
TriCoreTM

TriCore TM  TC1.6.2  core a rchitecture ma nua l
32-bit  microcontroller

Core architecture
Volume 1 (of  2)

About this document

Scope and purpose
The TriCore™ Architecture manual describes the Core Architecture and Instruction Set for Infineon Technologies
TriCore microcontroller architecture. TriCore is a unified, 32-bit microcontroller-DSP, single-core architecture
optimized for real-time embedded systems.
This document has been written for system developers and programmers, and hardware and software engineers.
• Volume 1 (this volume) provides a detailed description of the Core Architecture and system interaction.
• Volume 2 gives a complete description of the TriCore Instruction Set including optional extensions for the

Memory Management Unit (MMU) and Floating Point Unit (FPU).
It is important to note that this document describes the TriCore architecture, not an implementation. An
implementation may have features and resources which are not part of the Core Architecture. The product
documentation for that implementation will describe all implementation specific features.
When working with a specific TriCore based product always refer to the appropriate supporting documentation.

TriCore versions
There have been several versions of the TriCore Architecture implemented in production devices.
• This document is specific to the version(s) identified on the cover page.
• Information specific to a particular version of the architecture only, will be labelled as such.

Additional Documentation
For the latest documentation and additional TriCore information, please visit the TriCore home page at:
http://www.infineon.com/TriCore
The following additional documents are also available for download from the TriCore Architecture and Core
section:
TriCore™ DSP Optimization Guide
TriCore™ EABI (Embedded ABI) User’s Manual
TriCore™ Compiler Writer’s Guide
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Text Conventions

This document uses the following text conventions:
• The default radix is decimal.

– Hexadecimal constants are suffixed with a subscript letter ‘H’, as in: FFCH.
– Binary constants are suffixed with a subscript letter ‘B’, as in: 111B.

• Register reset values are not generally architecturally defined, but require setting on startup in a given
implementation of the architecture. Only those reset values that are architecturally defined are shown in this
document. Where no value is shown, the reset value is not defined. Refer to the documentation for a specific
TriCore implementation.

• Bit field and bits in registers are in general referenced as ‘Register name.Bit field’, for example PSW.IS. The
Interrupt Stack Control bit of the PSW register.

• Units are abbreviated as follows:
– MHz = Megahertz.
– kBaud, kBit = 1000 characters/bits per second.
– MBaud, MBit = 1,000,000 characters per second.
– KByte = 1024 bytes.
– MByte = 1048576 bytes of memory.
– GByte = 1,024 megabytes.

• Data format quantities referenced are as follows:
– Byte = 8-bit quantity.
– Half-word = 16-bit quantity.
– Word = 32-bit quantity.
– Double-word = 64-bit quantity.

• Pins using negative logic are indicated by an overbar: BRKOUT.
In tables where register bit fields are defined, the conventions shown below are used in this document.

Table 1 Bit Type Abbreviations
Abbreviation Description
r Read-only. The bit or bit field can only be read.

w Write-only. The bit or bit field can only be written.

rw The bit or bit field can be read and written.

h The bit or bit field can be modified by hardware (such as a status bit). ‘h’ can be combined
with ‘rw’ or ‘r’ bits to form ‘rwh’ or ‘rh’ bits.

- Reserved Field. Read value is undefined, must be written with 0.

Note: In register layout tables, a ‘Reserved Field’ is indicated with ‘RES’ in the Field column and ‘-’ in the Type
column.

User Manual (Volume 1) 1-2 V1.2.2
2020-01-15



 
TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Table of Contents

About this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

1 Architecture Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1.1 Feature Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.2 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.1 Architectural Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
1.2.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.2.3 Memory Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.2.4 Addressing Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.3 Tasks and Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.4 Interrupt System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.4.1 Interrupt Priority  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.5 Trap System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.6 Protection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.7 Memory Management Unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.8 Core Debug Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
1.9 TriCore Coprocessor Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

2 Programming Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
2.1 Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.1 Boolean  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.2 Bit String  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.3 Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.4 Signed Fraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.5 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1.6 Signed and Unsigned Integers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.1.7 IEEE-754 Single-Precision Floating-Point Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.2 Data Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
2.2.1 Alignment Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.2.2 Byte Ordering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.3 Memory Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.4 Semaphores and Atomic Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.5 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
2.5.1 Absolute Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.5.2 Base + Offset Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.5.3 Pre-Increment and Pre-Decrement Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.5.4 Post-Increment and Post-Decrement Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
2.5.5 Circular Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
2.5.6 Bit-Reverse Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-11
2.5.7 Synthesized Addressing Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12

3 General Purpose and System Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1
3.1 General Purpose Registers (GPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.2 Program State Information Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3.3 Stack Management Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10
3.4 Compatibility Mode Register (COMPAT)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17
3.5 Access Control Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18

User Manual (Volume 1) 2-3 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

3.6 Interrupt Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18
3.7 Memory Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18
3.8 Trap Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18
3.9 Memory Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-19
3.10 Core Debug Controller Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-19
3.11 Floating Point Registers   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-19
3.12 Accessing Core Special Function Registers (CSFRs)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-19

4 Tasks and Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-1
4.1 Context Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1.1 Context Save Area  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.2 Task Switching Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
4.3 Context Save Areas (CSAs) and Context Lists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4.4 Context Switching with Interrupts and Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4.5 Context Switching for Function Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4.6 Fast Function Calls with FCALL/FRET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4.7 Context Save and Restore Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4.7.1 Context Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
4.7.2 Context Restore  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
4.8 Context Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-11
4.8.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-12
4.8.2 Free CSA List Limit Pointer Register (LCX)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-14
4.9 Accessing CSA Memory Locations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-15
4.10 Context Save Area Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-15

5 Interrupt System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-1
5.1 General Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.1 ICU Interrupt Control Register (ICR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.2 CPU operation on an interrupt request  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1.3 Entering an Interrupt Service Routine (ISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.2 Exiting an Interrupt Service Routine (ISR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.3 Interrupt Vector Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
5.4 Using the TriCore Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
5.4.1 Spanning Interrupt Service Routines across Vector Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
5.4.2 Interrupt Priority Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
5.4.3 Dividing ISRs into Different Priorities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
5.4.4 Using Different Priorities for the Same Interrupt Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
5.4.5 Interrupt Control Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

6 Trap System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-1
6.1 Trap Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.1.1 Synchronous Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.1.2 Asynchronous Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.1.3 Hardware Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
6.1.4 Software Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
6.1.5 Unrecoverable Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
6.2 Trap Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.2.1 Trap Vector Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.2.2 Accessing the Trap Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.2.3 Return Address (RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.2.4 Trap Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
6.2.5 Initial State upon a Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5

User Manual (Volume 1) 2-4 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

6.3 Trap Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
6.3.1 MMU Traps (Trap Class 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
6.3.2 Internal Protection Traps (Trap Class 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
6.3.3 Instruction Errors (Trap Class 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
6.3.4 Context Management (Trap Class 3)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
6.3.5 System Bus and Peripheral Errors (Trap Class 4)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-10
6.3.6 Assertion Traps (Trap Class 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-11
6.3.7 System Call (Trap Class 6)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-11
6.3.8 Non-Maskable Interrupt (Trap Class 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-11
6.3.9 Debug Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-12
6.4 Exception Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-12
6.5 Trap Control Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-14

7 Memory Integrity Error Mitigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-1
7.1 Memory Integrity Error Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.2 Memory Integrity Error Traps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.2.1 Program Memory Integrity Error (PIE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.2.2 Data Memory Integrity Error (DIE)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
7.3 Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
7.3.1 Error Information Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6

8 Address Map and Memory Configuration.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-1
8.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
8.2 Scratchpad RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3 Address Segments and Memory Access Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3.1 Memory Access Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3.1.1 Cached memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3.1.2 Non-cached Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
8.3.1.3 Peripheral Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
8.3.2 Speculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
8.3.3 Cacheability of Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
8.3.4 Default Memory types for all segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
8.4 Memory Configuration Register Definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
8.4.1 Programmable Memory Access Register-0 (PMA0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
8.4.2 Programmable Memory Access Register1 (PMA1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5
8.4.3 Programmable Memory Access Register2 (PMA2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
8.4.4 Program Memory Configuration Registers (PCON0, PCON1, PCON2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6
8.4.5 Data Memory Configuration Registers (DCON0, DCON1, DCON2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8

9 Floating Point Unit (FPU)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-1
9.1 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
9.2 IEEE-754 Compliance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
9.2.1 IEEE-754 Single Precision Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
9.2.2 Denormal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
9.2.3 NaNs (Not a Number)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
9.2.4 Underflow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
9.2.5 Fused MACs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
9.2.6 Traps   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
9.2.7 Software Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
9.3 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
9.3.1 Round to Nearest: Even  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6

User Manual (Volume 1) 2-5 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

9.3.2 Round to Nearest: Denormals and Zero Substitution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
9.3.3 Round Towards ± ∞: Denormals and Zero Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
9.4 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7
9.5 Asynchronous Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-10
9.6 FPU CSFR Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-11

10 Memory Protection System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-1
10.1 Memory Protection Subsystems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-1
10.2 Range Based Memory Protection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-2
10.2.1 Access Permissions for Intersecting Memory Ranges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-3
10.2.2 Crossing Protection Boundaries   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-4
10.3 Using the Range Based Memory Protection System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-5
10.3.1 Protection Enable Bit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-5
10.3.2 Set Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-5
10.3.3 Address Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-5
10.3.4 Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-6
10.3.5 Protection Register Naming Convention  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-6
10.3.6 Protection Set Enable Register Naming Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-6
10.4 Range Based Memory Protection Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-7

11 Temporal Protection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-1
11.1 Temporal protection Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-1
11.2 Exception Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-1
11.3 Temporal Protection System Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-2

12 Core Debug Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-1
12.1 Run Control Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-1
12.2 Debug Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-3
12.2.1 External Debug Event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-3
12.2.2 Debug Instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-3
12.2.3 MTCR and MFCR Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-3
12.2.4 Trigger Event Unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-4
12.3 Debug Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-5
12.3.1 Combining Debug Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-5
12.3.2 Task Specific Debug Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-5
12.3.3 Accumulated Debug Trigger Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-5
12.4 Debug Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6
12.4.1 Update Debug Status Register (DBGSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6
12.4.2 Indicate on Core Break-Out Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6
12.4.3 Indicate on Core Suspend-Out Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6
12.4.4 Halt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6
12.4.5 Breakpoint Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-7
12.4.6 Breakpoint Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-8
12.4.7 Suspend Out  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-9
12.4.8 Performance Counter Start/Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-9
12.4.9 None  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-9
12.4.10 Disabled  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-10
12.4.11 Suspend In Halt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-10
12.5 Priority of Debug Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-10
12.6 Call Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-11
12.7 The Debug Control Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-11
12.8 Debug Control Registers - Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-12

User Manual (Volume 1) 2-6 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

12.9 Debug Control Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-13
12.10 Core Performance Measurement and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-29
12.11  Performance Counter Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-31

13 Core Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-1

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-7

Register index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2

User Manual (Volume 1) 2-7 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Architecture Overview

1 Architecture Overview
This chapter gives an overview of the TriCore™ architecture.

1.1 Introduction
TriCore is the first unified, single-core, 32-bit microcontroller-DSP architecture optimized for real-time
embedded systems. The TriCore Instruction Set Architecture (ISA) combines the real-time capability of a
microcontroller, the computational power of a DSP, and the high performance/price features of a RISC load/store
architecture, in a compact re-programmable core.

Bit-field, Bit-logical MAC, Saturated Math,
Min/Max Comparison DSP Addressing Modes,
Branch SIMD Packed Arithmetic

Floating
Point

Load/StoreArithmetic, Logic ArithmeticAddress Arithmetic Branch& Comparison,
MCA05096Load/Store, Context Switch

Figure 1 TriCore Architecture Overview

The ISA supports a uniform, 32-bit address space, with optional virtual addressing and memory-mapped I/O. The
architecture allows for a wide range of implementations, ranging from scalar through to superscalar, and is
capable of interacting with different system architectures, including multiprocessing. This flexibility at the
implementation and system levels allows for different trade-offs between performance and cost at any point in
time.
The architecture supports both 16-bit and 32-bit instruction formats. All instructions have a 32-bit format. The 16-
bit instructions are a subset of the 32-bit instructions, chosen because of their frequency of use. These
instructions significantly reduce code space, lowering memory requirements, system and power consumption.
Real-time responsiveness is largely determined by interrupt latency and context-switch time. The high-
performance architecture minimizes interrupt latency by avoiding long multi-cycle instructions and by providing
a flexible hardware-supported interrupt scheme. The architecture also supports fast-context switching.

1.1.1 Feature Summary
The key features of the TriCore Instruction Set Architecture (ISA) are:
• 32-bit architecture
• 4 GBytes of address space
• 16-bit and 32-bit instructions for reduced code size
• Most instructions executed in one cycle
• Branch instructions (using branch prediction)
• Low interrupt latency with fast automatic context switch using wide pathway to on-chip memory
• Dedicated interface to application-specific coprocessors to allow the addition of customised instructions
• Zero overhead loop capabilities
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• Dual, single-clock-cycle, 16x16-bit multiply-accumulate unit (with optional saturation)
• Optional Floating-Point Unit (FPU) and Memory Management Unit (MMU)
• Extensive bit handling capabilities
• Single Instruction Multiple Data (SIMD) packed data operations (2x16-bit or 4x 8-bit operands)
• Flexible interrupt prioritization scheme
• Byte and bit addressing
• Little-endian byte ordering for data memory and CPU registers
• Memory protection
• Debug support

1.2 Programming Model
This section covers aspects of the architecture that are visible to software:
• Architectural Registers Page 2
• Data Types Page 3
• Memory Model Page 3
• Addressing Modes Page 3
The Programming Model is described in detail in the chapter “Programming Model” on Page 1.

1.2.1 Architectural Registers
The architectural registers consist of:
• 32 General Purpose Registers (GPRs)
• Program Counter (PC)
• Two 32-bit registers containing status flags, previous execution information and protection information (PCXI

- Previous Context Information register, and PSW -Program Status Word)

Figure 2 Architectural Registers
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The PCXI, PSW and PC registers are crucial to the procedure for storing and restoring a task’s context.
The 32 General Purpose Registers (GPRs) are divided into sixteen 32-bit data registers (D[0] through D[15]) and
sixteen 32-bit address registers (A[0] through A[15]).
Four of the General Purpose Registers (GPRs) also have special functions:
• D[15] is used as an Implicit Data register
• A[10] is the Stack Pointer (SP) register
• A[11] is the Return Address (RA) register
• A[15] is the Implicit Address register
Registers [0H - 7H] are referred to as the ‘lower registers’ and registers [8H - FH] are called the ‘upper registers’.
Registers A[0], A[1], A[8], and A[9] are defined as system global registers. These are not included in either the
upper or lower context (see “Tasks and Functions” on Page 1) and are not saved and restored across calls or
interrupts. They are normally used by the operating system to reduce system overhead“Run Control Features”
on Page 1.
In addition to the General Purpose Registers (GPRs), the core registers are composed of a certain number of Core
Special Function Registers (CSFRs). See “General Purpose and System Registers” on Page 1.

1.2.2 Data Types
The instruction set supports operations on:
• Boolean
• Bit String
• Byte
• Signed Fraction
• Address
• Signed / Unsigned Integer
• IEEE-754 Single-Precision Floating-Point
Most instructions work on a specific data type, while others are useful for manipulating several data types.

1.2.3 Memory Model
The architecture can access up to 4 GBytes (address width is 32-bits) of unified program and I/O memory.
The address space is divided into 16 regions or segments [0H - FH], each of 256 MBytes. The upper four bits of an
address select the specific segment.

1.2.4 Addressing Modes
Addressing modes allow load and store instructions to efficiently access simple data elements within data
structures such as records, randomly and sequentially accessed arrays, stacks and circular buffers.
The TriCore architecture supports seven addressing modes. The simple data elements are 8-bits, 16-bits, 32-bits
and 64-bits wide.
These addressing modes support efficient compilation of C/C++ programs, easy access to peripheral registers
and efficient implementation of typical DSP data structures (circular buffers for filters and bit-reversed indexing
for Fast Fourier Transformations).
Addressing modes which are not directly supported in the hardware can be synthesized through short instruction
sequences.
For more information see “Synthesized Addressing Modes” on Page 12.
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1.3 Tasks and Contexts
A task is an independent thread of control. There are two types: Software Managed Tasks (SMTs) and Interrupt
Service Routines (ISRs).
SMTs are created through the services of a real-time kernel or Operating System, and are dispatched under the
control of scheduling software. ISRs are dispatched by hardware in response to an interrupt. An ISR is the code
that is invoked directly by the processor on receipt of an interrupt. SMTs are sometimes referred to as user tasks,
assuming that they execute in User Mode.
Each task is allocated its own mode, depending on the task’s function:
• User-0 Mode: Used for tasks that do not access peripheral devices. This mode cannot enable or disable

interrupts.
• User-1 Mode: Used for tasks that access common, unprotected peripherals. Typically this would be a read or

write access to serial port, a read access to timer, and most I/O status registers. Tasks in this mode may disable
interrupts for a short period. (The default behaviour of this mode may be overriden by the system control
register).

• Supervisor Mode: Permits read/write access to system registers and all peripheral devices. Tasks in this
mode may disable interrupts.

Individual modes are enabled or disabled primarily through the I/O mode bits in the Processor Status Word
(PSW).
A set of state elements are associated with any task, and these are known collectively as the task’s context. The
context is everything the processor needs to define the state of the associated task and enable its continued
execution. This includes the CPU General Registers that the task uses, the task’s Program Counter (PC), and its
Program Status Information (PCXI and PSW). The architecture efficiently manages and maintains the context of
the task through hardware. The context is subdivided into the upper context and the lower context.

Context Save Areas
The architecture uses linked lists of fixed-size Context Save Areas (CSAs). A CSA consists of 16 words of memory
storage, aligned on a 16-word boundary. Each CSA can hold exactly one upper or one lower context. CSAs are
linked together through a Link Word.
The architecture saves and restores context more quickly than conventional microprocessors and
microcontrollers. The unique memory subsystem design with a wide data path allows the architecture to perform
rapid data transfers between processor registers and on-chip memory.
Context switching occurs when an event or instruction causes a break in program execution. The CPU then needs
to resolve this event before continuing with the program.
The events and instructions which cause a break in program execution are:
• Interrupt or service requests
• Traps
• Function calls
See “Tasks and Functions” on Page 1.

1.4 Interrupt System
A key feature of the architecture is its powerful and flexible interrupt system. The interrupt system is built around
programmable Service Request Nodes (SRNs).
A Service Request is defined as an interrupt request or a DMA (Direct Memory Access) request. A service request
may come from an on-chip peripheral, external hardware, or software.
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Conventional architectures generally take a long time to service interrupt requests, and they are normally
handled by loading a new Program Status (PS) from a vector table in data memory. In the TriCore architecture,
service requests jump to vectors in code memory to reduce response time. The entry code for the ISR is a block
within a vector of code blocks. Each code block provides an entry for one interrupt source.

1.4.1 Interrupt Priority
Service requests are prioritized, and prioritization allows for nested interrupts. The rules for prioritization are:
• A service request can interrupt the servicing of a lower priority interrupt
• Interrupt sources with the same priority cannot interrupt each other
• The Interrupt Control Unit (ICU) determines which source will win arbitration based on the priority number
All Service Requests are assigned Priority Numbers (SRPNs). Every ISR has its own priority number. Different
service requests must be assigned different priority numbers.
The maximum number of interrupt sources is 255. Programmable options range from one priority level with 255
sources, up to 255 priority levels with one source each.
Interrupt numbers are assumed to be assigned in linear order of interrupt priority. This is feasible because
interrupt numbers are not hardwired to individual sources, but are assigned by software executed during the
power-on boot sequence.
See “Interrupt System” on Page 1.

1.5 Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an instruction exception or illegal
access. The TriCore architecture contains eight trap classes and these traps are further classified as synchronous
or asynchronous, hardware or software. Each trap is assigned a Trap Identification Number (TIN) that identifies
the cause of the trap within its class. The entry code for the trap handler is comprised of a vector of code blocks.
Each code block provides an entry for one trap. When a trap is taken, the TIN is placed in data register D[15].
The trap classes are:
• MMU (Memory Management Unit)
• Internal Protection
• Instruction Error
• Context Management
• System Bus and Peripherals
• Assertion Trap
• System Call
• Non-Maskable Interrupt (NMI)
See “Trap System” on Page 1.

1.6 Protection System
One of the domains that TriCore supports is safety-critical embedded applications. The architecture features a
protection system designed to protect core system functionality from the effects of software errors in less critical
application tasks, and to prevent unauthorised tasks from accessing critical system peripherals.
The protection system also facilitates debugging. It detects and traps errors that might otherwise go unnoticed
until it was too late to identify the cause of the error.
The overall protection system is composed of four main subsystems:
1. The Trap System: Described briefly in Section 1.5, but covered in detail in “Trap System” on Page 1.
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2. The I/O Privilege Level: TriCore supports three I/O modes: User-0 mode, User-1 mode and Supervisor mode.
The User-1 mode allows application tasks to directly access non-critical system peripherals. This allows
embedded systems to be implemented efficiently, without the loss of security inherent in the common
practice of running everything in Supervisor mode. (The default behaviour of the User-1 mode may be
overriden by the system control register).

3. The Memory Protection System: This protection system provides control over which regions of memory a
task is allowed to access, and what types of access it is permitted.

4. The Temporal Protection system. This protection system provides protection against run-time overrun.
For applications that require virtual memory, the optional Memory Management Unit (MMU) supports a familiar
page-based model for memory protection. That model gives each memory page its own access permissions. The
relatively conventional MMU design and the page-based memory protection model facilitate porting of standard
operating systems that expect this model.
For applications that do not require virtual memory there is a range-based memory protection system. This
system and its interaction with I/O privilege level for access to peripherals, is detailed in “Memory Protection
System” on Page 1.

1.7 Memory Management Unit
TriCore can make use of an optional Memory Management Unit (MMU). When configured with an MMU, the
memory space has two addressing regions; physical and virtual. The physical and virtual address space is 4
GBytes in each instance, with those 4 GBytes each divided into sixteen, 256 MByte segments.
Segments [8H-FH] bypass virtual mapping and are directly, physically used. Segments [0H-7H] are virtually
mapped by the MMU when it is present and enabled, or physically mapped when the MMU is not present or
disabled.
Virtual addresses are always translated into physical addresses before accessing memory. This translation to a
physical address is either a Direct Translation or a Page Table Entry (PTE) Translation, depending on MMU mode
and virtual address region:
• Direct Translation

– If the virtual address belongs to the upper half of the virtual address space, then the virtual address is
directly used as the physical address. If the virtual address belongs to the lower half of the address space
and the processor is operating in Physical mode, then the virtual address is used indirectly as the physical
address.

• PTE
– If the processor is operating in Virtual mode and the virtual address belongs to the lower half of the

address space, then the virtual address is translated using PTE. PTE translation is performed by replacing
the Virtual Page Number (VPN) of the virtual address by a Physical Page Number (PPN) to obtain a physical
address.

See “Memory Management Unit (MMU)” on Page 1.

1.8 Core Debug Controller
The Core Debug Controller (CDC) is designed to support real-time systems that require non-intrusive debugging.
Most of the architectural state in the CPU Core and Core on-chip memories can be accessed through the system
Address Map. The debug functionality is an interface of architecture, implementation and software tools.
Access to the CDC is typically provided via the On-Chip Debug Support (OCDS) of the system containing the CPU.
A general description of the Core Debug mechanism and registers is detailed in “Core Debug Controller” on
Page 1
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1.9 TriCore Coprocessor Interface
TriCore implementations may choose to implement a coprocessor interface. Such interfaces allows hardware
extensions to the standard TriCore instruction set.
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2 Programming Model
This chapter discusses the following aspects of the TriCore™ architecture that are visible to software:
• Supported data types Page 1
• Data formats in registers and memory Page 2
• The Memory model Page 6
• Addressing modes Page 7

2.1 Data Types
The instruction set supports operations on the following Data Types:
• Boolean Page 1
• Bit String Page 1
• Byte Page 1
• Signed Fraction Page 1
• Address Page 1
• Signed and Unsigned Integers Page 2
• IEEE-754 Single-precision Floating-point Number Page 2
Most instructions operate on a specific Data Type, while others are useful for manipulating several Data Types.

2.1.1 Boolean
A Boolean is either TRUE or FALSE:
• TRUE is the value one (1) when generated and non-zero when tested
• FALSE is the value zero (0)
Booleans are produced as the result in comparison and logic instructions, and are used as source operands in
logical and conditional jump instructions.

2.1.2 Bit String
A bit string is a packed field of bits.
Bit strings are produced and used by logical, shift, and bit field instructions.

2.1.3 Byte
A byte is an 8-bit value that can be used for a character or a very short integer. No specific coding is assumed.

2.1.4 Signed Fraction
The architecture supports 16-bit, 32-bit and 64-bit signed fractional data for DSP arithmetic. Data values in this
format have a single high-order sign bit, where 0 represents positive (+) and 1 represents negative (-), followed by
an implied binary point and fraction. Their values are therefore in the range [-1,1).

2.1.5 Address
An address is a 32-bit unsigned value.
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2.1.6 Signed and Unsigned Integers
Signed and unsigned integers are normally 32 bits. Shorter signed or unsigned integers are sign-extended or
zero-extended to 32 bits when loaded from memory into a register.

Multi-precision
Multi-precision integers are supported with addition and subtraction using carry. Integers are considered to be
bit strings for shifting and masking operations. Multi-precision shifts can be made using a combination of single-
precision shifts and bit field extracts.

2.1.7 IEEE-754 Single-Precision Floating-Point Number
Depending on the particular implementation of the core architecture, IEEE-754 floating-point numbers are
supported by coprocessor hardware instructions or by software calls to a library.

2.2 Data Formats
All General Purpose Registers (GPRs) are 32 bits wide, and most instructions operate on word (32-bit) values.
When byte or half-word data elements are loaded from memory, they are automatically sign-extended or zero-
extended to fill the register. The type of filling is implicit in the load instruction. For example, LD.B to load a byte
with sign extension, or LD.BU to load a byte with zero extension.
The supported Data Formats are:
• Bit
• Byte: signed, unsigned
• Half-word: signed, unsigned, fraction
• Word: signed, unsigned, fraction, floating-point
• 48-bit: signed, unsigned, fraction
• Double-word: signed, unsigned, fraction
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Figure 3 Supported Data Formats
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2.2.1 Alignment Requirements
Alignment requirements differ for addresses and data (see Table 1). Address variables loaded into or stored from
address registers, must always be Word-aligned.
Data can be aligned on any Half-Word boundary, regardless of size, except where noted below. This facilitates the
use of packed arithmetic operations in DSP applications, by allowing two or four packed 16-bit data elements to
be loaded or stored together on any Half-Word boundary.

Programming Restrictions
There are some restrictions of which programmers must be aware, specifically:
• The LDMST, CMPSWAP.W, SWAPMSK.W and SWAP.W instructions require their operands to be Word-aligned.
• Byte operations LD.B, ST.B, LD.BU, ST.T may be byte aligned.
• All accesses to peripheral space must be naturally aligned. (Double-Word accesses may be Word aligned).

Alignment Rules

Table 1 Alignment rules for non-peripheral space
Access type Alignment of address in memory
Load, Store Data Register Byte (1H)

2 bytes (2H)

2 bytes (2H)

2 bytes (2H)

Load, Store Address Register 4 bytes (4H)

4 bytes (4H)

SWAP.W, LDMST 4 bytes (4H)

CMPSWAP.W, SWAPMSK.W 4 bytes (4H)

ST.T Byte (1H)

Context Load / Store / Restore / 64 bytes (40H)
Save

Table 2 Alignment rules for peripheral space
Access type Alignment of address in memory
Load, Store Data Register Byte (1H)

2 bytes (2H)

4 bytes (4H)

8 bytes (8H)

Load, Store Address Register 4 bytes (4H)

8 bytes (8H)

SWAP.W, LDMST, ST.T 4 bytes (4H)

CMPSWAP.W, SWAPMSK.W 4 bytes (4H)

Context Load / Store / Restore / Not Permitted
Save

User Manual (Volume 1) 2-4 V1.2.2
2020-01-15

Access size
Byte

Half-Word

Word

Double-Word

Word

Double-Word

Word

Word

Byte

16 x 32-bit registers

Access size
Byte

Half-Word

Word

Double-Word

Word

Double-Word

Word

Word

16 x 32-bit registers



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Programming Model

2.2.2 Byte Ordering
The data memory and CPU registers store data in little-endian byte order (the least-significant bytes are at lower
addresses). The following figure illustrates byte ordering. Little-endian memory referencing is used consistently
for data and instructions.

Byte23 Byte22 Byte21 Byte20Word 5 Double-word
Byte19 Byte18 Byte17 Byte16Word 4
Byte15 Byte14 Byte13 Byte12Word 3 Half-word
Byte11 Byte10 Byte9 Byte8Word 2 Word
Byte7 Byte6 Byte5 Byte4Word 1 ByteByte3 Byte2 Byte1 Byte0Word 0

TC1005

Figure 4 Byte Ordering
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2.3 Memory Model
The architecture has an address width of 32 bits and can access up to 4 GBytes of memory. The address space is
divided into 16 regions or segments, [0H - FH]. Each segment is 256 MBytes. The upper 4 bits of an address select
the specific segment. The first 16 KBytes of each segment can be accessed using absolute addressing.
Many data accesses use addresses computed by adding a displacement to the value of a base address register.
Using a displacement to cross one of the segment boundaries is not allowed and if attempted causes a MEM trap.
This restriction allows direct determination of the accessed segment from the base address.
See “Trap System” on Page 1 for more information on Traps.

Physical Memory Attributes
The physical memory attributes of segments zero to seven are implementation dependent. If an MMU is present
and enabled, segments [0H - 7H] are considered virtual addresses that must be translated. If an MMU is not present
the access characteristics are implementation dependent and may cause a trap.

Physical Memory Addresses
Physical memory addresses in segment FH are guaranteed to be peripheral space and therefore all accesses are
non-speculative and are not accessible to User-0 mode..
The Core Special Function Registers (CSFRs) are mapped to a 64 KBytes space in the memory map. The base
location of this 64 KBytes space is implementation-dependent.
Segments 8H to DH have further limitations placed upon them in some implementations. For example, specific
segments for program and data may be defined by device-specific implementations. Other details of the memory
mapping are implementation-specific.
For more information see “Physical Memory Attributes (PMA)” on Page 1.

Table 3 Physical Address Space
Address Description
FFFF FFFFH : E000 0000H Peripheral space.

DFFF FFFFH : 8000 0000H Detailed limitations are implementation specific.

7FFF FFFFH : 0000 0000H Implementation dependent.
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2.4 Semaphores and Atomic Operations
The following instructions read and/or write memory in atomic fashion:
• LDMST (Load, Modify, Store)
• SWAP.W (Swap register with memory)
• ST.T (Store bit)
• CMPSWAP.W
• SWAPMSK.W
LDMST uses a mask register to write selected bits from a source register into a memory word. However it does not
return a value, so it can not be used as an atomic "test and set" type operations for binary semaphores. The
SWAP.W is provided for this purpose. If memory protection is enabled, the effective address of the LDMST,
CMPSWAP.W, SWAPMSK.W, SWAP.W or ST.T instruction must lie within a range which has both read and write
permissions enabled.
The CMPSWAP.W instruction conditionally swaps a source register with a memory word. The SWAPMSK.W
instructions swaps through a mask the contents of a source register with a memory word.
The execution of an atomc instruction forces the completion of all data accesses symantically ahead of the
instruction. This ensures that any buffered state is written to memory prior to the atomic operation.

2.5 Addressing Modes
Addressing modes allow load and store instructions to access simple data elements such as records, randomly
and sequentially accessed arrays, stacks, and circular buffers.
The simple data elements are 8-bits, 16-bits, 32-bits, or 64-bits wide. The architecture supports seven addressing
modes.
The addressing modes support efficient compilation of C/C++, give easy access to peripheral registers, and
efficient implementation of typical DSP data structures (circular buffers for filters and bit-reversed indexing for
FFTs).

Table 4 Addressing Modes
Addressing Mode Address Register Use
Absolute None

Base + Short Offset Address Register

Base + Long Offset Address Register

Pre-increment Address Register

Post-increment Address Register

Circular Address Register Pair

Bit-reverse Address Register Pair

Addressing modes which are not directly supported in the hardware can be synthesized through short instruction
sequences.
For more information see “Synthesized Addressing Modes” on Page 12.

Instruction Formats
The instruction formats provide as many bits of address as possible for absolute addressing, and as large a range
of offsets as possible for base + offset addressing.
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It is possible for an address register to be both the target of a load and an update associated with a particular
addressing mode. In the following case for example, the contents of the address register are not architecturally
defined:
ld.a a0, [a0+]4

Similarly, consider the following case:
st.a [+a0]4, a0

It is not architecturally defined whether the original or updated value of A[0] is stored into memory. This is true
for all addressing modes in which there is an update of the address register.

2.5.1 Absolute Addressing
Absolute addressing is useful for referencing I/O peripheral registers and global data.
Absolute addressing uses an 18-bit constant specified by the instruction as the memory address. The full 32-bit
address results from moving the most significant 4 bits of the 18-bit constant to the most significant bits of the
32-bit address (Figure 5). Other bits are zero-filled.

