
TILE PROCESSOR
USER ARCHITECTURE

MANUAL

REL. 2.4
DOC. NO. UG101
NOVEMBER 2011

TILERA CORPORATION

Copyright © 2006-2011 Tilera Corporation. All rights reserved. Printed in the United States of America.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, except as may be expressly permitted by the applicable copyright statutes or in writing by the
Publisher.

The following are registered trademarks of Tilera Corporation: Tilera and the Tilera logo.

The following are trademarks of Tilera Corporation: Embedding Multicore, The Multicore Company, Tile Processor, TILE Architecture,
TILE64, TILEPro, TILEPro36, TILEPro64, TILExpress, TILExpress-64, TILExpressPro-64, TILExpress-20G, TILExpressPro-20G,
TILExpressPro-22G, iMesh, TileDirect, TILEmpower, TILEmpower-Gx, TILEncore, TILEncorePro, TILEncore-Gx, TILE-Gx, TILE-Gx9,
TILE-Gx16, TILE-Gx36, TILE-Gx64, TILE-Gx100, TILE-Gx3000, TILE-Gx5000, TILE-Gx8000, DDC (Dynamic Distributed Cache), Multicore
Development Environment, Gentle Slope Programming, iLib, TMC (Tilera Multicore Components), hardwall, Zero Overhead Linux
(ZOL), MiCA (Multistream iMesh Coprocessing Accelerator), and mPIPE (multicore Programmable Intelligent Packet Engine). All other
trademarks and/or registered trademarks are the property of their respective owners.

Third-party software: The Tilera IDE makes use of the BeanShell scripting library. Source code for the BeanShell library can be found at the
BeanShell website (http://www.beanshell.org/developer.html).

This document contains advance information on Tilera products that are in development, sampling or initial production phases. This
information and specifications contained herein are subject to change without notice at the discretion of Tilera Corporation.

No license, express or implied by estoppels or otherwise, to any intellectual property is granted by this document. Tilera disclaims any
express or implied warranty relating to the sale and/or use of Tilera products, including liability or warranties relating to fitness for a
particular purpose, merchantability or infringement of any patent, copyright or other intellectual property right.

Products described in this document are NOT intended for use in medical, life support, or other hazardous uses where malfunction could
result in death or bodily injury.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. Tilera assumes no liability for damages
arising directly or indirectly from any use of the information contained in this document.

Publishing Information:

Contact Information:

Document Number: UG101

Document Release 2.4

Date 10 November 2011

Tilera Corporation

Information info@tilera.com
Web Site http://www.tilera.com

Tile Processor User Architecture Manual iii

Tilera Confidential — Subject to Change Without Notice

CONTENTS

CHAPTER 1 USER ARCHITECTURE INTRODUCTION

1.1 Introduction to the Tile Processor Architecture .. 1

1.2 About this Manual .. 1

1.3 What’s New In This Manual .. 1

1.4 Conventions ... 2

1.4.1 Byte and Bit Order .. 2

1.4.2 Reserved Fields ... 3

1.4.3 Numbering ... 3

1.5 Implementation Dependence .. 4

CHAPTER 2 BASIC ARCHITECTURE

2.1 Architectural Overview .. 5

2.1.1 Tile Architecture ... 6

2.1.1.1 Processor Engine .. 6

2.1.1.2 Cache Engine .. 7

2.1.1.3 Switch Engine ... 8

2.1.2 I/O Devices .. 9

2.1.3 iMesh .. 10

2.2 Data Types .. 11

2.3 Addressing ... 11

CHAPTER 3 PROCESSOR ENGINE ARCHITECTURE

3.1 VLIW Nature of the Processor Engine ... 13

3.2 Atomicity of Bundles .. 13

3.3 Register Set ... 14

3.4 Program Counter ... 15

3.5 Special Purpose Registers ... 16

3.6 TILE64 and TILEPro Processing Engine Pipeline ... 16

3.6.1 Fetch .. 16

3.6.2 RegisterFile (RF) .. 16

3.6.3 Execute Stages (EX0, EX1) ... 17

3.6.4 WriteBack (WB) ... 17

3.6.5 Pipeline Latencies ... 17

CONTENTS

iv Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

CHAPTER 4 PROCESSOR ENGINE INSTRUCTION SET

4.1 Overview .. 19

4.1 Instruction Set Architecture ... 19

4.1.1 Instruction Organization and Format .. 19

4.1.1.1 X Instruction Formats ..20

4.1.1.2 Y Instruction Formats ..26

4.1.2 Definitions and Semantics ... 30

4.1.2.1 Constants ..30

4.1.2.2 Types ..32

4.1.2.3 Functions ...32

4.1.3 Master List of Main Processor Instructions ... 35

4.1.4 Arithmetic Instructions .. 43

4.1.5 Bit Manipulation Instructions ... 63

4.1.6 Compare Instructions ... 76

4.1.7 Control Instructions .. 95

4.1.8 Logical Instructions .. 121

4.1.9 Memory Instructions .. 163

4.1.10 Memory Maintenance Instructions .. 183

4.1.11 Multiply Instructions .. 190

4.1.12 NOP Instructions .. 214

4.1.13 SIMD Instructions ... 218

4.1.14 System Instructions .. 347

4.1.15 Pseudo Instructions .. 359

CHAPTER 5 MEMORY AND CACHE ARCHITECTURE

5.1 Memory Architecture ... 361

5.2 Cache Architecture .. 362

5.2.1 Overview .. 362

5.2.2 Cache Microarchitecture .. 363

5.2.2.1 Dynamic Distributed Cached Shared Memory ...364

5.2.2.2 Coherent and Direct-to-Cache I/O ...366

5.2.2.3 Striped Memory ...366

5.2.3 Direct Memory Access ... 366

5.3 Memory Consistency Model .. 368

CHAPTER 6 ON-CHIP NETWORK ARCHITECTURE

6.1 Overview .. 373

6.2 Network Properties ... 373

6.2.1 Switches .. 373

6.2.2 Packets .. 374

Tile Processor User Architecture Manual v

Tilera Confidential — Subject to Change Without Notice

CONTENTS

6.2.3 Routing ... 374

6.2.4 Flow Control .. 374

6.2.5 Fairness and Arbitration .. 374

6.2.6 Timing .. 374

6.2.7 Link Width ... 374

6.3 Memory Networks .. 374

6.3.1 Packet Sizes .. 374

6.3.2 Deadlock ... 375

6.4 Messaging Networks .. 375

6.4.1 Register Mapping .. 375

6.4.2 Packet Format .. 376

6.4.3 Demux .. 377

6.4.4 Deadlock ... 378

6.4.5 Hardwall .. 378

CHAPTER 7 STATIC NETWORK

7.1 Overview .. 381

7.2 Static Routing ... 381

7.3 Data Flow Control ... 382

7.4 Hardwall Protection .. 382

7.5 User-Accessible Special Purpose Registers ... 383

CHAPTER 8 USER-LEVEL SYSTEM CONCERNS

8.1 Overview .. 385

8.2 System Calls ... 385

8.3 Interrupt Overview ... 386

8.3.1 Interrupt List .. 386

8.4 User-Level Interrupts .. 389

8.5 Interaction with I/O Devices ... 389

8.6 Cycle Count .. 389

APPENDIX A SPECIAL PURPOSE REGISTERS

A.1 Introduction .. 391

A.2 SPR Register Descriptions ... 396

GLOSSARY ... 459

INDEX ... 461

CONTENTS

vi Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Tile Processor User Architecture Manual 1

Tilera Confidential — Subject to Change Without Notice

1 USER ARCHITECTURE INTRODUCTION

1.1 Introduction to the Tile Processor Architecture
The Tile Processor™ is a new class of multicore processor that delivers unprecedented levels of
performance, flexibility, and power efficiency in a highly integrated device. The Tile Processor is
programmable in standard ANSI C, and implements Tilera’s iMesh Multicore technology,
enabling application scaling across multiple cores (or tiles).

Each tile is a full-featured processor core, and is capable of running an entire operating system.
Every tile implements a 32-bit, three-wide integer processor engine with an instruction fetch unit,
execution units, a memory management unit including Translation Lookaside Buffers (TLBs), a
64-entry register file, and a two-level cache hierarchy. Hardware maintains cache coherence for
processor and I/O memory accesses.

The tiles in the Tile Processor are connected to each other, to the on-chip memory controllers, and
to the on-chip I/O controllers by multiple independent mesh networks. Tilera’s iMesh™ multi-
core technology enables the Tile Processor to provide performance scalability and high
bandwidth/low latency communication between all on-chip components.

1.2 About this Manual
This manual is organized as follows:

• Chapter 1: User Architecture Introduction (this chapter) provides an overview of this manual.

• Chapter 2: Basic Architecture provides hierarchical overview of the Tilera Tile Processor Archi-
tecture.

• Chapter 3: Processor Engine Architecture describes the processor engine (PE) in detail.

• Chapter 4: Processor Engine Instruction Set describes the instruction set architecture and bun-
dling rules and formats.

• Chapter 5: Memory and Cache Architecture describes how memory is structured and accessed.

• Chapter 6: On-Chip Network Architecture describes the User Dynamic Network (UDN), which
is used by applications to send messages between tiles.

• Chapter 7: Static Network describes the structure and functions of the Static Network (STN).

• Chapter 8: User-level System Concerns describes the system call architecture used to imple-
ment system interactions and interrupts, and communication with I/O devices.

• Appendix A: Special Purpose Registers defines special instructions (Special Purpose Registers,
or SPRs) that access different portions of system level state.

• Glossary defines terms used in this document.

1.3 What’s New In This Manual
This manual has been revised as follows:

Chapter 1 User Architecture Introduction

2 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

• Introduction to the TILEPro family of processors

• New cache and memory architecture

• New instructions to support the TILEPro™ family of processors can be found in Chapter 4: Pro-
cessor Engine Instruction Set. These are:

• adds: Add Word Saturating

• dword_align: Double Word Align

• subs: Subtract Word Saturating

• lbadd: Load Byte and Add

• lbadd_u: Load Byte Unsigned and Add

• lhadd: Load Half Word and Add

• lhadd_u: Load Half Word Unsigned and Add

• lw_na: Load Word No Alignment Trap

• lwadd: Load Word and Add

• lwadd_na: Load Word No Alignment Trap and Add

• sbadd: Store Byte and Add

• shadd: Store Half Word and Add

• swadd: Store Word and Add

• wh64: Write Hint 64 Bytes

• addbs_u: Add Bytes Saturating Unsigned

• addhs: Add Half Words Saturating

• packbs_u: Pack Half Words Saturating

• packhs: Pack Half Words Saturating

• subbs_u: Subtract Bytes Saturating Unsigned

• subhs: Subtract Half Words Saturating

1.4 Conventions
The following section describes the notational conventions used in this document.

1.4.1 Byte and Bit Order
The Tile Processor Architecture is little endian. More significant bytes are always numbered with
a higher number than less significant bytes (LSBs). When data is stored in memory, bytes that are
of greater significance are stored in higher numbered memory addresses than bytes of less
significance.

When sets of bits are described or displayed in this document, bits of higher significance are dis-
played to the left of bits with lower significance. For instance, if 32 bits are to be displayed and are
numbered from 0 to 31, bit 31 is displayed to the left of bit 0. Bits numbered with a higher number
have greater significance than bits with a lower number.

Tile Processor User Architecture Manual 3

Tilera Confidential — Subject to Change Without Notice

Conventions

1.4.2 Reserved Fields
Unused bits in control or I/O registers are considered reserved (reserved 0). When bits labeled as
reserved are read they are not guaranteed to return 0. Bits denoted as reserved, must be written as
0. Bits that are ignored by the hardware are explicitly called out as being write-ignored. Writing a
non-0 value to a reserved field will cause the processor to enter an undefined state.

1.4.3 Numbering
The default numeric base used in this document is base ten, or decimal representation. Any use of
a numeric without an explicitly base identifier is considered to be a decimal number. Hexadeci-
mal numbering is used widely in this document. When a numeric is to be interpreted as a
hexadecimal (base sixteen) number, the prefix “0x” is prepended to the number. For example, the
number 74 can also be expressed as 0x4A when written in hexadecimal.

When ranges of bits are numbered as a subset of a larger set of ordered bits a bracket notation is
used. The notation contains one or two numbers separated by a colon. If only one number is spec-
ified, the numbered bit position is the bit referenced. In example, if “bus” is a 32-bit bus that is
numbered 31 to 0 and the text describes bit 5, bus[5] is the nomenclature used to signify that bit.
Bit ranges are specified as two numbers, with the left number being the higher-order bit locations
and right number being the lower-ordered bit location. Bit ranges are inclusive of the specified
higher- and lower-ordered bit locations. This nomenclature is consistent with the default manner
in which little-endian bit ranges are denoted. For example, if word is a 32-bit word numbered 31
to 0 and the text describes the bits from bit 5 through bit 20, the appropriate manner to denote
that is word[20:5].

Figure 1-1 shows an example of how bitfields are graphically presented in this document.
Bits[31:21] are shown as reserved bits.

Figure 1-1: Bitfield Example

Figure 1-2 shows four bitfields that are logically represented along with a gap. The gap is not
reserved, but is instead allocated for another use, and typically specified elsewhere.

Figure 1-2: Bitfield Example with Fields Allocated by Other Functions

0

First Field

Second Field

Third Field

31 2021 5 4

202122232425

d

SrcBDest_Y2 - Dest

26

s

SrcA_Y2[0:0] - Src[0:0]

5152535455

s

SrcA_Y2[5:1] - Src[5:1]

565758

010

Opcode_Y2 - 0x2

Chapter 1 User Architecture Introduction

4 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

1.5 Implementation Dependence
This document describes the high-level Tile Processor Architecture and the microarchitecture of
the TilePro64™ and Tile64™ implementations.

Tile Processor User Architecture Manual 5

Tilera Confidential — Subject to Change Without Notice

2 BASIC ARCHITECTURE

2.1 Architectural Overview
This section contains an overview of the Tilera Tile Processor™ Architecture.

The Tile Processor Architecture consists of tiles, input/output devices, and a communication fab-
ric that connects them. Figure 2-3 shows the TILE64™/TILEPro64™ Tile Processor with details of
an individual tile’s structure.

Figure 2-3: Tile Processor Hardware Architecture

IDN
Memory Networks
STN
UDN

LEGEND:

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,0 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6

0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7

port2
msh0

port0

port2 port1 port0

DDR2

DDR2

port0
msh1

port2

port0 port1 port2

DDR2

DDR2

gpio1

port0

port1

XAUI

port1

port0

RGMII
(GbE)

port1
XAUI

FlexI/O

pcie0

port0

port1

PCIe

rshim0I2C, JTAG,
HPI, UART

gpio0FlexI/O

pcie1
port0

port1

PCIe

port1 port1

msh3 msh2

xgbe0

gbe0

xgbe1

port0

LEGEND:

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6

0,7 1,7 2,7 3,7 4,7 5,7 6,7 7,7

port2
msh0

port0

port2 port1 port0

DDR2

DDR2

port0
msh1

port2

port0 port1 port2

DDR2

DDR2

gpio1

XAUI

port1

port0

RGMII
(GbE)

port1
XAUI

FlexI/O

pcie0

port0

port1

PCIe

rshim0I2C, JTAG,
HPI, UART

gpio0FlexI/O

pcie1
port0

port1

PCIe

port1 port1

msh3 msh2

gbe0

port0

port1

xgbe0

xgbe1

port0

7,0

XXAAXXXXXXX UUIIIIXX II

77 0

6,1

Tile Detail

Switch
Engine

Cache
Engine

Processor
Engine

Chapter 2 Basic Architecture

6 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

2.1.1 Tile Architecture
The tile is the basic unit of replication in the Tile Processor Architecture. A key feature of a tile is
that it is identical to all other tiles in a system. The fact that tiles are homogeneous eases auto-
mated mapping of programs to an array of tiles and allows for the arbitrary placement of
programs across the homogeneous array. The tile is the main source of computational power
within the Tile Processor Architecture. Each tile consists of a processor engine, a cache engine,
and a switch engine. Figure 2-4 takes a view inside of a tile.

Figure 2-4: Basic Tile Architecture

2.1.1.1 Processor Engine

The processor engine consists of a fetch unit, instruction decoder, issue logic, general purpose reg-
ister file, and special purpose registers. Figure 2-5 shows the basic architecture of the processor
engine. The processor engine is a 32-bit, three instruction wide Very Long Instruction Word
(VLIW) processor. Each VLIW bundle of instructions is 64 bits and is capable of encoding two or
three instructions. The processor engine contains 56 general purpose registers, seven registers that
interface to the on-chip iMesh networks, and one hard-wired zero register. While the stack pointer
sp is included in the general purpose registers it is used only as a stack pointer by software
convention.

The processor engine contains three instruction execution pipelines. The three pipelines that com-
prise the main processor are asymmetric, and are designated pipelines 0 through 2. Pipeline 0 is
capable of executing any ALU operation, bit manipulation operations, select operations, multiply
operations, and fused multiply-add operations. Pipeline 1 is capable of executing any ALU opera-
tion, special purpose register reads and writes, and control flow instructions (branches and
jumps). Pipeline 2 is capable of executing load and store instructions and cache and memory
maintenance instructions.

Switch
Engine

Cache
Engine

Processor
Engine

Communication
Fabric

Tile Processor User Architecture Manual 7

Tilera Confidential — Subject to Change Without Notice

Architectural Overview

Figure 2-5: Processor Engine—Basic Architecture

2.1.1.2 Cache Engine

The tile’s cache engine is responsible for handling caching of instructions and data, providing an
interface to the memory system, translating memory addresses from virtual to physical
addresses, and providing a coherent view of memory. The organization of the cache subsystem is
implementation-dependent and the Tile Processor Architecture does not require a specific size or
organization. For example, the cache organization found within the TILE64 processor provides an
8KB level 1 processor engine instruction cache, a two-way set associative 8KB level 1 data cache,
and a two-way set associative 64KB unified level 2 cache. The TILEPro64 processor provides a
16KB level 1 instruction cache, a two-way set associative 8KB level 1 data cache and a four-way
set associative 64KB unified level 2 cache.

Figure 2-6 provides a conceptual block diagram of the processor/cache interface. When needed
data is not found in the cache, the cache engine uses the on-chip networks to check for the data in
other caches or in main memory.

Tile Control
Special
Purpose
Registers
(SPRs)

From Networks/
Switch Engine

To Networks/
Switch Engine

Pipeline
2

LD/ST

Pipeline
1

ALU/
Branch/
SPRs

Pipeline
0

ALU/
MULADD/

Bit

Instruction
Fetch

Decode

3

2 32

Register
File

Chapter 2 Basic Architecture

8 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 2-6: Cache Engine — Basic Architecture

The TILE64 and TILEPro processors use two independent, dynamically-routed mesh networks to
communicate with multiple memory controllers on the periphery of the chip and with other tiles.
The Tile Processor Architecture supports virtual memory to supply protection and relocation of
data structures stored in physical memory. The cache engine contains memory management units
implemented via translation lookaside buffers (TLBs).

2.1.1.3 Switch Engine

Each tile contains a switch engine. The switch engine connects to neighboring tiles and I/Os
(including the on-chip memory controllers) via the intra-tile iMesh. The tiles are laid out in a two
dimensional grid, thus the switch engine connects to the neighbors to the north, south, east, and
west. The switch engine connects directly to I/O devices if a tile is adjacent to an I/O device.

The switch engine is composed of multiple dynamic networks and a single static network. The
Tile Processor Architecture contains three register-mapped architecturally-defined networks: the
user dynamic network (UDN), the input/output dynamic network (IDN), and the static network
(STN). In addition to the architecturally defined networks, TILE64 and TILEPro contain hardware
managed networks for communication with main memory and for inter-tile memory mapped
communication.

Figure 2-7 shows an example network crosspoint with fully connected crossbar.

Processor
Engine

Instruction
TLB (ITLB)

L1 Instruction Cache
L1 Data Cache

L2 Unified Cache

Data TLB
(DTLB)

Cache EngineFrom Instruction Fetch

From LD/ST Pipe

DMA
Engine

To Instruction Fetch

SPR Control

To LD

 Switch Engine

Tile Processor User Architecture Manual 9

Tilera Confidential — Subject to Change Without Notice

Architectural Overview

Figure 2-7: Switch Engine Architecture Implementing a Single Network

The UDN is primarily used by user-level processes to communicate with fast low-latency explicit
messages. The Tilera software suite provides libraries to the developer to facilitate accessing the
UDN with differing programming paradigms. The IDN is used by the system software to commu-
nicate with I/O devices and for tile-to-tile communication at the system level.

The static network is a scalar operand network designed to transport scalar values efficiently
from one tile to another tile across the iMesh. The routing of the static network crossbar is con-
trolled by the processor engine. The static network passes data to and from the main processor,
and connects to the tiles to the north, south, east and west.

The static network is configured in a hard-coded routing mode, which specifies how data is to be
routed from one port to another. Routing in the static network is atomic—a transfer that routes
data stalls until input data is available and all the targeted output ports are free. The routing in
the static network encodes the input direction that supplies data for each output direction,
thereby allowing multicasting of data.

2.1.2 I/O Devices
The iMesh interconnect fabric extends from the periphery of the array of tiles to connect to I/O
interfaces, which translate messaging packets into operations on the inputs and outputs of the
chip. An I/O device can be connected to any iMesh network, but typically I/O devices are con-
nected to the IO Dynamic Network (IDN) and memory networks. The arrangement of I/O devices
and the way in which they are connected to tile-array ports is specific to a particular
implementation.

North

Processor
Engine

EastWest

South

Crossbar

Control

Chapter 2 Basic Architecture

10 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

The TILEPro64 and TILE64 processors have the following on-chip interfaces: the TILEPro proces-
sor implementation has the following on-chip interfaces: two 10Gbps XAUI, two PCIe 4x, two 10/
100/1000 Gbps Ethernet, four DDR-2 64-bit memory interfaces, 64 general purpose I/Os, two-
wire interface (I2C-compatible), SPI, HPI, and a UART.

The typical makeup of an I/O interface can be seen in Figure 2-8. This example shows an I/O
device being connected to a dynamic network port. On the left side of this figure, the I/O device is
connected to buffering and a finite state machine for control. The finite state machine is the key
portion of the I/O interface. The finite state machine receives dynamic messages from the fabric
and parses the messages. In response to messages that it parses, the finite state machine acts
accordingly by controlling the I/O device. Likewise, the finite state machine receives data and
control requests from the I/O device and constructs messages destined for the tiles, memory, or
other I/O interfaces. I/O shims typically contain buffering in order to provide end-to-end flow
control.

Figure 2-8: The Anatomy of a Basic I/O Interface

2.1.3 iMesh
An instantiation of the Tile Processor Architecture consists of a rectangular array of tiles and I/O
devices. In order for the tiles to communicate with each other and to I/O devices, the Tile Proces-
sor Architecture provides a communication fabric called the iMesh™. The iMesh consists of the
array of the switch engines, which are embedded inside each tile of the array, and the two-dimen-
sional network that interconnects the engines and IO devices.

There are three types of networks: the static networks, architecturally-defined dynamic networks,
and implementation-specific dynamic networks. The TILE64 has the two architecturally-defined
dynamic networks (IDN/UDN), the static network (STN) and two implementation specific net-
works to interconnect the tile’s cache engines and memory controllers. TILEPro64 adds a third
memory network for coherence traffic.

Each of these networks is logically 32-bits (one word) in width. Each switch engine contains mul-
tiple independent crossbars that each contain five connections. The five connections are north,
south, east, west, and one connecting to the processor engine. Each connection consists of two uni-

Dynamic
Network

Port

Data

I/O
Communication

Fabric

I/O Device
Interface

I/O
Device

Buffering

Control
FSM

Tile Processor User Architecture Manual 11

Tilera Confidential — Subject to Change Without Notice

Data Types

directional links. For example, a UDN connection from a tile’s switch engine to a neighboring
tile’s switch engine is logically 64-bits wide. Thirty-two bits are used for traffic leaving a tile for
the tile to the east and 32-bits are used for traffic entering the tile from the easterly side.

I/O devices directly connect to switch engines of tiles on the periphery of the array via the iMesh.
In Tile Processor Architecture implementations, the tiles are typically arranged in a rectangular
two-dimensional array surrounded by I/O devices. The I/O devices connect on the periphery of
the tile array to a set of networks that extend out of the tile array. I/O devices typically use a sin-
gle connection to the IDN, but may be connected to any of the on-chip networks and may be
connected to multiple tiles’ networks in order to increase I/O to tile array bandwidth. I/O
devices can also use the iMesh and tile switch engines to route traffic between one I/O device and
another I/O device.

2.2 Data Types
Differing sized data types can be used on the Tile Processor Architecture. Data composed of 8 bits
is considered a byte. Datum composed of 16 bits is considered a Half Word. Data composed of 32
bits is considered a Word, and data composed of 64 bits is considered a Double Word. In addition to
these basic data types, the processor engine supports two packed data formats to be used with the
SIMD instructions. These formats pack a number of smaller elements into a single word. The
SIMD instructions support a packed byte format, which consists of four bytes packed into a word.
The SIMD instructions also support a Packed Half Word format, which consists of two half words
packed into a word. See “SIMD Instructions” on page 218 for more details.

2.3 Addressing
The Tile Processor architecture defines a flat, globally shared 64-bit physical address space and a
32-bit virtual address space. The TILE64 and TILEPro family of processors implement a 36-bit
physical address space. The globally shared physical address space provides the mechanism by
which processes and threads can share instructions and data.

Chapter 2 Basic Architecture

12 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Tile Processor User Architecture Manual 13

Tilera Confidential — Subject to Change Without Notice

3 PROCESSOR ENGINE ARCHITECTURE

This section describes the processor engine in detail. The processor engine is the primary compu-
tational resource inside a tile. The processor engine is an asymmetric very long instruction word
(VLIW) processor.

3.1 VLIW Nature of the Processor Engine
The processor engine contains three computational pipelines.

Each instruction bundle is 64-bits wide and can encode either two or three instructions. Some
instructions can be encoded in either two-wide or three-wide bundles, and some can be encoded
in two-wide bundles only.The most common instructions and those with short immediates can be
encoded in a three instruction format. “Processor Engine Instruction Set” on page 19 discusses the
encoding format and mix of instructions in greater detail.

3.2 Atomicity of Bundles
The Tile Processor Architecture has a well defined, precise interrupt model with well defined
instruction ordering. A bundle of instructions executes atomically. Thus either all of the instruc-
tions in the bundle are executed or none of the instructions in a bundle are executed. Inside of a
single bundle, the different instructions can be dependent on many resources. In order for a bun-
dle to execute, all of the resources upon which a bundle is dependent on must be available and
ready. If one instruction in a bundle causes an exception, none of the instructions in that bundle
commit state changes. Register access within a bundle is an all-or-nothing endeavor. This distinc-
tion is important for register reads as well as register writes, as register reads/writes can both
modify network state when accessing network mapped registers. Memory operations are likewise
atomic with respect to an instruction bundle completing.

Individual instructions within a bundle must comply with certain register semantics. Read-after-
write (RAW) dependencies are enforced between instruction bundles. There is no ordering within
a bundle, and the numbering of pipelines or instruction slots within a bundle is only used for con-
venience and does not imply any ordering. Within an instruction bundle, it is valid to encode an
output operand that is the same as an input operand. Because there is explicitly no implied depen-
dency within a bundle, the semantics for this specify that the input operands for all instructions in
a bundle are read before any of the output operands are written. Write-after-write (WAW) seman-
tics between two bundles are defined as: the latest write overwrites earlier writes.

Within a bundle, WAW dependencies are forbidden. If more than one instruction in a bundle
writes to the same output operand register, unpredictable results for any destination operand
within that bundle can occur. Also, implementations are free to signal this case as an illegal
instruction. There is one exception to this rule—multiple instructions within a bundle may legally
target the zero register. Lastly, some instructions, such as instructions that implicitly write the
link register, implicitly write registers. If an instruction implicitly writes to a register that another
instruction in the same bundle writes to, unpredictable results can occur for any output register
used by that bundle and/or an illegal instruction interrupt can occur.

Chapter 3 Processor Engine Architecture

14 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

3.3 Register Set
The Tile Processor Architecture contains 64 architected registers. Each register is 32-bits wide. Of
the 64 registers, some are general purpose registers and others allow access to the on-chip
networks.

Table 3-1 presents the registers available to be used in instructions. The first 55 registers are gen-
eral purpose registers. The stack pointer sp is included in the 55 general purpose registers and is
specified as a stack pointer only by software convention. Register lr can be used as a general pur-
pose register. Control-transfer instructions that link have the effect of writing the value PC+8 into
lr. Thus instructions bundled with jal, jalp, jalr, and jalrp must not write to lr. Note that the
LNK instruction will write to lr only if lr is specified as the destination register. Register sn
allows access the static network. Registers idn0 and idn1 provide access to the two demultiplexed
IDN networks. All writes to the IDN should use idn0; the result of writing to idn1 is undefined.
Registers udn0, udn1, udn2, and udn3 allow access to the four demultiplexed ports of the UDN. All
writes to the UDN should use udn0; the result of writing to udn1-udn3 is undefined. The final reg-
ister, zero, is a register that contains no state and always reads 0. Writes to register 0 (zero) have
no effect on the register file; however, instructions that target this register might have other
results, such as effecting data prefetches or causing exceptions.

Note: Note that register r0 and register zero are distinct; register r0 is a general purpose register.

Table 3-1 presents the register identifier mapping.

In order to reduce latency for tile-to-tile communications and reduce instruction occupancy, the
Tile Processor Architecture provides access to the on-chip networks through register access. Any
instruction executed in the processor engine can read or write to the following networks: UDN,
IDN, and STN. There are no restrictions on the number of networks that can be written or read in
a particular bundle. Each demultiplexing queue counts as an independent network for reads. For
network writes, all three networks (UDN, IDN, and STN) can be written to in a given instruction
bundle. It is illegal for multiple instructions in a bundle to write to the same network, as this is a
violation of WAW ordering for processor registers. The same network register can appear in mul-

Table 3-1. Register Numbers

Register Numbers Short Name Purpose

0 - 53 r0-r53 General Purpose Registers

54 sp Stack Pointer

55 lr Link Register

56 sn Static Network

57 idn0 IDN Port 0

58 idn1 IDN Port 1

59 udn0 UDN Port 0

60 udn1 UDN Port 1

61 udn2 UDN Port 2

62 udn3 UDN Port 3

63 zero Always Returns Zero

Tile Processor User Architecture Manual 15

Tilera Confidential — Subject to Change Without Notice

Program Counter

tiple source fields in one instruction or inside of one bundle. When a single network (or
demultiplex queue) is read multiple times in one bundle, only one value is dequeued from the
network (demux queue) and every instruction inside of a bundle receives the same value. Net-
work operations are atomic with respect to bundle execution.

Reading and writing networks can cause the processor to stall. If no data are available on a net-
work port when an instruction tries to read from the corresponding network-mapped register, the
entire bundle stalls waiting for the input to arrive. Likewise, if a bundle writes to a network and
the output network is full, the bundle stalls until there is room in the output queue. Listing 3-1.
contains example code for network reads and writes.

Listing 3-1. Network Reads and Writes

// add writes to udn0, sub reads
// idn0 and idn1 and writes to sn
{addi udn0, r5, 10; sub sn, idn0, idn1}
// increment the data coming from
// udn0, add registers, and load
{addi udn0, udn0, 1; add r5, r6, r7; ld r8, r9}
// mask low bit of udn0 into r5 and
// mask second bit into r6. reads only
// one value from udn.
{andi r5, udn0, 1; andi r6, udn0, 2}

The Tile Processor Architecture provides two methods of writing to the static network: by speci-
fying sn as the destination register, and by setting the S bit within an encoded instruction. To set
the S bit in an assembly program, add the suffix .sn to the mnemonic. The advantage of this
method is that a GPR or another network-mapped register can be specified as the destination reg-
ister, allowing both to be written simultaneously. This saves the programmer from having to add
an extra instruction that explicitly writes to sn. The result of specifying sn as the destination reg-
ister of an instruction with its S bit set is undefined. The S-bit only appears on a subset of the
instructions, most notably, arithmetic instructions that execute in two-wide mode. With respect to
obeying the above rules regarding bundle atomicity and network flow control, setting the S bit is
identical to specifying sn as the destination register. When the S-bit is used, a move instruction to
the network can be saved. Listing 3-2. contains example code for an instruction that writes the STN
with an S-bit.

Listing 3-2. Writing an Instruction to the STN with an S-Bit

// Instruction adds r6 and r7 and
// deposits result in r5 and enqueues the
// result in the static network.
{add.sn r5, r6, r7}

3.4 Program Counter
Each processor engine contains a program counter that denotes the location of the instruction
bundle that is being executed. Instruction bundles are 64 bits, thus the program counter must be
aligned to 8 bytes. The program counter is modified in the natural course of program execution
by branches and jumps. Also, the program counter is modified when an interrupt is signaled or
when a return from interrupt instruction iret is executed. Instructions that link — jal, jalr,
jalrp, and lnk — read the contents of the program counter for the current instruction bundle,
add 8 (the length of an instruction), and write the result into a register. For jal, jalr, and jalrp,
the register written with the link address is always lr; for lnk, the destination register is specified
explicitly. Jumps that link are useful for sub-routine calls and the lnk instruction is useful for
position independent code.

Chapter 3 Processor Engine Architecture

16 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

For more information, see “Control Instructions” on page 95.

3.5 Special Purpose Registers
The processor engine contains special purpose registers (SPRs) that are used to control many fea-
tures of a tile. The processor engine can read an SPR with the mfspr instruction and write to an
SPR with the mtspr instruction. Most SPRs are used by system software for tile configuration or
for accessing context switching state.

Special purpose registers are a mixture of state and a generalized interface to control structures.
Some of the special purpose registers simply hold state and provide a location to store data that is
not in the general purpose register file or memory. Other special purpose registers hold no state
but serve as a convenient word-oriented interface to control structures within a tile. Some SPRs
possess a mixture of machine hardware status state and control functions. The act of reading or
writing an SPR can cause side effects. SPRs are also the main access control mechanism for pro-
tected state in the Tile Processor Architecture. The SPR space is designed so that groups of SPRs
require different protection levels to access it.

For more information, see “Special Purpose Registers” on page 391.

3.6 TILE64 and TILEPro Processing Engine Pipeline
The Tile Processor Engine has three execution pipelines (P2, P1, P0) of two stages (EX0, EX1) each.
Both modes of bundling instructions, namely the X mode and the Y mode, can issue instructions
into any of the three of the execution pipelines (P2, P1, P0). Y-mode uses all three pipelines simul-
taneously. One of the pipelines remains in IDLE mode during X-mode issue. P0 is capable of
executing all arithmetic and logical operations, bit and byte manipulation, selects, and all multi-
ply and fused multiply instructions. P1 can execute all of the arithmetic and logical operations,
SPR reads and writes, conditional branches, and jumps. P2 can service memory operations only:
loads, stores, and test-and-set instructions.

 The Processor Engine uses a short, in-order pipeline aimed at low branch latency and low load-
to-use latency. The basic pipeline consists of five stages: Fetch, RegisterFile, Execute0,
Execute1, and WriteBack.

3.6.1 Fetch
The Fetch pipeline stage runs the complete loop from updating the Program Counter (PC)
through fetching an instruction to selecting a new PC. The PC provides an index into several
structures in parallel: the icache data and tag arrays, the merged Branch Target Buffer and line
prediction array, and the ITLB. The fetch address multiplexor must then predict the next PC based
on any of several inputs: the next sequential instruction, line prediction or branch prediction, an
incorrectly-predicted branch, or an interrupt.

3.6.2 RegisterFile (RF)
There are three instruction pipelines, one for each of the instructions in a bundle. These pipelines
are designated as P0, P1 and P2. Bundles containing two instructions will always result in one
instruction being issued in P0. The second instruction will be issued in either P1 or P2, depending
on the type of instruction.

Tile Processor User Architecture Manual 17

Tilera Confidential — Subject to Change Without Notice

TILE64 and TILEPro Processing Engine Pipeline

The RF stage produces valid source operands for the instructions. This operation involves four
steps: decoding the two or three instructions contained in the bundle, as provided by the Fetch
stage each cycle; accessing the source operands from the register file and/or network ports;
checking instruction dependencies; and bypassing operand data from earlier instructions. A
three-instruction bundle can require up to seven source register operands and three destination
register operands — three source operands to support the fused MulAdd and conditional transfer
operations, two source operands each for the other two instruction pipelines.

Figure 3-9: Processor Pipeline

3.6.3 Execute Stages (EX0, EX1)
The EX0 pipeline stage is the instruction commit point of the processor; if no exception occurs,
then the architectural state can be modified. The early commit point allows the processor to trans-
mit values computed in one tile to another tile with extremely low, register-like latencies. Single-
cycle operations can bypass from the output of EX0 into the subsequent EX0. Two-cycle opera-
tions are fully pipelined and can bypass from the output of EX1 into the input of EX0.

3.6.4 WriteBack (WB)
Destination operands from P1 and P0 are written back to the Register File in the WB stage. Load
data returning from memory is also written back to the Register File in the WB stage. The Register
File is write-through, eliminating a bypass requirement from the output of WB into EX0.

3.6.5 Pipeline Latencies
In a pipelined processor, multiple operations can overlap in time. In the Tile Architecture instruc-
tions that have longer latencies are fully-pipelined.

Table 3-2. TILEPro Pipeline Latencies

Operation Latency

Branch Mispredict 2 cycles

Load to Use - L1 hit 2 cycles

Load to Use - L1 miss, L2 hit 8 cycles

Fetch RF EX0 EX1 WB

EX0 EX1 WB

L1Tag/Dat L1CMP WB

ARB MAF, L2
Tag/CMP L2 Dat Drive

Commit

Chapter 3 Processor Engine Architecture

18 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Load to Use - L1/L2 Miss, adjacent Dynamic Distributed Cache (DDC™) hit 35 cycles

Load to Use - L1/L2 Miss, DDR2 page open, typical 69 cycles

Load to Use - L1/L2 Miss, DDR2 page miss, typical 88 cycles

MUL*, SAD*, ADIFF instructions 2 cycles

All other instructions 1 cycle

Table 3-2. TILEPro Pipeline Latencies (continued)

Operation Latency

Tile Processor User Architecture Manual 19

Tilera Confidential — Subject to Change Without Notice

4 PROCESSOR ENGINE INSTRUCTION SET

4.1 Overview
This chapter describes the Instruction Set Architecture (ISA), the formats used to specify instruc-
tions, definitions and semantics, constants, and pipeline latencies. For a complete list of
instructions, refer to “Master List of Main Processor Instructions” on page 35.

4.1 Instruction Set Architecture
The Tile Processor Architecture instructions can be categorized into 11 major groups:

• Arithmetic Instructions

• Bit Manipulation Instructions

• Compare Instructions

• Control Instructions

• Logical Instructions

• Memory Instructions

• Memory Maintenance Instructions

• Multiply Instructions

• NOP Instructions

• SIMD Instructions

• System Instructions

4.1.1 Instruction Organization and Format
The Tile Processor Architecture utilizes a 64-bit instruction bundle to specify instructions. While
the bundle is a large encoding format, this encoding provides a compiler with a relatively orthog-
onal instruction space that aids in compilation. Likewise, the large register namespace facilitates
the allocation of data into registers, but comes at the cost of extra encoding bits in an instruction
word.

The Tile Processor Architecture is capable of encoding up to three instructions in a bundle. In
order to achieve this level of encoding density, some of the less common or large immediate oper-
and instructions are encoded in a two instruction bundle. The bundle format is determined by the
Mode bit, bit 63. When the Mode bit is one (1), the bundle format is a Y bundle and when the Mode
bit is zero (0), the bundle is an X bundle.

Instruction formats are described in the sections that follow.

Chapter 4 Processor Engine Instruction Set

20 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

4.1.1.1 X Instruction Formats

Figure 4-10 and Figure 4-11 show the basic X format instruction encodings.

Figure 4-10: X1 Specific Format

Figure 4-11: X0 Specific Format

Bundles that are in the Y format can encode three simultaneous operations where one is a memory
operation, one is a arithmetic operation, and the last one is a arithmetic or multiplication opera-
tion. The Y bundle format contains only a simple set of instructions with 8-bit immediates and
these instructions are not capable of writing to both the static network and a register in a single
instruction (Y mode instructions lack S bits). The X mode bundle is capable of encoding a superset
of the instructions that can be encoded in Y mode, however only two instructions can be encoded
in each bundle. X mode bundles are capable of encoding all instructions, including complex
instructions such as control transfers and long immediate instructions. Also, many instructions in
X mode bundles have S bits that indicate that the instruction writes to the static network in addi-
tion to the destination register specified in the instruction. For more information on the S-bit, refer
to page 15.

Y mode instructions contain three encoding slots, Y2, Y1, and Y0. Y2 is the pipeline which exe-
cutes loads and stores, Y1 is capable of executing arithmetic and logical instructions, and Y0 is
capable of executing multiply, arithmetic, and logical instructions. Figure 4-30 through
Figure 4-38 present the instruction formats and encodings for the Y pipelines. X mode contains
two encoding slots, X1 and X0. The X1 pipeline is capable of executing load, store, branches, arith-
metic, and logical instructions by merging Y2 and Y1 pipelines. Pipeline X0 is capable of executing
multiply, arithmetic, and logical instructions. Figure 4-12 through Figure 4-27 present the instruc-
tion formats and encodings for the X pipelines.

Some instruction formats, or specific instructions, contain unused fields. It is strongly recom-
mended that these contain zeros, as future versions of the architecture may decide to assign
meanings to nonzero values in these fields. Implementations are permitted, but not required, to
take an Illegal Instruction interrupt when detecting a nonzero value in an unused instruction
field.

31

X1 Specific

Mode=X

6263

0

X0 Specific

30

Tile Processor User Architecture Manual 21

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

X1 Instruction Formats
The X1 RRR format encodes an operation, which requires a destination register and two source
operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 4-12: X1 RRR Format (X1_RRR)

The X1_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 4-13: X1 Immediate Format (X1_Imm8)

313233343536

Dest_X1

373839404142

SrcA_X1

434445464748

SrcB_X1

495051525354555657

RRROpcodeExtension_X1

58

S_X1

59606162

Opcode_X1

313233343536

Dest_X1

373839404142

SrcA_X1

4344454647484950

Imm8_X1

51525354555657

ImmOpcodeExtension_X1

58

S_X1

59606162

Opcode_X1

Chapter 4 Processor Engine Instruction Set

22 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

The X1 Immediate MTSPR format writes an SPR with the value from a source register.For
example:

// Move the contents of register 0 into SPR SPR_SNSTATIC
{ mtspr SPR_SNSTATIC, r0 }

Figure 4-14: X1 Immediate MTSPR Format (X1_MT_Imm15)

The X1 Immediate MFSPR format is used to move the contents of an SPR into a destination regis-
ter. For example:

{mfspr r0, SPR_SNSTATIC}// Move the contents of the SPR SPR_SNSTATIC into r0

Figure 4-15: X1 Immediate MFSPR Format (X1_MF_Imm15)

The X1 Long Immediate Format is used for instructions which require a destination register, a
source register and a signed 16-bit immediate operand. For example:

// Add 0x1234 to the contents of register 1 and place the result in register 0
{ addli r0, r1, 0x1234 }

Figure 4-16: X1 Long Immediate Format (X1_Imm16)

313233343536

MT_Imm15_X1[5:0]

373839404142

SrcA_X1

4344454647484950

MT_Imm15_X1[13:6]

51525354555657

ImmOpcodeExtension_X1

58

MT_Imm15_X1[14:14]

59606162

Opcode_X1

313233343536

Dest_X1

3738394041424344454647484950

MF_Imm15_X1[13:0]

51525354555657

ImmOpcodeExtension_X1

58

MF_Imm15_X1[14:14]

59606162

Opcode_X1

313233343536

Dest_X1

373839404142

SrcA_X1

43444546474849505152535455565758

Imm16_X1

59606162

Opcode_X1

Tile Processor User Architecture Manual 23

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

The X1 Unary format is used for instructions which require a destination register, and a single
operand register. For example:

{ lw r0, r1 } // Load the contents of the word addressed by r1 into r0

Figure 4-17: X1 Unary Format (X1_Unary)

The X1 Shift Format is used for instructions that require a destination register, a source register,
and a 5-bit shift count. For example:

// Left shift the contents of r1 5-bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 4-18: X1 Shift Format (X1_Shift)

The X1 Masked Merge format is used for the masked merge instruction. For example:

// Merge bits 5 through 7 of r1 into the contents of r2
//and place the result in r0
{ mm, r0, r1, r2, 5, 7 }

Figure 4-19: X1 Masked Merge Format (X1_MM)

313233343536

Dest_X1

373839404142

SrcA_X1

4344454647

UnOpcodeExtension_X1

48495051525354555657

UnShOpcodeExtension_X1

58

S_X1

59606162

Opcode_X1

313233343536

Dest_X1

373839404142

SrcA_X1

4344454647

ShAmt_X1

48495051525354555657

UnShOpcodeExtension_X1

58

S_X1

59606162

Opcode_X1

313233343536

Dest_X1

373839404142

SrcA_X1

434445464748

SrcB_X1

4950515253

MMEnd_X1

5455565758

MMStart_X1

59606162

Opcode_X1

Chapter 4 Processor Engine Instruction Set

24 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

The X1 branch format is used to encode branches. The branch offset is represented as a signed
16-bit bundle offset. For example:

{ bnz r0, br_target}// Branch to br_target if the contents of r0 is not zero

Figure 4-20: X1 Branch Format (X1_Br)

The X1 Jump format is used to encode forward or backwards jumps. The jump offset is repre-
sented as an unsigned 28-bit bundle offset. For example:

{ j jump_target } // Jump to jump_target

Figure 4-21: X1 Jump Format (X1_J)

X0 Instruction Formats
The X0 RRR format encodes an operation, which requires a destination register and two source
operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 4-22: X0 RRR Format (X0_RRR)

31323334

BrType_X1

3536

BrOff_X1[16:15]

373839404142

SrcA_X1

434445464748495051525354555657

BrOff_X1[14:0]

58

S_X1

59606162

Opcode_X1

31323334

JOff_X1[20:17]

3536

JOff_X1[16:15]

373839404142

JOff_X1[26:21]

434445464748495051525354555657

JOff_X1[14:0]

58

JOff_X1[27:27]

59606162

Opcode_X1

012345

Dest_X0

67891011

SrcA_X0

121314151617

SrcB_X0

181920212223242526

RRROpcodeExtension_X0

27

S_X0

282930

Opcode_X0

Tile Processor User Architecture Manual 25

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

The X0_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 4-23: X0 Immediate Format (X0_Imm8)

The X0 Long Immediate Format is used for instructions that require a destination register, a
source register, and a signed 16-bit immediate operand. For example:

// Add 0x1234 to the contents of register 1 and place the result in register 0
{ addli r0, r1, 0x1234 }

Figure 4-24: X0 Long Immediate Format (X0_Imm16)

The X0 Unary format is used for instructions that require a destination register and a single oper-
and register. For example:

{ bytex r0, r1 } // Exchange the bytes in r1 and place the result in r0

Figure 4-25: X0 Unary Format (X0_Unary)

012345

Dest_X0

67891011

SrcA_X0

1213141516171819

Imm8_X0

20212223242526

ImmOpcodeExtension_X0

27

S_X0

282930

Opcode_X0

012345

Dest_X0

67891011

SrcA_X0

12131415161718192021222324252627

Imm16_X0

282930

Opcode_X0

012345

Dest_X0

67891011

SrcA_X0

1213141516

UnOpcodeExtension_X0

17181920212223242526

UnShOpcodeExtension_X0

27

S_X0

282930

Opcode_X0

Chapter 4 Processor Engine Instruction Set

26 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

The X0 Shift Format is used for instructions that require a destination register, a source register,
and a 5-bit shift count. For example:

// Left shift the contents of r1 5-bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 4-26: X0 Shift Format (X0_Shift)

The X0 Masked Merge format is used for the masked merge instruction. For example:

// Merge bits 5 through 7 of r1 into the contents of r2
//and place the result in r0
{ mm, r0, r1, r2, 5, 7 }

Figure 4-27: X0 Masked Merge Format (X0_MM)

4.1.1.2 Y Instruction Formats

Figure 4-28: Y1 Specific Format

012345

Dest_X0

67891011

SrcA_X0

1213141516

ShAmt_X0

17181920212223242526

UnShOpcodeExtension_X0

27

S_X0

282930

Opcode_X0

012345

Dest_X0

67891011

SrcA_X0

121314151617

SrcB_X0

1819202122

MMEnd_X0

2324252627

MMStart_X0

282930

Opcode_X0

31

Y1_Specific

Y2_Specific

Y1_Specific

5051

Mode=Y

596263

Tile Processor User Architecture Manual 27

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-29: Y0 Specific Format

Y2 Instruction Formats
The Y2 Load Store Format is used to encode load or store instructions. Examples:

{ lw r0, r1 } // Load the contents of the word addressed by r1 into r0
{ sw r0, r1} // Store the contents of register r1 into the word

// addressed by r0

Figure 4-30: Y2 Load Store Format (Y2_LS)

0

Y0_Specific

Y2_Specific

Y0_Specific

1920262730

202122232425

SrcBDest_Y2

26

SrcA_Y2[0:0]

5152535455

SrcA_Y2[5:1]

565758

Opcode_Y2

Chapter 4 Processor Engine Instruction Set

28 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Y1 Instruction Formats
The Y1 RRR format encodes an operation which requires a destination register, and two source
registers. The Y1 RRR format encodes an operation, which requires a destination register and two
source operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 4-31: Y1 RRR Format (Y1_RRR)

The Y1_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 4-32: Y1 Immediate Format (Y1_Imm8)

The Y1 Unary format is used for instructions that require a destination register, and a single oper-
and register. For example:

{ lw r0, r1 } // Load the contents of the word addressed by r1 into r0

Figure 4-33: Y1 Unary Format (Y1_Unary)

313233343536

Dest_Y1

373839404142

SrcA_Y1

434445464748

SrcB_Y1

4950

RRROpcodeExtension_Y1

59606162

Opcode_Y1

313233343536

Dest_Y1

373839404142

SrcA_Y1

4344454647484950

Imm8_Y1

59606162

Opcode_Y1

313233343536

Dest_Y1

373839404142

SrcA_Y1

4344454647

UnOpcodeExtension_Y1

484950

UnShOpcodeExtension_Y1

59606162

Opcode_Y1

Tile Processor User Architecture Manual 29

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

The Y1 Shift Format is used for instructions that require a destination register, a source register,
and a 5-bit shift count. For example:

// Left shift the contents of r1 5-bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 4-34: Y1 Shift Format (Y1_Shift)

Y0 Instruction Formats
The Y0 RRR format encodes an operation, which requires a destination register and two source
operands. For example:

{add r0, r1, r2} // Add r1 and r2 placing result into r0

Figure 4-35: Y0 RRR Format (Y0_RRR)

The Y0_imm8 format encodes an operation that requires a destination register, a source register,
and an 8-bit signed immediate operand. For example:

{ addi r0, r1, -13} // Add -13 to r1 and place result in r0

Figure 4-36: Y0 Immediate Format (Y0_Imm8)

313233343536

Dest_Y1

373839404142

SrcA_Y1

4344454647

ShAmt_Y1

484950

UnShOpcodeExtension_Y1

59606162

Opcode_Y1

012345

Dest_Y0

67891011

SrcA_Y0

121314151617

SrcB_Y0

1819

RRROpcodeExtension_Y0

27282930

Opcode_Y0

012345

Dest_Y0

67891011

SrcA_Y0

1213141516171819

Imm8_Y0

27282930

Opcode_Y0

Chapter 4 Processor Engine Instruction Set

30 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

The Y0 Unary format is used for instructions that require a destination register and a single oper-
and register. For example:

{ bytex r0, r1 } // Exchange the bytes in r1 and place the result in r0

Figure 4-37: Y0 Unary Format (Y0_Unary)

The Y0 Shift Format is used for instructions that require a destination register, a source register,
and a 5-bit shift count. For example:

// Left shift the contents of r1 5-bits and place the result in r0.
{ shli r0, r1, 5 }

Figure 4-38: Y0 Shift Format (Y0_Shift)

4.1.2 Definitions and Semantics
Throughout the main processor’s instruction reference, several function calls, types, and constants
are utilized to define the function of a particular instruction. This section describes the functional-
ity and values of each of these functions, types, and constants. Unless otherwise stated, operators
and precedence in the instruction reference follow the same rules as ANSI C.

