operation. This operation has no outcome. The fnop instruction should be used to signal that
the no operation is inserted because nothing else could be packed into the instruction bundle, not
because an architectural nop is needed for correct operation or for timing delay. Typically, fnops
can be removed at any point in the tool flow.

Functional Description
fnop ();

Valid Pipelines

Encoding

Figure 12-388: fnop in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 301

Instructions

Figure 12-389: fnop in X1 Bits Encoding

Figure 12-390: fnop in Y0 Bits Encoding

Figure 12-391: fnop in Y1 Bits Encoding

Chapter 12 Nop Instructions

302 TILE-Gx Instruction Set Architecture

nop

Architectural No Operation

Syntax
nop

Example
nop

Description

Indicate to the hardware architecture that the machine should not issue an instruction with a side
effect in this slot.

Functional Description
nop ();

Valid Pipelines

Encoding

Figure 12-392: nop in X0 Bits Encoding

Figure 12-393: nop in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 303

Instructions

Figure 12-394: nop in Y0 Bits Encoding

Figure 12-395: nop in Y1 Bits Encoding

Chapter 12 Nop Instructions

304 TILE-Gx Instruction Set Architecture

TILE-Gx Instruction Set Architecture 305

CHAPTER 13 PSEUDO INSTRUCTIONS

13.1Overview
The following sections provide detailed descriptions of pseudo instructions listed alphabetically.

bpt Breakpoint

info Informational Note

infol Long Informational Note

ld4s_tls Load Four Bytes Signed TLS

ld_tls Load TLS

move Move

movei Move Immediate Word

moveli Move Long Immediate Word

prefetch Prefetch to L1 with No Faults

prefetch_add_l1 Prefetch to L1 and Add with No Faults

prefetch_add_l1_fault Prefetch to L1 and Add with Faults

prefetch_add_l2 Prefetch to L2 and Add with No Faults

prefetch_add_l2_fault Prefetch to L2 and Add with Faults

prefetch_add_l3 Prefetch to L3 and Add with No Faults

prefetch_add_l3_fault Prefetch to L3 and Add with Faults

prefetch_l1 Prefetch to L1 with No Faults

prefetch_l1_fault Prefetch to L1 with Faults

prefetch_l2 Prefetch to L2 with No Faults

prefetch_l2_fault Prefetch to L2 with Faults

prefetch_l3 Prefetch to L3 with No Faults

prefetch_l3_fault Prefetch to L3 with Faults

raise Raise Signal

Chapter 13 Pseudo Instructions

306 TILE-Gx Instruction Set Architecture

13.2Instructions
The following sections provide detailed descriptions of pseudo instructions listed alphabetically.

bpt

Breakpoint

Syntax
bpt

Example
bpt

Description

Causes an illegal instruction interrupt to occur. The Illegal Instruction is guaranteed to always
cause an illegal instruction interrupt for all current and future derivations of the architecture. The
runtime can use the BreakpointDistinguisher fields to characterize the fault as due to a
breakpoint.

Functional Description

illegalInstruction ();

Valid Pipelines

Encoding

Figure 13-396: bpt in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 307

Instructions

info

Informational Note

Syntax
info Imm8

Example
info 19

Description

A no-op whose presence provides information to the backtracer and other tools.

Functional Description
nop ();

Valid Pipelines

Encoding

Figure 13-397: info in X0 Bits Encoding

Figure 13-398: info in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

Chapter 13 Pseudo Instructions

308 TILE-Gx Instruction Set Architecture

Figure 13-399: info in Y0 Bits Encoding

Figure 13-400: info in Y1 Bits Encoding

TILE-Gx Instruction Set Architecture 309

Instructions

infol

Long Informational Note

Syntax
infol Imm16

Example
infol 0x1234

Description

A no-op whose presence provides information to the backtracer and other tools.

Functional Description
nop ();

Valid Pipelines

Encoding

Figure 13-401: infol in X0 Bits Encoding

Figure 13-402: infol in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 13 Pseudo Instructions

310 TILE-Gx Instruction Set Architecture

ld4s_tls

Load Four Bytes Signed TLS

Syntax
ld4s_tls Dest, SrcA, Imm8

Example
ld4s_tls r5, r6, 0

Description

Do a four-byte signed TLS IE load, or the corresponding LE action.

Functional Description
rf[Dest] = signExtend32 (memoryReadWord (rf[SrcA]));

Valid Pipelines

Encoding

Figure 13-403: ld4s_tls in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 311

Instructions

ld_tls

Load TLS

Syntax
ld_tls Dest, SrcA, Imm8

Example
ld_tls r5, r6, 0

Description

Do a TLS IE load, or the corresponding LE action.

Functional Description
rf[Dest] = memoryReadDoubleWord (rf[SrcA]);

Valid Pipelines

Encoding

Figure 13-404: ld_tls in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 13 Pseudo Instructions

312 TILE-Gx Instruction Set Architecture

move

Move

Syntax
move Dest, SrcA

Example
move r5, r6

Description

Moves one operand to another operand.

Functional Description
rf[Dest] = rf[SrcA];

Valid Pipelines

Encoding

Figure 13-405: move in X0 Bits Encoding

Figure 13-406: move in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 313

Instructions

Figure 13-407: move in Y0 Bits Encoding

Figure 13-408: move in Y1 Bits Encoding

Chapter 13 Pseudo Instructions

314 TILE-Gx Instruction Set Architecture

movei

Move Immediate Word

Syntax
movei Dest, Imm8

Example
movei r5, 5

Description

Moves a sign extended 8-bit immediate into a register.

Functional Description
rf[Dest] = signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 13-409: movei in X0 Bits Encoding

Figure 13-410: movei in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X X X

TILE-Gx Instruction Set Architecture 315

Instructions

Figure 13-411: movei in Y0 Bits Encoding

Figure 13-412: movei in Y1 Bits Encoding

Chapter 13 Pseudo Instructions

316 TILE-Gx Instruction Set Architecture

moveli

Move Long Immediate Word

Syntax
moveli Dest, Imm16

Example
moveli r5, 0x1234

Description

Moves a sign extended long immediate into a register.

Functional Description
rf[Dest] = signExtend16 (Imm16);

Valid Pipelines

Encoding

Figure 13-413: moveli in X0 Bits Encoding

Figure 13-414: moveli in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 317

Instructions

prefetch

Prefetch to L1 with No Faults

Syntax
prefetch Src

Example
prefetch r5

Description

Prefetch a cache line from memory into all levels of cache without signalling any address or
access interrupts. The address to be prefetched is read from the source operand.

Functional Description
memoryPrefetch (rf[Src], 1, false);

Valid Pipelines

Encoding

Figure 13-415: prefetch in X1 Bits Encoding

Figure 13-416: prefetch in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 13 Pseudo Instructions

318 TILE-Gx Instruction Set Architecture

prefetch_add_l1

Prefetch to L1 and Add with No Faults

Syntax
prefetch_add_l1 SrcA, Imm8

Example
prefetch_add_l1 r5, 5

Description

Prefetch a cache line from memory into all levels of cache without signalling of address or access
interrupts. The address to be prefetched is read from the source operand. Add the signed immedi-
ate argument to the address register.

Functional Description
memoryPrefetch (rf[SrcA], 1, false);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 13-417: prefetch_add_l1 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 319

Instructions

prefetch_add_l1_fault

Prefetch to L1 and Add with Faults

Syntax
prefetch_add_l1_fault SrcA, Imm8

Example
prefetch_add_l1_fault r5, 5

Description

Prefetch a cache line from memory into all levels of cache with signalling of address or access
interrupts. The address to be prefetched is read from the source operand. Add the signed immedi-
ate argument to the address register even if an interrupt is signalled.

Functional Description
memoryPrefetch (rf[SrcA], 1, true);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 13-418: prefetch_add_l1_fault in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 13 Pseudo Instructions

320 TILE-Gx Instruction Set Architecture

prefetch_add_l2

Prefetch to L2 and Add with No Faults

Syntax
prefetch_add_l2 SrcA, Imm8

Example
prefetch_add_l2 r5, 5

Description

Prefetch a cache line from memory into the level 2 and higher levels of cache without signalling of
address or access interrupts. The address to be prefetched is read from the source operand. Add
the signed immediate argument to the address register.

Functional Description
memoryPrefetch (rf[SrcA], 2, false);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 13-419: prefetch_add_l2 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 321

Instructions

prefetch_add_l2_fault

Prefetch to L2 and Add with Faults

Syntax
prefetch_add_l2_fault SrcA, Imm8

Example
prefetch_add_l2_fault r5, 5

Description

Prefetch a cache line from memory into the level 2 and higher levels of cache with signalling of
address or access interrupts. The address to be prefetched is read from the source operand. Add
the signed immediate argument to the address register even if an interrupt is signalled.

Functional Description
memoryPrefetch (rf[SrcA], 2, true);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 13-420: prefetch_add_l2_fault in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 13 Pseudo Instructions

322 TILE-Gx Instruction Set Architecture

prefetch_add_l3

Prefetch to L3 and Add with No Faults

Syntax
prefetch_add_l3 SrcA, Imm8

Example
prefetch_add_l3 r5, 5

Description

Prefetch a cache line from memory into the level 3 cache, that is only at the home tile of the cache
line, without signalling of address or access interrupts. The address to be prefetched is read from
the source operand. Add the signed immediate argument to the address register.

Functional Description
memoryPrefetch (rf[SrcA], 4, false);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 13-421: prefetch_add_l3 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 323

Instructions

prefetch_add_l3_fault

Prefetch to L3 and Add with Faults

Syntax
prefetch_add_l3_fault SrcA, Imm8

Example
prefetch_add_l3_fault r5, 5

Description

Prefetch a cache line from memory into the level 3 cache, that is only at the home tile of the cache
line, with signalling of address or access interrupts. The address to be prefetched is read from the
source operand. Add the signed immediate argument to the address register even if an interrupt
is signalled.

Functional Description
memoryPrefetch (rf[SrcA], 4, true);
rf[SrcA] = rf[SrcA] + signExtend8 (Imm8);

Valid Pipelines

Encoding

Figure 13-422: prefetch_add_l3_fault in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 13 Pseudo Instructions

324 TILE-Gx Instruction Set Architecture

prefetch_l1

Prefetch to L1 with No Faults

Syntax
prefetch_l1 Src

Example
prefetch_l1 r5

Description

Prefetch a cache line from memory into all levels of cache without signalling any address or access
interrupts. The address to be prefetched is read from the source operand.

Functional Description
memoryPrefetch (rf[Src], 1, false);

Valid Pipelines

Encoding

Figure 13-423: prefetch_l1 in X1 Bits Encoding

Figure 13-424: prefetch_l1 in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 325

Instructions

prefetch_l1_fault

Prefetch to L1 with Faults

Syntax
prefetch_l1_fault Src

Example
prefetch_l1_fault r5

Description

Prefetch a cache line from memory into all levels of cache with signalling of address or access
interrupts. The address to be prefetched is read from the source operand.

Functional Description
memoryPrefetch (rf[Src], 1, true);

Valid Pipelines

Encoding

Figure 13-425: prefetch_l1_fault in X1 Bits Encoding

Figure 13-426: prefetch_l1_fault in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 13 Pseudo Instructions

326 TILE-Gx Instruction Set Architecture

prefetch_l2

Prefetch to L2 with No Faults

Syntax
prefetch_l2 Src

Example
prefetch_l2 r5

Description

Prefetch a cache line from memory into the level 2 and higher levels of cache without signalling
any address or access interrupts. The address to be prefetched is read from the source operand.

Functional Description
memoryPrefetch (rf[Src], 2, false);

Valid Pipelines

Encoding

Figure 13-427: prefetch_l2 in X1 Bits Encoding

Figure 13-428: prefetch_l2 in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 327

Instructions

prefetch_l2_fault

Prefetch to L2 with Faults

Syntax
prefetch_l2_fault Src

Example
prefetch_l2_fault r5

Description

Prefetch a cache line from memory into the level 2 and higher levels of cache with signalling of
address or access interrupts. The address to be prefetched is read from the source operand.

Functional Description
memoryPrefetch (rf[Src], 2, true);

Valid Pipelines

Encoding

Figure 13-429: prefetch_l2_fault in X1 Bits Encoding

Figure 13-430: prefetch_l2_fault in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 13 Pseudo Instructions

328 TILE-Gx Instruction Set Architecture

prefetch_l3

Prefetch to L3 with No Faults

Syntax
prefetch_l3 Src

Example
prefetch_l3 r5

Description

Prefetch a cache line from memory into the level 3 cache, that is only at the home tile of the cache
line, without signalling any address or access interrupts. The address to be prefetched is read
from the source operand.

Functional Description
memoryPrefetch (rf[Src], 4, false);

Valid Pipelines

Encoding

Figure 13-431: prefetch_l3 in X1 Bits Encoding

Figure 13-432: prefetch_l3 in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 329

Instructions

prefetch_l3_fault

Prefetch to L3 with Faults

Syntax
prefetch_l3_fault Src

Example
prefetch_l3_fault r5

Description

Prefetch a cache line from memory into the level 3 cache, that is only at the home tile of the cache
line, with signalling of address or access interrupts. The address to be prefetched is read from the
source operand.

