
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RH850G3M

User’s Manual: Software

Rev.1.40 Dec, 2016

32
Renesas microcontroller
RH850 Family

U
ser’s M

anual

www.renesas.com

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a

reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL
(MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise
from entering the device when the input level is fixed, and also in the transition period when the input level
passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and according to related specifications
governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended
to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors should be grounded. The operator should be grounded using a wrist
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken
for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with reset functions have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A
device is not initialized until the reset signal is received. A reset operation must be executed immediately
after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately
for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply
while the device is not powered. The current injection that results from input of such a signal or I/O pull-up
power supply may cause malfunction and the abnormal current that passes in the device at this time may
cause degradation of internal elements. Input of signals during the power off state must be judged
separately for each device and according to related specifications governing the device.

How to Use This Manual

Target and Readers This manual is intended for users who wish to understand the RH850G3M software and

design application systems using these products.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: xxx (overscore over pin or signal name)

Memory map address: Higher addresses on the top and lower addresses on the

bottom

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... xxxx or xxxxB

 Decimal ... xxxx

 Hexadecimal ... xxxxH

Prefix indicating power of 2 (address space, memory capacity):

 K (kilo): 210 = 1,024

 M (mega): 220 = 1,0242

 G (giga): 230 = 1,0243

Table of Contents

CHAPTER 1 OVERVIEW.. 8
1.1 Features of the RH850G3M ... 8
1.2 Changes from the V850E2M .. 9

CHAPTER 2 PROCESSOR MODEL .. 10
2.1 CPU Operating Modes ... 10

2.1.1 Definition of CPU Operating Modes .. 10
2.1.2 CPU Operating Mode Transition ... 11
2.1.3 CPU Operating Modes and Privileges ... 12

2.2 Instruction Execution .. 15
2.3 Exceptions and Interrupts ... 16

2.3.1 Types of Exceptions .. 16
2.3.2 Exception Level ... 17

2.4 Coprocessors ... 18
2.4.1 Coprocessor Use Permissions .. 18
2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors 18
2.4.3 Coprocessor Unusable Exceptions ... 18
2.4.4 System Registers ... 18

2.5 Registers .. 19
2.5.1 Program Registers ... 19
2.5.2 System Registers ... 19
2.5.3 Register Updating .. 20
2.5.4 Accessing Undefined Registers ... 22

2.6 Data Types ... 23
2.6.1 Data formats .. 23
2.6.2 Data Representation .. 25
2.6.3 Data Alignment .. 26

2.7 Address Space ... 28
2.7.1 Memory Map .. 29
2.7.2 Instruction Addressing ... 30
2.7.3 Data Addressing .. 33

2.8 Acquiring the CPU Number .. 38
2.9 System Protection Identifier ... 38

CHAPTER 3 REGISTER SET .. 39
3.1 Program Registers.. 39

3.1.1 General-Purpose Registers ... 40
3.1.2 PC — Program Counter ... 41

3.2 Basic System Registers ... 42
3.3 Interrupt Function Registers ... 72

3.3.1 Interrupt Function System Registers ... 72
3.4 FPU Function Registers ... 78

3.4.1 Floating-Point Registers .. 78
3.4.2 Floating-Point Function System Registers .. 78

3.5 MPU Function Registers .. 87
3.5.1 MPU Function System Registers ... 87

3.6 Cache Operation Function Registers ... 101
3.6.1 Cache Control Function System Registers .. 101

3.7 Data Buffer Operation Registers .. 109
3.7.1 Data Buffer Control System Registers ... 109

CHAPTER 4 EXCEPTIONS AND INTERRUPTS ... 111
4.1 Outline of Exceptions.. 111

4.1.1 Exception Cause List ... 111
4.1.2 Overview of Exception Causes .. 113
4.1.3 Types of Exceptions .. 115
4.1.4 Exception Acknowledgment Conditions and Priority Order 117
4.1.5 Interrupt Exception Priority and Priority Masking... 118
4.1.6 Return and Restoration .. 121
4.1.7 Context Saving .. 121

4.2 Operation When Acknowledging an Exception .. 123
4.2.1 Special Operations .. 125
4.2.2 Points for Caution on the Acceptance of Exceptions .. 126

4.3 Return from Exception Handling .. 127
4.4 Exception Management .. 129

4.4.1 Exception Synchronization Instruction ... 129
4.4.2 Checking and Canceling Pending Exception ... 130

4.5 Exception Handler Address .. 131
4.5.1 Resets, Exceptions, and Interrupts .. 131
4.5.2 System Calls .. 136
4.5.3 Models for Application ... 137