4.1.2.1 Constants

WORD_SIZE 32 The size of a machine word in bits. The Tile Proces-
sor is a 32-bit machine.

WORD_MASK 0xFFFFffff A mask to represent all of the bits in a word.

WORD_ADDR_MASK 0xFFFFfffc A mask that represents the portion of an address
that forms a word aligned mask.

HALF_WORD_SIZE 16 The size of half of a machine word in bits. The Tile
Processor is a 32-bit machine thus half the word
length is 16.

012345

Dest_Y0

67891011

SrcA_Y0

1213141516

UnOpcodeExtension_Y0

171819

UnShOpcodeExtension_Y0

27282930

Opcode_Y0

012345

Dest_Y0

67891011

SrcA_Y0

1213141516

ShAmt_Y0

171819

UnShOpcodeExtension_Y0

27282930

Opcode_Y0

Tile Processor User Architecture Manual 31

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

HALF_WORD_ADDR_MASK 0xFFFFfffe A mask that represents the portion of an address
that forms a half word aligned mask.

BYTE_SIZE 8 The number of bits in a byte.

BYTE_SIZE_LOG_2 3 The logarithm base 2 of the number of bits in a
byte.

BYTE_MASK 0xFF A mask to represent all of the bits in a byte.

BACKWARD_OFFSET 0x80000000 A constant address offset added to the instruction
specified offset in backwards jump instructions. For
more information, refer to “Control Instructions”
on page 95.

INSTRUCTION_SIZE 64 The length in bits of an instruction (bundle) in the
Tile Processor architecture.

INSTRUCTION_SIZE_LOG_2 6 The logarithm base 2 of the length in bits of an
instruction (bundle) in the Tile Processor.

ALIGNED_INSTRUCTION_MASK 0xFFFFfff8 A mask that selects the relevant bits for the address
of an aligned instruction.

BYTE_16_ADDR_MASK 0xFFFFfff0 A mask that represents the portion of an address
that forms a 16-byte aligned block

ZERO_REGISTER 63 The ZERO_REGISTER always reads as 0, and
ignores all writes.

NUMBER_OF_REGISTERS 64 The number of architecturally visible general pur-
pose registers in the main processor.

LINK_REGISTER 55 The LINK_REGISTER is used as an implicit desti-
nation for some control instructions.

EX_CONTEXT_SPRF_OFFSET The starting SPR address of the interrupt context
save blocks. The save blocks are indexed by protec-
tion level of the interrupt handler being invoked.

EX_CONTEXT_SIZE The length of the interrupt context save block.

PC_EX_CONTEXT_OFFSET The register offset of the saved PC in the interrupt
save context block.

PROTECTION_LEVEL_EX_CONTEXT_OFFSET The register offset of the saved protection level in
the interrupt save context block.

INTERRUPT_MASK_EX_CONTEXT_OFFSET The register offset of the saved interrupt mask in
the interrupt save context block.

Chapter 4 Processor Engine Instruction Set

32 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

4.1.2.2 Types

4.1.2.3 Functions

SignedMachineWord This is a signed WORD_SIZE type.

UnsignedMachineWord This is a unsigned WORD_SIZE type.

RegisterFileEntry This type represents a register file entry. This type
can be cast to a UnsignedMachineWord. This type
has the assignment operator overloaded for assign-
ments of UnsignedMachineWord.

signExtend17 Sign extends a 17-bit value up to the machine’s
word length WORD_SIZE. The type of the returned
value of this function is SignedMachineWord;

signExtend16 Sign extends a 16-bit value up to the machine’s
word length WORD_SIZE. The type of the returned
value of this function is SignedMachineWord;

signExtend8 Sign extends an 8-bit value up to the machine’s
word length WORD_SIZE. The type of the returned
value of this function is SignedMachineWord;

signExtend1 Sign extends an 1-bit value up to the machine’s
word length WORD_SIZE. The type of the returned
value of this function is SignedMachineWord;

memoryReadWord Returns the value stored in memory of length
WORD_SIZE at the address passed to this function.
The value is not actually extended since it is
already the same as WORD_SIZE/UnsignedMa-
chineWord. The address passed as a parameter to
this function is processed depending on the mem-
ory mode and contents of the TLB. The Tile Proces-
sor is a little endian machine.

memoryReadHalfWord Returns the value stored in memory of length
HALF_WORD_SIZE at the address passed to this
function. This function returns the value 0
extended to a UnsignedMachineWord. The
address passed as a parameter to this function is
processed depending on the memory mode and
contents of the TLB. The Tile Processor is a little
endian machine.

memoryReadByte Returns the value stored in memory of length
BYTE_SIZE at the address passed to this function.
This function returns the value zero extended to a
UnsignedMachineWord. The address passed as a
parameter to this function is processed depending
on the memory mode and contents of the TLB. The
Tile Processor is a little endian machine.

Tile Processor User Architecture Manual 33

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

memoryWriteWord Writes to memory WORD_SIZE bits of the second
parameter into the address passed to this function
as the first parameter. The address passed as the
first parameter to this function is processed
depending on the memory mode and contents of
the TLB. The Tile Processor is a little endian
machine.

memoryWriteHalfWord Writes to memory HALF_WORD_SIZE bits of the
second parameter into the address passed to this
function as the first parameter. The address passed
as the first parameter to this function is processed
depending on the memory mode and contents of
the TLB. The Tile Processor is a little endian
machine.

memoryWriteByte Writes to memory BYTE_SIZE bits of the second
parameter into the address passed to this function
as the first parameter. The address passed as the
first parameter to this function is processed
depending on the memory mode and contents of
the TLB. The Tile Processor is a little endian
machine.

setNextPC Set the program counter to this function’s parame-
ter.

getCurrentPC Return as an UnsignedMachineWord the current
program counter.

branchHintedCorrect Denote that a control flow event has occurred that
has been hinted correctly.

branchHintedIncorrect Denote that a control flow event has occurred that
has been hinted incorrectly.

getCurrentProtectionLevel Returns as an UnsignedMachineWord the current
protection level.

setProtectionLevel Sets the current protection level from the first
parameter.

setInterruptCriticalSection Sets the current interrupt critical section bit from
the first parameter.

flushCacheLine Flushes the cache line from a tile’s local cache
which contains the address passed to this function
as a parameter.

invalidataCacheLine Invalidates the cache line from a tile’s local cache
which contains the address passed to this function
as a parameter.

flushAndInvalidataCacheLine Flushes and invalidates the cache line from a tile’s
local cache which contains the address passed to
this function as a parameter.

rf[] Returns the indexed register file entry with type
RegisterFileEntry. The index is an integer in
the range of 0 to NUMBER_OF_REGISTERS - 1.

sprf[] Returns the indexed special purpose register file
entry. The index is an integer in the range of 0 to
215 - 1.

Chapter 4 Processor Engine Instruction Set

34 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

pushReturnStack Pushes the parameter onto the return prediction
stack.

popReturnStack Returns the top of the return prediction stack and
pops the stack.

indirectBranchHintedIncorrect Denote that an indirect branch has occurred and
has been hinted incorrectly.

indirectBranchHintedCorrect Denote that an indirect branch has occurred and
has been hinted correctly.

dtlbProbe See “dtlbpr: Data TLB Probe” on page 184.

memoryFence See “mf: Memory Fence” on page 188.

getHighHalfWordUnsigned Returns the high-order half word of the parameter.

getLowHalfWordUnsigned Returns the low-order half word of the parameter.

iCoherent See “icoh: Instruction Stream Coherence” on page
349.

fnop See “fnop: Filler No Operation” on page 214.

nop See “nop: Architectural No Operation” on page
216.

drain See “drain: Drain Instruction” on page 348.

illegalInstruction Denotes that an illegal instruction has occurred.

nap See “nap: Nap” on page 354.

softwareInterrupt Denotes that a software interrupt has occurred. The
parameter specifies which software interrupt will
be generated.

Tile Processor User Architecture Manual 35

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.3 Master List of Main Processor Instructions
Table 4-3 provides a complete list instructions in alphabetic order. Pseudo Instructions are listed
on page 359.

Table 4-3. Master List of Main Processor Instructions

Register Type Description

add Arithmetic Add Word (Refer to page 44.)

addb SIMD Add Bytes (Refer to page 220.)

addbs_u SIMD Add Bytes Saturating Unsigned (Refer to page 222.)

addh SIMD Add Half Words (Refer to page 224.)

addhs SIMD Add Half Words (Refer to page 226.)

addi Arithmetic Add Immediate Word (Refer to page 46.)

addib SIMD Add Immediate Bytes (Refer to page 228.)

addih SIMD Add Immediate Half Words (Refer to page 229.)

addli Arithmetic Add Long Immediate Word (Refer to page 48.)

addlis Arithmetic Add Long Immediate Static Write Word (Refer to page 49.)

adds Arithmetic Add Word Saturating (Refer to page 50.)

adiffb_u SIMD Absolute Difference Unsigned Bytes (Refer to page 231.)

adiffh SIMD Absolute Difference Half Words (Refer to page 232.)

and Logical And Word (Refer to page 122.)

andi Logical And Immediate Word (Refer to page 124.)

auli Arithmetic Add Upper Long Immediate Word (Refer to page 52.)

avgb_u SIMD Average Byte Unsigned (Refer to page 233.)

avgh SIMD Average Half Words (Refer to page 234.)

bbns Control Branch Bit Not Set Word (Refer to page 96.)

bbnst Control Branch Bit Not Set Taken Word (Refer to page 97.)

bbs Control Branch Bit Set Word (Refer to page 98.)

bbst Control Branch Bit Set Taken Word (Refer to page 99.)

bgez Control Branch Greater Than or Equal to Zero Word (Refer to page 100.)

bgezt Control Branch Greater Than or Equal to Zero Predict Taken Word (Refer
to page 101.)

bgz Control Branch Greater Than Zero Word (Refer to page 102.)

Chapter 4 Processor Engine Instruction Set

36 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bgzt Control Branch Greater Than Zero Predict Taken Word (Refer to page 103.)

bitx Bit Manipulation Bit Exchange Word (Refer to page 64.)

blez Control Branch Less Than or Equal to Zero Word (Refer to page 104.)

blezt Control Branch Less Than or Equal to Zero Taken Word (Refer to page 105.)

blz Control Branch Less Than Zero Word (Refer to page 106.)

blzt Control Branch Less Than Zero Taken Word (Refer to page 107.)

bnz Control Branch Not Zero Word (Refer to page 108.)

bnzt Control Branch Not Zero Predict Taken Word (Refer to page 109.)

bytex Bit Manipulation Byte Exchange Word (Refer to page 66.)

bz Control Branch Zero Word (Refer to page 110.)

bzt Control Branch Zero Predict Taken Word (Refer to page 111.)

clz Bit Manipulation Count Leading Zeros Word (Refer to page 68.)

crc32_32 Bit Manipulation CRC32 32-bit Step (Refer to page 70.)

crc32_8 Bit Manipulation CRC32 8-bit Step (Refer to page 71.)

ctz Bit Manipulation Count Trailing Zeros Word (Refer to page 72.)

align Bit Manipulation Double Word Align (Refer to page 74.)

drain System Drain Instruction (Refer to page 348.)

dtlbpr Memory Maintenance Data TLB Probe (Refer to page 184.)

finv Memory Maintenance Flush and Invalidate Cache Line (Refer to page 185.)

flush Memory Maintenance Flush Cache Line (Refer to page 186.)

fnop NOP Filler No Operation (Refer to page 214.)

icoh System Instruction Stream Coherence (Refer to page 349.)

ill System Illegal Instruction (Refer to page 350.)

inthb SIMD Interleave High Byte (Refer to page 235.)

inthh SIMD Interleave High Half Words (Refer to page 237.)

intlb SIMD Interleave Low Byte (Refer to page 239.)

intlh SIMD Interleave Low Half Words (Refer to page 241.)

inv Memory Maintenance Invalidate Cache Line (Refer to page 187.)

iret System Interrupt Return (Refer to page 351.)

Table 4-3. Master List of Main Processor Instructions (continued)

Register Type Description

Tile Processor User Architecture Manual 37

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

jalb Control Jump and Link Backward (Refer to page 112.)

jalf Control Jump and Link Forward (Refer to page 113.)

jalr Control Jump and Link Register (Refer to page 114.)

jalrp Control Jump and Link Register Predict (Refer to page 115.)

jb Control Jump Backward (Refer to page 116.)

jf Control Jump Forward (Refer to page 117.)

jr Control Jump Register (Refer to page 118.)

jrp Control Jump Register Predict (Refer to page 119.)

lb Memory Load Byte (Refer to page 164.)

lb_u Memory Load Byte Unsigned (Refer to page 165.)

lbadd Memory Load Byte and Add (Refer to page 166.)

lbadd_u Memory Load Byte Unsigned and Add (Refer to page 167.)

lh Memory Load Half Word (Refer to page 168.)

lh_u Memory Load Half Word Unsigned (Refer to page 169.)

lhadd Memory Load Half Word and Add (Refer to page 170.)

lhadd_u Memory Load Half Word Unsigned and Add (Refer to page 171.)

lnk Control Link (Refer to page 120.)

lw Memory Load Word (Refer to page 172.)

lw_na Memory Load Word No Alignment Trap (Refer to page 173.)

lwadd Memory Load Word and Add (Refer to page 174.)

lwadd_na Memory Load Word No Alignment Trap and Add (Refer to page 175.)

maxb_u SIMD Maximum Byte Unsigned (Refer to page 243.)

maxh SIMD Maximum Half Words (Refer to page 245.)

maxib_u SIMD Maximum Immediate Byte Unsigned (Refer to page 247.)

maxih SIMD Maximum Immediate Half Words (Refer to page 249.)

mf Memory Maintenance Memory Fence (Refer to page 188.)

mfspr System Move from Special Purpose Register Word (Refer to page 352.)

minb_u SIMD Minimum Byte Unsigned (Refer to page 251.)

minh SIMD Minimum Half Words (Refer to page 253.)

Table 4-3. Master List of Main Processor Instructions (continued)

Register Type Description

Chapter 4 Processor Engine Instruction Set

38 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

minib_u SIMD Minimum Immediate Byte Unsigned (Refer to page 255.)

minih SIMD Minimum Immediate Half Words (Refer to page 257.)

mm Logical Masked Merge Word (Refer to page 126.)

mnz Logical Mask Not Zero Word (Refer to page 128.)

mnzb SIMD Mask Not Zero Byte (Refer to page 259.)

mnzh SIMD Mask Not Zero Half Words (Refer to page 261.)

mtspr System Move to Special Purpose Register Word (Refer to page 353.)

mulhh_ss Multiply Multiply High Signed High Signed Half Word (Refer to page 191.)

mulhh_su Multiply Multiply High Signed High Unsigned Half Word (Refer to page 192.)

mulhh_uu Multiply Multiply High Unsigned High Unsigned Half Word (Refer to page 193.)

mulhha_ss Multiply Multiply Accumulate High Signed High Signed Half Word (Refer
to page 194.)

mulhha_su Multiply Multiply Accumulate High Signed High Unsigned Half Word (Refer
to page 195.)

mulhha_uu Multiply Multiply Accumulate High Unsigned High Unsigned Half Word (Refer
to page 196.)

mulhhsa_uu Multiply Multiply Shift Accumulate High Unsigned High Unsigned Half Word
(Refer to page 197.)

mulhl_ss Multiply Multiply High Signed Low Signed Half Word (Refer to page 198.)

mulhl_su Multiply Multiply High Signed Low Unsigned Half Word (Refer to page 199.)

mulhl_us Multiply Multiply High Unsigned Low Signed Half Word (Refer to page 200.)

mulhl_uu Multiply Multiply High Unsigned Low Unsigned Half Word (Refer to page 201.)

mulhla_ss Multiply Multiply Accumulate High Signed Low Signed Half Word (Refer
to page 202.)

mulhla_su Multiply Multiply Accumulate High Signed Low Unsigned Half Word (Refer
to page 203.)

mulhla_us Multiply Multiply Accumulate High Unsigned Low Signed Half Word (Refer
to page 204.)

mulhla_uu Multiply Multiply Accumulate High Unsigned Low Unsigned Half Word (Refer
to page 205.)

mulhlsa_uu Multiply Multiply Shift Accumulate High Unsigned Low Unsigned Half Word
(Refer to page 206.)

mulll_ss Multiply Multiply Low Signed Low Signed Half Word (Refer to page 207.)

mulll_su Multiply Multiply Low Signed Low Unsigned Half Word (Refer to page 208.)

Table 4-3. Master List of Main Processor Instructions (continued)

Register Type Description

Tile Processor User Architecture Manual 39

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulll_uu Multiply Multiply Low Unsigned Low Unsigned Half Word (Refer to page 209.)

mullla_ss Multiply Multiply Accumulate Low Signed Low Signed Half Word (Refer
to page 210.)

mullla_su Multiply Multiply Accumulate Low Signed Low Unsigned Half Word (Refer
to page 211.)

mullla_uu Multiply Multiply Accumulate Low Unsigned Low Unsigned Half Word (Refer
to page 212.)

mulllsa_uu Multiply Multiply Shift Accumulate Low Unsigned Low Unsigned Half Word
(Refer to page 212.)

mvnz Logical Move Not Zero Word (Refer to page 130.)

mvz Logical Move Zero Word (Refer to page 131.)

mz Logical Mask Zero Word (Refer to page 132.)

mzb SIMD Mask Zero Byte (Refer to page 263.)

mzh SIMD Mask Zero Half Words (Refer to page 265.)

nap System Nap (Refer to page 354.)

nop NOP Architectural No Operation (Refer to page 216.)

nor Logical Nor Word (Refer to page 134.)

or Logical Or Word (Refer to page 136.)

ori Logical Or Immediate Word (Refer to page 138.)

packhb SIMD Pack Low Byte (Refer to page 269.)

packhs SIMD Pack High Half Words Saturating (Refer to page 271.)

packlb SIMD Pack Low Byte (Refer to page 273.)

packbs_u SIMD Pack Half Words Saturating (Refer to page 267.)

pcnt Bit Manipulation Population Count Word (Refer to page 75.)

rl Logical Rotate Left Word (Refer to page 140.)

rli Logical Rotate Left Immediate Word (Refer to page 142.)

s1a Arithmetic Shift Left One Add Word (Refer to page 53.)

s2a Arithmetic Shift Left Two Add Word (Refer to page 55.)

s3a Arithmetic Shift Left Three Add Word (Refer to page 57.)

sadab_u SIMD Sum of Absolute Difference Accumulate Unsigned Bytes (Refer
to page 267.)

Table 4-3. Master List of Main Processor Instructions (continued)

Register Type Description

Chapter 4 Processor Engine Instruction Set

40 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sadah SIMD Sum of Absolute Difference Accumulate Half Words (Refer
to page 276.)

sadah_u SIMD Sum of Absolute Difference Accumulate Unsigned Half Words (Refer
to page 277.)

sadb_u SIMD Sum of Absolute Difference Unsigned Bytes (Refer to page 278.)

sadh SIMD Sum of Absolute Difference Half Words (Refer to page 279.)

sadh_u SIMD Sum of Absolute Difference Unsigned Half Words (Refer to page 280.)

sb Memory Store Byte (Refer to page 176.)

sbadd Memory Store Byte and Add (Refer to page 177.)

seq Compare Set Equal Word (Refer to page 77.)

seqb SIMD Set Equal to Byte (Refer to page 281.)

seqh SIMD Set Equal To Half Words (Refer to page 283.)

seqi Compare Set Equal Immediate Word (Refer to page 79.)

seqib SIMD Set Equal To Immediate Byte (Refer to page 285.)

seqih SIMD Set Equal To Immediate Half Words (Refer to page 287.)

sh Memory Store Half Word (Refer to page 178.)

shadd Memory Store Half Word and Add (Refer to page 179.)

shl Logical Logical Shift Left Word (Refer to page 144.)

shlb SIMD Logical Shift Left Bytes (Refer to page 289.)

shlh SIMD Logical Shift Left Half Words (Refer to page 291.)

shli Logical Logical Shift Left Immediate Word (Refer to page 146.)

shlib SIMD Logical Shift Left Immediate Bytes (Refer to page 292.)

shlih SIMD Logical Shift Left Immediate Half Words (Refer to page 294.)

shr Logical Logical Shift Right Word (Refer to page 148.)

shrb SIMD Logical Shift Right Bytes (Refer to page 296.)

shrh SIMD Logical Shift Right Half Words (Refer to page 298.)

shri Logical Logical Shift Right Immediate Word (Refer to page 150.)

shrib SIMD Logical Shift Right Immediate Bytes (Refer to page 300.)

shrih SIMD Logical Shift Right Immediate Half Words (Refer to page 302.)

slt Compare Set Less Than Word (Refer to page 81.)

Table 4-3. Master List of Main Processor Instructions (continued)

Register Type Description

Tile Processor User Architecture Manual 41

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

slt_u Compare Set Less Than Unsigned Word (Refer to page 83.)

sltb SIMD Set Less Than Byte (Refer to page 304.)

sltb_u SIMD Set Less Than Unsigned Byte (Refer to page 306.)

slte Compare Set Less Than or Equal Word (Refer to page 85.)

slte_u Compare Set Less Than or Equal Unsigned Word (Refer to page 87.)

slteb SIMD Set Less Than or Equal Byte (Refer to page 308.)

slteb_u SIMD Set Less Than or Equal Unsigned Byte (Refer to page 310.)

slteh SIMD Set Less Than or Equal Half Words (Refer to page 312.)

slteh_u SIMD Set Less Than or Equal Unsigned Half Words (Refer to page 314.)

slth SIMD Set Less Than Half Words (Refer to page 316.)

slth_u SIMD Set Less Than Unsigned Half Words (Refer to page 318.)

slti Compare Set Less Than Immediate Word (Refer to page 89.)

slti_u Compare Set Less Than Unsigned Immediate Word (Refer to page 91.)

sltib SIMD Set Less Than Immediate Byte (Refer to page 320.)

sltib_u SIMD Set Less Than Unsigned Immediate Byte (Refer to page 322.)

sltih SIMD Set Less Than Immediate Half Words (Refer to page 324.)

sltih_u SIMD Set Less Than Unsigned Immediate Half Words (Refer to page 326.)

sne Compare Set Not Equal Word (Refer to page 93.)

sneb SIMD Set Not Equal To Byte (Refer to page 328.)

sneh SIMD Set Not Equal To Half Words (Refer to page 330.)

sra Logical Arithmetic Shift Right Word (Refer to page 152.)

srab SIMD Arithmetic Shift Right Bytes (Refer to page 332.)

srah SIMD Arithmetic Shift Right Half Words (Refer to page 334.)

srai Logical Arithmetic Shift Right Immediate Word (Refer to page 154.)

sraib SIMD Arithmetic Shift Right Immediate Bytes (Refer to page 336.)

sraih SIMD Arithmetic Shift Right Immediate Half Words (Refer to page 338.)

sub Arithmetic Subtract Word (Refer to page 59.)

subs Arithmetic Subtract Word Saturating (Refer to page 61.)

subb SIMD Subtract Bytes (Refer to page 340.)

Table 4-3. Master List of Main Processor Instructions (continued)

Register Type Description

Chapter 4 Processor Engine Instruction Set

42 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

subb_u SIMD Subtract Bytes Saturating Unsigned (Refer to page 342.)

subh SIMD Subtract Half Words (Refer to page 344.)

subhs SIMD Subtract Half Words Saturating (Refer to page 345.)

sw Memory Store Word (Refer to page 180.)

swadd Memory Store Word and Add (Refer to page 181.)

swint0 System Software Interrupt 0 (Refer to page 355.)

swint1 System Software Interrupt 1 (Refer to page 356.)

swint2 System Software Interrupt 2 (Refer to page 357.)

swint3 System Software Interrupt 3 (Refer to page 358.)

tblidxb0 Logical Table Index Byte 0 (Refer to page 156.)

tblidxb1 Logical Table Index Byte 1 (Refer to page 157.)

tblidxb2 Logical Table Index Byte 2 (Refer to page 158.)

tblidxb3 Logical Table Index Byte 3 (Refer to page 159.)

tns Memory Test and Set Word (Refer to page 182.)

wh64 Memory Write Hint 64 Bytes (Refer to page 190.)

xor Logical Exclusive Or Word (Refer to page 160.)

xori Logical Exclusive Or Immediate Word (Refer to page 162.)

Table 4-3. Master List of Main Processor Instructions (continued)

Register Type Description

Tile Processor User Architecture Manual 43

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.4 Arithmetic Instructions
The following sections provide detailed descriptions of arithmetic instructions listed
alphabetically.

• add: Add Word

• addi: Add Immediate Word

• addli: Add Long Immediate Word

• addlis: Add Long Immediate Static Write Word

• adds: Add Word Saturating

• auli: Add Upper Long Immediate Word

• s1a: Shift Left One Add Word

• s2a: Shift Left Two Add Word

• s3a: Shift Left Three Add Word

• sub: Subtract Word

• subs: Subtract Word Saturating

Chapter 4 Processor Engine Instruction Set

44 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

add: Add Word

Syntax

add Dest, SrcA, SrcB

Example

add r5, r6, r7

Description

Adds two words together.

Functional Description

rf[Dest] = rf[SrcA] + rf[SrcB];

Valid Pipelines

Encoding

Figure 4-39: add in X0 Bit Descriptions

Figure 4-40: add in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000000011

RRROpcodeExtension_X0 - 0x3

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000000011

RRROpcodeExtension_X1 - 0x3

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 45

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-41: add in Y0 Bit Descriptions

Figure 4-42: add in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0001

Opcode_Y0 - 0x1

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

00

RRROpcodeExtension_Y1 - 0x0

59606162

0001

Opcode_Y1 - 0x1

Chapter 4 Processor Engine Instruction Set

46 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

addi: Add Immediate Word

Syntax

addi Dest, SrcA, Imm8

Example

addi r5, r6, 5

Description

Adds one word with a sign extended immediate.

Functional Description

rf[Dest] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-43: addi in X0 Bit Descriptions

Figure 4-44: addi in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000011

ImmOpcodeExtension_X0 - 0x3

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0000011

ImmOpcodeExtension_X1 - 0x3

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 47

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-45: addi in Y0 Bit Descriptions

Figure 4-46: addi in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516171819

i

Imm8_Y0 - Imm8

27282930

1001

Opcode_Y0 - 0x9

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647484950

i

Imm8_Y1 - Imm8

59606162

0111

Opcode_Y1 - 0x7

Chapter 4 Processor Engine Instruction Set

48 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

addli: Add Long Immediate Word

Syntax

addli Dest, SrcA, Imm16

Example

addli r5, r6, 0x1234

Description

Adds one word with a sign extended long immediate.

Functional Description

rf[Dest] = rf[SrcA] + signExtend16(Imm16);

Valid Pipelines

Encoding

Figure 4-47: addli in X0 Bit Descriptions

Figure 4-48: addli in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

12131415161718192021222324252627

i

Imm16_X0 - Imm16

282930

010

Opcode_X0 - 0x2

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

43444546474849505152535455565758

i

Imm16_X1 - Imm16

59606162

0011

Opcode_X1 - 0x3

Tile Processor User Architecture Manual 49

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

addlis: Add Long Immediate Static Write Word

Syntax

addlis Dest, SrcA, Imm16

Example

addlis r5, r6, 0x1234

Description

Adds one word with a sign extended long immediate. The result is placed in the destination reg-
ister and enqueued in the static network output port.

Functional Description

rf[Dest] = rf[SrcA] + signExtend16(Imm16);

Valid Pipelines

Encoding

Figure 4-49: addlis in X0 Bit Descriptions

Figure 4-50: addlis in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

12131415161718192021222324252627

i

Imm16_X0 - Imm16

282930

001

Opcode_X0 - 0x1

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

43444546474849505152535455565758

i

Imm16_X1 - Imm16

59606162

0010

Opcode_X1 - 0x2

Chapter 4 Processor Engine Instruction Set

50 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

adds: Add Word Saturating

Syntax

adds Dest, SrcA, SrcB

Example

adds r5, r6, r7

Description

Adds two words together saturating the result at the minimum negative value or the maximum
positive value.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] =
signed_saturate32((SignedDoubleMachineWord) rf[SrcA] +

(SignedDoubleMachineWord) rf[SrcB])

Valid Pipelines

Encoding

Figure 4-51: adds in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100000

RRROpcodeExtension_X0 - 0x60

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 51

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-52: adds in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000010

RRROpcodeExtension_X1 - 0x42

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

52 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

auli: Add Upper Long Immediate Word

Syntax

auli Dest, SrcA, Imm16

Example

auli r5, r6, 0x1234

Description

Returns the addition of the first source operand and a sign extended long immediate loaded into
the 16 most significant bits of a word. This instruction only contains an immediate form.

Functional Description

rf[Dest] = rf[SrcA] + (signExtend16(Imm16) << 16);

Valid Pipelines

Encoding

Figure 4-53: auli in X0 Bit Descriptions

Figure 4-54: auli in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

12131415161718192021222324252627

i

Imm16_X0 - Imm16

282930

011

Opcode_X0 - 0x3

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

43444546474849505152535455565758

i

Imm16_X1 - Imm16

59606162

0100

Opcode_X1 - 0x4

Tile Processor User Architecture Manual 53

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

s1a: Shift Left One Add Word

Syntax

s1a Dest, SrcA, SrcB

Example

s1a r5, r6, r7

Description

Shifts the first input operand left by one bit, and then adds the second source operand.

Functional Description

rf[Dest] = (rf[SrcA] << 1) + rf[SrcB];

Valid Pipelines

Encoding

Figure 4-55: s1a in X0 Bit Descriptions

Figure 4-56: s1a in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110111

RRROpcodeExtension_X0 - 0x37

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011101

RRROpcodeExtension_X1 - 0x1D

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

54 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-57: s1a in Y0 Bit Descriptions

Figure 4-58: s1a in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

0001

Opcode_Y0 - 0x1

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

01

RRROpcodeExtension_Y1 - 0x1

59606162

0001

Opcode_Y1 - 0x1

Tile Processor User Architecture Manual 55

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

s2a: Shift Left Two Add Word

Syntax

s2a Dest, SrcA, SrcB

Example

s2a r5, r6, r7

Description

Shifts the first input operand left by two bits, and then adds the second source operand.

Functional Description

rf[Dest] = (rf[SrcA] << 2) + rf[SrcB];

Valid Pipelines

Encoding

Figure 4-59: s2a in X0 Bit Descriptions

Figure 4-60: s2a in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111000

RRROpcodeExtension_X0 - 0x38

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011110

RRROpcodeExtension_X1 - 0x1E

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

56 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-61: s2a in Y0 Bit Descriptions

Figure 4-62: s2a in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

0001

Opcode_Y0 - 0x1

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

10

RRROpcodeExtension_Y1 - 0x2

59606162

0001

Opcode_Y1 - 0x1

Tile Processor User Architecture Manual 57

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

s3a: Shift Left Three Add Word

Syntax

s3a Dest, SrcA, SrcB

Example

s3a r5, r6, r7

Description

Shifts the first input operand left by three bits, and then adds the second source operand.

Functional Description

rf[Dest] = (rf[SrcA] << 3) + rf[SrcB];

Valid Pipelines

Encoding

Figure 4-63: s3a in X0 Bit Descriptions

Figure 4-64: s3a in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111001

RRROpcodeExtension_X0 - 0x39

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011111

RRROpcodeExtension_X1 - 0x1F

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

58 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-65: s3a in Y0 Bit Descriptions

Figure 4-66: s3a in Y0 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

0110

Opcode_Y0 - 0x6

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

01

RRROpcodeExtension_Y1 - 0x1

59606162

0110

Opcode_Y1 - 0x6

Tile Processor User Architecture Manual 59

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

sub: Subtract Word

Syntax

sub Dest, SrcA, SrcB

Example

sub r5, r6, r7

Description

Subtracts one word from another.

Functional Description

rf[Dest] = rf[SrcA] - rf[SrcB];

Valid Pipelines

Encoding

Figure 4-67: sub in X0 Bit Descriptions

Figure 4-68: sub in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011101

RRROpcodeExtension_X0 - 0x5D

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000111111

RRROpcodeExtension_X1 - 0x3F

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

60 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-69: sub in Y0 Bit Descriptions

Figure 4-70: sub in Y0 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

0001

Opcode_Y0 - 0x1

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

11

RRROpcodeExtension_Y1 - 0x3

59606162

0001

Opcode_Y1 - 0x1

Tile Processor User Architecture Manual 61

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

subs: Subtract Word Saturating

Syntax

subs Dest, SrcA, SrcB

Example

subs r5, r6, r7

Description

Subtracts one word from another, saturating the result at the minimum negative value or the
maximum positive value.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] =
signed_saturate32((SignedDoubleMachineWord) rf[SrcA] -

(SignedDoubleMachineWord) rf[SrcB]);

Valid Pipelines

Encoding

Figure 4-71: subs in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100001

RRROpcodeExtension_X0 - 0x61

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

62 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-72: subs in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000011

RRROpcodeExtension_X1 - 0x43

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 63

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.5 Bit Manipulation Instructions
The following sections provide detailed descriptions of bit manipulation instructions listed
alphabetically.

• bitx: Bit Exchange Word

• bytex: Byte Exchange Word

• clz: Count Leading Zeros Word

• crc32_32: CRC32 32-bit Step

• crc32_8: CRC32 8-bit Step

• ctz: Count Trailing Zeros Word

• dword_align: Double Word Align

• pcnt: Population Count Word

Chapter 4 Processor Engine Instruction Set

64 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bitx: Bit Exchange Word

Syntax

bitx Dest, SrcA

Example

bitx r5, r6

Description

Reorders a word such that the most significant bit becomes the least significant bit in the output,
the second most significant bit becomes the second least significant bit in the output, and the nth
most significant bit becomes nth least significant bit in the output.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE); counter++) {

output |=
(((rf[SrcA] >> (counter)) & 0x1) <<
((WORD_SIZE - 1) - counter));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-73: bitx in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

00001

UnOpcodeExtension_X0 - 0x1

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 65

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-74: bitx in Y0 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

00001

UnOpcodeExtension_Y0 - 0x1

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Chapter 4 Processor Engine Instruction Set

66 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bytex: Byte Exchange Word

Syntax

bytex Dest, SrcA

Example

bytex r5, r6

Description

Reorders a word such that the most significant byte becomes the least significant byte in the out-
put, the second most significant byte becomes the second least significant byte in the output, and
the n’th most significant byte becomes n’th least significant byte in the output. This instruction
changes endianness.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output |=
(((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK) <<

 ((((WORD_SIZE / BYTE_SIZE) - 1) - counter) * BYTE_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-75: bytex in XO Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

00010

UnOpcodeExtension_X0 - 0x2

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 67

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-76: bytex in YO Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

00010

UnOpcodeExtension_Y0 - 0x2

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Chapter 4 Processor Engine Instruction Set

68 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

clz: Count Leading Zeros Word

Syntax

clz Dest, SrcA

Example

clz r5, r6

Description

Returns the number leading zeros in a word before a bit is set (1). This instruction scans the input
word from the most significant bit to the least significant bit. The result of this operation can
range from 0 to WORD_SIZE.

Functional Description

uint32_t counter;
for (counter = 0; counter < WORD_SIZE; counter++) {

if ((rf[SrcA] >> (WORD_SIZE - 1 - counter)) & 0x1) {
 break;

}
}
rf[Dest] = counter;

Valid Pipelines

Encoding

Figure 4-77: clz in XO Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

00011

UnOpcodeExtension_X0 - 0x3

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 69

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-78: clz in YO Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

00011

UnOpcodeExtension_Y0 - 0x3

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Chapter 4 Processor Engine Instruction Set

70 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

crc32_32: CRC32 32-bit Step

Syntax

crc32_32 Dest, SrcA, SrcB

Example

crc32_32 r5, r6, r7

Description

Updates a CRC32 value in the first operand with the second operand.

Functional Description

uint32_t accum = rf[SrcA];
uint32_t input = rf[SrcB];
for (uint32_t Counter = 0; Counter < 32; Counter++) {

accum =
(accum >> 1) ^ (((input & 1) ^ (accum & 1)) ? 0xEDB88320 :

0x00000000);
input = input >> 1;

}
rf[Dest] = accum;

Valid Pipelines

Encoding

Figure 4-79: crc32_32 in XO Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001001

RRROpcodeExtension_X0 - 0x9

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 71

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

crc32_8: CRC32 8-bit Step

Syntax

crc32_8 Dest, SrcA, SrcB

Example

crc32_8 r5, r6, r7

Description

Updates a CRC32 value in the first operand with the low-order 8 bits of the second operand.

Functional Description

uint32_t accum = rf[SrcA];
uint32_t input = rf[SrcB];
for (uint32_t Counter = 0; Counter < 8; Counter++) {

accum =
(accum >> 1) ^ (((input & 1) ^ (accum & 1)) ? 0xEDB88320 :

 0x00000000);
input = input >> 1;

}
rf[Dest] = accum;

Valid Pipelines

Encoding

Figure 4-80: crc32_8 in XO Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001010

RRROpcodeExtension_X0 - 0xA

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

72 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

ctz: Count Trailing Zeros Word

Syntax

ctz Dest, SrcA

Example

ctz r5, r6

Description

Returns the number trailing zeros in a word before a bit is set (1). This instruction scans the input
word from the least significant bit to the most significant bit. The result of this operation can
range from 0 to WORD_SIZE.

Functional Description

uint32_t counter;
for (counter = 0; counter < WORD_SIZE; counter++) {

if ((rf[SrcA] >> counter) & 0x1) {
 break;

}
}
rf[Dest] = counter;

Valid Pipelines

Encoding

Figure 4-81: ctz in XO Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

00100

UnOpcodeExtension_X0 - 0x4

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 73

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-82: ctz in YO Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

00100

UnOpcodeExtension_Y0 - 0x4

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Chapter 4 Processor Engine Instruction Set

74 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

dword_align: Double Word Align

Syntax

dword_align Dest, SrcA, SrcB

Example

dword_align r5, r6, r7

Description

Shift a double word by the number of bytes specified by the bottom two bits of the second source
operand. The shift direction is to the right when the processor is in little-endian mode, and to the
left if the processor is in big-endian mode. The source double word is constructed from the concat-
enation of the first source operand and the destination register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] =
(UnsignedMachineWord) (little_endian()?

((((UnsignedDoubleMachineWord)
 ((UnsignedMachineWord) rf[SrcA]) <<
 WORD_SIZE) |

 (UnsignedDoubleMachineWord) ((UnsignedMachineWord) rf[Dest]))
>> (BYTE_SIZE * (rf[SrcB] & 3))) :

 (((((UnsignedDoubleMachineWord) ((UnsignedMachineWord) rf[Dest])
 << WORD_SIZE) |

(UnsignedDoubleMachineWord) ((UnsignedMachineWord) rf[SrcA]))
 << (BYTE_SIZE * (rf[SrcB] & 3))) >> WORD_SIZE));

Valid Pipelines

Encoding

Figure 4-83: dword_align in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011111

RRROpcodeExtension_X0 - 0x5F

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 75

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

pcnt: Population Count Word

Syntax

pcnt Dest, SrcA

Example

pcnt r5, r6

Description

Returns the number of bits set (1) in the source operand. The result of this operation can range
from 0 to WORD_SIZE.

Functional Description

uint32_t counter;
int numberOfOnes = 0;
for (counter = 0; counter < WORD_SIZE; counter++) {

numberOfOnes += (rf[SrcA] >> counter) & 0x1;
}
rf[Dest] = numberOfOnes;

Valid Pipelines

Encoding

Figure 4-84: pcnt in XO Bit Descriptions

Figure 4-85: pcnt in YO Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

00111

UnOpcodeExtension_X0 - 0x7

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

00111

UnOpcodeExtension_Y0 - 0x7

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Chapter 4 Processor Engine Instruction Set

76 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

4.1.6 Compare Instructions
The following sections provide detailed descriptions of compare instructions listed alphabetically.

• seq: Set Equal Word

• seqi: Set Equal Immediate Word

• slt: Set Less Than Word

• slt_u: Set Less Than Unsigned Word

• slte: Set Less Than or Equal Word

• slte_u: Set Less Than or Equal Unsigned Word

• slti: Set Less Than Immediate Word

• slti_u: Set Less Than Unsigned Immediate Word

• sne: Set Not Equal Word

Tile Processor User Architecture Manual 77

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

seq: Set Equal Word

Syntax

seq Dest, SrcA, SrcB

Example

seq r5, r6, r7

Description

Sets each result to 1 if the first source operand is equal to the second source operand. Otherwise
the result is set to 0.

Functional Description

rf[Dest] =
((UnsignedMachineWord) rf[SrcA] ==
(UnsignedMachineWord) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-86: seq in XO Bit Descriptions

Figure 4-87: seq in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000010

RRROpcodeExtension_X0 - 0x42

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000100011

RRROpcodeExtension_X1 - 0x23

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

78 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-88: seq in YO Bit Descriptions

Figure 4-89: seq in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

0110

Opcode_Y0 - 0x6

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

10

RRROpcodeExtension_Y1 - 0x2

59606162

0110

Opcode_Y1 - 0x6

Tile Processor User Architecture Manual 79

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

seqi: Set Equal Immediate Word

Syntax

seqi Dest, SrcA, Imm8

Example

seqi r5, r6, 5

Description

Sets each result to 1 if the first source operand is equal to a sign extended immediate. Otherwise
the result is set to 0.

Functional Description

rf[Dest] =
((UnsignedMachineWord) rf[SrcA] ==
(UnsignedMachineWord) signExtend8(Imm8)) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-90: seqi in XO Bit Descriptions

Figure 4-91: seqi in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001011

ImmOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0001110

ImmOpcodeExtension_X1 - 0xE

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

80 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-92: seqi in YO Bit Descriptions

Figure 4-93: seqi in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516171819

i

Imm8_Y0 - Imm8

27282930

1100

Opcode_Y0 - 0xC

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647484950

i

Imm8_Y1 - Imm8

59606162

1010

Opcode_Y1 - 0xA

Tile Processor User Architecture Manual 81

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

slt: Set Less Than Word

Syntax

slt Dest, SrcA, SrcB

Example

slt r5, r6, r7

Description

Sets each result to 1 if the first source operand is less than the second source operand. Otherwise
the result is set to 0. This instruction treats both source operands as signed values.