Functional Description
memoryPrefetch (rf[Src], 4, true);

Valid Pipelines

Encoding

Figure 13-433: prefetch_l3_fault in X1 Bits Encoding

Figure 13-434: prefetch_l3_fault in Y2 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 13 Pseudo Instructions

330 TILE-Gx Instruction Set Architecture

raise

Raise Signal

Syntax
raise

Example
raise

Description

Causes an illegal instruction interrupt to occur. The Illegal Instruction is guaranteed to always
cause an illegal instruction interrupt for all current and future derivations of the architecture. The
runtime can use the BreakpointDistinguisher fields to characterize the illegal instruction as
a request to raise a signal; it must be bundled with a “moveli zero, VAL” instruction where the
low 6 bits of VAL are the signal and the next 4 bits hold an optional si_code value.

Functional Description
illegalInstruction ();

Valid Pipelines

Encoding

Figure 13-435: raise in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 331

CHAPTER 14 SIMD INSTRUCTIONS

14.1Overview
The following sections provide detailed descriptions of simd instructions listed alphabetically.

v1add Vector One Byte Add

v1addi Vector One Byte Add Immediate

v1adduc Vector One Byte Add Unsigned Clamped

v1adiffu Vector One Byte Absolute Difference Unsigned

v1avgu Vector One Byte Average Unsigned

v1cmpeq Vector One Byte Set Equal To

v1cmpeqi Vector One Byte Set Equal To Immediate

v1cmples Vector One Byte Set Less Than or Equal

v1cmpleu Vector One Byte Set Less Than or Equal Unsigned

v1cmplts Vector One Byte Set Less Than

v1cmpltsi Vector One Byte Set Less Than Immediate

v1cmpltu Vector One Byte Set Less Than Unsigned

v1cmpltui Vector One Byte Set Less Than Unsigned Immediate

v1cmpne Vector One Byte Set Not Equal To

v1ddotpu Vector One Byte Dual Dot Product Unsigned

v1dotpua Vector One Byte Dual Dot Product Unsigned and Accumulate

v1ddotpus Vector One Byte Dual Dot Product Unsigned Signed

v1ddotpusa Vector One Byte Dual Dot Product Unsigned Signed and Accumulate

v1dotp Vector One Byte Dot Product

v1dotpa Vector One Byte Dot Product and Accumulate

v1dotpu Vector One Byte Dot Product Unsigned

v1dotpua Vector One Byte Dot Product Unsigned and Accumulate

v1dotpus Vector One Byte Dot Product Unsigned Signed

v1dotpusa Vector One Byte Dot Product Unsigned Signed and Accumulate

v1int_h Vector One Byte Interleave High

v1int_l Vector One Byte Interleave Low

Chapter 14 SIMD Instructions

332 TILE-Gx Instruction Set Architecture

v1maxu Vector One Byte Maximum Unsigned

v1maxui Vector One Byte Maximum Unsigned Immediate

v1minu Vector One Byte Minimum Unsigned

v1minui Vector One Byte Minimum Unsigned Immediate

v1mnz Vector One Byte Mask Not Zero

v1multu Vector One Byte Multiply and Truncate Unsigned

v1mulu Vector One Byte Multiply Unsigned

v1mulus Vector One Byte Multiply Unsigned Signed

v1mz Vector One Byte Mask Zero

v1sadau Vector One Byte Sum of Absolute Difference Accumulate Unsigned

v1sadu Vector One Byte Sum of Absolute Difference Unsigned

v1shl Vector One Byte Shift Left

v1shli Vector One Byte Shift Left Immediate

v1shrs Vector One Byte Shift Right Signed

v1shrsi Vector One Byte Shift Right Signed Immediate

v1shru Vector One Byte Shift Right Unsigned

v1shrui Vector One Byte Shift Right Unsigned Immediate

v1sub Vector One Byte Subtract

v1subuc Vector One Byte Subtract Unsigned Clamped

v2add Vector Two Byte Add

v2addi Vector Two Byte Add Immediate

v2addsc Vector Two Byte Add Signed Clamped

v2adiffs Vector Two Byte Absolute Difference Signed

v2avgs Vector Two Byte Average Signed

v2cmpeq Vector Two Byte Set Equal To

v2cmpeqi Vector Two Byte Set Equal To Immediate

v2cmples Vector Two Byte Set Less Than or Equal

v2cmpleu Vector Two Byte Set Less Than or Equal Unsigned

v2cmplts Vector Two Byte Set Less Than

v2cmpltsi Vector Two Byte Set Less Than Immediate

v2cmpltu Vector Two Byte Set Less Than Unsigned

v2cmpltui Vector Two Byte Set Less Than Unsigned Immediate

v2cmpne Vector Two Byte Set Not Equal To

v2dotp Vector Two Byte Dot Product

v2dotpa Vector Two Byte Dot Product and Accumulate

v2int_h Vector Two Byte Interleave High

v2int_l Vector Two Byte Interleave Low

TILE-Gx Instruction Set Architecture 333

Overview

v2maxs Vector Two Byte Maximum Signed

v2maxsi Vector Two Byte Maximum Signed Immediate

v2mins Vector Two Byte Minimum Signed

v2minsi Vector Two Byte Minimum Signed Immediate

v2mnz Vector Two Byte Mask Not Zero

v2mulfsc Vector Two Byte Multiply Fixed point Signed Clamped

v2muls Vector Two Byte Multiply Signed

v2mults Vector Two Byte Multiply and Truncate Signed

v2mz Vector Two Byte Mask Zero

v2packh Vector Two Bytes Pack High Byte

v2packl Vector Two Byte Pack Low Byte

v2packuc Vector Two Byte Pack Unsigned Clamped

v2sadas Vector Two Byte Sum of Absolute Difference Accumulate Signed

v2sadau Vector Two Byte Sum of Absolute Difference Accumulate Unsigned

v2sads Vector Two Byte Sum of Absolute Difference Signed

v2sadu Vector Two Byte Sum of Absolute Difference Unsigned

v2shl Vector Two Byte Shift Left

v2shli Vector Two Byte Shift Left Immediate

v2shlsc Vector Two Byte Shift Left Signed Clamped

v2shrs Vector Two Byte Shift Right Signed

v2shrsi Vector Two Byte Shift Right Signed Immediate

v2shru Vector Two Byte Shift Right Unsigned

v2shrui Vector Two Byte Shift Right Unsigned Immediate

v2sub Vector Two Byte Subtract

v2subsc Vector Two Byte Subtract Signed Clamped

v4add Vector Four Byte Add

v4addsc Vector Four Byte Add Signed Clamped

v4int_h Vector Four Byte Interleave High

v4int_l Vector Four Byte Interleave Low

v4packsc Vector Four Byte Pack Signed Clamped

v4shl Vector Four Byte Shift Left

v4shlsc Vector Four Byte Shift Left Signed Clamped

v4shrs Vector Four Byte Shift Right Signed

v4shru Vector Four Byte Shift Right Unsigned

v4sub Vector Four Byte Subtract

v4subsc Vector Four Byte Subtract Signed Clamped

Chapter 14 SIMD Instructions

334 TILE-Gx Instruction Set Architecture

14.2Instructions
SIMD instructions are described in the sections that follow.

v1add

Vector One Byte Add

Syntax
v1add Dest, SrcA, SrcB

Example
v1add r5, r6, r7

Description

Add the eight bytes in the first source operand to the eight bytes in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (getByte (rf[SrcA], counter) + getByte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-436: v1add in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 335

Instructions

Figure 14-437: v1add in X1 Bits Encoding

Chapter 14 SIMD Instructions

336 TILE-Gx Instruction Set Architecture

v1addi

Vector One Byte Add Immediate

Syntax
v1addi Dest, SrcA, Imm8

Example
v1addi r5, r6, 5

Description

Add an immediate to all eight of the bytes in the source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output = setByte (output, counter, (getByte (rf[SrcA], counter) + Imm8));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-438: v1addi in X0 Bits Encoding

Figure 14-439: v1addi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 337

Instructions

v1adduc

Vector One Byte Add Unsigned Clamped

Syntax
v1adduc Dest, SrcA, SrcB

Example
v1adduc r5, r6, r7

Description

Add the eight bytes in the first source operand to the eight bytes in the second source operand
and clamp each result to 0 or the maximum positive value.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 unsigned_saturate8 (getByte (rf[SrcA], counter) +

 getByte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-440: v1adduc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

338 TILE-Gx Instruction Set Architecture

Figure 14-441: v1adduc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 339

Instructions

v1adiffu

Vector One Byte Absolute Difference Unsigned

Syntax
v1adiffu Dest, SrcA, SrcB

Example
v1adiffu r5, r6, r7

Description

Compute the absolute differences between the eight bytes in the first source operand and the
eight bytes in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 abs (getByte (rf[SrcA], counter) - getByte (SrcB, counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-442: v1adiffu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

340 TILE-Gx Instruction Set Architecture

v1avgu

Vector One Byte Average Unsigned

Syntax
v1avgu Dest, SrcA, SrcB

Example
v1avgu r5, r6, r7

Description

Compute the average of the eight bytes in the first source operand and the eight bytes in the sec-
ond source operand, rounding upwards.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 UnsignedMachineWord srca = getByte (rf[SrcA], counter);
 UnsignedMachineWord srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca + srcb + 1) >> 1));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-443: v1avgu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 341

Instructions

v1cmpeq

Vector One Byte Set Equal To

Syntax
v1cmpeq Dest, SrcA, SrcB

Example
v1cmpeq r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is equal to the byte
of the second source operand. Otherwise the result is set to 0. This instruction treats both source
bytes as signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca == srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-444: v1cmpeq in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

342 TILE-Gx Instruction Set Architecture

Figure 14-445: v1cmpeq in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 343

Instructions

v1cmpeqi

Vector One Byte Set Equal To Immediate

Syntax
v1cmpeqi Dest, SrcA, Imm8

Example
v1cmpeqi r5, r6, 5

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is equal to a sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source bytes as
signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = signExtend8 (Imm8);
 output = setByte (output, counter, ((srca == srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-446: v1cmpeqi in X0 Bits Encoding

Figure 14-447: v1cmpeqi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

344 TILE-Gx Instruction Set Architecture

v1cmples

Vector One Byte Set Less Than or Equal

Syntax
v1cmples Dest, SrcA, SrcB

Example
v1cmples r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than or equal
to the byte of the second source operand. Otherwise the result is set to 0. This instruction treats
both source bytes as signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca <= srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-448: v1cmples in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 345

Instructions

Figure 14-449: v1cmples in X1 Bits Encoding

Chapter 14 SIMD Instructions

346 TILE-Gx Instruction Set Architecture

v1cmpleu

Vector One Byte Set Less Than or Equal Unsigned

Syntax
v1cmpleu Dest, SrcA, SrcB

Example
v1cmpleu r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than or equal
to the byte of the second source operand. Otherwise the result is set to 0. This instruction treats
both source bytes as unsigned values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 uint8_t srca = getByte (rf[SrcA], counter);
 uint8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca <= srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-450: v1cmpleu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 347

Instructions

Figure 14-451: v1cmpleu in X1 Bits Encoding

Chapter 14 SIMD Instructions

348 TILE-Gx Instruction Set Architecture

v1cmplts

Vector One Byte Set Less Than

Syntax
v1cmplts Dest, SrcA, SrcB

Example
v1cmplts r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than the byte
of the second source operand. Otherwise the result is set to 0. This instruction treats both source
bytes as signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-452: v1cmplts in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 349

Instructions

Figure 14-453: v1cmplts in X1 Bits Encoding

Chapter 14 SIMD Instructions

350 TILE-Gx Instruction Set Architecture

v1cmpltsi

Vector One Byte Set Less Than Immediate

Syntax
v1cmpltsi Dest, SrcA, Imm8

Example
v1cmpltsi r5, r6, 5

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than a sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source bytes as
signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = signExtend8 (Imm8) & BYTE_MASK;
 output = setByte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-454: v1cmpltsi in X0 Bits Encoding

Figure 14-455: v1cmpltsi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 351

Instructions

v1cmpltu

Vector One Byte Set Less Than Unsigned

Syntax
v1cmpltu Dest, SrcA, SrcB

Example
v1cmpltu r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than the byte
of the second source operand. Otherwise the result is set to 0. This instruction treats both source
bytes as unsigned values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 uint8_t srca = getByte (rf[SrcA], counter);
 uint8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-456: v1cmpltu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

352 TILE-Gx Instruction Set Architecture

Figure 14-457: v1cmpltu in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 353

Instructions

v1cmpltui

Vector One Byte Set Less Than Unsigned Immediate

Syntax
v1cmpltui Dest, SrcA, Imm8

Example
v1cmpltui r5, r6, 5

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than a sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source bytes as
unsigned values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 uint8_t srca = getByte (rf[SrcA], counter);
 uint8_t srcb = signExtend8 (Imm8);
 output = setByte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-458: v1cmpltui in X0 Bits Encoding

Figure 14-459: v1cmpltui in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

354 TILE-Gx Instruction Set Architecture

v1cmpne

Vector One Byte Set Not Equal To

Syntax
v1cmpne Dest, SrcA, SrcB

Example
v1cmpne r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is not equal to the
byte of the second source operand. Otherwise the result is set to 0. This instruction treats both
source bytes as signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca != srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-460: v1cmpne in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 355

Instructions

Figure 14-461: v1cmpne in X1 Bits Encoding

Chapter 14 SIMD Instructions

356 TILE-Gx Instruction Set Architecture

v1ddotpu

Vector One Byte Dual Dot Product Unsigned

Syntax
v1ddotpu Dest, SrcA, SrcB

Example
v1ddotpu r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand. The low 32-bits of the result are set to the sum of products of the
low-order four 8-bit quantities, and the high 32-bits of the result are set to the sum of the products
of the high-order four 8-bit quantities. The quantities in the operands are treated as unsigned
values.