4 14

18-bit constant

00000000000000 32-bit address
4 14 14

TC1006

Figure 5 Translation of Absolute Address to Full Effective Address

2.5.2 Base + Offset Addressing
Base + offset addressing is useful for referencing record elements, local variables (using Stack Pointer (SP) as the
base), and static data (using an address register pointing to the static data area). The full effective address is the
sum of an address register and the sign-extended 10-bit offset.
A subset of the memory operations are provided with a Base + Long Offset addressing mode. In this mode the
offset is a 16-bit sign-extended value. This allows any location in memory to be addressed using a two instruction
sequence.

2.5.3 Pre-Increment and Pre-Decrement Addressing
Pre-increment and pre-decrement addressing (where pre-decrement addressing is obtained by the use of a
negative offset), may be used to push onto an upward or downward-growing stack, respectively.
The pre-increment addressing mode uses the sum of the address register and the offset both as the effective
address and as the value written back into the address register.

2.5.4 Post-Increment and Post-Decrement Addressing
Post-increment and post-decrement addressing (where post-decrement addressing is obtained by the use of a
negative offset), may be used for forward or backward sequential access of arrays respectively. Furthermore, the
two versions of the mode may be used to pop from a downward-growing or upward-growing stack, respectively.
The post-increment addressing mode uses the value of the address register as the effective address and then
updates this register by adding the sign-extended 10-bit offset to its previous value.
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tmp = I + sign_ext(offset10);

if (tmp < 0)

I = tmp + L;

else if (tmp >= L)

I = tmp - L;

else

TC1009I = tmp;
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2.5.5 Circular Addressing
The primary use of circular addressing (Figure 6) is for accessing data values in circular buffers while performing
filter calculations.

Aodd L I

Aeven B

TC1008

Figure 6 Circular Addressing Mode

The circular addressing mode uses an address register pair to hold the state it requires:
• The even register is always a base address (B).
• The most significant half of the odd register is the buffer size (L).
• The least significant half holds the index into the buffer (I).
• The effective address is (B+I).
• The buffer occupies memory from addresses B to B+L-1.
The index is post-incremented using the following algorithm:

Figure 7 Circular Addressing Index Algorithm

The 10-bit offset is specified in the instruction word and is a byte-offset that can be either positive or negative.
Note that correct ‘wrap around’ behaviour is guaranteed as long as the magnitude of the offset is smaller than
the size of the buffer.
To illustrate the use of circular addressing, consider a circular buffer consisting of 25, 16-bit values. If the current
index is 48, then the next item is obtained using an offset of two (2-bytes per value). The new value of the index
‘wraps around’ to zero. If we are at an index of 48 and use an offset of four, the new value of the index is two. If the
current index is four and we use an offset of -8, then the new index is 46 (4-8+50).
In the end case, where a memory access runs off the end of the circular buffer (Figure 8), the data access also
wraps around to the start of the buffer. For example, consider a circular buffer containing n+1 elements where
each element is a 16-bit value. If a load word is performed using the circular addressing mode and the effective
address of the operation points to element n, the 32-bit result contains element n in the bottom 16 bits and
element 0 in the top 16 bits.
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Circular Buffer of n+1 16-bit Elements

bn-1b0 bnb1 b...

15

Result of a circular addressing load
b0Word with an effective address

pointing to element n
31

TC1010C

0 15

bn

16 15

0

0

15 0 15 0
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Figure 8 Circular Buffer End Case

The size and length of a circular buffer has the following restrictions:
• The start of the buffer must be aligned to a 64-bit boundary. An implementation is free to advise the user of

optimal alignment of circular buffers etc., but must support alignment to the 64-bit boundary.
• The length of the buffer must be a multiple of the data size, where the data size is determined from the

instruction being used to access the buffer. For example, a buffer accessed using a load-word instruction must
be a multiple of 4 bytes in length, and a buffer accessed using a load double-word instruction must be a
multiple of 8-bytes in length.

If these restrictions are not met the implementation takes an alignment trap (ALN). An alignment trap is also
taken if the index (I) >= length (L).
Accesses to peripheral space using circular addressing are not permitted. Such accesses will result in a MEM trap.
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2.5.6 Bit-Reverse Addressing
Bit-reverse addressing is used to access arrays used in FFT algorithms. The most common implementation of the
FFT ends with results stored in bit-reversed order (“Bit-Reverse Addressing” on Page 11).

PASS 1 PASS 2 PASS 3 X(0)X(0)

X(1) X(1)W0

W0 X(2)X(2)

W0 X(3)X(3) W2

W0 X(4)X(4)

W0 X(5)X(5) W1

W2W0 X(6)X(6)

W2 W3W0X(7) X(7)
Key: X(n) is data point n.

Wn is twiddle factor n. TC1011

Figure 9 Bit-Reverse Addressing

Bit-reverse addressing uses an address register pair to hold the required state:

Aodd M I

Aeven B
TC1012

Figure 10 Register Pair for Bit-Reverse Addressing

• The even register is the base address of the array (B).
• The least-significant half of the odd register is the index into the array (I).
• The most-significant half is the modifier (M), used to update I after every access.
• The effective address is B+I.
• The index, I, is post-incremented and its new value is reverse [reverse (I) + reverse (M)]. The reverse(I) function

exchanges bit n with bit (15–n) for n = 0, ... 7.
To illustrate for a 1024 point real FFT using 16-bit values, the buffer size is 2048 bytes. Stepping through this array
using a bit-reverse index would give the sequence of byte indices: 0, 1024, 512, 1536, and so on. This sequence
can be obtained by initializing I to 0 and M to 0400H.

Table 5 1024-point FFT Using 16-bit Values
I (decimal) Rev[Rev(I) + Rev(M)]
0 0000010000000000B

1024 0000001000000000B
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Table 5 1024-point FFT Using 16-bit Values (cont’d)

I (decimal) Rev[Rev(I) + Rev(M)]
512 0000011000000000B

1536 0000010001100000B

The required value of M is given by; buffer size/2, where the buffer size is given in bytes.

2.5.7 Synthesized Addressing Modes
This section describes how addressing that is not directly supported in the hardware addressing modes, can be
synthesized through short instruction sequences.

Indexed Addressing
The Indexed addressing mode can be synthesized using the ADDSC.A instruction (Add Scaled Index to Address),
which adds a scaled data register to an address register. The scale factor can be 1, 2, 4 or 8 for addressing indexed
arrays of bytes, half-words, words, or double-words.

Bit Indexed Addressing
To support addressing of indexed bit arrays, the ADDSC.AT instruction scales the index value by 1/8 (shifts right 3
bits) and adds it to the address register.
The two low-order bits of the resulting byte address are cleared to give the address of the word containing the
indexed bit.
To extract the bit, the word in which it is contained, is loaded. The bit index is then used in an EXTR.U instruction.
A bit field, beginning at the indexed bit position, can also be extracted. To store a bit or bit field at an indexed bit
position, ADDSC.AT is used in conjunction with the LDMST (Load/Modify/Store) instruction.
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PC-Relative Addressing
PC-relative addressing is the normal mode for branches and calls. However the architecture does not support
direct PC-relative addressing of data. This is because the separate on-chip instruction and data memories make
data access to the program memory expensive.
When PC-relative addressing of data is required, the address of a nearby code label is placed into an address
register and used as a base register in base + offset mode to access the data. Once the base register is loaded it
can be used to address other PC-relative data items nearby.
A code address can be loaded into an address register in various ways. If the code is statically linked (as it almost
always is for embedded systems), then the absolute address of the code label is known and can be loaded using
the LEA instruction (Load Effective Address), or with a sequence to load an extended absolute address. The
absolute address of the PC relative data is also known, and there is no need to synthesize PC-relative addressing.
For code that is dynamically loaded, or assembled into a binary image from position-independent pieces without
the benefit of a relocating linker, the appropriate way to load a code address for use in PC-relative data
addressing is to use the JL (Jump and Link) instruction. A jump and link to the next instruction is executed,
placing the address of that instruction into the return address (RA) register A[11]. Before this is done though, it is
necessary to copy the actual return address of the current function to another register.
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3 General Purpose and System Registers
There are two types of Core Register, the General Purpose Registers (GPRs) and the Core Special Function
Registers (CSFRs). The GPRs consist of 16 general purpose data and 16 general purpose address registers. The
CSFRs control the operation of the core and provide status information about the core.
• General Purpose Registers
• System registers (PSW, PC, PCXI)
• Stack Management registers are (A[10] and ISP)
• SYSCON and CPU_ID registers
• Trap registers
• Context Management registers
• Memory Protection registers
• Memory Management registers
• Debug registers
• Floating Point registers
• Special Function registers associated with the core

Reset Values
It should be noted that because this manual describes the TriCore® architecture, not an implementation of that
architecture, some reset values are not given. Where they are not given, the values are implementation specific.

ENDINIT Protection
The architecture supports the concept of an initialisation state prior to an operational state.
When in the initialisation state, all Core Special Function Registers can be modified, using the MTCR instruction.
In the operational state only a subset of CSFRs can be modified in this way. All other functions remain identical
between these states.
CSFRs that are only writable in the initialisation state are described as ENDINIT protected.
The transition between the initialisation state and the operational state is controlled by the system
implementation. This facility adds an extra level of protection to critical CSFRs by only allowing them to be
changed in the initialisation state.
The following registers are ENDINIT protected:
• BTV, BIV, ISP, PMA0, PMA1, PMA2, PCON0, DCON0, SEGEN
A safety specific version of ENDINIT protection is provided. The following registers are SAFETY_ENDINIT
protected:
•  SMACON, SYSCON, COMPAT, TPS_EXTIM_ENTRY_LVAL, TPS_EXTIM_EXIT_LVAL
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3.1 General Purpose Registers (GPRs)
The General Purpose Registers (GPRs) are split evenly into:
• 16 Data registers (DGPRs), D[0] to D[15]
• 16 Address registers (AGPRs), A[0] to A[15]
The separation of data and address registers facilitates efficient implementations in which arithmetic and
memory operations are performed in parallel. Several instructions allow the interchange of information between
data and address registers (used for example, to create or derive table indexes). Two consecutive even-odd data
registers can be concatenated to form eight extended-size registers (E[0], E[2], E[4], E[6], E[8], E[10], E[12], and
E[14]), in order to support 64-bit values. The address registers (P[0], P[2], P[4], P[6], P[8], P[10], P[12], and P[14])
can be used in the same way.
Registers A[0], A[1], A[8], and A[9] are defined as system global registers. Their contents are not saved or restored
across calls, traps or interrupts.
Register A[10] is used as the Stack Pointer (SP). See “Stack Management Registers” on Page 10.
Register A[11] is used to store the Return Address (RA) for calls and linked jumps, and to store the return Program
Counter (PC) value for interrupts and traps.
While the 32-bit instructions have unlimited use of the GPRs, many 16-bit instructions implicitly use A[15] as their
address register and D[15] as their data register. This implicit use eases the encoding of these instructions into 16
bits.
Support of 64-bit data values is provided with the use of odd/even register pairs. In the assembler syntax these
register pairs are either referred to as a pair of 32-bit registers (for example, D[9]/D[8]) or as an extended 64-bit
register. For example, E[8] is the concatenation of D[9] and D[8], where D[8] is the least significant word of E[8].
In order to support extended addressing modes, an even/odd address register pair holds the extended address
reference as a pair of 32-bit address registers (A[8]/A[9] for example).
There are no separate floating-point registers. The data registers are used to perform floating-point operations.
The floating-point data is saved and restored automatically using the fast context switch support.
Figure 11 shows the 32-bit wide GPRs.

Data General Purpose Registers

Dn (n=0-15)
Data Register n (FF00H+n*4) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA

rw

Field Description
DATA Data Register n Value
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A[14] D[14]

A[12] D[12]

A[10] (stack pointer) D[10]

A[8] (global address) D[8]

A[6] D[6]

A[4] D[4]

A[2] D[2]

A[0] (global address) D[0]
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Address General Purpose Registers

An (n=0-15)
Address Register n (FF80H+n*4) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

rw

Field Description
ADDR Address Register n Value

General Purpose Registers (GPRs)

Address General Data General
Purpose Registers Purpose

(AGPR) Registers (DGPR)

A[15] (implicit address) D[15] (implicit data)P[14] E[14]

A[13] D[13]P[12] E[12]

A[11] (return address) D[11]P[10] E[10]

A[9] (global address) D[9]P[8] E[8]

A[7] D[7]P[6] E[6]

A[5] D[5]P[4] E[4]

A[3] D[3]P[2] E[2]

A[1] (global address) D[1]P[0] E[0]

TC1013C

Figure 11 General Purpose Registers (GPRs)

The GPRs are an essential part of a task’s context. When saving or restoring a task’s context to and from memory
the context is split into the upper and lower contexts:
• Registers A[2] to A[7] and D[0] to D[7] are part of the lower context.
• Registers A[10] to A[15] and D[8] to D[15] are part of the upper context.

Note: Upper and lower contexts are described in detail in Chapter 4.
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3.2 Program State Information Registers
The PC, PSW, and PCXI registers hold and reflect program state information. These registers are an important part
of storing and restoring a task’s context, when the contents are stored, restored or modified during this process.
• PC: Program Counter
• PSW: Program Status Word
• PCXI: Previous Context Information

Program Counter (PC)
The 32-bit Program Counter (PC) shown below, holds the address of the instruction that is currently running. The
Program Counter is part of a task’s state information. The PC should only be written when the core is halted. If
the core is not in halt a write will have no effect.

PC
Program Counter Register (FE08H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw -

Field Description
PC Program Counter
RES Reserved
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Program Status Word Register (PSW)
The Program Status Word register (PSW) is a 32-bit register that contains a task-specific architectural state not
captured in the General Purpose Register values. The lower half holds control values and parameters related to
the protection system, including:
• The Protection Register Set (PRS)
• The I/O privilege level (IO)
• The Interrupt Stack flag (IS)
• The Global register Write permission flag (GW)
• The Call Depth Counter (CDC)
• The Call Depth Count Enable field (CDE)

PSW
Program Status Word (FE04H) Reset Value: 0000 0B80H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

rw -

15 14 13 12 11- 10 9 8 7 6 5 4 3 2 1 0

- rw rw rw rw rw rw rw

Field Description
USB User Status Bits

The eight most significant bits of the PSW are designated as User Status Bits.
These bits may be set or cleared as execution side effects of user
instructions. Refer to the PSW User Status Bits section which follows this
table.

RES Reserved
PRS[2] Protection Register Set bit[2]

Selects the active Data and Code Memory Protection Register Set. The
memory protection register values control load, store and instruction
fetches within the current process. Up to eight sets are supported, the
number of protection sets available is implementation dependent.

S Safety Task Identifier
The current task should be identified as a Safe Task.

PRS[1:0] Protection Register Set bits[1:0]
Selects the active Data and Code Memory Protection Register Set. The
memory protection register values control load, store and instruction
fetches within the current process. Up to eight sets are supported, the
number of protection sets available is implementation dependent
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[23:16] -

15 -

14 rw
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Field Description
IO Access Privilege Level Control (I/O Privilege)

Determines the access level to special function registers and peripheral
devices.
00B : User-0 Mode
No peripheral access. Access to memory regions with the peripheral space
attribute are prohibited and results in a PSE or MPP trap. This access level is
given to tasks that need not directly access peripheral devices. Tasks at this
level do not have permission to enable or disable interrupts.
01B : User-1 Mode
Regular peripheral access. Enables access to common peripheral devices
that are not specially protected, including read/write access to serial I/O
ports, read access to timers, and access to most I/O status registers. Tasks at
this level may disable interrupts.(The default behaviour of this mode may be
overriden by the system control register).
10B : Supervisor Mode
Enables access to all peripheral devices. It enables read/write access to core
registers and protected peripheral devices. Tasks at this level may disable
interrupts.
11B : Reserved Value

IS Interrupt Stack Control
Determines if the current execution thread is using the shared global
(interrupt) stack or a user stack.
0 : User Stack
If an interrupt is taken when the IS bit is 0, then the stack pointer register is
loaded from the ISP register before execution starts at the first instruction of
the Interrupt Service Routine (ISR).
1 : Shared Global Stack
If an interrupt is taken when the PSW.IS bit is 1, then the current value of the
stack pointer is used by the Interrupt Service Routine (ISR).

GW Global Address Register Write Permission
Determines whether the current execution thread has permission to modify
the global address registers.
Most tasks and ISRs use the global address registers as ‘read only’ registers,
pointing to the global literal pool and key data structures. However a task or
ISR can be designated as the ‘owner’ of a particular global address register,
and is allowed to modify it. The system designer must determine which
global address variables are used with sufficient frequency and/or in
sufficiently time-critical code to justify allocation to a global address
register. By compiler convention, global address register A[0] is reserved as
the base register for short form loads and stores. Register A[1] is also
reserved for compiler use.
Registers A[8] and A[9] are not used by the compiler, and are available for
holding critical system address variables.
0 : Write permission to global registers A[0], A[1], A[8], A[9] is disabled.
1 : Write permission to global registers A[0], A[1], A[8], A[9] is enabled.
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Field Description
CDE Call Depth Count Enable

Enables call-depth counting, provided that the PSW.CDC mask field is not all
set to 1.
0 : Call depth counting is temporarily disabled. It is automatically re-enabled
after execution of the next Call instruction.
1 : Call depth counting is enabled.
If PSW.CDC = 1111111B, call depth counting is disabled regardless of the
setting on the PSW.CDE bit.

CDC Call Depth Counter
Consists of two variable width subfields. The first subfield consists of a string
of zero or more initial 1 bits, terminated by the first 0 bit.
The remaining bits form the second subfield (CDC.COUNT) which
constitutes the call depth count value. The count value is incremented on
each Call and is decremented on a Return.
0ccccccB : 6-bit counter; trap on overflow.
10cccccB : 5-bit counter; trap on overflow.
110ccccB : 4-bit counter; trap on overflow.
1110cccB : 3-bit counter; trap on overflow.
11110ccB : 2-bit counter; trap on overflow.
111110cB : 1-bit counter; trap on overflow.
1111110B : Trap every call (call trace mode).
1111111B : Disable call depth counting.
When the call depth count (CDC.COUNT) overflows a trap (CDO) is
generated.
Setting the CDC to 1111110B allows no bits for the counter and causes every
call to be trapped. This is used for Call Depth Tracing.
Setting the CDC to 1111111B disables call depth counting.

PSW User Status Bits
The eight most significant bits of the PSW are designated as User Status Bits. These bits may be set or cleared as
execution side effects of user instructions, typically recording result status. Individual bits can also be used to
condition the operation of particular instructions. For example the ADDX (Add Extended) and ADDC (Add with
Carry) instructions use bit 31 to record the carry out from the ADD operation, and the pre-execution value of the
bit is reflected in the result of the ADDC instruction.

Table 6 PSW User Status Bits
Field Description
C Carry

V Overflow

SV Sticky Overflow

AV Advance Overflow

SAV Sticky Advance Overflow

RES Reserved Field

There are two classes of instructions that employ the user status bits:
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28 rw

27 rw
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Bits [23:16] of the PSW are reserved bits with no defined use in current versions of the architecture. They read as
zero when the PSW is read via the MFCR (Move From Core Register) instruction after a system reset. Their value
after writing to the PSW via the MTCR (Move To Core Register) instruction, is architecturally undefined and should
be written as zero.
• Arithmetic instructions that may produce carry and overflow results.
• Implementation-specific coprocessor instructions which may use any or all of the eight bits, in a manner that

is entirely implementation specific.

Access Privilege Level Control (I/O Privilege)
Software Managed Tasks (SMTs) are created through the services of a real-time kernel or Operating System, and
are dispatched under the control of scheduling software. Interrupt Service Routines (ISRs) are dispatched by
hardware in response to an interrupt. An ISR is the code that is invoked directly by the processor on receipt of an
interrupt. SMTs are sometimes referred to as user tasks, assuming that they execute in User Mode.
Each task is allocated its own mode, depending on the task’s function:
• User-0 Mode: Used for tasks that do not access peripheral devices. This mode may not enable or disable

interrupts.
• User-1 Mode: Used for tasks that access common, unprotected peripherals. Typically this would be a read or

write access to serial port, a read access to timer, and most I/O status registers. Tasks in this mode may disable
interrupts. (The default behaviour of this mode may be overriden by the system control register).

• Supervisor Mode: Permits read/write access to system registers and all peripheral devices. Tasks in this
mode may disable interrupts.

A set of state elements are associated with any task, and these are known collectively as the task’s context. The
context is everything the processor needs to define the state of the associated task and enable its continued
execution. This includes the CPU General Registers that the task uses, the task’s Program Counter (PC), and its
Program Status Information (PCXI and PSW). The architecture efficiently manages and maintains the context of
the task through hardware.
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Previous Context Information and Pointer Register (PCXI)
The Previous Context Information Register (PCXI) contains linkage information to the previous execution context,
supporting interrupts and automatic context switching. The PCXI is part of a task’s state information. The
Previous Context Pointer (PCX) holds the address of the CSA of the previous task.

PCXI. PCX
Previous Context Information and Pointer Register

(FE00H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rw

Field Description
RES Reserved
PCPN Previous CPU Priority Number

Contains the priority level number of the interrupted task.

PIE Previous Interrupt Enable
Indicates the state of the interrupt enable bit (ICR.IE) for the interrupted
task.

UL Upper or Lower Context Tag
Identifies the type of context saved:
0 : Lower Context
1 : Upper Context
If the type does not match the type expected when a context restore
operation is performed, a trap is generated.

PCXS PCX Segment Address
Contains the segment address portion of the PCX. This field is used in
conjunction with the PCXO field.

PCXO Previous Context Pointer Offset Field
The PCXO and PCXS fields form the pointer PCX, which points to the CSA of
the previous context.
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3.3 Stack Management Registers
Stack management in the architecture supports a user stack and an interrupt stack. Address register A[10], the
Interrupt Stack Pointer (ISP) and a PSW bit are used in the management of the stack.
A[10] is used as the stack pointer. The initial contents of this register are usually set by an RTOS when a task is
created, which allows a private stack area to be assigned to individual tasks.
The ISP helps to prevent Interrupt Service Routines (ISRs) from accessing the private stack areas and possibly
interfering with the software managed task’s context. An automatic switch to the use of the ISP instead of the
private stack pointer is implemented in the architecture. The PSW.IS bit indicates which stack pointer is in effect.
When an interrupt is taken and the interrupted task was using its private stack (PSW.IS == 0), the contents are
saved with the upper context of the interrupted task and A[10](SP) is loaded with the current contents of the ISP.
When an interrupt or trap is taken and the interrupted task was already using the interrupt stack (PSW.IS == 1),
then no pre-loading of A[10](SP) is performed. The Interrupt Service Routine (ISR) continues to use the interrupt
stack at the point where the interrupted routine had left it.
Usually it is only necessary to initialize the ISP once during the initialization routine. However, depending on
application needs, the ISP can be modified during execution. Note that there is nothing preventing an ISR or
system service routine from executing on a private stack.

Note: Use of A[10](SP) in an ISR is at the discretion of the application programmer.
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Address Register A[10] (SP)
The A[10] Stack Pointer (SP) register is defined as follows:

A[10](SP)
Address Register A[10] (Stack Pointer) (FFA8H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A[10](SP)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A[10](SP)

rw

Field Description
A[10](SP) Address Register A[10] (Stack Pointer)
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Interrupt Stack Pointer Register (ISP)
The Interrupt Stack Pointer is defined as follows.

Note: This register is ENDINIT protected.

ISP
Interrupt Stack Pointer (FE28H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ISP

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISP

rw

Field Description
ISP Interrupt Stack Pointer
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System Control Register (SYSCON)
The System Configuration Register provides the following functionality.
• Enable bit for Temperal protection system
• Enable bit for memory protection system
• Bit for definition of the initial state of the PSW.S bit in interrupt handlers
• Bit for definition of the initial state of the PSW.S bit in trap handlers.
• Enable for User-1 IO mode peripheral access.
• Disable for User-1 IO mode ability to enable and disable interrupts
• Boot halt status and release bit.
• Status indicator of the Free Context List Depletion condition.

Note: This register is SAFETY_ENDINIT protected with the exception of the FCDSF bit.

SYSCON
System Configuration Register (FE14H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rwh - rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rw - rw rw rw rw rwh

Field Description
RES Reserved
BHALT Boot halt status and release

Following reset a CPU may be immediately placed in halt. In this case the
BHALT bit will be set to “1”. The CPU will remain in halt until this bit is written
to “0”. On a write from “1” to “0” the CPU will start execution from the
program address defined program counter (PC) register. A write of this bit to
“1” will be ignored.

RES Reserved
U1_IOS User-1 Peripheral access as supervisor.

Allow User-1 mode tasks to access peripherals as if in Supervisor mode.
Enables User-1 access to all peripheral registers.

U1_IED User-1 Instruction execution disable.
Disable the execution of User-1 mode instructions in User-1 IO mode.
Disables User-1 ability to enable and disable interrupts

RES Reserved
ESDIS Emulator Space Disable

RES Reserved
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RES BHALT RES U1_IO
S

U1_IE
D

RES ESDIS RES TS IS TPROT
EN

PROTE
N FCDSF

Bits Type
[31:25] -

24 rwh

[23:18] -

17 rw

16 rw

[15:9] -

8 rw

[7:5] rw
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Field Description
TS Initial state of PSW.S bit in trap handler

IS Initial state of PSW.S bit in interrupt handler

TPROTEN Temporal Protection Enable
Enable the Temporal Protection system.
0 : Temporal Protection is disabled.
1 : Temporal Protection is enabled.

PROTEN Memory Protection Enable
Enables the memory protection system. Memory protection is controlled
through the memory protection register sets. Note: Initialize the protection
register sets prior to setting PROTEN to one.
0 : Memory Protection is disabled.
1 : Memory Protection is enabled.

FCDSF Free Context List Depleted Sticky Flag
This sticky bit indicates that a FCD (Free Context List Depleted) trap
occurred since the bit was last cleared by software.
0 : No FCD trap occurred since the last clear.
1 : An FCD trap occurred since the last clear.
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3 rw

2 rw

1 rw

0 rwh
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CPU Identification Register (CPU_ID)
Identification Registers identify the processor type and revision used. Only the CPU core ID register is described
here. All other ID registers are described in the product documentation. The CPU Identification Register identifies
the CPU type and revision.

CPU_ID
CPU Module Identification (FE18H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MOD

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

r r

Field Description
MOD Module Identification Number

Used for module identification.

MOD_32B 32-Bit Module Enable
A value of C0H in this field indicates a 32-bit module with a 32-bit module ID
register.

MOD_REV Module Revision Number
Used for revision numbering. The value of the revision starts at 01H (first
revision) up to FFH.
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MOD_32B MOD_REV

Bits Type
[31:16] r

[15:8] r

[7:0] r
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Core Identification Register (CORE_ID)
In a multiprocessor system each logical processor core is given a unique identification number. The Core
Identification Register holds this number.

Core_ID
Core Identification (FE1CH) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- r

Field Description
RES Reserved
CORE_ID Core Identification Number
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RES CORE_ID

Bits Type
[31:3] -

[2:0] r
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3.4 Compatibility Mode Register (COMPAT)
The COMPAT register is provided to allow implementations to selectively force compatibility of features with
previous versions.

Compatibility Mode Register (COMPAT)
The contents of the register are implementation specific.

Note: This register is SAFETY_ENDINIT protected.

COMPAT
Compatibility Mode Register (9400H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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3.5 Access Control Registers

SIST Mode Access Control Register (SMACON)
Implementations may control the operation of Software in System Test (SIST) systems using the SMACON
register. The contents of this register is implementation specific.

Note: This register is SAFETY_ENDINIT protected

SMACON
SIST Mode Access Control (900CH) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific

3.6 Interrupt Registers
A typical Service Request Control register in the TriCore architecture holds the individual control bits to enable
or disable the request, to assign a priority number, and to direct the request to one of the service providers. The
Core Special Function Registers (CSFR) which control the Interrupts are described in “Interrupt System” on
Page 1.

3.7 Memory Protection Registers
The number of Memory Protection Register Sets is specific to each implementation of the architecture. There can
be a maximum number of eight sets (one set includes both a data set and a code set). Each register set is made
up of several range registers (also called Range Table Entries).
Each Range Table Entry consists of a Segment Protection register pair and a bit field within a common Mode
register. The register pair specifies the lower and upper boundary addresses of the memory range.
The Core Special Function Registers (CSFR) which control the Memory Protection Registers are described in
“Memory Protection System” on Page 1.

3.8 Trap Registers
The Core Special Function Registers (CSFR) which control the Trap Registers are described in “Trap System” on
Page 1.
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3.9 Memory Configuration Registers
The Memory Configuration Registers are defined in the architecture but the contents of the registers are
implementation specific. The Core Special Function Registers (CSFR) which control the memoryconfiguration are
described in “Physical Memory Attributes (PMA)” on Page 1.

3.10 Core Debug Controller Registers
TriCore registers that support debugging are described in “Core Debug Controller” on Page 1

3.11 Floating Point Registers
The registers for the optional TriCore Floating Point Unit are described on “FPU_TRAP_CON” on Page 11.

3.12 Accessing Core Special Function Registers (CSFRs)
Core Special Function registers are read with a MFCR (Move From Core Register) instruction and written with a
MTCR (Move To Core register) instruction. The need for software updates to CSFRs is usually infrequent.
Implementations are therefore not required to implement hardware structures to avoid hazard conditions that
may result from the update of CSFRs. Such hazard conditions are avoided by the insertion of an ISYNC instruction
immediately after the MTCR update of the CSFR. The ISYNC instruction ensures that the effects of the CSFR
update are correctly seen by all following instructions.
A MTCR instruction that accesses an undefined register location will have no effect. A MFCR instruction that
accesses an undefined register location will return undefined data.
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4 Tasks and Functions
Most embedded and real-time control systems are designed according to a model in which interrupt handlers
and software-managed tasks are each considered to be executing on their own ‘virtual’ microcontroller. That
model is generally supported by the services of a Real-time Executive or Real-time Operating System (RTOS),
layered on top of the features and capabilities of the underlying machine architecture.
In the TriCore™ architecture, the RTOS layer can be very ‘thin’ and the hardware can efficiently handle much of
the switching between one task and another. At the same time the architecture allows for considerable flexibility
in the tasking model used. System designers can choose the real-time executive and software design approach
that best suits the needs of their application, with relatively few constraints imposed by the architecture.
The mechanisms for low-overhead task switching and for function calling within the TriCore architecture are
closely related.

4.1 Context Types
A task is an independent thread of control. The state of a task is defined by its context. When a task is interrupted,
the processor uses that task’s context to re-enable the continued execution of the task.
The context types are:
• Upper context: Consists of the upper address registers A[10] to A[15] and the upper data registers D[8] to

D[15]. The upper context also includes PCXI and PSW. These registers are designated as non-volatile for
purposes of function-calling (their contents are preserved across calls).

• Lower context: Consists of the lower address registers A[2] to A[7], the lower data registers D[0] to D[7], A[11]
(Return Address) and PCXI.

Contexts, when saved to memory, occupy 16 word blocks of storage, known as Context Save Areas (CSAs).