CHAPTER 5 MEMORY MANAGEMENT .. 140
5.1 Memory Protection Unit (MPU) .. 141

5.1.1 Features ... 141
5.1.2 MPU Operation Settings .. 141
5.1.3 Protection Area Settings .. 144
5.1.4 Caution Points for Protection Area Setup .. 145
5.1.5 Access Control ... 146
5.1.6 Violations and Exceptions .. 147
5.1.7 Memory Protection Setting Check Function .. 149

5.2 Cache ... 150
5.2.1 Cache Operation Registers ... 150
5.2.2 Change Cache Use Mode ... 151
5.2.3 Cache Operations using CACHE Instruction ... 152
5.2.4 Cache Operation when the PREF Instruction is Executed .. 154
5.2.5 Cache Index Specification Method .. 154
5.2.6 Execution Privilege of the CACHE/PREF Instruction .. 155
5.2.7 Memory Protection for CACHE and PREF Instructions .. 155

5.3 Mutual Exclusion .. 157
5.3.1 Shared Data that does not Require Mutual Exclusion Processing 157
5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions 158
5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction 160
5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction 161

5.4 Synchronization Function ... 162

CHAPTER 6 COPROCESSOR .. 164
6.1 Floating-Point Operation .. 164

6.1.1 Configuration of Floating -Point Operation Function ... 165
6.1.2 Data Types... 166
6.1.3 Register Set ... 170
6.1.4 Floating-Point Instructions ... 170
6.1.5 Floating-Point Operation Exceptions ... 171
6.1.6 Exception Details ... 174

6.1.7 Precise Exceptions and Imprecise Exceptions .. 178
6.1.8 Saving and Returning Status ... 179
6.1.9 Flushing Subnormal Numbers ... 180
6.1.10 Selection of Floating-Point Operation Model ... 182
6.1.11 Flush to Nearest .. 184

CHAPTER 7 INSTRUCTION .. 185
7.1 Opcodes and Instruction Formats .. 185

7.1.1 CPU Instructions .. 185
7.1.2 Coprocessor Instructions ... 190
7.1.3 Reserved Instructions .. 190

7.2 Basic Instructions ... 191
7.2.1 Overview of Basic Instructions... 191
7.2.2 Basic Instruction Set .. 196

7.3 Cache Instructions .. 338
7.3.1 Overview of Cache Instructions ... 338
7.3.2 Cache Instruction Set .. 338

7.4 Floating-Point Instructions .. 343
7.4.1 Instruction Formats .. 343
7.4.2 Overview of Floating-Point Instructions ... 344
7.4.3 Conditions for Comparison Instructions ... 346
7.4.4 Floating-Point Instruction Set... 348

CHAPTER 8 RESET ... 435
8.1 Status of Registers After Reset .. 435

APPENDIX A HAZARD RESOLUTION PROCEDURE FOR SYSTEM REGISTERS 436

APPENDIX B NUMBER OF INSTRUCTION EXECTUION CLOCKS .. 438
B.1 Number of G3M Instruction Execution Clocks ... 439

APPENDIX C REGISTER INDEX .. 444

APPENDIX D INSTRUCTION INDEX .. 445

APPENDIX E REVISION HISTORY ... 447
E.1 Major Revisions in This Edition .. 447

RH850G3M software CHAPTER 1 OVERVIEW

R01US0123EJ0140 Rev.1.40 Page 8 of 450
Dec 22, 2016

CHAPTER 1 OVERVIEW

1.1 Features of the RH850G3M
The RH850G3M features backward compatibility with the instruction set for the 32-bit RISC microcontroller V850 Series.

The RH850G3M provides basic functions for multi-core systems, such as exclusive control between multiple cores.

Table 1-1 shows the features of the RH850G3M.

Table 1-1 Features of the RH850G3M

Item Features

CPU • High performance 32-bit architecture for embedded control

• 32-bit internal data bus

• Thirty-two 32-bit general-purpose registers

• RISC type instruction set (backward compatible with V850, V850E1, and V850E2)

 Long/short type load/store instructions

 Three-operand instructions

 Instruction set based on C

• CPU operating modes

 User mode and supervisor mode

• Address space: 4-Gbyte linear space for both data and instructions

Coprocessor • A floating point operation coprocessor (FPU) can be installed.

 Supports single precision (32-bit) and double precision (64-bit)

 Supports IEEE754-compliant data types and exceptions

 Rounding modes: Nearest, 0 direction, +∞ direction, and −∞ direction

 Handling on non-normalized numbers: These are truncated to 0, or an exception is reported because
such numbers do not comply with IEEE754.