Functional Description

uint64_t packed_output = 0;
int32_t output;
uint32_t counter;
uint32_t half;
for (half = 0; half < 2; half++)

{
uint32_t offset = half * ((WORD_SIZE / 2) / 8);
output = 0;
for (counter = 0; counter < ((WORD_SIZE / 2) / 8); counter++)

 {
output +=

 ((uint16_t) getByte (rf[SrcA], counter + offset) *
 (uint16_t) getByte (rf[SrcB], counter + offset));

 }
packed_output = set4Byte (packed_output, half, output);

}

rf[Dest] = packed_output;

Valid Pipelines

Encoding

Figure 14-462: v1ddotpu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 357

Instructions

v1ddotpua

Vector One Byte Dual Dot Product Unsigned and Accumulate

Syntax
v1ddotpua Dest, SrcA, SrcB

Example
v1ddotpua r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand. The low 32-bits of the result are set to the sum low-order 32-bit quantity
of the designation and the products of the low-order four 8-bit quantities, and the high 32-bits of
the result are set to the sum of the high-order 32-bit quantity of the destination and the products
of the high-order four 8-bit quantities. The quantities in the operands are treated as unsigned
values.

Functional Description

uint64_t packed_output = 0;
int32_t output;
uint32_t counter;
uint32_t half;
for (half = 0; half < 2; half++)

{
uint32_t offset = half * ((WORD_SIZE / 2) / 8);
output = 0;
for (counter = 0; counter < ((WORD_SIZE / 2) / 8); counter++)

 {
output +=

((uint16_t) getByte (rf[SrcA], counter + offset) *
(uint16_t) getByte (rf[SrcB], counter + offset));

 }
packed_output =

set4Byte (packed_output, half, get4Byte (rf[Dest], half) + output);
}

rf[Dest] = packed_output;

Valid Pipelines

Encoding

Figure 14-463: v1ddotpua in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

358 TILE-Gx Instruction Set Architecture

v1ddotpus

Vector One Byte Dual Dot Product Unsigned Signed

Syntax
v1ddotpus Dest, SrcA, SrcB

Example
v1ddotpus r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand. The low 32-bits of the result are set to the sum of products of the
low-order four 8-bit quantities, and the high 32-bits of the result are set to the sum of the products
of the high-order four 8-bit quantities. The quantities in the first operand are treated as unsigned
values, and the quantities in the second operand are treated as signed values.

Functional Description
uint64_t packed_output = 0;
int32_t output;
uint32_t counter;
uint32_t half;
for (half = 0; half < 2; half++)
 {
 uint32_t offset = half * ((WORD_SIZE / 2) / 8);
 output = 0;
 for (counter = 0; counter < ((WORD_SIZE / 2) / 8); counter++)
 {
output +=
 ((uint16_t) getByte (rf[SrcA], counter + offset) *
 (int16_t) signExtend8 (getByte (rf[SrcB], counter + offset)));
 }
 packed_output = set4Byte (packed_output, half, output);
 }

rf[Dest] = packed_output;

Valid Pipelines

Encoding

Figure 14-464: v1ddotpus in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 359

Instructions

v1ddotpusa

Vector One Byte Dual Dot Product Unsigned Signed and Accumulate

Syntax
v1ddotpusa Dest, SrcA, SrcB

Example
v1ddotpusa r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand. The low 32-bits of the result are set to the sum low-order 32-bit quantity
of the designation and the products of the low-order four 8-bit quantities, and the high 32-bits of
the result are set to the sum of the high-order 32-bit quantity of the destination and the products
of the high-order four 8-bit quantities. The quantities in the first operand are treated as unsigned
values, and the quantities in the second operand are treated as signed values.

Functional Description
uint64_t packed_output = 0;
int32_t output;
uint32_t counter;
uint32_t half;
for (half = 0; half < 2; half++)
 {
 uint32_t offset = half * ((WORD_SIZE / 2) / 8);
 output = 0;
 for (counter = 0; counter < ((WORD_SIZE / 2) / 8); counter++)
 {
output +=
 ((uint16_t) getByte (rf[SrcA], counter + offset) *
 (int16_t) signExtend8 (getByte (rf[SrcB], counter + offset)));
 }
 packed_output =
 set4Byte (packed_output, half, get4Byte (rf[Dest], half) + output);
 }

rf[Dest] = packed_output;

Valid Pipelines

Encoding

Figure 14-465: v1ddotpusa in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

360 TILE-Gx Instruction Set Architecture

v1dotp

Vector One Byte Dot Product

Syntax
v1dotp Dest, SrcA, SrcB

Example
v1dotp r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand and sum the products.

Functional Description
int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 8); counter++)
 {
 output +=
 ((int16_t) signExtend8 (getByte (rf[SrcA], counter)) *
 (int16_t) signExtend8 (getByte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-466: v1dotp in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 361

Instructions

v1dotpa

Vector One Byte Dot Product and Accumulate

Syntax
v1dotpa Dest, SrcA, SrcB

Example
v1dotpa r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand and sum the products and the destination operand.

Functional Description
int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 8); counter++)
 {
 output +=
 ((int16_t) signExtend8 (getByte (rf[SrcA], counter)) *
 (int16_t) signExtend8 (getByte (rf[SrcB], counter)));
 }

rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 14-467: v1dotpa in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

362 TILE-Gx Instruction Set Architecture

v1dotpu

Vector One Byte Dot Product Unsigned

Syntax
v1dotpu Dest, SrcA, SrcB

Example
v1dotpu r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand and sum the products. The quantities in the operands are treated as
unsigned values.

Functional Description

int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 8); counter++)
 {
 output +=
 ((uint16_t) getByte (rf[SrcA], counter) *
 (uint16_t) getByte (rf[SrcB], counter));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-468: v1dotpu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 363

Instructions

v1dotpua

Vector One Byte Dot Product Unsigned and Accumulate

Syntax
v1dotpua Dest, SrcA, SrcB

Example
v1dotpua r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand and sum the products and the destination operand. The quantities in the
operands are treated as unsigned values.

Functional Description

int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 8); counter++)
 {
 output +=
 ((uint16_t) getByte (rf[SrcA], counter) *
 (uint16_t) getByte (rf[SrcB], counter));
 }

rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 14-469: v1dotpua in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

364 TILE-Gx Instruction Set Architecture

v1dotpus

Vector One Byte Dot Product Unsigned Signed

Syntax
v1dotpus Dest, SrcA, SrcB

Example
v1dotpus r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand and sum the products. The quantities in the first operand are treated as
unsigned values, and the quantities in the second operand are treated as signed values.

Functional Description
int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 8); counter++)
 {
 output +=
 ((uint16_t) getByte (rf[SrcA], counter) *
 (int16_t) signExtend8 (getByte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-470: v1dotpus in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 365

Instructions

v1dotpusa

Vector One Byte Dot Product Unsigned Signed and Accumulate

Syntax
v1dotpusa Dest, SrcA, SrcB

Example
v1dotpusa r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand and sum the products and the destination operand. The quantities in the
first operand are treated as unsigned values, and the quantities in the second operand are treated
as signed values.

Functional Description
int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 8); counter++)
 {
 output +=
 ((uint16_t) getByte (rf[SrcA], counter) *
 (int16_t) signExtend8 (getByte (rf[SrcB], counter)));
 }

rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 14-471: v1dotpusa in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

366 TILE-Gx Instruction Set Architecture

v1int_h

Vector One Byte Interleave High

Syntax
v1int_h Dest, SrcA, SrcB

Example
v1int_h r5, r6, r7

Description

Interleave the four high-order bytes of the first operand with the four high-order bytes of the sec-
ond operand. The high-order byte of the result will be the high-order byte of the first operand. For
example if the first operand contains the packed bytes {A7,A6,A5,A4,A3,A2,A1,A0} and the
second operand contains the packed bytes {B7,B6,B5,B4,B3,B2,B1,B0} then the result will
be {A7,B7,A6,B6,A5,B5,A4,B4}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 bool asel = ((counter & 1) == 1);
 int in_sel = 4 + counter / 2;
 int8_t srca = getByte (rf[SrcA], in_sel);
 int8_t srcb = getByte (rf[SrcB], in_sel);
 output = setByte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-472: v1int_h in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 367

Instructions

Figure 14-473: v1int_h in X1 Bits Encoding

Chapter 14 SIMD Instructions

368 TILE-Gx Instruction Set Architecture

v1int_l

Vector One Byte Interleave Low

Syntax
v1int_l Dest, SrcA, SrcB

Example
v1int_l r5, r6, r7

Description

Interleave the four low-order bytes of the first operand with the four low-order bytes of the sec-
ond operand. The low-order byte of the result will be the low-order byte of the second operand.
For example if the first operand contains the packed bytes {A7,A6,A5,A4,A3,A2,A1,A0} and
the second operand contains the packed bytes {B7,B6,B5,B4,B3,B2,B1,B0} then the result
will be {A3,B3,A2,B2,A1,B1,A0,B0}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 bool asel = ((counter & 1) == 1);
 int in_sel = 0 + counter / 2;
 int8_t srca = getByte (rf[SrcA], in_sel);
 int8_t srcb = getByte (rf[SrcB], in_sel);
 output = setByte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-474: v1int_l in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 369

Instructions

Figure 14-475: v1int_l in X1 Bits Encoding

Chapter 14 SIMD Instructions

370 TILE-Gx Instruction Set Architecture

v1maxu

Vector One Byte Maximum Unsigned

Syntax
v1maxu Dest, SrcA, SrcB

Example
v1maxu r5, r6, r7

Description

Set each byte in the destination to the maximum of the corresponding byte in the first source oper-
and and the corresponding byte in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 uint8_t srca = getByte (rf[SrcA], counter);
 uint8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca > srcb) ? srca : srcb));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-476: v1maxu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 371

Instructions

Figure 14-477: v1maxu in X1 Bits Encoding

Chapter 14 SIMD Instructions

372 TILE-Gx Instruction Set Architecture

v1maxui

Vector One Byte Maximum Unsigned Immediate

Syntax
v1maxui Dest, SrcA, Imm8

Example
v1maxui r5, r6, 5

Description

Set each byte in the destination to the maximum of the corresponding byte in the first source oper-
and and the sign extended immediate.

Functional Description
uint64_t output = 0;
uint32_t counter;
uint8_t immb = Imm8;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 uint8_t srca = getByte (rf[SrcA], counter);
 output = setByte (output, counter, ((srca > immb) ? srca : immb));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-478: v1maxui in X0 Bits Encoding

Figure 14-479: v1maxui in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 373

Instructions

v1minu

Vector One Byte Minimum Unsigned

Syntax
v1minu Dest, SrcA, SrcB

Example
v1minu r5, r6, r7

Description

Set each byte in the destination to the minimum of the corresponding byte in the first source oper-
and and the corresponding byte in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 uint8_t srca = getByte (rf[SrcA], counter);
 uint8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca < srcb) ? srca : srcb));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-480: v1minu in X0 Bits Encoding

Figure 14-481: v1minu in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

374 TILE-Gx Instruction Set Architecture

v1minui

Vector One Byte Minimum Unsigned Immediate

Syntax
v1minui Dest, SrcA, Imm8

Example
v1minui r5, r6, 5

Description

Set each bytes in the destination to the minimum of the corresponding byte in the first source
operand and the sign extended immediate.

Functional Description
uint64_t output = 0;
uint32_t counter;
uint8_t immb = Imm8;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 uint8_t srca = getByte (rf[SrcA], counter);
 output = setByte (output, counter, ((srca < immb) ? srca : immb));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-482: v1minui in X0 Bits Encoding

Figure 14-483: v1minui in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 375

Instructions

v1mnz

Vector One Byte Mask Not Zero

Syntax
v1mnz Dest, SrcA, SrcB

Example
v1mnz r5, r6, r7

Description

Set each byte in the destination to the corresponding byte of the second operand if the corre-
sponding byte of the first operand is not zero, otherwise set it to zero (0).