Functional Description

rf[Dest] =
((SignedMachineWord) rf[SrcA] <
(SignedMachineWord) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-94: slt in XO Bit Descriptions

Figure 4-95: slt in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010011

RRROpcodeExtension_X0 - 0x53

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110101

RRROpcodeExtension_X1 - 0x35

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

82 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-96: slt in YO Bit Descriptions

Figure 4-97: slt in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

0101

Opcode_Y0 - 0x5

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

10

RRROpcodeExtension_Y1 - 0x2

59606162

0101

Opcode_Y1 - 0x5

Tile Processor User Architecture Manual 83

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

slt_u: Set Less Than Unsigned Word

Syntax

slt_u Dest, SrcA, SrcB

Example

slt_u r5, r6, r7

Description

Sets each result to 1 if the first source operand is less than the second source operand or sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source operands
as unsigned values.

Functional Description

rf[Dest] =
((UnsignedMachineWord) rf[SrcA] <
(UnsignedMachineWord) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-98: slt_u in XO Bit Descriptions

Figure 4-99: slt_u in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010100

RRROpcodeExtension_X0 - 0x54

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110110

RRROpcodeExtension_X1 - 0x36

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

84 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-100: slt_u in YO Bit Descriptions

Figure 4-101: slt_u in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

0101

Opcode_Y0 - 0x5

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

11

RRROpcodeExtension_Y1 - 0x3

59606162

0101

Opcode_Y1 - 0x5

Tile Processor User Architecture Manual 85

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

slte: Set Less Than or Equal Word

Syntax

slte Dest, SrcA, SrcB

Example

slte r5, r6, r7

Description

Sets each result to 1 if the first source operand is less than or equal to the second source operand.
Otherwise the result is set to 0. This instruction treats both source operands as signed values.

Functional Description

rf[Dest] =
((SignedMachineWord) rf[SrcA] <=
(SignedMachineWord) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-102: slte in XO Bit Descriptions

Figure 4-103: slte in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001111

RRROpcodeExtension_X0 - 0x4F

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110001

RRROpcodeExtension_X1 - 0x31

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

86 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-104: slte in YO Bit Descriptions

Figure 4-105: slte in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0101

Opcode_Y0 - 0x5

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

00

RRROpcodeExtension_Y1 - 0x0

59606162

0101

Opcode_Y1 - 0x5

Tile Processor User Architecture Manual 87

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

slte_u: Set Less Than or Equal Unsigned Word

Syntax

slte_u Dest, SrcA, SrcB

Example

slte_u r5, r6, r7

Description

Sets each result to 1 if the first source operand is less than or equal to the second source operand.
Otherwise the result is set to 0. This instruction treats both source operands as unsigned values.

Functional Description

rf[Dest] =
((UnsignedMachineWord) rf[SrcA] <=
(UnsignedMachineWord) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-106: slte_u in XO Bit Descriptions

Figure 4-107: slte_u in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010000

RRROpcodeExtension_X0 - 0x50

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110010

RRROpcodeExtension_X1 - 0x32

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

88 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-108: slte_u in YO Bit Descriptions

Figure 4-109: slte_u in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

0101

Opcode_Y0 - 0x5

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

01

RRROpcodeExtension_Y1 - 0x1

59606162

0101

Opcode_Y1 - 0x5

Tile Processor User Architecture Manual 89

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

slti: Set Less Than Immediate Word

Syntax

slti Dest, SrcA, Imm8

Example

slti r5, r6, 5

Description

Sets each result to 1 if the first source operand is less than a sign extended immediate. Otherwise
the result is set to 0. This instruction treats both source operands as signed values.

Functional Description

rf[Dest] =
((SignedMachineWord) rf[SrcA] <
((SignedMachineWord) signExtend8(Imm8))) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-110: slti in XO Bit Descriptions

Figure 4-111: slti in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0010000

ImmOpcodeExtension_X0 - 0x10

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0010011

ImmOpcodeExtension_X1 - 0x13

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

90 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-112: slti in YO Bit Descriptions

Figure 4-113: slti in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516171819

i

Imm8_Y0 - Imm8

27282930

1110

Opcode_Y0 - 0xE

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647484950

i

Imm8_Y1 - Imm8

59606162

1100

Opcode_Y1 - 0xC

Tile Processor User Architecture Manual 91

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

slti_u: Set Less Than Unsigned Immediate Word

Syntax

slti_u Dest, SrcA, Imm8

Example

slti_u r5, r6, 5

Description

Sets each result to 1 if the first source operand is less than a sign extended immediate. Otherwise
the result is set to 0. This instruction treats both source operands as unsigned values.

Functional Description

rf[Dest] =
((UnsignedMachineWord) rf[SrcA] <
((UnsignedMachineWord) signExtend8(Imm8))) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-114: slti_u in XO Bit Descriptions

Figure 4-115: slti_u in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0010001

ImmOpcodeExtension_X0 - 0x11

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0010100

ImmOpcodeExtension_X1 - 0x14

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

92 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-116: slti_u in YO Bit Descriptions

Figure 4-117: slti_u in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516171819

i

Imm8_Y0 - Imm8

27282930

1111

Opcode_Y0 - 0xF

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647484950

i

Imm8_Y1 - Imm8

59606162

1101

Opcode_Y1 - 0xD

Tile Processor User Architecture Manual 93

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

sne: Set Not Equal Word

Syntax

sne Dest, SrcA, SrcB

Example

sne r5, r6, r7

Description

Sets each result to 1 if the first source operand is not equal to the second source operand. Other-
wise the result is set to 0.

Functional Description

rf[Dest] =
((UnsignedMachineWord) rf[SrcA] !=
(UnsignedMachineWord) rf[SrcB]) ? 1 : 0;

Valid Pipelines

Encoding

Figure 4-118: sne in XO Bit Descriptions

Figure 4-119: sne in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010111

RRROpcodeExtension_X0 - 0x57

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000111001

RRROpcodeExtension_X1 - 0x39

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

94 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-120: sne in YO Bit Descriptions

Figure 4-121: sne in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

0110

Opcode_Y0 - 0x6

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

11

RRROpcodeExtension_Y1 - 0x3

59606162

0110

Opcode_Y1 - 0x6

Tile Processor User Architecture Manual 95

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.7 Control Instructions
The following sections provide detailed descriptions of control instructions listed alphabetically.

• bbns: Branch Bit Not Set Word

• bbnst: Branch Bit Not Set Taken Word

• bbs: Branch Bit Set Word

• bbst: Branch Bit Set Taken Word

• bgez: Branch Greater Than or Equal to Zero Word

• bgezt: Branch Greater Than or Equal to Zero Predict Taken Word

• bgz: Branch Greater Than Zero Word

• bgzt: Branch Greater Than Zero Predict Taken Word

• blez: Branch Less Than or Equal to Zero Word

• blezt: Branch Less Than or Equal to Zero Taken Word

• blz: Branch Less Than Zero Word

• blzt: Branch Less Than Zero Taken Word

• bnz: Branch Not Zero Word

• bnzt: Branch Not Zero Predict Taken Word

• bz: Branch Zero Word

• bzt: Branch Zero Predict Taken Word

• jalb: Jump and Link Backward

• jalf: Jump and Link Forward

• jalr: Jump and Link Register

• jalrp: Jump and Link Register Predict

• jb: Jump Backward

• jf: Jump Forward

• jr: Jump Register

• jrp: Jump Register Predict

• lnk: Link

Chapter 4 Processor Engine Instruction Set

96 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bbns: Branch Bit Not Set Word

Syntax

bbns SrcA, BrOff

Example

bbns r5, target

Description

Branches to the target if the source operand’s bit 0 is not set (0). Otherwise, the program counter
advances to the next instruction in program order. Branch bit not set hints to a branch prediction
mechanism that the branch is not taken. This branch does an implicit move of the source operand
to register ZERO_REGISTER.

Functional Description

if (!(rf[SrcA] & 0x1)) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-122: bbns in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1110

BrType_X1 - 0xE

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 97

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

bbnst: Branch Bit Not Set Taken Word

Syntax

bbnst SrcA, BrOff

Example

bbnst r5, target

Description

Branches to the target if the source operand’s bit 0 is not set (0). Otherwise, the program counter
advances to the next instruction in program order. Branch bit not set predict taken hints to a
branch prediction mechanism that the branch is taken. This branch does an implicit move of the
source operand to register ZERO_REGISTER.

Functional Description

if (!(rf[SrcA] & 0x1)) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-123: bbnst in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1111

BrType_X1 - 0xF

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

98 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bbs: Branch Bit Set Word

Syntax

bbs SrcA, BrOff

Example

bbs r5, target

Description

Branches to the target if the source operand's bit 0 is set (1). Otherwise, the program counter
advances to the next instruction in program order. Branch bit set hints to a branch prediction
mechanism that the branch is not taken. This branch does an implicit move of the source operand
to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] & 0x1) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-124: bbs in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1101

BrType_X1 - 0xD

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 99

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

bbst: Branch Bit Set Taken Word

Syntax

bbst SrcA, BrOff

Example

bbst r5, target

Description

Branches to the target if the source operand’s bit 0 is set (1). Otherwise, the program counter
advances to the next instruction in program order. Branch bit set predict taken hints to a branch
prediction mechanism that the branch is taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] & 0x1) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-125: bbst in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1101

BrType_X1 - 0xD

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

100 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bgez: Branch Greater Than or Equal to Zero Word

Syntax

bgez SrcA, BrOff

Example

bgez r5, target

Description

Branches to the target if the source operand is greater than or equal to 0. Otherwise, the program
counter advances to the next instruction in program order. Branch greater than or equal to 0 hints
to a branch prediction mechanism that the branch is not taken.

This branch does an implicit move of the source operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] >= 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-126: bgez in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0111

BrType_X1 - 0x7

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 101

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

bgezt: Branch Greater Than or Equal to Zero Predict Taken Word

Syntax

bgezt SrcA, BrOff

Example

bgezt r5, target

Description

Branches to the target if the source operand is greater than or equal to 0. Otherwise, the program
counter advances to the next instruction in program order. Branch greater than or equal to 0 pre-
dict taken hints to a branch prediction mechanism that the branch is taken. This branch does an
implicit move of the source operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] >= 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-127: bgezt in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0111

BrType_X1 - 0x7

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

102 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bgz: Branch Greater Than Zero Word

Syntax

bgz SrcA, BrOff

Example

bgz r5, target

Description

Branches to the target if the source operand is greater than 0. Otherwise, the program counter
advances to the next instruction in program order. Branch greater than 0 hints to a branch predic-
tion mechanism that the branch is not taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] > 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-128: bgz in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0101

BrType_X1 - 0x5

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 103

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

bgzt: Branch Greater Than Zero Predict Taken Word

Syntax

bgzt SrcA, BrOff

Example

bgzt r5, target

Description

Branches to the target if the source operand is greater than 0. Otherwise, the program counter
advances to the next instruction in program order. Branch greater than 0 predict taken hints to a
branch prediction mechanism that the branch is taken. This branch does an implicit move of the
source operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] > 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-129: bgzt in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0101

BrType_X1 - 0x5

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

104 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

blez: Branch Less Than or Equal to Zero Word

Syntax

blez SrcA, BrOff

Example

blez r5, target

Description

Branches to the target if the source operand is less than or equal to 0. Otherwise, the program
counter advances to the next instruction in program order. Branch less than or equal to 0 hints to a
branch prediction mechanism that the branch is not taken. This branch does an implicit move of
the source operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] <= 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-130: blez in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1011

BrType_X1 - 0xB

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 105

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

blezt: Branch Less Than or Equal to Zero Taken Word

Syntax

blezt SrcA, BrOff

Example

blezt r5, target

Description

Branches to the target if the source operand is less than or equal to 0. Otherwise, the program
counter advances to the next instruction in program order. Branch less than or equal to 0 predict
taken hints to a branch prediction mechanism that the branch is taken. This branch does an
implicit move of the source operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] <= 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-131: blezt in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1011

BrType_X1 - 0xB

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

106 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

blz: Branch Less Than Zero Word

Syntax

blz SrcA, BrOff

Example

blz r5, target

Description

Branches to the target if the source operand is less than 0. Otherwise, the program counter
advances to the next instruction in program order. Branch less than 0 hints to a branch prediction
mechanism that the branch is not taken. This branch does an implicit move of the source operand
to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] < 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-132: blz in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1001

BrType_X1 - 0x9

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 107

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

blzt: Branch Less Than Zero Taken Word

Syntax

blzt SrcA, BrOff

Example

blzt r5, target

Description

Branches to the target if the source operand is less than 0. Otherwise, the program counter
advances to the next instruction in program order. Branch less than 0 predict taken hints to a
branch prediction mechanism that the branch is taken. This branch does an implicit move of the
source operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] < 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-133: blzt in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

1001

BrType_X1 - 0x9

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

108 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bnz: Branch Not Zero Word

Syntax

bnz SrcA, BrOff

Example

bnz r5, target

Description

Branches to the target if the source operand is not equal to 0. Otherwise, the program counter
advances to the next instruction in program order. Branch not 0 hints to a branch prediction mech-
anism that the branch is not taken. This branch does an implicit move of the source operand to
register ZERO_REGISTER.

Functional Description

if (rf[SrcA] != 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-134: bnz in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0011

BrType_X1 - 0x3

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 109

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

bnzt: Branch Not Zero Predict Taken Word

Syntax

bnzt SrcA, BrOff

Example

bnzt r5, target

Description

Branches to the target if the source operand is not equal to 0. Otherwise, the program counter
advances to the next instruction in program order. Branch not 0 predict taken hints to a branch
prediction mechanism that the branch is taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] != 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-135: bnzt in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0011

BrType_X1 - 0x3

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

110 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

bz: Branch Zero Word

Syntax

bz SrcA, BrOff

Example

bz r5, target

Description

Branches to the target if the source operand is equal to 0. Otherwise, the program counter
advances to the next instruction in program order. Branch 0 hints to a branch prediction mecha-
nism that the branch is not taken. This branch does an implicit move of the source operand to
register ZERO_REGISTER.

Functional Description

if (rf[SrcA] == 0) {
setNextPC(getCurrentPC() +

(signExtend17(BrOff) <<
(INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedIncorrect();
} else {

branchHintedCorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-136: bz in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0001

BrType_X1 - 0x1

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Tile Processor User Architecture Manual 111

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

bzt: Branch Zero Predict Taken Word

Syntax

bzt SrcA, BrOff

Example

bzt r5, target

Description

Branches to the target if the source operand is equal to 0. Otherwise, the program counter
advances to the next instruction in program order. Branch 0 predict taken hints to a branch pre-
diction mechanism that the branch is taken. This branch does an implicit move of the source
operand to register ZERO_REGISTER.

Functional Description

if (rf[SrcA] == 0) {
setNextPC(getCurrentPC() +

 (signExtend17(BrOff) <<
 (INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

branchHintedCorrect();
} else {

branchHintedIncorrect();
}
rf[ZERO_REGISTER] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-137: bzt in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

0001

BrType_X1 - 0x1

3536

i

BrOff_X1[16:15] - BrOff[16:15]

373839404142

s

SrcA_X1 - SrcA

434445464748495051525354555657

i

BrOff_X1[14:0] - BrOff[14:0]

58

n

S_X1 - Sbit

59606162

0101

Opcode_X1 - 0x5

Chapter 4 Processor Engine Instruction Set

112 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

jalb: Jump and Link Backward

Syntax

jalb JOff

Example

jalb target

Description

Unconditionally jumps to a backward target and puts the address of the subsequent instruction
into register LINK_REGISTER. The jump hints to the prediction mechanism that this jump is taken.
Signals to the hardware that it should attempt to push the link address on the return stack if
available.

Functional Description

rf[LINK_REGISTER] = getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE);
pushReturnStack(getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE));
setNextPC(getCurrentPC() + BACKWARD_OFFSET +

(JOff << (INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
jumped();

Valid Pipelines

Encoding

Figure 4-138: jalb in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

i

JOff_X1[20:17] - JOff[20:17]

3536

i

JOff_X1[16:15] - JOff[16:15]

373839404142

i

JOff_X1[26:21] - JOff[26:21]

434445464748495051525354555657

i

JOff_X1[14:0] - JOff[14:0]

58

i

JOff_X1[27:27] - JOff[27:27]

59606162

1101

Opcode_X1 - 0xD

Tile Processor User Architecture Manual 113

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

jalf: Jump and Link Forward

Syntax

jalf JOff

Example

jalf target

Description

Unconditionally jumps to a forward target and puts the address of the subsequent instruction
into register LINK_REGISTER. The jump hints to the prediction mechanism that this jump is taken.
Signals to the hardware that it should attempt to push the link address on the return stack if
available.

Functional Description

rf[LINK_REGISTER] = getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE);
pushReturnStack(getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE));
setNextPC(getCurrentPC() +

(JOff << (INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));
jumped();

Valid Pipelines

Encoding

Figure 4-139: jalf in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

i

JOff_X1[20:17] - JOff[20:17]

3536

i

JOff_X1[16:15] - JOff[16:15]

373839404142

i

JOff_X1[26:21] - JOff[26:21]

434445464748495051525354555657

i

JOff_X1[14:0] - JOff[14:0]

58

i

JOff_X1[27:27] - JOff[27:27]

59606162

1100

Opcode_X1 - 0xC

Chapter 4 Processor Engine Instruction Set

114 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

jalr: Jump and Link Register

Syntax

jalr SrcA

Example

jalr r5

Description

Unconditionally jumps to an address stored in a register and puts the address of the subsequent
instruction into register LINK_REGISTER. Signals to the hardware that it should attempt to push
the link address on the return stack if available.

Functional Description

rf[LINK_REGISTER] = getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE);
pushReturnStack(getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE));
setNextPC(rf[SrcA] & ALIGNED_INSTRUCTION_MASK);
indirectBranchHintedIncorrect();

Valid Pipelines

Encoding

Figure 4-140: jalr in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

434445464748

000000

SrcB_X1 - Reserved 0x0

495051525354555657

000001001

RRROpcodeExtension_X1 - 0x

58

0

S_X1 - Reserved 0x0

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 115

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

jalrp: Jump and Link Register Predict

Syntax

jalrp SrcA

Example

jalrp r5

Description

Unconditionally jumps to an address stored in a register and puts the address of the subsequent
instruction into register LINK_REGISTER. Signals to the hardware that it should attempt to predict
the target with an address stack if available.

Functional Description

UnsignedMachineWord predictAddress = popReturnStack();
rf[LINK_REGISTER] = getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE);
pushReturnStack(getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE));
setNextPC(rf[SrcA] & ALIGNED_INSTRUCTION_MASK);

if (predictAddress == (rf[SrcA] & ALIGNED_INSTRUCTION_MASK))
{
indirectBranchHintedCorrect();

} else {
indirectBranchHintedIncorrect();

}

Valid Pipelines

Encoding

Figure 4-141: jalrp in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

434445464748

000000

SrcB_X1 - Reserved 0x0

495051525354555657

000001001

RRROpcodeExtension_X1 - 0x

58

0

S_X1 - Reserved 0x0

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

116 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

jb: Jump Backward

Syntax

jb JOff

Example

jb target

Description

Unconditionally jumps to a backward target. The jump hints to the prediction mechanism that
this jump is taken.

Functional Description

setNextPC(getCurrentPC() + BACKWARD_OFFSET +
(JOff << (INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

jumped();

Valid Pipelines

Encoding

Figure 4-142: jb in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

i

JOff_X1[20:17] - JOff[20:17]

3536

i

JOff_X1[16:15] - JOff[16:15]

373839404142

i

JOff_X1[26:21] - JOff[26:21]

434445464748495051525354555657

i

JOff_X1[14:0] - JOff[14:0]

58

i

JOff_X1[27:27] - JOff[27:27]

59606162

1011

Opcode_X1 - 0xB

Tile Processor User Architecture Manual 117

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

jf: Jump Forward

Syntax

jf JOff

Example

jf target

Description

Unconditionally jumps to a forward target. The jump hints to the prediction mechanism that this
jump is taken.

Functional Description

setNextPC(getCurrentPC() +
(JOff << (INSTRUCTION_SIZE_LOG_2 - BYTE_SIZE_LOG_2)));

jumped();

Valid Pipelines

Encoding

Figure 4-143: jf in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

31323334

i

JOff_X1[20:17] - JOff[20:17]

3536

i

JOff_X1[16:15] - JOff[16:15]

373839404142

i

JOff_X1[26:21] - JOff[26:21]

434445464748495051525354555657

i

JOff_X1[14:0] - JOff[14:0]

58

i

JOff_X1[27:27] - JOff[27:27]

59606162

1010

Opcode_X1 - 0xA

Chapter 4 Processor Engine Instruction Set

118 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

jr: Jump Register

Syntax

jr SrcA

Example

jr r5

Description

Unconditionally jumps to an address stored in a register.

Functional Description

setNextPC(rf[SrcA] & ALIGNED_INSTRUCTION_MASK);
indirectBranchHintedIncorrect();

Valid Pipelines

Encoding

Figure 4-144: jr in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

434445464748

000000

SrcB_X1 - Reserved 0x0

495051525354555657

000001100

RRROpcodeExtension_X1 - 0xC

58

0

S_X1 - Reserved 0x0

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 119

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

jrp: Jump Register Predict

Syntax

jrp SrcA

Example

jrp r5

Description

Unconditionally jumps to an address stored in a register. Signals to the hardware that it should
attempt to predict the target with an address stack if available.

Functional Description

setNextPC(rf[SrcA] & ALIGNED_INSTRUCTION_MASK);
if (popReturnStack() == (rf[SrcA] & ALIGNED_INSTRUCTION_MASK)) {

indirectBranchHintedCorrect();
} else {

indirectBranchHintedIncorrect();
}

Valid Pipelines

Encoding

Figure 4-145: jrp in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

434445464748

000000

SrcB_X1 - Reserved 0x0

495051525354555657

000001011

RRROpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

120 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

lnk: Link

Syntax

lnk Dest

Example

lnk r5

Description

Moves the address of the subsequent instruction into the destination operand. Does not effect the
address stack if available.

Functional Description

rf[Dest] = getCurrentPC() + (INSTRUCTION_SIZE / BYTE_SIZE);

Valid Pipelines

Encoding

Figure 4-146: lnk in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

000000

SrcA_X1 - Reserved 0x0

434445464748

000000

SrcB_X1 - Reserved 0x0

495051525354555657

000001101

RRROpcodeExtension_X1 - 0xD

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 121

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.8 Logical Instructions
The following sections provide detailed descriptions of logical instructions listed alphabetically.

• and: And Word

• andi: And Immediate Word

• mm: Masked Merge Word

• mnz: Mask Not Zero Word

• mvnz: Move Not Zero Word

• mvz: Move Zero Word

• mz: Mask Zero Word

• nor: Nor Word

• or: Or Word

• ori: Or Immediate Word

• rl: Rotate Left Word

• rli: Rotate Left Immediate Word

• shl: Logical Shift Left Word

• shli: Logical Shift Left Immediate Word

• shr: Logical Shift Right Word

• shri: Logical Shift Right Immediate Word

• sra: Arithmetic Shift Right Word

• srai: Arithmetic Shift Right Immediate Word

• tblidxb0: Table Index Byte 0

• tblidxb1: Table Index Byte 1

• tblidxb2: Table Index Byte 2

• tblidxb3: Table Index Byte 3

• xor: Exclusive Or Word

• xori: Exclusive Or Immediate Word

Chapter 4 Processor Engine Instruction Set

122 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

and: And Word

Syntax

and Dest, SrcA, SrcB

Example

and r5, r6, r7

Description

Compute the boolean AND of two words.

Functional Description

 rf[Dest] = rf[SrcA] & rf[SrcB];

Valid Pipelines

Encoding

Figure 4-147: and in X0 Bit Descriptions

Figure 4-148: and in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000000110

RRROpcodeExtension_X0 - 0x6

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000000100

RRROpcodeExtension_X1 - 0x4

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 123

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-149: and in Y0 Bit Descriptions

Figure 4-150: and in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0011

Opcode_Y0 - 0x3

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

00

RRROpcodeExtension_Y1 - 0x0

59606162

0011

Opcode_Y1 - 0x3

Chapter 4 Processor Engine Instruction Set

124 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

andi: And Immediate Word

Syntax

andi Dest, SrcA, Imm8

Example

andi r5, r6, 5

Description

Compute the boolean AND of a word and a sign extended immediate.

Functional Description

rf[Dest] = rf[SrcA] & signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-151: andi in X0 Bit Descriptions

Figure 4-152: andi in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000001

ImmOpcodeExtension_X0 - 0x1

27

n

S_X0 - Sbit

282930

101

Opcode_X0 - 0x5

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0000100

ImmOpcodeExtension_X1 - 0x4

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 125

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-153: andi in Y0 Bit Descriptions

Figure 4-154: andi in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516171819

i

Imm8_Y0 - Imm8

27282930

1010

Opcode_Y0 - 0xA

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647484950

i

Imm8_Y1 - Imm8

59606162

1000

Opcode_Y1 - 0x8

Chapter 4 Processor Engine Instruction Set

126 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mm: Masked Merge Word

Syntax

mm Dest, SrcA, SrcB, MMStart, MMEnd

Example

mm r5, r6, r7, 5, 7

Description

Merge two source operands based on a running mask. The mask is specified by the MMstart and
MMend fields, which contain the mask’s starting and ending bit positions. If the start position is
less than or equal to the end position, then the mask contains bits set (1) from start bit position up
to the ending bit position. If the start position is greater than the end position, then the mask con-
tains the bits set (1) from the start bit position up to the WORD_SIZE bit position, and from the 0 bit
position up to the end bit position. The mask selects bits out of the first source operand and the
inverse of the mask selects bits out of the second source operand.

Functional Description

UnsignedMachineWord mask = 0;
int start;
int end;
start = MMStart;
end = MMEnd;
mask =

(start <=
end) ? ((WORD_MASK << start) ^ ((WORD_MASK << end) << 1))

: ((WORD_MASK << start) | (WORD_MASK >> ((WORD_SIZE - 1) - end)));
rf[Dest] = (rf[SrcA] & mask) | (rf[SrcB] & (WORD_MASK ^ mask));

Valid Pipelines

Encoding

Figure 4-155: mm in x0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

1819202122

i

MMEnd_X0 - MMEnd

2324252627

i

MMStart_X0 - MMStart

282930

110

Opcode_X0 - 0x6

Tile Processor User Architecture Manual 127

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-156: mm in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

4950515253

i

MMEnd_X1 - MMEnd

5455565758

i

MMStart_X1 - MMStart

59606162

0111

Opcode_X1 - 0x7

Chapter 4 Processor Engine Instruction Set

128 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mnz: Mask Not Zero Word

Syntax

mnz Dest, SrcA, SrcB

Example

mnz r5, r6, r7

Description

If the first operand is not 0, then compute the boolean AND of the second operand and a value of all
ones (1’s), otherwise return zero (0).

Functional Description

rf[Dest] = signExtend1((rf[SrcA] != 0) ? 1 : 0) & rf[SrcB];

Valid Pipelines

Encoding

Figure 4-157: mnz in X0 Bit Descriptions

Figure 4-158: mnz in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010101

RRROpcodeExtension_X0 - 0x15

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010100

RRROpcodeExtension_X1 - 0x14

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 129

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-159: mnz in Y0 Bit Descriptions

Figure 4-160: mnz in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0010

Opcode_Y0 - 0x2

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

01

RRROpcodeExtension_Y1 - 0x1

59606162

0010

Opcode_Y1 - 0x2

Chapter 4 Processor Engine Instruction Set

130 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mvnz: Move Not Zero Word

Syntax

mvnz Dest, SrcA, SrcB

Example

mvnz r5, r6, r7

Description

If the first source operand is not 0, move the second operand to the destination. Else, move the
contents of the destination register to the destination. This instruction unconditionally reads the
first input operand, the second input operand, and the destination operand.

Functional Description

UnsignedMachineWord localSrcB = rf[SrcB];
UnsignedMachineWord localDest = rf[Dest];
rf[Dest] = (rf[SrcA] != 0) ? (localSrcB) : (localDest)

Valid Pipelines

Encoding

Figure 4-161: mvnz in X0 Bit Descriptions

Figure 4-162: mvnz in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101101

RRROpcodeExtension_X0 - 0x2D

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

0010

Opcode_Y0 - 0x2

Tile Processor User Architecture Manual 131

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mvz: Move Zero Word

Syntax

mvz Dest, SrcA, SrcB

Example

mvz r5, r6, r7

Description

If the first source operand is 0, move the second operand to the destination. Else, move the con-
tents of the destination register to the destination. This instruction unconditionally reads the first
input operand, the second input operand, and the destination operand.

Functional Description

UnsignedMachineWord localSrcB = rf[SrcB];
UnsignedMachineWord localDest = rf[Dest];
rf[Dest] = (rf[SrcA] == 0) ? (localSrcB) : (localDest);

Valid Pipelines

Encoding

Figure 4-163: mvz in X0 Bit Descriptions

Figure 4-164: mvz in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101110

RRROpcodeExtension_X0 - 0x2E

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

0010

Opcode_Y0 - 0x2

Chapter 4 Processor Engine Instruction Set

132 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mz: Mask Zero Word

Syntax

mz Dest, SrcA, SrcB

Example

mz r5, r6, r7

Description

If the first operand is 0, then compute the boolean AND of the second operand and a value of all
ones (1’s), otherwise return zero (0).

Functional Description

rf[Dest] = signExtend1((rf[SrcA] == 0) ? 1 : 0) & rf[SrcB];

Valid Pipelines

Encoding

Figure 4-165: mz in X0 Bit Descriptions

Figure 4-166: mz in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110001

RRROpcodeExtension_X0 - 0x31

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010111

RRROpcodeExtension_X1 - 0x17

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 133

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-167: mz in Y0 Bit Descriptions

Figure 4-168: mz in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

0010

Opcode_Y0 - 0x2

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

10

RRROpcodeExtension_Y1 - 0x2

59606162

0010

Opcode_Y1 - 0x2

Chapter 4 Processor Engine Instruction Set

134 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

nor: Nor Word

Syntax

nor Dest, SrcA, SrcB

Example

nor r5, r6, r7

Description

Computer the boolean NOR of two words.

Functional Description

rf[Dest] = ~(rf[SrcA] | rf[SrcB]);

Valid Pipelines

Encoding

Figure 4-169: nor in X0 Bit Descriptions

Figure 4-170: nor in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110010

RRROpcodeExtension_X0 - 0x32

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011000

RRROpcodeExtension_X1 - 0x18

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 135

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-171: nor in Y0 Bit Descriptions

Figure 4-172: nor in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

0011

Opcode_Y0 - 0x3

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

01

RRROpcodeExtension_Y1 - 0x1

59606162

0011

Opcode_Y1 - 0x3

Chapter 4 Processor Engine Instruction Set

136 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

or: Or Word

Syntax

or Dest, SrcA, SrcB

Example

or r5, r6, r7

Description

Compute the boolean OR of two words.

Functional Description

rf[Dest] = rf[SrcA] | rf[SrcB];

Valid Pipelines

Encoding

Figure 4-173: or in X0 Bit Descriptions

Figure 4-174: or in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110011

RRROpcodeExtension_X0 - 0x33

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011001

RRROpcodeExtension_X1 - 0x19

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 137

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-175: or in Y0 Bit Descriptions

Figure 4-176: or in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

0011

Opcode_Y0 - 0x3

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

10

RRROpcodeExtension_Y1 - 0x2

59606162

0011

Opcode_Y1 - 0x3

Chapter 4 Processor Engine Instruction Set

138 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

ori: Or Immediate Word

Syntax

ori Dest, SrcA, Imm8

Example

ori r5, r6, 5

Description

Compute the boolean OR of a word and a sign extended immediate.

Functional Description

rf[Dest] = rf[SrcA] | signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-177: ori in X0 Bit Descriptions

Figure 4-178: ori in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001000

ImmOpcodeExtension_X0 - 0x8

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0001011

ImmOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 139

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-179: ori in Y0 Bit Descriptions

Figure 4-180: ori in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516171819

i

Imm8_Y0 - Imm8

27282930

1011

Opcode_Y0 - 0xB

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647484950

i

Imm8_Y1 - Imm8

59606162

1001

Opcode_Y1 - 0x9

Chapter 4 Processor Engine Instruction Set

140 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

rl: Rotate Left Word

Syntax

rl Dest, SrcA, SrcB

Example

rl r5, r6, r7

Description

Rotate the first source operand to the left by the second source operand. If the shift amount is
larger than the number of bits in a word, the effective shift amount is computed to be the specified
shift amount modulo the number of bits in a word. The main processor ISA does not contain a
rotate right.

Functional Description

rf[Dest] =
((rf[SrcA] << (rf[SrcB] % WORD_SIZE)) |
(((UnsignedMachineWord) rf[SrcA]) >>
((WORD_SIZE - (rf[SrcB] % WORD_SIZE)) % WORD_SIZE)));

Valid Pipelines

Encoding

Figure 4-181: rl in X0 Bit Descriptions

Figure 4-182: rl in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110110

RRROpcodeExtension_X0 - 0x36

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011100

RRROpcodeExtension_X1 - 0x1C

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 141

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-183: rl in Y0 Bit Descriptions

Figure 4-184: rl in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0100

Opcode_Y0 - 0x4

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

00

RRROpcodeExtension_Y1 - 0x0

59606162

0100

Opcode_Y1 - 0x4

Chapter 4 Processor Engine Instruction Set

142 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

rli: Rotate Left Immediate Word

Syntax

rli Dest, SrcA, ShAmt

Example

rli r5, r6, 5

Description

Rotate the first source operand to the left by an immediate. If the shift amount is larger than the
number of bits in a word, the effective shift amount is computed to be the specified shift amount
modulo the number of bits in a word. The main processor ISA does not contain a rotate right.

Functional Description

rf[Dest] =
((rf[SrcA] << (((UnsignedMachineWord) ShAmt) % WORD_SIZE)) |
(((UnsignedMachineWord) rf[SrcA]) >>
((WORD_SIZE -

((UnsignedMachineWord) ShAmt) % WORD_SIZE) % WORD_SIZE)));

Valid Pipelines

Encoding

Figure 4-185: rli in X0 Bit Descriptions

Figure 4-186: rli in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000000001

UnShOpcodeExtension_X0 - 0x1

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000000001

UnShOpcodeExtension_X1 - 0x1

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 143

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-187: rli in Y0 Bit Descriptions

Figure 4-188: rli in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

i

ShAmt_Y0 - ShAmt

171819

001

UnShOpcodeExtension_Y0 - 0x1

27282930

1101

Opcode_Y0 - 0xD

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647

i

ShAmt_Y1 - ShAmt

484950

001

UnShOpcodeExtension_Y1 - 0x1

59606162

1011

Opcode_Y1 - 0xB

Chapter 4 Processor Engine Instruction Set

144 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shl: Logical Shift Left Word

Syntax

shl Dest, SrcA, SrcB

Example

shl r5, r6, r7

Description

Logically shift the first source operand to the left by the second source operand. If the shift
amount is larger than the number of bits in a word, the effective shift amount is computed to be
the specified shift amount modulo the number of bits in a word. Left shifts shift zeros into the low
ordered bits in a word and are suitable to be used as unsigned multiplication by powers of 2.

Functional Description

rf[Dest] = rf[SrcA] << (rf[SrcB] % WORD_SIZE);

Valid Pipelines

Encoding

Figure 4-189: shl in X0 Bit Descriptions

Figure 4-190: shl in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000101

RRROpcodeExtension_X0 - 0x45

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000100110

RRROpcodeExtension_X1 - 0x26

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 145

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-191: shl in Y0 Bit Descriptions

Figure 4-192: shl in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

0100

Opcode_Y0 - 0x4

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

01

RRROpcodeExtension_Y1 - 0x1

59606162

0100

Opcode_Y1 - 0x4

Chapter 4 Processor Engine Instruction Set

146 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shli: Logical Shift Left Immediate Word

Syntax

shli Dest, SrcA, ShAmt

Example

shli r5, r6, 5

Description

Logically shift the first source operand to the left by an immediate. If the shift amount is larger
than the number of bits in a word, the effective shift amount is computed to be the specified shift
amount modulo the number of bits in a word. Left shifts shift zeros into the low ordered bits in a
word and are suitable to be used as unsigned multiplication by powers of 2.

Functional Description

rf[Dest] = rf[SrcA] << (((UnsignedMachineWord) ShAmt) % WORD_SIZE);

Valid Pipelines

Encoding

Figure 4-193: shli in X0 Bit Descriptions

Figure 4-194: shli in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000000100

UnShOpcodeExtension_X0 - 0x4

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000000100

UnShOpcodeExtension_X1 - 0x4

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 147

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-195: shli in Y0 Bit Descriptions

Figure 4-196: shli in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

i

ShAmt_Y0 - ShAmt

171819

010

UnShOpcodeExtension_Y0 - 0x2

27282930

1101

Opcode_Y0 - 0xD

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647

i

ShAmt_Y1 - ShAmt

484950

010

UnShOpcodeExtension_Y1 - 0x2

59606162

1011

Opcode_Y1 - 0xB

Chapter 4 Processor Engine Instruction Set

148 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shr: Logical Shift Right Word

Syntax

shr Dest, SrcA, SrcB

Example

shr r5, r6, r7

Description

Logically shift the first source operand to the right by the second source operand. If the shift
amount is larger than the number of bits in a word, the effective shift amount is computed to be
the specified shift amount modulo the number of bits in a word. Logical right shifts shift zeros
into the high ordered bits in a word and are suitable to be used as unsigned integer division by
powers of 2.

Functional Description

 rf[Dest] = (UnsignedMachineWord) rf[SrcA] >> (rf[SrcB] % WORD_SIZE);

Valid Pipelines

Encoding

Figure 4-197: shr in X0 Bit Descriptions

Figure 4-198: shr in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001000

RRROpcodeExtension_X0 - 0x48

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101001

RRROpcodeExtension_X1 - 0x29

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 149

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-199: shr in Y0 Bit Descriptions

Figure 4-200: shr in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

0100

Opcode_Y0 - 0x4

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

10

RRROpcodeExtension_Y1 - 0x2

59606162

0100

Opcode_Y1 - 0x4

Chapter 4 Processor Engine Instruction Set

150 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shri: Logical Shift Right Immediate Word

Syntax

shri Dest, SrcA, ShAmt

Example

shri r5, r6, 5

Description

Logically shift the first source operand to the right by an immediate. If the shift amount is larger
than the number of bits in a word, the effective shift amount is computed to be the specified shift
amount modulo the number of bits in a word. Logical right shifts shift zeros into the high ordered
bits in a word and are suitable to be used as unsigned integer division by powers of 2.

Functional Description

rf[Dest] = ((UnsignedMachineWord) rf[SrcA]) >> ShAmt;

Valid Pipelines

Encoding

Figure 4-201: shri in X0 Bit Descriptions

Figure 4-202: shri in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000000111

UnShOpcodeExtension_X0 - 0x7

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000000111

UnShOpcodeExtension_X1 - 0x7

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 151

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-203: shri in Y0 Bit Descriptions

Figure 4-204: shri in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

i

ShAmt_Y0 - ShAmt

171819

011

UnShOpcodeExtension_Y0 - 0x3

27282930

1101

Opcode_Y0 - 0xD

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647

i

ShAmt_Y1 - ShAmt

484950

011

UnShOpcodeExtension_Y1 - 0x3

59606162

1011

Opcode_Y1 - 0xB

Chapter 4 Processor Engine Instruction Set

152 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sra: Arithmetic Shift Right Word

Syntax

sra Dest, SrcA, SrcB

Example

sra r5, r6, r7

Description

Arithmetically shift the first source operand to the right by the second source operand. If the shift
amount is larger than the number of bits in a word, the effective shift amount is computed to be
the specified shift amount modulo the number of bits in a word. Arithmetic right shift shifts the
high ordered bit into the high ordered bits in a word.

Functional Description

rf[Dest] = ((SignedMachineWord) rf[SrcA]) >> (rf[SrcB] % WORD_SIZE);

Valid Pipelines

Encoding

Figure 4-205: sra in X0 Bit Descriptions

Figure 4-206: sra in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011010

RRROpcodeExtension_X0 - 0x5A

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000111100

RRROpcodeExtension_X1 - 0x3C

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 153

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-207: sra in Y0 Bit Descriptions

Figure 4-208: sra in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

0100

Opcode_Y0 - 0x4

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

11

RRROpcodeExtension_Y1 - 0x3

59606162

0100

Opcode_Y1 - 0x4

Chapter 4 Processor Engine Instruction Set

154 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

srai: Arithmetic Shift Right Immediate Word

Syntax

srai Dest, SrcA, ShAmt

Example

srai r5, r6, 5

Description

Arithmetically shift the first source operand to the right by an immediate. If the shift amount is
larger than the number of bits in a word, the effective shift amount is computed to be the specified
shift amount modulo the number of bits in a word. Arithmetic right shifts shift the high ordered
bit into the high ordered bits in a word.

Functional Description

rf[Dest] =
((SignedMachineWord) rf[SrcA]) >> ((((UnsignedMachineWord) ShAmt))

 % WORD_SIZE);

Valid Pipelines

Encoding

Figure 4-209: srai in X0 Bit Descriptions

Figure 4-210: srai in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000001010

UnShOpcodeExtension_X0 - 0xA

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000001010

UnShOpcodeExtension_X1 - 0xA

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 155

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-211: srai in Y0 Bit Descriptions

Figure 4-212: srai in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

i

ShAmt_Y0 - ShAmt

171819

100

UnShOpcodeExtension_Y0 - 0x4

27282930

1101

Opcode_Y0 - 0xD

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

4344454647

i

ShAmt_Y1 - ShAmt

484950

100

UnShOpcodeExtension_Y1 - 0x4

59606162

1011

Opcode_Y1 - 0xB

Chapter 4 Processor Engine Instruction Set

156 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

tblidxb0: Table Index Byte 0

Syntax

tblidxb0 Dest, SrcA

Example

tblidxb0 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 0 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 7:0 of the source operand.

Functional Description

rf[Dest] =
(rf[Dest] & ~(BYTE_MASK << 2)) | (((rf[SrcA] >> 0) & BYTE_MASK) <<

 2);

Valid Pipelines

Encoding

Figure 4-213: tblidxb0 in X0 Bit Descriptions

Figure 4-214: tblidxb0 in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

01000

UnOpcodeExtension_X0 - 0x8

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

01000

UnOpcodeExtension_Y0 - 0x8

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Tile Processor User Architecture Manual 157

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

tblidxb1: Table Index Byte 1

Syntax

tblidxb1 Dest, SrcA

Example

tblidxb1 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 1 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 15:8 of the source operand.

Functional Description

rf[Dest] =
(rf[Dest] & ~(BYTE_MASK << 2)) | (((rf[SrcA] >> 8) & BYTE_MASK) <<

 2);

Valid Pipelines

Encoding

Figure 4-215: tblidxb1 in X0 Bit Descriptions

Figure 4-216: tblidxb1 in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

01001

UnOpcodeExtension_X0 - 0x9

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

01001

UnOpcodeExtension_Y0 - 0x9

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Chapter 4 Processor Engine Instruction Set

158 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

tblidxb2: Table Index Byte 2

Syntax

tblidxb2 Dest, SrcA

Example

tblidxb2 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 2 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 23:16 of the source operand.

Functional Description

rf[Dest] =
(rf[Dest] & ~(BYTE_MASK << 2)) | (((rf[SrcA] >> 16) & BYTE_MASK) <<

 2);

Valid Pipelines

Encoding

Figure 4-217: tblidxb2 in X0 Bit Descriptions

Figure 4-218: tblidxb2 in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

01010

UnOpcodeExtension_X0 - 0xA

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

01010

UnOpcodeExtension_Y0 - 0xA

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Tile Processor User Architecture Manual 159

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

tblidxb3: Table Index Byte 3

Syntax

tblidxb3 Dest, SrcA

Example

tblidxb3 r5, r6

Description

Modify the table pointer stored in the destination operand to point to the word indexed by the
contents of byte 3 of the source operand. The table is assumed to be aligned to a 1024 byte bound-
ary, and bits 9:2 of the destination are replaced by the contents of bits 31:24 of the source operand.

Functional Description

rf[Dest] =
(rf[Dest] & ~(BYTE_MASK << 2)) | (((rf[SrcA] >> 24) & BYTE_MASK) <<

 2);

Valid Pipelines

Encoding

Figure 4-219: tblidxb3 in X0 Bit Descriptions

Figure 4-220: tblidxb3 in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

01011

UnOpcodeExtension_X0 - 0xB

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

1213141516

01011

UnOpcodeExtension_Y0 - 0xB

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

Chapter 4 Processor Engine Instruction Set

160 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

xor: Exclusive Or Word

Syntax

xor Dest, SrcA, SrcB

Example

xor r5, r6, r7

Description

Compute the boolean XOR of two words.

Functional Description

rf[Dest] = rf[SrcA] ^ rf[SrcB];

Valid Pipelines

Encoding

Figure 4-221: xor in X0 Bit Descriptions

Figure 4-222: xor in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011110

RRROpcodeExtension_X0 - 0x5E

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000001

RRROpcodeExtension_X1 - 0x41

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 161

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-223: xor in Y0 Bit Descriptions

Figure 4-224: xor in Y1 Bit Descriptions

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

0011

Opcode_Y0 - 0x3

313233343536

d

Dest_Y1 - Dest

373839404142

s

SrcA_Y1 - SrcA

434445464748

s

SrcB_Y1 - SrcB

4950

11

RRROpcodeExtension_Y1 - 0x3

59606162

0011

Opcode_Y1 - 0x3

Chapter 4 Processor Engine Instruction Set

162 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

xori: Exclusive Or Immediate Word

Syntax

xori Dest, SrcA, Imm8

Example

xori r5, r6, 5

Description

Compute the boolean XOR of a word and a sign extended immediate.

Functional Description

rf[Dest] = rf[SrcA] ^ signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-225: xori in X0 Bit Descriptions

Figure 4-226: xori in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000010

ImmOpcodeExtension_X0 - 0x2

27

n

S_X0 - Sbit

282930

101

Opcode_X0 - 0x5

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0010101

ImmOpcodeExtension_X1 - 0x15

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 163

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.9 Memory Instructions
The following sections provide detailed descriptions of memory instructions listed alphabetically.

• lb: Load Byte

• lb_u: Load Byte Unsigned

• lbadd: Load Byte and Add

• lbadd_u: Load Byte Unsigned and Add

• lh: Load Half Word

• lh_u: Load Half Word Unsigned

• lhadd: Load Half Word and Add

• lhadd_u: Load Half Word Unsigned and Add

• lw: Load Word

• lw_na: Load Word No Alignment Trap

• lwadd: Load Word and Add

• lwadd_na: Load Word No Alignment Trap and Add

• sb: Store Byte

• sbadd: Store Byte and Add

• sh: Store Half Word

• shadd: Store Half Word and Add

• sw: Store Word

• swadd: Store Word and Add

• tns: Test and Set Word

Chapter 4 Processor Engine Instruction Set

164 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

lb: Load Byte

Syntax

lb Dest, Src

Example

lb r5, r6

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is sign-extended to a complete word.