User Manual (Volume 1) 4-1 V1.2.2
2020-01-15



Upper Context
Example Memory D[15]

Addresses
D[14]

803FFFFCH D[13]
803FFFF8H D[12]803FFFF4H
803FFFF0H A[15]803FFFECH
803FFFE8H A[14]
803FFFE4H A[13]803FFFE0H
803FFFDCH A[12]803FFFD8H
803FFFD4H D[11]
803FFFD0H D[10]803FFFCCH
803FFFC8HLower Context D[9]803FFFC4HD[7] 803FFFC0H D[8]

D[6] A[11] (RA)-
D[5] A[10] (SP)

-
D[4] PSW

803FFB7CHA[7] PCXI (Link Word)803FFB78HA[6] 803FFB74H
803FFB70HA[5] 803FFB6CH
803FFB68HA[4]
803FFB64HD[3] 803FFB60H
803FFB5CHD[2] 803FFB58H
803FFB54HD[1]
803FFB50HD[0] 803FFB4CH
803FFB48HA[3] 803FFB44H
803FFB40HA[2]

A[11] (RA)
PCXI (Link Word)

TC1015F

-
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Figure 12 Upper and Lower Contexts

4.1.1 Context Save Area
The architecture uses linked lists of fixed-size Context Save Areas. A CSA is 16 words of memory storage, aligned
on a 16 word boundary. Each CSA can hold exactly one upper or one lower context. CSAs are linked together
through a Link Word.
The Link Word includes two fields that link the given CSA to the next one in a chain. The fields are a 4-bit segment
and a 16-bit offset. The segment number and offset are used to generate the Effective Address (EA) of the linked
CSA. See Figure 13.
Incrementing the pointer offset value by one always increments the EA to the address that is 16 word locations
above the previous one. The total usable range in each address segment for CSAs is 4 MBytes, resulting in storage
space for 216 CSAs.
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Figure 13 Generation of the Effective Address of a Context Save Area (CSA)

If the CSA is in use (for example, it holds an upper or lower context image for a suspended task), then the Link
Word also contains other information about the linked context. The entire Link Word is a copy of the PCXI register
for the associated task.
For further information on how linked CSAs support context switching, refer to “Context Save Areas (CSAs) and
Context Lists” on Page 4

4.2 Task Switching Operation
The architecture switches tasks when one of the events or instructions listed in Table 7, occurs. When one of
these events or instructions is encountered, the upper or lower context of the task is saved or restored. The upper
context is saved automatically as a result of an external interrupt, trap or function call. The lower context is saved
explicitly through instructions. In Table 7 ‘Save’ is a store through the Free CSA List Head Pointer register (FCX)
after the next value for the FCX is read from the Link Word. ‘Store’ is a store through the Effective Address of the
instruction with no change to the CSA list or the FCX register. ‘Restore’ is the converse of ‘Save’. ‘Load’ is the
converse of ‘Store’.
There is an essential difference in the treatment of registers in the upper and lower contexts, in terms of how their
contents are maintained. The lower context registers are similar to global registers in the sense that a interrupt
handler, trap handler or called function, sees the same values that were present in the registers just before the
interrupt, trap or call. Any changes made to those registers that are made in the interrupt, trap handler or called
function, remains present after the return from the event, since they are not automatically restored as part of the
Return From Call (RET) or Return From Exception (RFE) semantics. That means that the lower context registers
can be used to pass arguments to called functions and pass return values from those functions. It also means that
interrupt and trap handlers must save the original values they find in these registers before using the registers,
and to restore the original values before exiting.
The upper context registers are not guaranteed to be static hardware registers. Conceptually, a function call or
interrupt handler always begins execution with its own private set of upper context registers. The upper context
registers of the interrupted or calling function are not inherited.
Only the A[10](SP), A[11](RA), PSW, PCXI and (in the case of a trap) D[15] registers start with architecturally
defined values in the called function, trap handler or interrupt handler. A function, trap handler or interrupt
handler that reads any of the other upper context registers before writing a value into it, is performing an
undefined operation.
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Table 7 Context Related Events and Instructions
Event / Instruction Context Operation

Interrupt Restore Upper

Trap Restore Upper

CALL - Function Call Restore Upper

BISR - Begin Interrupt Service Restore Lower
Routine

SVLCX - Save Lower Context Restore Lower

STLCX - Store Lower Context Load Lower

STUCX - Store Upper Context Load Upper

4.3 Context Save Areas (CSAs) and Context Lists
The upper and lower contexts are saved in Context Save Areas (CSAs). Unused CSAs are linked together in the Free
Context List (FCX). CSAs that contain saved upper or lower contexts are linked together in the Previous Context
List (PCX). The following figure (Figure 14) shows a simple configuration of CSAs within both context lists.

CSAs in Memory

Free Context List
Processor

SFRs
CSA 3 CSA 4 CSA 5 CSA 6

FCX Link to 4 Link to 5 Link to 6 Link

Previous Context List

CSA 2 CSA 1

PCX Link to 1 Link
TC1017

Figure 14 CSAs in Context Lists

The contents of the FCX register always points to an available CSA in the Free Context List. That CSAs Link Word
points to the next available CSA in the free context list.
Before an upper or lower context is saved in the first available CSA, its Link Word is read, supplying a new value
for the FCX. To the memory subsystem, context saving is therefore a read/modify/write operation. The new value
of FCX, which points to the next available CSA, is available immediately for subsequent upper or lower context
saves.
The LCX register points to one of the last CSAs in the free list and is used to recognise impending free CSA list
depletion. If the value of FCX matches that of LCX when an operation that performs a context save is attempted,
the operation completes and a free CSA list depletion trap (FCD) is taken on the next instruction; i.e., the return
address of the FCD trap is the first instruction of the trap/interrupt/called routine or the instruction following an
SVLCX or BISR instruction. See “Context Management (Trap Class 3)” on Page 8.
The action taken by the trap handler depends on the software implementation. It might issue a system reset for
example, if it is determined that the CSA list depletion resulted from an unrecoverable software error. Normally
however it extends the free list, either by allocating additional memory or by terminating one or more tasks and
reclaiming their CSA call chains. In those cases the trap handler exits with a RFE instruction.
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Operation

Complement Instruction

Save Upper RFE - Return from Exception

Save Upper RFE - Return from Exception

Save Upper RET - Return from Call

Save Lower RSLCX - Restore Lower Context

Save Lower RSLCX - Restore Lower Context

Store Lower LDLCX - Load Lower Context

Store Upper LDUCX - Load Upper Context
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The link word in the last CSA in a free context list must be set to null before it is first used. This is necessary to
support the FCU trap. Before first use of the CSA, the PCX pointer value should be null. This is to support CSU (Call
Stack Underflow) traps.
The PCXI.PCX field points to the CSA where the previous context was saved. The PCXI.UL bit identifies whether
the saved context is upper (PCXI.UL == 1) or lower (PCXI.UL == 0). If the type does not match the type expected
when a context restore operation is performed, a CYTP exception occurs and a context management trap is
taken.
After the context save operation has been performed the Return Address A[11](RA) is updated:
• For a call, the A[11](RA) is updated with the function return address.
• For a synchronous trap, the A[11](RA) is updated with the PC of the instruction which raised the trap.
• For a SYSCALL and an asynchronous trap or an interrupt, the A[11](RA) is updated with the PC of the next

instruction to be executed.
When a lower context save operation is performed the value of A[11](RA) is included in the saved context and is
placed in the second word of the CSA. This A[11](RA) is correspondingly restored by a lower context restore.
The Call Depth Control field (PSW.CDC) consists of two subfields; A call depth counter, and a mask that
determines the width of the counter and when it overflows.
The Call Depth Counter is incremented on calls and is restored to its previous value on returns. An exception
occurs when the counter overflows. Its purpose is to prevent software errors from causing ‘runaway recursion’
and depleting the CSA free list.

4.4 Context Switching with Interrupts and Traps
When an interrupt or trap (for example NMI or SYSTRAP) occurs, the processor saves the upper context of the
current task in memory, suspends execution of the current task and then starts execution of the interrupt or trap
handler.
If, when an interrupt or trap is taken, the processor is not using the interrupt stack (PSW.IS bit == 0), the Stack
Pointer is then loaded with the current contents of the ISP (Interrupt Stack Pointer). The PSW.IS bit is then set to
one (1) to indicate execution from the interrupt stack.
The Interrupt Control Register (ICR) holds the Current CPU Priority Number (ICR.CCPN), the Interrupt Enable bit
(ICR.IE) and Pending Interrupt Priority Number (ICR.PIPN). These fields, together with the Previous CPU Priority
Number (PCXI.PCPN) and Previous Interrupt Enable (PCXI.PIE) are all part of the interrupt management system.
ICR.CCPN is typically only non-zero within Interrupt Service Routines (ISRs) where it is used to order interrupt
servicing. It is held in a register that is separate from the PSW and is not part of the context that the RTOS handles
for switching among Software Managed Tasks (SMTs).
PCXI.PIE is only typically zero within Trap handlers started within ISRs, e.g. an NMI or SYSTRAP occurring during
a peripheral service request.
For both interrupts and traps, the existing PCPN and PIE values in the current PCXI are saved in the CSA for the
upper context, and the existing IE and CCPN values in the ICR are copied to the PCXI.PIE and PCXI.PCPN fields.
Once the interrupt or trap is handled, the saved lower context is reloaded if necessary and execution of the
interrupted task is resumed (RFE).
On an interrupt or trap the upper context of the current task context is saved by hardware as an explicit part of
the interrupt or trap sequence. For small interrupt and trap handlers that can execute entirely within this set of
registers saved on the interrupt, no further context saving is needed. The handler can execute immediately and
return. Typically handlers that make calls or require more registers execute the BISR (Begin Interrupt Service
Routine) or SVLCX (Save Lower Context) instruction to save the lower context registers that were not saved as part
of the interrupt or trap sequence. That instruction must be issued before any of the associated registers are
modified, but it need not be the first instruction in the handler.
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Interrupt handlers with critical response time requirements can perform their initial, time-critical processing
immediately, using upper context registers. After that they can execute a BISR and continue with less time-critical
processing. The BISR re-enables interrupts, hence its use dividing time critical from less time critical processing.
Trap handlers typically do not have critical response time requirements, however those that can occur in an ISR
or those which might hold off interrupts for too long can also take a similar approach to distinguish between non-
interruptible and interruptible execution segments.
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4.5 Context Switching for Function Calls
When a function call is made (the CALL instruction is executed), the context of the calling routine must be saved
and then restored in order to resume the caller’s execution after return from the function.
On a function call the entire set of upper context registers are saved by hardware. Furthermore, the saving of the
upper context by the CALL instruction happens in parallel with the call jump. In addition, restoring the upper
context is performed by the RET (Return) instruction and takes place in parallel with the return jump. The called
function does not need to save and restore the caller’s context and is freed of any need to restrict its usage of the
upper context registers. The calling and called functions must co-operate on the use of the lower context
registers.

4.6 Fast Function Calls with FCALL/FRET
In situations where the saving and restoring of the upper context registers is not required an FCALL instruction
may be used in preference to a CALL. The FCALL instruction performs a call jump and in parallel saves the current
return address (A11) to the stack. No other state is saved. The called function therefore starts execution with the
same context as the caller (with the exception of A10 and A11).
To return from a function called by an FCALL, an FRET instruction is executed. This performs a jump to the current
return address (A11) and loads the previous A11 back from the stack. No other state is loaded. The caller function
therefore resumes execution with a context modified by the called function. The calling and called functions
must co-operate on the use of all registers.
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4.7 Context Save and Restore Examples
This section provides an example of a context save operation and an example of a context restore operation.

4.7.1 Context Save
Figure 15 shows the free and previous context lists for this example. The free context list (FCX) contains three free
CSAs (3, 4, and 5), and the previous context list (PCX) contains two CSAs (2 and 1).
The FCX points to CSA3, the first available CSA. The Link Word of CSA3 points to CSA4; the Link Word of CSA4
points to CSA5. The PCX points to the most recently saved CSA in the previous context list. The Link Word of CSA2
points to CSA1. CSA1 contains the saved context prior to CSA2.
When the context save operation is performed, the first CSA in the free context list (CSA3) is pulled off and is
placed on the front of the previous context list.

Free Context List
Processor
SFRs

CSA 3 CSA 4 CSA 5

FCX Link to 4 Link to 5 Link

Previous Context List

CSA 2 CSA 1

PCX Link to 1 Link
TC1018

Figure 15 CSAs and Processor State Prior to Context Save

Figure 16 shows the steps taken during the context save operation. The numbers in the figure correspond to the
steps listed after the figure.

FCX

3 4

PCX NEW_FCX

2 1
CSA 3

TC1019Link

Figure 16 CSA and Processor SFR Updates on a Context Save Process

1. The contents of the Link Word in CSA3 are loaded into the NEW_FCX. The NEW_FCX now points to CSA4. The
NEW_FCX is an internal buffer and is not accessible by the user.

2. The contents of the PCX are written into the Link Word of CSA3. The Link Word of CSA3 now points to CSA2.
3. The contents of FCX are written into the PCX. The PCX now points to CSA3, which is at the front of the Previous

Context List.
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4. The NEW_FCX is loaded into the FCX.
The processor SFRs and CSAs look as shown in Figure 17. The processor context to be saved is now written into
the rest of CSA3.

Free Context List
Processor
SFRs

CSA 4 CSA 5

FCX Link to 5 Link

Previous Context List

CSA 3 CSA 2 CSA 1

PCX Link to 2 Link to 1 Link
TC1020

Figure 17 CSAs and Processor State After Context Save

4.7.2 Context Restore
The example in Figure 18, shows the previous context list (PCX) with three CSAs (3, 2, and 1) and the free context
list (FCX) containing two CSAs (4 and 5).
The FCX points to CSA4, the first available CSA in the free context list. PCX points to CSA3, the most recently saved
CSA in the previous context list.
The Link Word of CSA3 points to CSA2; the Link Word of CSA2 points to CSA1; the Link Word of CSA4 points to
CSA5.

Free Context List
Processor
SFRs CSA 4 CSA 5

FCX Link to 5 Link

Previous Context List

CSA 3 CSA 2 CSA 1

PCX Link to 2 Link to 1 Link
TC1021

Figure 18 CSAs and Processor State Prior to Context Restore

When the context restore operation is performed, the first CSA in the previous context list (CSA3) is pulled off and
is placed on the front of the free context list.
Figure 19 shows the steps taken during the context restore operation. The numbers in the figure correspond to
the following steps:
1. The contents of the Link Word in CSA3 are loaded into the NEW_PCX. The NEW_PCX now points to CSA2. The

NEW_PCX is an internal buffer and is not accessible by the user.
2. The contents of the FCX are written into the Link Word of CSA3. The Link Word of CSA3 now points to CSA4.
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3. The contents of the PCX are written into the FCX. The FCX now points to CSA3, which is at the front of the free
context list.

4. The NEW_PCX is loaded into the PCX.

Figure 19 CSA and Processor SFR Updates on a Context Restore Process

The processor SFRs and CSAs now look as shown in Figure 20. The restored context is then written into the upper
or lower context registers.

Free Context List
Processor
SFRs

CSA 3 CSA 4 CSA 5

FCX Link to 4 Link to 5 Link

Previous Context List

CSA 2 CSA 1

PCX Link to 1 Link
TC1023

Figure 20 CSAs and Processor State After Context Restore
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4.8 Context Management Registers
The three context management registers are pointers that are used during context save and restore operations.
• FCX: Free CSA List Head PointerPage 12.
• PCX: Previous Context PointerPage 13.
• LCX: Free CSA List Limit PointerPage 14.
Each pointer consists of two fields:
• A16-bit offset.
• A 4-bit segment specifier.
Table 21 shows how the effective address of a Context Save Area (CSA) is generated using these two fields. A
Context Save Area is an address range containing 16 word locations (64 bytes), which is the space required to save
one upper or one lower context. Incrementing the pointer offset value by one always increments the Effective
Address (EA) to the address that is 16 word locations above the previous one. The total usable range in each
address segment for CSAs is 4 MBytes, resulting in storage space for 64 KByte CSAs.

_Link Word_

31 20 19 16 15 0

Segment Offset

Zero fill Left shift by six Zero fill31 28 27 22 21 0

Segment 0  0  0  0  0  0 Offset 0  0  0  0  0  0

TC1016

Figure 21 Generation of the Effective Address of a Context Save Area (CSA)

Note: See “Context Save Area” on Page 2 for additional constraints on the Effective Address (EA).
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4.8.1 Registers

Free CSA List Head Pointer Register (FCX)
The Free CSA List Head Pointer (FCX) register holds the free CSA list head pointer. This always points to an
available CSA.

FCX
Free CSA List Head Pointer (FE38H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rw

15 14 13 12 11 10 19 8 7 6 5 4 3 2 1 0

FCXO

rw

Field Description
RES Reserved
FCXS FCX Segment Address

Used in conjunction with the FCXO field.

FCXO FCX Offset Address
The FCXO and FCXS fields together form the FCX pointer, which points to the
next available CSA.
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Previous Context Pointer Register (PCX)
The Previous Context Pointer (PCX) holds the address of the CSA of the previous task. The PCX is part of the PCXI
register.

PCX
Previous Context Pointer Register (FE00H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rw

Field Description
RES Reserved
PCXS Previous Context Pointer Segment Address

This field is used in conjunction with the PCXO field.

PCXO Previous Context Pointer Offset
The PCXO and PCXS fields form the pointer PCX, which points to the CSA of
the previous context.
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4.8.2 Free CSA List Limit Pointer Register (LCX)
The free CSA List Limit Pointer (LCX) register is used to recognize impending free CSA list depletion. If a context
save operation occurs and the value of FCX matches LCX then the ‘free context depletion’ condition is recognized,
which triggers an FCD trap immediately after completion of the operation causing the context save; i.e. the return
address of the FCD trap is the first instruction of the trap/interrupt/called routine, or the instruction following an
SVLCX or BISR instruction.

Note: Please refer to the FCD trap description for details on the use and setting of LCX. See “FCD - Free
Context list Depletion (TIN 1)” on Page 8.

Free CSA List Limit Pointer Register (LCX)

LCX
Free CSA List Limit Pointer (FE3CH) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCXO

rw

Field Description
RES Reserved
LCXS LCX Segment Address

This field is used in conjunction with the LCXO field.

LCXO LCX Offset
The LCXO and LCXS fields form the pointer LCX, which points to the last
available CSA.
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4.9 Accessing CSA Memory Locations
Implementations may internally buffer context information to increase performance. To ensure memory
coherency, a DSYNC instruction must be executed prior to any access to an active CSA memory location. The
DSYNC instruction forces all internally buffered CSA register state to be written to memory.

4.10 Context Save Area Placement
Context Save Areas (CSAs) may not be placed in memory segments which have the peripheral space attribute
(Section 1.2.1), or in memory areas that undergo address translation (if an MMU is present and enabled).

Note: Individual TriCore implementations may place additional restrictions on CSA placement. Such
restrictions will be detailed in the documentation accompanying a specific TriCore product.
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5 Interrupt System
In a TriCore™ system, multiple sources such as peripherals or external interrupts can generate interrupt requests
to interrupt service providers such as CPUs or a DMA channels. This chapter describes the interrupt processing
capabilities of the CPU including the interrupt prioritisation scheme and access to the vector table.

5.1 General Operation
Each interrupt source is assigned a unique interrupt priority number known as the Service Request Priority
Number (SRPN). On receipt of an interrupt request from an interrupt source the SRPN is used by the Interrupt
Control Unit (ICU) to prioritise between multiple concurrent interrupt requests. The SRPN of the winning request
is supplied to the CPU as a Pending Interrupt Priority Number (PIPN) along with an request trigger. The CPU
decides whether to accept a requested interrupt by comparing the PIPN with its Current CPU Priority Number
(CCPN). If the CPU decides to accept the requested interrupt it responds with an Interrupt Acknowledge and the
returns the priority number of the taken interrupt. The ICU will then clear down the requesting interrupt source.

5.1.1 ICU Interrupt Control Register (ICR)
The ICU Interrupt Control Register (ICR) holds the Current CPU Priority Number (CCPN), the global Interrupt
enable/disable bit (IE) and the current Pending Interrupt Priority Number (PIPN).

5.1.2 CPU operation on an interrupt request
The CPU checks the state of the global interrupt enable bit ICR.IE, and compares the current CPU priority number
ICR.CCPN against the PIPN. The CPU can be interrupted only if ICR.IE == 1 and PIPN is greater than CCPN. If this is
true the CPU can enter the service routine. The PIPN is used to determine the interrupt vector table entry point
and acknowledges the ICU, which in turn sends acknowledgement back to the pending interrupt request.
Several conditions could block the CPU from immediately responding to the interrupt request generated by the
ICU. These are:
• The interrupt system is globally disabled (ICR.IE == 0).
• The current CPU priority (CCPN), is equal to or higher than the Pending Interrupt Priority Number (PIPN).
• The CPU is in the process of entering an interrupt or trap service routine.
• The CPU is operating on non-interruptible trap services.
• The CPU is executing a multi-cycle instruction.
• The CPU is executing an instruction which modifies the ICR.
The CPU responds to the interrupt request only when these conditions are no longer true.

5.1.3 Entering an Interrupt Service Routine (ISR)
When all conditions are clear for the CPU to service an interrupt request, the following actions are performed to
enter an Interrupt Service Routine (ISR):
• The upper context of the current task is saved.
• The Return Address (A[11]) is updated with the current PC.
• If the processor was not previously using the interrupt stack (PSW.IS = 0), then the A[10] Stack Pointer is set to

the interrupt stack pointer (ISP). The stack pointer bit is then set for using the interrupt stack: PSW.IS = 1.
• The I/O mode is set to Supervisor mode, which means all permissions are enabled: PSW.IO = 10B.
• The current Protection Register Set is set to 0: PSW.PRS = 000B.
• The Call Depth Counter (PSW.CDC) is cleared, and the call depth limit selector is set for 64:

PSW.CDC = 0000000B.
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• Call Depth Counter is enabled, PSW.CDE = 1.
• PSW Safety bit is set to value defined in the SYSCON register. PSW.S = SYSCON.IS.
• Write permission to global registers A[0], A[1], A[8], A[9] is disabled: PSW.GW = 0.
• The interrupt system is globally disabled: ICR.IE = 0. The old ICR.IE is saved into PCXI.PIE.
• The Current CPU Priority Number (ICR.CCPN) is saved into the Previous CPU Priority Number (PCXI.PCPN)

field.
• The Pending Interrupt Priority Number (ICR.PIPN) is saved into the Current CPU Priority Number (ICR.CCPN)

field.
• The interrupt vector table is accessed to fetch the first instruction of the ISR.

Note: Global register write permission is disabled (PSW.GW == 0) whenever an Interrupt Service Routine or
trap handler is entered. This ensures that all traps and interrupts must assume they do not have write
access to the registers controlled by PSW.GW by default.

An Interrupt Service Routine is entered with the interrupt system globally disabled and the current CPU priority
(CCPN) set to the priority (PIPN) of the interrupt being serviced. It is up to the user to enable the interrupt system
again and optionally modify the priority number CCPN to implement interrupt priority levels or handle special
cases. See “Using the TriCore Interrupt System” on Page 5.
The interrupt system can be enabled with the ENABLE instruction. ENABLE sets ICR.IE = 1 (interrupt system
enabled). The BISR (Begin Interrupt Service Routine) instruction also enables the interrupt system, sets the
ICR.CCPN to a new value, and saves the lower context of the interrupted task. The interrupt enable bit (ICR.IE) and
current CPU priority number (ICR.CCPN) can also be modified with the MTCR (Move To Core Register) instruction.
The ENABLE, BISR, and DISABLE (disable interrupts) instructions are all executed such that the CPU is blocked
from taking interrupt requests until the instruction is completely finished. This avoids pipeline side effects and
eliminates the need for an ISYNC (synchronize instruction stream) following these instructions. MTCR is an
exception and must be followed by an ISYNC instruction.

5.2 Exiting an Interrupt Service Routine (ISR)
When an ISR exits with an RFE (Return From Exception) instruction, the hardware automatically restores the
upper context. The upper context includes the PCXI register which holds the Previous CPU Priority Number
(PCPN) and the Previous Global Interrupt Enable Bit (PIE). The values in these respective bits are used as follows:
• PCXI.PCPN is written to ICR.CCPN to set the CPU priority number to the value before interruption.
• PCXI.PIE is written to ICR.IE to restore the state of this bit.
The interrupted routine then continues.

5.3 Interrupt Vector Table
Interrupt Service Routines are associated with interrupts at a particular priority by way of the Interrupt Vector
Table. The Interrupt Vector Table is an array of Interrupt Service Routine (ISR) entry points. The Interrupt Vector
Table is stored in memory.
When the CPU takes an interrupt, it calculates an address in the Interrupt Vector Table that corresponds with the
priority of the interrupt (the ICR.PIPN bit field). This address is loaded in the program counter. The CPU begins
executing instructions at this address in the Interrupt Vector Table. The code at this address is the start of the
selected Interrupt Service Routine (ISR). Depending on the code size of the ISR, the Interrupt Vector Table may
only store the initial portion of the ISR, such as a jump instruction that vectors the CPU to the rest of the ISR
elsewhere in memory.
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The Base of Interrupt Vector Table register (BIV) stores the base address of the Interrupt Vector Table. Interrupt
vectors are ordered in the table by increasing priority. The BIV register can be modified using the MTCR
instruction during the initialization phase of the system (the BIV is ENDINIT protected), before interrupts are
enabled. With this arrangement, it is possible to have multiple Interrupt Vector Tables and switch between them
by changing the contents of the BIV register.
When interrupted, the CPU calculates the entry point of the appropriate Interrupt Service Routine from the PIPN
and the contents of the BIV register. Two vector table configurations are available with either 32 byte to 8 byte
spacing between vectors. The spacing is selected by the Vector Size Select (VSS) bit of the BIV register.
To generate a pointer into the Interrupt vector table the PIPN is left-shifted by either five bits (VSS=0), or three bits
(VSS=1) and ORed with the address in the BIV register to generate a pointer into the Interrupt Vector Table.
Execution of the ISR begins at this address. Due to this operation, it is recommended that bits [14:5] (VSS=0) or
bits[12:3] (VSS=1) of register BIV are set to 0.
if (BIV.VSS == 1’b0)
ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<5};
else
ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<3};

If an interrupt handler is very short it may fit entirely within the words available in the vector code segment.
Otherwise the code stored at the entry location can either span several vector entries, or should contain some
initial instructions followed by a jump to the rest of the handler. See “Spanning Interrupt Service Routines
across Vector Entries” on Page 5

Interrupt Vector
Table

Priority Number

8 Words

PN = 255

8 Words

PN = 5

Service PN = 4
Routine (may not be used
may span if spanned by ISR
several with PN = 2)

PN = 3entries

PN = 2

8 Words

PN = 1

8 Words

BIV PN = 0 (never used)
TC1025D

Figure 22 Interrupt Vector Table (VSS=0)
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The BIV register allows the interrupt vector table to be located anywhere in the available code memory. The
default on power-up is implementation specific. The BIV register can be written to using the MTCR instruction
during the initialization phase of the system, before interrupts are enabled. It is also possible to have multiple
interrupt vector tables and switch between them simply by modifying the contents of the BIV register.
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5.4 Using the TriCore Interrupt System
The following sections contain examples showing how the TriCore architectures flexible interrupt system can be
used to solve both typical and special application requirements.

5.4.1 Spanning Interrupt Service Routines across Vector Entries
Because vector entries are not tied to the interrupt source, it is easy to span Interrupt Service Routines (ISRs)
across vector entry locations, as shown previously in Figure 22 Page 3. Spanning eliminates the need of a jump
to the rest of the interrupt handler if it would not fit into the available eight words between entry locations.
Note that priority numbers relating to entries occupied by a spanned service routine must not be used for any of
the active Service Request Nodes (SRNs) which request service from the same service provider.
In Figure 22Page 3, vector locations three and four are covered through the service routine for entry two.
Therefore these numbers must not be assigned to SRNs requesting CPU service, although they can be used to
request another service provider. The next available vector entry is now entry five.
Use of this technique increases the range of priority numbers required in a given system, but the size of the vector
table must be adjusted accordingly.

5.4.2 Interrupt Priority Groups
Interrupt priority groups describe a set of interrupts which cannot interrupt each others service routine. These
groups are easily created with the TriCore interrupt system architecture.
When the CPU starts the service of an interrupt, the interrupt system is globally disabled and the CPU priority
CCPN is set to the priority of the interrupt being serviced. This blocks all further interrupts from being serviced
until the interrupt system is either enabled again through software, or the service routine is terminated with the
RFE (Return From Exception) instruction.

Note: The RFE instruction automatically re-installs the previous state of the ICR.IE bit. This will be one
(ICE.IE = 1), otherwise that interrupt would not have been serviced.

When Interrupt Service Routine (ISR) software enables the interrupt system again by setting ICR.IE without
changing the CCPN, the effect is that all interrupt requests with the same or lower priority than the CCPN are still
blocked from being serviced. This includes a re-occurrence of the current interrupt; i.e. it can not interrupt this
service.
However this ISR will be interrupted by each request which has a higher priority number than the CCPN. A
potential problem (that is easily overcome in the TriCore architecture) is that application requirements often
require interrupt requests of similar significance to be grouped together in such a way that no request in that
group can interrupt the ISR of another member of the same group.
Creating these Interrupt Priority Groups is easily accomplished in the interrupt system. For a defined group of
interrupt requests, the software of their respective service routines sets the CCPN to the number of the highest
SRPN used in that group, before enabling the interrupt system again. Figure 23 shows an example.
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Figure 23 Interrupt Priority Groups

The interrupt requests with the priority numbers 11 and 12 form one group while the requests with priority
numbers 14 to 17 inclusive form another group. Every time one of the interrupts from group one is serviced, the
service routine sets the CCPN to 12, the highest number in that group, before re-enabling the interrupt system.
Every time one of the interrupts from group two is serviced, the service routine sets the CCPN to 17 before re-
enabling the interrupt system. If interrupt 14 is serviced for example, it can only be interrupted by requests with
a priority number higher than 17, but not through a request from its own priority group or requests with lower
priority.
One can see the flexibility of this system and its superiority over systems with fixed priority levels. In the example
above, the interrupt request with priority number 13 forms its own single member ‘group’. Setting the CCPN to
the maximum number 255 in each service routine has the same effect as not enabling the interrupt system again;
i.e. all interrupt requests can be considered to be in one group.
The flexibility for interrupt priority levels ranges from all interrupts being in one group, to each interrupt request
building its own group, and all possible combinations in between.

5.4.3 Dividing ISRs into Different Priorities
Interrupt Service Routines can be easily divided into parts with different priorities. For example, an interrupt is
placed on a very high priority because response time and reaction to an event is critical, but further operations in
that service routine can run on a lower priority. In this instance the service routine would be divided into two
parts, one containing the critical actions, the other part the less critical ones.
The priority of the interrupt node is first set to the high priority, so that when the interrupt occurs the necessary
actions are carried out immediately. The priority level of this interrupt is then lowered and the interrupt request
bit is set again via software (indicating a pending interrupt) while still in the service routine. Returning to the
interrupted program terminates the high priority service routine. The pending interrupt is serviced when the CPU
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priority is lower than its own priority. After entering the service routine, which is now at a different address in the
program memory, the outstanding but low-priority actions of the interrupt are performed.
In other instances the priority of a service request might be low because the response time to an event is not
critical, but once it has been granted service it should not be interrupted. To prevent any interruption the TriCore
architecture allows the priority level of the service request to be raised within the ISR, and also allows interrupts
to be completely disabled.

5.4.4 Using Different Priorities for the Same Interrupt Source
For some applications the priority of an interrupt request in relation to other requests is not fixed, but depends
on the current situation in the system. This can be achieved simply by assigning different Service Request Priority
Numbers (SRPNs) at different times to an interrupt source depending on the application needs. Usually the ISR
for that interrupt executes different code depending on its priority.
In traditional interrupt systems, the ISR would have to check the current priority of that interrupt request and
perform a branch to the appropriate code section, causing a delay in the response to the request. In the TriCore
system however, the interrupt will automatically have different vector entries for the different priorities. An extra
check and branch in the ISR is not necessary, therefore the interrupt latency is reduced.
In case the ISR is independent of the interrupt’s priority, branches need to be placed to the common ISR code on
each of the vector entries for that interrupt.

Note: The use of different priority numbers for one interrupt has to be taken into consideration when creating
the vector table.
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5.4.5 Interrupt Control Registers
Two CSFRs support interrupt handling:
• ICR: Interrupt Control RegisterPage 8
• BIV: Base Interrupt Vector Table PointerPage 10
The ICR holds the Current CPU Priority Number (CCPN), the enable/disable bit for the Interrupt System (IE), the
Pending Interrupt Priority Number (PIPN), and an implementation specific control for the interrupt arbitration
scheme. The BIV register holds the base addresses for the interrupt vector tables. Special instructions control the
enabling and disabling of the interrupt system. For more information see “Interrupt System” on Page 1.

ICU Interrupt Control Register (ICR)
The ICU Interrupt Control register is defined as follows:

ICR
ICU Interrupt Control (FE2CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rwh - rwh

Field Function
RES Reserved
PIPN Pending Interrupt Priority Number

A read-only bit field that is updated by the ICU at the end of each interrupt
arbitration process. It indicates the priority number of the pending service
request. ICR.PIPN is set to 0 when no request is pending, and at the
beginning of each new arbitration process.
00H : No valid pending request.
01H : Request pending, lowest priority.
…
FFH : Request pending, highest priority.

IE Global Interrupt Enable Bit
The interrupt enable bit globally enables the CPU service request system.
Whether a service request is delivered to the CPU depends on the individual
Service Request Enable Bits (SRE) in the SRNs, and the current state of the
CPU.
ICR.IE is automatically updated by hardware on entry and exit of an
Interrupt Service Routine (ISR). ICR.IE is cleared to 0 when an interrupt is
taken, and is restored to the previous value when the ISR executes an RFE
instruction to terminate itself. ICR.IE can also be updated through the
execution of the ENABLE, DISABLE, MTCR, and BISR instructions.
0 : Interrupt system is globally disabled.
1 : Interrupt system is globally enabled.
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Field Function
RES Reserved Field
CCPN Current CPU Priority Number

The Current CPU Priority Number (CCPN) bit field indicates the current
priority level of the CPU. It is automatically updated by hardware on entry or
exit of Interrupt Service Routines (ISRs) and through the execution of a BISR
instruction. CCPN can also be updated through an MTCR instruction.
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Base Interrupt Vector Table Pointer (BIV)
The BIV register contains the base address of the interrupt vector table. When an interrupt is accepted, the entry
address into the interrupt vector table is generated from the priority number (taken from the PIPN) of that
interrupt, left shifted by either three or five bits, and then ORd with the contents of the BIV register. The left-shift
of the interrupt priority number results in a spacing of either eight bytes or 32 bytes between the individual
entries in the vector table dependent on the vector spacing selected by the VSS bit.