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca != 0) ? srcb : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-484: v1mnz in X0 Bits Encoding

Figure 14-485: v1mnz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

376 TILE-Gx Instruction Set Architecture

v1multu

Vector One Byte Multiply and Truncate Unsigned

Syntax
v1multu Dest, SrcA, SrcB

Example
v1multu r5, r6, r7

Description

Multiply the eight 8-bit quantities in the first source operand by the eight 8-bit quantities in the
second source operand. The result is truncated to the low-order 8 bits of the 16-bit product.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 8); counter++)
 {
 output =
 setByte (output, counter,
 ((uint8_t) getByte (rf[SrcA], counter) *

(uint8_t) getByte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-486: v1multu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 377

Instructions

v1mulu

Vector One Byte Multiply Unsigned

Syntax
v1mulu Dest, SrcA, SrcB

Example
v1mulu r5, r6, r7

Description

Multiply the four low-order 8-bit quantities in the first source operand by the four low-order 8-bit
quantities in the second source operand. The 16-bit results are packed.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

((uint16_t) getByte (rf[SrcA], counter) *
 (uint16_t) getByte (rf[SrcB], counter)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-487: v1mulu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

378 TILE-Gx Instruction Set Architecture

v1mulus

Vector One Byte Multiply Unsigned Signed

Syntax
v1mulus Dest, SrcA, SrcB

Example
v1mulus r5, r6, r7

Description

Multiply the four low-order 8-bit quantities in the first source operand by the four low-order 8-bit
quantities in the second source operand. The 16-bit results are packed. The quantities in the first
operand are treated as unsigned values, and the quantities in the second operand are treated as
signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

((int16_t) getByte (rf[SrcA], counter) *
 (int16_t) signExtend8 (getByte (rf[SrcB], counter))));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-488: v1mulus in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 379

Instructions

v1mz

Vector One Byte Mask Zero

Syntax
v1mz Dest, SrcA, SrcB

Example
v1mz r5, r6, r7

Description

Set each byte in the destination to the corresponding byte of the second operand if the corre-
sponding byte of the first operand is zero, otherwise set it to zero (0).

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 int8_t srca = getByte (rf[SrcA], counter);
 int8_t srcb = getByte (rf[SrcB], counter);
 output = setByte (output, counter, ((srca == 0) ? srcb : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-489: v1mz in X0 Bits Encoding

Figure 14-490: v1mz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

380 TILE-Gx Instruction Set Architecture

v1sadau

Vector One Byte Sum of Absolute Difference Accumulate Unsigned

Syntax
v1sadau Dest, SrcA, SrcB

Example
v1sadau r5, r6, r7

Description

Sum the absolute differences between the eight bytes in the first source operand and the eight
bytes in the second source operand and accumulate the sum into the destination register.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output += abs (getByte (rf[SrcA], counter) - getByte (rf[SrcB], counter));
 }

rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 14-491: v1sadau in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 381

Instructions

v1sadu

Vector One Byte Sum of Absolute Difference Unsigned

Syntax
v1sadu Dest, SrcA, SrcB

Example
v1sadu r5, r6, r7

Description

Sum the absolute differences between the eight bytes in the first source operand and the eight
bytes in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output += abs (getByte (rf[SrcA], counter) - getByte (rf[SrcB], counter));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-492: v1sadu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

382 TILE-Gx Instruction Set Architecture

v1shl

Vector One Byte Shift Left

Syntax
v1shl Dest, SrcA, SrcB

Example
v1shl r5, r6, r7

Description

Logically shift each of the eight bytes in the first source operand to the left by the second source
operand. The effective shift amount is the specified operand modulo the number of bits in a byte.
Logical left shift shifts zeros into the low ordered bits in a byte.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (getByte (rf[SrcA], counter) <<

(((UnsignedMachineWord) rf[SrcB]) % BYTE_SIZE)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-493: v1shl in X0 Bits Encoding

Figure 14-494: v1shl in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 383

Instructions

v1shli

Vector One Byte Shift Left Immediate

Syntax
v1shli Dest, SrcA, ShAmt

Example
v1shli r5, r6, 5

Description

Logically shift each of the eight bytes in the first source operand to the left by an immediate. The
effective shift amount is the specified immediate modulo the number of bits in a byte. Left shifts
shift zeros into the low ordered bits in a byte and are suitable to be used as unsigned multiplica-
tion by powers of two.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (getByte (rf[SrcA], counter) <<

(((UnsignedMachineWord) ShAmt) % BYTE_SIZE)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-495: v1shli in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

384 TILE-Gx Instruction Set Architecture

Figure 14-496: v1shli in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 385

Instructions

v1shrs

Vector One Byte Shift Right Signed

Syntax
v1shrs Dest, SrcA, SrcB

Example
v1shrs r5, r6, r7

Description

Arithmetically shift each of the eight bytes in the first source operand to the right by the second
source operand. The effective shift amount is the specified operand modulo the number of bits in
a byte. Arithmetic right shift shifts the high ordered bit into the high ordered bits in a byte.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (signExtend8 (getByte (rf[SrcA], counter)) >>

(((UnsignedMachineWord) rf[SrcB]) % BYTE_SIZE)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-497: v1shrs in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

386 TILE-Gx Instruction Set Architecture

Figure 14-498: v1shrs in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 387

Instructions

v1shrsi

Vector One Byte Shift Right Signed Immediate

Syntax
v1shrsi Dest, SrcA, ShAmt

Example
v1shrsi r5, r6, 5

Description

Arithmetically shift each of the eight bytes in the first source operand to the right by an immedi-
ate. The effective shift amount is the specified immediate modulo the number of bits in a byte.
Arithmetic right shifts shift the high ordered bit into the high ordered bits in a byte.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (signExtend8 (getByte (rf[SrcA], counter)) >>

(((UnsignedMachineWord) ShAmt) % BYTE_SIZE)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-499: v1shrsi in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

388 TILE-Gx Instruction Set Architecture

Figure 14-500: v1shrsi in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 389

Instructions

v1shru

Vector One Byte Shift Right Unsigned

Syntax
v1shru Dest, SrcA, SrcB

Example
v1shru r5, r6, r7

Description

Logically shift each of the eight bytes in the first source operand to the right by the second source
operand. The effective shift amount is the specified operand modulo the number of bits in a byte.
Logical right shift shifts zeros into the high ordered bits in a byte.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (getByte (rf[SrcA], counter) >>

(((UnsignedMachineWord) rf[SrcB]) % BYTE_SIZE)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-501: v1shru in X0 Bits Encoding

Figure 14-502: v1shru in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

390 TILE-Gx Instruction Set Architecture

v1shrui

Vector One Byte Shift Right Unsigned Immediate

Syntax
v1shrui Dest, SrcA, ShAmt

Example
v1shrui r5, r6, 5

Description

Logically shift each of the eight bytes in the first source operand to the right by an immediate. The
effective shift amount is the specified immediate modulo the number of bits in a byte. Logical
right shifts shift zeros into the high ordered bits in a byte and are suitable to be used as unsigned
integer division by powers of two.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (getByte (rf[SrcA], counter) >>

(((UnsignedMachineWord) ShAmt) % BYTE_SIZE)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-503: v1shrui in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 391

Instructions

Figure 14-504: v1shrui in X1 Bits Encoding

Chapter 14 SIMD Instructions

392 TILE-Gx Instruction Set Architecture

v1sub

Vector One Byte Subtract

Syntax
v1sub Dest, SrcA, SrcB

Example
v1sub r5, r6, r7

Description

Subtract the eight bytes in the second source operand from the eight bytes in the first source
operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 (getByte (rf[SrcA], counter) - getByte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-505: v1sub in X0 Bits Encoding

Figure 14-506: v1sub in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 393

Instructions

v1subuc

Vector One Byte Subtract Unsigned Clamped

Syntax
v1subuc Dest, SrcA, SrcB

Example
v1subuc r5, r6, r7

Description

Subtract the eight bytes in the second source operand from the eight bytes in the first source oper-
and and clamp each result to 0 or the maximum positive value.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 output =
 setByte (output, counter,
 unsigned_saturate8 (getByte (rf[SrcA], counter) -

 getByte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-507: v1subuc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

394 TILE-Gx Instruction Set Architecture

Figure 14-508: v1subuc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 395

Instructions

v2add

Vector Two Byte Add

Syntax
v2add Dest, SrcA, SrcB

Example
v2add r5, r6, r7

Description

Add the four 16-bit quantities in the first source operand to the four 16-bit quantities in the sec-
ond source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(get2Byte (rf[SrcA], counter) +
 get2Byte (rf[SrcB], counter)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-509: v2add in X0 Bits Encoding

Figure 14-510: v2add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

396 TILE-Gx Instruction Set Architecture

v2addi

Vector Two Byte Add Immediate

Syntax
v2addi Dest, SrcA, Imm8

Example
v2addi r5, r6, 5

Description

Add a sign extended immediate to both of the 16-bit quantities in the source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(get2Byte (rf[SrcA], counter) + signExtend8 (Imm8)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-511: v2addi in X0 Bits Encoding

Figure 14-512: v2addi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 397

Instructions

v2addsc

Vector Two Byte Add Signed Clamped

Syntax
v2addsc Dest, SrcA, SrcB

Example
v2addsc r5, r6, r7

Description

Add the four 16-bit quantities in the first source operand to the four 16-bit quantities in the sec-
ond source operand and clamp each result to the minimum negative or maximum positive 16-bit
value.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

signed_saturate16 (signExtend16 (get2Byte (rf[SrcA], counter))
 +
 signExtend16 (get2Byte

 (rf[SrcB], counter))));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-513: v2addsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

398 TILE-Gx Instruction Set Architecture

Figure 14-514: v2addsc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 399

Instructions

v2adiffs

Vector Two Byte Absolute Difference Signed

Syntax
v2adiffs Dest, SrcA, SrcB

Example
v2adiffs r5, r6, r7

Description

Compute the absolute differences between the four 16-bit quantities in the first source operand
and the four 16-bit quantities in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

abs (signExtend16 (get2Byte (rf[SrcA], counter)) -
 signExtend16 (get2Byte (SrcB, counter))));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-515: v2adiffs in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

400 TILE-Gx Instruction Set Architecture

v2avgs

Vector Two Byte Average Signed

Syntax
v2avgs Dest, SrcA, SrcB

Example
v2avgs r5, r6, r7

Description

Compute the average between the four 16-bit quantities in the first source operand and the four
16-bit quantities in the second source operand, rounding upwards.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 SignedMachineWord srca = signExtend16 (get2Byte (rf[SrcA], counter));
 SignedMachineWord srcb = signExtend16 (get2Byte (rf[SrcB], counter));
 output = set2Byte (output, counter, ((srca + srcb + 1) >> 1));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-516: v2avgs in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 401

Instructions

v2cmpeq

Vector Two Byte Set Equal To

Syntax
v2cmpeq Dest, SrcA, SrcB

Example
v2cmpeq r5, r6, r7

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is equal to the corresponding 16-bit quantity of the second source operand. Otherwise the
result is set to 0.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca == srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-517: v2cmpeq in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

402 TILE-Gx Instruction Set Architecture

Figure 14-518: v2cmpeq in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 403

Instructions

v2cmpeqi

Vector Two Byte Set Equal To Immediate

Syntax
v2cmpeqi Dest, SrcA, Imm8

Example
v2cmpeqi r5, r6, 5

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is equal to a sign extended immediate. Otherwise the result is set to 0.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = signExtend8 (Imm8);
 output = set2Byte (output, counter, ((srca == srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-519: v2cmpeqi in X0 Bits Encoding

Figure 14-520: v2cmpeqi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

404 TILE-Gx Instruction Set Architecture

v2cmples

Vector Two Byte Set Less Than or Equal

Syntax
v2cmples Dest, SrcA, SrcB

Example
v2cmples r5, r6, r7

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is less than or equal to the corresponding 16-bit quantity of the second source operand.
Otherwise the result is set to 0. This instruction treats both source 16-bit quantities as signed
values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca <= srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-521: v2cmples in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 405

Instructions

Figure 14-522: v2cmples in X1 Bits Encoding

Chapter 14 SIMD Instructions

406 TILE-Gx Instruction Set Architecture

v2cmpleu

Vector Two Byte Set Less Than or Equal Unsigned

Syntax
v2cmpleu Dest, SrcA, SrcB

Example
v2cmpleu r5, r6, r7

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is less than or equal to the corresponding 16-bit quantity of the second source operand.
Otherwise the result is set to 0. This instruction treats both source 16-bit quantity as unsigned
values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 uint16_t srca = get2Byte (rf[SrcA], counter);
 uint16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca <= srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-523: v2cmpleu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 407

Instructions

Figure 14-524: v2cmpleu in X1 Bits Encoding

Chapter 14 SIMD Instructions

408 TILE-Gx Instruction Set Architecture

v2cmplts

Vector Two Byte Set Less Than

Syntax
v2cmplts Dest, SrcA, SrcB

Example
v2cmplts r5, r6, r7

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is less than the corresponding 16-bit quantity of the second source operand. Otherwise the
result is set to 0. This instruction treats both source 16-bit quantities as signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-525: v2cmplts in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 409

Instructions

Figure 14-526: v2cmplts in X1 Bits Encoding

Chapter 14 SIMD Instructions

410 TILE-Gx Instruction Set Architecture

v2cmpltsi

Vector Two Byte Set Less Than Immediate

Syntax
v2cmpltsi Dest, SrcA, Imm8

Example
v2cmpltsi r5, r6, 5

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is less than a sign extended immediate. Otherwise the result is set to 0. This instruction treats
the first source operand as 16-bit quantities as signed values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = signExtend8 (Imm8);
 output = set2Byte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-527: v2cmpltsi in X0 Bits Encoding

Figure 14-528: v2cmpltsi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 411

Instructions

v2cmpltu

Vector Two Byte Set Less Than Unsigned

Syntax
v2cmpltu Dest, SrcA, SrcB

Example
v2cmpltu r5, r6, r7

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is less than the corresponding 16-bit quantity of the second source operand. Otherwise the
result is set to 0. This instruction treats both source 16-bit quantities as unsigned values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 uint16_t srca = get2Byte (rf[SrcA], counter);
 uint16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-529: v2cmpltu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

412 TILE-Gx Instruction Set Architecture

Figure 14-530: v2cmpltu in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 413

Instructions

v2cmpltui

Vector Two Byte Set Less Than Unsigned Immediate

Syntax
v2cmpltui Dest, SrcA, Imm8

Example
v2cmpltui r5, r6, 5

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is less than a sign extended immediate. Otherwise the result is set to 0. This instruction treats
the first source operand 16-bit quantities as unsigned values.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 uint16_t srca = get2Byte (rf[SrcA], counter);
 uint16_t srcb = signExtend8 (Imm8);
 output = set2Byte (output, counter, ((srca < srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-531: v2cmpltui in X0 Bits Encoding

Figure 14-532: v2cmpltui in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

414 TILE-Gx Instruction Set Architecture

v2cmpne

Vector Two Byte Set Not Equal To

Syntax
v2cmpne Dest, SrcA, SrcB

Example
v2cmpne r5, r6, r7

Description

Sets each result 16-bit quantity to one if the corresponding 16-bit quantity of the first source oper-
and is not equal to the 16-bit quantity of the second source operand. Otherwise the result is set to
0.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca != srcb) ? 1 : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-533: v2cmpne in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 415

Instructions

Figure 14-534: v2cmpne in X1 Bits Encoding

Chapter 14 SIMD Instructions

416 TILE-Gx Instruction Set Architecture

v2dotp

Vector Two Byte Dot Product

Syntax
v2dotp Dest, SrcA, SrcB

Example
v2dotp r5, r6, r7

Description

Multiply the four 16-bit quantities in the first source operand by the four 16-bit quantities in the
second source operand and sum the products.