Exceptions/interrupts • Number of scalable interrupt channels

• 16-level interrupt priority that can be specified for each channel

• Vector selection method that can be selected according to performance requirements and the amount
of consumed memory

 Direct branch method exception vector (direct vector method)

 Address-table-referencing indirect branch method exception vector (table reference method)

• Support for high-speed context backup and restoration processing on interrupt by using dedicated
instructions (PUSHSP, POPSP)

Memory
management

• A memory protection unit (MPU) can be installed.

Caches • An instruction cache can be installed.

RH850G3M software CHAPTER 1 OVERVIEW

R01US0123EJ0140 Rev.1.40 Page 9 of 450
Dec 22, 2016

1.2 Changes from the V850E2M

Table 1-2 Changes from the V850E2M

Item Changes

CPU • Defined CPU operating modes

• Changed the system registers from the bank selection method to the group specification method

• Increased the instruction addressing range to 4 G

• Introduced CPU operating modes

 User mode and supervisor mode

• Introduced a CPU virtualization support function

• Added new instructions

 LDL.W, STC.W, BINS, ROTL, LD.DW, ST.DW

• High-functional branch instructions

 Bcond disp17, JARL[reg1], reg3, LOOP reg1, disp16

Exceptions/interrupts • Changed the vector selection method

• Added new exceptions

Coprocessor • Floating-point operation function coprocessor (FPU)

 Added IEEE754-2008-compliant FPU version specifications

Memory
management

• Permitted requests to access the memory when a memory protection violation is detected

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 10 of 450
Dec 22, 2016

CHAPTER 2 PROCESSOR MODEL

This CPU defines a processor model that has basic operation functions, registers, and an exception management function.

This section describes the unique features of the processor model of this CPU.

2.1 CPU Operating Modes
This CPU has defines two operating statuses of the supervisor mode (SV) and the user mode (UM). Whether the system

is in supervisor mode or user mode is indicated by the UM bit in the PSW register.

• Supervisor mode (PSW.UM = 0): All hardware functions can be managed or used.

• User mode (PSW.UM = 1): The usable hardware functions are restricted.

2.1.1 Definition of CPU Operating Modes

(1) Supervisor mode (SV)

All hardware functions can be managed or used in this mode. The system always starts up in supervisor mode

after the end of reset processing.

(2) User mode (UM)

 This operating mode makes up a pair with the supervisor mode. In user mode, address spaces to which access is

permitted by the supervisor and the system registers defined as user resources can be used. Supervisor-privileged

instructions cannot be executed and result in exceptions if they are.

Restriction in user mode (PSW.UM = 1)

• Privileged instruction violations due to SV-privileged-instruction operating restrictions (→

PIE exceptions)

For details about privileged-instruction operating restrictions, see 2.1.3 CPU Operating

Modes and Privileges.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 11 of 450
Dec 22, 2016

2.1.2 CPU Operating Mode Transition
The CPU operating mode changes due to three events.

(1) Change due to acknowledging an exception

When an exception is acknowledged, the CPU operating mode changes to the mode specified for the exception.

(2) Change due to a return instruction

When a return instruction is executed, the PSW value is restored according to the value of the corresponding bit

backed up to EIPSW and FEPSW.

(3) Change due to a system register instruction

The CPU operating mode changes when an LDSR instruction is used to directly overwrite the PSW operating

mode bits.

Cautions 1. In supervisor mode, the LDSR instruction can be used to directly change the value of the
PSW.UM bit, but system-register-related hazards are defined in the hardware specifications.
For the change of this bit, it is recommended to use a return instruction to avoid PSW-
register-related hazards.

 2. In user mode, the CPU operating mode cannot be changed because the higher 31 to 5 bits of
the PSW register cannot be overwritten. The CPU operating mode might be changed in
supervisor mode, but system register access-related hazards are defined in the hardware
specifications. For the change of this bit, it is recommended to use a return instruction to
avoid PSW-register-related hazards.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 12 of 450
Dec 22, 2016

2.1.3 CPU Operating Modes and Privileges
In this CPU, the usable functions can be restricted according to usage permission settings for specific resources and the

CPU operating mode. Specification instructions (including instructions that update specific system registers) can only be

executed in the defined operating mode. The permissions necessary to execute these specification instructions are called

“privileges” below. In operating modes that do not have privileges, these instructions are not executed and exceptions

occur.