BIV
Base Interrupt Vector Table Pointer (FE20H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BIV

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw rw

Field Description
BIV Base Address of Interrupt Vector Table

The address in the BIV register must be aligned to an even byte address
(halfword address). Because of the simple ORing of the left-shifted priority
number and the contents of the BIV register, the alignment of the base
address of the vector table must be to a power of two boundary, dependent
on the number of interrupt entries used.

VSS Vector Spacing Select
0 : 32 Byte Vector Spacing
1 : 8 Byte Vector Spacing
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6 Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an instruction exception, memory-
management exception or an illegal access. Traps are always active; they cannot be disabled by software action.
This chapter describes the different traps that can occur and the TriCore® architecture’s trap handling
mechanism.

6.1 Trap Types
The TriCore architecture specifies eight general classes for traps. Each class has its own trap handler, accessed
through a trap vector of 32 bytes per entry, indexed by the hardware-defined trap class number. Within each
class, specific traps are distinguished by a Trap Identification Number (TIN) that is loaded by hardware into
register D[15] before the first instruction of the trap handler is executed. The trap handler must test and branch
on the value in D[15] to reach the subhandler for a specific TIN.
Traps can be further classified as synchronous or asynchronous, and as hardware or software generated. These
are explained after the following table which lists the trap classes, summarising and classifying the pre-defined
set of specific traps within each class.
In the following table: TIN = Trap Identification Number / Synch. = Synchronous / Asynch. = Asynchronous /
HW = Hardware / SW = Software.

Table 8 Supported Traps
TIN Page

Class 0 — MMU
0 Page 6
1 Page 6
Class 1 — Internal Protection Traps
1 Page 6
2 Page 6
3 Page 6
4 Page 6
5 Page 7
6 Page 7
7 Page 7
Class 2 — Instruction Errors
1 Page 7
2 Page 7
3 Page 7
4 Page 7
5 Page 7
Class 3 — Context Management
1 Page 8
2 Page 9
3 Page 9
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Name Synch. / 
Asynch.

HW /
SW

Definition

VAF Synch. HW Virtual Address Fill.

VAP Synch. HW Virtual Address Protection.

PRIV Synch. HW Privileged Instruction.

MPR Synch. HW Memory Protection Read.

MPW Synch. HW Memory Protection Write.

MPX Synch. HW Memory Protection Execution.

MPP Synch. HW Memory Protection Peripheral Access.

MPN Synch. HW Memory Protection Null Address.

GRWP Synch. HW Global Register Write Protection.

IOPC Synch. HW Illegal Opcode.

UOPC Synch. HW Unimplemented Opcode.

OPD Synch. HW Invalid Operand specification.

ALN Synch. HW Data Address Alignment.

MEM Synch. HW Invalid Local Memory Address.

FCD Synch. HW Free Context List Depletion (FCX = LCX).

CDO Synch. HW Call Depth Overflow.

CDU Synch. HW Call Depth Underflow.



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Trap System

Table 8 Supported Traps (cont’d)

TIN Page

4 Page 9
5 Page 9
6 Page 9
7 Page 9
Class 4 — System Bus and Peripheral Errors
1 Page 10
2 Page 10
3 Page 10
4 Page 10
5 Page 11
6 Page 11
7 Page 11
Class 5— Assertion Traps
1 Page 11
2 Page 11

Class 6 — System Call1)

Page 11
Class 7 — Non-Maskable Interrupt
0 Page 11
1) For the system call trap, the TIN is taken from the immediate constant specified in the SYSCALL instruction. The range of

values that can be specified is 0 to 255, inclusive.

6.1.1 Synchronous Traps
Synchronous traps are associated with the execution or attempted execution of specific instructions, or with an
attempt to access a virtual address that requires the intervention of the memory-management system. The
instruction causing the trap is known precisely. The trap is taken immediately and serviced before execution can
proceed beyond that instruction.

6.1.2 Asynchronous Traps
Asynchronous traps are similar to interrupts, in that they are associated with hardware conditions detected
externally and signaled back to the core. Some result indirectly from instructions that have been previously
executed, but the direct association with those instructions has been lost. Others, such as the Non-Maskable
Interrupt (NMI), are external events. The difference between an asynchronous trap and an interrupt is that
asynchronous traps are routed via the trap vector instead of the interrupt vector. They can not be masked and
they do not change the current CPU interrupt priority number.

6.1.3 Hardware Traps
Hardware traps are generated in response to exception conditions detected by the hardware. In most, but not all
cases, the exception conditions are associated with the attempted execution of a particular instruction.
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Name Synch. / 
Asynch.

HW /
SW

Definition

FCU Synch. HW Free Context List Underflow (FCX = 0).

CSU Synch. HW Call Stack Underflow (PCX = 0).

CTYP Synch. HW Context Type (PCXI.UL wrong).

NEST Synch. HW Nesting Error: RFE with non-zero call depth.

PSE Synch. HW Program Fetch Synchronous Error.

DSE Synch. HW Data Access Synchronous Error.

DAE Asynch. HW Data Access Asynchronous Error.

CAE Asynch HW Coprocessor Trap Asynchronous Error.

PIE Synch HW Program Memory Integrity Error.

DIE Asynch HW Data Memory Integrity Error.

TAE Asynch HW Temporal Asynchronous Error

OVF Synch. SW Arithmetic Overflow.

SOVF Synch. SW Sticky Arithmetic Overflow.

SYS Synch. SW System Call.

NMI Asynch. HW Non-Maskable Interrupt.
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Examples are the illegal instruction trap, memory protection traps and data memory misalignment traps. In the
case of the MMU traps (trap class 0), the exception condition is either the failure to find a TLB (Translation
Lookaside Buffer) entry for the virtual page referenced by an instruction (VAF trap), or an access violation for that
page (VAP trap).

6.1.4 Software Traps
Software traps are generated as an intentional result of executing a system call or an assertion instruction. The
supported assertion instructions are TRAPV (Trap on overflow) and TRAPSV (Trap on sticky overflow). System
calls are generated by the SYSCALL instruction. System call traps are described further in “System Call (Trap
Class 6)” on Page 11.

6.1.5 Unrecoverable Traps
An unrecoverable trap is one from which software can not recover; i.e. the task that raised the trap can not be
simply restarted.
In the TriCore architecture, FCU (a fatal context trap) is an unrecoverable error. See “FCU - Free Context List
Underflow (TIN 4)” on Page 9 for more information.
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6.2 Trap Handling
The actions taken on traps by the trap handling mechanisms are slightly different from those taken on external
or software interrupts. A trap does not change the CPU interrupt priority, so the ICR.CCPN field is not updated.
See “Exception Priorities” on Page 12.

6.2.1 Trap Vector Format
The trap handler vectors are stored in code memory in the trap vector table. The BTV register specifies the Base
address of the Trap Vector table. The vectors are made up of a number of short code segments, evenly spaced by
eight words.
If a trap handler is very short it may fit entirely within the eight words available in the vector code segment. If it
does not fit the vector code segment then it should contain some initial instructions, followed by a jump to the
rest of the handler.

6.2.2 Accessing the Trap Vector Table
When a trap occurs, a trap identifier is generated by hardware. The trap identifier has two components:
• The Trap Class Number (TCN) used to index into the trap vector table.
• The Trap Identification Number (TIN) which is loaded into the data register D[15].
The Trap Class Number is left shifted by five bits and ORd with the address in the BTV register to generate the
entry address of the trap handler.

6.2.3 Return Address (RA)
The return address is saved in the return address register A[11].
For a synchronous trap, the return address is the PC of the instruction that caused the trap. Only the SYS trap and
FCD trap are different. On a SYS trap, triggered by the SYSCALL instruction, the return address points to the
instruction immediately following SYSCALL. The behaviour for the FCD trap is described in “FCD - Free Context
list Depletion (TIN 1)” on Page 8.
For an asynchronous trap, the return address is that of the instruction that would have been executed next, if the
asynchronous trap had not been taken. The return address for an interrupt follows the same rule.

6.2.4 Trap Vector Table
The entry-points of all Trap Service Routines are stored in memory in the Trap Vector Table. The BTV register
specifies the base address of the Trap Vector Table in memory. It can be assigned to any available code memory.
The BTV register can be modified using the MTCR instruction during the initialization phase of the system, (the
BTV register is ENDINIT protected). This arrangement makes it possible to have multiple Trap Vector Tables and
switch between them by changing the contents of the BTV register.
When a trap event occurs, a trap identifier is generated by the hardware detecting the event. The trap identifier
is made up of a Trap Class Number (TCN) and a Trap Identification Number (TIN).
The TCN is left-shifted by five bits and ORd with the address in the BTV register to form the entry address of the
TSR. Because of this operation, it is recommended that bits [7:5] of register BTV are set to 0 (see Figure 24). Note
that bit 0 of the BTV register is always 0 and can not be written to (instructions have to be aligned on even byte
boundaries).
Left-shifting the TCN by 5 bits creates entries into the Trap Vector Table which are evenly spaced 8 words apart.
If a trap handler (TSR) is very short, it may fit entirely within the eight words available in the Trap Vector Table
entry. Otherwise, the code at the entry point must ultimately cause a jump to the rest of the TSR residing
elsewhere in memory.
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Unlike the Interrupt Vector Table, entries in the Trap Vector Table cannot be spanned.

31 8 7 5 0
BTV 0 0 0 0 TCN

OR

Resulting Trap Vector Table Entry Address MCA04783

Figure 24 Trap Vector Table Entry Address Calculation

6.2.5 Initial State upon a Trap
The initial state when a trap occurs is defined as follows:
• The upper context is saved.
• The return address in A[11] is updated.
• The TIN is loaded into D[15].
• The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) when the processor was not previously

using the interrupt stack (in case of PSW.IS = 0). The stack pointer bit is set for using the interrupt stack:
PSW.IS = 1.

• The I/O mode is set to Supervisor mode, which means all permissions are enabled: PSW.IO = 10B.
• The current Protection Register Set is set to 0: PSW.PRS = 000B.
• The Call Depth Counter (CDC) is cleared, and the call depth limit is set for 64: PSW.CDC = 0000000B.
• Call Depth Counter is enabled, PSW.CDE = 1.
• PSW Safety bit is set to value defined in the SYSCON register. PSW.S = SYSCON.TS.
• Write permission to global registers A[0], A[1], A[8], A[9] is disabled: PSW.GW = 0.
• The interrupt system is globally disabled: ICR.IE = 0. The ‘old’ ICR.IE and ICR.CCPN are saved into PCXI.PIE and

PCXI.PCPN respectively. ICR.CCPN remains unchanged.
• The trap vector table is accessed to fetch the first instruction of the trap handler.
Although traps leave the ICR.CCPN unchanged, their handlers still begin execution with interrupts disabled. They
can therefore perform critical initial operations without interruptions, until they specifically re-enable interrupts.
For the non-recoverable FCU trap, the initial state is different. The upper context cannot be saved. Only the
following states are guaranteed:
• The TIN is loaded into D[15].
• The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) when the processor was not previously

using the interrupt stack (in case of PSW.IS == 0).
• The I/O mode is set to Supervisor mode (all permissions are enabled: PSW.IO = 10B).
• The current Protection Register Set is set to 0: PSW.PRS = 000B.
• PSW Safety bit is set to value defined in the SYSCON register: PSW.S = SYSCON.TS.
• The interrupt system is globally disabled: ICR.IE = 0. ICR.CCPN remains unchanged.
• The trap vector table is accessed to fetch the first instruction of the FCU trap handler.
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6.3 Trap Descriptions
The following sub-sections describe the trap classes and specific traps listed in Table 8 “Supported Traps” on
Page 1.

6.3.1 MMU Traps (Trap Class 0)
For those implementations that include a Memory Management Unit (MMU), Trap class 0 is reserved for MMU
traps. There are two traps within this class, VAF and VAP.

VAF - Virtual Address Fill (TIN 0)
The VAF trap is generated when the MMU is enabled and the virtual address referenced by an instruction does not
have a page entry in the MMU Translation Lookaside Buffer (TLB).

VAP - Virtual Address Protection (TIN 1)
The VAP trap is generated (when the MMU is enabled) by a memory access undergoing PTE translation that is not
permitted by the PTE protection settings, or by a User-0 mode access to an upper segment that does not have the
privileged peripheral property.

6.3.2 Internal Protection Traps (Trap Class 1)
Trap class 1 is for traps related to the internal protection system. The memory protection traps in this class, MPR,
MPW, and MPX, are for the range-based protection system and are independent of the page-based VAP protection
trap of trap class 0. See the “Memory Protection System” on Page 1 chapter for more details.
All memory protection traps (MPR, MPW, MPX, MPP, and MPN), are based on the virtual addresses that undergo
direct translation.
The following internal Protection Traps are defined:

PRIV - Privilege Violation (TIN 1)
A program executing in one of the User modes (User-0 or User-1 mode) attempted to execute an instruction not
allowed by that mode.
A table of instructions which are   to Supervisor mode or User-1 mode, is supplied in the Instruction Set
chapter of Volume 2 of this manual.

MPR - Memory Protection Read (TIN 2)
The MPR trap is generated when the memory protection system is enabled and the effective address of a load,
LDMST, SWAP or ST.T instruction does not lie within any range with read permissions enabled. This trap is not
generated when an access violation occurs during a context save/restore operation.

MPW - Memory Protection Write (TIN 3)
The MPW trap is generated when the memory protection system is enabled and the effective address of a store,
LDMST, SWAP or ST.T instruction does not lie within any range with write permissions enabled.

MPX - Memory Protection Execute (TIN 4)
The MPX trap is generated when the memory protection system is enabled and the PC does not lie within any
range with execute permissions enabled.
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MPP - Memory Protection Peripheral Access (TIN 5)
A program executing in User-0 mode attempted a load or store access to a segment is configured to be a
peripheral segment. See “Physical Memory Attributes (PMA)” on Page 3.

MPN - Memory Protection Null address (TIN 6)
The MPN trap is generated whenever any program attempts a load / store operation to effective address zero.

GRWP - Global Register Write Protection (TIN 7)
A program attempted to modify one of the global address registers (A[0], A[1], A[8] or A[9]) when it did not have
permission to do so.

6.3.3 Instruction Errors (Trap Class 2)
Trap class 2 is for signalling various types of instruction errors. Instruction errors include errors in the instruction
opcode, in the instruction operand encodings, or for memory accesses, in the operand address.

IOPC - Illegal Opcode (TIN 1)
An invalid instruction opcode was encountered. An invalid opcode is one that does not correspond to any
instruction known to the implementation.

UOPC - Unimplemented Opcode (TIN 2)
An unimplemented opcode was encountered. An unimplemented opcode corresponds to a known instruction
that is not implemented in a given hardware implementation. The instruction may be implemented via software
emulation in the trap handler.
Example UOPC conditions are:
• A MMU instruction if the MMU is not present.
• A FPU instruction if the FPU is not present.
• An external coprocessor instruction if the external coprocessor is not present.

OPD - Invalid Operand (TIN 3)
The OPD trap may be raised for instructions that take an even-odd register pair as an operand, if the operand
specifier is odd. The OPD trap may also be raised for other cases where operands are invalid.
Implementations are not architecturally required to raise this trap, and may treat invalid operands in an
implementation defined manner.

ALN - Data Address Alignment (TIN 4)
An ALN trap is raised when the address for a data memory operation does not conform to the required alignment
rules. See “Alignment Requirements” on Page 4, for more information on these rules. An ALN trap is also raised
when the size, length or index of a circular buffer is incorrect. See “Circular Addressing” on Page 9 for more
details.

MEM - Invalid Memory Address (TIN 5)
The MEM trap is raised when the address of an access can be determined to either violate an architectural
constraint or an implementation constraint.
Defined MEM trap subclasses are different segment, segment crossing, CSFR access, CSA restriction and scratch
range.
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An implementation must define which implementation constraint MEM traps it will raise, or the alternative
behaviour if the MEM trap is not raised. It must also document any other implementation specific MEM traps it
will raise.
Architectural constraints which will raise the MEM trap are:
• An addressing mode that adds an offset to a base address results in an effective address that is in a different

segment to the base address (different segment).
• A data element is accessed with an address, such that the data object spans the end of one segment and the

beginning of another segment (segment crossing)
Implementation constraints which can raise the MEM trap are
• A memory address is used to access a Core SFR (CSFR) rather than using a MTCR/MFCR instruction (CSFR

access)
• A memory address is used for a CSA access and it is not valid for the implementation to place CSA there (CSA

restriction)
• An access to Scratch memory is attempted using a memory address which lies outside the implemented

region of memory (scratch range error).

6.3.4 Context Management (Trap Class 3)
Trap class 3 is for exception conditions detected by the context management subsystem, in the course of
performing (or attempting to perform) context save and restore operations connected to function calls,
interrupts, traps, and returns.

FCD - Free Context list Depletion (TIN 1)
The FCD trap is generated after a context save operation, when the operation causes the free context list to
become ‘almost empty’. The ‘almost empty’ condition is signaled when the CSA used for the save operation is the
one pointed to by the context list limit register LCX. The operation responsible for the context save completes
normally and then the FCD trap is taken.
If the operation responsible for the context save was the hardware interrupt or trap entry sequence, then the FCD
trap handler will be entered before the first instruction of the original interrupt or trap handler is executed. The
return address for the FCD trap will point to the first instruction of the interrupt or trap handler.
The FCD trap handler is normally expected to take some form of action to rectify the context list depletion. The
nature of that action is OS dependent, but the general choices are to allocate additional memory for CSA storage,
or to terminate one or more tasks, and return the CSAs on their call chains to the free list. A third possibility is not
to terminate any tasks outright, but to copy the call chains for one or more inactive tasks to uncached external or
secondary memory that would not be directly usable for CSA storage, and release the copied CSAs to the free list.
In that instance the OS task scheduler would need to recognize that the inactive task's call chain was not resident
in CSA storage, and restore it before dispatching the task.
The FCD trap itself uses one additional CSA beyond the one designated by the LCX register, so LCX must not point
to the actual last entry on the free context list. In addition, it is possible that an asynchronous trap condition, such
as an external bus error, will be reported after the FCD trap has been taken, interrupting the FCD trap handler and
using one more CSA. Therefore, to avoid the possibility of a context list underflow, the free context list must
include a minimum of two CSAs beyond the one pointed to by the LCX register. If the FCD trap handler makes any
calls, then additional CSA reserves are needed.
In order to allow the trap handlers for asynchronous traps to recognize when they have interrupted the FCD trap
handler, the FCDSF flag in the SYSCON (system configuration) register is set whenever an FCD trap is generated.
The FCDSF bit should be tested by the handler for any asynchronous trap that could be taken while an FCD trap
is being handled. If the bit is found to be set, the asynchronous trap handler must avoid making any calls, but
should queue itself in some manner that allows the OS to recognize that the trap occurred. It should then carry
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out an immediate return, back to the interrupted FCD trap handler. See “System Control Register (SYSCON)”
on Page 13.

CDO - Call Depth Overflow (TIN 2)
A program attempted to execute a CALL instruction with the Call Depth counter enabled and the call depth count
value (PSW.CDC.COUNT) at its maximum value. Call Depth Counting guards against context list depletion, by
enabling the OS to detect ‘runaway recursion’ in executing tasks.

CDU - Call Depth Underflow (TIN 3)
A program attempted to execute a RET (return) instruction with the Call Depth counter enabled and the call depth
count value (PSW.CDC.COUNT) at zero. A call depth underflow does not necessarily reflect a software error in the
currently executing task. An OS can achieve finer granularity in call depth counting by using a deliberately narrow
Call Depth Counter, and incrementing or decrementing a separate software counter for the current task on each
call depth overflow or underflow trap. A program error would be indicated only if the software counter were
already zero when the CDU trap occurred.

FCU - Free Context List Underflow (TIN 4)
The FCU trap is taken when a context save operation is attempted but the free context list is found to be empty
(i.e. the FCX register contents are null). The FCU trap is also taken if any error is encountered during a context save
or restore operation. The context operation cannot be completed. Instead a forced jump is made to the FCU trap
handler and D15 updated with the FCU TIN value. Any pending asychronous exception may be lost whan an FCU
condition occurs.
In failing to complete the context save or restore, architectural state is lost, so the occurrence of an FCU trap is a
non-recoverable system error. The FCU trap handler should ultimately initiate a system reset.

CSU - Call Stack Underflow (TIN 5)
Raised when a context restore operation is attempted and when the contents of the PCX register were null.This
trap indicates a system software error (kernel or OS) in task setup or context switching among software managed
tasks (SMTs). No software error or combination of errors in a user task can generate this condition, unless the task
has been allowed write permission to the context save areas which, in itself, can be regarded as a system software
error.

CTYP - Context Type (TIN 6)
Raised when a context restore operation is attempted but the context type, as indicated by the PCXI.UL bit, is
incorrect for the type of restore attempted; i.e. a restore lower context is attempted when PCXI.UL == 1, or a
restore upper context is attempted when PCXI.UL == 0. As with the CSU trap, this indicates a system software
error in context list management.

NEST - Nesting Error (TIN 7)
A program attempted to execute an RFE (return from exception) instruction with the Call Depth counter enabled
and the call depth count value (PSW.CDC.COUNT) non-zero. The return from an interrupt or trap handler should
normally occur within the body of the interrupt or trap handler itself, or in code to which the handler has
branched, rather than code called from the handler. If this is not the case there will be one or more saved contexts
on the residual call chain that must be popped and returned to the free list, before the RFE can be legitimately
issued.
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6.3.5 System Bus and Peripheral Errors (Trap Class 4)

PSE - Program Fetch Synchronous Error (TIN 1)
The PSE trap is raised when:
• A bus error1) occurred because of an instruction fetch.
• An instruction fetch targets a segment that does not have the code fetch property. See “Physical Memory

Attributes (PMA)” on Page 3.

DSE - Data Access Synchronous Error (TIN 2)
The DSE trap is raised when:
• Whenever a bus error occurs because of a data load operation.
• In the case of a data load or store operation from Data scratchpad RAM (DSPR) (“Scratchpad RAM” on

Page 5) where the access is beyond the end of the memory range.
• In the case of an error during the data load phase of a data cache refill.

Note: There are implementation-dependent registers for DSE which can be interrogated to determine the
source of the error more precisely. Refer to the User's Manual for a specific TriCore implementation for
more details.

DAE - Data Access Asynchronous Error (TIN 3)
The DAE trap is raised when the memory system reports back an error which cannot immediately be linked to a
currently executing instruction. Generally this means an error returned on the system bus from a peripheral or
external memory.
This DAE trap is raised when:
• A bus error occurred because of a data store operation.
• There is an error caused by a cache management instruction.
• There is an error caused by a cache line writeback.

Note: There are implementation-dependent registers for DAE which can be interrogated to determine the
source of the error more precisely. Refer to the User's Manual for a specific TriCore implementation for
more details.

CAE - Coprocessor Trap Asynchronous Error (TIN 4)
This CAE asynchronous trap is generated by a coprocessor to report an error.
Examples of typical errors that can cause a CAE trap are unimplemented coprocessor instructions and arithmetic
errors (as found in the Floating Point Unit for example).
CAE is shared amongst all coprocessors in a given system. A trap handler must therefore inspect all coprocessors
to determine the cause of a trap.

1) A bus fetch error is also generated for an instruction fetch to the data scratch pad RAM region (D000 0000H to D3FF FFFFH) when the
memory access is outside the range of the actual scratchpad RAMs.
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PIE - Program Memory Integrity Error (TIN 5)
The PIE trap is raised whenever an uncorrectable memory integrity error is detected in an instruction fetch. The
trap is synchronous to the erroneous instruction. A PIE trap is raised if any element within the fetch group
contains an unrecoverable error. Hardware is not required to localise the error to a particular instruction.
An implementation may provide additional registers that can be interrogated to determine the source of the error
more precisely. Refer to the User manual for a specific Tricore implementation for more details.

DIE - Data Memory Integrity Error (TIN 6)
The DIE trap is raised whenever an uncorrectable memory integrity error is detected in a data access.
Implementations may choose to implement the DIE trap as either an asynchronous or synchronous trap.
A DIE trap is raised if any element accessed by a load or store contains an uncorrectable error. Hardware is not
required to localise the error to the access width of the operation. DIE traps raised durring context operations
may result in loss of data.
An implementation may provide additional registers that can be interrogated to determine the source of the error
more precisely. Refer to the User manual for a specific Tricore implementation for more details.

TAE - Temporal Asynchronous Error (TIN 7)
The TAE asynchronous trap is raised by the temporal protection system whenever an active timer decrements to
zero. this may b e used to guard against task overrun in time critical applications.

6.3.6 Assertion Traps (Trap Class 5)

OVF - Arithmetic Overflow (TIN 1)
Raised by the TRAPV instruction, if the overflow bit in the PSW is set (PSW.V == 1).

SOVF - Sticky Arithmetic Overflow (TIN 2)
Raised by the TRAPSV instruction, if the sticky overflow bit in the PSW is set (PSW.SV == 1).

6.3.7 System Call (Trap Class 6)

SYS - System Call (TIN = 8-bit unsigned immediate constant in SYSCALL)
The SYS trap is raised immediately after the execution of the SYSCALL instruction, to initiate a system call. The
TIN that is loaded into D[15] when the trap is taken is not fixed, but is specified as an 8-bit unsigned immediate
constant in the SYSCALL instruction. The return address points to the instruction immediately following the
SYSCALL.

6.3.8 Non-Maskable Interrupt (Trap Class 7)

NMI - Non-Maskable Interrupt (TIN 0)
The causes for raising a Non-Maskable Interrupt are implementation dependent. Typically there is an external pin
that can be used to signal the NMI, but it may also be raised in response to such things as a watchdog timer

User Manual (Volume 1) 6-11 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Trap System

interrupt, or an impending power failure. Refer to the User's Manual for a specific TriCore implementation for
more details.

6.3.9 Debug Traps

BBM - Break Before Make / BAM - Break After Make
Please refer to the Core Debug Controller chapter for information on debug traps. See “Core Debug Controller”
on Page 1.

6.4 Exception Priorities
The priority order between an asynchronous trap, a synchronous trap, and an interrupt from the software
architecture model, is as follows:
1. Asynchronous trap (highest priority).
2. Synchronous trap.
3. Interrupt (lowest priority).
The following trap rules must also be considered:
1. The older the instruction in the instruction sequence which caused the trap, the higher the priority of the trap.

All potential traps with lower priorities are void.
2. Attempting to save a context with an empty free context list (FCX = 0) results in a FCU (Free Context List

Underflow) trap. This trap takes priority over all other exceptions.
3. When the same instruction causes several synchronous traps anywhere in the pipeline, priorities follow those

shown in the table below.

Table 9 Synchronous Trap Priorities
Priority Type of Trap
Instruction Fetch Traps
1 Breakpoint trap or halt - BBM (Trigger on PC)

2 VAF-P1)

3 VAP-P1)

4 MPX

5 PSE

6 PIE

Instruction Format Traps
7 IOPC

8 OPD

9 UOPC

Instruction Traps
10 Breakpoint trap or halt - BBM (Trigger on Address, MxCR, Debug)

11 PRIV

12 GRWP

13 SYS
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Table 9 Synchronous Trap Priorities  (cont’d)

Priority Type of Trap
Context Traps
14 FCD

15 FCU (Synchronous)

16 CSU

17 CDO

18 CDU

19 NEST

20 CTYP

Data Memory Access Traps
21 MEM (Data address)

22 ALN

23 MPN

24 VAF-D

25 VAP-D

26 MPP

27 MPR

28 MPW

29 DSE

General Data Traps
30 SOVF

31 OVF

32 Breakpoint trap or halt - BAM
1) Only applicable if an MMU is present and enabled.

Table 10 Asynchronous Trap Priorities
Priority Asynchronous Traps
1 NMI

2 DAE1)

3 CAE

4 TAE

5 DIE
1) DAE is used for store errors.
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6.5 Trap Control Registers

Base Trap Vector Table Pointer (BTV)
The BTV contains the base address of the trap vector table. When a trap occurs, the entry address into the trap
vector table is generated from the Trap Class of that trap, left-shifted by 5 bits and then ORd with the contents of
the BTV register. The left-shift of the Trap Class results in a spacing of 8 words (32 bytes) between the individual
entries in the vector table.

Note: This register is ENDINIT protected.

BTV
Base Trap Vector Table Pointer (FE24H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BTV

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw -

Field Description
BTV Base Address of Trap Vector Table

The address in the BTV register must be aligned to an even byte address
(halfword address). Also, due to the simple ORing of the left-shifted trap
identification number and the contents of the BTV register, the alignment of
the base address of the vector table must be to a power of two boundary.
There are eight different trap classes, resulting in Trap Classes from 0 to 7.
The contents of BTV should therefore be set to at least a 256 byte boundary
(8 Trap Classes * 8 word spacing).

RES Reserved

User Manual (Volume 1) 6-14 V1.2.2
2020-01-15

BTV RES

Bits Type
[31:1] rw

0 -



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Trap System

Program Synchronous Error Trap Register (PSTR)
Implementations may provide information on the type of program synchronous error in the PSTR register. The
contents of the register are implementation specific.

PSTR
Program Synchronous Error Trap Register (9200H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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Data Synchronous Error Trap Register (DSTR)
Implementations may provide information on the type of data synchronous error in the DSTR register. The
contents of the register are implementation specific.

DSTR
Data Synchronous Error Trap Register (9010H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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Data Asynchronous Error Trap Register (DATR)
Implementations may provide information on the type of data asynchronous error in the DATR register. The
contents of the register are implementation specific.

DATR
Data Asynchronous Error Trap Register (9018H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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Data Error Address Register (DEADD)
Implementations may provide information on the location of the data error in the DEADD register. The contents
of the register are implementation specific.

DEADD
Data Error Address Register (901CH) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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7 Memory Integrity Error Mitigation
This chapter describes the architectural features used to support the mitigation of memory integrity errors within
the local memories of TriCore™ processors.
This chapter should be read in conjunction with “Scenarios for Memory Integrity Error Mitigation” on Page 1.

7.1 Memory Integrity Error Classification
Memory integrity errors are classified as being either Correctable or Uncorrectable.

Uncorrectable Memory Integrity Error
If hardware is not able to provide the expected data to the core on accessing a memory element containing a
memory integrity error, the memory integrity error is defined as being uncorrectable.

Correctable Memory Integrity Error
If hardware is able to provide the expected data to the core on accessing a memory element containing a memory
integrity error, the memory integrity error is defined as being correctable.
Correctable memory integrity errors are further catagorised as either Resolved or Unresolved. Correctable
memory integrity errors always provide the correct data to the core. As part of the correction process hardware
may also update the erroneous source data in memory with the corrected data. Such a memory integrity error is
defined as being Resolved. If the erroneous source data in memory is not updated the memory integrity error is
defined as being Unresolved.

7.2 Memory Integrity Error Traps
When an uncorrectable memory integrity error is encountered either a PIE (Program Memory Integrity Error) or
DIE (Data Memory Integrity Error) trap is raised.

7.2.1 Program Memory Integrity Error (PIE)
The PIE trap is raised when an uncorrectable memory integrity error is detected in an instruction fetch from a
local memory. The trap is synchronous to the erroneous instruction. The trap is of Class 4 and TIN 5.
A PIE trap is raised if any element within the fetch group contains an unrecoverable error. Hardware is not
required to localise the error to a particular instruction.

Note: Implementation specific registers that can be interrogated to more precisely determine the source of
the error. Refer to the User manual for a specific Tricore product for details.

7.2.2 Data Memory Integrity Error (DIE)
The DIE trap is raised whenever an uncorrectable memory integrity error is detected in a data access to a local
memory. The trap is of Class 4 and TIN 6.
A TriCore implementation may choose to implement the DIE trap as either an asynchronous or synchronous trap.
A DIE trap is raised if any element accessed by a load/store contains an uncorrectable error. Hardware is not
required to localise the error to the access width of the operation.

Note: Implementation specific registers can be interrogated to more precisely determine the source of the
error. Refer to the User manual for a specific Tricore product for more details.
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7.3 Registers
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7.3.1 Error Information Registers
To provide information for memory integrity error handling and debug, a number of implementation specific
registers are provided. The contents of these registers are implementation specific.

Program Integrity Error Trap Register (PIETR)
This register contains information allowing software to localise the source of the last detected program memory
integrity error.

PIETR
Program Integrity Error Trap Register (9214H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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Program Integrity Error Address Register (PIEAR)
The PIEAR register contains the address accessed by the last operation that caused a program memory integrity
error.

PIEAR
Program Integrity Error Address Register (9210H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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Data Integrity Error Trap Register (DIETR)
The DIETR register contains information allowing software to localise the source of the last detected data
memory integrity error.

DIETR
Data Integrity Error Trap Register (9024H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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Data Integrity Error Address Register (DIEAR)
The DIEAR register contains the address accessed by the last operation that caused a data memory integrity error.

DIEAR
Data Integrity Error Address Register (9020H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific

7.4 Summary
A detected memory integrity error in local instruction memory will lead to either:
• A correctable error and an increment of one of the CCPIE counters
• An uncorrectable error triggering a PIE trap
A detected memory integrity error in local data memory will lead to either:
• A correctable error and an increment of one of the CCDIE counters
• An uncorrectable error triggering a DIE trap
The actual method used for the detection of memory integrity errors is implementation dependent.
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8 Address Map and Memory Configuration.
This chapter describes the TriCore™ physical address map and the architectural aspects of the memory system.