Functional Description
int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output +=
 ((int32_t) signExtend16 (get2Byte (rf[SrcA], counter)) *
 (int32_t) signExtend16 (get2Byte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-535: v2dotp in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 417

Instructions

v2dotpa

Vector Two Byte Dot Product and Accumulate

Syntax
v2dotpa Dest, SrcA, SrcB

Example
v2dotpa r5, r6, r7

Description

Multiply the four 16-bit quantities in the first source operand by the four 16-bit quantities in the
second source operand and sum the products and the destination operand.

Functional Description
int64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output +=
 ((int32_t) signExtend16 (get2Byte (rf[SrcA], counter)) *
 (int32_t) signExtend16 (get2Byte (rf[SrcB], counter)));
 }

rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 14-536: v2dotpa in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

418 TILE-Gx Instruction Set Architecture

v2int_h

Vector Two Byte Interleave High

Syntax
v2int_h Dest, SrcA, SrcB

Example
v2int_h r5, r6, r7

Description

Interleave the two high-order 16-bit quantities of the first operand with the two high-order 16-bit
quantities of the second operand. The high-order 16-bits of the result will be the high-order 16-bits
of the first operand. For example if the first operand contains the packed 16-bit quantities
{A3,A2,A1,A0} and the second operand contains the packed 16-bit quantities {B3,B2,B1,B0}
then the result will be {A3,B3,A2,B2}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 bool asel = ((counter & 1) == 1);
 int in_sel = 2 + counter / 2;
 int16_t srca = get2Byte (rf[SrcA], in_sel);
 int16_t srcb = get2Byte (rf[SrcB], in_sel);
 output = set2Byte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-537: v2int_h in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 419

Instructions

Figure 14-538: v2int_h in X1 Bits Encoding

Chapter 14 SIMD Instructions

420 TILE-Gx Instruction Set Architecture

v2int_l

Vector Two Byte Interleave Low

Syntax
v2int_l Dest, SrcA, SrcB

Example
v2int_l r5, r6, r7

Description

Interleave the two low-order 16-bit quantities of the first operand with the two low-order 16-bit
quantities of the second operand. The low-order 16-bits of the result will be the low-order 16-bits
of the second operand. For example if the first operand contains the packed 16-bit quantities
{A3,A2,A1,A0} and the second operand contains the packed 16-bit quantities {B3,B2,B1,B0}
then the result will be {A1,B1,A0,B0}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 bool asel = ((counter & 1) == 1);
 int in_sel = 0 + counter / 2;
 int16_t srca = get2Byte (rf[SrcA], in_sel);
 int16_t srcb = get2Byte (rf[SrcB], in_sel);
 output = set2Byte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-539: v2int_l in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 421

Instructions

Figure 14-540: v2int_l in X1 Bits Encoding

Chapter 14 SIMD Instructions

422 TILE-Gx Instruction Set Architecture

v2maxs

Vector Two Byte Maximum Signed

Syntax
v2maxs Dest, SrcA, SrcB

Example
v2maxs r5, r6, r7

Description

Set each 16-bit quantity in the destination to the maximum of the corresponding 16-bit quantity in
the first source operand and the corresponding 16-bit quantity in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca > srcb) ? srca : srcb));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-541: v2maxs in X0 Bits Encoding

Figure 14-542: v2maxs in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 423

Instructions

v2maxsi

Vector Two Byte Maximum Signed Immediate

Syntax
v2maxsi Dest, SrcA, Imm8

Example
v2maxsi r5, r6, 5

Description

Set each 16-bit quantity in the destination to the maximum of the corresponding 16-bit quantity in
the first source operand and the sign extended immediate.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 output =
 set2Byte (output, counter,

((srca > signExtend8 (Imm8)) ? srca : signExtend8 (Imm8)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-543: v2maxsi in X0 Bits Encoding

Figure 14-544: v2maxsi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

424 TILE-Gx Instruction Set Architecture

v2mins

Vector Two Byte Minimum Signed

Syntax
v2mins Dest, SrcA, SrcB

Example
v2mins r5, r6, r7

Description

Set each 16-bit quantity in the destination to the minimum of the corresponding 16-bit quantity in
the first source operand and the corresponding 16-bit quantity in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca < srcb) ? srca : srcb));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-545: v2mins in X0 Bits Encoding

Figure 14-546: v2mins in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 425

Instructions

v2minsi

Vector Two Byte Minimum Signed Immediate

Syntax
v2minsi Dest, SrcA, Imm8

Example
v2minsi r5, r6, 5

Description

Set each 16-bit quantity in the destination to the minimum of the corresponding 16-bit quantity in
the first source operand and the sign extended immediate.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 output =
 set2Byte (output, counter,

((srca < signExtend8 (Imm8)) ? srca : signExtend8 (Imm8)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-547: v2minsi in X0 Bits Encoding

Figure 14-548: v2minsi in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

426 TILE-Gx Instruction Set Architecture

v2mnz

Vector Two Byte Mask Not Zero

Syntax
v2mnz Dest, SrcA, SrcB

Example
v2mnz r5, r6, r7

Description

Set each 16-bit quantity in the destination to the corresponding 16-bit quantity of the second oper-
and if the corresponding 16-bit quantity of the first operand is not zero, otherwise set it to zero (0).

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca != 0) ? srcb : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-549: v2mnz in X0 Bits Encoding

Figure 14-550: v2mnz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 427

Instructions

v2mulfsc

Vector Two Byte Multiply Fixed point Signed Clamped

Syntax
v2mulfsc Dest, SrcA, SrcB

Example
v2mulfsc r5, r6, r7

Description

Multiply the two low-order 16-bit quantities in the first source operand by the two low-order
16-bit quantities in the second source operand. The multiplier result is shifted left 1 bit and
clamped to the maximum positive 32-bit value. The operands are treated as 16-bit signed frac-
tions with the decimal point below the sign bit.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 int64_t mul_res =
 signExtend16 (get2Byte (rf[SrcA], counter)) *
 signExtend16 (get2Byte (rf[SrcB], counter));
 mul_res = signed_saturate32 (mul_res << 1);
 output = set4Byte (output, counter, mul_res);
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-551: v2mulfsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

428 TILE-Gx Instruction Set Architecture

v2muls

Vector Two Byte Multiply Signed

Syntax
v2muls Dest, SrcA, SrcB

Example
v2muls r5, r6, r7

Description

Multiply the two low-order 16-bit quantities in the first source operand by the two low-order
16-bit quantities in the second source operand. The two 32-bit multiplication results are packed
into 64-bits.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 output =
 set4Byte (output, counter,

((int32_t) signExtend16 (get2Byte (rf[SrcA], counter)) *
 (int32_t) signExtend16 (get2Byte (rf[SrcB], counter))));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-552: v2muls in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 429

Instructions

v2mults

Vector Two Byte Multiply and Truncate Signed

Syntax
v2mults Dest, SrcA, SrcB

Example
v2mults r5, r6, r7

Description

Multiply the four 16-bit quantities in the first source operand by the four 16-bit quantities in the
second source operand. The multiplier result is truncated to the low-order 16-bits of the 32-bit
product and packed.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

((int16_t) get2Byte (rf[SrcA], counter) *
 (int16_t) get2Byte (rf[SrcB], counter)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-553: v2mults in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

430 TILE-Gx Instruction Set Architecture

v2mz

Vector Two Byte Mask Zero

Syntax
v2mz Dest, SrcA, SrcB

Example
v2mz r5, r6, r7

Description

Set each 16-bit quantity in the destination to the corresponding 16-bit quantity of the second oper-
and if the corresponding 16-bit quantity of the first operand is zero, otherwise set it to zero (0).

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 int16_t srca = get2Byte (rf[SrcA], counter);
 int16_t srcb = get2Byte (rf[SrcB], counter);
 output = set2Byte (output, counter, ((srca == 0) ? srcb : 0));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-554: v2mz in X0 Bits Encoding

Figure 14-555: v2mz in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 431

Instructions

v2packh

Vector Two Bytes Pack High Byte

Syntax
v2packh Dest, SrcA, SrcB

Example
v2packh r5, r6, r7

Description

Pack the high-order byte of each of the packed 16-bit quantities of the two source registers into
the destination register. The high-order byte of the destination with be the high-order byte of the
first operand. For example if the first operand contains the packed bytes
{A3_1,A3_0,A2_1,A2_0,A1_1,A1_0,A0_1,A0_0} and the second operand contains the
packed bytes {B3_1,B3_0,B2_1,B2_0,B1_1,B1_0,B0_1,B0_0} then the result will be
{A3_1,A2_1,A1_1,A0_1,B3_1,B2_1,B1_1,B0_1}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 bool asel = (counter >= 4);
 int in_sel = 1 + (counter & 3) * 2;
 int8_t srca = getByte (rf[SrcA], in_sel);
 int8_t srcb = getByte (rf[SrcB], in_sel);
 output = setByte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-556: v2packh in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

432 TILE-Gx Instruction Set Architecture

Figure 14-557: v2packh in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 433

Instructions

v2packl

Vector Two Byte Pack Low Byte

Syntax
v2packl Dest, SrcA, SrcB

Example
v2packl r5, r6, r7

Description

Pack the low-order byte of each of the packed 16-bit quantities of the two source registers into the
destination register. The low-order byte of the destination with be the low-order byte of the sec-
ond operand. For example if the first operand contains the packed bytes
{A3_1,A3_0,A2_1,A2_0,A1_1,A1_0,A0_1,A0_0} and the second operand contains the
packed bytes {B3_1,B3_0,B2_1,B2_0,B1_1,B1_0,B0_1,B0_0} then the result will be
{A3_0,A2_0,A1_0,A0_0,B3_0,B2_0,B1_0,B0_0}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 bool asel = (counter >= 4);
 int in_sel = 0 + (counter & 3) * 2;
 int8_t srca = getByte (rf[SrcA], in_sel);
 int8_t srcb = getByte (rf[SrcB], in_sel);
 output = setByte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-558: v2packl in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

434 TILE-Gx Instruction Set Architecture

Figure 14-559: v2packl in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 435

Instructions

v2packuc

Vector Two Byte Pack Unsigned Clamped

Syntax
v2packuc Dest, SrcA, SrcB

Example
v2packuc r5, r6, r7

Description

Clamp each 16-bit quantity of the two source registers to the maximum positive or zero byte
value, and then pack the results into the destination register. The high-order byte of the destina-
tion will be the clamped high-order 16-bit quantity of the first operand and the low-order byte of
the destination will be the clamped low-order 16-bit quantity of the second operand. For example
if the first operand contains the packed 16-bit quantities {A3,A2,A1,A0} and the second oper-
and contains the packed quantities {B3,B2,B1,B0} then the result will be
{sat_A3,sat_A2,sat_A1,sat_A0,sat_B3,sat_B2,sat_B1,sat_B0}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++)
 {
 bool asel = (counter >= 4);
 int in_sel = counter & 3;
 int16_t srca = signExtend16 (get2Byte (rf[SrcA], in_sel));
 int16_t srcb = signExtend16 (get2Byte (rf[SrcB], in_sel));
 output =
 setByte (output, counter, unsigned_saturate8 (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-560: v2packuc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

436 TILE-Gx Instruction Set Architecture

Figure 14-561: v2packuc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 437

Instructions

v2sadas

Vector Two Byte Sum of Absolute Difference Accumulate Signed

Syntax
v2sadas Dest, SrcA, SrcB

Example
v2sadas r5, r6, r7

Description

Sum the absolute differences between the four 16-bit quantities in the first source operand and the
four 16-bit quantities in the second source operand and accumulate the sum into the destination
register.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output +=
 abs (signExtend16 (get2Byte (rf[SrcA], counter)) -
 signExtend16 (get2Byte (rf[SrcB], counter)));
 }

rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 14-562: v2sadas in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