Functional Description

rf[Dest] = signExtend8(memoryReadByte(rf[Src]));

Valid Pipelines

Encoding

Figure 4-227: lb in X1 Bit Descriptions

Figure 4-228: lb in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - Src

4344454647

01010

UnOpcodeExtension_X1 - 0xA

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

202122232425

d

SrcBDest_Y2 - Dest

26

s

SrcA_Y2[0:0] - Src[0:0]

5152535455

s

SrcA_Y2[5:1] - Src[5:1]

565758

000

Opcode_Y2 - 0x0

Tile Processor User Architecture Manual 165

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

lb_u: Load Byte Unsigned

Syntax

lb_u Dest, Src

Example

lb_u r5, r6

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is 0 extended to a complete word.

Functional Description

rf[Dest] = memoryReadByte(rf[Src]);

Valid Pipelines

Encoding

Figure 4-229: lb_u in X1 Bit Descriptions

Figure 4-230: lb_u in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - Src

4344454647

01011

UnOpcodeExtension_X1 - 0xB

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

202122232425

d

SrcBDest_Y2 - Dest

26

s

SrcA_Y2[0:0] - Src[0:0]

5152535455

s

SrcA_Y2[5:1] - Src[5:1]

565758

001

Opcode_Y2 - 0x1

Chapter 4 Processor Engine Instruction Set

166 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

lbadd: Load Byte and Add

Syntax

lbadd Dest, SrcA, Imm8

Example

lbadd r5, r6, 5

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is sign-extended to a complete word.
Add the signed immediate argument to the address register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] = signExtend8(memoryReadByte(rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-231: lbadd in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

ds

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0011000

ImmOpcodeExtension_X1 - 0x18

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 167

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

lbadd_u: Load Byte Unsigned and Add

Syntax

lbadd_u Dest, SrcA, Imm8

Example

lbadd_u r5, r6, 5

Description

Load a byte from memory into the destination register. The address of the value to be loaded is
read from the source operand. The value read from memory is 0-extended to a complete word.
Add the signed immediate argument to the address register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] = memoryReadByte(rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-232: lbadd_u in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

ds

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0010111

ImmOpcodeExtension_X1 - 0x17

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

168 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

lh: Load Half Word

Syntax

lh Dest, Src

Example

lh r5, r6

Description

Load a half word from memory into the destination register. The address of the value to be loaded
is read from the source operand. This load only operates for half word aligned loads. Unaligned
memory access causes an Unaligned Data Reference interrupt. The value read from memory is
sign-extended to a complete word.

Functional Description

rf[Dest] = signExtend16(memoryReadHalfWord(rf[Src]));

Valid Pipelines

Encoding

Figure 4-233: lh in X1 Bit Descriptions

Figure 4-234: lh in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - Src

4344454647

01100

UnOpcodeExtension_X1 - 0xC

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

202122232425

d

SrcBDest_Y2 - Dest

26

s

SrcA_Y2[0:0] - Src[0:0]

5152535455

s

SrcA_Y2[5:1] - Src[5:1]

565758

010

Opcode_Y2 - 0x2

Tile Processor User Architecture Manual 169

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

lh_u: Load Half Word Unsigned

Syntax

lh_u Dest, Src

Example

lh_u r5, r6

Description

Load a half word from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for half word aligned loads.
Unaligned memory access causes an Unaligned Data Reference interrupt. The value read from
memory is 0 extended to a complete word.

Functional Description

rf[Dest] = memoryReadHalfWord(rf[Src]);

Valid Pipelines

Encoding

Figure 4-235: lh_u in X1 Bit Descriptions

Figure 4-236: lh_u in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - Src

4344454647

01101

UnOpcodeExtension_X1 - 0xD

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

202122232425

d

SrcBDest_Y2 - Dest

26

s

SrcA_Y2[0:0] - Src[0:0]

5152535455

s

SrcA_Y2[5:1] - Src[5:1]

565758

011

Opcode_Y2 - 0x3

Chapter 4 Processor Engine Instruction Set

170 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

lhadd: Load Half Word and Add

Syntax

lhadd Dest, SrcA, Imm8

Example

lhadd r5, r6, 5

Description

Load a half word from memory into the destination register. The address of the value to be loaded
is read from the source operand. This load only operates for half word aligned loads. Unaligned
memory access causes an Unaligned Data Reference interrupt. The value read from memory is
sign-extended to a complete word. Add the signed immediate argument to the address register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] = signExtend16(memoryReadHalfWord(rf[SrcA]));
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-237: lhadd in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

ds

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0011000

ImmOpcodeExtension_X1 - 0x18

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 171

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

lhadd_u: Load Half Word Unsigned and Add

Syntax

lhadd_u Dest, SrcA, Imm8

Example

lhadd_u r5, r6, 5

Description

Load a half word from memory into the destination register. The address of the value to be
loaded is read from the source operand. This load only operates for half word aligned loads.
Unaligned memory access causes an Unaligned Data Reference interrupt. The value read from
memory is 0 extended to a complete word. Add the signed immediate argument to the address
register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] = memoryReadHalfWord(rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-238: lhadd_u in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

ds

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0011001

ImmOpcodeExtension_X1 - 0x19

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

172 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

lw: Load Word

Syntax

lw Dest, Src

Example

lw r5, r6

Description

Load a word from memory into the destination register. The address of the value to be loaded is
read from the source operand. This load only operates for word aligned loads. Unaligned memory
access causes an Unaligned Data Reference interrupt.

Functional Description

rf[Dest] = memoryReadWord(rf[Src]);

Valid Pipelines

Encoding

Figure 4-239: lw in X1 Bit Descriptions

Figure 4-240: lw in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - Src

4344454647

01110

UnOpcodeExtension_X1 - 0xE

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

202122232425

d

SrcBDest_Y2 - Dest

26

s

SrcA_Y2[0:0] - Src[0:0]

5152535455

s

SrcA_Y2[5:1] - Src[5:1]

565758

100

Opcode_Y2 - 0x4

Tile Processor User Architecture Manual 173

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

lw_na: Load Word No Alignment Trap

Syntax

lw_na Dest, Src

Example

lw_na r5, r6

Description

Load a word from memory into the destination register. The address of the value to be loaded is
read from the source operand and the bottom two bits are set to 0. No Unaligned Data Reference
interrupts are caused by this instruction.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] = memoryReadWordNA(rf[Src]);

Valid Pipelines

Encoding

Figure 4-241: lw_na in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - Src

4344454647

11000

UnOpcodeExtension_X1 - 0x18

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

174 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

lwadd: Load Word and Add

Syntax

lwadd Dest, SrcA, Imm8

Example

lwadd r5, r6, 5

Description

Load a word from memory into the destination register. The address of the value to be loaded is
read from the source operand. This load only operates for word aligned loads. Unaligned memory
access causes an Unaligned Data Reference interrupt. Add the signed immediate argument to the
address register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] = memoryReadWord(rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-242: lbadd in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

ds

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0011010

ImmOpcodeExtension_X1 - 0x1A

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 175

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

lwadd_na: Load Word No Alignment Trap and Add

Syntax

lwadd_na Dest, SrcA, Imm8

Example

lwadd_na r5, r6, 5

Description

Load a word from memory into the destination register. The address of the value to be loaded is
read from the source operand and the bottom two bits are set to 0. No Unaligned Data Reference
interrupts are caused by this instruction. Add the signed immediate argument to the address
register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

rf[Dest] = memoryReadWordNA(rf[SrcA]);
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-243: lwadd_na in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

ds

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0011011

ImmOpcodeExtension_X1 - 0x1B

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

176 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sb: Store Byte

Syntax

sb SrcA, SrcB

Example

sb r5, r6

Description

Store a byte from the second source register into memory at the address held in the first source
register.

Functional Description

memoryWriteByte(rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 4-244: sb in X1 Bit Descriptions

Figure 4-245: sb in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000100000

RRROpcodeExtension_X1 - 0x20

58

0

S_X1 - Reserved 0x0

59606162

0001

Opcode_X1 - 0x1

202122232425

s

SrcBDest_Y2 - SrcB

26

s

SrcA_Y2[0:0] - SrcA[0:0]

5152535455

s

SrcA_Y2[5:1] - SrcA[5:1]

565758

101

Opcode_Y2 - 0x5

Tile Processor User Architecture Manual 177

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

sbadd: Store Byte and Add

Syntax

sbadd SrcA, SrcB, Imm8

Example

sbadd r5, r6, 5

Description

Store a byte from the second source register into memory at the address held in the first source
register. Add the signed immediate argument to the address register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

memoryWriteByte(rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-246: sbadd in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

i

Dest_Imm8_X1[5:0] - Imm8[5:0]

373839404142

ds

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

4950

i

Dest_Imm8_X1[7:6] - Imm8[7:6]

51525354555657

0011100

ImmOpcodeExtension_X1 - 0x1C

58

0

S_X1 - Reserved 0x0

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

178 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sh: Store Half Word

Syntax

sh SrcA, SrcB

Example

sh r5, r6

Description

Store a half word from the second source register into memory at the address held in the first
source register. This store only operates for half word aligned stores. Unaligned memory access
causes an Unaligned Data Reference interrupt.

Functional Description

memoryWriteHalfWord(rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 4-247: sh in X1 Bit Descriptions

Figure 4-248: sh in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101010

RRROpcodeExtension_X1 - 0x2A

58

0

S_X1 - Reserved 0x0

59606162

0001

Opcode_X1 - 0x1

202122232425

s

SrcBDest_Y2 - SrcB

26

s

SrcA_Y2[0:0] - SrcA[0:0]

5152535455

s

SrcA_Y2[5:1] - SrcA[5:1]

565758

110

Opcode_Y2 - 0x6

Tile Processor User Architecture Manual 179

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

shadd: Store Half Word and Add

Syntax

shadd SrcA, SrcB, Imm8

Example

shadd r5, r6, 5

Description

Store a half word from the second source register into memory at the address held in the first
source register. This store only operates for half word aligned stores. Unaligned memory access
causes an Unaligned Data Reference interrupt. Add the signed immediate argument to the
address register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

memoryWriteHalfWord(rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-249: shadd in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

i

Dest_Imm8_X1[5:0] - Imm8[5:0]

373839404142

ds

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

4950

i

Dest_Imm8_X1[7:6] - Imm8[7:6]

51525354555657

0011101

ImmOpcodeExtension_X1 - 0x1D

58

0

S_X1 - Reserved 0x0

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

180 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sw: Store Word

Syntax

sw SrcA, SrcB

Example

sw r5, r6

Description

Store a word from the second source register into memory at the address held in the first source
register. This store only operates for word aligned stores. Unaligned memory access causes an
Unaligned Data Reference interrupt.

Functional Description

memoryWriteWord(rf[SrcA], rf[SrcB]);

Valid Pipelines

Encoding

Figure 4-250: sw in X1 Bit Descriptions

Figure 4-251: sw in Y2 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000000

RRROpcodeExtension_X1 - 0x40

58

0

S_X1 - Reserved 0x0

59606162

0001

Opcode_X1 - 0x1

202122232425

s

SrcBDest_Y2 - SrcB

26

s

SrcA_Y2[0:0] - SrcA[0:0]

5152535455

s

SrcA_Y2[5:1] - SrcA[5:1]

565758

111

Opcode_Y2 - 0x7

Tile Processor User Architecture Manual 181

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

swadd: Store Word and Add

Syntax

swadd SrcA, SrcB, Imm8

Example

swadd r5, r6, 5

Description

Store a word from the second source register into memory at the address held in the first source
register. This store only operates for word aligned stores. Unaligned memory access causes an
Unaligned Data Reference interrupt. Add the signed immediate argument to the address register.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

memoryWriteWord(rf[SrcA], rf[SrcB]);
rf[SrcA] = rf[SrcA] + signExtend8(Imm8);

Valid Pipelines

Encoding

Figure 4-252: swadd in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

i

Dest_Imm8_X1[5:0] - Imm8[5:0]

373839404142

ds

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

4950

i

Dest_Imm8_X1[7:6] - Imm8[7:6]

51525354555657

0011110

ImmOpcodeExtension_X1 - 0x1E

58

0

S_X1 - Reserved 0x0

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

182 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

tns: Test and Set Word

Syntax

tns Dest, Src

Example

tns r5, r6

Description

Load a word from memory into the destination register and atomically write the value one (1) into
the addressed memory location. The address of the value to be loaded then written to is read from
the source operand. This instruction only operates for word aligned addresses. Unaligned mem-
ory access causes an Unaligned Data Reference interrupt.

Functional Description

rf[Dest] = memoryReadWord(rf[Src]);
memoryWriteWord(rf[Src] & WORD_ADDR_MASK, 0x00000001);

Valid Pipelines

Encoding

Figure 4-253: tns in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - Src

4344454647

10110

UnOpcodeExtension_X1 - 0x16

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 183

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.10 Memory Maintenance Instructions
The following sections provide detailed descriptions of memory maintenance instructions listed
alphabetically.

• dtlbpr: Data TLB Probe

• finv: Flush and Invalidate Cache Line

• flush: Flush Cache Line

• inv: Invalidate Cache Line

• mf: Memory Fence

• wh64: Write Hint 64 Bytes

Chapter 4 Processor Engine Instruction Set

184 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

dtlbpr: Data TLB Probe

Syntax

dtlbpr SrcA

Example

dtlbpr r5

Description

Probe the Data TLB and return the results as a unary encoded result for each matching entry in to
SPR DTLB_MATCH_0. This probe uses the data CPL and ignores the D_ASID.

Functional Description

dtlbProbe(rf[SrcA]);

Valid Pipelines

Encoding

Encoding

Figure 4-254: dtlbpr in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

4344454647

00010

UnOpcodeExtension_X1 - 0x2

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 185

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

finv: Flush and Invalidate Cache Line

Syntax

finv SrcA

Example

finv r5

Description

Flush and Invalidates the cache line in the data cache that contains the address stored in the
source operand. If a cache line that contains the address is not in the cache, this instruction has no
effect on the cache contents. The line size that is flushed and invalidated is at minimum 16B. An
implementation is free to flush and invalidate a larger region.

Functional Description

flushAndInvalidateCacheLine(rf[SrcA]);

Valid Pipelines

Encoding

Figure 4-255: finv in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

4344454647

00011

UnOpcodeExtension_X1 - 0x3

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

186 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

flush: Flush Cache Line

Syntax

flush SrcA

Example

flush r5

Description

Flushes the cache line in the data cache that contains the address stored in the source operand. If a
cache line that contains the address is not in the cache, this instruction has no effect. If a cache line
that contains the address is not dirty in the cache, this instruction has no effect. The line size that
is flushed is at minimum 16B. An implementation is free to flush a larger region.

Functional Description

flushCacheLine(rf[SrcA]);

Valid Pipelines

Encoding

Figure 4-256: flush in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

4344454647

00100

UnOpcodeExtension_X1 - 0x4

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 187

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

inv: Invalidate Cache Line

Syntax

inv SrcA

Example

inv r5

Description

Invalidates the cache line in the data cache that contains the address stored in the source operand.
If a cache line that contains the address is not in the cache, this instruction has no effect on the
cache contents. This instruction causes an access violation if the current privilege level is not
allowed to write to the specified cache line. The line size that is invalidated is at minimum 16B.
An implementation is free to invalidate a larger region.

Functional Description

invalidateCacheLine(rf[SrcA] & BYTE_16_ADDR_MASK);

Valid Pipelines

Encoding

Figure 4-257: inv in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

4344454647

01000

UnOpcodeExtension_X1 - 0x8

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

188 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mf: Memory Fence

Syntax

mf

Example

mf

Description

The memory fence instruction is used to establish ordering between prior memory operations and
subsequent instructions. The exact order that is established depends on the page attributes of the
pages that the memory operations are targeting. For more information refer to Memory and Cache
Architecture.

Functional Description

memoryFence();

Valid Pipelines

Encoding

Figure 4-258: mf in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

01111

UnOpcodeExtension_X1 - 0xF

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 189

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

wh64: Write Hint 64 Bytes

Syntax

wh64 Src

Example

wh64 r5

Description

Hint that software intends to write every byte of the specified 64B cache line before reading it.
The processor may use this hint to allocate the 64B line into the cache without fetching the current
contents from main memory. The processor may set the contents of the block to any value that
does not introduce a security hole.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

writeHint64Cache(rf[SrcA] & BYTE_64_ADDR_MASK);

Valid Pipelines

Encoding

Figure 4-259: wh64 in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

4344454647

10111

UnOpcodeExtension_X1 - 0x17

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

190 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

4.1.11 Multiply Instructions
The following sections provide detailed descriptions of multiply instructions listed alphabetically.

• mulhh_ss: Multiply High Signed High Signed Half Word

• mulhh_su: Multiply High Signed High Unsigned Half Word

• mulhh_uu: Multiply High Unsigned High Unsigned Half Word

• mulhha_ss: Multiply Accumulate High Signed High Signed Half Word

• mulhha_su: Multiply Accumulate High Signed High Unsigned Half Word

• mulhha_uu: Multiply Accumulate High Unsigned High Unsigned Half Word

• mulhhsa_uu: Multiply Shift Accumulate High Unsigned High Unsigned Half Word

• mulhl_ss: Multiply High Signed Low Signed Half Word

• mulhl_su: Multiply High Signed Low Unsigned Half Word

• mulhl_us: Multiply High Unsigned Low Signed Half Word

• mulhl_uu: Multiply High Unsigned Low Unsigned Half Word

• mulhla_ss: Multiply Accumulate High Signed Low Signed Half Word

• mulhla_su: Multiply Accumulate High Signed Low Unsigned Half Word

• mulhla_us: Multiply Accumulate High Unsigned Low Signed Half Word

• mulhla_uu: Multiply Accumulate High Unsigned Low Unsigned Half Word

• mulhlsa_uu: Multiply Shift Accumulate High Unsigned Low Unsigned Half Word

• mulll_ss: Multiply Low Signed Low Signed Half Word

• mulll_su: Multiply Low Signed Low Unsigned Half Word

• mulll_uu: Multiply Low Unsigned Low Unsigned Half Word

• mullla_ss: Multiply Accumulate Low Signed Low Signed Half Word

• mullla_su: Multiply Accumulate Low Signed Low Unsigned Half Word

• mullla_uu: Multiply Accumulate Low Unsigned Low Unsigned Half Word

• mulllsa_uu: Multiply Shift Accumulate Low Unsigned Low Unsigned Half Word

Tile Processor User Architecture Manual 191

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhh_ss: Multiply High Signed High Signed Half Word

Syntax

mulhh_ss Dest, SrcA, SrcB

Example

mulhh_ss r5, r6, r7

Description

Multiply the high half word of the first operand by the high half word of the second operand. The
result returned is a full word in length. The input operands are interpreted as signed half words.

Functional Description

rf[Dest] =
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-260: mulhh_ss in X0 Bit Descriptions

Figure 4-261: mulhh_ss in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011010

RRROpcodeExtension_X0 - 0x1A

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0111

Opcode_Y0 - 0x7

Chapter 4 Processor Engine Instruction Set

192 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhh_su: Multiply High Signed High Unsigned Half Word

Syntax

mulhh_su Dest, SrcA, SrcB

Example

mulhh_su r5, r6, r7

Description

Multiply the high half word of the first operand by the high half word of the second operand. The
result returned is a full word in length. The first input operand is interpreted as a signed half
word and the second input operand is interpreted as an unsigned half word.

Functional Description

rf[Dest] =
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((UnsignedMachineWord) getHighHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-262: mulhh_ss in X0 Bit Descriptions

Figure 4-263: mulhh_ss in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011010

RRROpcodeExtension_X0 - 0x1A

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0111

Opcode_Y0 - 0x7

Tile Processor User Architecture Manual 193

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhh_uu: Multiply High Unsigned High Unsigned Half Word

Syntax

mulhh_uu Dest, SrcA, SrcB

Example

mulhh_uu r5, r6, r7

Description

Multiply the high half word of the first operand by the high half word of the second operand. The
result returned is a full word in length. The input operands are interpreted as unsigned half
words.

Functional Description

rf[Dest] =
((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *
((UnsignedMachineWord) getHighHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-264: mulhh_uu in X0 Bit Descriptions

Figure 4-265: mulhh_uu in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011100

RRROpcodeExtension_X0 - 0x1C

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

0111

Opcode_Y0 - 0x7

Chapter 4 Processor Engine Instruction Set

194 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhha_ss: Multiply Accumulate High Signed High Signed Half Word

Syntax

mulhha_ss Dest, SrcA, SrcB

Example

mulhha_ss r5, r6, r7

Description

Multiply the high half word of the first operand by the high half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The input operands are interpreted as signed half words.

Functional Description

rf[Dest] =
rf[Dest] +
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-266: mulhha_ss in X0 Bit Descriptions

Figure 4-267: mulhha_ss in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010110

RRROpcodeExtension_X0 - 0x16

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

1000

Opcode_Y0 - 0x8

Tile Processor User Architecture Manual 195

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhha_su: Multiply Accumulate High Signed High Unsigned Half Word

Syntax

mulhha_su Dest, SrcA, SrcB

Example

mulhha_su r5, r6, r7

Description

Multiply the high half word of the first operand by the high half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The first input operand is interpreted as a signed half word and the second input operand is inter-
preted as an unsigned half word.

Functional Description

rf[Dest] =
rf[Dest] +
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((UnsignedMachineWord) getHighHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-268: mulhha_su in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010111

RRROpcodeExtension_X0 - 0x17

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

196 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhha_uu: Multiply Accumulate High Unsigned High Unsigned Half Word

Syntax

mulhha_uu Dest, SrcA, SrcB

Example

mulhha_uu r5, r6, r7

Description

Multiply the high half word of the first operand by the high half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The input operands are interpreted as unsigned half words.

Functional Description

rf[Dest] =
rf[Dest] +
((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *
((UnsignedMachineWord) getHighHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-269: mulhha_uu in X0 Bit Descriptions

Figure 4-270: mulhha_uu in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011000

RRROpcodeExtension_X0 - 0x18

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

01

RRROpcodeExtension_Y0 - 0x1

27282930

1000

Opcode_Y0 - 0x8

Tile Processor User Architecture Manual 197

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhhsa_uu: Multiply Shift Accumulate High Unsigned High Unsigned Half Word

Syntax

mulhhsa_uu Dest, SrcA, SrcB

Example

mulhhsa_uu r5, r6, r7

Description

Multiply the high half word of the first operand by the high half word of the second operand,
shift the multiply left by 16, and accumulate the result into the destination operand. The result
returned is a full word in length. The input operands are interpreted as unsigned half words.

Functional Description

rf[Dest] =
rf[Dest] +
((((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *

((UnsignedMachineWord) getHighHalfWord(rf[SrcB]))) << 16);

Valid Pipelines

Encoding

Figure 4-271: mulhhsa_uu in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011001

RRROpcodeExtension_X0 - 0x19

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

198 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhl_ss: Multiply High Signed Low Signed Half Word

Syntax

mulhl_ss Dest, SrcA, SrcB

Example

mulhl_ss r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand. The
result returned is a full word in length. The input operands are interpreted as signed half words.

Functional Description

rf[Dest] =
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-272: mulhl_ss in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100010

RRROpcodeExtension_X0 - 0x22

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 199

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhl_su: Multiply High Signed Low Unsigned Half Word

Syntax

mulhl_su Dest, SrcA, SrcB

Example

mulhl_su r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand. The
result returned is a full word in length. The first input operand is interpreted as a signed half
word and the second input operand is interpreted as an unsigned half word.

Functional Description

rf[Dest] =
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-273: mulhl_su in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100011

RRROpcodeExtension_X0 - 0x23

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

200 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhl_us: Multiply High Unsigned Low Signed Half Word

Syntax

mulhl_us Dest, SrcA, SrcB

Example

mulhl_us r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand. The
result returned is a full word in length. The first input operand is interpreted as an unsigned half
word and the second input operand is interpreted as a signed half word.

Functional Description

rf[Dest] =
((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-274: mulhl_us in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100100

RRROpcodeExtension_X0 - 0x24

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 201

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhl_uu: Multiply High Unsigned Low Unsigned Half Word

Syntax

mulhl_uu Dest, SrcA, SrcB

Example

mulhl_uu r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand. The
result returned is a full word in length. The input operands are interpreted as unsigned half
words.

Functional Description

rf[Dest] =
((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-275: mulhl_uu in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100101

RRROpcodeExtension_X0 - 0x25

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

202 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhla_ss: Multiply Accumulate High Signed Low Signed Half Word

Syntax

mulhla_ss Dest, SrcA, SrcB

Example

mulhla_ss r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The input operands are interpreted as signed half words.

Functional Description

rf[Dest] =
rf[Dest] +
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-276: mulhla_ss in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011101

RRROpcodeExtension_X0 - 0x1D

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 203

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhla_su: Multiply Accumulate High Signed Low Unsigned Half Word

Syntax

mulhla_su Dest, SrcA, SrcB

Example

mulhla_su r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The first input operand is interpreted as a signed half word and the second input operand is inter-
preted as an unsigned half word.

Functional Description

rf[Dest] =
rf[Dest] +
((SignedMachineWord) signExtend16(getHighHalfWord(rf[SrcA]))) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-277: mulhla_su in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011110

RRROpcodeExtension_X0 - 0x1E

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

204 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhla_us: Multiply Accumulate High Unsigned Low Signed Half Word

Syntax

mulhla_us Dest, SrcA, SrcB

Example

mulhla_us r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The first input operand is interpreted as an unsigned half word and the second input operand is
interpreted as a signed half word.

Functional Description

rf[Dest] =
rf[Dest] +
((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-278: mulhla_us in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000011111

RRROpcodeExtension_X0 - 0x1F

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 205

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulhla_uu: Multiply Accumulate High Unsigned Low Unsigned Half Word

Syntax

mulhla_uu Dest, SrcA, SrcB

Example

mulhla_uu r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The input operands are interpreted as unsigned half words.

Functional Description

rf[Dest] =
rf[Dest] +
((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-279: mulhla_uu in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100000

RRROpcodeExtension_X0 - 0x20

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

206 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulhlsa_uu: Multiply Shift Accumulate High Unsigned Low Unsigned Half Word

Syntax

mulhlsa_uu Dest, SrcA, SrcB

Example

mulhlsa_uu r5, r6, r7

Description

Multiply the high half word of the first operand by the low half word of the second operand, shift
the multiply left by 16, and accumulate the result into the destination operand. The result
returned is a full word in length. The input operands are interpreted as unsigned half words.

Functional Description

rf[Dest] =
rf[Dest] +
((((UnsignedMachineWord) getHighHalfWord(rf[SrcA])) *

((UnsignedMachineWord) getLowHalfWord(rf[SrcB]))) << 16);

Valid Pipelines

Encoding

Figure 4-280: mulhlsa_uu in X0 Bit Descriptions

Figure 4-281: mulhlsa_uu in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100001

RRROpcodeExtension_X0 - 0x21

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

00

RRROpcodeExtension_Y0 - 0x0

27282930

0110

Opcode_Y0 - 0x6

Tile Processor User Architecture Manual 207

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulll_ss: Multiply Low Signed Low Signed Half Word

Syntax

mulll_ss Dest, SrcA, SrcB

Example

mulll_ss r5, r6, r7

Description

Multiply the low half word of the first operand by the low half word of the second operand. The
result returned is a full word in length. The input operands are interpreted as signed half words.

Functional Description

rf[Dest] =
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcA]))) *
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-282: mulll_ss in X0 Bit Descriptions

Figure 4-283: mulll_ss in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101010

RRROpcodeExtension_X0 - 0x2A

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

0111

Opcode_Y0 - 0x7

Chapter 4 Processor Engine Instruction Set

208 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mulll_su: Multiply Low Signed Low Unsigned Half Word

Syntax

mulll_su Dest, SrcA, SrcB

Example

mulll_su r5, r6, r7

Description

Multiply the low half word of the first operand by the low half word of the second operand. The
result returned is a full word in length. The first input operand is interpreted as a signed half
word and the second input operand is interpreted as an unsigned half word.

Functional Description

rf[Dest] =
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcA]))) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-284: mulll_su in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101011

RRROpcodeExtension_X0 - 0x2B

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 209

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulll_uu: Multiply Low Unsigned Low Unsigned Half Word

Syntax

mulll_uu Dest, SrcA, SrcB

Example

mulll_uu r5, r6, r7

Description

Multiply the low half word of the first operand by the low half word of the second operand. The
result returned is a full word in length. The input operands are interpreted as unsigned half
words.

Functional Description

rf[Dest] =
((UnsignedMachineWord) getLowHalfWord(rf[SrcA])) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-285: mulll_uu in X0 Bit Descriptions

Figure 4-286: mulll_uu in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101100

RRROpcodeExtension_X0 - 0x2C

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

d

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

0111

Opcode_Y0 - 0x7

Chapter 4 Processor Engine Instruction Set

210 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mullla_ss: Multiply Accumulate Low Signed Low Signed Half Word

Syntax

mullla_ss Dest, SrcA, SrcB

Example

mullla_ss r5, r6, r7

Description

Multiply the low half word of the first operand by the low half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The input operands are interpreted as signed half words.

Functional Description

rf[Dest] =
rf[Dest] +
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcA]))) *
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcB])));

Valid Pipelines

Encoding

Figure 4-287: mullla_ss in X0 Bit Descriptions

Figure 4-288: mullla_ss in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100110

RRROpcodeExtension_X0 - 0x26

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

10

RRROpcodeExtension_Y0 - 0x2

27282930

1000

Opcode_Y0 - 0x8

Tile Processor User Architecture Manual 211

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mullla_su: Multiply Accumulate Low Signed Low Unsigned Half Word

Syntax

mullla_su Dest, SrcA, SrcB

Example

mullla_su r5, r6, r7

Description

Multiply the low half word of the first operand by the low half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The first input operand is interpreted as a signed half word and the second input operand is inter-
preted as an unsigned half word.

Functional Description

rf[Dest] =
rf[Dest] +
((SignedMachineWord) signExtend16(getLowHalfWord(rf[SrcA]))) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-289: mullla_su in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000100111

RRROpcodeExtension_X0 - 0x27

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

212 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mullla_uu: Multiply Accumulate Low Unsigned Low Unsigned Half Word

Syntax

mullla_uu Dest, SrcA, SrcB

Example

mullla_uu r5, r6, r7

Description

Multiply the low half word of the first operand by the low half word of the second operand and
accumulate the result into the destination operand. The result returned is a full word in length.
The input operands are interpreted as unsigned half words.

Functional Description

rf[Dest] =
rf[Dest] +
((UnsignedMachineWord) getLowHalfWord(rf[SrcA])) *
((UnsignedMachineWord) getLowHalfWord(rf[SrcB]));

Valid Pipelines

Encoding

Figure 4-290: mullla_uu in X0 Bit Descriptions

Figure 4-291: mullla_uu in Y0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101000

RRROpcodeExtension_X0 - 0x28

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

012345

ds

Dest_Y0 - Dest

67891011

s

SrcA_Y0 - SrcA

121314151617

s

SrcB_Y0 - SrcB

1819

11

RRROpcodeExtension_Y0 - 0x3

27282930

1000

Opcode_Y0 - 0x8

Tile Processor User Architecture Manual 213

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mulllsa_uu: Multiply Shift Accumulate Low Unsigned Low Unsigned Half Word

Syntax

mulllsa_uu Dest, SrcA, SrcB

Example

mulllsa_uu r5, r6, r7

Description

Multiply the low half word of the first operand by the low half word of the second operand, shift
the multiply left 16, and accumulate the result into the destination operand. The result returned is
a full word in length. The input operands are interpreted as unsigned half words.

Functional Description

rf[Dest] =
rf[Dest] +
((((UnsignedMachineWord) getLowHalfWord(rf[SrcA])) *

((UnsignedMachineWord) getLowHalfWord(rf[SrcB]))) << 16);

Valid Pipelines

Encoding

Figure 4-292: mulllsa_uu in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101001

RRROpcodeExtension_X0 - 0x29

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

214 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

4.1.12 NOP Instructions
The following sections provide detailed descriptions of NOP instructions listed alphabetically.

• fnop: Filler No Operation

• nop: Architectural No Operation

fnop: Filler No Operation

Syntax

fnop

Example

fnop

Description

Indicate that the programmer, compiler, or tool was not able to fill this operation slot with a suit-
able operation. This operation has no outcome. fnop should be used to signal that the no
operation is inserted because nothing else could be packed into the instruction bundle, not
because an architectural nop is needed for correct operation or for timing delay. Typically, fnop’s
can be removed at any point in the tool flow.

Functional Description

fnop();

Valid Pipelines

Encoding

Figure 4-293: fnop in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

000000

Dest_X0 - Reserved 0x0

67891011

000000

SrcA_X0 - Reserved 0x0

1213141516

00101

UnOpcodeExtension_X0 - 0x5

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

0

S_X0 - Reserved 0x0

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 215

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-294: fnop in X1 Bit Descriptions

Figure 4-295: fnop in Y0 Bit Descriptions

Figure 4-296: fnop in Y1 Bit Descriptions

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

10001

UnOpcodeExtension_X1 - 0x11

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

012345

000000

Dest_Y0 - Reserved 0x0

67891011

000000

SrcA_Y0 - Reserved 0x0

1213141516

00110

UnOpcodeExtension_Y0 - 0x6

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

313233343536

000000

Dest_Y1 - Reserved 0x0

373839404142

000000

SrcA_Y1 - Reserved 0x0

4344454647

00001

UnOpcodeExtension_Y1 - 0x1

484950

101

UnShOpcodeExtension_Y1 - 0x5

59606162

1011

Opcode_Y1 - 0xB

Chapter 4 Processor Engine Instruction Set

216 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

nop: Architectural No Operation

Syntax

nop

Example

nop

Description

Indicate to the hardware architecture that the machine should not issue an instruction with a side
effect in this slot.

Functional Description

nop();

Valid Pipelines

Encoding

Figure 4-297: nop in X0 Bit Descriptions

Figure 4-298: nop in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X X X

012345

000000

Dest_X0 - Reserved 0x0

67891011

000000

SrcA_X0 - Reserved 0x0

1213141516

00110

UnOpcodeExtension_X0 - 0x6

17181920212223242526

0000001011

UnShOpcodeExtension_X0 - 0xB

27

0

S_X0 - Reserved 0x0

282930

111

Opcode_X0 - 0x7

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

10001

UnOpcodeExtension_X1 - 0x11

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 217

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-299: nop in Y0 Bit Descriptions

Figure 4-300: nop in Y1 Bit Descriptions

012345

000000

Dest_Y0 - Reserved 0x0

67891011

000000

SrcA_Y0 - Reserved 0x0

1213141516

00110

UnOpcodeExtension_Y0 - 0x6

171819

101

UnShOpcodeExtension_Y0 - 0x5

27282930

1101

Opcode_Y0 - 0xD

313233343536

000000

Dest_Y1 - Reserved 0x0

373839404142

000000

SrcA_Y1 - Reserved 0x0

4344454647

00011

UnOpcodeExtension_Y1 - 0x3

484950

101

UnShOpcodeExtension_Y1 - 0x5

59606162

1011

Opcode_Y1 - 0xB

Chapter 4 Processor Engine Instruction Set

218 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

4.1.13 SIMD Instructions
The following sections provide detailed descriptions of SIMD instructions listed alphabetically.

• addb: Add Bytes

• addbs_u: Add Bytes Saturating Unsigned

• addh: Add Half Words

• addhs: Add Half Words Saturating

• addib: Add Immediate Bytes

• addih: Add Immediate Half Words

• adiffb_u: Absolute Difference Unsigned Bytes

• adiffh: Absolute Difference Half Words

• avgb_u: Average Byte Unsigned

• avgh: Average Half Words

• inthb: Interleave High Byte

• inthh: Interleave High Half Words

• intlb: Interleave Low Byte

• intlh: Interleave Low Half Words

• maxb_u: Maximum Byte Unsigned

• maxh: Maximum Half Words

• maxib_u: Maximum Immediate Byte Unsigned

• maxih: Maximum Immediate Half Words

• minb_u: Minimum Byte Unsigned

• minh: Minimum Half Words

• minib_u: Minimum Immediate Byte Unsigned

• minih: Minimum Immediate Half Words

• mnzb: Mask Not Zero Byte

• mnzh: Mask Not Zero Half Words

• mzb: Mask Zero Byte

• mzh: Mask Zero Half Words

• packbs_u: Pack Half Words Saturating

• packhb: Pack High Byte

• packhs: Pack Half Words Saturating

• packlb: Pack Low Byte

• sadab_u: Sum of Absolute Difference Accumulate Unsigned Bytes

• sadah: Sum of Absolute Difference Accumulate Half Words

• sadah_u: Sum of Absolute Difference Accumulate Unsigned Half Words

• sadb_u: Sum of Absolute Difference Unsigned Bytes

• sadh: Sum of Absolute Difference Half Words

Tile Processor User Architecture Manual 219

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

• sadh_u: Sum of Absolute Difference Unsigned Half Words

• seqb: Set Equal to Byte

• seqh: Set Equal To Half Words

• seqib: Set Equal To Immediate Byte

• seqih: Set Equal To Immediate Half Words

• shlb: Logical Shift Left Bytes

• shlh: Logical Shift Left Half Words

• shlib: Logical Shift Left Immediate Bytes

• shlih: Logical Shift Left Immediate Half Words

• shrb: Logical Shift Right Bytes

• shrh: Logical Shift Right Half Words

• shrib: Logical Shift Right Immediate Bytes

• shrih: Logical Shift Right Immediate Half Words

• sltb: Set Less Than Byte

• sltb_u: Set Less Than Unsigned Byte

• slteb: Set Less Than or Equal Byte

• slteb_u: Set Less Than or Equal Unsigned Byte

• slteh: Set Less Than or Equal Half Words

• slteh_u: Set Less Than or Equal Unsigned Half Words

• slth: Set Less Than Half Words

• slth_u: Set Less Than Unsigned Half Words

• sltib: Set Less Than Immediate Byte

• sltib_u: Set Less Than Unsigned Immediate Byte

• sltih: Set Less Than Immediate Half Words

• sltih_u: Set Less Than Unsigned Immediate Half Words

• sneb: Set Not Equal To Byte

• sneh: Set Not Equal To Half Words

• srab: Arithmetic Shift Right Bytes

• srah: Arithmetic Shift Right Half Words

• sraib: Arithmetic Shift Right Immediate Bytes

• sraih: Arithmetic Shift Right Immediate Half Words

• subb: Subtract Bytes

• subbs_u: Subtract Bytes Saturating Unsigned

• subh: Subtract Half Words

• subhs: Subtract Half Words Saturating

Chapter 4 Processor Engine Instruction Set

220 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

addb: Add Bytes

Syntax

addb Dest, SrcA, SrcB

Example

addb r5, r6, r7

Description

Add the four bytes in the first source operand to the four bytes in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;

for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {
output =
setByte(output, counter,
 (getByte(rf[SrcA], counter) +
 getByte(rf[SrcB], counter)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-301: addb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000000001

RRROpcodeExtension_X0 - 0x1

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 221

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-302: addb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000000001

RRROpcodeExtension_X1 - 0x1

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

222 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

addbs_u: Add Bytes Saturating Unsigned

Syntax

addbs_u Dest, SrcA, SrcB

Example

addbs_u r5, r6, r7

Description

Add the four bytes in the first source operand to the four bytes in the second source operand and
saturate each result to 0 or the maximum positive value.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

unsigned_saturate8(getByte(rf[SrcA], counter) +
getByte(rf[SrcB], counter)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-303: addbs_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100010

RRROpcodeExtension_X0 - 0x62

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 223

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-304: addbs_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000100

RRROpcodeExtension_X1 - 0x44

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

224 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

addh: Add Half Words

Syntax

addh Dest, SrcA, SrcB

Example

addh r5, r6, r7

Description

Add the pair of half words in the first source operand to the pair of half words in the second
source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(getHalfWord(rf[SrcA], counter) +
 getHalfWord(rf[SrcB], counter)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-305: addh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000000010

RRROpcodeExtension_X0 - 0x2

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 225

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-306: addh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000000010

RRROpcodeExtension_X1 - 0x2

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

226 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

addhs: Add Half Words Saturating

Syntax

addhs Dest, SrcA, SrcB

Example

addhs r5, r6, r7

Description

Add the pair of half words in the first source operand to the pair of half words in the second
source operand and saturate each result to the minimum negative value or maximum positive
value.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

signed_saturate16(signExtend16
(getHalfWord(rf[SrcA], counter)) +
signExtend16(getHalfWord

(rf[SrcB],
counter))));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-307: addhs in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100011

RRROpcodeExtension_X0 - 0x63

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 227

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-308: addhs in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000101

RRROpcodeExtension_X1 - 0x45

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

228 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

addib: Add Immediate Bytes

Syntax

addib Dest, SrcA, Imm8

Example

addib r5, r6, 5

Description

Add an immediate to all four of the bytes in the source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter, (getByte(rf[SrcA], counter) + Imm8));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-309: addib in X0 Bit Descriptions

Figure 4-310: addib in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000001

ImmOpcodeExtension_X0 - 0x1

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0000001

ImmOpcodeExtension_X1 - 0x1

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 229

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

addih: Add Immediate Half Words

Syntax

addih Dest, SrcA, Imm8

Example

addih r5, r6, 5

Description

Add a sign extended immediate to both of the half words in the source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(getHalfWord(rf[SrcA], counter) +
signExtend8(Imm8)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-311: addih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000010

ImmOpcodeExtension_X0 - 0x2

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Chapter 4 Processor Engine Instruction Set

230 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-312: addih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0000010

ImmOpcodeExtension_X1 - 0x2

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 231

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

adiffb_u: Absolute Difference Unsigned Bytes

Syntax

adiffb_u Dest, SrcA, SrcB

Example

adiffb_u r5, r6, r7

Description

Compute the absolute differences between the four bytes in the first source operand and the four
bytes in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output |=
abs(((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK) -

((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK)) <<
(counter * BYTE_SIZE);

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-313: adiffb_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000000100

RRROpcodeExtension_X0 - 0x4

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

232 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

adiffh: Absolute Difference Half Words

Syntax

adiffh Dest, SrcA, SrcB

Example

adiffh r5, r6, r7

Description

Compute the absolute differences between the pair of half words in the first source operand and
the pair of half words in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output |=
abs(signExtend16

((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK) -
signExtend16((rf[SrcB] >> (counter * HALF_WORD_SIZE)) &

HALF_WORD_MASK)) << (counter *
HALF_WORD_SIZE);

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-314: adiffh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000000101

RRROpcodeExtension_X0 - 0x5

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 233

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

avgb_u: Average Byte Unsigned

Syntax

avgb_u Dest, SrcA, SrcB

Example

avgb_u r5, r6, r7

Description

Compute the average of the four bytes in the first source operand and the four bytes in the second
source operand, rounding upwards.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

UnsignedMachineWord srca =
((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);

UnsignedMachineWord srcb =
((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);

output |=
((((srca + srcb +

1) >> 1) & BYTE_MASK) << (counter * BYTE_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-315: avgb_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000000111

RRROpcodeExtension_X0 - 0x7

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

234 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

avgh: Average Half Words

Syntax

avgh Dest, SrcA, SrcB

Example

avgh r5, r6, r7

Description

Compute the average between the pair of half words in the first source operand and the pair of
half words in the second source operand, rounding upwards.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

SignedMachineWord srca =
signExtend16((rf[SrcA] >> (counter * HALF_WORD_SIZE)) &

HALF_WORD_MASK);
SignedMachineWord srcb =

signExtend16((rf[SrcB] >> (counter * HALF_WORD_SIZE)) &
HALF_WORD_MASK);

output |=
((((srca + srcb +

1) >> 1) & HALF_WORD_MASK) << (counter * HALF_WORD_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-316: avgh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001000

RRROpcodeExtension_X0 - 0x8

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 235

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

inthb: Interleave High Byte

Syntax

inthb Dest, SrcA, SrcB

Example

inthb r5, r6, r7

Description

Interleave the two high-order bytes of the first operand with the two high-order bytes of the sec-
ond operand. The high-order byte of the result will be the high-order byte of the first operand.
For example if the first operand contains the packed bytes {A3,A2,A1,A0} and the second operand
contains the packed bytes {B3,B2,B1,B0} then the result will be {A3,B3,A2,B2}.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

bool asel = ((counter & 1) == 1);
int in_sel = 2 + counter / 2;
int16_t srca = ((rf[SrcA] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
int16_t srcb = ((rf[SrcB] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
output |=

(((asel ? srca : srcb) & BYTE_MASK) << (counter * BYTE_SIZE));
} rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-317: inthb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001011

RRROpcodeExtension_X0 - 0xB

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

236 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-318: inthb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000000101

RRROpcodeExtension_X1 - 0x5

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 237

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

inthh: Interleave High Half Words

Syntax

inthh Dest, SrcA, SrcB

Example

inthh r5, r6, r7

Description

Interleave the high-order half word of the first operand with the high-order half word of the sec-
ond operand. The high-order half word of the result will be the high-order half word of the first
operand. For example if the first operand contains the packed half words {A1,A0} and the second
operand contains the packed half words {B1,B0} then the result will be {A1,B1}.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

bool asel = ((counter & 1) == 1);
int in_sel = 1 + counter / 2;
int16_t srca =

((rf[SrcA] >> (in_sel * HALF_WORD_SIZE)) & HALF_WORD_MASK);
int16_t srcb =

((rf[SrcB] >> (in_sel * HALF_WORD_SIZE)) & HALF_WORD_MASK);
output |=

(((asel ? srca : srcb) & HALF_WORD_MASK) <<
(counter * HALF_WORD_SIZE));

} rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-319: inthh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001100

RRROpcodeExtension_X0 - 0xC

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

238 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-320: inthh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000000110

RRROpcodeExtension_X1 - 0x6

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 239

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

intlb: Interleave Low Byte

Syntax

intlb Dest, SrcA, SrcB

Example

intlb r5, r6, r7

Description

Interleave the two low-order bytes of the first operand with the two low-order bytes of the second
operand. The low-order byte of the result will be the low-order byte of the second operand. For
example if the first operand contains the packed bytes {A3,A2,A1,A0} and the second operand
contains the packed bytes {B3,B2,B1,B0} then the result will be {A1,B1,A0,B0}.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

bool asel = ((counter & 1) == 1);
int in_sel = 0 + counter / 2;
int16_t srca = ((rf[SrcA] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
int16_t srcb = ((rf[SrcB] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
output |=

(((asel ? srca : srcb) & BYTE_MASK) << (counter * BYTE_SIZE));
} rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-321: intlb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001101

RRROpcodeExtension_X0 - 0xD

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

240 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-322: intlb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000000111

RRROpcodeExtension_X1 - 0x7

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 241

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

intlh: Interleave Low Half Words

Syntax

intlh Dest, SrcA, SrcB

Example

intlh r5, r6, r7

Description

Interleave the low-order half word of the first operand with the low-order half word of the second
operand. The low-order half word of the result will be the low-order half word of the second
operand. For example if the first operand contains the packed half words {A1,A0} and the second
operand contains the packed half words {B1,B0} then the result will be {A0,B0}.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

bool asel = ((counter & 1) == 1);
int in_sel = 0 + counter / 2;
int16_t srca =

((rf[SrcA] >> (in_sel * HALF_WORD_SIZE)) & HALF_WORD_MASK);
int16_t srcb =

((rf[SrcB] >> (in_sel * HALF_WORD_SIZE)) & HALF_WORD_MASK);
output |=

(((asel ? srca : srcb) & HALF_WORD_MASK) <<
(counter * HALF_WORD_SIZE));

} rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-323: intlh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001110

RRROpcodeExtension_X0 - 0xE

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

242 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-324: intlh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000001000

RRROpcodeExtension_X1 - 0x8

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 243

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

maxb_u: Maximum Byte Unsigned

Syntax

maxb_u Dest, SrcA, SrcB

Example

maxb_u r5, r6, r7

Description

Set each of the bytes in the destination to the maximum of the corresponding byte in the first
source operand and the corresponding byte in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

uint8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
uint8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca >
srcb) ? srca : srcb) & BYTE_MASK) << (counter *

BYTE_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-325: maxb_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000001111

RRROpcodeExtension_X0 - 0xF

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

244 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-326: maxb_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000001110

RRROpcodeExtension_X1 - 0xE

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 245

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

maxh: Maximum Half Words

Syntax

maxh Dest, SrcA, SrcB

Example

maxh r5, r6, r7

Description

Set each of the half words in the destination to the maximum of the corresponding half word in
the first source operand and the corresponding half word in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca >

srcb) ? srca : srcb) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-327: maxh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010000

RRROpcodeExtension_X0 - 0x10

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

246 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-328: maxh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000001111

RRROpcodeExtension_X1 - 0xF

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 247

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

maxib_u: Maximum Immediate Byte Unsigned

Syntax

maxib_u Dest, SrcA, Imm8

Example

maxib_u r5, r6, 5

Description

Set each of the bytes in the destination to the maximum of the corresponding byte in the first
source operand and the sign extended immediate.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
uint8_t immb = Imm8;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

uint8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

(((srca >
immb) ? srca : immb) & BYTE_MASK) << (counter *

BYTE_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-329: maxh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010000

RRROpcodeExtension_X0 - 0x10

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

248 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-330: maxh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000001111

RRROpcodeExtension_X1 - 0xF

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 249

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

maxih: Maximum Immediate Half Words

Syntax

maxih Dest, SrcA, Imm8

Example

maxih r5, r6, 5

Description

Set each of the half words in the destination to the maximum of the corresponding half word in
the first source operand and the sign extended immediate.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca >

signExtend8(Imm8)) ? srca : signExtend8(Imm8)) &
HALF_WORD_MASK) << (counter * HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-331: maxih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000101

ImmOpcodeExtension_X0 - 0x5

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Chapter 4 Processor Engine Instruction Set

250 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-332: maxih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0000110

ImmOpcodeExtension_X1 - 0x6

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 251

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

minb_u: Minimum Byte Unsigned

Syntax

minb_u Dest, SrcA, SrcB

Example

minb u r5, r6, r7

Description

Set each of the bytes in the destination to the minimum of the corresponding byte in the first
source operand and the corresponding byte in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

uint8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
uint8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca <
srcb) ? srca : srcb) & BYTE_MASK) << (counter *

BYTE_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-333: minb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010001

RRROpcodeExtension_X0 - 0x11

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

252 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-334: minb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010000

RRROpcodeExtension_X1 - 0x10

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 253

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

minh: Minimum Half Words

Syntax

minh Dest, SrcA, SrcB

Example

minh r5, r6, r7

Description

Set each of the half words in the destination to the minimum of the corresponding half word in
the first source operand and the corresponding half word in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca <

srcb) ? srca : srcb) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-335: minh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010010

RRROpcodeExtension_X0 - 0x12

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

254 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-336: minh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010001

RRROpcodeExtension_X1 - 0x11

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 255

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

minib_u: Minimum Immediate Byte Unsigned

Syntax

minib_u Dest, SrcA, Imm8

Example

minib_u r5, r6, 5

Description

Set each of the bytes in the destination to the minimum of the corresponding byte in the first
source operand and the sign extended immediate.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
uint8_t immb = Imm8;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

uint8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca <
immb) ? srca : immb) & BYTE_MASK) << (counter *

BYTE_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-337: minib_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000110

ImmOpcodeExtension_X0 - 0x6

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Chapter 4 Processor Engine Instruction Set

256 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-338: minib_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0001000

ImmOpcodeExtension_X1 - 0x8

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 257

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

minih: Minimum Immediate Half Words

Syntax

minih Dest, SrcA, Imm8

Example

minih r5, r6, 5

Description

Set each of the half words in the destination to the minimum of the corresponding half word in
the first source operand and the sign extended immediate.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca <

signExtend8(Imm8)) ? srca : signExtend8(Imm8)) &
HALF_WORD_MASK) << (counter * HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-339: minih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0000111

ImmOpcodeExtension_X0 - 0x7

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Chapter 4 Processor Engine Instruction Set

258 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-340: minih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0001001

ImmOpcodeExtension_X1 - 0x9

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 259

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mnzb: Mask Not Zero Byte

Syntax

mnzb Dest, SrcA, SrcB

Example

mnzb r5, r6, r7

Description

Set each byte in the destination to the corresponding byte of the second operand if the corre-
sponding byte of the first operand is not 0, otherwise set it to zero (0).