8.1 Overview
The Tricore Architecture treats the 4 GBytes (32-bit) of physical address space as being divided into 16 equally
sized 256MByte segments. These segments are numbered from 0H to FH and are identified by the upper 4 bits of
the address. Different segments may be configured to have different access characteristics as described in this
chapter.
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8.2 Scratchpad RAM
The TriCore architecture supports the use of closely coupled SRAMs known as scratchpad RAMs. Separate SRAMs
are supported for both program and data. The program scratchpad RAMs (PSPR) are located in segment CH. The
data scratchpad RAMs (DSPR) are located in segment DH

The size of the scratchpad RAMs is implementation dependent. Access to a segment outside of the implemented
memory size will result in a trap.
In a multiprocessor system the DSPR and PSPR memories of all CPUs are accessible via the DSPR and PSPR image
regions in segments 0H to 7H.

Table 11 Scratchpad RAM segments
Segment Properties
DH DSPR region

CH PSPR region

7H CPU-0 PSPR and DSPR memory image region

6H CPU-1 PSPR and DSPR memory image region

5H CPU-2 PSPR and DSPR memory image region

4H CPU-3 PSPR and DSPR memory image region

3H CPU-4 PSPR and DSPR memory image region

2H CPU-5 PSPR and DSPR memory image region

1H CPU-6 PSPR and DSPR memory image region

0H CPU-7 PSPR and DSPR memory image region

8.3 Address Segments and Memory Access Types
The 4 GBytes (32-bit) of physical address space is divided into 16 equally sized 256MBytes segments. Each
segment is selectable as being either peripheral space, cached or non-cached memory. The cacheability of a
segment is independently selectable for code fetches and data accesses. The access characteristics (Access
Types) of each segment are selected by the Programmable Memory Access Registers (PMA0, PMA1 and PMA2).

8.3.1 Memory Access Types
The TriCore architecture defines three possible memory access types:-

8.3.1.1 Cached memory
Features of cached memory:-
• The cacheability of a segment is independently selectable for code fetches and data accesses
• Code fetches to the memory will be cached by the CPU if a code cache is present and enabled.The CPU is

permitted to perform speculative code fetches to the memory
• Data accesses to the memory will be cached by the CPU if a data cache is present and enabled.The CPU is

permitted to perform speculative data fetches to the memory.

8.3.1.2 Non-cached Memory
Features of non-cached memory:-
• The cacheability of a segment is independently selectable for code fetches and data accesses
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• Code fetches to the memory will not be cached by the CPU. The CPU is permitted to perform speculative code
fetches to the memory

• Data accesses to the memory will not be cached by the CPU. The CPU is permitted to perform speculative data
accesses to the memory.

8.3.1.3 Peripheral Space
Features of peripheral space :-
• Only Supervisor and User-1 mode data accesses are permitted.
• User-0 mode data accesses are not permitted and result in an MPP trap.
• Code accesses are not permitted and will result in a PSE trap
• All CPU accesses to the memory segment are non-cached.
• All CPU accesses to the memory segment are non-speculative.
• Context operations and accesses using circular addressing are not permitted.

8.3.2 Speculation
An implementation may perform both necessary and speculative accesses.
• Necessary accesses are those required to correctly compute the program and any implementation or

simulation of the program execution must perform these accesses.
• Speculative accesses are those that an implementation may make in order to improve performance either in

correct or incorrect anticipation of a necessary access.
Data read accesses and Fetch accesses to both cached and non-cached memory may be speculative. The
processor may read entire cache lines in physical memory and place them in a buffer for future access. The order
of accesses is not guaranteed.
The processor never performs speculative write accesses which are visible in a memory region.

8.3.3 Cacheability of Segments
Cacheability of segments is subject to the following restrictions.
• Peripheral space may never be cached.
• The contents of the local DSPR may never be held in the local data cache
• The contents of the local PSPR may never be held in the local program cache.
These restrictions are enforced by hardware independent of the settings of PMA0 or PMA1.
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8.3.4 Default Memory types for all segments
The default defined memory types are shown in the following table:

Table 12 Default Memory Access Types for all Segments
Segment Attributes
FH Peripheral Space.

EH Peripheral Space.

DH Non-cacheable Memory.

CH Non-cacheable Memory.

BH Non-cacheable Memory.

AH Non-cacheable Memory.

9H Cacheable Memory.

8H Cacheable Memory.

7H - 0H Non-cacheable Memory.
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8.4 Memory Configuration Register Definitions

8.4.1 Programmable Memory Access Register-0 (PMA0)
The PMA0 register defines the cacheability of data accesses for each segment in the physical address space.
Segment-F is constrained to be peripheral space in all implementations and hence is non-cacheable. Segment-D
is constrained to be non-cacheable for data accesses in all implementations. The data cacheability of all other
segments is implementation defined.
Note that when changing the value of the PMA0 register, an implementation may require additional operations
to be performed in order to maintain coherency of the processors view of memory.

Note: This register is ENDINIT protected

PMA0
Programmable Memory Access Register-0 (8100H) Reset Value: 0000 0300

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DAC

rw

Field Description
RES Reserved

DAC Data Access Cacheability - Implementation defined.

8.4.2 Programmable Memory Access Register1 (PMA1)
The PMA1 register defines the cacheability of code accesses for each segment in the physical address space.
Segment-F is constrained to be peripheral space in all implementations and hence is non-cacheable. Segment-C
is constrained to be non-cacheable for code accesses in all implementations. The code cacheability of all other
segments is implementation defined.
Note that when changing the value of the PMA1 register, an implementation may require additional operations
to be performed in order to maintain coherency of the processors view of memory.

Note: This register is ENDINIT protected

PMA1
Programmable Memory Access Register-1 (8104H) Reset Value: 0000 0300

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r
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PMA1
Programmable Memory Access Register-1 (8104H) Reset Value: 0000 0300

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CAC

Field Description
RES Reserved

CAC  Code Accesses Cacheability - Implementation defined

8.4.3 Programmable Memory Access Register2 (PMA2)
The PMA2 register defines the Peripheral Space designator for each segment in the physical address space.
Segment-F is constrained to be peripheral space in all implementations The Peripheral Space Designator of all
other segments is implementation defined and may be read-write or read-only.
Note that when changing the value of the PMA2 register, an implementation may require additional operations
to be performed in order to maintain coherency of the processors view of memory.
If bit[n] of the PMA2 register is set then the segment-n will be seen as uncacheable independent of the settings of
PMA0 and PMA1.

Note: This register is ENDINIT protected

PMA2
Programable Memory Access Register-2 (8108H) Reset Value: 0000 C000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSD

r

Field Description
RES Reserved

PSD Peripheral Space Designator - Implementation Defined

8.4.4 Program Memory Configuration Registers (PCON0, PCON1, PCON2)
TriCore Implementations may control and provide information on the status and configuration of the program
cache and scratch memories via the program memory configuration registers. Three registers are architecturally
defined for this purpose; PCON0, PCON1 and PCON2.
The contents of these registers (where implemented) is implementation dependent.
Implementations may ENDINIT protect these registers.
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PCON0
Program Memory Configuration Register 0 (920CH) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific

PCON1
Program Memory Configuration Register 1 (9204H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific

PCON2
Program Memory Configuration Register 2 (9208H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific
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8.4.5 Data Memory Configuration Registers (DCON0, DCON1, DCON2)
TriCore Implementations may control and provide information on the status and configuration of the data cache
and scratch memories via the data memory configuration registers. Three registers are architecturally defined for
this purpose; DCON0, DCON1 and DCON2.
The contents of these registers (where implemented) is implementation dependent.
Implementations may ENDINIT protect these registers.

DCON0
Data Memory Configuration Register 0 (9040H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific

DCON1
Data Memory Configuration Register 1 (9008H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementatio Implementation Specific
n Specific

DCON2
Data Memory Configuration Register 2 (9000H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific
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DCON2
Data Memory Configuration Register 2 (9000H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
-

Field Description
Implementatio Implementation Specific
n Specific
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9 Floating Point Unit (FPU)
This chapter describes the TriCore™ Floating Point Unit (FPU) architecture. The FPU is an optional component in
TriCore configurations. It need not be present in every system that uses the core.
The optional FPU is an IEEE-754 compatible floating-point unit to accompany the TriCore instruction set.

9.1 Functional Overview
The FPU executes single precision IEEE-754 compatible floating-point arithmetic instructions and supports the
following feature set:
• Floating-point add, subtract, multiply, MAC, and divide instructions.
• Conversion to or from IEEE-754 single precision format from or to TriCore signed and unsigned integers and

32-bit signed fractions (Q31 format).
• QSEED.F instruction used to obtain an approximate value intended for use in Newton-Raphson iterations to

perform a square-root operation.
• Comparison of two floating-point numbers.
• All four IEEE-754 rounding modes are implemented.
• Asynchronous traps can be generated on selected IEEE-754 exceptions (TriCore 1.3.1 and TriCore 1.6).

Restrictions
The FPU has the following restrictions and usage limitations:
• Only IEEE-754 single precision format is supported.
• IEEE-754 denormalized numbers are not supported for arithmetic operations.
• IEEE-754 compliant remainder function cannot be implemented using FPU instructions because of the effects

of multiple rounding when using a sequence of individually rounded instructions.
• Fused multiply-and-accumulate operations (MACs) are not part of the IEEE-754 standard. Using FPU MAC

operations can give different results from using separate multiply and accumulate operations because the
result is only rounded once at the end of a MAC.

• Full compliance with the IEEE-754 standard is not achieved because denormal numbers are not supported.
• If no FPU is present, then FPU instructions will cause a UOPC (unimplemented opcode) trap.

User Manual (Volume 1) 9-1 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Floating Point Unit (FPU)

9.2 IEEE-754 Compliance

9.2.1 IEEE-754 Single Precision Data Format

S Biased Exp. Fraction

31 22 0
TC1043

Figure 25 Single Precision IEEE-754 Floating-Point Format

The single precision IEEE-754 floating-point format has three sections: a sign bit, an 8-bit biased exponent, and a
23-bit fractional mantissa with an implied binary point before bit 22. For normal numbers the mantissa has an
implied 1 immediately to the left of the binary point. Table 13 shows the different types of number
representation in IEEE-754 single precision format. In this table:
s = bit [31]: sign bit.
e = bits [30:23]: biased exponent.
f = bits [22:0]: fractional part of mantissa.

Table 13 IEEE-754 Single Precision Representation Types
Condition Description
0 < e < 255 Normal number.

e == 0 AND f != 0 Denormal number.

e == 0 AND f == 0 Signed zero.

s == 0 AND e == 255 AND f == 0 + infinity.

s == 1 AND e == 255 AND f == 0 – infinity.

e == 255 AND f != 0 AND f[22] == 0 Signalling NaN1).

e == 255 AND f != 0 AND f[22] == 1 Quiet NaN1).
1) IEEE-754 does not define how to distinguish between signalling NaNs and quiet NaNs, but bit[22] has become the

standard way of doing this.

Note: Both signed values of zero are always treated identically and never produce different results except
different signed zeros.

9.2.2 Denormal Numbers
Denormal numbers are not supported for arithmetic operations. With the exception of the CMP.F instruction, all
instructions replace denormal operands with the appropriately signed zero before computation. Following
computation, if a denormal number would otherwise be the result, it is replaced with the appropriately signed
zero.
Conceptually, the conventional order for making IEEE-754 computations is:
1. Compute result to infinite precision.
2. Round to IEEE-754 format.
This is replaced with:
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1. Substitute signed zero for all denormal operands.
2. Compute result to infinite precision.
3. Round to IEEE-754 format.
4. Substitute signed zero for all denormal results.
This procedure has a subtle effect on underflow; see Round to Nearest: Denormals and Zero
Substitution, page 9-7.
Denormal numbers are supported only by the CMP.F instruction which makes comparisons of denormal numbers
in addition to identifying denormal operands.

9.2.3 NaNs (Not a Number)
NaNs (Not a Number) are bit combinations within the IEEE-754 standard that do not correspond to numbers.
There are two types of NaNs: signalling and quiet. The FPU defines signalling NaNs to have bit 22 = ‘0’, and quiet
NaNs to have bit 22 = ‘1’.
When invalid operations are performed (including operations with a signalling NaN operand), FI is asserted and
a quiet NaN is produced as the floating-point result. The quiet NaN contains information about the origin of the
invalid operation; see Invalid Operations and their Quiet NaN Results, page 9-8.
IEEE-754 suggests that quiet NaNs should be propagated so that the result of an instruction receiving a quiet NaN
as an operand (with no signalling NaN operands) should be that quiet NaN. The FPU does not propagate quiet
NaNs in this way. The result of an operation that has one (or more) quiet NaN operands and no signalling NaN
operands is always the quiet NaN 7FC00000H.
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9.2.4 Underflow
Underflow occurs when the result of a floating-point operation is too small to store in floating-point
representation.
IEEE-754 requires two conditions to occur before flagging underflow:
• The result must be ‘tiny’.

– A result is ‘tiny’ if it is non-zero and its magnitude is < 2-126 (for single precision). IEEE-754 allows this to be
detected either before or after rounding.

• There must be a loss of accuracy in the stored result.
Loss of accuracy can be detected in two ways: either as a denormalization loss, or an inexact result.
Denormalization loss occurs when the result is calculated assuming an unbounded exponent, but is rounded to
a normalized number using 23 fractional bits. If this rounded result must be denormalized to fit into IEEE-754
format and the resultant denormalized number differs from the normalized result with unbounded exponent
range, then a denormalization loss occurs.
An inexact result is one where the infinitely precise result differs from the value stored.
The FPU determines tininess before rounding and inexact results to determine loss of accuracy.
In the case of the FPU, even if a denormal result would produce no loss of accuracy, because it is replaced with a
zero, accuracy is lost and underflow must be flagged.
Any tiny number that is detected must therefore result in a loss of accuracy since it will either be a denormal that
is replaced with zero or rounded up. Therefore underflow detection can be simplified to tiny number detection
alone; i.e. any non-zero unrounded number whose magnitude is < 2-126.

9.2.5 Fused MACs
Fused multiply-and-accumulate operations (MACs) are not supported by the IEEE-754 standard. Using FPU MAC
operations (MADD.F and MSUB.F) can give different results from using separate multiply (MUL.F) and accumulate
(ADD.F or SUB.F) operations because the result is only rounded once at the end of a MAC.

9.2.6 Traps
IEEE-754 allows optional provision for synchronous traps to occur when exception conditions occur. Under these
circumstances the results returned by arithmetic operations may differ from IEEE-754 requirements to allow
intermediate results to be passed to the trap handling routines. These traps are provided to assist in debugging
routines and operations.
FPU traps are asynchronous and therefore are not IEEE-754 compliant traps. Since IEEE-754 traps are optional
this does not cause any IEEE-754 non compliance.

9.2.7 Software Routines
Operations required for IEEE-754 compliance, but not implemented in the FPU instruction set, are detailed in
Table 14.
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Table 14 IEEE-754 Operations Requiring Software Implementation
IEEE-754 Operation Suggested Implementation
Square root Newton-Raphson using QSEED.F instruction.

Remainder FPU instructions cannot be used to implement the remainder function
because of the errors that can occur from multiple rounding. For reference,
the IEEE method for calculating remainder is given below. Note that
rounding must only occur on the conversion to integer, and for the final
result.
rem = x - (d * (FTOI(x/d)1)))
rem: remainder
x: dividend
d: divisor

Round to integer in Floating-point ITOF(FTOI(x)).
format

Convert between binary and -
decimal
1) Round to nearest.
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9.3 Rounding
All four rounding modes specified in IEEE-754 are supported. The rounding mode is selected using the RM field of
the PSW (PSW[25:24]).

Table 15 Rounding Mode Definition(PSW.RM)
Rounding Mode Value Mode
001) Round to nearest.

01 Round toward + ∞

10 Round toward - ∞

11 Round toward zero.
1) Round to nearest is the default rounding mode.

IEEE-754 defines the rounding modes in terms of representable results, in relation to the ‘infinitely precise’ result.
The infinitely precise result is the mathematically exact result that would be computed by the operation, if the
number of mantissa and exponent bits were unlimited.
• Round to nearest is defined as returning the representable value that is nearest to the infinitely precise

result. This is the default rounding mode that should be selected when RTOS software initializes a task. See
Round to Nearest: Even, page 9-6, for further information.

• Round toward + ∞ is defined as returning the representable value that is closest to and no less than the
infinitely precise result.

• Round toward – ∞ is defined as returning the representable value that is closest to and no greater than the
infinitely precise result.

• Round toward zero is defined as returning the representable value that is closest to and no greater in
magnitude than the infinitely precise result. It is equivalent to truncation.

The rounding mode can be changed by the UPDFL (Update Flags) instruction.
Rounding is performed at the end of each relevant FPU instruction, followed by the replacement of all denormal
numbers with the appropriately signed 0.
IEEE-754 does not specify the MAC instructions (MADD.F and MSUB.F) that combine multiplication and addition
in a single operation. The result from the multiply part of a MAC instruction is not rounded before it is used in the
addition in the FPU. Instead the whole MAC is calculated with infinite precision and rounded at the end of the add.
It is therefore possible that the result from a MADD.F instruction will differ from the result that would be obtained
using the same operands in a MUL.F followed by an ADD.F.

Rounding Mode Restored
The rounding mode is not restored on a RET (Return From Call) instruction. The rounding mode is restored on an
RFE (Return From Exception) instruction or an RFM (Return From Monitor) instruction.

9.3.1 Round to Nearest: Even
‘Round to nearest’ is defined as returning the representable value that is nearest to the infinitely precise result. If
two representable values are equally close (i.e. the infinitely precise result is exactly half way between two
representable values), then the one whose LSB (Least Significant Bit) is zero is returned. This is sometimes known
as rounding to nearest even.
This is usually straight forward, but if the infinitely precise result is half way between two representable numbers
with different exponents, the result with the larger exponent is always selected (the LSB of its mantissa is zero).
For example, if the infinitely precise result is:
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1.111 1111 1111 1111 1111 1111 1000 0000 0000B * 20
This is half way between:
1.0000 0000 0000 0000 0000 000B * 21
and:
1.111 1111 1111 1111 1111 1111B * 20
The result with the larger exponent is returned.

9.3.2 Round to Nearest: Denormals and Zero Substitution
Following computation, results are first rounded to IEEE-754 representable numbers and then the appropriately
signed zero is substituted for any denormal results that may have occurred. This produces some results that can
seem counter intuitive.
Consider an infinitely precise result that has been computed and falls between the smallest representable
positive IEEE-754 normal number (1.000 … 000 * 2-126) and the largest representable positive IEEE-754 denormal
number (0.111 … 111 * 2-126).
• If the infinitely precise result is nearer to the normal number, or halfway between the two, then the result must

be rounded to the normal number.
• If the infinitely precise result is nearer to the denormal number, then the result is rounded to the denormal

value. Zero is then substituted for the denormal result.
The FPU architecture cannot produce denormal results, however the concept of denormal numbers is important
to the FPU. It would be wrong to assume that the infinitely precise result should be rounded to the nearest FPU
representable number, in this case (+1.000 … 000 * 2-126) or (0). Such an implementation would mean that all
unrounded results between (+1.000 … 000 * 2-126) and (+0.100 … 000 * 2-126) would be rounded to the smallest
representable positive IEEE-754 normal number.

9.3.3 Round Towards ± ∞: Denormals and Zero Substitution
Following computation results are first rounded to IEEE-754 representable numbers, then the appropriately
signed zero is substituted for any denormal results that may have occurred. See Denormal Numbers, page 9-2.
According to the IEEE-754 definition of the rounding modes, when rounding towards +∞ (- ∞ the rounded result
should not be less than (greater than) the infinitely precise result. However if a positive (negative) result would
otherwise be rounded to a denormal number, it is then substituted for a zero. Therefore the returned result of
zero is less than (greater than) the infinitely precise result. The returned result appears to contradict the
definition of these rounding modes in this case.

9.4 Exceptions
The FPU implements all five IEEE-754 exceptions (invalid operation, overflow, divide by zero, underflow, and
inexact). When one of these exceptions occur the corresponding exception flag in the PSW is asserted.

Asynchronous Traps
An asynchronous trap may optionally be taken when an exception occurs, however IEEE-754 compliant traps are
not implemented, see Section 9.5 Asynchronous Traps (Page 10).

IEEE-754 Exception Flags
The IEEE-754 exception flags are stored as part of the PSW register as shown in the following table. In accordance
with IEEE-754, each bit is sticky so that the FPU instructions in general assert these flags when an exception
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occurs and do not negate them when the exception does not occur. The UPDFL instruction can be used to clear
the exception flags.

Table 16 FPU Exception Flags
ALU Flag PSW Bit Position
C 31

V 30

SV 29

AV 28

SAV 27

- 26

Since the IEEE-754 exception flags are sticky, it can be impossible to tell if an exception occurred on the last
instruction if it was asserted before the last instruction executed. An additional, non sticky, exception flag (FS) is
therefore implemented to identify if the last FPU instruction caused an IEEE-754 exception or not.
Note that the PSW bits used to store the exception flags are also used to store ALU flags as shown in the table
above. When an ALU instruction updates these flags, the corresponding FPU exception flag is overwritten and
lost.
The following conditions are true for all FPU operations asserting exception flags, with the exception of UPDFL.
• Any FPU operation can assert only one of the FI, FV, FZ or FU exception flags.
• FX can be asserted by any operation so long as FI and FZ are negated.
• When either FV or FU are asserted, FX is also asserted.

FS - Some Exception
This bit is not sticky and is asserted or negated for all instructions that can cause IEEE-754 exceptions to occur. If
any of the IEEE-754 exceptions (FI, FV, FZ, FU, FX) have occurred during that instruction, FS is also asserted.

Note: UPDFL can assert IEEE-754 exceptions without asserting FS.

FI - Invalid Operation
FI is asserted in three circumstances:
• When a signalling NaN (see NaNs (Not a Number), page 9-3) is an operand for a FPU instruction.
• For invalid operations such as QSEED.F (ª1/÷ x) of a negative number.
• Conversions from floating-point to other formats where the rounded result is outside the range of the target.
When an instruction that produces a floating-point result asserts FI as a result of a signalling NaN or invalid
operation, the result is a quiet NaN.

Table 17 Invalid Operations and their Quiet NaN Results
Invalid Operation Quiet NaN
Signalling NaN operand for arithmetic instructions.1) 7FC00000H

2)

Signalling NaN operand for CMP.F instruction. n.a.)

ADD.F with + ∞ and - ∞ as operands. 7FC00001H

SUB.F with (+ ∞ and + ∞) or (- ∞ and - ∞) as operands. 7FC00001H

User Manual (Volume 1) 9-8 V1.2.2
2020-01-15

FPU Flag FPU Exception
FS Some Exception.

FI Invalid Operation.

FV Overflow.

FZ Divide by Zero.

FU Underflow.

FX Inexact.



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Floating Point Unit (FPU)

Table 17 Invalid Operations and their Quiet NaN Results (cont’d)

Invalid Operation Quiet NaN
MADD.F if the result of the multiplication is ± ∞ and the addend is the oppositely signed ∞ 7FC00001H

MSUB.F if the result of the multiplication is ± ∞ and the minuend is the same signed ∞ 7FC00001H
)

MUL.F with 0 and ± ∞ as multiplicands. 7FC00002H

MADD.F with 0 and ± ∞ as multiplicands. 7FC00002H

MSUB.F with 0 and ± ∞ as multiplicands. 7FC00002H

QSEED.F with a negative operand3). 7FC00004H

DIV.F with 0 as both operands4). 7FC00008H

DIV.F with both operands being an ∞ of either sign. 7FC00008H

FTOI, FTOU or FTOQ31 with rounded result outside the range of the target format. n.a.5)

FTOIZ, FTOUZ or FTOQ31Z with rounded result outside the range of the target format. n.a.5)

FTOI, FTOU or FTOQ31 with the input operand a quiet NaN, a signalling NaN or ± ∞. n.a.5)

FTOIZ, FTOUZ or FTOQ31Z with the input operand a quiet NaN, a signalling NaN or ± ∞. n.a.5)

1) Also see the FPU operation syntax description in the Instruction Set.
2) The quiet NaN (7FC00000H) is produced as the result of arithmetic operations that have any NaN as an operand. FI is only

asserted when one of these NaNs is signalling. See NaNs (Not a Number), page 9-3.
3) -0 is not negative, therefore QSEED.F of -0 is -∞
4) 0/0 is defined as being an invalid operation (FI) rather than a divide by zero (FZ).
5) The result is not in floating-point format and therefore cannot be a quiet NaN. Refer to the instruction description for

what the result should be.

FV - Overflow
For operations that return a floating-point result, the FV flag is set as stated in IEEE-754; ‘whenever the
destination format’s largest finite number is exceeded in magnitude by what would have been the rounded
floating-point result, were the exponent range unbounded’.
The result returned is determined by the rounding mode and the sign of the unrounded result:
• Round to nearest carries all overflows to infinity, with the sign of the unrounded result.
• Round toward zero carries all overflows to the format’s largest finite number with the sign of the unrounded

result.
• Round toward minus infinity carries positive overflows to the format’s largest finite number, and carries

negative overflows to minus infinity.
• Round toward plus infinity carries negative overflows to the format’s most negative finite number, and carries

positive overflows to plus infinity.
When overflow is flagged (FV asserted), the returned result can not be exactly equal to the unrounded result.
Therefore whenever FV is asserted FX is also asserted.

FZ - Divide by Zero
The FZ flag is set by DIV.F if the divisor operand is zero and the dividend operand is a finite non zero number. The
result is an infinity with sign determined by the usual rules.
Note that:
• 0/0 is defined as an invalid operation, so FI is asserted rather than FZ.
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• All arithmetic with ± ∞ as an operand is defined as being exact, except for invalid operations where FI is
asserted. Therefore for ± ∞/ ± 0 FZ is not asserted, the appropriately signed ∞ is returned as the result with no
other exceptions occurring.

FU - Underflow
As discussed in Underflow, page 9-4, underflow is detected and so FU is asserted, when the unrounded result is
smaller in magnitude than the smallest representable normal number (2-126).
The Q31TOF instruction can cause an underflow as well as the arithmetic instructions ADD.F, SUB.F, MUL.F,
MADD.F, MSUB.F, and DIV.F.
The return result for instructions flagging an underflow are complicated by the way that FPU treats denormal
numbers. This is described in detail in Round to Nearest: Denormals and Zero Substitution, page 9-7.

FX - Inexact
If the rounded result of an operation is not exactly equal to the unrounded result, then the FX flag is set.
The result delivered is the rounded result, unless either overflow (FV) or underflow (FU) has also occurred during
this instruction, when the overflow or denormalization return result rules are followed.

9.5 Asynchronous Traps
The FPU can be configured such that a trap is signalled to the TriCore core when an FPU instruction causes an
IEEE-754 exception. The trap generated is a Co-Processor Asynchronous Error (CAE), Trap Class 4 - TIN 4. FPU CAE
traps should not be confused with the synchronous exception traps optional to IEEE-754 which allow software
routines to correct arithmetic overflow or underflow.
The FPU CAE trap is intended for debug purposes only and has no effect on either the exceptional instruction or
any other instruction which may be executing within the FPU. The result returned by an exceptional instruction
causing a CAE trap is identical to that which would be returned if no trap were taken. The CAE trap is signalled
after instruction completion.
The specific exception conditions which cause FPU CAE traps to be generated are under software control. To
enable the trap generation for a specific exception type the appropriate enable bit in the FPU_TRAP_CON register
must be asserted (FIE, FVE, FZE, FUE or FXE). Any number of these enable bits may be set to allow traps to be taken
if any of a range of exceptions occur. FX is a regularly occurring condition, care should be taken in enabling this
trap.
When an instruction causes one of the enabled exceptions, information about the exceptional instruction
including the instruction PC, opcode and source operands are captured in the FPU special function registers. At
the same time the Trap Status flag (TST) is set within the FPU_TRAP_CON register, denoting that the contents of
the FPU trap capture registers are valid. In addition, so long as FPU_TRAP_CON.TST remains set, further FPU CAE
trap generation is inhibited. This avoids multiple traps being generated from the same root problem and the
original information being lost. Once the trap handler has interrogated the FPU to determine the cause of the
trap, the FPU_TRAP_CON.TST bit may be cleared to enable further traps.
The result of the exceptional instruction causing a trap is not stored in an FPU register. The result will be available
in the instruction’s destination register as long as it has not been overwritten before the asynchronous trap is
taken.
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9.6 FPU CSFR Registers
The FPU CSFR registers are used to store the details of instructions causing traps.

FPU Trap Control Register

FPU_TRAP_CON
Trap Control Register (A000H) Reset value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rh rh rh rh rh - rw rw rw rw rw -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rh - w rh

Field Bits Type Description
RES 31 - Reserved
FI 30 rh Captured FI

Asserted if the captured instruction asserted FI. Only valid when TST is
asserted.

FV 29 rh Captured FV
Asserted if the captured instruction asserted FV. Only valid when TST is
asserted.

FZ 28 rh Captured FZ
Asserted if the captured instruction asserted FZ. Only valid when TST is
asserted.

FU 27 rh Captured FU
Asserted if the captured instruction asserted FU. Only valid when TST is
asserted.

FX 26 rh Captured FX
Asserted if the captured instruction asserted FX. Only valid when TST is
asserted.

RES [25:23] - Reserved
FIE 22 rw FI Trap Enable

When set, an instruction generating an FI exception will trigger a trap.

FVE 21 rw FV Trap Enable
When set, an instruction generating an FV exception will trigger a trap.

FZE 20 rw FZ Trap Enable
When set, an instruction generating an FZ exception will trigger a trap.

FUE 19 rw FU Trap Enable
When set, an instruction generating an FU exception will trigger a trap.

FXE 18 rw FX Trap Enable
When set, an instruction generating an FX exception will trigger a trap.

RES [17:10] - Reserved
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Field Description
RM Captured Rounding Mode

The rounding mode of the captured instruction. Only valid when TST is
asserted.
Note that this is the rounding mode supplied to the FPU for the exceptional
instruction. UPDFL instructions may cause a trap and change the rounding
mode. In this case the RM bits capture the input rounding mode.

RES Reserved
TCL Trap Clear

1 : Clears the trapped instruction (TST will be negated).
0 : Does nothing.
Read: always reads as 0.

TST Trap Status
0 : No instruction captured:
The next enabled exception will cause the exceptional instruction to be
captured.
1 : Instruction captured:
No further enabled exceptions will be captured until TST is cleared.

FPU Trapping Instruction Program Counter Register

FPU_TRAP_PC
Trapping Instruction Program Counter (A004H) Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC

rh

Field Description
PC Captured Program Counter

The program counter (virtual address) of the captured instruction. Only
valid when FPU_TRAP_CON.TST is asserted.
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FPU Trapping Instruction Opcode Register

FPU_TRAP_OPC
Trapping Instruction Opcode (A008H) Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rh rh

Field Description
RES Reserved
DREG Captured Destination Register

The destination register of the captured instruction.
0H : Data general purpose register 0.
…H
FH : Data general purpose register 15.
Only valid when FPU_TRAP_CON.TST is asserted.

RES Reserved
FMT Captured Instruction Format

The format of the captured instruction’s opcode.
0 : RRR.
1 : RR.
Only valid when FPU_TRAP_CON.TST is asserted.

OPC Captured Opcode
The secondary opcode of the captured instruction. When
FPU_TRAP_OPC.FMT=0 only bits [3:0] are defined. OPC is valid only when
FPU_TRAP_CON.TST is asserted.
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FPU Trapping Instruction Operand SRC1 Register

FPU_TRAP_SRC1
Trapping Instruction Operand (A010H) Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC1

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC1

rh

Field Description
SRC1 Captured SRC1 Operand

The SRC1 operand of the captured instruction. Only valid when
FPU_TRAP_CON.TST is asserted.
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FPU Trapping Instruction Operand SRC2 Register

FPU_TRAP_SRC2
Trapping Instruction Operand (A014H) Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC2

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC2

rh

Field Description
SRC2 Captured SRC2 Operand

The SRC2 operand of the captured instruction. Only valid when
FPU_TRAP_CON.TST is asserted.
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FPU Trapping Instruction Operand SRC3 Register

FPU_TRAP_SRC3
Trapping Instruction Operand (A018H) Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC3

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC3

rh

Field Description
SRC3 Captured SRC3 Operand

The SRC3 operand of the captured instruction. Only valid when
FPU_TRAP_CON.TST is asserted.
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10 Memory Protection System
The TriCore™ protection system provides the essential features to isolate errors. The system is unobtrusive,
imposing little overhead and avoids non-deterministic run-time behaviour.
The protection system incorporates hardware mechanisms that protect user-specified memory ranges from
unauthorized read, write, or instruction fetch accesses.
The protection hardware can also facilitate application debugging.

10.1 Memory Protection Subsystems
The following subsystems are involved with Memory Protection.

The Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an instruction exception or illegal
access.
The TriCore architecture contains eight trap classes and these are further classified as synchronous or
asynchronous, hardware or software.
For more information see “Trap System” on Page 1.