438 TILE-Gx Instruction Set Architecture

v2sadau

Vector Two Byte Sum of Absolute Difference Accumulate Unsigned

Syntax
v2sadau Dest, SrcA, SrcB

Example
v2sadau r5, r6, r7

Description

Sum the absolute differences between the four 16-bit quantities in the first source operand and the
four 16-bit quantities in the second source operand and accumulate the sum into the destination
register.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output +=
 abs (get2Byte (rf[SrcA], counter) - get2Byte (rf[SrcB], counter));
 }

rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 14-563: v2sadau in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 439

Instructions

v2sads

Vector Two Byte Sum of Absolute Difference Signed

Syntax
v2sads Dest, SrcA, SrcB

Example
v2sads r5, r6, r7

Description

Sum the absolute differences between the four 16-bit quantities in the first source operand and the
four 16-bit quantities in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output +=
 abs (signExtend16 (get2Byte (rf[SrcA], counter)) -
 signExtend16 (get2Byte (rf[SrcB], counter)));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-564: v2sads in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 14 SIMD Instructions

440 TILE-Gx Instruction Set Architecture

v2sadu

Vector Two Byte Sum of Absolute Difference Unsigned

Syntax
v2sadu Dest, SrcA, SrcB

Example
v2sadu r5, r6, r7

Description

Sum the absolute differences between the four 16-bit quantities in the first source operand and the
four 16-bit quantities in the second source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output +=
 abs (get2Byte (rf[SrcA], counter) - get2Byte (rf[SrcB], counter));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-565: v2sadu in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 441

Instructions

v2shl

Vector Two Byte Shift Left

Syntax
v2shl Dest, SrcA, SrcB

Example
v2shl r5, r6, r7

Description

Logically shift each of the four 16-bit quantities in the first source operand to the left by the sec-
ond source operand. The effective shift amount is the specified operand modulo 16. Logical left
shift shifts zeros into the low ordered bits.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(get2Byte (rf[SrcA], counter) <<
 (((UnsignedMachineWord) rf[SrcB]) % 16)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-566: v2shl in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

442 TILE-Gx Instruction Set Architecture

Figure 14-567: v2shl in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 443

Instructions

v2shli

Vector Two Byte Shift Left Immediate

Syntax
v2shli Dest, SrcA, ShAmt

Example
v2shli r5, r6, 5

Description

Logically shift each of the four 16-bit quantities in the first source operand to the left by an imme-
diate. The effective shift amount is the specified immediate modulo 16. Left shifts shift zeros into
the low ordered bits and is suitable to be used as unsigned multiplication by powers of two.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(get2Byte (rf[SrcA], counter) <<
 (((UnsignedMachineWord) ShAmt) % 16)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-568: v2shli in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

444 TILE-Gx Instruction Set Architecture

Figure 14-569: v2shli in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 445

Instructions

v2shlsc

Vector Two Byte Shift Left Signed Clamped

Syntax
v2shlsc Dest, SrcA, SrcB

Example
v2shlsc r5, r6, r7

Description

Logically shift each of the four 16-bit quantities in the first source operand to the left by the sec-
ond source operand. The effective shift amount is the specified operand modulo 16. Logical left
shift shifts zeros into the low ordered bits. If the left shift would arithmetically overflow a 16-bit
quantity, the result is clamped to the minimum negative or maximum positive 16-bit value.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

signed_saturate16 (signExtend16 (get2Byte (rf[SrcA], counter))
 << (((UnsignedMachineWord) rf[SrcB]) %
 16)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-570: v2shlsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

446 TILE-Gx Instruction Set Architecture

Figure 14-571: v2shlsc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 447

Instructions

v2shrs

Vector Two Byte Shift Right Signed

Syntax
v2shrs Dest, SrcA, SrcB

Example
v2shrs r5, r6, r7

Description

Arithmetically shift each of the four 16-bit quantities in the first source operand to the right by the
second source operand. The effective shift amount is the specified operand modulo 16. Arithmetic
right shift shifts the high ordered bit into the high ordered bits.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(signExtend16 (get2Byte (rf[SrcA], counter)) >>
 (((UnsignedMachineWord) rf[SrcB]) % 16)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-572: v2shrs in X0 Bits Encoding

Figure 14-573: v2shrs in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

448 TILE-Gx Instruction Set Architecture

v2shrsi

Vector Two Byte Shift Right Signed Immediate

Syntax
v2shrsi Dest, SrcA, ShAmt

Example
v2shrsi r5, r6, 5

Description

Arithmetically shift each of four 16-bit quantities in the first source operand to the right by an
immediate. The effective shift amount is the specified immediate modulo 16. Arithmetic right
shifts shift the source high ordered bit into the high ordered bits of the result.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(signExtend16 (get2Byte (rf[SrcA], counter)) >>
 (((UnsignedMachineWord) ShAmt) % 16)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-574: v2shrsi in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 449

Instructions

Figure 14-575: v2shrsi in X1 Bits Encoding

Chapter 14 SIMD Instructions

450 TILE-Gx Instruction Set Architecture

v2shru

Vector Two Byte Shift Right Unsigned

Syntax
v2shru Dest, SrcA, SrcB

Example
v2shru r5, r6, r7

Description

Logically shift each of the four 16-bit quantities in the first source operand to the right by the sec-
ond source operand. The effective shift amount is the specified operand modulo 16. Logical right
shift shifts zeros into the high ordered bits.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(get2Byte (rf[SrcA], counter) >>
 (((UnsignedMachineWord) rf[SrcB]) % 16)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-576: v2shru in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 451

Instructions

Figure 14-577: v2shru in X1 Bits Encoding

Chapter 14 SIMD Instructions

452 TILE-Gx Instruction Set Architecture

v2shrui

Vector Two Byte Shift Right Unsigned Immediate

Syntax
v2shrui Dest, SrcA, ShAmt

Example
v2shrui r5, r6, 5

Description

Logically shift each of the four 16-bit quantities in the first source operand to the right by an
immediate. The effective shift amount is the specified immediate modulo 16. Logical right shifts
shift zeros into the high ordered bits is suitable to be used as unsigned integer division by powers
of two.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(get2Byte (rf[SrcA], counter) >>
 (((UnsignedMachineWord) ShAmt) % 16)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-578: v2shrui in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 453

Instructions

Figure 14-579: v2shrui in X1 Bits Encoding

Chapter 14 SIMD Instructions

454 TILE-Gx Instruction Set Architecture

v2sub

Vector Two Byte Subtract

Syntax
v2sub Dest, SrcA, SrcB

Example
v2sub r5, r6, r7

Description

Subtract the four 16-bit quantities in the second source operand from the four 16-bit quantities in
the first source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

(get2Byte (rf[SrcA], counter) -
 get2Byte (rf[SrcB], counter)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-580: v2sub in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 455

Instructions

Figure 14-581: v2sub in X1 Bits Encoding

Chapter 14 SIMD Instructions

456 TILE-Gx Instruction Set Architecture

v2subsc

Vector Two Byte Subtract Signed Clamped

Syntax
v2subsc Dest, SrcA, SrcB

Example
v2subsc r5, r6, r7

Description

Subtract the four 16-bit quantities in the second source operand from the four 16-bit quantities in
the first source operand and clamp each result to the minimum negative value or maximum posi-
tive value.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 output =
 set2Byte (output, counter,

signed_saturate16 (signExtend16 (get2Byte (rf[SrcA], counter))
 -
 signExtend16 (get2Byte

 (rf[SrcB], counter))));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-582: v2subsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 457

Instructions

Figure 14-583: v2subsc in X1 Bits Encoding

Chapter 14 SIMD Instructions

458 TILE-Gx Instruction Set Architecture

v4add

Vector Four Byte Add

Syntax
v4add Dest, SrcA, SrcB

Example
v4add r5, r6, r7

Description

Add the two 32-bit quantities in the first source operand to the two 32-bit quantities in the second
source operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 output =
 set4Byte (output, counter,

(get4Byte (rf[SrcA], counter) +
 get4Byte (rf[SrcB], counter)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-584: v4add in X0 Bits Encoding

Figure 14-585: v4add in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 459

Instructions

v4addsc

Vector Four Byte Add Signed Clamped

Syntax
v4addsc Dest, SrcA, SrcB

Example
v4addsc r5, r6, r7

Description

Add the two 32-bit quantities in the first source operand to the two 32-bit quantities in the second
source operand and clamp each result to the minimum negative or maximum positive 32-bit
value.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 output =
 set4Byte (output, counter,

signed_saturate32 (signExtend32 (get4Byte (rf[SrcA], counter))
 +
 signExtend32 (get4Byte

 (rf[SrcB], counter))));
 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-586: v4addsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

460 TILE-Gx Instruction Set Architecture

Figure 14-587: v4addsc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 461

Instructions

v4int_h

Vector Four Byte Interleave High

Syntax
v4int_h Dest, SrcA, SrcB

Example
v4int_h r5, r6, r7

Description

Interleave the high-order 32-bit quantity of the first operand with the high-order 32-bit quantity
of the second operand. The high-order 32-bits of the result will be the high-order 32-bits of the
first operand. For example if the first operand contains the packed 32-bit quantities {A1,A0} and
the second operand contains the packed 32-bit quantities {B1,B0} then the result will be
{A1,B1}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 bool asel = ((counter & 1) == 1);
 int in_sel = 1 + counter / 2;
 int32_t srca = get4Byte (rf[SrcA], in_sel);
 int32_t srcb = get4Byte (rf[SrcB], in_sel);
 output = set4Byte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-588: v4int_h in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

462 TILE-Gx Instruction Set Architecture

Figure 14-589: v4int_h in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 463

Instructions

v4int_l

Vector Four Byte Interleave Low

Syntax
v4int_l Dest, SrcA, SrcB

Example
v4int_l r5, r6, r7

Description

Interleave the low-order 32-bit quantity of the first operand with the low-order 32-bit quantity of
the second operand. The low-order 32-bits of the result will be the low-order 32-bits of the second
operand. For example if the first operand contains the packed 32-bit quantities {A1,A0} and the
second operand contains the packed 32-bit quantities {B1,B0} then the result will be {A0,B0}.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 bool asel = ((counter & 1) == 1);
 int in_sel = 0 + counter / 2;
 int32_t srca = get4Byte (rf[SrcA], in_sel);
 int32_t srcb = get4Byte (rf[SrcB], in_sel);
 output = set4Byte (output, counter, (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-590: v4int_l in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

464 TILE-Gx Instruction Set Architecture

Figure 14-591: v4int_l in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 465

Instructions

v4packsc

Vector Four Byte Pack Signed Clamped

Syntax
v4packsc Dest, SrcA, SrcB

Example
v4packsc r5, r6, r7

Description

Clamp each of the packed 32-bit quantities in each of the two source registers to the maximum
positive or minimum negative 16-bit value, and then pack the results into the destination register.
The low-order 16-bit quantity of the destination will be the clamped low-order 32-bit quantity
from the second operand.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 16); counter++)
 {
 bool asel = (counter >= 2);
 int in_sel = counter & 1;
 int64_t srca = signExtend32 (rf[SrcA] >> (in_sel * 32));
 int64_t srcb = signExtend32 (rf[SrcB] >> (in_sel * 32));
 output =
 set2Byte (output, counter, signed_saturate16 (asel ? srca : srcb));
 } rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-592: v4packsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

466 TILE-Gx Instruction Set Architecture

Figure 14-593: v4packsc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 467

Instructions

v4shl

Vector Four Byte Shift Left

Syntax
v4shl Dest, SrcA, SrcB

Example
v4shl r5, r6, r7

Description

Logically shift each of the two 32-bit quantities in the first source operand to the left by the second
source operand. The effective shift amount is the specified operand modulo 32. Logical left shift
shifts zeros into the low ordered bits.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 output =
 set4Byte (output, counter,

(get4Byte (rf[SrcA], counter) <<
 (((UnsignedMachineWord) rf[SrcB]) % 32)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-594: v4shl in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

468 TILE-Gx Instruction Set Architecture

Figure 14-595: v4shl in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 469

Instructions

v4shlsc

Vector Four Byte Shift Left Signed Clamped

Syntax
v4shlsc Dest, SrcA, SrcB

Example
v4shlsc r5, r6, r7

Description

Logically shift each of the two 32-bit quantities in the first source operand to the left by the second
source operand. The effective shift amount is the specified operand modulo 32. Logical left shift
shifts zeros into the low ordered bits. If the left shift would arithmetically overflow a 32-bit quan-
tity, the result is clamped to the minimum negative or maximum positive 32-bit value.

Functional Description
uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)
 {
 output =
 set4Byte (output, counter,

signed_saturate32 (signExtend32 (get4Byte (rf[SrcA], counter))
 << (((UnsignedMachineWord) rf[SrcB]) %
 32)));

 }

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-596: v4shlsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

470 TILE-Gx Instruction Set Architecture

Figure 14-597: v4shlsc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 471

Instructions

v4shrs

Vector Four Byte Shift Right Signed

Syntax

v4shrs Dest, SrcA, SrcB

Example

v4shrs r5, r6, r7

Description

Arithmetically shift each of the two 32-bit quantities in the first source operand to the right by the
second source operand. If the shift amount is larger than 32, the effective shift amount is com-
puted to be the specified shift amount modulo 32. Arithmetic right shift shifts the high ordered
bit into the high ordered bits.