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca !=
0) ? srcb : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-341: mnzb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010011

RRROpcodeExtension_X0 - 0x13

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

260 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-342: mnzb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010010

RRROpcodeExtension_X1 - 0x12

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 261

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mnzh: Mask Not Zero Half Words

Syntax

mnzh Dest, SrcA, SrcB

Example

mnzh r5, r6, r7

Description

Set each half word in the destination to the corresponding half word of the second operand if the
corresponding half word of the first operand is not 0, otherwise set it to zero (0).

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca !=

0) ? srcb : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-343: mnzh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000010100

RRROpcodeExtension_X0 - 0x14

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

262 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-344: mnzh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010011

RRROpcodeExtension_X1 - 0x13

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 263

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mzb: Mask Zero Byte

Syntax

mzb Dest, SrcA, SrcB

Example

mzb r5, r6, r7

Description

Set each byte in the destination to the corresponding byte of the second operand if the corre-
sponding byte of the first operand is 0, otherwise set it to zero (0).

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca ==
0) ? srcb : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-345: mzb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000101111

RRROpcodeExtension_X0 - 0x2F

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

264 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-346: mzb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010101

RRROpcodeExtension_X1 - 0x15

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 265

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mzh: Mask Zero Half Words

Syntax

mzh Dest, SrcA, SrcB

Example

mzh r5, r6, r7

Description

Set each half word in the destination to the corresponding half word of the second operand if the
corresponding half word of the first operand is 0, otherwise set it to zero (0).

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca ==

0) ? srcb : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-347: mzh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110000

RRROpcodeExtension_X0 - 0x30

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

266 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-348: mzh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000010110

RRROpcodeExtension_X1 - 0x16

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 267

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

packbs_u: Pack Half Words Saturating

Syntax

packbs_u Dest, SrcA, SrcB

Example

packbs_u r5, r6, r7

Description

Saturate each half word of the two source registers to the maximum positive or 0 byte value, and
then pack the results into the destination register. The high-order byte of the destination will be
the saturated high-order half word of the first operand and the low-order byte of the destination
will be the saturated low-order half word of the second operand. For example if the first operand
contains the packed half words A1,A0 and the second operand contains the packed half word
B1,B0 then the result will be sat A1,sat A0,sat B1,sat B0.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

bool asel = ((counter / 2) == 1);
int in_sel = counter & 1;
int16_t srca = signExtend16(getHalfWord(rf[SrcA], in_sel));
int16_t srcb = signExtend16(getHalfWord(rf[SrcB], in_sel));
output =

setByte(output, counter,
unsigned_saturate8(asel ? srca : srcb));

} rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-349: packbs_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100111

RRROpcodeExtension_X0 - 0x67

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

268 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-350: packbs_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001001001

RRROpcodeExtension_X1 - 0x49

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 269

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

packhb: Pack High Byte

Syntax

packhb Dest, SrcA, SrcB

Example

packhb r5, r6, r7

Description

Pack the high-order byte of each of the packed half words of the two source registers into the des-
tination register. The high-order byte of the destination with be the high-order byte of the first
operand. For example if the first operand contains the packed bytes {A1_1,A1_0,A0_1,A0_0} and
the second operand contains the packed bytes {B1_1,B1_0,B0_1,B0_0} then the result will be
{A1_1,A0_1,B1_1,B0_1}.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

bool asel = ((counter / 2) == 1);
int in_sel = 1 + (counter & 1) * 2;
int8_t srca = ((rf[SrcA] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = ((rf[SrcB] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
output |=

(((asel ? srca : srcb) & BYTE_MASK) << (counter * BYTE_SIZE));
} rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-351: packhb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110100

RRROpcodeExtension_X0 - 0x34

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

270 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-352: packhb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011010

RRROpcodeExtension_X1 - 0x1A

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 271

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

packhs: Pack Half Words Saturating

Syntax

packhs Dest, SrcA, SrcB

Example

packhs r5, r6, r7

Description

Saturate each of the two source registers to the maximum positive or minimum negative half
word value, and then pack the results into the destination register. The low-order half word of the
destination with be the saturated second operand.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

bool asel = counter & 1;
int16_t srca = signed_saturate16(rf[SrcA]);
int16_t srcb = signed_saturate16(rf[SrcB]);
output = setHalfWord(output, counter, (asel ? srca : srcb));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-353: packhs in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100110

RRROpcodeExtension_X0 - 0x66

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

272 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-354: packhs in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001001000

RRROpcodeExtension_X1 - 0x48

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 273

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

packlb: Pack Low Byte

Syntax

packlb Dest, SrcA, SrcB

Example

packlb r5, r6, r7

Description

Pack the low-order byte of each of the packed half words of the two source registers into the des-
tination register. The low-order byte of the destination with be the low-order byte of the second
operand. For example if the first operand contains the packed bytes {A1_1,A1_0,A0_1,A0_0} and
the second operand contains the packed bytes {B1_1,B1_0,B0_1,B0_0} then the result will be
{A1_0,A0_0,B1_0,B0_0}.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

bool asel = ((counter / 2) == 1);
int in_sel = 0 + (counter & 1) * 2;
int8_t srca = ((rf[SrcA] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = ((rf[SrcB] >> (in_sel * BYTE_SIZE)) & BYTE_MASK);
output |=

(((asel ? srca : srcb) & BYTE_MASK) << (counter * BYTE_SIZE));
} rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-355: packlb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000110101

RRROpcodeExtension_X0 - 0x35

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

274 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-356: packlb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000011011

RRROpcodeExtension_X1 - 0x1B

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 275

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

sadab_u: Sum of Absolute Difference Accumulate Unsigned Bytes

Syntax

sadab_u Dest, SrcA, SrcB

Example

sadab_u r5, r6, r7

Description

Sum the absolute differences between the four bytes in the first source operand and the four bytes
in the second source operand and accumulate the sum into the destination register.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output +=
abs(((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK) -

((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK));
}
rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 4-357: sadab_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111010

RRROpcodeExtension_X0 - 0x3A

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

276 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sadah: Sum of Absolute Difference Accumulate Half Words

Syntax

sadah Dest, SrcA, SrcB

Example

sadah r5, r6, r7

Description

Sum the absolute differences between the pair of half words in the first source operand and the
pair of half words in the second source operand and accumulate the sum into the destination
register.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output +=
abs(signExtend16(getHalfWord(rf[SrcA], counter)) -

signExtend16(getHalfWord(rf[SrcB], counter)));
}
rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 4-358: sadah in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111011

RRROpcodeExtension_X0 - 0x3B

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 277

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

sadah_u: Sum of Absolute Difference Accumulate Unsigned Half Words

Syntax

sadah_u Dest, SrcA, SrcB

Example

sadah_u r5, r6, r7

Description

Sum the absolute differences between the pair of half words in the first source operand and the
pair of half words in the second source operand and accumulate the sum into the destination
register.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output +=
abs(((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK)-

((rf[SrcB] >> (counter * HALF_WORD_SIZE)) &
HALF_WORD_MASK));

}
rf[Dest] = rf[Dest] + output;

Valid Pipelines

Encoding

Figure 4-359: sadah_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

ds

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111100

RRROpcodeExtension_X0 - 0x3C

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

278 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sadb_u: Sum of Absolute Difference Unsigned Bytes

Syntax

sadb_u Dest, SrcA, SrcB

Example

sadb_u r5, r6, r7

Description

Sum the absolute differences between the four bytes in the first source operand and the four bytes
in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output +=
abs(((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK) -

((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-360: sadb_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111101

RRROpcodeExtension_X0 - 0x3D

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 279

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

sadh: Sum of Absolute Difference Half Words

Syntax

sadh Dest, SrcA, SrcB

Example

sadh r5, r6, r7

Description

Sum the absolute differences between the pair of half words in the first source operand and the
pair of half words in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output +=
abs(signExtend16(getHalfWord(rf[SrcA], counter)) -

signExtend16(getHalfWord(rf[SrcB], counter)));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-361: sadh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111110

RRROpcodeExtension_X0 - 0x3E

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

280 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sadh_u: Sum of Absolute Difference Unsigned Half Words

Syntax

sadh_u Dest, SrcA, SrcB

Example

sadh_u r5, r6, r7

Description

Sum the absolute differences between the pair of half words in the first source operand and the
pair of half words in the second source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output +=
abs(((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK) -

((rf[SrcB] >> (counter * HALF_WORD_SIZE)) &
HALF_WORD_MASK));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-362: sadh_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

000111111

RRROpcodeExtension_X0 - 0x3F

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 281

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

seqb: Set Equal to Byte

Syntax

seqb Dest, SrcA, SrcB

Example

seqb r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is equal to the byte
of the second source operand. Otherwise the result is set to 0. This instruction treats both source
bytes as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca ==
srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-363: seqb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000000

RRROpcodeExtension_X0 - 0x40

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

282 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-364: seqb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000100001

RRROpcodeExtension_X1 - 0x21

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 283

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

seqh: Set Equal To Half Words

Syntax

seqh Dest, SrcA, SrcB

Example

seqh r5, r6, r7

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is equal
to the half word of the second source operand. Otherwise the result is set to 0. This instruction
treats both source half words as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca ==

srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-365: seqh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000001

RRROpcodeExtension_X0 - 0x41

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

284 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-366: seqh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000100010

RRROpcodeExtension_X1 - 0x22

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 285

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

seqib: Set Equal To Immediate Byte

Syntax

seqib Dest, SrcA, Imm8

Example

seqib r5, r6, 5

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is equal to a sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source bytes as
signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = signExtend8(Imm8) & BYTE_MASK;
output |=

((((srca ==
srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-367: seqib in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001001

ImmOpcodeExtension_X0 - 0x9

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Chapter 4 Processor Engine Instruction Set

286 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-368: seqib in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0001100

ImmOpcodeExtension_X1 - 0xC

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 287

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

seqih: Set Equal To Immediate Half Words

Syntax

seqih Dest, SrcA, Imm8

Example

seqih r5, r6, 5

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is equal
to a sign extended immediate. Otherwise the result is set to 0. This instruction treats both source
half words as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb = signExtend8(Imm8) & HALF_WORD_MASK;

output |=
((((srca ==

srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-369: seqih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001010

ImmOpcodeExtension_X0 - 0xA

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Chapter 4 Processor Engine Instruction Set

288 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-370: seqih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0001101

ImmOpcodeExtension_X1 - 0xD

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 289

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

shlb: Logical Shift Left Bytes

Syntax

shlb Dest, SrcA, SrcB

Example

shlb r5, r6, r7

Description

Logically shift the four bytes in the first source operand to the left by the second source operand.
If the shift amount is larger than the number of bits in a byte, the effective shift amount is com-
puted to be the specified shift amount modulo the number of bits in a byte. Logical left shift shifts
zeros into the low ordered bits in a byte.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setByte(output, counter,

(getByte(rf[SrcA], counter) <<
(((UnsignedMachineWord) rf[SrcB]) % BYTE_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-371: shlb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000011

RRROpcodeExtension_X0 - 0x43

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

290 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-372: shlb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000100100

RRROpcodeExtension_X1 - 0x24

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 291

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

shlh: Logical Shift Left Half Words

Syntax

shlh Dest, SrcA, SrcB

Example

shlh r5, r6, r7

Description

Logically shift the pair of half words in the first source operand to the left by the second source
operand. If the shift amount is larger than the number of bits in a half word, the effective shift
amount is computed to be the specified shift amount modulo the number of bits in a half word.
Logical left shift shifts zeros into the low ordered bits in a half word.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(getHalfWord(rf[SrcA], counter) <<
(((UnsignedMachineWord) rf[SrcB]) % HALF_WORD_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-373: shlh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000100

RRROpcodeExtension_X0 - 0x44

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

292 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shlib: Logical Shift Left Immediate Bytes

Syntax

shlib Dest, SrcA, ShAmt

Example

shlib r5, r6, 5

Description

Logically shift the four bytes in the first source operand to the left by an immediate. If the shift
amount is larger than the number of bits in a byte, the effective shift amount is computed to be the
specified shift amount modulo the number of bits in a byte. Left shifts shift zeros into the low
ordered bits in a byte and are suitable to be used as unsigned multiplication by powers of 2.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

(getByte(rf[SrcA], counter) <<
(((UnsignedMachineWord) ShAmt) % BYTE_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-374: shlib in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000000010

UnShOpcodeExtension_X0 - 0x2

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 293

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-375: shlib in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000000010

UnShOpcodeExtension_X1 - 0x2

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

294 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shlih: Logical Shift Left Immediate Half Words

Syntax

shlih Dest, SrcA, ShAmt

Example

shlih r5, r6, 5

Description

Logically shift the pair of half words in the first source operand to the left by an immediate. If the
shift amount is larger than the number of bits in a half word, the effective shift amount is com-
puted to be the specified shift amount modulo the number of bits in a half word. Left shifts shift
zeros into the low ordered bits in a half word and are suitable to be used as unsigned multiplica-
tion by powers of 2.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(getHalfWord(rf[SrcA], counter) <<
(((UnsignedMachineWord) ShAmt) %
HALF_WORD_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-376: shlih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000000011

UnShOpcodeExtension_X0 - 0x3

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 295

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-377: shlih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000000011

UnShOpcodeExtension_X1 - 0x3

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

296 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shrb: Logical Shift Right Bytes

Syntax

shrb Dest, SrcA, SrcB

Example

shrb r5, r6, r7

Description

Logically shift the four bytes in the first source operand to the right by the second source operand.
If the shift amount is larger than the number of bits in a byte, the effective shift amount is com-
puted to be the specified shift amount modulo the number of bits in a byte. Logical right shift
shifts zeros into the high ordered bits in a byte.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

(getByte(rf[SrcA], counter) >>
(((UnsignedMachineWord) rf[SrcB]) % BYTE_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-378: shrb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000110

RRROpcodeExtension_X0 - 0x46

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 297

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-379: shrb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000100111

RRROpcodeExtension_X1 - 0x27

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

298 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shrh: Logical Shift Right Half Words

Syntax

shrh Dest, SrcA, SrcB

Example

shrh r5, r6, r7

Description

Logically shift the pair of half words in the first source operand to the right by the second source
operand. If the shift amount is larger than the number of bits in a half word, the effective shift
amount is computed to be the specified shift amount modulo the number of bits in a half word.
Logical right shift shifts zeros into the high ordered bits in a half word.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(getHalfWord(rf[SrcA], counter) >>
(((UnsignedMachineWord) rf[SrcB]) %
HALF_WORD_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-380: shrh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001000111

RRROpcodeExtension_X0 - 0x47

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 299

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-381: shrh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101000

RRROpcodeExtension_X1 - 0x28

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

300 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shrib: Logical Shift Right Immediate Bytes

Syntax

shrib Dest, SrcA, ShAmt

Example

shrib r5, r6, 5

Description

Logically shift the four bytes in the first source operand to the right by an immediate. If the shift
amount is larger than the number of bits in a byte, the effective shift amount is computed to be the
specified shift amount modulo the number of bits in a byte. Logical right shifts shift zeros into the
high ordered bits in a byte and are suitable to be used as unsigned integer division by powers of 2.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

(getByte(rf[SrcA], counter) >>
(((UnsignedMachineWord) ShAmt) % BYTE_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-382: shrib in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000000101

UnShOpcodeExtension_X0 - 0x5

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 301

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-383: shrib in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000000101

UnShOpcodeExtension_X1 - 0x5

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

302 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

shrih: Logical Shift Right Immediate Half Words

Syntax

shrih Dest, SrcA, ShAmt

Example

shrih r5, r6, 5

Description

Logically shift the pair of half words in the first source operand to the right by an immediate. If
the shift amount is larger than the number of bits in a half word, the effective shift amount is com-
puted to be the specified shift amount modulo the number of bits in a half word. Logical right
shifts shift zeros into the high ordered bits in a half word and are suitable to be used as unsigned
integer division by powers of 2.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(getHalfWord(rf[SrcA], counter) >>
(((UnsignedMachineWord) ShAmt) %
HALF_WORD_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-384: shrih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000000110

UnShOpcodeExtension_X0 - 0x6

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 303

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-385: shrih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000000110

UnShOpcodeExtension_X1 - 0x6

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

304 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sltb: Set Less Than Byte

Syntax

sltb Dest, SrcA, SrcB

Example

sltb r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than the byte
of the second source operand. Otherwise the result is set to 0. This instruction treats both source
bytes as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca <
srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-386: sltb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001001

RRROpcodeExtension_X0 - 0x49

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 305

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-387: sltb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101011

RRROpcodeExtension_X1 - 0x2B

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

306 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sltb_u: Set Less Than Unsigned Byte

Syntax

sltb_u Dest, SrcA, SrcB

Example

sltb u r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than the byte
of the second source operand. Otherwise the result is set to 0. This instruction treats both source
bytes as unsigned values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

uint8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
uint8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca <
srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-388: sltb_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001010

RRROpcodeExtension_X0 - 0x4A

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 307

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-389: sltb_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101100

RRROpcodeExtension_X1 - 0x2C

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

308 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

slteb: Set Less Than or Equal Byte

Syntax

slteb Dest, SrcA, SrcB

Example

slteb r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than or equal
to the byte of the second source operand. Otherwise the result is set to 0. This instruction treats
both source bytes as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);

output |=
((((srca <=

srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-390: slteb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001011

RRROpcodeExtension_X0 - 0x4B

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 309

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-391: slteb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101101

RRROpcodeExtension_X1 - 0x2D

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

310 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

slteb_u: Set Less Than or Equal Unsigned Byte

Syntax

slteb_u Dest, SrcA, SrcB

Example

slteb_u r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than or equal
to the byte of the second source operand. Otherwise the result is set to 0. This instruction treats
both source bytes as unsigned values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

uint8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
uint8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
output |=

((((srca <=
srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-392: slteb_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001100

RRROpcodeExtension_X0 - 0x4C

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 311

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-393: slteb_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101110

RRROpcodeExtension_X1 - 0x2E

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

312 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

slteh: Set Less Than or Equal Half Words

Syntax

slteh Dest, SrcA, SrcB

Example

slteh r5, r6, r7

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is less
than or equal to the half word of the second source operand. Otherwise the result is set to 0. This
instruction treats both source half words as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca <=

srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-394: slteh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001101

RRROpcodeExtension_X0 - 0x4D

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 313

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-395: slteh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000101111

RRROpcodeExtension_X1 - 0x2F

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

314 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

slteh_u: Set Less Than or Equal Unsigned Half Words

Syntax

slteh_u Dest, SrcA, SrcB

Example

slteh_u r5, r6, r7

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is less
than or equal to the half word of the second source operand. Otherwise the result is set to 0. This
instruction treats both source half words as unsigned values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

uint16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

uint16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca <=

srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-396: slteh_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001001110

RRROpcodeExtension_X0 - 0x4E

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 315

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-397: slteh_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110000

RRROpcodeExtension_X1 - 0x30

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

316 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

slth: Set Less Than Half Words

Syntax

slth Dest, SrcA, SrcB

Example

slth r5, r6, r7

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is less
than the half word of the second source operand. Otherwise the result is set to 0. This instruction
treats both source half words as signed values

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca <

srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-398: slth in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010001

RRROpcodeExtension_X0 - 0x51

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 317

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-399: slth in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110011

RRROpcodeExtension_X1 - 0x33

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

318 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

slth_u: Set Less Than Unsigned Half Words

Syntax

slth_u Dest, SrcA, SrcB

Example

slth_u r5, r6, r7

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is less
than the half word of the second source operand. Otherwise the result is set to 0. This instruction
treats both source half words as unsigned values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

uint16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

uint16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca <

srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-400: slth_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010010

RRROpcodeExtension_X0 - 0x52

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 319

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-401: slth_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110100

RRROpcodeExtension_X1 - 0x34

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

320 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sltib: Set Less Than Immediate Byte

Syntax

sltib Dest, SrcA, Imm8

Example

sltib r5, r6, 5

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than a sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source bytes as
signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
int8_t srcb = signExtend8(Imm8) & BYTE_MASK;
output |=

((((srca <
srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-402: sltib in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001100

ImmOpcodeExtension_X0 - 0xC

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Tile Processor User Architecture Manual 321

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-403: sltib in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0001111

ImmOpcodeExtension_X1 - 0xF

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

322 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sltib_u: Set Less Than Unsigned Immediate Byte

Syntax

sltib_u Dest, SrcA, Imm8

Example

sltib_u r5, r6, 5

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is less than a sign
extended immediate. Otherwise the result is set to 0. This instruction treats both source bytes as
unsigned values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

uint8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
uint8_t srcb = signExtend8(Imm8) & BYTE_MASK;
output |=

((((srca <
srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-404: sltib_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001101

ImmOpcodeExtension_X0 - 0xD

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Tile Processor User Architecture Manual 323

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-405: sltib_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0010000

ImmOpcodeExtension_X1 - 0x10

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

324 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sltih: Set Less Than Immediate Half Words

Syntax

sltih Dest, SrcA, Imm8

Example

sltih r5, r6, 5

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is less
than a sign extended immediate. Otherwise the result is set to 0. This instruction treats both
source half words as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb = signExtend8(Imm8) & HALF_WORD_MASK;
output |=

((((srca <
srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *

HALF_WORD_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-406: sltih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001110

ImmOpcodeExtension_X0 - 0xE

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Tile Processor User Architecture Manual 325

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-407: sltih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0010001

ImmOpcodeExtension_X1 - 0x11

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

326 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sltih_u: Set Less Than Unsigned Immediate Half Words

Syntax

sltih_u Dest, SrcA, Imm8

Example

sltih_u r5, r6, 5

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is less
than a sign extended immediate. Otherwise the result is set to 0. This instruction treats both
source half words as unsigned values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

uint16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

uint16_t srcb = signExtend8(Imm8) & HALF_WORD_MASK;
output |=

((((srca <
srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *

HALF_WORD_SIZE));
}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-408: sltih_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516171819

i

Imm8_X0 - Imm8

20212223242526

0001111

ImmOpcodeExtension_X0 - 0xF

27

n

S_X0 - Sbit

282930

100

Opcode_X0 - 0x4

Tile Processor User Architecture Manual 327

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-409: sltih_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

Imm8_X1 - Imm8

51525354555657

0010010

ImmOpcodeExtension_X1 - 0x12

58

n

S_X1 - Sbit

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

328 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sneb: Set Not Equal To Byte

Syntax

sneb Dest, SrcA, SrcB

Example

sneb r5, r6, r7

Description

Sets each result byte to 1 if the corresponding byte of the first source operand is not equal to the
byte of the second source operand. Otherwise the result is set to 0. This instruction treats both
source bytes as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

 int8_t srca = ((rf[SrcA] >> (counter * BYTE_SIZE)) & BYTE_MASK);
 int8_t srcb = ((rf[SrcB] >> (counter * BYTE_SIZE)) & BYTE_MASK);
 output |=

 ((((srca !=
 srcb) ? 1 : 0) & BYTE_MASK) << (counter * BYTE_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-410: sneb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010101

RRROpcodeExtension_X0 - 0x55

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 329

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-411: sneb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000110111

RRROpcodeExtension_X1 - 0x37

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

330 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sneh: Set Not Equal To Half Words

Syntax

sneh Dest, SrcA, SrcB

Example

sneh r5, r6, r7

Description

Sets each result half word to 1 if the corresponding half word of the first source operand is not
equal to the half word of the second source operand. Otherwise the result is set to 0. This instruc-
tion treats both source half words as signed values.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

int16_t srca =
((rf[SrcA] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

int16_t srcb =
((rf[SrcB] >> (counter * HALF_WORD_SIZE)) & HALF_WORD_MASK);

output |=
((((srca !=

srcb) ? 1 : 0) & HALF_WORD_MASK) << (counter *
HALF_WORD_SIZE));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-412: sneh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001010110

RRROpcodeExtension_X0 - 0x56

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 331

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-413: sneh in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000111000

RRROpcodeExtension_X1 - 0x38

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

332 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

srab: Arithmetic Shift Right Bytes

Syntax

srab Dest, SrcA, SrcB

Example

srab r5, r6, r7

Description

Arithmetically shift the four bytes in the first source operand to the right by the second source
operand. If the shift amount is larger than the number of bits in a byte, the effective shift amount
is computed to be the specified shift amount modulo the number of bits in a byte. Arithmetic right
shift shifts the high ordered bit into the high ordered bits in a byte.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

(signExtend8(getByte(rf[SrcA], counter)) >>
(((UnsignedMachineWord) rf[SrcB]) % BYTE_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-414: srab in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011000

RRROpcodeExtension_X0 - 0x58

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 333

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-415: srab in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000111010

RRROpcodeExtension_X1 - 0x3A

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

334 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

srah: Arithmetic Shift Right Half Words

Syntax

srah Dest, SrcA, SrcB

Example

srah r5, r6, r7

Description

Arithmetically shift the pair of half words in the first source operand to the right by the second
source operand. If the shift amount is larger than the number of bits in a half word, the effective
shift amount is computed to be the specified shift amount modulo the number of bits in a half
word. Arithmetic right shift shifts the high ordered bit into the high ordered bits in a half word.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(signExtend16(getHalfWord(rf[SrcA], counter)) >>
(((UnsignedMachineWord) rf[SrcB]) %
HALF_WORD_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-416: srah in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011001

RRROpcodeExtension_X0 - 0x59

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 335

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-417: srah in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000111011

RRROpcodeExtension_X1 - 0x3B

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

336 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sraib: Arithmetic Shift Right Immediate Bytes

Syntax

sraib Dest, SrcA, ShAmt

Example

sraib r5, r6, 5

Description

Arithmetically shift the four bytes in the first source operand to the right by an immediate. If the
shift amount is larger than the number of bits in a byte, the effective shift amount is computed to
be the specified shift amount modulo the number of bits in a byte. Arithmetic right shifts shift the
high ordered bit into the high ordered bits in a byte.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

(signExtend8(getByte(rf[SrcA], counter)) >>
(((UnsignedMachineWord) ShAmt) % BYTE_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-418: sraib in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000001000

UnShOpcodeExtension_X0 - 0x8

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 337

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-419: sraib in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000001000

UnShOpcodeExtension_X1 - 0x8

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

338 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

sraih: Arithmetic Shift Right Immediate Half Words

Syntax

sraih Dest, SrcA, ShAmt

Example

sraih r5, r6, 5

Description

Arithmetically shift pair of half words in the first source operand to the right by an immediate. If
the shift amount is larger than the number of bits in a half word, the effective shift amount is com-
puted to be the specified shift amount modulo the number of bits in a half word. Arithmetic right
shifts shift the high ordered bit into the high ordered bits in a half word.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(signExtend16(getHalfWord(rf[SrcA], counter)) >>
(((UnsignedMachineWord) ShAmt) %
HALF_WORD_SIZE)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-420: sraih in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

1213141516

i

ShAmt_X0 - ShAmt

17181920212223242526

0000001001

UnShOpcodeExtension_X0 - 0x9

27

n

S_X0 - Sbit

282930

111

Opcode_X0 - 0x7

Tile Processor User Architecture Manual 339

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-421: sraih in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

4344454647

i

ShAmt_X1 - ShAmt

48495051525354555657

0000001001

UnShOpcodeExtension_X1 - 0x9

58

n

S_X1 - Sbit

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

340 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

subb: Subtract Bytes

Syntax

subb Dest, SrcA, SrcB

Example

subb r5, r6, r7

Description

Subtract the four bytes in the second source operand from the four bytes in the first source
operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

(getByte(rf[SrcA], counter) -
getByte(rf[SrcB], counter)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-422: subb in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011011

RRROpcodeExtension_X0 - 0x5B

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 341

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-423: subb in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

000111101

RRROpcodeExtension_X1 - 0x3D

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

342 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

subbs_u: Subtract Bytes Saturating Unsigned

Syntax

subbs_u Dest, SrcA, SrcB

Example

subbs_u r5, r6, r7

Description

Subtract the four bytes in the second source operand from the four bytes in the first source oper-
and and saturate each result to 0 or the maximum positive value.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / BYTE_SIZE); counter++) {

output =
setByte(output, counter,

unsigned_saturate8(getByte(rf[SrcA], counter) -
getByte(rf[SrcB], counter)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-424: subbs_u in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100100

RRROpcodeExtension_X0 - 0x64

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 343

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

Figure 4-425: subbs_u in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000110

RRROpcodeExtension_X1 - 0x46

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Chapter 4 Processor Engine Instruction Set

344 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

subh: Subtract Half Words

Syntax

subh Dest, SrcA, SrcB

Example

subh r5, r6, r7

Description

Subtract the pair of half words in the second source operand from the pair of half words in the
first source operand.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

(getHalfWord(rf[SrcA], counter) -
getHalfWord(rf[SrcB], counter)));

}
rf[Dest] = output;

Valid Pipelines

Encoding

Figure 4-426: subh in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001011100

RRROpcodeExtension_X0 - 0x5C

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Tile Processor User Architecture Manual 345

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

subhs: Subtract Half Words Saturating

Syntax

subhs Dest, SrcA, SrcB

Example

subhs r5, r6, r7

Description

Subtract the pair of half words in the second source operand from the pair of half words in the
first source operand and saturate each result to the minimum negative value or maximum posi-
tive value.

NOTE: This instruction is only supported in the TILEPro family of products.

Functional Description

UnsignedMachineWord output = 0;
uint32_t counter;
for (counter = 0; counter < (WORD_SIZE / HALF_WORD_SIZE); counter++) {

output =
setHalfWord(output, counter,

signed_saturate16(signExtend16
(getHalfWord(rf[SrcA], counter)) -
signExtend16(getHalfWord

(rf[SrcB],
counter))));

}
rf[Dest] = output

Valid Pipelines

Encoding

Figure 4-427: subhs in X0 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

012345

d

Dest_X0 - Dest

67891011

s

SrcA_X0 - SrcA

121314151617

s

SrcB_X0 - SrcB

181920212223242526

001100101

RRROpcodeExtension_X0 - 0x65

27

n

S_X0 - Sbit

282930

000

Opcode_X0 - 0x0

Chapter 4 Processor Engine Instruction Set

346 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 4-428: subhs in X1 Bit Descriptions

313233343536

d

Dest_X1 - Dest

373839404142

s

SrcA_X1 - SrcA

434445464748

s

SrcB_X1 - SrcB

495051525354555657

001000111

RRROpcodeExtension_X1 - 0x47

58

n

S_X1 - Sbit

59606162

0001

Opcode_X1 - 0x1

Tile Processor User Architecture Manual 347

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.14 System Instructions
The following sections provide detailed descriptions of system instructions listed alphabetically.

• drain: Drain Instruction

• icoh: Instruction Stream Coherence

• ill: Illegal Instruction

• iret: Interrupt Return

• mfspr: Move from Special Purpose Register Word

• mtspr: Move to Special Purpose Register Word

• nap: Nap

• swint0: Software Interrupt 0

• swint1: Software Interrupt 1

• swint2: Software Interrupt 2

• swint3: Software Interrupt 3

Chapter 4 Processor Engine Instruction Set

348 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

drain: Drain Instruction

Syntax

drain

Example

drain

Description

Acts as a barrier that requires all previous instructions to complete before any subsequent instruc-
tions are executed. A Drain Instruction is dependent on all program order and previous
instructions. All, program order subsequent instructions are dependent on the Drain Instruction.
Instructions in the same bundle as the Drain Instruction will produce unspecified results. The
Drain Instruction also traverses the full length of any processor pipelining before subsequent
instructions are executed. By traversing the length of any processor pipelining, the Drain Instruc-
tion can be used to make state modifications to portions of the processor pipeline earlier than
where the state modification takes place. The Drain Instruction does not post memory operations
or serve as a Memory Fence. In order to guarantee memory ordering, a mf instruction is required.

Functional Description

drain();

Valid Pipelines

Encoding

Figure 4-429: drain in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

00001

UnOpcodeExtension_X1 - 0x1

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 349

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

icoh: Instruction Stream Coherence

Syntax

icoh SrcA

Example

icoh r5

Description

Make the instruction stream coherent with the data stream for a particular cache index. Removes
possible stale instructions from the instruction stream caching system. The source operand names
a particular indexed set in the instruction cache. All of the blocks associated with the indexed set
are removed from the icache. The icoh instruction minimally flushes words, but may operate on
cache lines depending on the instruction cache implementation. One icoh instruction is mini-
mally guaranteed to flush an aligned word of data from the instruction cache. The indexing of the
instruction cache is the same as if the parameter of the instruction is interpreted as a 64-bit
zero-extended physical address. If icoh is used in a loop that increments any address by words
and loops icoh instructions over an address range up to the size of the implementation specific
instruction cache size, then the entire instruction cache is cleared with the exception of the flush-
ing loop.

The Instruction Stream Coherence instruction needs to be used when data stores are made to a
memory location which is to be executed later. Examples of this include self modifying code and
physical page invalidates.

Functional Description

iCoherent(rf[SrcA]);

Valid Pipelines

Encoding

Figure 4-430: icoh in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

s

SrcA_X1 - SrcA

4344454647

00110

UnOpcodeExtension_X1 - 0x6

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

350 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

ill: Illegal Instruction

Syntax

ill

Example

ill

Description

Causes an illegal instruction interrupt to occur. The Illegal Instruction is guaranteed to always
cause an illegal instruction interrupt for all current and future derivations of the architecture.

Functional Description

illegalInstruction();

Valid Pipelines

Encoding

Figure 4-431: ill in X1 Bit Descriptions

Figure 4-432: ill in Y1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

00111

UnOpcodeExtension_X1 - 0x7

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

313233343536

000000

Dest_Y1 - Reserved 0x0

373839404142

000000

SrcA_Y1 - Reserved 0x0

4344454647

00010

UnOpcodeExtension_Y1 - 0x2

484950

101

UnShOpcodeExtension_Y1 - 0x5

59606162

1011

Opcode_Y1 - 0xB

Tile Processor User Architecture Manual 351

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

iret: Interrupt Return

Syntax

iret

Example

iret

Description

Returns from an interrupt. Transfers control flow to the program counter location and protection
level contained in the current PL’s EX_CONTEXT registers, and restores the interrupt critical section
bit to the value contained in those registers.

Functional Description

setNextPC(sprf
[EX_CONTEXT_SPRF_OFFSET +
(getCurrentProtectionLevel() * EX_CONTEXT_SIZE) +
PC_EX_CONTEXT_OFFSET]);

branchPredictedIncorrect();
setProtectionLevel(sprf

[EX_CONTEXT_SPRF_OFFSET +
(getCurrentProtectionLevel() * EX_CONTEXT_SIZE) +
PROTECTION_LEVEL_EX_CONTEXT_OFFSET]);

setInterruptCriticalSection(sprf[EX_CONTEXT_SPRF_OFFSET +
(getCurrentProtectionLevel() * EX_CONTEXT_SIZE) +
INTERRUPT_CRITICAL_SECTION_EX_CONTEXT_OFFSET]);
/* besides the PC we need to set our new protection level, and set
the interrupt critical section bit atomically inside of this
instruction */

Valid Pipelines

Encoding

Figure 4-433: iret in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

01001

UnOpcodeExtension_X1 - 0x9

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

352 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

mfspr: Move from Special Purpose Register Word

Syntax

mfspr Dest, Imm15

Example

mfspr r6, 0x5

Description

Moves a word from a special purpose register. The special purpose register number is contained
as an immediate and allows for the addressing of 215 possible special purpose registers.

Functional Description

rf[Dest] = sprf[Imm15];

Valid Pipelines

Encoding

Figure 4-434: mfspr in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

d

Dest_X1 - Dest

3738394041424344454647484950

i

MF_Imm15_X1[13:0] - Imm15[13:0]

51525354555657

0000111

ImmOpcodeExtension_X1 - 0x7

58

i

MF_Imm15_X1[14:14] - Imm15[14:14]

59606162

0110

Opcode_X1 - 0x6

Tile Processor User Architecture Manual 353

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

mtspr: Move to Special Purpose Register Word

Syntax

mtspr Imm15, SrcA

Example

mtspr 0x5, r6

Description

Moves a word to a special purpose register. The special purpose register number is contained as
an immediate and allows for the addressing of 215 possible special purpose registers.

Functional Description

sprf[Imm15] = rf[SrcA];

Valid Pipelines

Encoding

Figure 4-435: mtspr in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

i

MT_Imm15_X1[5:0] - Imm15[5:0]

373839404142

s

SrcA_X1 - SrcA

4344454647484950

i

MT_Imm15_X1[13:6] - Imm15[13:6]

51525354555657

0001010

ImmOpcodeExtension_X1 - 0xA

58

i

MT_Imm15_X1[14:14] - Imm15[14:14]

59606162

0110

Opcode_X1 - 0x6

Chapter 4 Processor Engine Instruction Set

354 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

nap: Nap

Syntax

nap

Example

nap

Description

Enters a lower power state. This instruction may or may not complete. To guarantee continued
napping on all implementations, this instruction should be used in a loop. Instructions in the
same bundle as the Nap instruction will produce unspecified results. If this instruction completes,
this operation does not modify architectural state.

Functional Description

nap();

Valid Pipelines

Encoding

Figure 4-436: nap in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

10000

UnOpcodeExtension_X1 - 0x10

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 355

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

swint0: Software Interrupt 0

Syntax

swint0

Example

swint0

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
0 interrupt handler. Instructions in the same bundle as the Software Interrupt 0 instruction will
produce unspecified results.

Functional Description

softwareInterrupt(0);

Valid Pipelines

Encoding

Figure 4-437: swint0 in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

10010

UnOpcodeExtension_X1 - 0x12

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

356 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

swint1: Software Interrupt 1

Syntax

swint1

Example

swint1

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
1 interrupt handler. Instructions in the same bundle as the Software Interrupt 1 instruction will
produce unspecified results.

Functional Description

softwareInterrupt(1);

Valid Pipelines

Encoding

Figure 4-438: swint1 in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

10011

UnOpcodeExtension_X1 - 0x13

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 357

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

swint2: Software Interrupt 2

Syntax

swint2

Example

swint2

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
2 interrupt handler. Instructions in the same bundle as the Software Interrupt 2 instruction will
produce unspecified results.

Functional Description

softwareInterrupt(2);

Valid Pipelines

Encoding

Figure 4-439: swint2 in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

10100

UnOpcodeExtension_X1 - 0x14

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Chapter 4 Processor Engine Instruction Set

358 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

swint3: Software Interrupt 3

Syntax

swint3

Example

swint3

Description

Signals that a precise software interrupt should occur on this instruction to the Software Interrupt
3 interrupt handler. Instructions in the same bundle as the Software Interrupt 3 instruction will
produce unspecified results.

Functional Description

softwareInterrupt(3);

Valid Pipelines

Encoding

Figure 4-440: swint3 in X1 Bit Descriptions

X0 X1 Y0 Y1 Y2

X

313233343536

000000

Dest_X1 - Reserved 0x0

373839404142

000000

SrcA_X1 - Reserved 0x0

4344454647

10101

UnOpcodeExtension_X1 - 0x15

48495051525354555657

0000001011

UnShOpcodeExtension_X1 - 0xB

58

0

S_X1 - Reserved 0x0

59606162

1000

Opcode_X1 - 0x8

Tile Processor User Architecture Manual 359

Tilera Confidential — Subject to Change Without Notice

Instruction Set Architecture

4.1.15 Pseudo Instructions
Tilera’s assembler supports several pseudo-instructions for the convenience of the programmer.
Each of these instructions shares an encoding with a standard ISA instruction.

INFO operations are generated by the compiler and are used to convey information about the state
of the stack frame at various points in the code of a function. The backtrace library interprets
these operations when performing stack unwinding.

In order to perform stack unwinding, the backtrace library requires that code conform to the stack
frame conventions specified in the ABI. In the presence of compiler optimizations, however, the
code may deviate from these conventions. In this case, the compiler automatically inserts INFO
operations in the code to compensate.

Intrinsics, including the INFO operation, are a set of functions whose names have the format
__insn_xxxx(), where xxxx is an instruction in the ISA.

Table 4-4. Pseudo Instructions

Pseudo Instruction Canonical Form

move dst, src or dst, src, zero

movei dst, simm8 ori dst, zero, simm8

moveli dst, simm16 addli dst, zero, simm16

movelis dst, simm16 addlis dst, zero, simm16

j1 target

1 Because of limitations in the instruction encoding space, forward-going direct jumps (jf, jalf)
and backward-going direct jumps (jb, jalb) have different opcodes. If the programmer uses the
pseudo-instruction j or jal, the assembler will generate the appropriate ISA instruction de-
pending upon the target of the jump.

jf target or jb target

jal1 target jalf target or jalb target

prefetch2 src

2 For performance reasons, loads to the zero register do not result in the register file being written.
Such instructions are killed entirely if they would cause DTLB_MISS or DTLB_ACCESS inter-
rupts. The TILE architecture does not guarantee that every prefetch instruction will cause the
caches to be loaded. Thus prefetch (indeed, any load to the zero register) should be consid-
ered merely a hint to the hardware.

lb_u zero, src

prefetch_L1 src lb_u src, src

bpt3

3 The TILE architecture does not provide an explicit breakpoint instruction. Instead, bpt is encod-
ed as an illegal instruction with non-zero values in the implicit immediate fields. Thus bpt does
not have exactly the same hardware encoding as the ill instruction.

ill

info simm8 andi zero, zero, simm8

infol simm16 auli zero, zero, simm16

Chapter 4 Processor Engine Instruction Set

360 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Tile Processor User Architecture Manual 361

Tilera Confidential — Subject to Change Without Notice

5 MEMORY AND CACHE ARCHITECTURE

5.1 Memory Architecture
The Tile Processor™ architecture defines a flat, globally shared 64-bit physical address space and
a 32-bit virtual address space. The TILE64™ and TILEPro™ family of processors implement a 36-
bit physical address space. The globally shared physical address space provides the mechanism
by which processes and threads can share instructions and data. Data memory is byte, half-word,
and word addressable.

By default, hardware provides a cache-coherent view of data memory to applications. That is, a
read by a thread or process to a physical address P will return the value of the most recent write to
address P. Instruction memory that is written by the process itself (self-modifying code) or by
other processes is not kept coherent by hardware. Special software sequences using the icoh
instruction must be used to enforce coherence between data and instruction memory. In the
TILE64 implementation, IO writes are not kept coherent with on-chip caches. The TILEPro imple-
mentation provides hardware cache coherence for IO accesses.

A non-coherent and a non-cacheable memory mode is also supported, as shown in Table 5-1. In
addition to the memory modes, the architecture provides several memory attributes for control-
ling the allocation and distribution of cache lines. These are shown in Table 5-2.