The I/O Privilege Level
There are three I/O modes: User-0 mode, User-1 mode and Supervisor mode.
The User-1 mode allows application tasks to directly access non-critical system peripherals. This allows systems
to be implemented efficiently, without the loss of security inherent in running in Supervisor mode. (The default
behaviour of User-1 mode may be overriden by the system control register).
For more information see “Access Privilege Level Control (I/O Privilege)” on Page 8.

Memory Protection
Provides control over which regions of memory a task is allowed to access, and what types of access is permitted.
• Range Based
The range-based memory protection system is designed for small and low cost applications to provide coarse-
grained memory protection for systems that do not require virtual memory. This range-based system is detailed
in this chapter.
• Page Based
For applications that require virtual memory, the optional Memory Management Unit (MMU) supports a familiar
model that gives each memory page its own access permissions.

Effective Addresses
Effective addresses are translated into physical addresses using one of two translation mechanisms:
• Direct translation.
• Page Table Entry (PTE) based translation (Optional MMU only).
Memory protection for addresses that undergo direct address translation is enforced using the range-based
memory protection system described in this chapter.
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10.2 Range Based Memory Protection
The range-based memory protection system is designed for small and low cost applications to provide memory
protection for systems that do not require virtual memory.
This section describes:
• Protection Ranges
• Access Permissions
• Protection Sets

Protection Ranges
A Protection Range is a continuous part of address space for which access permissions may be specified.
A Protection Range is defined by the Lower Boundary and the Upper Boundary. An address belongs to the range
if:
• Lower Boundary <= Address < Upper Boundary
There are two groups of Protection Ranges:
• Data Protection Ranges specify data access permissions
• Code Protection Ranges specify instruction fetch permissions
The number of code and data protection ranges is implementation dependent, limited to a minimum of four and
a maximum of 32 for each.
The granularity for lower and upper boundaries is 8-bytes for data protection ranges and 32-bytes for code
protection ranges
The three least significant bits of the Data Protection upper and lower bound registers are not writeable and
always return zero.
The five least significant bits of the Code Protection upper and lower bound registers are not writeable and
always return zero.
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Access Permissions
Access Permissions define the kind of access allowed to a protection range.
The available types are:
• Data Read
• Data Write
• Instruction Fetch
Each access type can be separately permitted by setting the corresponding Access Flag.

Table 18 Access Types
Access Type Affected Operation
Data Read Load

Data Write Store

Instruction Fetch Instruction Fetch

Protection Sets
A complete set of access permissions defined for the whole address space used, is called a Protection Set.
Each Protection Set consists of:
• A selection of Code Protection Ranges
• A selection of Data protection Ranges
• The Access Permissions defined for each Range
• A selection of execute enabled Code Protection Ranges
• A selection of write enabled Data protection Ranges
• A selection of read enabled Data protection Ranges
The Protection Set defines both data access permissions and instruction fetch permissions.
In a Protection Set each data protection range has associated Read Enable and Write Enable flags. Each Code
Protection Range has an associated Execution Enable flag.
The number of memory protection sets provided is specific to each TriCore implementation, limited to a
minimum of two and a maximum of eight.
Having multiple protection sets allows for a rapid change of the whole set of access permissions when switching
between User and Supervisor mode, or between different User tasks.
At any given time one of the sets is the current protection register set which determines the legality of memory
accesses by the current task. The PSW.PRS field determines the current protection register set number.

10.2.1 Access Permissions for Intersecting Memory Ranges
The permission to access a memory location is the OR of the memory range permissions.
If one of the ranges allows it, the memory access is permitted. This means that when two ranges intersect, the
intersecting regions will have the permission of the most permissive range.
For example:
• Range A is set for read/write permission
• Range B is set for read-only permission
• Therefore the intersecting region of A and B will be read/write
Nesting of ranges can be used to allow read/write access to a subrange of a larger range in which the current task
is allowed read access.
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10.2.2 Crossing Protection Boundaries
A memory access can straddle two regions defined by the protection system. The following figure shows a
memory access (code or data) crossing the boundary of a permitted region and a ‘not permitted’ region of
memory. In this situation it is implementation defined (not architecturally defined) as to whether or not a
memory protection trap is taken.

Figure 26 Protection Boundaries

Note: To ensure deterministic behaviour in all implementations of TriCore, a region at least twice the size of
the largest memory accesses, minus one byte, should be left as a buffer between each memory
protection region. Some implementations may require less spacing between buffers, please refer to
implementation specific documentation for details.
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10.3 Using the Range Based Memory Protection System
When the protection system is enabled, every memory access (read, write or execute) is checked for legality
before the access is performed. The legality is determined by all of the following:
• The Protection Enable bit in the SYSCON register (SYSCON.PROTEN)
• The currently selected protection register set (PSW.PRS)
• The ranges selected in the protection register set
• The access permissions set for the ranges selected for the protection set

10.3.1 Protection Enable Bit
For the memory protection system to be active, the Protection Enable bit (SYSCON.PROTEN) must be set to one
(SYSCON.PROTEN == 1).
If the memory protection system is disabled (SYSCON.PROTEN == 0), then any access to any memory address is
permitted.

10.3.2 Set Selection
At any given time, one of the sets is the current protection register set which determines the legality of memory
accesses by the current task or Interrupt Service Routine (ISR).
The PSW.PRS field indicates the current Protection Register Set number.

10.3.3 Address Range
Data addresses (read and write accesses) are checked against the currently selected data address range table.
Instruction fetch addresses are checked against the currently selected code address range tables.
The mode entries for the data range table entries enable only read and write accesses, while the mode entries for
the code range table entries enable only execute access.
In order for data to be read from program space, there must be an entry in the data address range table that
covers the address being read. Conversely there must be an entry in the code address range table that covers the
instruction being read.
The protection system does not differentiate between access permission levels. The data and code protection
settings have the same effect, whether the permission level is currently set to Supervisor, User-1 or User-0 mode.
For instruction fetches, the PC value for the fetch is checked against the execute enabled selected code
protection ranges for the current protection set. When a PC is found to fall outside of all of the execute enabled
selected ranges, then permission for the access is denied. When a PC is found to fall within an execute enabled
range the access is permitted.
When an address is found to fall within one of the selected ranges the associated access permission is checked
and the access allowed or denied as appropriate.
For load and store operations, data address values are checked against the selected data protection ranges for
the current protection set. When an address is found to fall outside of all of the selected ranges then permission
for the access is denied. When an address is found to fall within an enabled range the access is permitted.
For load operations, data address values are checked against the read enabled data protection ranges for the
current protection set. When an address is found to fall outside of all of the selected ranges then permission for
the access is denied. When an address is found to fall within an enabled range the access is permitted.
For store operations, data address values are checked against the write enabled data protection ranges for the
current protection set. When an address is found to fall outside of all of the selected ranges then permission for
the access is denied. When an address is found to fall within an enabled range the access is permitted.
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When an address is found to fall within one of the selected ranges the associated access permissions are checked
and access is allowed or denied as appropriate.
Supervisor mode does not automatically disable memory protection. The Protection register set that is selected
for Supervisor mode tasks (Set-0) will normally be set up to allow write access to regions of memory that are
protected from User mode access. In addition Supervisor mode tasks can execute instructions to change the
protection maps, or to disable the protection system entirely. As Supervisor mode does not implicitly override
memory protection it is possible for a Supervisor mode task to take a memory protection trap.
Saves or restores of contexts to the context save area do not require the permission of the protection system to
proceed.

10.3.4 Traps
There are three traps generated by the range based memory protection system, each corresponding to the three
protection mode register bits:
• MPW (Memory Protection Write) trap = WE bit
• MPR (Memory Protection Read) trap = RE bit
• MPX (Memory Protection Execute) trap = XE bit
Refer to the Trap System chapter for a complete description of Traps.

10.3.5 Protection Register Naming Convention
Data Protection range registers are named as follows:
• DPRx_L - Defines the lower address boundary for data Range Pair x.
• DPRx_U - Defines the upper address boundary for data Range Pair x.
Code protection range registers are names as follows:
• CPRx_L - Defines the lower address boundary for code Range Pair x.
• CPRx_U - Defines the upper address boundary for code Range Pair x.

Note: x = implementation dependent.

10.3.6 Protection Set Enable Register Naming Convention
The protection set enable registers are named as follows:
• CPXE_x - Defines the execute permission enabled code protection ranges for set-x
• DPRE_x - Defines the read permission enabled data protection ranges for set-x
• DPWE_x - Defines the write permission enabled data protection ranges for set-x
Within each of these registers range-x has permissions enabled if bit-x of the register is 1 else permission is
disabled. As the number of code and data protection ranges is implementation dependent the number of bits in
these registers is also implementation dependent.
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10.4 Range Based Memory Protection Registers

Data Protection Range Register Upper Bound

DPRx_U (x=0-31)
Data Protection Range Register x Upper Bound

(C004H+x*8H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPPBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw r

Field Description
UPPBND DPRx_U Upper Boundary Address
RES Reserved

The three least significant bits are not writeable and always return zero.
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Data Protection Range Register Lower Bound

DPRx_L (x=0-31)
Data Protection Range Register x_0 Lower Bound

(C000H+x*8H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOWBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw r

Field Description
LOWBND DPRx_L Lower Boundary Address
RES Reserved

The three least significant bits are not writeable and always return zero.
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Code Protection Range Register Upper Bound

CPRx_U (x=0-31)
Code Protection Range Register x Upper Bound

(D004H+x*8H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPPBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw r

Field Description
UPPBND CPRx_U Upper Boundary Address

RES Reserved
The five least significant bits are not writeable and always return zero.
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Code Protection Range Register Lower Bound

CPRx_L (x=0-31)
Code Protection Range Register x Lower Bound

(D000H+x*8H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOWBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw r

Field Description
LOWBND CPRx_L Lower Boundary Address
RES Reserved

The five least significant bits are not writeable and always returns zero.
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Data Protection Read Enable Set Configuration Register

DPRE_x (x=0-7)
Data Protection Read Enable Set Configuration Register x

(E010H+x*4H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RE[n]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RE[n]

rw

Field Description
RE[n] Data protection Range Read Enable

0 : Data read accesses to data protection range[n] not permitted for set x
1 : Data read accesses to data protection range[n] permitted for set x
Note :- The number of protection ranges is implementation dependent.
Enable bits for unimplemented ranges are read only and return 0 when read.
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Data Protection Write Enable Set Configuration Register

DPWE_x (x=0-7)
Data Protection Write Enable Set Configuration Register x

(E020H+x*4H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WE[n]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WE[n]

rw

Field Description
WE[n] Data protection Range Write Enable

0 : Data write accesses to data protection range[n] not permitted for set x
1 : Data write accesses to data protection range[n] permitted for set x
Note :- The number of protection ranges is implementation dependent.
Enable bits for unimplemented ranges are read only and return 0 when read.
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Code Protection Execute Enable Set Configuration Register

CPXE_x (x=0-7)
Code Protection Execute Enable Set Configuration Register x

(E000H+x*4H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XE[n]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XE[n]

rw

Field Description
XE[n] Code protection Range Execute Enable

0 : Execute accesses to code protection range[n] not permitted for set x
1 : Execute accesses to code protection range[n] permitted for set x
Note :- The number of protection ranges is implementation dependent.
Enable bits for unimplemented ranges are read only and return 0 when read.
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11 Temporal Protection System
The TriCore™ Temporal Protection System is used to guard against run-time over-run. The system consists of two
primary mechanisms, the temporal protection timers and the exception timers.

11.1 Temporal protection Timers
The temporal protection timers system consists of three independent decrementing 32 bit counters, arranged to
generate a Temporal Asynchronous Exception (TAE) trap (Class-4, Tin-7), on decrement to zero.
The Temporal Protection System is enabled by setting the TPROTEN bit in the SYSCON register.
A timer is activated by writing a non-zero value to the TPS_TIMERx register.
After activation, the timer will decrement by one on each CPU clock cycle.
The timer will continue to decrement until either the count value reaches zero, or the timer is de-activated by
writing zero to the TPS_TIMERx register. The current timer value can be read from the TPS_TIMERx register.
On a count decrement from one to zero, the associated TEXP bit in the TPS_CON register is set. The TEXP bit is
cleared by any write to the associated TPS_TIMERx register.
On setting any TEXP bit in the TPS_CON register, the TTRAP bit in the same register is set. A TAE trap is raised
whenever the TTRAP bit transitions from zero to one.
The TTRAP bit is cleared by any write to the TPS_CON register. However attempting to clear the register while any
TEXP bit is set will cause the TTRAP bit to be re-enabled and a new TAE trap is generated. This ensures that no
time-out event is missed during the handling of another TAE trap.

11.2 Exception Timers
The exception timer system provides a method of detecting the overrun of exception handlers in the system. The
TriCore™ architecture defines a set of register to be used with this system (TPS_EXTIM*). The deails of the system
are implementation specific.
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11.3 Temporal Protection System Registers

TPS Timer Register
Definition of the Temporal Protection System Timer register.

TPS_TIMERx (x=0-2)
TPS Timer Register x (E404+x*4H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Timer

rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer

rwh

Field Description
Timer Temporal Protection Timer

Writing zero de-activates the Timer.
Writing a non-zero value starts the Timer.
Any write clears the corresponding TPS_CON.TEXP flag.
Read returns the current Timer value.
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TPS Control Register
Definition of the Temporal Protection System Control register.

TPS_CON
TPS Control Register (E400H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rh rh rh

Field Description
RES Reserved
TTRAP Temporal Protection Trap

If set, indicates that a TAE trap has been requested. Any subsequent TAE
traps are disabled.
A write clears the flag and re-enables TAE traps.

RES Reserved
TEXP2 Timer2 Expired flag

Set when the corresponding timer expires.
Cleared on any write to the TPS_TIMER2 register.

TEXP1 Timer1 Expired flag
Set when the corresponding timer expires.
Cleared on any write to the TPS_TIMER1 register.

TEXP0 Timer0 Expired flag
Set when the corresponding timer expires.
Cleared on any write to the TPS_TIMER0 register.
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Exception Entry Timer Load value register
Implementation Specific Register.

TPS_EXTIM_ENTRY_LVAL
Exception Entry Timer Load value (E440H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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Exception Exit Timer Load value register
Implementation Specific Register.

TPS_EXTIM_EXIT_LVAL
Exception Exit Timer Load value (E448H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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Exception Entry Timer Current value register
Implementation Specific Register.

TPS_EXTIM_ENTRY_CVAL
Exception Entry Timer Current value (E444H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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Exception Exit Timer Load Current register
Implementation Specific Register.

TPS_EXTIM_EXIT_CVAL
Exception Exit Timer Current value (E44CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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Exception Timer Class Enable register
Implementation Specific Register.

TPS_EXTIM_CLASS_EN
Exception Timer Class Enable register (E450H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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Exception Timer Status register
Implementation Specific Register.

TPS_EXTIM_STAT
Exception Timer Status register (E454H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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Exception Timer FCX register
Implementation Specific Register.

TPS_EXTIM_FCX
Exception Timer FCX register (E458H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Description
Implementation Implementation Specific
Specific
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12 Core Debug Controller
The TriCore™ debug functionality is an interface of architecture, implementation and software tools. Users are
advised that mechanisms may differ in subsequent architecture generations.
The Core Debug Controller is designed to support real-time systems that require non-intrusive debugging. Most
of the architectural state in the CPU Core and Core on-chip memories can be accessed through the system
Address Map.
Access to the core debug is typically provided via the On-Chip Debug Support (OCDS) of the system containing
the CPU.

Core Debug Controller Features
Core Debug Controller features are aimed predominantly at the software development environment. It offers
real-time run control and internal visibility of resources such as data and memories. Features include:
• Real-time run control (Halt and Restart the CPU).
• Access and update internal registers and core local memory.
• Setting breakpoints and watchpoints with complex trigger conditions.

Enabling the Core Debug Controller
To enable the Core Debug Controller, the system containing the core must set the Debug Enable bit (DE) in the
Debug Status Register (DBGSR). The Core Debug Controller is disabled when DBGSR.DE == 0, and enabled when
DBGSR.DE == 1. How the DBGSR.DE bit is controlled and how the Core Debug Controller is enabled or disabled, is
system dependent. When the Core Debug Controller is enabled, the core is said to be in debug mode.

12.1 Run Control Features
Real-time run control functions are accessed and controlled by address mapped reads and writes, typically by the
OCDS or by any other bus master that has the appropriate authorization. The Core Debug Controller provides
hardware hooks into the core allowing the detection of Debug Events which result in Debug Actions.
Four signals are provided by the Core Debug Controller for communication with the OCDS:
• Core Break-In.

– An indication from the OCDS to the Core of a condition of interest.
• Core Break-Out.

– An indication from the Core to the OCDS of a condition of interest.
• Core Suspend-In.

– An indication from the OCDS to the Core to enter Halt mode.
• Core Suspend-Out.

– An indication from the Core to the OCDS of the state of the Debug Status register (DBGSR) SUSP field
(DBGSR.SUSP). This signal can be controlled by writes to the Debug Status register, whereas the Core
Break-Out signal can not.

Features
• Single-Step support in hardware.
• Debug Events that can cause a Debug Action:

– Assertion of the external Core Break-In signal to the core.
– Execution of the DEBUG instruction.
– Execution of the MTCR (Move To Core Register) or the MFCR (Move From Core Register) instruction.

User Manual (Volume 1) 12-1 V1.2.2
2020-01-15



TriCoreTM TC1.6.2 core architecture manual
32-bit microcontroller

Core Debug Controller

– Events raised by the Trigger Event Unit (see “Trigger Event Unit” on Page 4).
• Debug Actions can be one or more of the following:

– Update Debug Status register.
– Indicate event on Core Break-Out signal and/or Core Suspend-Out signal.
– Halt CPU execution.
– Take Breakpoint Trap.
– Raise Breakpoint Interrupt.
– Control performance counters.

• Real-time features:
– Read and write of core memory and register while the core is running, with minimum intrusion (may steal

cycles).
– The service of high priority interrupt routines by use of the Breakpoint Interrupt Debug Action.

Note: The reading and writing of other system memory while the CPU is running can be intrusive, depending
on the number of cycles that are required to perform the operation. When this happens, cycle stealing
occurs.

The programming of Debug Events and Debug Actions can occur while the CPU is running with little or no
intrusion. The detection of Debug Events has no effect on real-time execution.
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12.2 Debug Events
When the Core Debug Controller is enabled, a Debug Event can be generated by:
• Core Break-In signal.

– See “External Debug Event” on Page 3.
• Execution of a DEBUG instruction.

– See “Debug Instruction” on Page 3.
• Execution of the MTCR or MFCR instruction.

– See “MTCR and MFCR Instructions” on Page 3.
• A hardware Event generation unit.

– See “Trigger Event Unit” on Page 4.

12.2.1 External Debug Event
An External Debug Event is not correlated in any way to the instruction flow, but it provides the ability to stop and
gain control of the CPU without having to reset. It may take several clocks for the Debug Event to be recognized
by the CPU if it is currently executing a multi-cycle, non-cancellable instruction (such as a context save and
restore for example).
The Debug Action taken on the assertion of the Core Break-In signal is specified in the EXEVT (External Event)
register (see “EXEVT” on Page 15).

12.2.2 Debug Instruction
TriCore supports a User mode DEBUG instruction which can generate a Debug Event when the Core Debug
Controller is enabled. When the Core Debug Controller is disabled it is treated as a NOP (No Operation). Both 16-
bit and 32-bit forms of the DEBUG instruction are provided. This feature facilitates software debug, which allows
a jump to a monitor program and provides a relatively inexpensive software instrumentation and interrogation
mechanism.
The Debug Action taken on the Debug Event is specified in the SWEVT (Software Debug Event) register (See
“SWEVT” on Page 19).

12.2.3 MTCR and MFCR Instructions
A Debug Event is raised when a MTCR (Move To Core Register) or MFCR (Move From Core Register) instruction is
used to read or modify a user Core Special Function Register (CSFR). This gives the debug software the ability to
monitor, detect and modify changes to CSFRs. A Debug Event is not raised when a MTCR or MFCR is performed to
a register in the range F000H to FDFFH. This range contains all dedicated Debug SFRs (Special Function Registers):
• Debug Status Register (“DBGSR” on Page 13).
• Core Register Access Event Register (“CREVT” on Page 17).
• Software Debug Event Register (“SWEVT” on Page 19).
• External Event Register (“EXEVT” on Page 15).
• Trigger Event Register (TRnEVT) (“TRxEVT” on Page 21).
• Debug Monitor Start Register (“DMS” on Page 25).
• Debug Context Pointer Register (“DCX” on Page 26).
• Debug Trap Control Register (“DBGTCR” on Page 27).
• Accumulated Trigger Information Register (“TRIG_ACC” on Page 24).
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Additional Counter Registers
• Counter Control Register - “Counter Control Register” on Page 32.
• CPU Clock Count Register - “CPU Clock Cycle Count Register” on Page 33.
• Instruction Count Register - “Instruction Count Register” on Page 34.
• Multi-Count Register 1 - “Multi-Count Register 1” on Page 35.
• Multi-Count Register 2 - “Multi-Count Register 2” on Page 36.
• Multi-Count Register 3 - “Multi-Count Register 3” on Page 37.
The Debug Action taken when the Debug Event is raised is specified in the CREVT register (See “CREVT” on
Page 17). Configuring the Debug Controller or accessing Performance counters will not cause a debug event.

12.2.4 Trigger Event Unit
The Trigger Event Unit is responsible for generating Debug Events when a programmable set of Debug Triggers
are active. Debug Triggers are either:
• Code Addresses.
• Data Accesses.

Note: Compared addresses are virtual addresses.

These Debug Triggers provide the inputs to a programmable block of logic which produces Debug Events as its
output (see Debug Triggers (pg 5)).
The Debug Action taken when the Debug Event is raised, is specified in the Trigger Event register (TRnEVT). See
“Trigger Event Registers” on Page 21 for the register definition.
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12.3 Debug Triggers
Each debug trigger consists of a trigger address register (TRnADR) and an associate trigger event register
(TRnEVT). Pairs of debug trigger addresses are used to define address ranges.
The Core Debug Controller can generate the following types of Debug Triggers:
• Execution of an instruction at a specific address.
• Execution of an instruction within a range of addresses.
• Loading a value from a specific address.
• Loading a value from within a range of addresses.
• Storing a value to a specific address.
• Storing a value to within a range of addresses.
The number of available debug triggers is implementation dependent.

12.3.1 Combining Debug Triggers
Pairs of odd and even trigger address registers may be combined to define address ranges. A trigger will be
generated for an address in the range.
• Even Address Register <= Address < Odd Address Register
A pair of registers is defined as a range pair, by setting the RNG bit in the event EVT trigger of the pair.
When the RNG bit of the even EVT trigger is set, all settings for the range are taken from the even EVT register and
the odd EVT register is ignored.
• Range0 defined by TR0ADR and TR1ADR, enabled by TR0EVT.RNG
• Range1 defined by TR2ADR and TR3ADR, enabled by TR2EVT.RNG
• Range2 defined by TR4ADR and TR5ADR, enabled by TR4EVT.RNG
• Range3 defined by TR6ADR and TR7ADR, enabled by TR6EVT.RNG

Note: The RNG bit of ‘odd’ numbered Trigger Event registers (TR1EVT, TR3EVT, etc.) is always reserved.

12.3.2 Task Specific Debug Triggers
In some instances it may be desirable to assert a debug trigger only when the target address is generated by a
particular task. This is achieved by use of the Application Space Identifier (ASI) comparison feature.
If the ASI_EN bit in the Trigger Event register (TRnEVT) is set, then the trigger will only be asserted if both the
address matches and the TRnEVT.ASI field matches the current task ASI (Programmed in the TASK_ASI register).

12.3.3 Accumulated Debug Trigger Information
To further aid debug the TRIG_ACC register is provided. This register contains the accumulated state of the debug
triggers since the register was last cleared. Whenever a trigger is activated - whether or not it leads to a debug
event - it is recorded in the TRIG_ACC register. (For range comparisons only the lower trigger activation is
recorded).
For example if TRIG_ACC.T[n] is set, then trigger-n has activated since the TRIG_ACC register was last cleared.
The TRIG_ACC register is read only and is cleared by any read, all writes are ignored.
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12.4 Debug Actions
When a Debug Event occurs, one or more of the following Debug Actions are taken depending upon the
programming of the relevant Event Register:
• “Update Debug Status Register (DBGSR)” on Page 6.
• “Indicate on Core Break-Out Signal” on Page 6.
• “Indicate on Core Suspend-Out Signal” on Page 6.
• “Halt” on Page 6.
• “Breakpoint Trap” on Page 7.
• “Breakpoint Interrupt” on Page 8.
• “Suspend Out” on Page 9.
• “Performance Counter Start/Stop” on Page 9.
• “None” on Page 9.
• “Disabled” on Page 10.
• “Suspend In Halt” on Page 10.

12.4.1 Update Debug Status Register (DBGSR)
When a Debug Event occurs the EVTSRC (Event Source), PEVT (Posted Event), PREVSUSP (Previous State of
Suspend Signal) and SUSP (Current State of Suspend Signal) fields of the Debug Status Register (DBGSR) are
always updated.
The PREVSUSP field is updated from the contents of the SUSP field.
SUSP is updated from the EVTA field of the register that prompted the Debug Event (EXEVT, CREVT, SWEVT or
TRnEVT).

12.4.2 Indicate on Core Break-Out Signal
A Debug Event can indicate to the OCDS that the Event has occurred. Note that it is implementation dependent
whether or not this signal is connected to an external pin.

12.4.3 Indicate on Core Suspend-Out Signal
On a Core Suspend-Out action, the value of the SUSP field in the Debug Status Register (DBGSR) is copied to the
PREVSUSP field (DBGSR.PREVSUSP).
The DBGSR.SUSP field is updated with the contents of the SUSP field from the register that prompted the Debug
Event (EXEVT, CREVT, SWEVT or TRnEVT).
Modification of the DBGSR.SUSP bit will be reflected in the Core Suspend-Out Signal. When writing to the
DBGSR.SUSP bit, PREVSUSP is not updated.
When a debug event causes a breakpoint interrupt to be posted, DBGSR.SUSP, DBGSR.PREVSUSP and the Core
Suspend-Out signal remain unchanged.

12.4.4 Halt
The Debug Action Halt, causes the Halt mode to be entered. Halt mode performs a cancel of:
• All instructions after and including the instruction that caused the breakpoint if Break Before Make (BBM) is

set.
• All instructions after the instruction that caused the breakpoint if BBM is clear.
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Once these instructions have been cancelled the CPU enters Halt mode, where no more instructions are fetched
or executed. Halt mode is entered when the DBGSR.HALT bit field is set to 01B. On entering Halt mode the
DBGSR.EVTSRC bit field is updated.
Once in Halt mode the external Debug system is used to interrogate the target through the mapping of the
architectural state into the FPI address space.
While halted, the CPU does not respond to any interrupts and only resumes execution once the Debug Status
register HALT bit is clear (DBGSR.HALT). The bit is cleared by writing 10B to the HALT field.
It is also possible to enter halt by writing the DBGSTR.HALT field. This is treated as external event and will result
in the DBGSTR fields being updated accordingly.
The DBGSTR.HALT field is cleared by reset and the CPU will resume normal operation.

12.4.5 Breakpoint Trap
The Breakpoint Trap enters a Debug Monitor without using any user resource. It relies upon the following
emulator resources:
• A Debug Monitor which is executed commencing at the address defined in the DMS (Debug Monitor Start

Address) register.
• A 4-word area of RAM is available at the address defined in the DCX (Debug Context Save Area Pointer) register.

This is used to store the critical state during the Debug Monitor entry sequence.
When a Breakpoint Trap is taken, the following actions are performed:
• Write PSW to DCX + 4H

• Write PCXI to DCX + 0H

• Write A[10] to DCX + 8H

• Write A[11] to DCX + CH

• A[11] = PC
• Write A10 with the contents of ISP if PSW.IS==0;
• PCXI.PIE = ICR.IE
• PCXI.PCPN = ICR.CCPN
• PC = DMS
• PSW.PRS = 0H

• PSW.IO = 2H

• PSW.GW = 0H

• PSW.IS = 1H

• PSW.CDE = 0H

• PSW.CDC = 0000000B

• ICR.IE = 0H

• DBGTCR.DTA = 1H

The corresponding return sequence is provided through the privileged instruction RFM (Return From Monitor).
This provides an automated route into the Debug Monitor which does not take any User resource. The RFM
(Return From Monitor) instruction is then used to return control to the original task. The RFM instruction is a NOP
(No Operation) when not in debug mode (i.e. DBGSR.DE == 0).

Note: The generation of breakpont traps on the load or store address of any CSA access caused by a trap or
interrupt is inhibited.
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Emulator Space
To enable the debug monitor to operate without requiring the modification of the current memory protection
settings, the following protection modifications are applied in debug mode:
• The 16 MByte region containing the DMS pointer (Base address == {DMS[31:24],24’h000000}] will have MPX

traps disabled for instruction fetches in debug mode.
• The 16 MByte region containing the DCX pointer (Base Address == {DCX[31:24],24’h000000}] will have MPR and

MPW traps disabled for load and store operations in debug mode.
These two memory regions are referred to as emulator space. This behaviour may be unconditionally disabled by
setting the Emulator Space Disable bit in the SYSCON register (SYSCON.ESDIS).
The cacheability of emulator space depends on the memory attributes assigned to the segments in which they
reside, by the PMA registers.

Multiple Breakpoint Traps
On taking a breakpoint trap TriCore saves a debug context (PCX, PSW, A10, A11) at the location indicated by the
DCX register. At the end of the debug trap handler an RFM instruction is used to restore this state.
The DCX location is only able to store a single debug context. Problems therefore arise if multiple breakpoint
traps are triggered. Only the state saved by the final breakpoint trap is retained, all state from the previous
breakpoint traps is lost.
To prevent this situation occurring the breakpoint trap entry sequence sets the Debug Trap Active (DTA) bit in the
Debug Trap Control Register (DBGTCR). This bit is used to inhibit further breakpoint traps.
The DTA bit is cleared on an RFM instruction and set on a breakpoint trap (It may also be set and cleared by MTCR).
A breakpoint trap may only be taken in the condition DTA==0. Taking a breakpoint trap sets the DTA bit to one.
Further breakpoint traps are therefore disabled until such time as the breakpoint trap handler clears the DTA bit
or until the breakpoint trap handler terminates with a RFM.
After an application reset the DTA bit is set to one. The register must therefore be cleared before a debug trap may
be taken.

12.4.6 Breakpoint Interrupt
One of the possible Debug Actions to be taken on a Debug Event, is to raise a Breakpoint Interrupt. The interrupt
priority is programmable and is defined in the control register associated with the breakpoint interrupt.
The architecture allows a Debug Event to raise one of four Breakpoint Interrupts, each of which can have its own
interrupt priority. The number of Breakpoint Interrupts is implementation dependant.
The Breakpoint Interrupt allows a flexible Debug environment to be defined which is capable of satisfying many
of the requirements for efficient debugging of a real-time system. For example, the execution of safety critical
code can be preserved while the debugger is active.
Breakpoint Interrupts can be used to provide the conventional Debug Model available in traditional
microcontrollers, where a Breakpoint stops the processor, by simply assigning the highest interrupt priority level
to the Debug Monitor or by ensuring interrupts are disabled in the Debug Monitor. It also provides the flexibility
for critical interrupts to be programmed with a higher priority than the Debug Monitor. The advantages of this are
that:
• The Debug Monitor can be interrupted in an identical manner to any other interrupt by a higher level interrupt.

This allows the CPU to service critical interrupts while the Debug Monitor is running.
• Any Debug Events posted in a critical routine are postponed until the CPU priority drops below that of the

Debug Monitor.
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Simple Debug Model Advanced Debug Model Highest PriorityIn this model the Debug In this model the Debug
Debug MonitorMonitor has the highest Monitor is at a lower

priority in the system priority than Interrupt A.
and so it can not be This means that the Interrupt Routine Ainterrupted. Debug Monitor can be

interrupted to service
Debug MonitorInterrupt A, while it is

processing a Breakpoint
Interrupt Routine Bin either the Background

Interrupt Routine B Task or Interrupt Routine
B.

Background Task Background Task

Lowest PriorityLowest Priority

TC1042

Figure 27 Debug Monitor - Simple and Advanced Models

Posted Breakpoint Interrupts
The situation needs to be considered where a Breakpoint Interrupt targeted at the CPU is at an interrupt priority
level below the current CPU priority. In the Advanced Model in Figure 27 for example, if a Breakpoint Interrupt is
set in Interrupt Routine 'A' it is a problem, because the Debug Monitor is programmed to be at a lower priority
than the current Task.
This scenario is indicated by posting a software interrupt at the interrupt level associated with the Breakpoint.
Therefore, when the CPU interrupt priority level falls below that of the Debug Monitor, the Debug Monitor routine
is entered. In order to indicate to the Monitor routine that the Breakpoint was postponed, the Posted Event bit
(PEVT) in the Debug Status register is set when the software interrupt is posted. It is the responsibility of the
Breakpoint Interrupt handler to check this bit in the Debug Status register and to subsequently clear that bit if
necessary.