Functional Description

uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)

{
output =

set4Byte (output, counter,
(signExtend32 (get4Byte (rf[SrcA], counter)) >>

(((UnsignedMachineWord) rf[SrcB]) % 32)));
}

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-598: v4shrs in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

472 TILE-Gx Instruction Set Architecture

Figure 14-599: v4shrs in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 473

Instructions

v4shru

Vector Four Byte Shift Right Unsigned

Syntax

v4shru Dest, SrcA, SrcB

Example

v4shru r5, r6, r7

Description

Logically shift each of the two 32-bit quantities in the first source operand to the right by the sec-
ond source operand. If the shift amount is larger than 32, the effective shift amount is computed
to be the specified shift amount modulo 32. Logical right shift shifts zeros into the high ordered
bits.

Functional Description

uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)

{
output =

set4Byte (output, counter,
(get4Byte (rf[SrcA], counter) >>

(((UnsignedMachineWord) rf[SrcB]) % 32)));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-600: v4shru in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

474 TILE-Gx Instruction Set Architecture

Figure 14-601: v4shru in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 475

Instructions

v4sub

Vector Four Byte Subtract

Syntax

v4sub Dest, SrcA, SrcB

Example

v4sub r5, r6, r7

Description

Subtract the two 32-bit quantities in the second source operand from the two 32-bit quantities in
the first source operand.

Functional Description

uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)

{
output =

set4Byte (output, counter,
(get4Byte (rf[SrcA], counter) -
get4Byte (rf[SrcB], counter)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-602: v4sub in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

476 TILE-Gx Instruction Set Architecture

Figure 14-603: v4sub in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 477

Instructions

v4subsc

Vector Four Byte Subtract Signed Clamped

Syntax

v4subsc Dest, SrcA, SrcB

Example

v4subsc r5, r6, r7

Description

Subtract the two 32-bit quantities in the second source operand from the two 32-bit quantities in
the first source operand and clamp each result to the minimum negative value or maximum posi-
tive value.

Functional Description

uint64_t output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / 32); counter++)

{
output =

set4Byte (output, counter,
signed_saturate32 (signExtend32 (get4Byte (rf[SrcA], counter))

-
signExtend32 (get4Byte

(rf[SrcB], counter))));
}

rf[Dest] = output;

Valid Pipelines

Encoding

Figure 14-604: v4subsc in X0 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

Chapter 14 SIMD Instructions

478 TILE-Gx Instruction Set Architecture

Figure 14-605: v4subsc in X1 Bits Encoding

TILE-Gx Instruction Set Architecture 479

CHAPTER 15 SYSTEM INSTRUCTIONS

15.1Overview
The following sections provide detailed descriptions of system instructions listed alphabetically.

drain Drain Instruction

icoh Instruction Stream Coherence

ill Illegal Instruction

iret Interrupt Return

mfspr Move from Special Purpose Register Word

mtspr Move from Special Purpose Register Word

nap Nap

swint0 Software Interrupt 0

swint1 Software Interrupt 1

swint2 Software Interrupt 2

swint3 Software Interrupt 3

Chapter 15 System Instructions

480 TILE-Gx Instruction Set Architecture

15.2Instructions
System instructions are described in the sections that follow.

drain

Drain Instruction

Syntax
drain

Example
drain

Description

Acts as a barrier that requires all previous instructions to complete before any subsequent instruc-
tions are executed. A drain instruction is dependent on all, program order, previous
instructions. All, program order subsequent instructions are dependent on the drain instruction.
Instructions in the same bundle as the drain instruction will produce unspecified results. The
drain instruction also traverses the full length of any processor pipelining before subsequent
instructions are executed. By traversing the length of any processor pipelining, the drain
Instruction can be used to make state modifications to portions of the processor pipeline earlier
than where the state modification takes place. The drain instruction does not post memory oper-
ations or serve as a Memory Fence. In order to guarantee memory ordering, a mf instruction is
required.

Functional Description
drain ();

Valid Pipelines

Encoding

Figure 15-606: drain in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 481

Instructions

icoh

Instruction Stream Coherence

Syntax
icoh SrcA

Example
icoh r5

Description

Make the instruction stream coherent with the data stream for a particular cache index. Removes
possible stale instructions from the instruction stream caching system. The source operand names
a particular indexed set in the instruction cache. All of the blocks associated with the indexed set
are removed from the icache. The icoh instruction minimally flushes words, but may operate on
cache lines depending on the instruction cache implementation. One icoh instruction is guaran-
teed to minimally flush an aligned word of data from the instruction cache. The indexing of the
instruction cache is the same as if the parameter of the instruction is interpreted as a 64-bit
zero-extended physical address. If icoh is used in a loop that increments any address by words
and loops icoh instructions over an address range up to the size of the implementation specific
instruction cache size, then the entire instruction cache is cleared with the exception of the flush-
ing loop. The icoh instruction needs to be used when data stores are made to a memory location
which is to be executed later. Examples of this include self modifying code and physical page
invalidates.

Functional Description
iCoherent (rf[SrcA]);

Valid Pipelines

Encoding

Figure 15-607: icoh in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 15 System Instructions

482 TILE-Gx Instruction Set Architecture

ill

Illegal Instruction

Syntax
ill

Example
ill

Description

Causes an illegal instruction interrupt to occur. The ill Instruction is guaranteed to always cause
an illegal instruction interrupt for all current and future derivations of the architecture.

Functional Description
illegalInstruction ();

Valid Pipelines

Encoding

Figure 15-608: ill in X1 Bits Encoding

Figure 15-609: ill in Y1 Bits Encoding

X0 X1 Y0 Y1 Y2

X X

TILE-Gx Instruction Set Architecture 483

Instructions

iret

Interrupt Return

Syntax
iret

Example
iret

Description

Returns from an interrupt. Transfers control flow to the program counter location and protection
level contained in the current PL’s EX_CONTEXT registers, and restores the interrupt critical sec-
tion bit to the value contained in those registers.

Functional Description
setNextPC (sprf
 [EX_CONTEXT_SPRF_OFFSET +
 (getCurrentProtectionLevel () * EX_CONTEXT_SIZE) +
 PC_EX_CONTEXT_OFFSET]);
branchPredictedIncorrect ();
setProtectionLevel ((sprf

 [EX_CONTEXT_SPRF_OFFSET +
 (getCurrentProtectionLevel () * EX_CONTEXT_SIZE) +
 PROTECTION_LEVEL_EX_CONTEXT_OFFSET]);
 setInterruptCriticalSection ((sprf[EX_CONTEXT_SPRF_OFFSET +

(getCurrentProtectionLevel () * EX_CONTEXT_SIZE) +
INTERRUPT_CRITICAL_SECTION_EX_CONTEXT_OFFSET]);/* besides the PC we need to set our
new protection level, and set the interrupt critical section bit atomically inside
of this instruction */

Valid Pipelines

Encoding

Figure 15-610: iret in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 15 System Instructions

484 TILE-Gx Instruction Set Architecture

mfspr

Move from Special Purpose Register Word

Syntax
mfspr Dest, Imm14

Example
mfspr r6, 0x5

Description

Moves a word from a special purpose register. The special purpose register number is contained
as an immediate and allows for the addressing of 214 possible special purpose registers.

Functional Description
rf[Dest] = sprf[Imm14];

Valid Pipelines

Encoding

Figure 15-611: mfspr in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 485

Instructions

mtspr

Move to Special Purpose Register Word

Syntax
mtspr Imm14, SrcA

Example
mtspr 0x5, r6

Description

Moves a word to a special purpose register. The special purpose register number is contained as
an immediate and allows for the addressing of 214 possible special purpose registers.

Functional Description
sprf[Imm14] = rf[SrcA];

Valid Pipelines

Encoding

Figure 15-612: mtspr in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 15 System Instructions

486 TILE-Gx Instruction Set Architecture

nap

Nap

Syntax
nap

Example
nap

Description

Enters a lower power state. This instruction may or may not complete. To guarentee continued
naping on all implementations, this instruction should be used in a loop. Instructions in the same
bundle as the nap instruction will produce unspecified results. If this instruction completes, this
operation does not modify architectural state.

Functional Description
nap ();

Valid Pipelines

Encoding

Figure 15-613: nap in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 487

Instructions

swint0

Software Interrupt 0

Syntax
swint0

Example
swint0

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
0 interrupt handler. Instructions in the same bundle as the swint0 instruction will produce
unspecified results.

Functional Description
softwareInterrupt (0);

Valid Pipelines

Encoding

Figure 15-614: swint0 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 15 System Instructions

488 TILE-Gx Instruction Set Architecture

swint1

Software Interrupt 1

Syntax
swint1

Example
swint1

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
1 interrupt handler. Instructions in the same bundle as the swint1 instruction will produce
unspecified results.

Functional Description
softwareInterrupt (1);

Valid Pipelines

Encoding

Figure 15-615: swint1 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 489

Instructions

swint2

Software Interrupt 2

Syntax
swint2

Example
swint2

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
2 interrupt handler. Instructions in the same bundle as the swint2 instruction will produce
unspecified results.

Functional Description
softwareInterrupt (2);

Valid Pipelines

Encoding

Figure 15-616: swint2 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

Chapter 15 System Instructions

490 TILE-Gx Instruction Set Architecture

swint3

Software Interrupt 3

Syntax
swint3

Example
swint3

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
3 interrupt handler. Instructions in the same bundle as the swint3 instruction will produce
unspecified results.

Functional Description
softwareInterrupt (3);

Valid Pipelines

Encoding

Figure 15-617: swint3 in X1 Bits Encoding

X0 X1 Y0 Y1 Y2

X

TILE-Gx Instruction Set Architecture 491

G GLOSSARY

Term Definition

DDC™ Dynamic Distributed Cache. A system for accelerating multicore coherent cache
subsystem performance. Based on the concept of a distributed L3 cache, a por-
tion of which exists on each tile and is accessible to other tiles through the iMesh.
A TLB directory structure exists on each tile — eliminating bottlenecks of central-
ized coherency management — mapping the locations of pages among the other
tiles.

Dynamic Network A network where the path of each message is determined at each switch point.
The path of each message may be different, based on the contents of the mes-
sage.

Hypervisor services Provided to support two basic operations: install a new page table (performed on
context switch), and flush the TLB (performed after invalidating or changing a
page table entry). On a page fault, the client receives an interrupt, and is respon-
sible for taking appropriate action (such as making the necessary data available
via appropriate changes to the page table, or terminating a user program which
has used an invalid address).

Little-endian byte ordering More significant bytes are numbered with a higher byte address or byte number
than less significant bytes (LSBs).

Multicore Development
Environment™ (MDE™)

Multicore programming environment.

RAW Dependence Read-after-Write dependence, or true dependence. RAW dependencies arise
when a read operation on a location follows in program order a write operation to
the same location. The read operation must receive the value from the most
recent write operation, and must wait for the write operation to complete if the
processor executes the operations simultaneously or out of order.

SIMD Single Instruction Multiple Data. An architecture that allows a single instruction to
apply to multiple sets of data. In the TILE-Gx Processor™, SIMD instructions
allow a single instruction to operate on registers containing four bytes or two half-
words.

VLIW architecture VLIW (Very Long Instruction Word). A microprocessor design technology. A chip
with VLIW technology is capable of executing many operations within one clock
cycle. Essentially, a compiler reduces program instructions into basic operations
that the processor can perform simultaneously. The operations are put into a very
long instruction word that the processor then takes apart and passes the opera-
tions off to the appropriate devices.