The Tile Processor architecture memory attributes and modes are managed and configured
through system software programming of page tables and enforced through TLB entries. Chapter
4 of the Multicore Development Environment Optimization Guide (UG105) provides the Application
Programmer Interface (API) and details about memory allocation.

Table 5-1. Tile Processor Architecture Memory Modes

Memory Mode Description

Coherent Memory Hardware cache coherent memory.

Non-Coherent Memory Hardware does not maintain coherence.

Non-Cacheable Memory Data cache blocks are not cached in any on chip caches. Instruction cache blocks are
not cached in the unified L2. Instruction cache blocks are always cached in the L1
instruction cache.

Chapter 5 Memory and Cache Architecture

362 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

5.2 Cache Architecture
5.2.1 Overview

Due to the large difference between DRAM and processor speeds, the cache subsystem is critical
for delivering high performance. The cache subsystem’s primary role is to prevent the processor
cores from stalling due to long memory latencies. To this end, the cache subsystem implements a
high performance, non-blocking, two-level cache hierarchy. The two-level design isolates the tim-
ing-critical L1 caches from complexity, allowing the L1 data and instruction cache design to be
simple, fast, and low power.

The execution engine does not stall on load or store cache misses. Rather, execution of subsequent
instructions continue until the data requested by the cache miss is actually needed by another
instruction. The cache subsystem is non-blocking and supports multiple concurrent outstanding
memory operations. The cache subsystem supports hit under miss and miss under miss, allowing
loads and stores to different addresses to be re-ordered to achieve high bandwidth and overlap
miss latencies, while still ensuring that true memory dependencies are enforced.

The cache subsystem provides cache-coherent shared memory, atomic instructions (test-and-set),
and memory fences (MF). The TILEPro cache system maintains coherence with I/O DMA accesses
to memory, and allows I/O to read and write the on-chip caches directly.

Finally, the cache subsystem implements a software-programmable hardware direct memory
access engine (DMA) and supports using portions of the L2 cache as a scratchpad memory.

Table 5-2. Supported Allocation Control for Tile Architecture

Attributes Description

No L1d allocation Lines are not allocated in the L1d cache (TILEPro only).

No L2 allocation Remotely homed lines are not allocated in the L2 cache

Pinned memory Hardware will lock the requested memory page in the L2 cache.

Hashed Lines on page are distributed across cores according to a hardware hash function (TILEPro only).

Tile Processor User Architecture Manual 363

Tilera Confidential — Subject to Change Without Notice

Cache Architecture

5.2.2 Cache Microarchitecture
 Table 5-3 lists the most important characteristics of the TILE64 and TILEPro cache subsystems.

Figure 5-441 shows the top level block diagram for the Tile cache subsystem. The processor
engine can issue one load or one store per cycle. The L1D cache is checked for the requested data.
If the L1D does not have the requested data, the request is delivered to the L2 cache. Stores
update the L1D if the targeted cache block is present, and always write thru to the L2 cache. The
L1I cache is supported by a hardware prefetching engine that predicts and fetches the most likely
next instruction cache line.Misses in the L2 cache on a given tile are satisfied by caches in other
tiles or from external memory. If the other caches do not have the requested cache line, then they
in turn fetch it from external memory and deliver it to the requesting core.

Table 5-3. Cache Subsystems

TILE64 TILEPro

L1 instruction (L1I) cache 8 KB, direct-mapped 16 KB, direct-mapped

L1 instruction translation lookaside buffer 8 entries, fully associative 16 entries, fully associative

L1 data (L1D) cache 8 KB, two-way associative

L1 data translation lookaside buffer 16 entries, fully associative

L2 unified cache 64 KB, two-way associative 64 KB, four-way associative

Latency (load to use) 2 cycles L1D hit,
8 cycles local L2 hit,

30-60 cycles remote L2 hit,
80 cycles L2 miss to memory

Architecture Non-blocking, out-of-order, stall-on-use

DDCa technology

a.Dynamic Distributed Cache

No Yes

Line Size L1I: 64B
L1D: 16B
L2: 64B

Allocate Policy L1I: Allocate on read miss
L1D: Allocate on load miss only
L2: Allocate on load or store miss

Write Policy L1I: N/A
L1D: Write through, Store update on hit
L2: Writeback

Error Protection L1I: 64-bit parity
L1D: 8-bit parity
L2: 8-bit parity

Chapter 5 Memory and Cache Architecture

364 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

The cache subsystem supports out of order retirement, meaning instructions subsequent to a load
or store miss can write the destination register before the load or store completes. Architectural
state is kept consistent, due to the issue logic that blocks subsequent instructions from using stale
data. The L2 cache subsystem supports multiple outstanding memory operations and cache
misses. The L2 cache subsystem maintains an outstanding miss file to track transactions launched
from this tile to memory or to other tiles. Each tile can have up to eight outstanding load misses to
external memory as well as four (two for TILE64) outstanding L2 writebacks.

Figure 5-441. Cache Engine Block Diagram

5.2.2.1 Dynamic Distributed Cached Shared Memory

The TILEPro uses the Dynamic Distributed Cache (DDC) to provide a hardware-managed, cache-
coherent approach to shared memory. Applications normally access distributed coherent cached
shared memory using loads and stores. DDC allows a page of shared memory to be homed on a
specific tile (or distributed across many tiles), then cached remotely by other tiles. This mecha-
nism allows a tile to view the collection of on-chip caches of all tiles as a large shared, distributed
coherent cache. It promotes on-chip access and avoids the bottleneck of off-chip global memory.
This form of shared memory access is particularly useful when processes read and write shared
data in a fine-grained, interleaved manner — such as with locks and other synchronization
objects.

Figure 5-443 shows a read from tile A (the remote requesting tile) to a cacheline X, where cache-
line X is homed at tile B (the home tile):

1. Tile A first checks its local caches for the cacheline X, and on a miss, sends a request for cache-
line X to tile B.

2. Tile B receives the request for cacheline X and retrieves cacheline X from its L2.

3. Tile B then sends the full cacheline X back to tile A. Tile A installs cacheline X in its local L1
and L2 caches.

128

I$ Fill Data

Processor Engine

L1 Icache Subsystem

L1I$ ITLB

Processor Engine

36

64

DMA
Engine L1D$ DTLB

L1 Dcache Subsystem

32 32 Load Data

L2 Cache
and

Controller

128

D$ Fill Data

32

TDN Egress

32

Switch
Engine

Demand / Prefetch Requests

L2 Cache Subsystem

Instruction Bundle

32Load/Store
Virtual

Address

Store
Data

32

36

Write Thru Data

Load/Store Physical Address

TDN Ingress

32

MDN Egress

MDN Ingress

32

32

CDN Egress

CDN Ingress

32

Tile Processor User Architecture Manual 365

Tilera Confidential — Subject to Change Without Notice

Cache Architecture

Figure 5-442. Request to Home Tile/Fill L2/L1 with Cacheline X

Figure 5-443. shows a write from tile A to a word (X[0]) in cacheline X, where cacheline X is again
homed at tile B.

1. Tile A sends the write address and data to tile B.

2. Tile B receives the write address and data and checks the directory information for cacheline
X. The directory indicates that tile C (the sharing tile) has a copy of cacheline X. Tile B updates
cacheline X with the new value for word X[0].

3. Tile B sends an invalidate message to tile C.

4. Tile C receives the invalidation and invalidates cacheline X from its caches.

5. Tile C then sends an invalidation acknowledgement back to tile B.

6. Tile B receives the invalidation acknowledgement and sends a write acknowledgement back
to tile A.

7. Tile A receives the write acknowledgement message and thus knows that the write to word
X[0] has completed.

Read (X)

Requesting (Remote) Tile

L1
L2

L1
L2X

Home Tile

Fill (X)

XX

2

1

Legend:
X = Cacheline X
X[n] = The nth word in cacheline X

3

Chapter 5 Memory and Cache Architecture

366 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Figure 5-443. Write from Tile A to Word [0] in Cacheline X

5.2.2.2 Coherent and Direct-to-Cache I/O

TILEPro provides hardware cache coherence for I/O DMA accesses. On a write to memory from
an I/O DMA engine, the hardware invalidates any cached copies of the line, and updates the
cache with the newly written data.

Similarly, on a read to memory from an I/O DMA engine, the hardware checks the on-chip caches
for the line and supplies it from there if found. The System Architecture Manual (UG103) describes
these mechanisms in detail.

5.2.2.3 Striped Memory

TILEPro provides a boot time option to enable a “striped main memory” mode of operation.
Striped main memory mode overrides the default mapping of physical memory pages to the four
main memory controllers. In striped main memory mode, a physical page of memory is “striped”
across the four controllers at an 8KB granularity. That is, a 64KB page would have the first quarter
of the page located at memory controller 0, the second quarter at memory controller 1, the third
quarter at memory controller 2, and the last quarter at memory controller 3. The striped main
memory mode of operation uniformly spreads all physical memory pages across the controllers,
thus balancing the load among the four controllers.

5.2.3 Direct Memory Access
The Tile Processor architecture provides a direct memory access (DMA) engine in each tile. This
engine can be configured by the application programmer to move data to and from main memory
and the L2 cache, and between cores.

The DMA engine operates autonomously from the processor core, issuing DMA load and DMA
store operations during cycles in which the cache pipeline is not being used by the processor
engine. The DMA source and destination addresses need not be word or cacheline-aligned. The
application programmer can specify different source and destination strides, with which the

Write (X[0]=1)

Requesting (Remote) Tile

L1
L2

L1
L2X=0

Home Tile

4

1

L1
L2X=0

Sharing Tile

X=0

7

WriteAck (X)

X is invalidated
from cache

X=1

Invalidate (X)3

InvalidateAck (X)5

Legend:
X = Cacheline X
X[n] = The nth word in cacheline X

6

2

Tile Processor User Architecture Manual 367

Tilera Confidential — Subject to Change Without Notice

Cache Architecture

DMA can perform complex memory transformations such as “shape changes”, in addition to sim-
ple copy operations. Each read or write operation performed by the DMA engine executes
through the data Translation Lookaside Buffers (TLBs); therefore DMA operations are fully pro-
tected and inherit memory attributes for the memory page being accessed. As a result, the DMA
engine can be used to move data, for example, from an uncacheable buffer in main memory to a
pinned, cacheable buffer. The DMA engine can move data from one tile’s L2 cache to another
tile’s L2 cache in the background. Completion of a DMA transfer can be signaled via an interrupt
(DMA_NOTIFY) or by polling a special-purpose register (SPR).

The application programmer configures the DMA engine by writing to several SPRs. To perform
a DMA request, the DMA transfer description registers (DMA_BYTE, DMA_CHUNK_SIZE,
DMA_DST_ADDR, DMA_DST_CHUNK_ADDR, DMA_SRC_ADDR, DMA_SRC_CHUNK_ADDR, and DMA_STRIDE)
are set appropriately, and then the REQUEST bit in DMA_CTR register is set. Figure 5-444 illustrates
how a 2D-to-1D DMA transfer is handled.

Figure 5-444: 2D-to-1D DMA Transfer

Table 5-4. DMA Registers

DMA Registers Description

DMA_BYTE DMA Byte Register. This register serves two functions. It contains the size (in bytes) to
be transferred in the first chunk and the number of chunks to be transferred.
For a detailed description of this register, see page 448.

DMA_CHUNK_SIZE DMA Chunk Size Register.
For a detailed description of this register, see page 449.

DMA_CTR DMA Control Register. This register controls the DMA engine.
For a detailed description of this register, see page 450.

DMA_DST_ADDR DMA Destination Address Register. This register holds the address of the first byte to
be written when the next DMA operation is started.
For a detailed description of this register, see page 451.

1

2

3

4

Main Memory

Linearized Layout
in Cache

DMA_SRC_ADDR

DMA_STRIDE

DMA_CHUNK_SIZE

DMA_DST_ADDR

2D Array

1D Array
DMA_BYTE (1, 2, 3 and 4)

1
2
3
4

Chapter 5 Memory and Cache Architecture

368 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

5.3 Memory Consistency Model
The Tile Processor architecture’s memory consistency model specifies the order in which memory
operations from a processor become visible to other processors in the coherence domain.

There are two main properties, P1 and P2, defined by the memory consistency model: instruction
reordering rules and store atomicity. The Tile Processor architecture defines a relaxed memory
consistency model in which:

P1: Instruction Reordering
Non-overlapping memory accesses from a given processor that reference shared pages can be
reordered and can become visible to other processors sharing that page in an order different from
the original program order, with the following restrictions:

• Data dependencies through memory accesses from a single processor are enforced (RAW,
WAW, and WAR)

• Data dependencies through registers or memory determines local visibility order

• Local ordering established by memory data dependencies or register dependencies does not
determine global visibility order. See Data writes (including test-and-set and flushes) must
observe control dependencies.

P2: Store Atomicity
Stores performed by a processor appear to become visible simultaneously to all remote proces-
sors, but can become visible to the issuing processor before becoming globally visible (for
example, by bypassing to a subsequent load through a write buffer). Test-and-set operations are
atomic to all processors: bypassing to or from test-and-set operations is not allowed.

DMA_DST_CHUNK_ADDR DMA Destination Chunk Address Register. This register holds the address of the first
byte in the first destination chunk for the next DMA operation.
For a detailed description of this register, see page 452.

DMA_SRC_ADDR DMA Source Address Register. This register contains the address of the first byte in
Main Memory to be read when the next DMA operation is started.
For a detailed description of this register, see page 453.

DMA_SRC_CHUNK_ADDR DMA Source Chunk Address Register. This register holds the address of the first byte
in the first source chunk in Main Memory for the next DMA operation.
For a detailed description of this register, see page 454.

DMA_STRIDE DMA Source And Destination Strides Register. This register specifies the DMA

source and destination strides.a

For a detailed description of this register, see page 455.

DMA_USER_STATUS DMA User Status Register. This register records the current user DMA operation sta-
tus.
For a detailed description of this register, see page 456.

a.SOURCE stride field and DEST stride field in the DMA_STRIDE SPR must be specified.

Table 5-4. DMA Registers (continued)

DMA Registers Description

Tile Processor User Architecture Manual 369

Tilera Confidential — Subject to Change Without Notice

Memory Consistency Model

The Tile Processor architecture provides the memory fence (MF) instruction to establish ordering
among otherwise unordered instructions when such ordering is needed for correctness. Data
memory operations in the program prior to the memory fence instruction are made globally visi-
ble before ANY operation after the memory fence.

The Tile Processor architecture provides a test-and-set (TNS) instruction to read and write a mem-
ory location atomically.

The following code sequences illustrate the properties of the tile memory consistency model. In
the examples that follow, memory addresses are denoted by x and y, are word aligned, and are
assumed to contain the value 0 initially. All loads and stores are word-sized. The notation A  B
indicates that operation A becomes visible to all processors in the coherence domain before oper-
ation B becomes visible. Examples Listing 5-1. through Listing 5-5. below illustrate property P1—
instruction reordering. Examples Listing 5-6. through Listing 5-8. illustrate property P2—store
atomicity and write bypassing.

Listing 5-1. Property P1—Instruction Reordering. Stores can reorder with stores to different locations and loads can
reorder with loads to different locations.

Tile 0 | Tile 1
sw [x] = 1 | lw r1 = [y]
sw [y] = 1 | lw r2 = [x]

All outcomes for r1 and r2 are possible.

The stores can be made visible in any order. Implementations are free to reorder data memory
operations to different locations. Program order does not imply visibility order.

Listing 5-2. Property P1—Instruction Reordering. Ordering is enforced through the memory fence instruction.

Tile 0 | Tile 1
sw [x] = 1 //M1 | lw r1 = [y] // M4
MF // M2 | MF // M5
sw [y] = 1 // M3 | lw r2 = [x] // M6

The only illegal outcome is r1 == 1 and r2 == 0.

Notice that this example is the same as in Listing 5-1., except that here we have an MF instruction
inserted between the pair of stores on Tile 0 and also between the pair of loads on Tile 1. The use
of the MF instruction ensures that M1M3 and M4M6. Therefore, if M3 is visible to M4, then
M1 is visible to M6.

Listing 5-3. Property P1—Instruction Reordering. Loads can reorder with stores to different locations.

Tile 0 | Tile 1
sw [x] = 1 //M1 | sw [y] = 1// M3
lw r1 = [y] // M2 | lw r2 = [x]// M4

This example is similar to Listing 5-1., in that the loads and stores on each tile have no depen-
dence and can be freely reordered. All outcomes are legal.

Listing 5-4. Property P1—Instruction Reordering. Preventing loads from passing stores to different locations.

Tile 0 | Tile 1
sw [x] = 1 //M1 | sw [y] = 1// M3
MF | MF
lw r1 = [y] // M2 | lw r2 = [x]// M4

The only illegal outcome is r1 == r2 == 0.

Chapter 5 Memory and Cache Architecture

370 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

This example is similar to the one shown in Listing 5-3., except we now have MF instructions
between the memory operations. The MF on Tile 0 causes M1M2, and the MF on Tile 1 causes
M3M4. Therefore:

If r1 == 0, we have M2M3, so we have M1M2M3M4, so r2 == 1.

If r2 == 0, we have M4M1, so we have M3M4M1M2, so r1 == 1.

If r1 == 1, we have M3M2, but M4 is not ordered with M1, so r2 == 0 OR r2 == 1.

If r2 == 1, we have M1M4, but M2 is not ordered with M3, so r1 == 0 OR r1 == 1.

Listing 5-5. Property P1-Instruction Reordering.

Tile 0 | Tile 1
sw [x]=1 //M1 | lw r2 = [y]//M4
MF //M2 | bbs r5, foo
sw [y] = 1 // M3 | lw r3 = [x]//M6

Here, r2 == 1, r3 == 0 is a legal outcome. M6 is dependant on the branch, however the branch is
not dependent on M4. Therefore, there is no dependency between M4 and M6 and they can be
reordered. Specifically, M4 may miss in the cache. While the miss is outstanding, the branch and
M6 both execute, and M6 hits in the cache, writing r3 == 0. Then, the stores on Tile 0 execute and
M4 gets the new value of y (1).

Listing 5-6. Property P2—Store Atomicity and Write Bypassing. Local data dependencies do not establish global visibility
ordering: processors can see their own writes early.

Tile 0 | Tile 1
sw [x] = 1 //M1 | lw r2 = [y]//M4
lw r1 = [x] //M2 | MF //M5
sw [y] = r1 // M3 | lw r3 = [x]//M6

The following is a legal outcome: r1 == r2 == 1, r3 == 0.

In this case, true data dependencies on Tile 0 cause M1, M2, and M3 to EXECUTE on Tile 0 in
order. However, this does not imply that they become globally visible to Tile 1 in this order.

The above outcome could occur if Tile 0 bypassed the sw to x to the lw x through a write buffer or
local cache. Now, operation M3 writes memory, and operation M4 observes the write M3, but
operation M6 gets to memory before operation M1 has become globally visible. To avoid the local
bypass, Tile 0 should issue a MF instruction between M1 and M2. This forces M1 to become glob-
ally visible before M3.

Listing 5-7. Property P2—Store Atomicity and Write Bypassing. Local data dependencies establish local ordering.

Tile 0 | Tile 1
sw [x] = 1 //M1 | lw r1 = [y] // M4
MF //M2 | lw r2 = [r1] //M5
sw [y] = x //M3

r1 == x and r2 == 0 is an illegal outcome.

M5 is data dependent on M4 and thus executes (and becomes locally visible) after M4.

Listing 5-8. Property P2—Store Atomicity and Write Bypassing. Stores have a single order as observed by remote

Tile Processor User Architecture Manual 371

Tilera Confidential — Subject to Change Without Notice

Memory Consistency Model

processors.

Tile 0 | Tile 1 | Tile 2 | Tile 3
sw [x] = 1 //M1 | lw r1 = [x] //M2 | sw [y] = 1 //M4 | lw r3 = [y] //M5

| MF | | MF
| lw r2 = [y] //M3 | | lw r4 = [x] //M6

r1 == 1, r3 == 1, r2 == 0, r4 == 0 is an illegal outcome.

If the above outcome were legal, this would imply that Tile 3 observes M4 occurring before M1
and Tile 1 observes M1 occurring before M4. More formally, Tile 1 observes: M1  M2  M3 

M4. While Tile 3 observes: M4  M5  M6  M1. Recalling property P2 of the consistency model,
it should be noted that because a store from a given processor occurs atomically as observed by
remote processors, the above outcome is illegal.

Chapter 5 Memory and Cache Architecture

372 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Tile Processor User Architecture Manual 373

Tilera Confidential — Subject to Change Without Notice

6 ON-CHIP NETWORK ARCHITECTURE

6.1 Overview
The TILEPro™ and TILE64™ family of chips utilize multiple two-dimensional mesh networks for
communication between tiles and I/O devices. Memory System traffic, Cache System traffic, I/O
traffic and Software based messaging all travel over the Tilera mesh networks. Each switch point
in a given network contains a dedicated link to/from the Tile Processor™, as well as four bidirec-
tional links in the cardinal directions (north, south, east and west) to neighboring switch points.
The networks run at the same frequency as the Tile Processor core, providing a single cycle
latency for the head of a message to “hop” from one network switch point to a neighboring switch
point. The networks can be classified into two groups, the Memory Networks, which handle all
memory traffic such as cache misses, DDR2 requests, and so forth; and the Messaging Networks,
which allow software to have control of the network and manually send messages between tiles
and I/O devices. The Memory Networks consist of the Memory Dynamic Network (MDN), the
Tile Dynamic Network (TDN), and the Coherence Dynamic Network (CDN, TILEPro only). The
Messaging Networks consist of the User Dynamic Network (UDN) and the I/O Dynamic Net-
work (IDN).

6.2 Network Properties
6.2.1 Switches

Each switch point in the Tilera® networks is implemented as a full crossbar, shown in Figure 6-
445. Any input port can arbitrate for any output port, excluding itself (north cannot route north).

Figure 6-445: Crossbar Switch

Chapter 6 On-Chip Network Architecture

374 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

6.2.2 Packets
Data is transmitted over the Tilera networks via “packets”. Each packet is divided into multiple N
bit “flits”, where N is the width of the network. Each packet contains a header flit designating the
destination of the packet and the size of the packet, and a payload of data flits.

6.2.3 Routing
The Tilera networks are “wormhole” networks. In a wormhole network, the header flit arbitrates
for a given output port at a switch, and, once granted, locks down that output port until the final
flit in the packet has successfully traversed the switch. For large packets, this type of routing may
result in the reservation of multiple output ports simultaneously for the same packet. The Tilera
networks use a dimension-ordered routing policy, where packets always travel in the X direction
first, then the Y-direction. The TilePro family of processors allow each network to be configured to
either route X first, or Y first.

6.2.4 Flow Control
Flow control between neighboring switch points is implemented via a credit scheme. Each switch
point has an input buffer that may hold three flits. Each output port contains a credit count corre-
sponding to how many available entries the neighboring input port has available. When a flit is
routed through an output port, the credit count is decremented. If the credit count is zero, the flit
is blocked and cannot proceed. When an input port consumes a flit, a credit is returned to the cor-
responding output port.

6.2.5 Fairness and Arbitration
The switch points implement round-robin output port arbitration, providing equivalent fairness
for all input ports.

6.2.6 Timing
The Tilera networks operate at the same frequency as the processor cores. The latency for a flit to
be read from an input buffer, traverse the crossbar, and reach the storage at the input of a neigh-
boring switch is a single cycle.

6.2.7 Link Width
All of the on-chip network links are 32 bits wide.

6.3 Memory Networks
The Memory Networks carry all requests and responses belonging to the cache system and the
memory system. The TDN is responsible for carrying tile-to-tile requests, such as read/write
requests. The MDN is responsible for carrying requests from a Tile to/from the DDR2s, as well as
carrying all acknowledgments and responses to TDN requests. The CDN (only present in
TILEPro) carries invalidate messages needed for the cache coherency protocol in the TILEPro
series of processors.

6.3.1 Packet Sizes
The following tables contain a breakdown of the type of requests on the different networks and
the size of each request in terms of network flits.

Tile Processor User Architecture Manual 375

Tilera Confidential — Subject to Change Without Notice

Messaging Networks

6.3.2 Deadlock
The Memory Networks are completely managed by hardware and are deadlock free by design.

6.4 Messaging Networks
6.4.1 Register Mapping

Inside the tile, the UDN has a direct connection to the ALU. This allows tiles to communicate with
very low latency. The UDN is register-mapped such that any operation can directly write or read
the network. For example:

add udn0, r5, r6 // Add r5 to r6 and send the result to the UDN
add r5, r6, udn0 // Read a word from the UDN, add to r6 and put the result in r5

The UDN can be initialized and accessed via the TMC library. See the Applications Libraries Refer-
ence Guide (UG227) for details.

Access to the UDN is fully interlocked. This allows an application to read the network port and
sleep until data arrives providing a low power wait state with zero latency wake up.

Table 6-5. TDN Packets

TDN Opcode Size in Flits (TILE64) Size in Flits (TILEPro)

Read Requests 4 3

Write Requests 5 4

Test-and-Set Requests 4 3

Table 6-6. MDN Packets

MDN Opcode Size in Flits (TILE64 and TILEPro)

Read Requests 3

Write Requests 4-19

Read Responses 3-18

Acknowledgments 2

Table 6-7. CDN Packets

CDN Opcode Size in Flits (TILEPro Only)

Invalidate Request 3

Chapter 6 On-Chip Network Architecture

376 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Similarly, on network send, if the network is not able to consume the packet word immediately,
the processor will automatically wait until buffer space is available thus saving considerable
power and latency over a polling or interrupt driven scheme.

Special Purpose Registers (SPRs) and interrupts are available to monitor the status of the incom-
ing and outgoing network ports in order to provide alternate usage models.

6.4.2 Packet Format
A packet consists of a route header, tag, and a variable length payload. The route header is created by
the sender and contains the X,Y coordinates of the target. It is examined at each switchpoint to
route the packet through the tile fabric. The second packet word is a tag and is also created by the
sender. The tag word is used to differentiate between flows at the receiver.

Figure 6-446: UDN Packet Format

Table 6-8. UDN Packet Description

Bits Name Description

Word[0]: Route Header

6:0 Length Length of packet in 32-bit words (7 bits). The length includes the tag word, which all
UDN packets must have, but does not include the route header. So, a value of 2 for
length indicates a packet with only a route header, a tag word, and one word of payload.
A value of zero indicates a 128-word packet.

17:7 Dest_Y Destination tile’s Y location. This field is 11 bits.

28:18 Dest_X Destination tile’s X location. This field is 11 bits.

31:29 Reserved Reserved. Unused bits reserved for future use. Must be zero. This field is 3 bits.

Word[1]: Tag

31:0 Tag Thirty-two-bit value indicating this packet’s flow. The tag is used by the demux logic to
sort packets. The remaining words are user payload and are not interpreted by hardware

Packet Payload (0-127 words)

Word 0: Route Header

Word: 1 Tag

Packet Payload

(1-127 words)

Tag

Packet Payload

Reserved LengthDest_X Dest_Y

Tile Processor User Architecture Manual 377

Tilera Confidential — Subject to Change Without Notice

Messaging Networks

6.4.3 Demux
The UDN receive logic includes demultiplexing (demux) hardware in order to provide high per-
formance flow detection and independent buffering. Based on the tag, an incoming packet is
placed in one of four demux queues, as shown in Figure 6-447.

Figure 6-447: Demux Logic

The tag of the incoming packet is compared against four SPRs, (UDN_TAG_0, UDN_TAG_1,
UDN_TAG_2, and UDN_TAG_3). If it matches one of the resident tags, the route header and tag words
are removed and the payload words are placed in the corresponding demux queue. These queues
are accessible individually through register-mapped access via udn0, udn1, udn2 and udn3. This
allows differently tagged flows to be serviced out of order with respect to each other.

If the incoming packet does not match any of the programmed tags, it is placed in the catch-all
queue with the length field and tag left intact.

The catch-all queue is mapped to the following SPRs:

1. UDN_CA_TAG – the tag of the packet at the head of the catch-all queue

2. UDN_CA_REM – the number of words remaining in the current packet at the head of the catch-
all queue

3. UDN_CA_DATA – the SPR that returns the payload data (one word per read SPR read)

Note that UDN_CA_TAG and UDN_CA_REM are always valid if catch-all is not empty, even when
the beginning of the packet has been partially read.

N S E W

Tag Compare

UDN Network Interface

Demux Buffer

UDN_TAG_0

UDN_TAG_1

UDN_TAG_2

UDN_TAG_3

UDN_CA_REM

UDN_CA_TAG

UDN_CA_TAGUDN_CA_TAGSU3SU2SU1SU0

Main Processor Interface

Chapter 6 On-Chip Network Architecture

378 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

When data is available on one of the queues, it is indicated by the SPR UDN_DATA_AVAIL. Bits 0-3
of this register correspond to the four tagged demux queues, and bit 4 indicates if any data is
available in the catch-all queue. An application can poll this register if it needs to wait until data is
available on a specific queue.

Interrupts may be enabled to signal when data is available on a queue. The interrupt UDN_CA is
signaled when the catch-all queue has data available. In order for a tagged queue to signal an
interrupt, it must also be enabled in the UDN_AVAIL_EN SPR (in addition to the system level inter-
rupt enable). The four tagged queues share a data available interrupt. The Interrupt Service
Routine (ISR) can check the UDN_DATA_AVAIL register to determine which of the four channels
caused the interrupt.

In addition to the data available bits, SPRs are also provided that give the number of words avail-
able in each queue. UDN_DEMUX_COUNT_0, UDN_DEMUX_COUNT_1, UDN_DEMUX_COUNT_2, AND
UDN_DEMUX_COUNT_3 provide the count for the four tagged demux queues, and
UDN_DEMUX_CA_COUNT gives the count of payload words in the catch-all queue. For information
about these SPRs, refer to the System Architecture Manual (UG103).

The physical buffering for all these queues is implemented as small dedicated FIFOs backed by a
larger shared RAM. Space for each queue in the shared RAM is allocated and de-allocated dynam-
ically as needed. This shared buffering provides great flexibility to the message passing system.

The large RAM is also shared with the Input/Output Dynamic Network (IDN), which is only
used by system software. The buffering allocated to the IDN and the UDN in the shared buffer is
hard partitioned by system software and cannot be modified by the user. There is no interaction
between the UDN and the IDN and the UDN will neither block nor corrupt the IDN.

6.4.4 Deadlock
If you are not using iLib Standard Channels, care must be taken to avoid deadlock by software
buffering for received packet flows and management of dependences between the outgoing and
incoming packet flows.

6.4.5 Hardwall
The UDN hardwall mechanism is used to prevent unwanted communication between user appli-
cations running on adjacent tiles. The hardwall mechanism consists of an SPR-programmable
protection bit on each output port of the UDN switch point and an interrupt triggered by any
attempted violation of a hardwall.

Tile Processor User Architecture Manual 379

Tilera Confidential — Subject to Change Without Notice

Messaging Networks

Figure 6-448: UDN Hardwall Mechanism

When an output port is protected, no data can be sent out of the associated port. Attempting to
send a packet word to a protected port will trigger an interrupt on the Tile Processor. Software
can then inspect the packet and take any appropriate action.

This hardwall also provides a powerful virtualization tool. For example, the hardwall could be
used to emulate the behavior of a much larger fabric by detecting messages that cross a hardwall
boundary and tunneling them to another group of Tiles or another process running on the same
group of tiles.

App 1

App 2

Chapter 6 On-Chip Network Architecture

380 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Tile Processor User Architecture Manual 381

Tilera Confidential — Subject to Change Without Notice

7 STATIC NETWORK

7.1 Overview
The purpose of the static network is to allow applications to transport scalar operands between
tiles efficiently. Instead of using a header to specify the destination, the static network uses rout-
ing specifications at each intermediate tile to determine the direction the data should take.

The static network is composed of a crossbar switch that connects to its nearest neighbors in a
two-dimensional mesh network, as well as to that tile’s processor engine. Each connection is
32-bits, full duplex, and flow controlled. The time required for a word to travel in the network is
just one cycle for each hop, or intermediate tile, plus one more cycle at the destination tile to get
from the network to the main processor.

The static network crossbar switch can route from five different directions: north, south, east, west,
and the processor engine. The crossbar is fully connected—every output can be routed from any
input (except back to itself) in each cycle, including broadcast and multicast operations.

Data movement is controlled by a static route that is setup with an special purpose registers (SPR)
write from the main processor. Static routes remain in force until changed by another SPR write.

7.2 Static Routing
The desired routing is specified statically by writing the SPR SNSTATIC. This SPR has five fields,
corresponding to the five possible output ports, as listed in Table 7-9.

As shown in Table 7-10, each field contains a number that specifies which input port will route to
that output port:

Table 7-9. Special Purpose Register Fields

Bits Output Port

14:12 Main Processor

11:9 West

8:6 South

5:3 East

2:0 North

Chapter 7 Static Network

382 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

For example if 03214 (in octal) is written to SNSTATIC, the following routes remain in effect until
SNSTATIC is written to again:

• south to west

• east to south

• north to east

• west to north

Multicast routing is supported. For example, writing 00033 (octal) to SNSTATIC will cause any

word from the south to be routed to both the east and the north.

NOTE: Specifying that an input port routes back to the same output port (for example 00001,
which specifies north routed to north) is illegal and results in undefined behavior.

Each input port in a static route is considered individually, and as soon as the input port has a
word available and all output ports have room, the word is moved.

7.3 Data Flow Control
Every port in the static network is flow-controlled, which allows it to tolerate delays introduced
by unpredictable events. The TILE64 implements the flow control using a credit-based flow con-
trol system. Each link buffers at least three words of storage, and the sender therefore begins with
three credits. A sender decrements its credit count when it sends a word, and increments the
credit count when it receives acknowledgement from the receiver. A sender can only send when
its count is non-0.

7.4 Hardwall Protection
The STN hardwall mechanism is used to prevent unwanted communication between user applica-
tions running on adjacent tiles. The hardwall mechanism consists of an SPR-programmable
protection bit on each output port of the STN switch point and an interrupt triggered by any
attempted violation of a hardwall.

When an output port is protected, no data can be sent out of the associated port. Attempting to
send a word to a protected port will trigger an interrupt on the Tile Processor. Software can then
inspect the word and take any appropriate action.

Table 7-10. Port Designations

Numbers Input Port

0 None

1 North

2 East

3 South

4 West

5 Main Processor

Tile Processor User Architecture Manual 383

Tilera Confidential — Subject to Change Without Notice

User-Accessible Special Purpose Registers

When a static route specifies a multicast route, and just one of the many output directions causes
a protection violation, the word will not be routed to any of the output ports.

7.5 User-Accessible Special Purpose Registers
The list of all user-accessible SPRs follows. Please see the appendix for more details.

• Static network control register (SNCTL)

Contains bits to freeze the crossbar switch.

• Static Network FIFO Data register (SNFIFO)

Used to save or restore static network state, or to extract words blocked by a routing
violation.

• Static Network FIFO Select register (SNFIFO_SEL)

Controls which FIFO is read/written when accessing SNFIFO_DATA.

•0 – North Input FIFO

•1 – East Input FIFO

•3 – South Input FIFO

•4 – West Input FIFO

•5 – Main Processor Input FIFO

•6 – Main Processor Output FIFO

• Static Network Input State register (SNISTATE)

Used to save or restore static network state. Indicates how many words are in each port’s
input buffer.

• Static Network Output State register (SNOSTATE)

Used to save or restore static network state. Indicates how many credits each output port has
for sending. Also contains how many words are in the Main Processor Output FIFO.

• Static Network Static Route register (SNSTATIC)

Used to setup a static route (see “Static Routing” on page 381)

• Static Network Data Available register (SN_DATA_AVAIL)

Indicates if data is available to be read from the static network by the processor engine.

Chapter 7 Static Network

384 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Tile Processor User Architecture Manual 385

Tilera Confidential — Subject to Change Without Notice

8 USER-LEVEL SYSTEM CONCERNS

8.1 Overview
User-level programs need to interact with the greater system where they are executed. In order to
interact with the system, user-level programs need to be able to execute system calls, interact with
I/O, and control in-tile devices of a system nature. This section describes system interactions from
a user-level viewpoint.

8.2 System Calls
A system call is a mechanism whereby a user-level program voluntarily passes control flow to a
more privileged piece of software. A system call typically involves passing some information
along with the program control flow. The system software may elect to pass return data to the
user-level program after the system call completes. System calls are typically executed in response
to a user-level program requiring some functionality that is provided by system software. Access
to system calls are typically done through library code not directly implemented by end users.

The Tile Processor Architecture supports the ability for user-level programs to call system soft-
ware via the swint0, swint1, swint2, and swint3 instructions1. The architecture includes four
“swint” interrupt handlers with each one corresponding to one of the swint instructions. When a
swint instruction is executed, an interrupt is signaled to the respective swint interrupt handler.
There are four swint interrupt levels because there are four protection levels in the Tile Processor
Architecture. Therefore it is possible to choose the level of system software in which a program
wants to request services. The control of the protection level to which a swint instruction vectors
is not hard coded, but as a software convention, the swint number matches the protection level,
where 0 is user-level, 1 is supervisor (OS), 2 is hypervisor, and 3 is for a virtual machine monitor.

Typically there are many different calls that a user-level program may want to do to system level
software. As there is only one interrupt per protection level, the actual call that is needed must be
signaled to system software in some manner. By software convention, a system call number is
deposited into a known General Purpose Register (GPR) and then the swint is signaled. The sys-
tem call number allows the system to determine which service a user-level program requires from
system software. Parameters can also be passed through other processor registers and through
memory. After the completion of the system call, the system software returns control to the user-
level program via the iret instruction. The system software may elect to return a value or set of
values to the user process through processor registers or through memory.

1. “swint” is an abbreviation of software interrupt.

Chapter 8 User-level System Concerns

386 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

8.3 Interrupt Overview
Exceptional occurrences happen in any computer system. The Tile Processor Architecture unifies
all exceptional occurrences in a class of events called interrupts.

Four protection levels are provided by hardware to isolate protection concerns. These protection
levels effect how interrupts occur on the Tile Processor Architecture. The protection levels are
numbered 0 through 3 with 0 being the least privileged and 3 being the most privileged. This doc-
ument focuses on programs executed at protection level 0 (user-level).

Table 8-11 presents the list of interrupts that are available on the Tile Processor Architecture. The
System Architecture Manual provides more detail of interrupt processing and the various attributes
of interrupts. If multiple interrupts are signaled at the same time, the interrupt with the lowest
interrupt number will be signaled first.

8.3.1 Interrupt List
Table 8-11 lists all interrupts that can be seen by the user.

Table 8-11. Master Interrupt Table

Interrupt
Number

Name Description

0 ITLB_MISS ITLB Miss.

1 MEM_ERROR Memory Error

2 ILL Illegal Instruction

3 GPV General Protection Violation

4 SN_ACCESS Static Networks Access

5 IDN_ACCESS IO Dynamic Network (IDN) Access

6 UDN_ACCESS User Dynamic Network (UDN) Access

7 IDN_REFILL IDN Refill

8 UDN_REFILL UDN Refill

9 IDN_COMPLETE IDN Complete

10 UDN_COMPLETE UDN Complete

11 SWINT_3 Software Interrupt 3

12 SWINT_2 Software Interrupt 2

13 SWINT_1 Software Interrupt 1

14 SWINT_0 Software Interrupt 0

15 UNALIGN_DATA Unaligned Data

Tile Processor User Architecture Manual 387

Tilera Confidential — Subject to Change Without Notice

Interrupt Overview

16 DTLB_MISS Data Translation Lookaside Buffer (DTLB) Miss

17 DTLB_ACCESS DTLB Access Error

18 DMATLB_MISS Direct Memory Access (DMA) Translation Lookaside Buffer Miss

19 DMATLB_ACCESS DMA Translation Lookaside Buffer Access Error

20 Reserved Reserved

21 Reserved Reserved

22 SN_FIREWALL SN Firewall Violation

23 IDN_FIREWALL IDN Firewall Violation

24 UDN_FIREWALL UDN Firewall Violation

25 TILE_TIMER Tile Timer

26 IDN_TIMER IDN Timer

27 UDN_TIMER UDN Timer

28 DMA_NOTIFY DMA Notification

29 IDN_CA IDN Catch-All Available

30 UDN_CA UDN Catch-All Available

31 IDN_AVAIL IDN Available

32 UDN_AVAIL UDN Available

33 PERF_COUNT Performance Counters

34 INTCTRL_3 Interrupt Control 3

35 INTCTRL_2 Interrupt Control 2

36 INTCTRL_1 Interrupt Control 1

37 INTCTRL_0 Interrupt Control 0

38 BOOT_ACCESS Boot Access

39 WORLD_ACCESS World Access

40 I_ASID Instruction Address Space Identifier (ASID)

41 D_ASID Data ASID

Table 8-11. Master Interrupt Table (continued)

Interrupt
Number

Name Description

Chapter 8 User-level System Concerns

388 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

The Tile Processor Architecture uses a vectored approach to interrupts; there are four sets of inter-
rupt vectors, one for each protection level. On an interrupt, the architecture changes the program
counter to a value derived from the interrupt number and the protection level at which the inter-
rupt executes. The offset is INTERRUPT_BASE_ADDRESS (0xFC000000), plus the protection level
multiplied by 16 MB (0x01000000), plus the interrupt number multiplied by 256. This allows 32
VLIW instructions to fit in each interrupt vector, and allows all of a protection level’s interrupt
vectors and up to 16 MB of accompanying code to be mapped into virtual address space using a
single large-page ITLB entry. If more than 32 instructions are needed to handle an interrupt, the
interrupt vector code can jump to the rest of the interrupt handler located in that same large page,
or anywhere else in the address space.

When an interrupt occurs, the program counter of the processor is vectored to a fixed interrupt
location. The fixed interrupt location is the virtual address:

• (interrupt_number<<(INTERRUPT_VECTOR_NUMBER_OF_INSTRUCTIONS_LOG_2
+ INSTRUCTION_SIZE_LOG_2)
+ destination_protection_level<<(INTERRUPT_VECTOR_PL_OFFSET_LOG_2
+ INTERRUPT_BASE_ADDRESS.

• INTERRUPT_VECTOR_NUMBER_OF_INSTRUCTIONS_LOG_2 is 5.

• INSTRUCTION_SIZE_LOG_2 is 3

• INTERRRUPT_VECTOR_PL_OFFSET_LOG_2 is 24.

• INTERRUPT_BASE_ADDRESS is 0xFC000000.

When an interrupt occurs, in order for a subsequent interrupt to not interrupt a pending interrupt,
the INTERRUPT_CRITICAL_SECTION bit is atomically set. This SPR effects the masking of further
interrupts and is discussed along with interrupt masking in more detail in the System Architecture
Manual.

The program counter that was interrupted and the associated protection level on interrupt is
placed in the SPRs EX_CONTEXT_X_0 and EX_CONTEXT_X_1. There are four sets of these SPRs, one
for each protection level that can be interrupted into. The “X” in EX_CONTEXT_X_0 and
EX_CONTEXT_X_1 denotes a value between 0 and 3 for each protection level. EX_CONTEXT_X_0 con-
tains the exceptional program counter and EX_CONTEXT_X_1 contains the protection level that was
interrupted along with the interrupted state of the INTERRUPT_CRITICAL_SECTION SPR.

42 DMA_ASID DMA ASID

43 RESERVED RESERVED

44 DMA_CPL DMA Current Protection Level

45 RESERVED RESERVED

46 DOUBLE_FAULT Double Fault

Table 8-11. Master Interrupt Table (continued)

Interrupt
Number

Name Description

Tile Processor User Architecture Manual 389

Tilera Confidential — Subject to Change Without Notice

User-Level Interrupts

8.4 User-Level Interrupts
Unlike most computer architectures, the Tile Processor Architecture supports user-level inter-
rupts. User-level interrupts interrupt from protection level 0 destined for protection level 0. An
example of an interrupt that would interrupt from protection level 0 to protection level 0 is the
UDN Available interrupt. The UDN is a user-level network and the availability of a network mes-
sage can trigger an interrupt to occur. In order for the interrupt to be delivered, place an
appropriate interrupt handler in the correct interrupt vector location and unmask the interrupt.

User-level interrupt routines consist of 32 bundles of instructions that are laid out starting at
address 0xFC000000. Thus to install a protection level 0 interrupt handler for the UDN Available
interrupt (number 32), the interrupt handler would be installed at address 0xFC002000. If more
than 32 instruction bundles is required, the last instruction in the interrupt handler should be
used to jump to the appropriate code. If other interrupts need to be enabled inside of an interrupt
handler, the INTERRUPT_CRITICAL_SECTION SPR may be cleared. The System Architecture Manual
details the masking of interrupts in more detail.

When an asynchronous interrupt is signaled, all of the Tile Processor Architecture’s general pur-
pose registers can potentially contain state that cannot be modified in order to return
transparently to the interrupted process. This leaves the interrupt handler with a dilemma, it
needs to save off state in the general purpose register file to memory in order to use the general
purpose registers, but in order to execute a store instruction, at least one general purpose register
is needed to hold an address. To address this problem, the Tile Processor Architecture provides
system save registers. Four 32-bit system save registers are provided for each protection level.
The system save registers can be read and written by the corresponding protection level and
higher privileged protection levels. If a lower protection level attempts to access the system save
registers of a higher protection level, a General Protection Violation occurs. The system save reg-
isters are mapped into the SPR space. The corresponding SPRs for a given protection level are
SYSTEM_SAVE_X_0, SYSTEM_SAVE_X_1, SYSTEM_SAVE_X_2, and SYSTEM_SAVE_X_3, where X
denotes a protection level 0 through 3.

After all of the interrupt processing is complete, the iret instruction should be executed. The
iret instruction transitions the program counter to that stored in the EX_CONTEXT_0_0. Likewise
it updates the INTERRUPT_CRITICAL_SECTION SPR and the protection level from
EX_CONTEXT_0_1. These updates are done atomically.

8.5 Interaction with I/O Devices
User-level code typically interacts with I/O devices by utilizing the features provided by system
software. Typically there is a driver for an I/O device which resides in the system software. The
prototypical I/O device on Tile Processor Architecture is connected to the IDN and to the mem-
ory system via the iMesh. In order for a user-level program to access I/O, a system call is made to
system software which then may message an I/O device for the user-level software. In response
to the IDN message, the I/O device may respond back with data over the IDN, or may deposit
data into memory. The I/O device will typically have sophisticated DMA engines which orches-
trate the movement of bulk data from the I/O device to memory or from memory to the I/O
device. More details of I/O device specifics are described in the System Architecture Manual and in
the Tile Processor I/O Device Guide (UG104) for a particular implementation.

8.6 Cycle Count
Each tile contains a 64-bit cycle counter. The 64-bit cycle counter is a monotonically increasing
counter that can be read by reads to the CYCLE_LOW and CYCLE_HIGH SPRs. The cycle counter
increases for each major cycle of a specific implementation. The relationship between cycle count
and instructions executed is implementation specific. A suggested implementation increments the

Chapter 8 User-level System Concerns

390 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

cycle count for each cycle that a bundle could issue. CYCLE_LOW returns the lower 32 bits of the
cycle counter while CYCLE_HIGH returns the upper 32 bits of the cycle count. The cycle counter is
reset to 0 when the machine is reset. The CYCLE_LOW and CYCLE_HIGH registers are read only regis-
ters. System software can modify the cycle counter for virtualization purposes via the
CYCLE_LOW_MODIFY and CYCLE_HIGH_MODIFY special purpose registers.