Note: DBGSR.SUSP and DBGSR.PREVSUSP are not updated when a breakpoint interrupt is posted.

1. DBGSR.EVTSRC is always updated regardless of whether or not a breakpoint interrupt is posted.

Interrupts to Other Targets
As well as being targeted at the CPU, a breakpoint interrupt can be targeted at other cores in the system.

12.4.7 Suspend Out
The suspend out signal will either be asserted or negated when a debug event occurs. The previous state of the
suspend out signal is recorded in DBGSR.PREVSUSP.

12.4.8 Performance Counter Start/Stop
When the performance counter is operating in task mode, the counters are started and stopped by debug actions.
All event registers allow the counters to either be started or stopped.
The trigger event registers also allow the mode to be toggled to active (start) or inactive (stop). This allows a
single RTE to be used to control the performance counter, in certain applications.

12.4.9 None
No action is implemented through the EVTA field of the event’s register, however the suspend out signal,
performance count and DBGSR register updates still occur as normal for an event.
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12.4.10 Disabled
The event is disabled and no actions occur: the suspend out signal, performance counter control and DBGSR
register ignore the event.

12.4.11 Suspend In Halt
When the Suspend In signal is asserted, halt mode is always entered so long as debug is enabled. The CPU
remains in halt mode so long as Suspend In is asserted. When Suspend In is negated, the CPU is released from
halt.
This facility is implemented so that in a multi core system, several cores can be halted and released from halt
simultaneously.

12.5 Priority of Debug Events
It is possible for multiple trigger points to be activated simultaneously. The trigger associated with the oldest
instruction in the pipeline is dealt with first. In addition, simultaneous Trigger points associated with the same
point in the pipeline are prioritized from highest to lowest as.
• Assertion of External Input (asynchronous).
• Programmable bank triggers on PC

– When multiple triggers are active, 0 has the highest priority and 7 the lowest.
• MTCR/MFCR Instruction.
• Debug Instruction.
• Programmable triggers on Address

– When multiple triggers are active, 0 has the highest priority and 7 the lowest.
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12.6 Call Tracing
The tracing of subroutine calls in a TriCore system is performed using the PSW based call depth counter and the
CDO trap handler.
The sequence followed for call tracing is as follows:
1. The PSW based Call Depth Counter is set so as to generate a CDO trap on every subroutine call. (PSW.CDC =

1111110B)
2. The Call Depth counting system is enabled. (PSW.CDE = 1)
3. When the next CALL is attempted, a CDO trap will be taken instead of the subroutine call.
4. The CDO trap handler then performs the required trace function.
5. The CDO trap handler clears the PSW.CDE bit of the trapping context in memory.
6. The CDO trap handler executes a Return from Exception (RFE). This restores the trapping context from

memory, this time with the call depth tracing disabled. (PSW.CDE=0).
7. The original CALL is executed. As the call depth tracing system is now disabled (PSW.CDE=0) the subroutine

call will be successful.
• Whenever the PSW is saved by a CALL instruction the CDE bit is forced to “1”.
• The state of the PSW.CDE bit at the start of a subroutine is "1".
In a Call Tracing sequence the PSW.CDE bit has a "one-shot" operation, being disabled for a single subroutine call
after being cleared by the CDO trap.
For more information, please refer to the CALL instruction in the Instruction Set volume of this manual (volume
2).

12.7 The Debug Control Registers
The Debug Status Register (DBGSR) contains information about the current status of the Core Debug Controller
hardware in the CPU core:
• A bit to indicate whether the debug is enabled.
• The source of the last Debug Event.
Each source of a Debug Event has an associated register which defines the Debug Actions to be taken when the
Debug Event is raised. These registers may contain extra information about the criteria that must be met for the
Debug Event to be raised, such as the combination of Debug Triggers for example.
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12.8 Debug Control Registers - Summary
Core Debug Controller Registers.

Table 19 Debug Control Registers Summary
Register Offset Address
DBGSR FD00H

EXEVT FD08H

CREVT FD0CH

SWEVT FD10H

TRIG_ACC FD30H

DMS FD40H

DCX FD44H

DBGTCR FD48H

TASK_ASI 8004H

TR0EVT F000H

TR0ADR F004H

TR1EVT F008H

TR1ADR F00CH

TR2EVT F010H

TR2ADR F014H

TR3EVT F018H

TR3ADR F01CH

TR4EVT F020H

TR4ADR F024H

TR5EVT F028H

TR5ADR F02CH

TR6EVT F030H

TR6ADR F034H

TR7EVT F038H

TR7ADR F03CH
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Description
Debug Status Register

External Event Register

Core Register Access Event Register

Software Debug Event Register

Trigger Accumulator Register

Debug Monitor Start Address Register

Debug Context Save Area Pointer Register

Debug Trap Control Register

Application Space Idenitifier Register

Trigger Event 0 Configuration Register

Trigger Event 0 Address Register

Trigger Event 1 Configuration Register

Trigger Event 1 Address Register

Trigger Event 2 Configuration Register

Trigger Event 2 Address Register

Trigger Event 3 Configuration Register

Trigger Event 3 Address Register

Trigger Event 4 Configuration Register

Trigger Event 4 Address Register

Trigger Event 5 Configuration Register

Trigger Event 5 Address Register

Trigger Event 6 Configuration Register

Trigger Event 6 Address Register

Trigger Event 7 Configuration Register

Trigger Event 7 Address Register
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12.9 Debug Control Registers

Debug Status Register

DBGSR
Debug Status Register (FD00H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rh rwh rh - rwh rh rwh rh

Field Description
RES Reserved
EVTSRC Event Source

0 : EXEVT.
1 : CREVT.
2 : SWEVT.
16 + n TRnEVT (n = 0, 7).
Other = Reserved.

PEVT Posted Event
0 : No posted event.
1 : Posted event.

PREVSUSP Previous State of Core Suspend-Out Signal
0 : Previous core suspend-out inactive.
1 : Previous core suspend-out active.
Updated when a Debug Event causes a hardware update of DBGSR.SUSP.
This field is not updated for writes to DBGSR.SUSP.

RES Reserved
SUSP Current State of the Core Suspend-Out Signal

0 : Core suspend-out inactive.
1 : Core suspend-out active.

SIH Suspend-in Halt
State of the Suspend-In signal.
1 : The Suspend-In signal is asserted. The CPU is in Halt Mode.
0 : The Suspend-In signal is negated. The CPU is not in Halt Mode, (except
when the Halt mechanism is set following a Debug Event or a write to
DBGSR.HALT).
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PRE
VSU
SP

RES SU
SP SIH HALT DE

Bits Type
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[12:8] rh

7 rwh

6 rh

5 -

4 rwh

3 rh
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Field Description
HALT CPU Halt Request / Status Field

HALT can be set or cleared by software.
HALT[0] is the actual Halt bit. HALT[1] is a mask bit to specify whether or not
HALT[0] is to be updated on a software write. HALT[1] is always read as 0.
HALT[1] must be set to 1 in order to update HALT[0] by software (R: read; W:
write).
00B R: CPU running.
W: HALT[0] unchanged.
01B R: CPU halted.
W: HALT[0] unchanged.
10B R: Not Applicable.
W: reset HALT[0].
11B R: Not Applicable.
W: If DBGSR.DE == 1, set HALT[0]. If DBGSR.DE == 0, HALT[0] is left
unchanged.

DE Debug Enable
Determines whether the core debug is enabled or not.
0 : The Core Debug is disabled.
1 : The Core Debug is enabled.
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External Event Register

EXEVT
External Event Register (FD08H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rw rw rw rw rw

Field Description
RES Reserved
CNT Counter

When this event occurs adjust the control of the performance counters in
task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e. start it if it is currently
stopped, stop it if it is currently running).

SUSP CCore Debug Suspend-Out Signal State
Value to be assigned to the Core Debug suspend-out signal when the Debug
Event is raised.

BOD Breakout Disable
0 : BRKOUT signal asserted according to the Debug Action specified in the
EVTA field.
1 : BRKOUT signal not asserted. This takes priority over any assertion
generated by the EVTA field.

BBM Break Before Make (BBM) or Break After Make (BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

User Manual (Volume 1) 12-15 V1.2.2
2020-01-15

RES CNT SU
SP BOD BBM EVTA

Bits Type
[31:8] -

[7:6] rw

5 rw

4 rw

3 rw
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Field Description
EVTA Event Associated

Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT Signal.
101B : If implemented, breakpoint interrupt 1 and pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None
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Core Register Access Event Register

CREVT
Core Register Access Event (FD0CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rw rw rw rw rw

Field Description
RES Reserved
CNT Counter

When this event occurs adjust the control of the performance counters in
task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e. start it if it is currently
stopped, stop it if it is currently running).

SUSP Core Debug Suspend-Out Signal State
Value to be assigned to the Core debug suspend-out signal when the Debug
Event is raised.

BOD Breakout Disable
0 : BRKOUT signal asserted according to the action specified in the EVTA
field.
1 : BRKOUT signal not asserted. This takes priority over any assertion
generated by the EVTA field.

BBM Break Before Make (BBM) or Break After Make (BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).
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Bits Type
[31:8] -

[7:6] rw

5 rw

4 rw

3 rw
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Field Description
EVTA Event Associated

Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT Signal.
101B : If implemented, breakpoint interrupt 1 and pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None
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Software Debug Event Register

SWEVT
Software Debug Event (FD10H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rw rw rw rw rw

Field Description
RES Reserved
CNT Counter

When this event occurs adjust the control of the performance counters in
task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e. start it if it is currently
stopped, stop it if it is currently running).

SUSP Core Debug Suspend-Out Signal State
Value to be assigned to the Core Debug suspend-out signal when the event
is raised.

BOD Breakout Disable
0 : BRKOUT signal asserted according to the action specified in the EVTA
field.
1 : BRKOUT signal not asserted. This takes priority over any assertion
generated by the EVTA field.

BBM Break Before Make (BBM) or Break After Make (BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).
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Bits Type
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[7:6] rw

5 rw

4 rw

3 rw
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Field Description
EVTA Event Associated

Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT Signal.
101B : If implemented, breakpoint interrupt 1 and pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None
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Trigger Event Registers
TRxEVT stores the configuration of each trigger.
TRxEVT will be duplicated as many times as there are comparators.

Note: The RNG bit of ‘odd’ numbered Trigger Event registers (TR1EVT, TR3EVT, etc.) is always reserved.

TRxEVT
Trigger Event x (F0XXH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

- rw rw - rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw - rw rw - rw rw rw rw rw

Field Description
RES Reserved
ALD Address Load

Used in conjunction with TYP=0

AST Address Store
Used in conjunction with TYP=0

RES Reserved
ASI Address Space Identifier

The ASI of the Debug Trigger process.

ASI_EN Enable ASI Comparison
0 : No ASI comparison performed. Debug Trigger is valid for all processes.
1 : Enable ASI comparison. Debug Events are only triggered when the current
process ASI matches TRnEVT.ASI.

RES Reserved
RNG Compare Type

Note: The RNG bit of ‘odd’ numbered Trigger Event registers (TR1EVT,
TR3EVT, etc.) is always reserved. The following definition only
applies to ‘even’ numbered Trigger Event registers (i.e. TR0EVT,
TR2EVT, etc.).

1B Range
0B Equality
Once an even numbered comparator has been set to range, the EVTR
settings of its associated upper neighbour will be ignored.

TYP Input Selection
0B Address
1B PC
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RES ALD AST RES ASI

ASI_
EN RES RNG TYP RES CNT SU

SP BOD BBM EVTA

Bits Type
[31:29] -

28 rw

27 rw

[26:21] -

[20:16] rw

15 rw

14 -

13 rw

12 rw
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Field Description
RES Reserved
CNT Counter

When this event occurs adjust the control of the performance counters in
task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e. start it if it is currently
stopped, stop it if it is currently running).

SUSP Core Debug Suspend-Out Signal State
Value to be assigned to the Core Debug suspend-out signal when the Debug
Event is raised.

BOD Breakout Disable
0 : BRKOUT signal asserted according to the action specified in the EVTA
field.
1 : BRKOUT signal not asserted. This takes priority over any assertion
generated by the EVTA field.

BBM Break Before Make (BBM) or Break After Make (BAM) Selection
Code triggers BBM or BAM selection.
0 : Code only triggers Break After Make (BAM).
1 : Code only triggers Break Before Make (BBM).
Trigger BBM or BAM selection.
0 : Triggers is Break After Make (BAM).
1 : Triggers is Break Before Make (BBM).

EVTA Event Associated
Specifies the Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT Signal.
101B : If implemented, breakpoint interrupt 1 and pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None
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Bits Type
[11:8] -

[7:6] rw

5 rw

4 rw

3 rw

[2:0] rw
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Trigger Address Register
TRxADR stores the comparison address value for each trigger.

TRxADR
Trigger Address x (F0XXH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

rw

Field Description
ADDR Comparison Address

Note: For PC comparison, bit[0] is always zero.
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Bits Type
[31:0] rw
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Trigger Accumulator Register
TRIG_ACC stores the accumulated debug trigger state since the register was last cleared.

Note: This register is cleared by any read operation, write operations are ignored.

TRIG_ACC
Core Debug Trigger Accumulator (FD30H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rh rh rh rh rh rh rh rh

Field Description
RES Reserved
T7 Trigger-7 active since last cleared
T6 Trigger-6 active since last cleared
T5 Trigger-5 active since last cleared
T4 Trigger-4 active since last cleared
T3 Trigger-3 active since last cleared
T2 Trigger-2 active since last cleared
T1 Trigger-1 active since last cleared
T0 Trigger-0 active since last cleared
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RES
r

T7 T6 T5 T4 T3 T2 T1 T0

Bits Type
[31:8] -

7 rh

6 rh

5 rh

4 rh

3 rh

2 rh

[1 rh

0 rh
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Debug Monitor Start Address Register
The DMS reset value is {20’hA0000,3’B0001,CORE_ID,6’B000000}.

DMS
Debug Monitor Start Address (FD40H) Reset Value:  Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DMS Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw -

Field Description
DMS Value Debug Monitor Start Address

The address at which monitor code execution begins when a breakpoint
trap is taken.

RES Reserved
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DMS Value RES

Bits Type
[31:1] rw

0 -
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Debug Context Save Area Pointer Register
The reset value of the DCX register is {20’hA0000,3’b010,core_id,6’b000000}.

DCX
Debug Context Save Area Pointer   (FD44H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DCX Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rw -

Field Description
DCX Value Debug Context Save Area Pointer

Address where the debug context is stored following a breakpoint trap.

RES Reserved
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DCX Value RES

Bits Type
[31:6] rw

[5:0] -
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Debug Trap Control Register
The Debug Trap Control Register contains the DTA (Debug Trap Active) bit.
The DTA bit is defined as being cleared on an RFM instruction and set on a breakpoint trap. It may also be set and
cleared by MTCR.
After an application reset the DTA bit is set to one. The register must therefore be cleared before a debug trap may
be taken.

DBGTCR
Debug Trap Control Register (FD48H) Reset Value: 0000 0001H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rwh

Field Description
RES Reserved
DTA Debug Trap Active Bit

1: A breakpoint Trap is active
0: No breakpoint trap is active.
A breakpoint trap may only be taken in the condition DTA == 0. Taking a
breakpoint trap sets the DTA bit to one. Further breakpoint traps are
therefore disabled until such time as the breakpoint trap handler clears the
DTA bit or until the breakpoint trap handler terminates with a RFM.
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RES DTA

Bits Type
[31:1] -

0 rwh
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Address Space Identifier Register (TASK_ASI)
The Address Space Identifier (ASI) register description.

TASK_ASI
Address Space Identifier Register (8004H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rw

Field Description
RES Reserved
ASI Address Space Identifier

The ASI register contains the Address Space Identifier of the current process.
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RES ASI

Bits Type
[31:5] -

[4:0] rw
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12.10 Core Performance Measurement and Analysis
Real-time measurement of core performance provides useful insights to system developers, architects, compiler
developers, application developers, OS developers, and so on.
TriCore includes the ability to measure different performance aspects of the processor without any real-time
effect on its execution. The performance measurement hardware is configured so that only a subset of
performance measurements can be taken simultaneously.
The performance measurement block can be used to measure basic parameters such as:
• CPU Clocks.
• Instruction Count.
• Instruction Cache Hit / Miss.
• Data Cache Hit / Miss (clean or dirty).
The actual parameters that may be measured are implementation specific.
The performance counters can be used in a free running manner, enabled to acquire aggregate information.
Alternatively they can be used in conjunction with the debug event logic to control ‘windows’ of operation for an
individual task, for example starting and stopping the counters dynamically to filter the measured information
on some desired event.

Typical Performance Counter Usage
The Performance counters are controlled by the CCTRL CSFR register.
The performance counters can be enabled or disabled by writing the appropriate value to the counter enable
CCTRL.CE bit.
Typically two parameters are always counted for base line measurement:
• The clock count.
• The number of instructions issued.
One of:
• Instruction Cache Hits.
• Data Cache Hits.
One of:
• Instruction Cache Misses.
• Data Cache Clean Misses.
Additionally:
• Data Cache Dirty Misses (cache write-back / eviction was required).

Note: Counters can only be written when they are disabled (i.e. not in ‘counting mode’). Any attempt to write
during counting-mode will have no effect.

Note: The counters are free running incrementors once enabled, and will roll over to zero after the maximum
value is reached.

The grouping of counter functions allows typical measurements to be clustered; i.e. Data Cache performance and
Instruction Cache performance.
These can all be measured against the background statistics of clock cycles and instructions issued.
The start of counters is not precisely synchronized to any pipeline stage. For example, once the instruction
counter is enabled to count, it starts counting all retiring instructions from that clock cycle onward. Similarly,
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once the instruction cache miss counter is started, it will count all the instruction cache misses from that clock
cycle onward.
There are two ways to enable counters: Normal mode and Task mode (CCTRL.CM).
Normal (default mode) or Task mode are configured by CCTRL.CM:
• Normal mode - The counters start counting as soon as they are enabled, and will keep counting until they are

disabled.
• Task mode - The counters will only count if the processor detected a debug event with the action to start the

performance counters.

Writing of the Counters
Counters can be read any time, but they can only be written when they are not actively counting (i.e. when they
are disabled). If the counters are disabled, then they are not considered to be in counting mode and so they can
be written.
A counter is said to be in the counting mode if:
• The Normal or Task mode is selected.
• The mode is active (Normal mode is always active).
• The counter enable CE bit (in the Counter Control register - CCTRL) is enabled.

Counter Modes
The Counter Mode (CM) bit in the Counter Control CSFR (i.e. CCTRL.CM) determines the operating mode of all the
counters.
In the Normal mode of operation the counter increments on their respective triggers if the Count enable bit in the
CCTRL is set (CCTRL.CE). In Task mode there is additional gating control from the debug unit which allows the
data gathered in the performance counters to be filtered by some specific criteria, such as a single task for
example.

Wrapping of the counters / Sticky bit
The performance counters give the user some indication that the counters had wrapped (by use of a sticky bit.)
This helps to tell whether the counter has wrapped between two measured values.
• All performance counters are 31 bit counters with free wrapping operation.
• Bit 31 of each counter is sticky. It gets set when bits 30:0 wrap. It stays set until written by software.
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12.11  Performance Counter Registers
The performance counter registers are:

Register Reference
CCTRL Page 32
CCNT Page 33
ICNT Page 34
M1CNT Page 35
M2CNT Page 36
M3CNT Page 37

User Manual (Volume 1) 12-31 V1.2.2
2020-01-15

Description Offset Address
Counter Control Register. FC00H

CPU Clock Count Register. FC04H

Instruction Count Register. FC08H

Multi Count Register 1. FC0CH

Multi Count Register 2. FC10H

Multi Count Register 3. FC14H
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Counter Control Register

CCTRL
Counter Control (FC00H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- rw rw rw rw rw

Field Description
RES Reserved
M3 M3CNT configuration - Implementation Specific
M2 M2CNT configuration - Implementation Specific
M1 M1CNT configuration - Implementation Specific
CE Count Enable

0 : Disable the counters: CCNT, ICNT, M1CNT, M2CNT, M3CNT.
1 : Enable the counters: CCNT, ICNT, M1CNT, M2CNT, M3CNT.

CM Counter Mode
0 : Normal Mode.
1 : Task Mode.
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RES M3 M2 M1 CE CM

Bits Type
[31:11] -

[10:8] rw

[7:5] rw

[4:2] rw

1 rw

0 rw
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CPU Clock Cycle Count Register

CCNT
CPU Clock Cycle Count (FC04H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Description
SOvf Sticky Overflow bit

Set by hardware when count value [30:0] = 31’h7FFF_FFFF.
It can only be cleared by software.

Count Value Count Value
Current Count of the CPU Clock Cycles.
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SOvf Count Value

Bits Type
31 rw

[30:0] rw
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Instruction Count Register

ICNT
Instruction Count  (FC08H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Description
SOvf Sticky Overflow bit

Set by hardware when count value [30:0] = 31’h7FFF_FFFF.
It can only be cleared by software.

Count Value Count Value
Count of the Instructions Executed.
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SOvf Count Value

Bits Type
31 rw

[30:0] rw
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Multi-Count Register 1

M1CNT
Multi-Count Register 1 (FC0CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Description
SOvf Sticky Overflow bit

Set by hardware when count value [30:0] = 31’h7FFF_FFFF.
It can only be cleared by software.

Count Value Count Value
Count of the Selected Event.
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SOvf Count Value

Bits Type
31 rw

[30:0] rw
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Multi-Count Register 2

M2CNT
Multi-Count Register 2  (FC10H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Description
SOvf Sticky Overflow bit

Set by hardware when count value [30:0] = 31’h7FFF_FFFF.
It can only be cleared by software.

Count Value Count Value
Count of the Selected Event.
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SOvf Count Value

Bits Type
31 rw

[30:0] rw
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Multi-Count Register 3

M3CNT
Multi-Count Register 3 (FC14H)  Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Description
SOvf Sticky Overflow bit

Set by hardware when count value [30:0] = 31’h7FFF_FFFF.
It can only be cleared by software.

Count Value Count Value
Count of the Selected Event.
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SOvf Count Value

Bits Type
31 rw

[30:0] rw
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13 Core Register Table
The following tables list all the TriCore™ CSFRs and GPRs. The memory protection system is modular and the
actual number of registers is implementation-specific.

Table 20 General Purpose Registers (GPR)
Register Name Address

Offset
D[0] FF00H

1)

D[1] FF04H
D[2] FF08H
D[3] FF0CH
D[4] FF10H
D[5] FF14H
D[6] FF18H
D[7] FF1CH
D[8] FF20H
D[9] FF24H
D[10] FF28H
D[11] FF2CH
D[12] FF30H
D[13] FF34H
D[14] FF38H
D[15] FF3CH

A[0] FF80H
1)

A[1] FF84H
A[2] FF88H
A[3] FF8CH
A[4] FF90H
A[5] FF94H
A[6] FF98H
A[7] FF9CH
A[8] FFA0H
A[9] FFA4H
A[10] (SP) FFA8H
A[11] (RA) FFACH
A[12] FFB0H
A[13] FFB4H
A[14] FFB8H
A[15] FFBCH

1) These address offsets are not used by the MTCR instruction.

Table 21 Core Special Function Registers (CSFR)
Register Name Address

Offset
PCXI FE00H
PCX

PSW FE04H
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Description

Data Register 0.
Data Register 1.
Data Register 2.
Data Register 3.
Data Register 4.
Data Register 5.
Data Register 6.
Data Register 7.
Data Register 8.
Data Register 9.
Data Register 10.
Data Register 11.
Data Register 12.
Data Register 13.
Data Register 14.
Data Register 15 - Implicit Data Register.
Address Register 0 - Global Address Register.
Address Register 1 - Global Address Register.
Address Register 2.
Address Register 3.
Address Register 4.
Address Register 5.
Address Register 6.
Address Register 7.
Address Register 8 - Global Address Register.
Address Register 9 - Global Address Register.
Address Register 10 - Stack Pointer Register.
Address Register 11 - Return Address Register.
Address Register 12.
Address Register 13.
Address Register 14.
Address Register 15 - Implicit Address Register.

Description

Previous Context Information Register.
Previous Context Pointer Register.

Program Status Word Register.
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Table 21 Core Special Function Registers (CSFR) (cont’d)

Register Name Address
Offset

PC FE08H

SYSCON2) FE14H

CPU_ID FE18H

CORE_ID FE1CH

BIV 1) FE20H

BTV 1) FE24H

ISP 1) FE28H

ICR FE2CH

FCX FE38H

LCX FE3CH

COMPAT1)2) 9400H

Memory Protection Registers
DPR0_L C000H
DPR0_U C004H
DPR1_L C008H
DPR1_U C00CH
DPR2_L C010H
DPR2_U C014H
DPR3_L C018H
DPR3_U C01CH

DPR4_L C020H
DPR4_U C024H
DPR5_L C028H
DPR5_U C02CH
DPR6_L C030H
DPR6_U C034H
DPR7_L C038H
DPR7_U C03CH

DPR8_L C040H
DPR8_U C044H
DPR9_L C048H
DPR9_U C04CH
DPR10_L C050H
DPR10_U C054H
DPR11_L C058H
DPR11_U C05CH
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Description

Program Counter Register.

System Configuration Register.

CPU Identification Register (Read Only).

Core Identification Register

Base Address of Interrupt Vector Table Register.

Base Address of Trap Vector Table Register.

Interrupt Stack Pointer Register.

ICU Interrupt Control Register.

Free Context List Head Pointer Register.

Free Context List Limit Pointer Register.

Compatibility Mode Register.

Data Segment Protection Range 0, Lower.
Data Segment Protection Range 0, Upper.
Data Segment Protection Range 1, Lower.
Data Segment Protection Range 1, Upper.
Data Segment Protection Range 2, Lower.
Data Segment Protection Range 2, Upper.
Data Segment Protection Range 3, Lower.
Data Segment Protection Range 3, Upper.

Data Segment Protection Range 4, Lower.
Data Segment Protection Range 4, Upper.
Data Segment Protection Range 5, Lower.
Data Segment Protection Range 5, Upper.
Data Segment Protection Range 6, Lower.
Data Segment Protection Range 6, Upper.
Data Segment Protection Range 7, Lower.
Data Segment Protection Range 7, Upper.

Data Segment Protection Range 8, Lower.
Data Segment Protection Range 8, Upper.
Data Segment Protection Range 9, Lower.
Data Segment Protection Range 9, Upper.
Data Segment Protection Range 10, Lower.
Data Segment Protection Range 10, Upper.
Data Segment Protection Range 11, Lower.
Data Segment Protection Range 11, Upper.
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Table 21 Core Special Function Registers (CSFR) (cont’d)

Register Name Address
Offset

DPR12_L C060H
DPR12_U C064H
DPR13_L C068H
DPR13_U C06CH
DPR14_L C070H
DPR14_U C074H
DPR15_L C078H
DPR15_U C07CH

CPR0_L D000H
CPR0_U D004H
CPR1_L D008H
CPR1_U D00CH
CPR2_L D010H
CPR2_U D014H
CPR3_L D018H
CPR3_U D01CH

CPR4_L D020H
CPR4_U D024H
CPR5_L D028H
CPR5_U D02CH
CPR6_L D030H
CPR6_U D034H
CPR7_L D038H
CPR7_U D03CH

CPR8_L D040H
CPR8_U D044H
CPR9_L D048H
CPR9_U D04CH
CPR10_L D050H
CPR10_U D054H
CPR11_L D058H
CPR11_U D05CH

CPR12_L D060H
CPR12_U D064H
CPR13_L D068H
CPR13_U D06CH
CPR14_L D070H
CPR14_U D074H
CPR15_L D078H
CPR15_U D07CH

CPXE_0 E000H
CPXE_1 E004H
CPXE_2 E008H
CPXE_3 E00CH
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Description

Data Segment Protection Range 12, Lower.
Data Segment Protection Range 12, Upper.
Data Segment Protection Range 13, Lower.
Data Segment Protection Range 13, Upper.
Data Segment Protection Range 14, Lower.
Data Segment Protection Range 14, Upper.
Data Segment Protection Range 15, Lower.
Data Segment Protection Range 15, Upper.

Code Segment Protection Range 0, Lower.
Code Segment Protection Range 0, Upper.
Code Segment Protection Range 1, Lower.
Code Segment Protection Range 1, Upper.
Code Segment Protection Range 2, Lower.
Code Segment Protection Range 2, Upper.
Code Segment Protection Range 3, Lower.
Code Segment Protection Range 3, Upper.

Code Segment Protection Range 4, Lower.
Code Segment Protection Range 4, Upper.
Code Segment Protection Range 5, Lower.
Code Segment Protection Range 5, Upper.
Code Segment Protection Range 6, Lower.
Code Segment Protection Range 6, Upper.
Code Segment Protection Range 7, Lower.
Code Segment Protection Range 7, Upper.

Code Segment Protection Range 8, Lower.
Code Segment Protection Range 8, Upper.
Code Segment Protection Range 9, Lower.
Code Segment Protection Range 9, Upper.
Code Segment Protection Range 10, Lower.
Code Segment Protection Range 10, Upper.
Code Segment Protection Range 11, Lower.
Code Segment Protection Range 11, Upper.

Code Segment Protection Range 12, Lower.
Code Segment Protection Range 12, Upper.
Code Segment Protection Range 13, Lower.
Code Segment Protection Range 13, Upper.
Code Segment Protection Range 14, Lower.
Code Segment Protection Range 14, Upper.
Code Segment Protection Range 15, Lower.
Code Segment Protection Range 15, Upper.

Code Protection Execute Enable Set-0.
Code Protection Execute Enable Set-1.
Code Protection Execute Enable Set-2.
Code Protection Execute Enable Set-3.
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Table 21 Core Special Function Registers (CSFR) (cont’d)

Register Name Address
Offset

CPXE_4 E040H
CPXE_5 E044H
CPXE_6 E048H
CPXE_7 E04CH

DPRE_0 E010H
DPRE_1 E014H
DPRE_2 E018H
DPRE_3 E01CH

DPRE_4 E050H
DPRE_5 E054H
DPRE_6 E058H
DPRE_7 E05CH

DPWE_0 E020H
DPWE_1 E024H
DPWE_2 E028H
DPWE_3 E02CH

DPWE_4 E060H
DPWE_5 E064H
DPWE_6 E068H
DPWE_7 E06CH

TPS_CON E400H

TPS_TIMER0 E404H

TPS_TIMER1 E408H

TPS_TIMER2 E40CH

TPS_EXTIM_ENTRY_CV E440H
AL

TPS_EXTIM_ENTRY_ E444H
LVAL

TPS_EXTIM_EXIT_ E448H
CVAL

TPS_EXTIM_EXIT_ E44CH
LVAL

TPS_EXTIM_CLASS_ E450H
EN

TPS_EXTIM_STAT E454H

TPS_EXTIM_FCX E458H

Memory Management Registers (If implemented)
MMU_CON 8000H

MMU_ASI 8004H

MMU_TVA 800CH

MMU_TPA 8010H
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Description

Code Protection Execute Enable Set-4.
Code Protection Execute Enable Set-5.
Code Protection Execute Enable Set-6.
Code Protection Execute Enable Set-7.

Data Protection Read Enable Set-0.
Data Protection Read Enable Set-1.
Data Protection Read Enable Set-2.
Data Protection Read Enable Set-3.

Data Protection Read Enable Set-4.
Data Protection Read Enable Set-5.
Data Protection Read Enable Set-6.
Data Protection Read Enable Set-7.

Data Protection Write Enable Set-0.
Data Protection Write Enable Set-1.
Data Protection Write Enable Set-2.
Data Protection Write Enable Set-3.
Data Protection Write Enable Set-4.
Data Protection Write Enable Set-5.
Data Protection Write Enable Set-6.
Data Protection Write Enable Set-7.

Timer Protection Configuration Register

Temporal Protection Timer 0

Temporal Protection Timer 1

Temporal Protection Timer 2

Temporal Protection Exception Timer Register

Temporal Protection Exception Timer Register

Temporal Protection Exception Timer Register

Temporal Protection Exception Timer Register

Temporal Protection Exception Timer Register

Temporal Protection Exception Timer Register

Temporal Protection Exception Timer Register

Memory Management Unit Configuration Register.

MMU Address Space Identifier Register.

MMU Translation Virtual Address Register.

MMU Translation Physical Address Register.
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Table 21 Core Special Function Registers (CSFR) (cont’d)

Register Name Address
Offset

MMU_TPX 8014H

MMU_TFA 8018H

MMU_TFAS 8020H

PMA01) 801CH

PMA01) 8100H

PMA11) 8104H

PMA21) 8108H

DCON2 9000H

DCON1 9008H

SMACON1)2) 900CH

DSTR 9010H

DATR 9018H

DEADD 901CH

DIEAR 9020H

DIETR 9024H

DCON0 9040H

PSTR 9200H

PCON1 9204H

PCON2 9208H

PCON0 920CH

PIEAR 9210H

PIETR 9214H

Debug Registers
DBGSR FD00H

EXEVT FD08H

CREVT FD0CH

SWEVT FD10H

TR0EVT F000H

TR0ADR F004H

TR1EVT F008H

TR1ADR F00CH

TR2EVT F010H

TR2ADR F014H

TR3EVT F018H

TR3ADR F01CH

TR4EVT F020H

TR4ADR F024H
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Description

MMU Translation Physical Index Register.