Glossary

492 TILE-Gx Instruction Set Architecture

TILE-Gx Instruction Set Architecture 493

I INDEX

A
ack frame conventions 45
add 48
addi 44, 50
addli 44, 52
addx 53
addxi 55
addxli 57
addxsc 58
ALIGNED_INSTRUCTION_MASK 18
and 153
andi 45, 155
arithmetic 47
arithmetic instructions 47

B
backtrace library 45
beqz 112
beqzt 114
bfexts 157
bfextu 158
bfins 159
bgez 113
bgezt 115
bgtz 116
bgtzt 117
bit manipulation instructions 77
blbc 118
blbct 119
blbs 120
blbst 121
blez 122
blezt 123
bltz 124
bltzt 125
bnez 126
bnezt 127
bpt 44, 306
branch mispredict 5
Branch Target Buffer 4
branchHintedCorrect 20
branchHintedIncorrect 20
BYTE_16_ADDR_MASK 18
BYTE_MASK 0xFF 18
BYTE_SIZE_8 18
BYTE_SIZE_LOG_2 18

C
clz 78
cmoveqz 160
cmovnez 161
cmpeq 94
cmpeqi 96
cmpexch 209
cmpexch4 210
cmples 98
cmpleu 100
cmplts 102
cmpltsi 104
cmpltu 106
cmpltui 108
cmpne 109
cmul 269
cmula 270
cmulaf 271
cmulf 272
cmulfr 273
cmulh 274
cmulhr 275
compare instructions 93
conditional transfer operations 4
constants 18
control instructions 111
crc32_32 80
crc32_8 81
ctz 82

D
dblalign 84
dblalign2 85
dblalign4 86
dblalign6 87
DDC 491
definitions and semantics 17
demultiplex queue 3
demux queue 3
destination register operands 4
drain 23, 480
dtlbpr 200
dtlbProbe 23
Dynamic Distributed Cache 491

Index

494 TILE-Gx Instruction Set Architecture

E
EX0 5
EX1 5
exch 211
exch4 212
EX_CONTEXT_SIZE 18
EX_CONTEXT_SPRF_OFFSET 18
execute stages 5
Execute0 4
Execute1 4
execution pipelines 4

F
fdouble_add_flags 136
fdouble_addsub 23, 137
fdouble_addsub_flags 23
fdouble_mul_flags 23, 138
fdouble_pack1 23, 139
fdouble_pack2 23, 140
fdouble_sub_flags 141
fdouble_unpack_max 142
fdouble_unpack_min 143
fdouble_unpack_minmax 23
fetch 4
fetchadd 213
fetchadd4 214
fetchaddgez 215
fetchaddgez4 216
fetchand 217
fetchand4 218
fetchor 219
fetchor4 220
finv 201
floating point

comparison operators 135
instructions 135

flush 202
flushAndInvalidataCacheLine 20
flushCacheLine 20
flushwb 203
fnop 23, 300
fsingle_{add1‚ sub1‚ mul1} 5
fsingle_add1 144
fsingle_addsub1 23
fsingle_addsub2 23, 145
fsingle_mul1 23, 146
fsingle_mul2 23, 147
fsingle_pack1 23, 148
fsingle_pack2 23, 149
fsingle_sub1 150
functions 19

G
general purpose registers 2
getCurrentPC 20

getCurrentProtectionLevel 20
getHighHalfWordUnsigned 20
getLowHalfWordUnsigned 21

I
icoh 481
iCoherent 23
idn0 register 2
idn1 register 2
ill 44, 482
illegalInstruction 21
indirectBranchHintedCorrect 20
indirectBranchHintedIncorrect 20
info 45, 307
INFO operations 45
infol 45, 309
instruction

latencies 5
instruction formats

X 8
X0 12
X1 9
Y 14
Y0 16
Y1 15
Y2 14

instruction organization and format 7
instruction/pipeline latencies

all other instructions 5
branch mispredict 5
fsingle_{add1‚ sub1‚ mul1} 5
load to use - L1 hit 5
load to use - L1 miss, L2 hit 5
load to use - L1/L2 miss‚ adjacent Distributed Coherent

Cache (DDC™) hit 5
load to use - L1/L2 miss‚ DDR2 page close‚ typical 5
load to use - L1/L2 miss‚ DDR2 page miss‚ typical 5
load to use - L1/L2 miss‚ DDR2 page open‚ typical 5
other floating point, *mul*, *sad*, *adiff* instructions 5

instructions
arithmetic 47
bit manipulation 77
compare 93
control 111
floating point 135
logical 151
master list of main processor instructions 24
memory 207
memory maintenance 199
multiply 267
nop 299
pseudo 305
simd 331
system 479

INSTRUCTION_SIZE_64 18

TILE-Gx Instruction Set Architecture 495

Index

INSTRUCTION_SIZE_LOG_2 6 18
INTERRUPT_MASK_EX_CONTEXT_OFFSET 18
intrinsics 45
inv 204
invalidataCacheLine 20
iret 483
ISA 7

J
j 128
jal 129
jalr 130
jalrp 131
jr 132
jrp 133

L
latencies 5
lb_u 44
ld 221
ld1s 222
ld1s_add 223
ld1u 224
ld1u_add 225
ld2s 226
ld2s_add 227
ld2u 228
ld2u_add 229
ld4s 230
ld4s_add 231
ld4s_tls 310
ld4u 232
ld4u_add 233
ld_add 234
ldna 235
ldna_add 236
ldnt 237
ldnt1s 238
ldnt1s_add 239
ldnt1u 240
ldnt1u_add 241
ldnt2s 242
ldnt2s_add 243
ldnt2u 244
ldnt2u_add 245
ldnt4s 246
ldnt4s_add 247
ldnt4u 248
ldnt4u_add 249
ldnt_add 250
ld_tls 311
LINK_REGISTER 55 18
lnk 134
load to use - L1 hit 5
load to use - L1 miss, L2 hit 5

load to use - L1/L2 miss‚ adjacent Distributed Coherent
Cache (DDC™) hit 5

load to use - L1/L2 miss‚ DDR2 page close‚ typical 5
load to use - L1/L2 miss‚ DDR2 page miss‚ typical 5
load to use - L1/L2 miss‚ DDR2 page open‚ typical 5
logical instructions 151
lr register 2
lu 377

M
MASK16 0xFFFF 18
memory instructions 207
memory maintenance instructions 199
memoryFence 23
memoryReadByte 21
memoryReadDoubleWord 21
memoryReadDoubleWordNA 21
memoryReadDoubleWordNonTemporal 21
memoryReadHalfWord 21
memoryReadWord 22
memoryWriteByte 22
memoryWriteDoubleWord 22
memoryWriteHalfWord 22
memoryWriteWord 22
mf 205
mfspr 484
mm 162
mnz 163
move 44, 312
movei 44, 314
moveli 44, 316
mtspr 485
MulAdd operations 4
mula_hs_hs 286
mula_hs_hu 287
mula_hs_ls 288
mula_hs_lu 289
mula_hu_hu 290
mula_hu_ls 291
mula_hu_lu 292
mula_ls_ls 293
mula_ls_lu 294
mula_lu_lu 295
mulax 296
mul_hs_hs 276
mul_hs_hu 277
mul_hs_ls 278
mul_hs_lu 279
mul_hu_hu 280
mul_hu_ls 281
mul_hu_lu 282
mul_ls_ls 283
mul_ls_lu 284
mul_lu_lu 285
multiply instructions 267

Index

496 TILE-Gx Instruction Set Architecture

mulx 297
mz 165

N
nap 23, 486
nop 23, 302
nop instructions 299
nor 167
NUMBER_OF_REGISTERS_64 18

O
or 44, 169
ori 171
other floating point, *mul*, *sad*, *adiff* instructions 5

P
P0 4
P1 4
P2 4
PC_EX_CONTEXT_OFFSET 18
pcnt 88
pipeline 4

latencies 5
popReturnStack 20
prefetch 44, 317
prefetch_add_l1 44, 318
prefetch_add_l1_fault 44, 319
prefetch_add_l2 44, 320
prefetch_add_l2_fault 44, 321
prefetch_add_l3 44, 322
prefetch_add_l3_fault 44, 323
prefetch_l1 44, 324
prefetch_l1_fault 44, 325
prefetch_l2 44, 326
prefetch_l2_fault 44, 327
prefetch_l3 44, 328
prefetch_l3_fault 44, 329
processing engine

pipeline 4
Program Counter (PC) 4
PROTECTION_LEVEL_EX_CONTEXT_OFFSET 18
pseudo instructions 44, 305
pushReturnStack 20

R
r0-r53 register 2
r56 register 2
raise 330
raise(4) 45
RAW dependence

defined 491
read-after-write (RAW) dependencies 1
RegisterFile 4
RegisterFile (RF) 4
RegisterFileEntry 19

revbits 89
revbytes 90
rotl 172
rotli 174

S
setInterruptCriticalSection 20
setNextPC 19
setProtectionLevel 20
shl 176
shl16insli 45, 59
shl1add 60
shl1addx 62
shl2add 64
shl2addx 66
shl3add 68
shl3addx 70
shli 178
shlx 180
shlxi 181
shrs 182
shrsi 184
shru 186
shrui 188
shrux 190
shruxi 191
shufflebytes 92
SignedMachineWord 19
signExtend1 19
signExtend16 19
signExtend17 19
signExtend8 19
simd instructions 331
softwareInterrupt 21
sp register 2
Special Purpose Registers, See SPRs
SPRs

use of 3
st 251
st1 252
st1_add 253
st2 254
st2_add 255
st4 256
st4_add 257
st_add 258
stnt 259
stnt1 260
stnt1_add 261
stnt2 262
stnt2_add 263
stnt4 264
stnt4_add 265
stnt_add 266
sub 72

TILE-Gx Instruction Set Architecture 497

Index

subx 74
subxsc 76
swint0 487
swint1 488
swint2 489
swint3 490
system instructions 479

T
tblidxb0 192
tblidxb1 193
tblidxb2 194
tblidxb3 195
types 19

U
udn0 register 2
udn1 register 2
udn2 register 2
udn3 register 2
UnsignedMachineWord 19

V
v1add 334
v1addi 336
v1adduc 337
v1adiffu 339
v1avgu 340
v1cmpeq 341
v1cmpeqi 343
v1cmples 344
v1cmpleu 346
v1cmplts 348
v1cmpltsi 350
v1cmpltu 351
v1cmpltui 353
v1cmpne 354
v1ddotpu 356
v1ddotpua 357
v1ddotpus 358
v1ddotpusa 359
v1dotp 360
v1dotpa 361
v1dotpu 362
v1dotpua 363
v1dotpus 364
v1dotpusa 365
v1int_h 366
v1int_l 368
v1maxu 370
v1maxui 372
v1minu 373
v1minui 374
v1mnz 375
v1multu 376

v1mulus 378
v1mz 379
v1sadau 380
v1sadu 381
v1shl 382
v1shli 383
v1shrs 385
v1shrsi 387
v1shru 389
v1shrui 390
v1sub 392
v1subuc 393
v2add 395
v2addi 396
v2addsc 397
v2adiffs 399
v2avgs 400
v2cmpeq 401
v2cmpeqi 403
v2cmples 404
v2cmpleu 406
v2cmplts 408
v2cmpltsi 410
v2cmpltu 411
v2cmpltui 413
v2cmpne 414
v2dotp 416
v2dotpa 417
v2int_h 418
v2int_l 420
v2maxs 422
v2maxsi 423
v2mins 424
v2minsi 425
v2mnz 426
v2mulfsc 427
v2muls 428
v2mults 429
v2mz 430
v2packh 431
v2packl 433
v2packuc 435
v2sadas 437
v2sadau 438
v2sads 439
v2sadu 440
v2shl 441
v2shli 443
v2shlsc 445
v2shrs 447
v2shrsi 448
v2shru 450
v2shrui 452
v2sub 454
v2subsc 456

Index

498 TILE-Gx Instruction Set Architecture

v4add 458
v4addsc 459
v4int_h 461
v4int_l 463
v4packsc 465
v4shl 467
v4shlsc 469
v4shrs 471
v4shru 473
v4sub 475
v4subsc 477
Very Long Instruction Word

 See VLIW
VLIW 1

architecture
defined 491

W
WB 4, 5
wh64 206
WORD_ADDR_MASK 0xFFFFfffc 18
WORD_MASK 0xFFFFffff 18

WORD_SIZE 32 18
write-after-write (WAW) semantics 1
WriteBack

 See WB

X
X instruction formats 8
X0 instruction formats 12
X1 instruction formats 9
xor 196
xori 198

Y
Y instruction formats 14
Y0 instruction formats 16
Y1 instruction formats 15
Y2 instruction formats 14

Z
zero register 2
ZERO_REGISTER 63 18

	TILE-Gx Instruction Set Architecture
	Contents
	Chapter 1 Processor Engine Architecture
	1.1 VLIW Nature of the Processor Engine
	1.2 Atomicity of Bundles
	1.3 Register Set
	1.4 Program Counter
	1.5 Special Purpose Registers
	1.6 TILE-Gx Processing Engine Pipeline
	1.6.1 Fetch
	1.6.2 RegisterFile (RF)
	1.6.3 Execute Stages (EX0, EX1)
	1.6.4 WriteBack (WB)
	1.6.5 Instruction/Pipeline Latencies

	Chapter 2 TILE-Gx Engine Instruction Set
	2.1 Overview
	2.1 Instruction Reference
	2.1.1 Instruction Organization and Format
	2.1.1.1 X Instruction Formats
	2.1.1.2 Y Instruction Formats

	2.1.2 Definitions and Semantics
	2.1.2.1 Constants
	2.1.2.2 Types
	2.1.2.3 Functions

	2.1.3 Master List of Main Processor Instructions
	2.1.4 Pseudo Instructions

	Chapter 3 Arithmetic Instructions
	3.1 Overview
	3.2 Instructions

	Chapter 4 Bit Manipulation Instructions
	4.1 Overview
	4.2 Instructions

	Chapter 5 Compare Instructions
	5.1 Overview
	5.2 Instructions

	Chapter 6 Control Instructions
	6.1 Overview
	6.2 Instructions

	Chapter 7 Floating Point Instructions
	7.1 Overview
	7.2 Instructions

	Chapter 8 Logical Instructions
	8.1 Overview
	8.2 Instructions

	Chapter 9 Memory Maintenance Instructions
	9.1 Overview
	9.2 Instructions

	Chapter 10 Memory Instructions
	10.1 Overview
	10.2 Instructions

	Chapter 11 Multiply Instructions
	11.1 Overview
	11.2 Instructions

	Chapter 12 Nop Instructions
	12.1 Overview
	12.2 Instructions

	Chapter 13 Pseudo Instructions
	13.1 Overview
	13.2 Instructions

	Chapter 14 SIMD Instructions
	14.1 Overview
	14.2 Instructions

	Chapter 15 System Instructions
	15.1 Overview
	15.2 Instructions
	G Glossary

	I Index