Tile Processor User Architecture Manual 391

Tilera Confidential — Subject to Change Without Notice

APPENDIX A SPECIAL PURPOSE REGISTERS

A.1 Introduction
In addition to having the processor state be accessible by the standard Instruction Set Architecture
(ISA), every modern processor contains some state that software needs to access, but only infre-
quently. Consider a DMA operation, for example. A program initiates a DMA transfer by
specifying the size of the data block to be transferred, along with the source and destination
addresses. The program also polls a status bit to determine when the transfer has completed.

The Tile Architecture™ provides access to all software-readable and software-writable state
through a 15-bit addressed, word-oriented register file. This register file is called the Special Pur-
pose Register File (SPRF), and each register in this register set is called an SPR. Not every bit
within every SPR is physically implemented to hold state information/data. Some bits merely
provide an interface to another state within the tile. Further, the SPRF is sparsely populated—not
every address within the SPRF refers to an actual SPR.

Two instructions in the Tile Architecture provide access to the special purpose registers: the Move
To Special Purpose Register Word (mtspr) and Move From Special Purpose Register Word (mfspr). User
programs can access SPRs to control and monitor the Static Network, the User Dynamic Network,
the Tile Timer, and the DMA Engine.

Table A-12 provides the list of SPRs organized by function. Information for TILE64 users is shown
in yellow shading and information for TILEPro users is shown in red shading. Note that the SPRs
listed below and described in the sections that follow represent a portion of the complete Special
Purpose Register listing. For more information, refer to Chapter 8: Special Purpose Registers in
the System Architecture Manual (UG103).

Table A-12. Special Purpose Registers

Register/Details Address Access MPL

Static Network Registers

“Static Network Control Register (SNCTL)” on page 396 0x805 SN_ACCESS

“Static Network Fifo Data (SNFIFO_DATA)” on page 397 0x806

“Static Network FIFO Select Register (SNFIFO_SEL)” on page 398 0x807

“Static Network Input State Register (SNISTATE)” on page 399 0x809

“Static Network Output State Register (SNOSTATE) ” on page 400 0x80a

“Static Network Static Route (SNSTATIC)” on page 401 0x80c

Appendix A Special Purpose Registers

392 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Static Network Registers (continued)

“Static Network Data Available (SN_DATA_AVAIL)” on page 402 0x900 SN_ACCESS

Static Network Static Registers — Used for TILEPro Processors ONLY

“Static Network Control (SN_STATIC_CTL)” on page 403 SN_STATIC
_ACCESS

“Static Network FIFO Data (SN_STATIC_FIFO_DATA)” on page 404

“Static Network FIFO Select (SN_STATIC_FIFO_SEL)” on page 405

“Static Network Input State (SN_STATIC_ISTATE)” on page 406

“Static Network Output State (SN_STATIC_OSTATE)” on page 407

“Static Network Static Route (SN_STATIC_STATIC)” on page 408

“Static Network Data Available (SN_STATIC_DATA_AVAIL)” on page 409

User Dynamic Network Registers

“User Dynamic Network Catch-all Demultiplexor Count Register
(UDN_DEMUX_CA_COUNT) ” on page 410

0xc05 UDN_ACCESS

“User Dynamic Network Demultiplexor Count 0 Register
(UDN_DEMUX_COUNT_0) ” on page 411

0xc06

“User Dynamic Network Demultiplexor Count 1 Register
(UDN_DEMUX_COUNT_1) ” on page 412

0xc07

“User Dynamic Network Demultiplexor Count 2 Register
(UDN_DEMUX_COUNT_2) ” on page 413

0xc08

“User Dynamic Network Demultiplexor Count 3 Register
(UDN_DEMUX_COUNT_3) ” on page 414

0xc09

“UDN Demux Control Register (UDN_DEMUX_CTL) ” on page 415 0xc0a

“User Dynamic Network Demux Current Tag (UDN_DEMUX_CURR_TAG)”
on page 415

0xc0b

“UDN Demux Queue Select Register (UDN_DEMUX_QUEUE_SEL) ” on page
415

0xc0c

“User Dynamic Network Demux State (UDN_DEMUX_STATUS)” on page 416 0xc0d

“User Dynamic Network Demux FIFO (UDN_DEMUX_WRITE_FIFO)” on page
416

0xc0e

“User Dynamic Network Demux Write Queue (UDN_DEMUX_WRITE_QUEUE)”
on page 417

0xc0f

Table A-12. Special Purpose Registers (continued)

Register/Details Address Access MPL

Tile Processor User Architecture Manual 393

Tilera Confidential — Subject to Change Without Notice

Introduction

User Dynamic Network Registers (continued)

“User Dynamic Network Words Pending (UDN_PENDING)” on page 417 0xc10 UDN_ACCESS

“User Dynamic Network FIFO Data (UDN_SP_FIFO_DATA)” on page 418 0xc11

“User Dynamic Network FIFO Data (UDN_SP_FIFO_DATA)” on page 418 0xc12

“User Dynamic Network Freeze (UDN_SP_FREEZE)” on page 419 0xc13

“User Dynamic Network Port State (UDN_SP_STATE)” on page 420 0xc14

“User Dynamic Network Tag 0 (UDN_TAG_0)” on page 421 0xc15

“User Dynamic Network Tag 1 (UDN_TAG_1)” on page 421 0xc16

“User Dynamic Network Tag 2 (UDN_TAG_2)” on page 421 0xc17

“User Dynamic Network Tag 3 (UDN_TAG_3)” on page 422 0xc18

“User Dynamic Network Tag Valid (UDN_TAG_VALID)” on page 422 0xc19

“User Dynamic Network Tile Coordinates (UDN_TILE_COORD)” on page 423 0xc1a

“User Dynamic Network Catch-All Data (UDN_CA_DATA)” on page 424 0xd00

“User Dynamic Network Catch-all Remaining Words (UDN_CA_REM)” on page
424

0xd01

“User Dynamic Network Catch-All Data (UDN_CA_DATA)” on page 424 0xd02

“User Dynamic Network Data Available (UDN_DATA_AVAIL)” on page 425 0xd03

“User Dynamic Network Refill Available Enable (UDN_REFILL_EN)” on page 426 0x1005 UDN_REFILL

“User Dynamic Network Remaining (UDN_REMAINING)” on page 427 0x1405 UDN_COMPLETE

“User Dynamic Network Available Enables (UDN_AVAIL_EN)” on page 428 0x4005 UDN_AVAIL

User Dynamic Network Registers (continued

“User Dynamic Network Deadlock Counter (UDN_DEADLOCK_COUNT)” on page
429

0x3605 UDN_TIMER

“User Dynamic Network Deadlock Timeout (UDN_DEADLOCK_TIMEOUT)”
on page 430

0x3606

Table A-12. Special Purpose Registers (continued)

Register/Details Address Access MPL

Appendix A Special Purpose Registers

394 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

World-Accessible Registers

“Cycle Counter High (CYCLE_HIGH)” on page 431 0x4e06 WORLD_ACCESS

“Cycle Counter Low (CYCLE_LOW)” on page 431 0x4e07

“Done Magic Register (DONE)” on page 432 0x4e08

“Fail Magic Register (FAIL)” on page 432 0x4e09

“Interrupt Critical Section (INTERRUPT_CRITICAL_SECTION)” on page 433 0x4e0a

“Pass Magic Register (PASS)” on page 433 0x4e0b

Interrupt Control 0 Registers

“Exceptional Context Protection Level 0 Entry 0 (EX_CONTEXT_0_0)” on page
434

0x4a05 INTCTRL_0

“Exceptional Context Protection Level 0 Entry 1 (EX_CONTEXT_0_1)” on page
435

0x4a06

“Interrupt Control 0 Status (INTCTRL_N_STATUS)” on page 436 0x4a07

“Interrupt Mask Protection Level 0 Entry 0 (INTERRUPT_MASK_0_0)” on page
437

0x4a08

“Interrupt Mask Protection Level 0 Entry 1 (INTERRUPT_MASK_0_1)” on page
439

0x4a09

“Interrupt Mask Protection Level 0 Entry 0 (INTERRUPT_MASK_RESET_0)”
on page 440

0x4a0a

“Interrupt Mask Protection Level 0 Entry 1 (INTERRUPT_MASK_RESET_0_1)”
on page 442

0x4a0b

“Interrupt Mask Protection Level 0 Entry 0 (INTERRUPT_MASK_SET_0_0)”
on page 443

0x4a0c

“Interrupt Mask Protection Level 0 Entry 1 (INTERRUPT_MASK_SET_0_1)”
on page 445

0x4a0d

“System Save Register Level 0 Entry 0 (SYSTEM_SAVE_0_0)” on page 446 0x4b00

“System Save Register Level 0 Entry 1 (SYSTEM_SAVE_0_1)” on page 446 0x4b01

“System Save Register Level 0 Entry 2 (SYSTEM_SAVE_0_2)” on page 446 0x4b02

“System Save Register Level 0 Entry 3 (SYSTEM_SAVE_0_3)” on page 446 0x4b03

Tile Timer Register

“Minimum Protection Level for Tile Timer (MPL_TILE_TIMER)” on page 447 0x3205 TILE_TIMER

Table A-12. Special Purpose Registers (continued)

Register/Details Address Access MPL

Tile Processor User Architecture Manual 395

Tilera Confidential — Subject to Change Without Notice

Introduction

DMA Registers

“DMA Byte (DMA_BYTE) Register” on page 448 0x3900 DMA_NOTIFY

“DMA Chunk Size (DMA_CHUNK_SIZE) Register” on page 449 0x3901

“DMA Control (DMA_CTR) Register” on page 450 0x3902

“DMA Destination Address (DMA_DST_ADDR) Register” on page 451 0x3903

“DMA Destination Chunk Address (DMA_DST_CHUNK_ADDR) Register”
on page 452

0x3904

“DMA Source Address (DMA_SRC_ADDR) Register” on page 453 0x3905

“DMA Source Chunk Address (DMA_SRC_CHUNK_ADDR) Register” on page
454

0x3906

“DMA Source And Destination Strides (DMA_STRIDE) Register” on page 455 0x3907

“DMA User Status (DMA_USER_STATUS) Register” on page 456 0x3908

Table A-12. Special Purpose Registers (continued)

Register/Details Address Access MPL

Appendix A Special Purpose Registers

396 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

A.2 SPR Register Descriptions
Registers are described in ascending address order.

Static Network Control Register (SNCTL)

This register controls execution of the static network processor and fabric.

Speed

Slow

Minimum Protection Level

SN_ACCESS

Figure 7. SNCTL Register Diagram Register Diagram

Table A-13. SNCTL Register Bit Descriptions

Bits Name Reset Description

31:2 Reserved

1 FRZPROC 1 For TILE 64, this bit freezes the static network processor.

For TILEPro, this is reserved.

0 FRZFABRIC 1 Freeze the static network fabric.

012345678910111213141516171819202122232425262728293031

FRZFABRIC

0000000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 397

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Static Network Fifo Data (SNFIFO_DATA)

Accesses the data FIFO specified by SNFIFO_SEL. When read, returns the top entry on the speci-
fied FIFO and removes it from the FIFO. When written, it writes the specified data into the FIFO.

Speed

Slow

Minimum Protection Level

SN_ACCESS

Figure 8. SNFIFO_DATA Register Diagram

012345678910111213141516171819202122232425262728293031

SNFIFO_DATA

Appendix A Special Purpose Registers

398 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Static Network FIFO Select Register (SNFIFO_SEL)

This register specifies which FIFO will be read and written by the SNFIFO_DATA register.

Speed

Slow

Minimum Protection Level

SN_ACCESS

Figure 9. SNFIFO_SEL Register Diagram

Table A-14. SNFIFO_SEL Register Bit Descriptions

Bits Name Reset Description

31:3 Reserved

2:0 SNFIFO_SEL 0 This bitfield specifies which FIFO will be read and written by the
SNFIFO_DATA register. FIFOs are as follows:

0 North Input FIFO

1 East Input FIFO

2 South Input FIFO

3 West Input FIFO

4 Processor Input FIFO

5 Processor Output FIFO

6 and 7 Undefined

012345678910111213141516171819202122232425262728293031

SNFIFO_SEL

00000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 399

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Static Network Input State Register (SNISTATE)

This register specifies the number of entries in the static network’s input FIFOs.

Speed

Slow

Minimum Protection Level

SN_ACCESS

Figure 10. SNISTATE Register Diagram

Table A-15. SNISTATE Register Bit Descriptions

Bits Name Reset Description

31:20 Reserved Reserved

19:16 M 0 Main Processor Input FIFO entry count. TILE64 implements the bitfield
18:16; writes to bit 19 are ignored, and these bits are read as 0.

15:12 W 0 West Input FIFO entry count. TILE64 implements the bitfield 13:12;
writes to bits 15:14 are ignored, and these bits are read as 0.

11:8 S 0 South Input FIFO entry count. TILE64 implements the bitfield 9:8; writes
to bits 11:10 are ignored, and these bits are read as 0.

7:4 E 0 East Input FIFO entry count. TILE64 implements the bitfield 5:4; writes
to bits 7:6 are ignored, and these bits are read as 0.

3:0 N 0 North Input FIFO entry count. TILE64 implements the bitfield 1:0; writes
to bits 3:2 are ignored, and these bits are read as 0.

012345678910111213141516171819202122232425262728293031

N

E

S

W

M

000000000000

Reserved 0x0

Appendix A Special Purpose Registers

400 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Static Network Output State Register (SNOSTATE)

This register specifies the number of credits available to the static network’s output FIFOs on the
compass points as well as the number of entries present in the output FIFO going from the static
network to the processor.

Speed

Slow

Minimum Protection Level

SN_ACCESS

Figure 11. SNOSTATE Register Diagram

Table A-16. SNOSTATE Register Bit Descriptions

Bits Name Reset Description

31:20 Reserved Reserved

19:16 M 0 Main Processor Output FIFO entry count. TILE64 implements the bitfield
18:16; writes to bit 19 are ignored, and these bits are read as 0.

15:12 W 0 West Output FIFO credit count. TILE64 implements the bitfield 13:12; writes
to bits 15:14 are ignored, and these bits are read as 0.

11:8 S 0 South Output FIFO credit count. TILE64 implements the bitfield 9:8; writes
to bits 11:10 are ignored, and these bits are read as 0.

7:4 E 0 East Output FIFO credit count. TILE64 implements the bitfield 5:4; writes to
bits 7:6 are ignored, and these bits are read as 0.

3:0 N 0 North Output FIFO credit count. TILE64 implements the bitfield 1:0; writes
to bits 3:2 are ignored, and these bits are read as 0.

012345678910111213141516171819202122232425262728293031

N

E

S

W

M

000000000000

Reserved 0x0

Tile Processor User Architecture Manual 401

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Static Network Static Route (SNSTATIC)

This register specifies the static input route to a given output port.

Speed

Slow

Minimum Protection Level

SN_ACCESS

Figure A-1: SNSTATIC Register Diagram

As shown in Table A-18, each field contains a number that specifies which input port will route to
that output port:

Table A-17. SNSTATIC Register Bit Descriptions

Bits Name Default Description

31:15 Reserved

14:12 M 0 Main Processor static input route.

11:9 W 0 West static input route.

8:6 S 0 South static input route.

5:3 E 0 East static input route.

2:0 N 0 North static input route.

Table A-18. Port Designations

Numbers Input Port

0 None

1 North

2 East

3 South

012345678910111213141516171819202122232425262728293031

N

E

S

W

M

00000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

402 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Static Network Data Available (SN_DATA_AVAIL)

This register contains a bit field that indicates that data is available on the static network.

Speed

Fast

Minimum Protection Level

SN_ACCESS

Figure A-2: SN_DATA_AVAIL Register Diagram

4 West

5 Main Processor

Table A-19. SN_DATA_AVAIL Register Bit Descriptions

Bits Name Default Description

31:1 Reserved

0 AVAIL 0 Data is available to be read on the static network.

Table A-18. Port Designations (continued)

Numbers Input Port

012345678910111213141516171819202122232425262728293031

AVAIL

0000000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 403

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Static Network Control (SN_STATIC_CTL)

This register controls execution of the static network processor and fabric.

NOTE: This SPR is reserved for TILE64 and is not reserved for TILEPro.

Speed

Slow

Minimum Protection Level

SN_STATIC_ACCESS

Figure 2. SN_STATIC_CTL Register Diagram

Table A-20. SN_STATIC_CTL Register Bit Descriptions

Bits Name Reset Description

31:1 Reserved Reserved

0 FRZFABRIC 1 Added in TILEPro: Freeze the static network fabric.

012345678910111213141516171819202122232425262728293031

FRZFABRIC

0000000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

404 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Static Network FIFO Data (SN_STATIC_FIFO_DATA)

Accesses the data FIFO specified by SNFIFO_SEL. When read, returns the top entry on the speci-
fied FIFO and removes it from the FIFO. When written, it writes the specified data into the FIFO.

NOTE: This SPR is reserved for TILE64 and is not reserved for TILEPro.

Speed

Slow

Minimum Protection Level

SN_STATIC_ACCESS

Figure 3. SN_STATIC_FIFO_DATA Register Diagram

Table A-21. SN_STATIC_FIFO_DATA Register Bit Descriptions

Bits Name Reset Description

31:0 SN_STATIC
_FIFO_DATA

0 Added in TILEPro: Accesses the data fifo specified by SNFIFO_SEL.
When read, returns the top entry on the specified fifo and removes it from
the FIFO. When written, it writes the specified data into the FIFO.

012345678910111213141516171819202122232425262728293031

SN_STATIC_FIFO_DATA

Tile Processor User Architecture Manual 405

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Static Network FIFO Select (SN_STATIC_FIFO_SEL)

This SPR specifies which FIFO will be read and written by the SNFIFO_DATA register.

NOTE: This SPR is reserved for TILE64 and is not reserved for TILEPro.

Speed

Slow

Minimum Protection Level

SN_STATIC_ACCESS

Figure 4. SN_STATIC_FIFO_SEL Register Diagram

Table A-22. SN_STATIC_FIFO_SEL Register Bit Descriptions

Bits Name Reset Description

31:3 Reserved Reserved

2:0 SN_STATIC
_FIFO_SEL

0 Added in TILEPro: This bitfield specifies which FIFO will be read and writ-
ten by the SNFIFO_DATA register.

012345678910111213141516171819202122232425262728293031

SN_STATIC_FIFO_SEL

00000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

406 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Static Network Input State (SN_STATIC_ISTATE)

This register specifies the number of entries in the static network's Input FIFOs.

NOTE: This SPR is reserved for TILE64 and is not reserved for TILEPro.

Speed

Slow

Minimum Protection Level

SN_STATIC_ACCESS

Figure 5. SN_STATIC_ISTATE Register Diagram

Table A-23. SN_STATIC_ISTATE Register Bit Descriptions

Bits Name Reset Description

31:20 Reserved Reserved

19:16 M 0 Added in TILEPro: Main Processor Input FIFO entry count.

15:12 W 0 Added in TILEPro: West Input FIFO entry count.

11:8 S 0 Added in TILEPro: South Input FIFO entry count.

7:4 E 0 Added in TILEPro: East Input FIFO entry count.

3:0 N 0 Added in TILEPro: North Input FIFO entry count.

012345678910111213141516171819202122232425262728293031

N

E

S

W

M

000000000000

Reserved 0x0

Tile Processor User Architecture Manual 407

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Static Network Output State (SN_STATIC_OSTATE)

This register specifies the number of credits available to the static network’s output FIFOs on the
compass points as well as the number of entries present in the output FIFO going from the static
network to the processor.

NOTE: This SPR is reserved for TILE64 and is not reserved for TILEPro.

Speed

Slow

Minimum Protection Level

SN_STATIC_ACCESS

Figure 6. SN_STATIC_OSTATE Register Diagram

Table A-24. SN_STATIC_OSTATE Register Bit Descriptions

Bits Name Reset Description

31:20 Reserved Reserved

19:16 M 0 Added in TILEPro: Main Processor Output FIFO credit count.

15:12 W 0 Added in TILEPro: West Output FIFO credit count.

11:8 S 0 Added in TILEPro: South Output FIFO credit count.

7:4 E 0 Added in TILEPro: East Output FIFO credit count.

3:0 N 0 Added in TILEPro: North Output FIFO entry count.

012345678910111213141516171819202122232425262728293031

N

E

S

W

M

000000000000

Reserved 0x0

Appendix A Special Purpose Registers

408 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Static Network Static Route (SN_STATIC_STATIC)

This register specifies the static input route to a given output port.

NOTE: This SPR is reserved for TILE64 and is not reserved for TILEPro.

Speed

Slow

Minimum Protection Level

SN_STATIC_ACCESS

Figure 7. SN_STATIC_STATIC Register Diagram

Table A-25. SN_STATIC_STATIC Register Bit Descriptions

Bits Name Reset Description

31:15 Reserved Reserved

14:12 M 0 Added in TILEPro: Main Processor static input route.

11:9 W 0 Added in TILEPro: West static input route.

8:6 S 0 Added in TILEPro: South static input route.

5:3 E 0 Added in TILEPro: East static input route.

2:0 N 0 Added in TILEPro: North static input route.

012345678910111213141516171819202122232425262728293031

N

E

S

W

M

00000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 409

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Static Network Data Available (SN_STATIC_DATA_AVAIL)

This register contains a bit field that indicates that data is available on the static network.

NOTE: This SPR is reserved for TILE64 and is not reserved for TILEPro.

Speed

Fast

Minimum Protection Level

SN_STATIC_ACCESS

Figure 8. SN_STATIC_DATA_AVAIL Register Diagram

Table A-26. SN_STATIC_DATA_AVAIL Register Bit Descriptions

Bits Name Reset Description

31:1 Reserved Reserved

0 AVAIL 0 Added in TILEPro: This bit indicates added in TILEPro: Data is available to
be read on the static network.

012345678910111213141516171819202122232425262728293031

AVAIL

0000000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

410 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Catch-all Demultiplexor Count Register
(UDN_DEMUX_CA_COUNT)

This register contains the number of words that have been received for Catch-all Queue of the
User Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure 9. UDN_DEMUX_CA_COUNT Register Diagram

Table A-27. UDN_DEMUX_CA_COUNT Register Bit Descriptions

Bits Name Reset Description

31:0 UDN_DEMUX_CA
_COUNT

0 Number two-word slices the UDN is allowed to consume in the demux
buffer. If the sum of IDN and UDN thresholds exceeds 56, the IDN and
UDN networks can compete for buffer entries and the refill/context swap
flows must account for concurrent activity on the other network. TILE64
implements the bitfield 6:0; writes to bits 31:7 are ignored, and these bits
are read as 0.

012345678910111213141516171819202122232425262728293031

UDN_DEMUX_CA_COUNT

Tile Processor User Architecture Manual 411

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Demultiplexor Count 0 Register (UDN_DEMUX_COUNT_0)

This register contains the number of words that have been received for channel 0 of the User
Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure 10. UDN_DEMUX_COUNT_0 Register Diagram

Table A-28. UDN_DEMUX_COUNT_0 Register Bit Descriptions

Bits Name Reset Description

31:0 UDN_DEMUX
_COUNT_0

0 Count. Implements the bitfield 6:0; writes to bits 31:7 are ignored, and
these bits are read as 0.

012345678910111213141516171819202122232425262728293031

UDN_DEMUX_COUNT_0

Appendix A Special Purpose Registers

412 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Demultiplexor Count 1 Register (UDN_DEMUX_COUNT_1)

This register contains the number of words that have been received for channel 1 of the User
Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure 11. UDN_DEMUX_COUNT_1 Register Diagram

Table A-29. UDN_DEMUX_COUNT_1 Register Bit Descriptions

Bits Name Reset Description

31:0 UDN_DEMUX
_COUNT_1

0 Count. Implements the bitfield 6:0; writes to bits 31:7 are ignored, and
these bits are read as 0.

012345678910111213141516171819202122232425262728293031

UDN_DEMUX_COUNT_1

Tile Processor User Architecture Manual 413

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Demultiplexor Count 2 Register (UDN_DEMUX_COUNT_2)

This register contains the number of words that have been received for channel 2 of the User
Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure 12. UDN_DEMUX_COUNT_2 Register Diagram

Table A-30. UDN_DEMUX_COUNT_2 Register Bit Descriptions

Bits Name Reset Description

31:0 UDN_DEMUX
_COUNT_2

0 Count. Implements the bitfield 6:0; writes to bits 31:7 are ignored, and
these bits are read as 0.

012345678910111213141516171819202122232425262728293031

UDN_DEMUX_COUNT_2

Appendix A Special Purpose Registers

414 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Demultiplexor Count 3 Register (UDN_DEMUX_COUNT_3)

This register contains the number of words that have been received for channel 3 of the User
Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure 13. UDN_DEMUX_COUNT_3 Register Diagram

Table A-31. UDN_DEMUX_COUNT_3 Register Bit Descriptions

Bits Name Reset Description

31:0 UDN_DEMUX
_COUNT_3

0 Count. Implements the bitfield 6:0; writes to bits 31:7 are ignored, and
these bits are read as 0.

012345678910111213141516171819202122232425262728293031

UDN_DEMUX_COUNT_3

Tile Processor User Architecture Manual 415

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

UDN Demux Control Register (UDN_DEMUX_CTL)

When written, demux state is cleared. Used after state extraction and during state restore.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Demux Current Tag (UDN_DEMUX_CURR_TAG)

This register contains the tag of current packet being dequeued. This register is valid only when
the CURR_REM field is not 0 in the UDN_DEMUX_STATUS register.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

UDN Demux Queue Select Register (UDN_DEMUX_QUEUE_SEL)

Selects demux queue to be written on UDN_DEMUX_WRITE_QUEUE.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure 14. UDN_DEMUX_QUEUE_SEL Register Diagram

Table A-32. UDN_DEMUX_QUEUE_SEL Register Bit Descriptions

Bits Name Reset Description

31:2 Reserved Reserved

1:0 UDN_DEMUX
_QUEUE_SEL

0 Selects demux queue to be written on UDN_DEMUX_WRITE_QUEUE.

012345678910111213141516171819202122232425262728293031

UDN_DEMUX_QUEUE_SEL

000000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

416 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Demux FIFO (UDN_DEMUX_WRITE_FIFO)

When this register is written to, one word of data is pushed into demux FIFO. When this register
is read, one word is read from FIFO.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Demux State (UDN_DEMUX_STATUS)

This register enables access to the demux logic state for context swapping, deadlock recovery
information, and tag changes.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure A-1: UDN_DEMUX_STATUS Register Diagram

Table A-33. UDN_DEMUX_STATUS Register Bit Descriptions

Bits Name Default Description

31:12 Reserved

11:10 RCV_FIFO_CNT Number of entries in the receive FIFO.

9 SPACE_AVAIL Space is available in the demux framing logic for at least one
word.

8 WAIT_TAG Currently waiting for tag word. State save/restore should
ignore current tag and not refill.

7:0 CURR_REM Number of words remaining in packet currently being
dequeued. When 0, no packet inflight.

012345678910111213141516171819202122232425262728293031

CURR_REM

WAIT_TAG

SPACE_AVAIL

RCV_FIFO_CNT

00000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 417

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Demux Write Queue (UDN_DEMUX_WRITE_QUEUE)

When this register is written to, one word of data is pushed into demux queue selected by
QUEUE_SEL — used to push data into queues that are in refill mode.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Words Pending (UDN_PENDING)

This register contains the number of words remaining in packet being sent into network from the
main processor.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure A-2: UDN_PENDING Register Diagram

Table A-34. UDN_PENDING Register Bit Descriptions

Bits Name Default Description

31:8 Reserved

7:0 UDN_PENDING The number of words remaining in packet being sent into net-
work from the main processor.

012345678910111213141516171819202122232425262728293031

UDN_PENDING

000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

418 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network FIFO Data (UDN_SP_FIFO_DATA)

This register provide access to the data FIFO specified by UDN_SP_FIFO_SEL. When this register is
read, it returns the top entry on the specified FIFO and removes the entry from the FIFO. When
this register is written to, it writes the specified data into the FIFO.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

User Dynamic Network FIFO Select (UDN_SP_FIFO_SEL)

This register specifies which port’s data and state will be read and written by the
UDN_SP_FIFO_DATA and UDN_SP_STATE registers. When set to 4(d), main processor FIFO may be
restored by writing to the network register. Data may be lost if left set to 4(d) and switch point is
frozen and too much data is written to egress FIFO.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure A-3: UDN_SP_FIFO_SEL Register Diagram

Table A-35. UDN_SP_FIFO_SEL Register Bit Descriptions

Bits Name Reset Description

31:3 Reserved Reserved

2:0 UDN_SP_FIFO
_SEL

0 Specifies which port’s data and state will be read and written by the UDN SP
FIFO DATA and UDN SP STATE registers. When set to 4(d), processor FIFO
may be restored by writing to the network register. Data may be lost if left set to
4(d) and switch point is frozen and too much data is written to egress FIFO. The
encodings are:
0 North
1 South
2 East
3 West
4 cORE

012345678910111213141516171819202122232425262728293031

UDN_SP_FIFO_SEL

00000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 419

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Freeze (UDN_SP_FREEZE)

This register freezes the network in preparation for context swap.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure A-4: UDN_SP_FREEZE Register Diagram

Table A-36. UDN_SP_FREEZE Register Bit Descriptions

Bits Name Default Description

31:3 Reserved

2 NON_DEST_EXT 0 When asserted, the tile will return credit to neighbors when
data is extracted from FIFOs via SPR reads. This is used for
extracting data in the protection-violation case.

1 DEMUX_FRZ 0 Freeze demux.

0 SP_FRZ 0 Freeze Switchpoint.

012345678910111213141516171819202122232425262728293031

SP_FRZ

DEMUX_FRZ

NON_DEST_EXT

00000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

420 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Port State (UDN_SP_STATE)

This register accesses the switch point state for the port specified by UDN_SP_FIFO_SEL. When
read, returns the associated port state. When written, it writes the specified data into the FIFO.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure A-5: UDN_SP_STATE Register Diagram

Table A-37. UDN_SP_STATE Register Bit Descriptions

Bits Name Default Description

31:20 Reserved

19:18 OP_CREDIT Number of credits at the output port available to send packet
words to neighbor.

17 OP_LOCKED Output port is currently locked on a given input port (mid-
packet).

16:13 OP_MUX_SEL Input port being selected for output port. Bit[0] is the default
route (South input port for North output port for example). the
remaining bits walk around compass clockwise starting from
default route, skipping output port. The core port is between
South and West for this algorithm. For the North output port,
bits are:

3 East

2 West

1 Core

0 South.

12 IP_SOP The next word to be dequeued is the route header for a new
packet.

012345678910111213141516171819202122232425262728293031

FCNT

IP_WORDS_REM

IP_EOP

IP_SOP

OP_MUX_SEL

OP_LOCKED

OP_CREDIT

000000000000

Reserved 0x0

Tile Processor User Architecture Manual 421

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Tag 0 (UDN_TAG_0)

This register contains the tag for channel 0 of the User Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Tag 1 (UDN_TAG_1)

This register contains the tag for channel 1 of the User Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Tag 2 (UDN_TAG_2)

This register contains the tag for channel 2 of the User Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

11 IP_EOP Next word to be dequeued is the last word in a packet.

10:4 IP_WORDS_REM The number of words remaining in packet being dequeued
from input port. When 0 and IP_SOP = 1, no packet is being
dequeued. When 0 and IP_SOP is 0, there are 128 words
remaining in the packet.

3:0 FCNT The number of valid entries in the associated FIFO.

Table A-37. UDN_SP_STATE Register Bit Descriptions (continued)

Bits Name Default Description

Appendix A Special Purpose Registers

422 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Tag 3 (UDN_TAG_3)

This register contains the tag for channel 3 of the User Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Tag Valid (UDN_TAG_VALID)

This register specifies which tags are valid for the User Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure A-6: UDN_TAG_VALID Register Diagram

Table A-38. UDN_TAG_VALID Register Bit Descriptions

Bits Name Default Description

31:12 Reserved

11:8 RF 0 Refill Mode

7:4 Reserved

3:0 VLD 0 Tag Valid

012345678910111213141516171819202122232425262728293031

VLD

0000

Reserved 0x0

RF

00000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 423

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Tile Coordinates (UDN_TILE_COORD)

This register contains the tile coordinates for the User Dynamic Network.

Speed

Slow

Minimum Protection Level

UDN_ACCESS

Figure A-7: UDN_TILE_COORD Register Diagram

Table A-39. UDN_TILE_COORD Register Bit Descriptions

Bits Name Reset Description

31:30 EDGE 0 Edge.

29 Reserved Reserved.

28:18 XLOC 1 X location.

17:7 YLOC 1 Y location.

6:1 Reserved Reserved

0 ROUTE_ORDER 0 For TILEPro:
0 When 0, packets are routed in the X dimension first followed by the Y

dimension.
1 When 1, the Y dimension is routed first.

012345678910111213141516171819202122232425262728293031

ROUTE_ORDER

000000

Reserved 0x0

YLOC

XLOC

0

Reserved 0x0

EDGE

Appendix A Special Purpose Registers

424 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Catch-All Data (UDN_CA_DATA)

This register contains the next word to be read from the message at the head of the Catch-all
Queue. Reading this register dequeues from the Catch-all Queue.

Speed

Fast

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Catch-all Remaining Words (UDN_CA_REM)

This register contains the number of words remaining to be read from the message at the head of
the Catch-all Queue.

Speed

Fast

Minimum Protection Level

UDN_ACCESS

Figure A-8: UDN_CA_REM Register Diagram

Table A-40. UDN_CA_REM Register Bit Descriptions

Bits Name Default Description

31:7 Reserved

6:0 UDN_CA_REM 0 This register contains the number of words remaining to be
read from the message at the head of the Catch-all Queue.
When no message is in the Catch-all Queue, this field is 0.

012345678910111213141516171819202122232425262728293031

UDN_CA_REM

0000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 425

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Catch-all Tag (UDN_CA_TAG)

This register contains the tag the message at the head of the Catch-all Queue.

Speed

Fast

Minimum Protection Level

UDN_ACCESS

User Dynamic Network Data Available (UDN_DATA_AVAIL)

This register contains bit fields that indicate that data is available on particular User Dynamic
Network demultiplexor ports.

Speed

Fast

Minimum Protection Level

UDN_ACCESS

Figure A-9: UDN_DATA_AVAIL Register Diagram

Table A-41. UDN_DATA_AVAIL Register Bit Descriptions

Bits Name Default Description

31:5 Reserved

4 AVAIL_CA 0 Data is available to be read on UDN catch-all queue.

3 AVAIL_3 0 Data is available to be read on UDN demultiplexor port 3.

2 AVAIL_2 0 Data is available to be read on UDN demultiplexor port 2.

1 AVAIL_1 0 Data is available to be read on UDN demultiplexor port 1.

0 AVAIL_0 0 Data is available to be read on UDN demultiplexor port 0.

012345678910111213141516171819202122232425262728293031

AVAIL_0

AVAIL_1

AVAIL_2

AVAIL_3

AVAIL_CA

000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

426 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Refill Available Enable (UDN_REFILL_EN)

This register controls whether or not a particular UDN input port signals the UDN refill interrupt
when data is available.

Speed

Slow

Minimum Protection Level

UDN_REFILL

Figure A-10: UDN_REFILL_EN Register Diagram

Table A-42. UDN_REFILL_EN Register Bit Descriptions

Bits Name Default Description

31:4 Reserved

3 EN_3 0 Enable UDN 3 Refill Interrupt

2 EN_2 0 Enable UDN 2 Refill Interrupt

1 EN_1 0 Enable UDN 1 Refill Interrupt

0 EN_0 0 Enable UDN 0 Refill Interrupt

012345678910111213141516171819202122232425262728293031

EN_0

EN_1

EN_2

EN_3

0000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 427

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Remaining (UDN_REMAINING)

This register controls how many words remain to be written until the UDN complete interrupt is
signaled.

Speed

Slow

Minimum Protection Level

UDN_COMPLETE

Figure A-11: UDN_REMAINING Register Diagram

Table A-43. UDN_REMAINING Register Bit Descriptions

Bits Name Default Description

31:8 Reserved

7:0 WORDS 0 Number of words left to be written

012345678910111213141516171819202122232425262728293031

WORDS

000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

428 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Available Enables (UDN_AVAIL_EN)

This register controls whether or not a particular UDN input port signals the UDN available inter-
rupt when data is available.

Speed

Slow

Minimum Protection Level

UDN_AVAIL

Figure A-12: UDN_AVAIL_EN Register Diagram

Table A-44. UDN_AVAIL_EN Register Bit Descriptions

Bits Name Default Description

31:4 Reserved

3 EN_3 Enable UDN 3 Available Interrupt

2 EN_2 Enable UDN 2 Available Interrupt

1 EN_1 Enable UDN 1 Available Interrupt

0 EN_0 Enable UDN 0 Available Interrupt

012345678910111213141516171819202122232425262728293031

EN_0

EN_1

EN_2

EN_3

0000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 429

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

User Dynamic Network Deadlock Counter (UDN_DEADLOCK_COUNT)

This register is used to save/restore current state of deadlock down-counter.

Speed

Slow

Minimum Protection Level

UDN_TIMER

Figure A-13: UDN_DEADLOCK_COUNT Register Diagram

Table A-45. UDN_DEADLOCK_COUNT Register Bit Descriptions

Bits Name Default Description

31:16 Reserved

15:0 UDN_DEADLOCK_COUNT 0 UDN deadlock count

012345678910111213141516171819202122232425262728293031

UDN_DEADLOCK_COUNT

0000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

430 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

User Dynamic Network Deadlock Timeout (UDN_DEADLOCK_TIMEOUT)

This register provides the number of 16-cycle intervals to wait before asserting the deadlock inter-
rupt when data is stalled in the demux logic’s dequeueing buffer.

Speed

Slow

Minimum Protection Level

UDN_TIMER

Figure A-14: UDN_DEADLOCK_TIMEOUT Register Diagram

Table A-46. UDN_DEADLOCK_TIMEOUT Register Bit Descriptions

Bits Name Default Description

31:16 Reserved

15:0 UDN_DEADLOCK
_TIMEOUT

0 UDN Deadlock Timeout

012345678910111213141516171819202122232425262728293031

UDN_DEADLOCK_TIMEOUT

0000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 431

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Cycle Counter High (CYCLE_HIGH)

This register contains the top 32 bits of the 64 bit cycle counter. The cycle counter is incremented
every machine cycle.

Speed

Slow

MPL

WORLD_ACCESS

Figure A-15: CYCLE_HIGH Register Diagram

Cycle Counter Low (CYCLE_LOW)

This register contains the bottom 32 bits of the 64 bit cycle counter. The cycle counter is incre-
mented every machine cycle.

Speed

Slow

MPL

WORLD_ACCESS

Figure A-16: CYCLE_LOW Register Diagram

012345678910111213141516171819202122232425262728293031

CYCLE_HIGH

012345678910111213141516171819202122232425262728293031

CYCLE_LOW

Appendix A Special Purpose Registers

432 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Done Magic Register (DONE)

A magic register that is used to signal completion information to the test system. PASS/FAIL/
DONE share a 32-bit storage element.

Speed

Slow

MPL

WORLD_ACCESS

Figure A-17: DONE Register Diagram

Fail Magic Register (FAIL)

A magic register that is used to signal failure information to the test system. PASS/FAIL/DONE
share a 32-bit storage element.

Speed

Slow

MPL

WORLD_ACCESS

Figure A-18: FAIL Register Diagram

012345678910111213141516171819202122232425262728293031

DONE

012345678910111213141516171819202122232425262728293031

FAIL

Tile Processor User Architecture Manual 433

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Interrupt Critical Section (INTERRUPT_CRITICAL_SECTION)

This register specifies whether or not the main processor is in an interrupt critical section. This
register is used by interrupts and iret instructions.

Speed

Slow

MPL

WORLD_ACCESS

Figure A-19: INTERRUPT_CRITICAL_SECTION Register Diagram

Pass Magic Register (PASS)

A magic register that is used to pass information to the test system. PASS/FAIL/DONE share a
32-bit storage element.

Speed

Slow

MPL

WORLD_ACCESS

Figure A-20: PASS Register Diagram

012345678910111213141516171819202122232425262728293031

ICS

0000000000000000000000000000000

Reserved 0x0

012345678910111213141516171819202122232425262728293031

PASS

Appendix A Special Purpose Registers

434 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Exceptional Context Protection Level 0 Entry 0 (EX_CONTEXT_0_0)

This register specifies the first part of the exceptional context for protection level 0. This register is
used by interrupts and iret instructions.

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-21: EX_CONTEXT_0_0 Register Diagram

Table A-47. EX_CONTEXT_0_0 Register Bit Descriptions

Bits Name Default Description

31:0 PC 0 The program counter for the context that was interrupted.

012345678910111213141516171819202122232425262728293031

PC

Tile Processor User Architecture Manual 435

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Exceptional Context Protection Level 0 Entry 1 (EX_CONTEXT_0_1)

This register specifies the second part of the exceptional context for protection level 0. This regis-
ter is used by interrupts and iret instructions.

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-22: EX_CONTEXT_0_1 Register Diagram

Table A-48. EX_CONTEXT_0_1 Register Bit Descriptions

Bits Name Default Description

31:3 Reserved 0 Reserved

2 ICS 0 Interrupt Critical Section. This bit indicates if the interrupted
context is in an interrupt critical section.

1:0 PL 0 Protection Level. This field provides the protection level for
the context that was interrupted.

012345678910111213141516171819202122232425262728293031

PL

ICS

00000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

436 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Interrupt Control 0 Status (INTCTRL_N_STATUS)

This register is used to specify the interrupt control 0 interrupt.

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-23: INTCTRL_0_STATUS Register Diagram

Table A-49. INTCTRL_0_STATUS Register Bit Descriptions

Bits Name Default Description

31:1 Reserved 0 Reserved

0 INTCTRL_N_STATUS 0 This field specifies the interrupt control N interrupt.

012345678910111213141516171819202122232425262728293031

INTCTRL_0_STATUS

0000000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 437

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Interrupt Mask Protection Level 0 Entry 0 (INTERRUPT_MASK_0_0)

This register is used to mask (disable) interrupts. A value of 1 in a bit position masks the interrupt
and a value of 0 enables the interrupt. This register specifies the interrupt mask for interrupts 0
through 31 (see Table 8-11 on page 386 for the mapping of interrupt numbers).

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-24: INTERRUPT_MASK_0_0 Register Diagram

Table A-50. INTERRUPT_MASK_0_0 Register Bit Descriptions

Bits Name Default Description

31 MASK_31 1 A value of 1 disables the IDN_AVAIL interrupt.

30 MASK_30 1 A value of 1 disables the UDN_CA interrupt.

012345678910111213141516171819202122232425262728293031

0

Reserved 0x0

MASK_1

00000

Reserved 0x0

MASK_7

MASK_8

MASK_9

MASK_10

0000000

Reserved 0x0

MASK_18

MASK_19

MASK_20

MASK_21

MASK_22

MASK_23

MASK_24

MASK_25

MASK_26

MASK_27

MASK_28

MASK_29

MASK_30

MASK_31

Appendix A Special Purpose Registers

438 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

29 MASK_29 1 A value of 1 disables the IDN_CA interrupt.

28 MASK_28 1 A value of 1 disables the DMA_NOTIFY interrupt.

27 MASK_27 1 A value of 1 disables the UDN_TIMER interrupt.

26 MASK_26 1 A value of 1 disables the IDN_TIMER interrupt.

25 MASK_25 1 A value of 1 disables the TILE_TIMER interrupt.

24 MASK_24 1 A value of 1 disables the UDN_FIREWALL interrupt.

23 MASK_23 1 A value of 1 disables the IDN_FIREWALL interrupt.

22 MASK_22 1 A value of 1 disables the SN_FIREWALL interrupt.

21 MASK_21 1 Reserved

20 MASK_20 1 Reserved

19 MASK_19 1 A value of 1 disables the DMATLB_ACCESS interrupt.

18 MASK_18 1 A value of 1 disables the DMATLB_MISS interrupt.

17:11 Reserved 0 Reserved

10 MASK_10 1 A value of 1 disables the UDN_COMPLETE interrupt.

9 MASK_9 1 A value of 1 disables the IDN_COMPLETE interrupt.

8 MASK_8 1 A value of 1 disables the UDN_REFILL interrupt.

7 MASK_7 1 A value of 1 disables the IDN_REFILL interrupt.

6:2 Reserved 0 Reserved

1 MASK_1 1 A value of 1 disables the MEM_ERROR interrupt.

0 Reserved 0 Reserved

Table A-50. INTERRUPT_MASK_0_0 Register Bit Descriptions (continued)

Bits Name Default Description

Tile Processor User Architecture Manual 439

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Interrupt Mask Protection Level 0 Entry 1 (INTERRUPT_MASK_0_1)

This register is used to mask (disable) interrupts. A value of 1 in a bit position masks the interrupt
and a value of 0 enables the interrupt. This register specifies the interrupt mask for interrupts 32
through 37 (see Table 8-11 on page 386 for the mapping of interrupt numbers).

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-25: INTERRUPT_MASK_0_1 Register Diagram

Table A-51. INTERRUPT_MASK_0_1 Register Bit Descriptions

Bits Name Reset Description

31:6 Reserved Reserved

31:17 Reserved 0 Reserved

16 MASK_48 1 Added in TILEPro: A value of 1 disables the
AUX_PERF_COUNT interrupt.

15 MASK_47 1 Added in TILEPro: A value of 1 disables the
SN_STATIC_ACCESS interrupt.

15:6 Reserved Reserved

5 MASK_37 1 A value of 1 disables the INTCTRL_0 interrupt.

4 MASK_36 1 A value of 1 disables the INTCTRL_1 interrupt.

3 MASK_35 1 A value of 1 disables the INTCTRL_2 interrupt.

2 MASK_34 1 A value of 1 disables the INTCTRL_3 interrupt.

1 MASK_33 1 A value of 1 disables the PERF_COUNT interrupt.

0 MASK_32 1 A value of 1 disables the UDN_AVAIL interrupt.

012345678910111213141516171819202122232425262728293031

MASK_32

MASK_33

MASK_34

MASK_35

MASK_36

MASK_37

0000000000

Reserved 0x0

MASK_48

000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

440 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Interrupt Mask Protection Level 0 Entry 0 (INTERRUPT_MASK_RESET_0)

This register is used to clear bits in the interrupt mask. Writing a value of 1 to a bit position resets
the interrupt mask for that position. Writing a value of 0 to a bit position has no effect. This regis-
ter clears the interrupt mask for interrupts 0 through 31 (see Table 8-11 on page 386 for the
mapping of interrupt numbers).