MMU Translation Fault Address Register.

MMU Translation Fault Address Status Register.

Physical Memory Attributes Register 0.

Physical Memory Attributes Register 0.

Physical Memory Attributes Register 1.

Physical Memory Attributes Register 2.

Data Memory Configuration Register-2.

Data memory Configuration Register-1.

SIST mode Control Register.

Data Synchronous Error Trap Register.

Data Asynchronous Error Trap Register.

Data Error Address Register.

Data Integrity Error Address Register.

Data Integrity Error Trap Register.

Data Memory Configuration Register-0.

Program Synchronous Error Trap Register.

Program Memory Configuration Register-1.

Program Memory Configuration Register-2.

Program Memory Configuration Register-0.

Program Integrity Error Address Register.

Program Integrity Error Trap Register.

Debug Status Register.

External Event Register.

Core Register Event Register.

Software Event Register.

Trigger Event 0 Register.

Trigger Address 0 Register.

Trigger Event 1 Register

Trigger Address 1 Register.

Trigger Event 2 Register

Trigger Address 2 Register.

Trigger Event 3 Register

Trigger Address 3 Register.

Trigger Event 4 Register

Trigger Address 4 Register.
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Table 21 Core Special Function Registers (CSFR) (cont’d)

Register Name Address
Offset

TR5EVT F028H

TR5ADR F02CH

TR6EVT F030H

TR6ADR F034H

TR7EVT F038H

TR7ADR F03CH

TRIG_ACC FD30H

DMS FD40H

DCX FD44H

TASK_ASI 8004H

DBGTCR FD48H

CCTRL FC00

CCNT FC04

ICNT FC08

M1CNT FC0C

M2CNT FC10

M3CNT FC14

Floating Point Registers
FPU_TRAP_CON A000H

FPU_TRAP_PC A004H

FPU_TRAP_OPC A008H

FPU_TRAP_SRC1 A010H

FPU_TRAP_SRC2 A014H

FPU_TRAP_SRC3 A018H

1) These registers are ENDINIT protected.
2) These registers are SAFETY_ENDINIT protected.
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Trigger Event 5 Register

Trigger Address 5 Register.

Trigger Event 6 Register

Trigger Address 6 Register.

Trigger Event 7 Register

Trigger Address 7 Register.

Trigger Accumulator Register.

Debug Monitor Start Address Register.

Debug Context Save Address Register.

TASK Address Space Identifier Register.

Debug Trap Control Register.

Counter Control Register

CPU Clock Count Register

Instruction Count Register

Multi Count Register 1

Multi Count Register 2

Multi Count Register 3

Trap Control Register.

Trapping Instruction Program Control Register.

Trapping Instruction Opcode Register.

Trapping Instruction SRC1 Operand Register.

Trapping Instruction SRC2 Operand Register.

Trapping Instruction SRC3 Operand Register.
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Numerics Displacement 21
Address Register (A 39 Effective 58
Register Half-word 85

A 39 Register A10 38
16-bit Instructions 10 Return Address A11 30
32-bit Instructions 10 Space 21
A Width 21
A0 Address Map 15

Address Register 0 12 Physical Memory Attributes 98
A0, A1, A8, A9 Address Register (An) 31

System Global Registers Address Registers 30
GPRs 30 Addressing 23

A0-A15 General Purpose Registers 30
Address Registers 0-15 183 Address Space 10, 12

A1 Physical 15
Address Register 1 12 Virtual 15

A10 Addressing
A10SP Base + Offset 23

register field 39 Bit Indexed 27
Address Register 10 39 Bit-Reverse 26

Stack Pointer (SP) 11, 38 Circular 24
A10SP Indexed Arrays 27

register field 39 PC-relative 28
A11 Post-decrement 23

Address Register 11 Post-increment 23
Return Address (RA) 11 Pre-Decrement 23

CSA 52 Pre-Increment 23
Return Address Register 11 Addressing Modes 12

A15 Absolute Addressing 23
Address Register 15 Programming Model 22

Implicit Address 11 Synthesized 12, 27
A8 ADDSC.A Instruction

Address Register 8 12 Indexed Addressing 27
A9 ADDSC.AT Instruction

Address Register 9 12 Bit Indexed Addressing 27
Absolute Address ALD

PC-Relative Addressing 28 TRxEVT register field 166
Translation of 23 Alignment Requirements 19

Absolute Addressing 23 Programming Restrictions 19
Access Privilege 34 Rules 19
Accesses Alignment Rules 19

Necessary Alignment Trap (ALN) 25
Physcial Memory Properties 98 ALN Trap

Speculative Data Address Alignment 78
Physical Memory Properties 98 Architectural Registers 11

ADDR Diagram of 11
An register field 31 Architecture
TRxADR register field 168 Addressing Data 28

Address Overview 10
Base Address of Vector Table 71 Traps 72
Data Types 16 Array
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Base Address 26 Reserved Field 9
Index 26 rw 9

ASI rwh 9
TASK_ASI register field 173 w 9
TRxEVT register field 166 Bit-Reverse Addressing 26

ASI_EN FFT 26
TRxEVT register field 166 Figure 26

Assertion Traps 82 Register Pair 26
AST Bit-Reverse Index 26

TRxEVT register field 166 BIV
Asynchronous Traps 73, 139 BIV register field 71

FPU 130 Interrupt Vector Table Location 65
Atomic Operations 22 Register
ATT Address Offset 184

PMA0 register field 100 Definition 71
Automatic Switch Interrupt and Trap Handling 69

Stack Management 38 BOD
AV CREVT register field 162

Advanced Overflow EXEVT register field 160
PSW User Status Bit 35 SWEVT register field 164

B TRxEVT register field 167
BAM Trap Boolean

Break After Make 82 Data Types 16
Base + Offset Breakpoint

Addressing 23 CDC Features 146
Base Address Interrupt Debug Action 153

Array 26 Trap 152
Base Interrupt Vector Table Pointer (BIV) 71 BTV
Base Register Base Trap Vector Table Pointer 85

Base + Offset Mode 28 BTV register field 85
Base Trap Vector Table Pointer (BTV) 85 Register
BBM Address Offset 184

CREVT register field 162 Definition 85
Debug Halt Action 151 Byte
EXEVT register field 160 Data Types 16
SWEVT register field 164 Definition 9
TRxEVT register field 167 Indices 26

BBM Trap Ordering 20
Break Before Make 82 C

BISR C
Context Events & Instructions 51 Carry
Context Switching 52 PSW User Status Bit 35

Bit CAC
Enable and Disable 69 PMA1 register field 101
Indexed Addressing 27 CALL
String Context Switching 54

Data Types 16 Call Depth Counter
Bit Type 9 CSAs and Context Lists 52

Abbreviations 9 CCNT 178
Text Conventions 9 Address Offset 188

Definitions CPU Clock Cycle Count Register 178
- 9 CCPN
h 9 Context Switching 52
r 9 CPU Priority
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Interrupt Priority Groups 66 Events and Instructions 51
Current CPU Priority Number 69 Information Register 37
ICR register field 70 List Management

CCTRL 174, 177 CTYP Trap 80
Address Offset 188 Lower 48
Counter Control Register 177 Lower Context

CCTRL.CM 174 PCXI register Field 37
CDC Registers 31

Control Registers 156 Task Switching Operation 50
Core Debug Controller 15, 146 Management Traps 79
CSA 52 Of Task 13, 36
Debug Triggers 150 Restore
Enabling 146 CTYP Trap 80
Features 146 Save
PSW register field 35 FCU Trap 80

CDE Switching 13
PSW register field 35 Upper 48

CDO Trap Upper Context
Call Depth Overflow 79 Registers 31

CDU Trap Task Switching Operation 50
Call Depth Underflow 80 Upper Context UL

CE PCXI register field 37
CCTRL register field 177 Context Lists

Circular Addressing 24 Description 51
Figure 24 Context Management Registers 58
Index Algorithm 24 Context Restore
Load Word 24 Example 55

Circular Buffer FCX 56
End Case 25 Internal Buffer 56
Restrictions 25 Link Word 56

Circular Buffers 24 PCX 56
CM Context Save 52, 55

CCTRL register field 177 Example 55
CMPSWAP.W Instruction FCX 55

Alignment Requirements 19 Link Word 55
Semaphores and Atomic Operation 22 PCX 55

CNT Context Save Area (CSA) 13, 48
CREVT register field 162 Context Lists 51
EXEVT register field 160 Context Management Registers 58
SWEVT register field 164 Description 49
TRxEVT register field 167 Effective Address 49

Code Effective Address diagram 50
Address Context Switching

PC-Relative Addressing 28 BISR 52
Code Protection CALL 54

Mode (CPM) Register Function Calls 54
Address Offset 185, 186 ICR.CCPN 52

Range Register Lower Bound (CPRx_mL) 116 ICR.IE 52
Range Register Upper Bound (CPRx_mU) 115 ICR.PIPN 52

COMPAT RET 54
Compatibility Register 184 SVLCX 52

Compatibility Mode Register 45 With Interrupts & Traps 52
Compatibility Mode Register (COMPAT) 45 Coprocessor 15
Context Core
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Break-Out Signal 151 List Head Pointer 58
Debug Controller (CDC) 146 List Limit Pointer 58
Special Function Registers (CSFRs) List Underflow 61

Core Registers 12 PCXI.PCX 52
Suspend-Out Signal 151 PCXI.UL 52

Core Debug Controller (CDC) 15 PSW.CDC 52
Core Identification Register (Core_ID) 44 CSFR
Core Register Table 183 Core Registers 12
Core Special Function Registers (CSFRs) 21, 183 Core Special Function Registers 21

Core Registers 29 Register Table 183
CORE_ID CSU Trap

CPU_ID register field 44 Call Stack Underflow 80
Count Value CTYP Trap

CCNT register field 178 Context Type 80
ICNT register field 179 D
M2CNT register field 181 D0-D15
M3CNT register field 182 Data Registers 0-15 183

Counter Control Register D15
CCTRL 177 Data Register 15 14

Counters DAE Trap
Normal Mode 175 Data Asynchronous Error 81
Task Mode 175 DAEAR

CPR Address Offset 187
Code Segment Protection (CPR) Register DAETR

Address Offset 185 Address Offset 187
CPRx_mL DATA

Code Protection Range Register Lower Bound 116 Dn register field 30
CPRx_mU Data

Code Protection Range Register Upper Bound 115 Data Registers (D0 to D15) 30
CPRx_nL DPR Data Segment Protection Register

Code Segment Protection Register Address Offset 184
Lower Bound 116 General Purpose Registers 30

CPU Types
Current Priority Number 64 List of 12
Priority Number 52 Data Asynchronous Error Trap Register (DATR) 88

CPU Clock Cycle Count Register Data Error Address Register (DEADD) 89
CCNT 178 Data Formats

CPU Identification Register (CPU_ID) 43 Overview Figure 18
CPU_ID Programming Model 17

CPU Identification Register Data Integrity Error Address Register 95
Address Offset 184 Data Integrity Error Trap Register 94

CREVT Data Memory Configuration Register
Address Offset 187 DCON0 105
Core Register Access Event Register DCON1 106

Definition 162 DCON2 106
CSA Data Memory Configuration Registers

A11(RA) 52 DCON0, DCON1, DCON2 105
Context Lists 51 Data Protection Mode Register (DPM)
Context Save Area 13, 48 Address Offset 186
Description 49 Data Protection Range Register Lower Bound
DSYNC 62 (DPRx_mL) 114
Effective Address diagram 50 Data Protection Register Upper Bound (DPBx_mU) 113
in Context Lists figure 51 Data Protection Set Configuration Register
Link Word 49, 51 DPSx 117, 118, 119
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Data Protection Set Configuration Register (DPSx) 117, DEBUG Instruction 146, 148
118, 119 Debug Monitor Start Address Register (DMS) 152
Data Register 11, 14 Debug Registers 187
Data Register (Dn) 30 Debug System 15
Data Synchronous Error Trap Register (DSTR) 87 Debug Trap Control Register
Data Types DBGTCR 172

Address 16 Debug Triggers 150
Bit String 16 Debugging
Boolean 16 Registers that support 47
Byte 16 Denormal Numbers 131
IEEE-754 17 DIE
Programming Model 16 Data Memory Integrity Error 91
Signed Fraction 16 Trap 91
Signed Integers 16 DIEAR 95
Unsigned Integers 16 Address Offset 187

DBGSR DIETR 94
Address Offset 187 Address Offset 187
Debug Status Register Direct Memory Access (DMA) 13

CDC Control Registers 156 Direct Translation 15
Definition 158 Memory Protection System 107

Enabling CDC 146 DMA
DBGTCR Direct Memory Access 13

Address Offset 188 DMS 170
Debug Trap Control Register 172 Address Offset 188

DCACHE_CON Debug Monitor Start Address Register
Address Offset 187 Breakpoint Trap 152

DCON0 DMS Value
Data Memory Configuration Register 105 DMS register field 170

DCON1 Double-word
Data Memory Configuration Register 106 Definition 9

DCON2 DPR
Data Memory Configuration Register 106 Data Segment Protection Register 184

DCX Definition 113
Address Offset 188 DPRx_mL
Debug Context Save Area Pointer Register Data Protection Range Lower Bound 114

Definition 171 DPRx_mU 113
DCX Value DPSx

DCX register field 171 Data Protection Set Configuration Register 117,
DE 118, 119

DBGSR register field 159 DREG
Debug FPU_TRAP_OPC register field 142

Monitor Start Address Register (DMS) DSE Trap
Breakpoint Trap 152 Data Access Synchronous Error 81

Traps 82 DSP
Debug Action Architecture Overview 10

Description 151 DSPR_CON
EXEVT 151 Address Offset 187
Halt 151 DSYNC
Run Control Features 146 CSA Memory Locations 62
TRnEVT 149 DTA

Debug Event 146 DBGTCR register field 172
Description 148 E
External 148 EA
MTCR and MFCR 148 Effective Address 49
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Effective Address FPU
Absolute Addressing 23 Invalid Operation 137
Context Save Area (CSA) 49, 58 FPU Exception Flag 137
Memory Protection 107 FPU_TRAP_CON register field 140

ENABLE Instruction 64 FIE
ENDINIT FPU_TRAP_CON register field 140

Protection 29 Floating Point
ENDINIT Protected 184 Registers 30
EVT 172 Unit (FPU) 130
EVTA Floating Point Registers 188

CREVT register field 163 Floating Point Unit (FPU) 130
EXEVT register field 161 FMT
SWEVT register field 165 FPU_TRAP_OPC register field 142
TRxEVT register field 167 FPU

EVTSRC Asynchronous Traps 130, 139
DBGSR register field 158 Denormal Numbers 131

Exceptions Exception Flags 136
FPU 136 Exceptions 136

EXEVT FI Exception Flag 137
Address Offset 187 Floating Point Unit 130
Register Definition 160 FS Exception Flag 137

Extended-Size Registers 30 FU Exception Flag 138
EXTR.U Instruction FV Exception Flag 138

Bit Indexed Addressing 27 FX Exception Flag 139
F FZ Exception Flag 138
FCD Trap 61 IEEE-754 130

Free Context List Depletion 79 Invalid Operations 137
FCDSF NaN 132

SYSCON register field 42 Rounding 135
FCU Trap Trap Control Register 140

Free Context List Underflow 80 FPU_TRAP_CON 140
FCX Trapping Instruction Opcode Register

Context Management Register 58 FPU_TRAP_OPC 142
Context Restore 56 Trapping Instruction Program Counter Register
Context Save 55 FPU_TRAP_PC 141
CSA Trapping Operand Register

Context List 51 FPU_TRAP_SRC1 143
Free CSA List Head Pointer Register 59 FPU_TRAP_SRC2 144
Offset Address 59 FPU_TRAP_SRC3 145
Pointer 59 FPU_TRAP_CON
Register 59 Address Offset 188

Address Offset 184 FPU Trap Control register 140
FCU Trap 80 FPU_TRAP_OPC

Segment Address Field 59 Address Offset 188
FCXO FPU Trapping Instruction Opcode register 142

FCX Offset Address FPU_TRAP_PC
Field in FCX Register 59 Address Offset 188

FCX register field 59 FPU Trapping Instruction Program Counter regis-
FCXS ter 141

FCX register field 59 FPU_TRAP_SCR1
Feature Summary 10 Address Offset 188
FFT FPU_TRAP_SCR2

Bit-Reverse Addressing 26 Address Offset 188
FI FPU_TRAP_SCR3
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Address Offset 188 GW
FPU_TRAP_SRC1 PSW register field 34

FPU Trapping Instruction Operand register 143 H
FPU_TRAP_SRC2 h

FPU Trapping Instruction Operand register 144 Bit Type 9
FPU_TRAP_SRC3 Half-word

FPU Trapping Instruction Operand register 145 Definition 9
Free Context List Half-Word Boundary

Available CSA 51 Alignment Requirements 19
Context Restore 56 HALT
Context Save 55 DBGSR register field 159
FCD Trap 79 Halt

Free CSA List Head Pointer Register (FCX) 59 Debug Action 151
Free CSA List Pointer Register 61 Hardware Traps 73
FS I

FPU Exception 137 I/O Privilege Level
FU Protection 14

FPU Exception Flag 138 ICNT 179
FPU_TRAP_CON register field 140 Address Offset 188

FUE ICR
FPU_TRAP_CON register field 140 Context Switching 52

Function Calls Initial State upon a Trap 76
Context Switching 54 Interrupt Control Register

FV Address Offset 184
FPU Exception Flag 138 Definition 69

FVE Description 63
FPU_TRAP_CON register field 140 ICU

FW Interrupt Control Unit 13
FPU_TRAP_CON register field 140 Operation 63

FX ID Registers 43, 44
FPU Exception Flag 139 IE
FPU_TRAP_CON register field 140 Context Switching 52

FXE ICR register field 69
FPU_TRAP_CON register field 140 IEEE-754

FZ Data Types 17
FPU Exception Flag 138 FPU 130
FPU_TRAP_CON register field 140 Implicit

FZE Address
FPU_TRAP_CON register field 140 Register A15 11

G Data Register 11
GByte Index

Definition 9 Algorithm
General Purpose Registers (GPR) 11, 29, 183 Circular Addressing 24
Global Array 26

Register Write Permission 64 Indexed Addressing
Registers 34 Synthesized Addressing Modes 27

GPR 29 Indexed Arrays
16-bit Instructions 30 Addressing 27
Architecture Overview 11 Indexes
General Purpose Registers 11, 17 Table Indexes

Architectural Registers 11 GPRs 30
Register Table 31, 183 Instruction Fetch 111

GRWP Trap Instruction Formats 22
Global Register Write Protection 78 Instruction Set Architecture (ISA)
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Features 10 Virtual Addressing 10
Integers 16 ISP

Multi-Precision 17 Initialize 38
Internal Buffer Interrupt Stack Pointer Register

Context Restore 56 Address Offset 184
Interrupt Interrupt Stack Pointer Register Definition 40

Control Register 69 register field 40
Definition 69 ISR

Enable/Disable Bit 63 Entering an ISR 63
Nested 13 Exiting an ISR 64
Priority 13 Interrupt
Priority Groups 66 Service Routine (ISR) 12
Register A11 30 Splitting on to Different Priorities 67
Request Stack Management 38

Priority Numbers 67 Tasks and Contexts 36
Service Routine (ISR) 36, 38 Tasks and Functions 52
Stack Management 38 ISYNC Instruction 47
Stack Pointer 38 Entering an ISR 64
Vector Table 69, 71 J

Interrupt Control Register (ICR) 63 JL Instruction
Context Switching 52 PC-Relative Addressing 28

Interrupt Control Register (ICU) 69 K
Interrupt Control Unit (ICU) 13 kBaud
Interrupt Enable 52 Definition 9
Interrupt Handler 50, 52 KByte
Interrupt Priority 13 Definition 9

ICU 13 L
Interrupt Service LCX

Request 63 Context Management Registers 58
Interrupt Service Routine (ISR) 12 FCD Trap 79

Dividing into Priorities 67 Free CSA List Limit Pointer Register 61
Entering an ISR 63 Address Offset 184
Exiting an ISR 64 Free CSA List Pointer Register 61
Stack Management 38 Offset 61
Tasks and Functions 52 Segment Address 61

Interrupt Stack Pointer (ISP) 40 LCXO
Interrupt System LCX register field 61

Chapter 63 LCXS
Description 13 LCX register field 61
Interrupt Priority 13 LD.B Instruction
SRN 13 Alignment Requirements 19
Using the Interrupt System 66 LD.BU Instruction

Interrupts Alignment Requirements 19
Context Switching 52 LDMST Instruction 27

IO Alignment Requirements 19
PSW register field 34 Semaphores and Atomic Operations 22

IOPC Trap LEA Instruction
Illegal Opcode 78 PC-Relative Addressing 28

IS Link Word
PSW register field 34 Context Restore 56
SYSCON register field 41 Context Save 55

ISA Context Save Areas (CSAs) 51
Adress Space 10 CSA 49
Feature Summary 10 CSAs 13
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Little-Endian 20 Classification 90
Load Data 91

Task Switching Operations 50 Mitigation 90
Load Word Program 91

Circular Addressing 24 Memory Management Registers 186
Local Variables 23 Memory Management Unit (MMU) 15
LOWBND Memory Protection 107

CPRx_nL register field 116 Memory Model
DPRx_nL register field 114 Description 12, 21

Lower Context 48 Physical Address Space 21
PCXI register Field 37 Physical Memory Addresses 21
Registers 31 Physical Memory Attributes 21
Task Switching Operation 50 Memory Protection

Lower Registers 11 I/O 107
M Trap System 107
M1 Memory Protection Registers 184

CCTRL register field 177 Description 46
M1CNT Memory Protection System 14, 107

Address Offset 188 MEMTR
Multi-Count Register 180 Address Offset 187

M2 MFCR Instruction
CCTRL register field 177 Debug Events 148

M2CNT Run-Control Features 146
Address Offset 188 MHz
Multi-Count Register 181 Definition 9

M3 MMU 14, 15
CCTRL register field 177 Protection System 14, 107

M3CNT 182 Segments
Address Offset 188 0 to 7 15
Multi-Count Register 182 8 to 15 15

MBaud Traps 77
Definition 9 Virtual Address 15

MByte MMU_ASI
Definition 9 Address Offset 186

MEM Trap MMU_CON
Invalid Local Memory Address 78 Address Offset 186

MEMAR MMU_TFA
Address Offset 187 Address Offset 187

Memory MMU_TFAS 187
Memory Protection Enable (SYSCON.PROTEN) 42 MMU_TPA
Protection Address Offset 186

Model 114 MMU_TPX
Protection Model 113 Address Offset 186
Protection Registers MMU_TVA

Active Set 33 Address Offset 186
Overview 46 MOD
PSW.PRS Field 33 CPU_ID register field 43

Protection System 107 MOD_32B
Memory Access CPU_ID register field 43

Circular Addressing 24 Mode
Memory Integrity Supervisor 13, 36

DIE 91 User-0 12, 36
PIE 91 User-1 13, 36

Memory Integrity Error MOD_REV
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CPU_ID register field 43 OVF Trap
Module Identification Number Arithmetic Overflow 82

CPU_ID.MOD Field 43, 44, 45 P
MPN Trap Packed Arithmetic 19

Memory Protection Null Address 78 Page Table Entry (PTE)
MPP Trap Memory Protection System 107

Memory Protection Access 77 Virtual Address Translation 15
MPR Trap 112 PC

Memory Protection Read 77 Architecture Overview 11
MPW Trap 112 FPU_TRAP_PC register field 141

Memory Protection Write 77 PC register field 32
MPX Trap 112 Program Counter Register 11

Memory Protection Execute 77 Address Offset 184
MTCR Instruction Definition 32

Debug Events 148 Register A11 30
ICR.CCPN Update 70 PCACHE_CON
Modifying ICR.IE and ICR.CCPN 64 Address Offset 187
Run Control Features 146 PCON
Writing to the BIV Register 65 Address Offset 187

MTCR update 47 PCON0
Multi-Count Register Program Memory Configuration Register 103

M1CNT 180 PCON1
M2CNT 181 Program Memory Configuration Register 104
M3CNT 182 PCON2

Multi-Precision Integers 17 Program Memory Configuration Register 104
N PCPN
Negative Logic PCXI register field 37

Text Conventions 9 PC-Relative
NEST Trap Addressing 28

Nesting Error 80 PCX
NMI Context Management Registers 58

Asynchronous Traps 73 Context Restore 56
Non-Maskable Interrupt 14 Context Save 55

Trap Class 73 CSA 52
Trap CSU Trap 80

Non-Maskable Interrupt 82 Offset 60
Trap System 14, 107 Previous Context Pointer Register 60, 183
Trap System Overview 72 Segment Address 60

Non-Maskable Interrupt (NMI) 107 PCXI
NMI 14 Architectural Registers 11

Normal Mode 175 Architecture Overview 11
Not a Number (NaN) Exiting an Interrupt Service Routine 64

FPU 132 Previous Context Information Register
O Address Offset 183
OCDS 15 Definition 37

Control Registers 156 Task Switching 50
On-Chip Debug Support (OCDS) 15 PCXO
OPC PCX register field 60

FPU_TRAP_OPC register field 142 PCXI register field 37
OPD Trap PCXS

Invalid Operand 78 PCX register field 60
Overflow PCXI register field 37

Arithmetic Overflow Pending
OVF Trap 73 Interrupt Priority Number (PIPN)
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Context Switching 52 Pre-Decrement Addressing 23
Entering an ISR 64 Pre-Increment Addressing 23
Interrupt Control Register 69 Previous Context Information (PCXI)

PEVT Register Definition 37
DBGSR register field 158 Previous Context Information and Pointer Register

Physical Address Map 97 (PCXI) 37
Physical Address Space Previous Context List 51

Memory Model 21 Context Restore 56
Physical Memory Addresse Context Save 55

Memory Model 21 Previous Context Pointer (PCX)
Physical Memory Attributes 100, 101, 102 Context Management Registers 58

Address Map 98 Register 60
for all Segments 99 Previous Context Pointer Register 60
Memory Model 21 Previous CPU Priority Number (PCPN)
PMA 97 Field in PCXI Register 37
Registers 100 Previous Interrupt Enable (PIE)

Physical Memory Attributes Register Field in PCXI Register 37
PMA0 100 PREVSUSP
PMA1 101 DBGSR register field 158
PMA2 102 Priority Number

Physical Memory Properties 98 CPU 52
Necessary Accesses 98 of Interrupt Task 37

PIE Pending Interrupt
PCXI register field 37 Context Switching 52
Program Memory Integrity Error 91 PRIV Trap
Trap 91 Privilege Violation 77

PIEAR 93 Privilege Level 34, 107
Address Offset 187 Program

PIETR 92 Counter
Address Offset 187 Architectural Registers 11

PIPN Register A11 30
Context Switching 52 State Information 32
Field in ICR Register 69 Program Counter Register (PC) 32
ICR register field 69 Program Integrity Error Address Register 93
ICU Operation 63 Program Integrity Error Trap Register 92
Used with BIV Register 71 Program Memory Configuration Register

PMA PCON 104
Physical Memory Attributes 97 PCON0 103
Register Definitions 100 PCON1 104

PMA0 100 Program Memory Configuration Registers
Address Offset 187 PCON0, PCON1, PCON2 103
Physical Memory Attributes Register 100 Program Status Word (PSW) 33

PMA1 101 Program Status Word Register
Physical Memory Attributes Register 101 PSW 33

PMA2 102 Program Synchronous Error Trap Register (PSTR) 86
Physical Memory Attributes Register 102 Programming Model 16

Pointer Data Formats 17
Interrupt Vector Table 69 Data Types 16

Post-Decrement Addressing 23 Instruction Formats 22
Posted Software Events Protection

Debug Actions 154 I/O Privilege Level 14, 107
Post-Increment Addressing 23 Internal Protection Traps 77
PPN Memory Protection System 14

Physical Page Number 15 Page-Based 14
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Range-Based 14 Record Elements 23
Register Set 111, 113, 114 Register
Trap System 14 A10(SP) 39

Protection System 14, 107 Address Registers A0 to A15 30
PROTEN An (Address) 31

SYSCON register field 42 Architectural Registers 11
PRS BIV 71

PSW register field 33 BTV 85
PSE Trap CCNT 178

Program Fetch Synchronous Error 80 CCTRL 177
PSPR_CON CDC 47

Address Offset 187 COMPAT 45
PSW Context Management 58

Architectural Registers 11 Core_ID 44
Architecture Overview 11 CPRx_mL 116
FPU Exceptions 136 CPRx_mU 115
Initial State upon a Trap 76 CPU_ID 43
Interrupt Service Routine 63 CREVT 162
Processor Status Word 13 CSFR 29
Program Status Word Register D15

Address Offset 183 Data Register 15 14
Program Status Word register 33 Data Register (Dn) 30
Supervisor Mode 34 Data Registers (D0 to D15) 30
Task Switching 50 DATR 88
USB 33 DBGSR 158
User Status Bit DBGTCR 172

AV (Overflow) 35 DCON0 105
C (Carry) 35 DCON1 106
SAV (Sticky Advance Overflow) 35 DCON2 106
SV (Sticky Overflow) 35 DCX 171
V (Overflow) 35 DEADD 89

User Status Bits 35 DIEAR 95
Definition 35 DIETR 94

User-0 Mode 34 DMS 170
User-1 Mode 34 Dn (Data Register) 30

PTE 107 DPRx_mL 114
Page Table Entry Translation 15 DPRx_mU 113

Q DPSx 117, 118, 119
Q31 format DSTR 87

FPU 130 ENDINIT Protection 29
R EXEVT 160
r Extended-Size 30

Bit Type 9 FCX 59
RA Floating Point 30

A11 FPU_TRAP_CON 140
Task Switching 50 FPU_TRAP_OPC 142

Return Address 30 FPU_TRAP_PC 141
Range Table Entry FPU_TRAP_SRC1 143

Mode Register 46 FPU_TRAP_SRC2 144
Segment Protection 46 FPU_TRAP_SRC23 145

RE Free CSA List Limit Register 61
DPMx register field 117, 118, 119 Free CSA List Pointer 59, 61

Real Time Operating System (RTOS) Global 34
Tasks and Functions 48 GPR 17, 29
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ICNT 179 Trap System 75
ICR 69 Return From Call (RET)
ISP 40 Task Switching 50
LCX 61 Return From Exception (RFE)
M1CNT 180 Exiting an ISR 64
M2CNT 181 Interrupt Priority Groups 66
M3CNT 182 Task Switching 50
Memory Protection Overview 46 RFE
Mode 46 Task Switching 50
PC 32 RFM
PCON0 103 Rounding Mode 135
PCON1 104 RISC
PCON2 104 Architecture Overview 10
PCX 60 RM
PCXI 37 Floating Point Rounding 135
PIEAR 93 FPU_TRAP_CON register field 141
PIETR 92 Rounding
PMA0 100 FPU 135
PMA1 101 RNG
PMA2 102 TRxEVT register field 166
Previous Context Pointer 60 Rounding
PSTR 86 FPU 135
PSW 33 Rounding Mode
Reset Values 29 Restored 135
Scaled Data Register 27 RTOS
SMACON 46 Context Switching 52
SWEVT 164 Run-control Features
SYSCON 41 Core Debug Controller (CDC) 146
System Global Registers 12 rw
TASK_ASI 173 Bit Type 9
TPS_CON 122 rwh
TPS_TIMERx 121 Bit Type 9
TRIG_ACC 169 S
TRxADR 168 S
TRxEVT 166 PSW register field 33

RES SAV
PMA1 register field 101 Sticky Advance Overflow
PMA2 register field 102 PSW User Status Bit 35
Reserved 9 Scaled Data Register

Reserved Field Indexed Addressing 27
Bit Type 9 Scratchpad RAM

Reset Values Physical Memory Attributes 97
Registers 29 Segments

Restore Address Space 12
Task Switching Operation 50 Memory Model

Restored Address Space 21
Rounding Mode 135 Physical Memory Attributes 99

RET Semaphores 22
Context Switching 54 Service Request Control Register (SRC)
Rounding Mode 135 Interrupt Registers 46
Task Switching 50 Service Request Node (SRN)

Return Address (RA) 30, 75 Interrupt System 13
PC-Relative Addressing 28 Service Request Priority Number (SRPN)
Register A11 11 Interrupt Priority 13
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Service Requests Semaphoes and Atomic Operations 22
Interrupt Priority 13 Stack

Signed Pointer Register 10
Fraction General Purpose Registers 30

Data Types 16 Stack Management
Integers Description 38

Data Types 16 Stack Pointer (SP) 23
SIH A10 Register 11

DBGSR register field 158 State Information
SIMD PCXI Register 37

Single Instruction Multiple Data 10 Program Counter (PC) 32
SIST Mode Access Control Register (SMACON) 46 Static Data 23
SMACON Sticky Overflow

Address Offset 187 SOVF
SMT Supported Traps 73
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