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-26: INTERRUPT_MASK_RESET_0 Register Diagram

Table A-52. INTERRUPT_MASK_RESET_0 Register Bit Descriptions

Bits Name Default Description

31 MASK_31 1 A value of 1 enables the IDN_AVAIL interrupt.

012345678910111213141516171819202122232425262728293031

0

Reserved 0x0

MASK_1

00000

Reserved 0x0

MASK_7

MASK_8

MASK_9

MASK_10

0000000

Reserved 0x0

MASK_18

MASK_19

MASK_20

MASK_21

MASK_22

MASK_23

MASK_24

MASK_25

MASK_26

MASK_27

MASK_28

MASK_29

MASK_30

MASK_31

Tile Processor User Architecture Manual 441

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

30 MASK_30 1 A value of 1 enables the UDN_CA interrupt.

29 MASK_29 1 A value of 1 enables the IDN_CA interrupt.

28 MASK_28 1 A value of 1 enables the DMA_NOTIFY interrupt.

27 MASK_27 1 A value of 1 enables the UDN_TIMER interrupt.

26 MASK_26 1 A value of 1 enables the IDN_TIMER interrupt.

25 MASK_25 1 A value of 1 enables the TILE_TIMER interrupt.

24 MASK_24 1 A value of 1 enables the UDN_FIREWALL interrupt.

23 MASK_23 1 A value of 1 enables the IDN_FIREWALL interrupt.

22 MASK_22 1 A value of 1 enables the SN_FIREWALL interrupt.

21 MASK_21 1 Reserved

20 MASK_20 1 Reserved

19 MASK_19 1 A value of 1 enables the DMATLB_ACCESS interrupt.

18 MASK_18 1 A value of 1 enables the DMATLB_MISS interrupt.

17:11 Reserved 0 Reserved

10 MASK_10 1 A value of 1 enables the UDN_COMPLETE interrupt.

9 MASK_9 1 A value of 1 enables the IDN_COMPLETE interrupt.

8 MASK_8 1 A value of 1 enables the UDN_REFILL interrupt.

7 MASK_7 1 A value of 1 enables the IDN_REFILL interrupt.

6:2 Reserved 0 Reserved

1 MASK_1 1 A value of 1 enables the MEM_ERROR interrupt.

0 Reserved 0 Reserved

Table A-52. INTERRUPT_MASK_RESET_0 Register Bit Descriptions (continued)

Bits Name Default Description

Appendix A Special Purpose Registers

442 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Interrupt Mask Protection Level 0 Entry 1 (INTERRUPT_MASK_RESET_0_1)

This register is used to clear bits in the interrupt mask. Writing a value of 1 to a bit position resets
the interrupt mask for that position. Writing a value of 0 to a bit position has no effect. This regis-
ter clears the interrupt mask for interrupts 32 through 37 (see Table 8-11 on page 386 for the
mapping of interrupt numbers).

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-27: INTERRUPT_MASK_RESET_0_1 Register Diagram

Table A-53. INTERRUPT_MASK_RESET_0_1 Register Bit Descriptions

Bits Name Reset Description

31:17 Reserved Reserved

16 MASK_48 1 Added in TILEPro: A value of 1 enables the
AUX_PERF_COUNT interrupt.

15 MASK_47 1 Added in TILEPro: A value of 1 enables the
SN_STATIC_ACCESS interrupt.

15:6 Reserved Reserved

5 MASK_37 1 A value of 1 enables the INTCTRL_0 interrupt.

4 MASK_36 1 A value of 1 enables the INTCTRL_1 interrupt.

3 MASK_35 1 A value of 1 enables the INTCTRL_2 interrupt.

2 MASK_34 1 A value of 1 enables the INTCTRL_3 interrupt.

1 MASK_33 1 A value of 1 enables the PERF_COUNT interrupt.

0 MASK_32 1 A value of 1 enables the UDN_AVAIL interrupt.

012345678910111213141516171819202122232425262728293031

MASK_32

MASK_33

MASK_34

MASK_35

MASK_36

MASK_37

0000000000

Reserved 0x0

MASK_48

000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 443

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Interrupt Mask Protection Level 0 Entry 0 (INTERRUPT_MASK_SET_0_0)

This register is used to set bits in the interrupt mask. Writing a value of 1 to a bit position sets the
interrupt mask for that position. Writing a value of 0 to a bit position has no effect. This register
sets the interrupt mask for interrupts 0 through 31 (see Table 8-11 on page 386 for the mapping of
interrupt numbers).

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-28: INTERRUPT_MASK_SET_0_0 Register Diagram

Table A-54. INTERRUPT_MASK_SET_0_0 Register Bit Descriptions

Bits Name Default Description

31 MASK_31 1 A value of 1 disables the IDN_AVAIL interrupt.

012345678910111213141516171819202122232425262728293031

0

Reserved 0x0

MASK_1

00000

Reserved 0x0

MASK_7

MASK_8

MASK_9

MASK_10

0000000

Reserved 0x0

MASK_18

MASK_19

MASK_20

MASK_21

MASK_22

MASK_23

MASK_24

MASK_25

MASK_26

MASK_27

MASK_28

MASK_29

MASK_30

MASK_31

Appendix A Special Purpose Registers

444 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

30 MASK_30 1 A value of 1 disables the UDN_CA interrupt.

29 MASK_29 1 A value of 1 disables the IDN_CA interrupt.

28 MASK_28 1 A value of 1 disables the DMA_NOTIFY interrupt.

27 MASK_27 1 A value of 1 disables the UDN_TIMER interrupt.

26 MASK_26 1 A value of 1 disables the IDN_TIMER interrupt.

25 MASK_25 1 A value of 1 disables the TILE_TIMER interrupt.

24 MASK_24 1 A value of 1 disables the UDN_FIREWALL interrupt.

23 MASK_23 1 A value of 1 disables the IDN_FIREWALL interrupt.

22 MASK_22 1 A value of 1 disables the SN_FIREWALL interrupt.

21 MASK_21 1 Reserved

20 MASK_20 1 Reserved

19 MASK_19 1 A value of 1 disables the DMATLB_ACCESS interrupt.

18 MASK_18 1 A value of 1 disables the DMATLB_MISS interrupt.

17:11 Reserved 0 Reserved

10 MASK_10 1 A value of 1 disables the UDN_COMPLETE interrupt.

9 MASK_9 1 A value of 1 disables the IDN_COMPLETE interrupt.

8 MASK_8 1 A value of 1 disables the UDN_REFILL interrupt.

7 MASK_7 1 A value of 1 disables the IDN_REFILL interrupt.

6:2 Reserved 0 Reserved

1 MASK_1 1 A value of 1 disables the MEM_ERROR interrupt.

0 Reserved 0 Reserved

Table A-54. INTERRUPT_MASK_SET_0_0 Register Bit Descriptions (continued)

Bits Name Default Description

Tile Processor User Architecture Manual 445

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Interrupt Mask Protection Level 0 Entry 1 (INTERRUPT_MASK_SET_0_1)

This register is used to set bits in the interrupt mask. Writing a value of 1 to a bit position sets the
interrupt mask for that position. Writing a value of 0 to a bit position has no effect. This register
sets the interrupt mask for interrupts 32 through 37 (see Table 8-11 on page 386 for the mapping
of interrupt numbers).

Speed

Slow

Minimum Protection Level

INTCTRL_0

Figure A-29: INTERRUPT_MASK_SET_0_1 Register Diagram

Table A-55. INTERRUPT_MASK_SET_0_1 Register Bit Descriptions

Bits Name Reset Description

31:17 Reserved Reserved

16 MASK_48 1 Added in TILEPro: A value of 1 disables the AUX_PERF_COUNT interrupt.

15 MASK_47 1 Added in TILEPro: A value of 1 disables the SN_STATIC_ACCESS interrupt.

15:6 Reserved Reserved

5 MASK_37 1 A value of 1 disables the INTCTRL_0 interrupt.

4 MASK_36 1 A value of 1 disables the INTCTRL_1 interrupt.

3 MASK_35 1 A value of 1 disables the INTCTRL_2 interrupt.

2 MASK_34 1 A value of 1 disables the INTCTRL_3 interrupt.

1 MASK_33 1 A value of 1 disables the UDN_AVAIL interrupt.

0 MASK_32 1 A value of 1 disables the UDN_AVAIL interrupt.

012345678910111213141516171819202122232425262728293031

MASK_32

MASK_33

MASK_34

MASK_35

MASK_36

MASK_37

0000000000

Reserved 0x0

MASK_48

000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

446 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

System Save Register Level 0 Entry 0 (SYSTEM_SAVE_0_0)

This register is used to save system state during interrupt critical sections.

Speed

Fast

Minimum Protection Level

INTCTRL_0

System Save Register Level 0 Entry 1 (SYSTEM_SAVE_0_1)

This register is used to save system state during interrupt critical sections.

Speed

Fast

Minimum Protection Level

INTCTRL_0

System Save Register Level 0 Entry 2 (SYSTEM_SAVE_0_2)

This register is used to save system state during interrupt critical sections.

Speed

Fast

Minimum Protection Level

INTCTRL_0

System Save Register Level 0 Entry 3 (SYSTEM_SAVE_0_3)

This register is used to save system state during interrupt critical sections.

Speed

Fast

Minimum Protection Level

INTCTRL_0

Tile Processor User Architecture Manual 447

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

Minimum Protection Level for Tile Timer (MPL_TILE_TIMER)

This register specifies the minimum protection level needed to access the tile timer administra-
tively. This register also serves as the protection level that handles tile timer interrupts.

Speed

Slow

Minimum Protection Level

TILE_TIMER

Figure 2. MPL_TILE_TIMER Register Diagram

Table A-56. MPL_TILE_TIMER Register Bit Descriptions

Bits Name Reset Description

31:2 Reserved Reserved

1:0 MPL 0 Minimum Protection Level

012345678910111213141516171819202122232425262728293031

MPL

000000000000000000000000000000

Reserved 0x0

Appendix A Special Purpose Registers

448 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

DMA Byte (DMA_BYTE) Register

This register specifies the number of chunks that a DMA operation will transfer, as well as the
number of bytes that will be transferred in the first chunk.

Speed

 Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-1: DMA_BYTE Register Diagram

Table A-57. DMA_BYTE Register Bit Descriptions

Bits Name Default Description

31:20 CHUNK_NUMBER 0 Number of chunks to be transferred. The first chunk will con-
tain the number of bytes specified in the SIZE field of this reg-
ister; the remaining chunks, if this field is greater than 1, will
contain the number of bytes specified by the CHUNK_SIZE
register.

 19:0 SIZE 0 Number of bytes to be transferred in the first chunk. For multi-
chunk transfers, this should be less than or equal to the value
in the CHUNK_SIZE register.

012345678910111213141516171819202122232425262728293031

SIZE

CHUNK_NUMBER

Tile Processor User Architecture Manual 449

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

DMA Chunk Size (DMA_CHUNK_SIZE) Register

This register specifies the DMA chunk size in bytes. It need not be set for an operation if only one
chunk is to be transferred.

Speed

 Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-2: DMA_CHUNK_SIZE Register Diagram

Table A-58. DMA_CHUNK_SIZE Register Bit Descriptions

Bits Name Default Description

31:20 Reserved 0

19:0 DMA_CHUNK_SIZE 0 This register specifies the DMA chunk size in bytes. It need
not be set for an operation if only one chunk is to be trans-
ferred.

012345678910111213141516171819202122232425262728293031

DMA_CHUNK_SIZE

000000000000

Reserved 0x0

Appendix A Special Purpose Registers

450 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

DMA Control (DMA_CTR) Register

This register controls the DMA engine. To perform a DMA request, the DMA transfer description
registers (DMA_BYTE, DMA_CHUNK_SIZE, DMA_DST_ADDR, DMA_DST_CHUNK_ADDR, DMA_SRC_ADDR,
DMA_SRC_CHUNK_ADDR, and DMA_STRIDE) are set appropriately, and then the REQUEST bit in this
register is set. To context-switch the DMA engine, the SUSPEND bit in this register is set; then, once
the BUSY bit in the DMA_USER_STATUS register has cleared, the transfer description registers are
read and their contents saved. At a later time, those values may be re-loaded into the correspond-
ing registers and the DMA engine restarted by writing the REQUEST bit; the transfer will then
continue from when it was suspended.

Speed

Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-3: DMA_CTR Register Diagram

Table A-59. DMA_CTR Register Bit Descriptions

Bits Name Reset Description

31:2 Reserved 0

1 SUSPEND 0 1 When set to 1, suspends the currently active DMA
operation; this has no effect if no DMA operation is
currently in progress. The DMA operation has not
been suspended until the BUSY bit in the STATUS
register has cleared.

0 REQUEST 0 1 When set to 1, starts a new DMA operation; this has
no effect if a DMA operation is currently in progress.

012345678910111213141516171819202122232425262728293031

REQUEST

SUSPEND

000000000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 451

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

DMA Destination Address (DMA_DST_ADDR) Register

This register holds the address of the first byte to be written when the next DMA operation is
started; this will normally be identical to the DST_CHUNK_ADDR register unless the DMA engine is
being restarted after partially transferring a chunk.

Speed

 Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-4: DMA_DST_ADDR Register Diagram

Table A-60. DMA_DST_ADDR Register Bit Descriptions

Bits Name Default Description

31:0 DMA_DST_ADDR 0 Address

012345678910111213141516171819202122232425262728293031

DMA_DST_ADDR

Appendix A Special Purpose Registers

452 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

DMA Destination Chunk Address (DMA_DST_CHUNK_ADDR) Register

This register holds the address of the first byte in the first destination chunk for the next DMA
operation. This may not be the first byte to be written, depending on the contents of the DST_ADDR
register.

Speed

 Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-5: DMA_DST_CHUNK_ADDR Register Diagram

Table A-61. DMA_DST_CHUNK_ADDR Register Bit Descriptions

Bits Name Reset Description

31:0 DMA_DST_CHUNK_ADDR 0 Address of the first byte in the first destination chunk for the
next DMA operation.

012345678910111213141516171819202122232425262728293031

DMA_DST_CHUNK_ADDR

Tile Processor User Architecture Manual 453

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

DMA Source Address (DMA_SRC_ADDR) Register

This register holds the address of the first byte to be read when the next DMA operation is
started; this will normally be identical to the SRC_CHUNK_ADDR register unless the DMA engine is
being restarted after partially transferring a chunk.

Speed

Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-6: DMA_SRC_ADDR Register Diagram

Table A-62. DMA_SRC_ADDR Register Bit Descriptions

Bits Name Reset Description

31:0 DMA_SRC_ADDR 0 Address of the first byte to be read when the next DMA opera-
tion is started.

012345678910111213141516171819202122232425262728293031

DMA_SRC_ADDR

Appendix A Special Purpose Registers

454 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

DMA Source Chunk Address (DMA_SRC_CHUNK_ADDR) Register

This register holds the address of the first byte in the first source chunk for the next DMA opera-
tion. This may not be the first byte to be read, depending on the contents of the SRC_ADDR register.

Speed

 Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-7: DMA_SRC_CHUNK_ADDR Register Diagram

Table A-63. DMA_SRC_CHUNK_ADDR Register Bit Descriptions

Bits Name Reset Description

31:0 DMA_SRC_CHUNK_ADDR 0 Address of the first byte in the first source chunk for the next
DMA operation.

012345678910111213141516171819202122232425262728293031

DMA_SRC_CHUNK_ADDR

Tile Processor User Architecture Manual 455

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

DMA Source And Destination Strides (DMA_STRIDE) Register

This register specifies the DMA source and destination strides. A stride is the distance between
the first byte of successive chunks within one DMA operation; if only one chunk is transferred,
the stride is irrelevant.

Speed

Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-8: DMA_STRIDE Register Diagram

Table A-64. DMA_STRIDE Register Bit Descriptions

Bits Name Default Description

31:16 STORE 0 Store (destination) stride in bytes.

 15:0 LOAD 0 Load (source) stride in bytes.

012345678910111213141516171819202122232425262728293031

LOAD

STORE

Appendix A Special Purpose Registers

456 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

DMA User Status (DMA_USER_STATUS) Register

This register can be accessed by programs running at the DMA_NOTIFY PL; this is expected to be
lower than the DMATLB_MISS PL.

Speed

Fast

Minimum Protection Level

DMA_NOTIFY

Figure A-9: DMA_USER_STATUS Register Diagram

Table A-65. DMA_USER_STATUS Register Bit Descriptions

Bits Name Reset Description

31:7 Reserved 0 Reserved

6 ERROR 0 Status only.
1 This bit is set when the DMA engine encounters an internal
 error. This bit is cleared when a write to DMA_CTR starts a new
 transfer.

5 Reserved Reserved

4 RUNNING 0 Status only.
1 If this bit is set, the last transfer started on the DMA engine has
 not been suspended via the SUSPEND bit in DMA_CTR. This
 bit is set when a write to DMA_CTR starts a new transfer; it is
 cleared when a write to DMA_CTR suspends an active
 transfer; it is not cleared in the event of a TLB miss, access
 violation, error, or normal DMA completion. This bit is used to
 determine whether the DMA engine should be restarted when
 exiting the DMATLB miss handler; it is suggested that the
 engine only be restarted if this bit is set.

3:2 Reserved 0

012345678910111213141516171819202122232425262728293031

DONE

BUSY

00

Reserved 0x0

RUNNING

0

Reserved 0x0

ERROR

0000000000000000000000000

Reserved 0x0

Tile Processor User Architecture Manual 457

Tilera Confidential — Subject to Change Without Notice

SPR Register Descriptions

1 BUSY 0 Busy bit. Status only.
1 If this bit is set, the DMA engine is active, and the contents of
 the DMA transfer description registers are undefined. If this bit
 is clear, and the engine has been paused due to the

SUSPEND bit being set in the DM_ CTR register, or due to a
TLB miss or access violation, then the DONE bit will be clear,
and the DMA transfer description registers may be inspected
to determine the state of the engine at the time of the
suspension.

0 If this bit is 0, and the engine completed the last DMA request,
the DONE bit will be set, and the content of the DMA transfer
description registers are undefined.

0 DONE 0 Done bit
1 This bit is set when a DMA transfer completes. It is cleared

when a write to DMA CTR starts a new transfer; it may also be
cleared by writing a 1 to it whenever the BUSY bit is 0.
While this bit is set, the DMA_NOTIFY interrupt is asserted.

Table A-65. DMA_USER_STATUS Register Bit Descriptions (continued)

Bits Name Reset Description

Appendix A Special Purpose Registers

458 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

Tile Processor User Architecture Manual 459

Tilera Confidential — Subject to Change Without Notice

G GLOSSARY

Term Definition

CPLD Complex PLD. A programmable logic device (PLD) that is made up of several
simple PLDs (SPLDs) with a programmable switching matrix in between the logic
blocks. CPLDs typically use EEPROM, flash memory or SRAM to hold the logic
design interconnections.

DDC™ Dynamic Distributed Cache. A system for accelerating multicore coherent cache
subsystem performance. Based on the concept of a distributed L3 cache, a por-
tion of which exists on each tile and is accessible to other tiles through the iMesh.
A TLB directory structure exists on each tile — eliminating bottlenecks of central-
ized coherency management — mapping the locations of pages among the other
tiles.

Dynamic Network A network where the path of each message is determined at each switch point.
The path of each message may be different, based on the contents of the mes-
sage. This is in contrast to the static network, which has a statically specified
route at each switch point, and every data follows an identical route.

ECC Error-Correcting Code. A type of memory that corrects errors on the fly.

host port interfaces (HPIs) A 16-bit-wide parallel port through which a host processor can directly access the
CPU’s memory space. The host device functions as a master to the interface,
which increases ease of access. The host and CPU can exchange information
via internal or external memory. The host also has direct access to mem-
ory-mapped peripherals. Connectivity to the CPU's memory space is provided
through the DMA controller.

Hypervisor services Provided to support two basic operations: install a new page table (performed on
context switch), and flush the TLB (performed after invalidating or changing a
page table entry). On a page fault, the client receives an interrupt, and is respon-
sible for taking appropriate action (such as making the necessary data available
via appropriate changes to the page table, or terminating a user program which
has used an invalid address).

Little-endian byte ordering More significant bytes are numbered with a higher byte address or byte number
than less significant bytes (LSBs).

MPI Message Passing Interface. MPI is a library specification for message-passing,
proposed as a standard by a broadly based committee of vendors, implementors,
and users.

MPL Minimum Protection Level. Each interrupt has a minimum protection level at
which it may be processed. Interrupts which are signalled by a protection level
less than the MPL are processed at the MPL protection level. Interrupts which
are signalled at a protection level higher than the MPL are processed at the
higher protection level. The MPL for a given interrupt is typically determined by
system software.

Multicore Development
Environment™ (MDE™)

Multicore programming environment.

Glossary

460 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

RAW Dependence Read-after-Write dependence, or true dependence. RAW dependencies arise
when a read operation on a location follows in program order a write operation to
the same location. The read operation must receive the value from the most
recent write operation, and must wait for the write operation to complete if the
processor executes the operations simultaneously or out of order.

SIMD Single Instruction Multiple Data. An architecture that allows a single instruction to
apply to multiple sets of data. In the Tile Processor™, SIMD instructions allow a
single instruction to operate on registers containing four bytes or two halfwords.

SPI-SROM Serial Flash with serial peripheral interface.

Static Network A network where the routing for a given input port is specified statically. Each
data on an input port will be sent to the same output port. This is in contrast to a
dynamic network, where each message on an input port may be routed to a dif-
ferent output port.

UART (Universal Asynchronous Receiver Transmitter). The electronic circuit that
makes up the serial port. Also known as “universal serial asynchronous receiver
transmitter” (USART), it converts parallel bytes from the CPU into serial bits for
transmission, and vice versa. It generates and strips the start and stop bits
appended to each character.

VLIW architecture VLIW (Very Long Instruction Word). A microprocessor design technology. A chip
with VLIW technology is capable of executing many operations within one clock
cycle. Essentially, a compiler reduces program instructions into basic operations
that the processor can perform simultaneously. The operations are put into a very
long instruction word that the processor then takes apart and passes the opera-
tions off to the appropriate devices.

WAR Dependence Write-after-Read dependence, or anti-dependence. WAR dependencies arise
when a write operation on a location follows in program order a read operation to
the same location. The read operation must not receive the value from the follow-
ing write operation, so the write operation must wait for all previous read opera-
tions to complete if the processor executes the operations simultaneously or out
of order.

WAW Dependence Write-after-Write dependence or output dependence. WAW dependencies arise
when a write operation on a location follows in program order a write operation to
the same location. The final write operation must be the value in the location
after both operations are completed, so the second write operation must wait for
all previous write operations to complete, or the earlier write operations must be
ignored if the processor executes the operations simultaneously or out of order.

wormhole routing A network where the routing is determined by the header of a packet, and where
once the header of a packet has traversed a switch point, the routing will not be
changed until the last packet word has traversed the switch.

Term Definition

Tile Processor User Architecture Manual 461

Tilera Confidential — Subject to Change Without Notice

I INDEX

A
about this manual 1
absolute difference half words 232
absolute difference unsigned bytes 231
ack frame conventions 359
add 44

bytes saturating unsigned 222
half words 224

saturating 226
immediate

bytes 228
half words 229
word 46

in X0 bit descriptions 44
long immediate

static write word 49
word 48

upper long immediate word 52
word 44

saturating 50
addbs_u 222
addh 224
addhs 226
addi 46
addib 228
addih 229
addli 48, 359
addlis 49, 359
adds 50
adiffb_u 231
adiffh 232
ALIGNED_INSTRUCTION_MASK 31
and 122

immediate word 124
word 122

andi 124, 359
API 361
Application Programmer Interface

 See API
architectural no operation 216
arithmetic instructions 43
arithmetic shift

right half words 334
arithmetic shift right

bytes 332
immediate bytes 336

immediate half words 338
immediate word 154
word 152

atomic instructions 362
auli 52, 359
average

byte unsigned 233
half words 234

avgb_u 233
avgh 234

B
backtrace library 359
BACKWARD_OFFSET 31
bbns 96
bbnst 97
bbs 98
bbst 99
bgez 100
bgezt 101
bgz 102
bgzt 103
bit exchange word 64
bit manipulation instructions 63
bitx 64
blez 104
blezt 105
blz 106
blzt 107
bnz 108
bnzt 109
bpt 359
branch

greater than
zero predict taken word 103

greater than or equal to
zero predict taken word 101
zero word 100

greater than zero word 102
less than

zero taken word 107
less than or equal to

zero taken word 105
zero word 104

less than zero word 106
not zero

Index

462 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

predict taken word 109
word 108

zero predict taken word 111
zero word 110

branch bit
not set taken word 97
not set word 96
set taken word 99
set word 98

Branch Target Buffer 16
branchHintedCorrect 33
branchHintedIncorrect 33
BUSY bit 457
byte

defined 11
byte and bit order 2
byte exchange word 66
BYTE_16_ADDR_MASK 31
BYTE_MASK 0xFF 31
BYTE_SIZE_8 31
BYTE_SIZE_LOG_2 31
bytex 66
bz 110
bzt 111

C
cache architecture 362
cache engine 6, 7
cache microarchitecture 363
cache misses 362, 364
cache subsystems 363
cache-coherent shared memory 362
clz 68
Coherence Dynamic Network (CDN) 373
coherent I/O 366
compare instructions 76
conditional transfer operations 17
constants 30
control instructions 95
conventions 2
count

leading zeros word 68
trailing zeros word 72

CRC32 32-bit step 70
crc32 8 71
CRC32 8-bit step 71
crc32_32 70
ctz 72
cycle counter high (CYCLE_HIGH) 431
cycle counter low (CYCLE_LOW) 431
CYCLE_HIGH register 431
CYCLE_LOW register 431
CYCLEHIGH SPRs 389
CYCLEHIGHMODIFY SPRs 390
CYCLELOW SPRs 389
CYCLELOWMODIFY SPRs 390

D
data flow control 382
data TLB probe 184
data writes

flushes 368
test-and-set 368

DDC 459
DDR-2 10
deadlock 378
deadlocks 375
definitions and semantics 30
demultiplex queue 15
demultiplexing (demux) hardware 377
demux 377
demux queue 15
destination register 364
destination register operands 17
Direct Memory Access

 See DMA
Direct Memory Access, See DMA
direct-to-cache I/O 366
distributed coherent cached shared memory 364
DMA 366

registers 367
DMA Chunk Size register, See DMA_CHUNK_SIZE
DMA Control register, See DMA_CTR
DMA Destination Address register, See DMA_DST_ADDR
DMA Destination Chunk Address register, See

DMA_DST_CHUNK_ADDR
DMA Source Address register, See DMA_SRC_ADDR
DMA Source And Destination Strides register, See

DMA_STRIDE
DMA Source Chunk Address register, See

DMA_SRC_CHUNK_ADD
DMA User Status register, See DMA_USER_STATUS
DMA_CHUNK_SIZE 449
DMA_CTR 450
DMA_DST_ADDR 451
DMA_DST_CHUNK_ADDR 452
DMA_SRC_ADDR 453
DMA_SRC_CHUNK_ADD 454
DMA_STRIDE 455
DMA_USER_STATUS 456
DONE bit 457
done magic register (DONE) 432
DONE register 432
double word

defined 11
double word align 74
drain 34, 348
drain instruction 348
dtlbpr 184
dtlbProbe 34
dword_align 74
Dynamic Distributed Cache 459

Tile Processor User Architecture Manual 463

Tilera Confidential — Subject to Change Without Notice

Index

E
end-to-end flow control 10
EX_CONTEXT_SIZE 31
EX_CONTEXT_SPRF_OFFSET 31
EX0 17
EX1 17
exclusive or immediate word 162
exclusive or word 160
execute stages 17
Execute0 16
Execute1 16
execution pipelines 16

F
FAIL register 432
Fetch 16
filler no operation 214
finv 185
flits 374
flow control 374
flush 186
flush and invalidate cache line 185
flush cache line 186
flushAndInvalidataCacheLine 33
flushCacheLine 33
flushes 368
fnop 34, 214
functions 32

G
general purpose register (GPR) 385
general purpose registers 14, 389
getCurrentPC 33
getCurrentProtectionLevel 33
getHighHalfWordUnsigned 34
getLowHalfWordUnsigned 34
GPR 385

H
half word

defined 11
HALF_WORD_ADDR_MASK 31
HALF_WORD_SIZE_16 30
hardwall 378

protection 382
host port interfaces

 see HPIs
HPI 459

interface 10
HPIs

defined 459

I
I/O devices

interaction with 389
I/O Dynamic Network (IDN) 373
I/O interface 10

illustrated 10
icoh 349
iCoherent 34
IDN 378
idn0 register 14
idn1 register 14
ill 350, 359
illegal instruction 350
illegalInstruction 34
iMesh

described 10
implementation dependence 4
indirectBranchHintedCorrect 34
indirectBranchHintedIncorrect 34
info 359
INFO operations 359
infol 359
Input/Output Dynamic Network (IDN) 8, 378
instruction formats

X 20
X0 24
X1 21
Y 26
Y0 29
Y1 28
Y2 27

instruction organization and format 19
instruction set architecture 19
Instruction Set Architecture See ISA
instruction stream coherence 349
INSTRUCTION_SIZE_64 31
INSTRUCTION_SIZE_LOG_2 6 31
instructions 347

arithmetic 43
bit manipulation 63
compare 76
control 95
logical 121
master list of main processor instructions 35
memory maintenance 183
multiply 190
NOP 214
SIMD 218

INTCTRL_0 interrupt 445
INTCTRL_1 interrupt 445
INTCTRL_2 interrupt 445
INTCTRL_3 interrupt 445
interaction with I/O devices 389
interleave

high byte 235
high half words 237
low byte 239
low half words 241

interrupt
return 351
signaling DMA transfer complete 367

interrupt service routing

Index

464 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

 See ISR
INTERRUPT_MASK_EX_CONTEXT_OFFSET 31
INTERRUPTCRITICALSECTION SPR 388, 389
interrupts

list 386
overview 386
user-level 389

inter-tile memory mapped communication 8
inthb 235
inthh 237
intlb 239
intlh 241
intrinsics 359
inv 187
invalidataCacheLine 33
invalidate cache line 187
IO Dynamic Network (IDN) 9
iret 351
ISA 19, 391
ISR 378

J
j 359
jal 359
jalb 112
jalf 113
jalr 114
jalrp 115
jb 116
jf 117
jrp 118, 119
jump

and link
backward 112
forward 113
register 114
register predict 115

backward 116
forward 117
register predict 118, 119

L
L1 instruction and data caches 362
L2 cache 362
L2 cache subsystem 364
L2 writebacks 364
lb 164
lb_u 165, 359
lbadd 166
lbadd_u 167
less significant bytes (LSBs) 2
lh 168
lh_u 169
lhadd 170
lhadd_u 171
link 120
link width 374

LINK_REGISTER 55 31
lnk 120
load

byte 164
unsigned 165
unsigned and add 167

half word 168
and add 170
unsigned 169

and add 171
word 172

and add 174
no alignment trap 173
no alignment trap and add 175

load byte and add 166
loads and stores 364
logical instructions 121
logical shift

left
immediate bytes 292
immediate word 146
word 144

right
bytes 296
immediate half words 302
immediate word 150
word 148

lr register 14
lw 172
lw_na 173
lwadd 174
lwadd_na 175

M
mask

not zero
byte 259
half words 261
word 128

zero
byte 263
half words 265
word 132

masked merge word 126
maxb_u 243
maxh 245
maxib_u 247
maxih 249
maximum

byte unsigned 243
half words 245
immediate byte unsigned 247
immediate half words 249

memory
distributed coherent cached shared memory 364
fence (MF) 369
instructions 163

Tile Processor User Architecture Manual 465

Tilera Confidential — Subject to Change Without Notice

Index

maintenance instructions 183
memory consistency model 368
Memory Dynamic Network (MDN) 373
memory fence 188
memory fences (MF) 362
Memory Networks 373
memory networks 374
memoryFence 34
memoryReadByte 32
memoryReadHalfWord 32
memoryReadWord 32
memoryWriteByte 33
memoryWriteHalfWord 33
memoryWriteWord 33
Messaging Networks 373
messaging networks 375
mf 188
mf instruction 348
mfspr 352
minb_u 251
minh 253
minib_u 255
minih 257
minimum

byte unsigned 251
half words 253
immediate byte unsigned 255
immediate half words 257

Minimum Protection Level for Tile Timer, See
MPL_TILE_TIMER

mm 126
mnz 128
mnzb 259
mnzh 261
move 359

from special purpose register word 352
not zero word 130
to special purpose register word 353
zero word 131

Move From Special Purpose Register (MFSPR) 391
Move To Special Purpose Register Word (MTSPR) 391
movei 359
moveli 359
movelis 359
MPI

defined 459
MPL

defined 459
MPL_TILE_TIMER 447
mtspr 353
MulAdd operations 17
mulhh_ss 191
mulhh_su 192
mulhh_uu 193
mulhha_ss 194
mulhha_su 195
mulhha_uu 196

mulhhsa_uu 197
mulhl_ss 198
mulhl_su 199
mulhl_us 200
mulhl_uu 201
mulhla_ss 202
mulhla_su 203
mulhla_us 204
mulhla_uu 205
mulhlsa_uu 206
mulll_ss 207
mulll_su 208
mulll_uu 209
mullla_ss 210
mullla_su 211
mullla_uu 212
mulllsa_uu 213
multicasting 382
multiply

accumulate
high signed high signed half word 194
high signed high unsigned half word 195
high signed low signed half word 202
high signed low unsigned half word 203
high unsigned high unsigned half word 196
high unsigned low signed half word 204
high unsigned low unsigned half word 205
low signed low signed half word 210
low signed low unsigned half word 211
low unsigned low unsigned half word 212

high signed
high signed half Word 191
high unsigned half word 192
low signed half word 198
low unsigned half word 199

high unsigned
high unsigned half word 193
low signed half word 200
low unsigned half word 201

low signed
low signed half word 207
low unsigned half word 208

low unsigned
low unsigned half word 209

shift accumulate
high unsigned high unsigned half word 197
high unsigned low unsigned half word 206
low unsigned low unsigned half word 213

multiply instructions 190
mvnz 130
mvz 131
mz 132
mzb 263
mzh 265

N
nap 34, 354

Index

466 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

network
properties 373

nop 34, 216
NOP instructions 214
nor 134
nor word 134
NUMBER_OF_REGISTERS_64 31
numbering 3

O
opcodes 359
or 136, 359

immediate word 138
word 136

ori 138, 359

P
P0 16
P1 16
P2 16
pack

half words saturating 267, 271
high byte 269
low byte 273

packbs_u 267
packed byte format 11
packed half word format 11
packet format 376
packet sizes 374
packets 374
packhb 269
packhs 271
packlb 273
PC_EX_CONTEXT_OFFSET 31
pcnt 75
pipeline 16

latencies 17
pipelines 6
popReturnStack 34
population count word 75
port designations 401
prefetch 359
prefetch_L1 359
processing engine

pipeline 16
processor engine 6
Program Counter (PC) 16
protection

hardwall 382
PROTECTION_LEVEL_EX_CONTEXT_OFFSET 31
pseudo instructions 359
pushReturnStack 34

R
r0-r53 register 14
RAW dependence

defined 460

read-after-write (RAW) dependencies 13
refill mode 417
register mapping 375
RegisterFile 16
RegisterFile (RF) 16
RegisterFileEntry 32
REQUEST bit 450
reserved fields 3
rl 140
rli 142
rotate

left immediate word 142
left word 140

round-robin output port arbitration 374
route header 376
routing 374
routing the packet 376

S
s1a 53
s2a 55
s3a 57
sadab_u 275
sadah 276
sadah_u 277
sadb_u 278
sadh 279
sadh_u 280
sb 176
sbadd 177
scratchpad memory 362
seq 77
seqb 281
seqh 283
seqi 79
set

equal
immediate word 79
to byte 281
word 77

less than
immediate word 89
or equal

unsigned word 87
word 85

unsigned immediate word 91
unsigned word 83
word 81

not equal
word 93

Set Equal To Half Words 283
Set Less Than Unsigned Byte 306
setInterruptCriticalSection 33
setNextPC 33
setProtectionLevel 33
sh 178
shadd

Tile Processor User Architecture Manual 467

Tilera Confidential — Subject to Change Without Notice

Index

store
half word and add 179

shift
left

one add word 53
three add word 57
two add word 55

shl 144
shli 146
shlib 292
shr 148
shrb 296
shri 150
shrih 302
SignedMachineWord 32
signExtend1 32
signExtend16 32
signExtend17 32
signExtend8 32
SIMD instructions 11, 218
slt 81
slt_u 83
sltb_u 306
slte 85
slte_u 87
slti 89
slti_u 91
sn register 14
SN_DATA_AVAIL 383, 402
SN_STATIC_CTL 403
SN_STATIC_DATA_AVAIL 409
SN_STATIC_FIFO_DATA 404
SN_STATIC_FIFO_SEL 405
SN_STATIC_ISTATE 406
SN_STATIC_OSTATE 407
SNCTL 383
sne 93
SNFIFO 383
SNFIFO_DATA 383, 397
SNFIFO_SEL 383, 398
SNISTATE 383, 399
SNOSTATE 383, 400
SNSTATIC 383, 401
software interrupt 0 355
software interrupt 1 356
software interrupt 2 357
software interrupt 3 358
softwareInterrupt 34
sp register 14
Special Purpose Register File

 See SPRF
special purpose registers

 See SPR
Special Purpose Registers, See SPRs
specifying

input port to which to route output 381, 401
SPI 10

SPI-SROM 460
SPR 367, 381

fields 381
SPRF 391
SPRs 376, 383

address information 391
listed by access MPL 391
register descriptions 396
use of 16
user-accessible 383

sra 152
srab 332
srah 334
srai 154
sraib 336
sraih 338
state machine 10
static network 381

processor program counter 383
static network (STN) 8
Static Network Control register

 See SN_STATIC_CTL
Static Network Data Available register

 See SN_STATIC_DATA_AVAIL
Static Network Data Available register, See

SN_DATA_AVAIL
Static Network FIFO Data register

 See SN_STATIC_FIFO_DATA
Static Network Fifo Data register, See SNFIFO_DATA
Static Network FIFO Select register

 See SN_STATIC_FIFO_SEL
Static Network Fifo Select register, See SNFIFO_SEL
Static Network Input State register

 See SN_STATIC_ISTATE
Static Network Input State register, See SNISTATE
Static Network Output State register

 See SN_STATIC_OSTATE
Static Network Output State register, See SNOSTATE
Static Network Static Route register, See SNSTATIC
static routing 381
store

byte 176
byte and add 177
half word 178
word 180
word and add 181

striped memory 366
sub 59
subb 340
subbs_u 342
subh 344
subhs 345
subs 61
subtract

bytes 340
saturating unsigned 342

half words 344

Index

468 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

saturating 345
word 59

saturating 61
sum

of absolute difference
accumulate half words 276
accumulate unsigned bytes 275
accumulate unsigned half words 277
half words 279
unsigned bytes 278
unsigned half words 280

supported memory modes 361, 362
SUSPEND bit 450
sw 180
swadd 181
swint0 355
swint1 356
swint2 357
swint3 358
switch engine 6, 8
switches 373
switchpoint 376
system 347
system calls 385
system instructions 347

T
table index byte 0 156
table index byte 1 157
table index byte 2 158
table index byte 3 159
tag 376
tag word 376
target of a jump 359
tblidxb0 156
tblidxb1 157
tblidxb2 158
tblidxb3 159
test and set word 182
test-and-set (TNS) instruction 369
test-and-set data writes 368
tile

defined 6
Tile Dynamic Network (TDN) 373
tile fabric 376
timing 374
TLB 1
tns 182
Translation Lookaside Buffers

 See TLB
Translation Lookaside Buffers (TLBs) 8, 367
two-wire interface 10
types 32

U
UART 10, 460
UDN

hardwall mechanism 379
interlocked 375
packet format,illustrated 376

UDN Available Enables register, See UDN_AVAIL_EN
UDN Catch-All Data register, See UDN_CA_DATA
UDN Catch-all Remaining Words register, See

UDN_CA_REM
UDN Catch-all Tag register, See UDN_CA_TAG
UDN Data Available register, See UDN_DATA_AVAIL
UDN Deadlock Counter, See UDN_DEADLOCK_COUNT
UDN Deadlock Timeout register, See

UDN_DEADLOCK_TIMEOUT
UDN Demultiplexor Count 1 register, See

UDN_DEMUX_COUNT_1
UDN Demultiplexor Count 2 register, See

UDN_DEMUX_COUNT_2
UDN Demux Control register, See UDN_DEMUX_CTL
UDN Demux Current Tag register, See

UDN_DEMUX_CURR_TAG
UDN Demux FIFO register, See

UDN_DEMUX_WRITE_FIFO
UDN Demux Queue Select register, See

UDN_DEMUX_QUEUE_SEL
UDN Demux Write Queue register, See

UDN_DEMUX_WRITE_QUEUE
UDN FIFO Data register, See UDN_SP_FIFO_DATA
UDN FIFO Select register, See UDN_SP_FIFO_SEL
UDN Freeze register, See UDN_SP_FREEZE
UDN packet

description 376
UDN Port State register, See UDN_SP_STATE
UDN Refill Available Enables, See UDN_REFILL
UDN Remaining register, See UDN_REMAINING
UDN switch point 378
UDN Tag 0 register, See UDN_TAG_0
UDN Tag 1 register, See UDN_TAG_1
UDN Tag 2 register, See UDN_TAG_2
UDN Tag 3 register, See UDN_TAG_3
UDN Tile Coordinates register, See UDN_TILE_COORD
UDN Words Pending register, See UDN_PENDING
UDN_AVAIL interrupt 445
UDN_AVAIL_EN 378, 428
UDN_CA 378
UDN_CA_DATA 424
UDN_CA_REM 377, 424
UDN_CA_TAG 425
UDN_DATA_AVAIL 378, 425, 426
UDN_DEADLOCK_COUNT 429
UDN_DEADLOCK_TIMEOUT 430
UDN_DEADLOCK_TIMEOUT register 430
UDN_DEMUX_COUNT_0 411
UDN_DEMUX_COUNT_1 412
UDN_DEMUX_COUNT_2 413
UDN_DEMUX_COUNT_3 414
UDN_DEMUX_COUNT_n 378
UDN_DEMUX_CTL 415
UDN_DEMUX_CURR_TAG 415

Tile Processor User Architecture Manual 469

Tilera Confidential — Subject to Change Without Notice

Index

UDN_DEMUX_QUEUE_SEL 415
UDN_DEMUX_WRITE_FIFO 416
UDN_DEMUX_WRITE_QUEUE 417
UDN_PENDING 417
UDN_REFILL 426
UDN_REMAINING 427
UDN_SP_FIFO_DATA 418
UDN_SP_FIFO_SEL 418
UDN_SP_FREEZE 419
UDN_SP_STATE 420
UDN_TAG_0 421
UDN_TAG_1 421
UDN_TAG_2 421
UDN_TAG_3 422
UDN_TAG_n 377
UDN_TILE_COORD 423
udn0 register 14
udn1 register 14
udn2 register 14
udn3 register 14
UnsignedMachineWord 32
User Dynamic Network (UDN) 8, 373
User Dynamic Network Demultiplexor Count 0 register, See

UDN_DEMUX_COUNT_0
User Dynamic Network Demultiplexor Count 3 register, See

UDN_DEMUX_COUNT_3
user-accessible special purpose registers 383
user-accessible SPRs 383
user-level interrupts 389
user-level processes 9

V
variable length payload 376
Very Long Instruction Word

 See VLIW
 See VLIW processor

VLIW 6, 13
VLIW architecture

defined 460

W
WAR dependence

defined 460
WAW dependence

defined 460
WB 16, 17
wh64 189
what’s new In this manual 1
word

defined 11
WORD_ADDR_MASK 0xFFFFfffc 30
WORD_MASK 0xFFFFffff 30
WORD_SIZE 32 30
wormhole

routing, defined 460
write

hint 64 bytes 189
write-after-write (WAW) semantics 13
WriteBack

 see WB

X
X instruction formats 20
X,Y coordinates

of the target 376
X0 instruction formats 24
X1 instruction formats 21
xor 160
xori 162

Y
Y instruction formats 26
Y0 instruction formats 29
Y1 instruction formats 28
Y2 instruction formats 27

Z
zero register 14
ZERO_REGISTER 63 31

Index

470 Tile Processor User Architecture Manual

Tilera Confidential — Subject to Change Without Notice

	Tile Processor User Architecture Manual
	Contents
	1 User Architecture Introduction
	1.1 Introduction to the Tile Processor Architecture
	1.2 About this Manual
	1.3 What’s New In This Manual
	1.4 Conventions
	1.4.1 Byte and Bit Order
	1.4.2 Reserved Fields
	1.4.3 Numbering

	1.5 Implementation Dependence

	2 Basic Architecture
	2.1 Architectural Overview
	2.1.1 Tile Architecture
	2.1.1.1 Processor Engine
	2.1.1.2 Cache Engine
	2.1.1.3 Switch Engine

	2.1.2 I/O Devices
	2.1.3 iMesh

	2.2 Data Types
	2.3 Addressing

	3 Processor Engine Architecture
	3.1 VLIW Nature of the Processor Engine
	3.2 Atomicity of Bundles
	3.3 Register Set
	3.4 Program Counter
	3.5 Special Purpose Registers
	3.6 TILE64 and TILEPro Processing Engine Pipeline
	3.6.1 Fetch
	3.6.2 RegisterFile (RF)
	3.6.3 Execute Stages (EX0, EX1)
	3.6.4 WriteBack (WB)
	3.6.5 Pipeline Latencies

	4 Processor Engine Instruction Set
	4.1 Overview
	4.1 Instruction Set Architecture
	4.1.1 Instruction Organization and Format
	4.1.1.1 X Instruction Formats
	4.1.1.2 Y Instruction Formats

	4.1.2 Definitions and Semantics
	4.1.2.1 Constants
	4.1.2.2 Types
	4.1.2.3 Functions

	4.1.3 Master List of Main Processor Instructions
	4.1.4 Arithmetic Instructions
	4.1.5 Bit Manipulation Instructions
	4.1.6 Compare Instructions
	4.1.7 Control Instructions
	4.1.8 Logical Instructions
	4.1.9 Memory Instructions
	4.1.10 Memory Maintenance Instructions
	4.1.11 Multiply Instructions
	4.1.12 NOP Instructions
	4.1.13 SIMD Instructions
	4.1.14 System Instructions
	4.1.15 Pseudo Instructions

	5 Memory and Cache Architecture
	5.1 Memory Architecture
	5.2 Cache Architecture
	5.2.1 Overview
	5.2.2 Cache Microarchitecture
	5.2.2.1 Dynamic Distributed Cached Shared Memory
	5.2.2.2 Coherent and Direct-to-Cache I/O
	5.2.2.3 Striped Memory

	5.2.3 Direct Memory Access

	5.3 Memory Consistency Model

	6 On-Chip Network Architecture
	6.1 Overview
	6.2 Network Properties
	6.2.1 Switches
	6.2.2 Packets
	6.2.3 Routing
	6.2.4 Flow Control
	6.2.5 Fairness and Arbitration
	6.2.6 Timing
	6.2.7 Link Width

	6.3 Memory Networks
	6.3.1 Packet Sizes
	6.3.2 Deadlock

	6.4 Messaging Networks
	6.4.1 Register Mapping
	6.4.2 Packet Format
	6.4.3 Demux
	6.4.4 Deadlock
	6.4.5 Hardwall

	7 Static Network
	7.1 Overview
	7.2 Static Routing
	7.3 Data Flow Control
	7.4 Hardwall Protection
	7.5 User-Accessible Special Purpose Registers

	8 User-level System Concerns
	8.1 Overview
	8.2 System Calls
	8.3 Interrupt Overview
	8.3.1 Interrupt List

	8.4 User-Level Interrupts
	8.5 Interaction with I/O Devices
	8.6 Cycle Count

	Appendix A Special Purpose Registers
	A.1 Introduction
	A.2 SPR Register Descriptions

	G Glossary
	I Index