This CPU defines the following two types of privileges (and usage permission).

• Supervisor (SV) privilege: Important system resources operation, fatal error processing,

 privilege necessary for user-mode program execution management

• Coprocessor use permissions: Permissions necessary to use a coprocessor

Figure 2-1 CPU Operating Modes and Privileges

UM
User mode

SV
Supervisor

mode

UM
User mode

SV
Supervisor

mode

Exception

Restoration

PS
W

.U
M

=
0

PS
W

.U
M

=
1

SV
privilege

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 13 of 450
Dec 22, 2016

(1) Supervisor privilege (SV privilege)

The privilege necessary to perform the operation for important system resources, fatal error processing, and user-

mode program execution management is called the supervisor privilege (SV privilege). This privilege is available in

supervisor mode. The SV privilege is generally necessary to execute instructions used to perform the operation for

important system resources, and these instructions are sometimes called SV privileged instructions.

(2) Coprocessor use permissions

Regardless of the CPU operating mode, it is possible to separately specify whether coprocessors can be used.

The CU2 to CU0 bits in the PSW register are used in supervisor mode to specify whether coprocessors can be

used by each program. If the CU bits are not set to 1, a coprocessor unusable exception occurs when the

corresponding coprocessor instruction is executed or the system register is accessed.

If no coprocessor is installed, it is not possible to set the corresponding CU bits to 1. The setting of the CU2 to CU0

bits is valid regardless of the CPU operating mode, and, if the supervisor accesses coprocessor system registers,

it is necessary to set the CU2 to CU0 bits to enable coprocessor use.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 14 of 450
Dec 22, 2016

(3) Operation when there is a privilege violation

When an attempt is made to execute a privileged instruction by someone who does not have the required privilege,

a PIE exception or UCPOP exception occurs. Table 2-1 shows the relationships between the operating mode,

usage permission status, and whether instructions can be executed.

Table 2-1 Operation When There is a Privilege Violation

PSW

Whether Operation is Possible UM CU2 CU1 CU0

SV privileged instruction 0 — — — Possible

1 — — — Not possible/PIE exception

Coprocessor instruction 1Note
(PSW.CU0 bit)

— — — 1 Possible

— — — 0 Not possible/UCPOP exception

Coprocessor instruction 2Note
(PSW.CU1 bit)

— — 1 — Possible

— — 0 — Not possible/UCPOP exception

Coprocessor instruction 3Note
(PSW.CU2 bit)

— 1 — — Possible

— 0 — — Not possible/UCPOP exception

Instructions other than the above
(user instructions)

— — — — Possible

Note This includes the LDSR/STSR instruction for the coprocessor system register.

Remark —: 0 or 1

Caution If a register whose access permission is defined as CUn or SV is accessed when CUn = 0 and UM
= 0, a UCPOP exception occurs.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 15 of 450
Dec 22, 2016

2.2 Instruction Execution
The instruction execution flow of this CPU is shown below.

Figure 2-2 Instruction Execution Flow

Execution of

an instruction starts

Execute operation

No

No

Yes

Yes (terminating exception)

No (PIE exception/UCPOP exception)

Yes (pending exception)

Are the terminating
exception acknowledgment

conditions satisfied?

Is the execution privilege
of the instruction satisfied?

Reflect operation results
(register/memory/PC update, etc.)

Are the pending
exception acknowledgment

conditions satisfied?

A resumable exception occurs
during operation

Execution of
the next instruction starts

Exception transition processing
(register/PC update, etc.)

If terminating exceptions can be acknowledged or if the execution privilege of the instruction is not satisfied, an exception

occurs before the instruction is executed. If a resumable exception occurs during the execution of an instruction, the

exception is acknowledged during execution of the instruction. In these cases, the result of instruction execution is not

reflected in the registers or memory, and the CPU state before the instruction was executed is retainedNote.

For a pending exception such as a software exception, the exception is acknowledged after the result of instruction

execution has been reflected.

Note The following instructions might cause intermediate results to be reflected in the memory.

 PREPARE, DISPOSE, PUSHSP, POPSP

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 16 of 450
Dec 22, 2016

2.3 Exceptions and Interrupts
Exceptions and interrupts are exceptional events that cause the program under execution to branch to another program.

Exceptions and interrupts are triggered by various sources, including interrupts from peripherals and program

abnormalities.

For details, see CHAPTER 4 EXCEPTIONS AND INTERRUPTS.

2.3.1 Types of Exceptions
This CPU divides exceptions into the following three types according to their purpose.

• Terminating exceptions

• Resumable exceptions

• Pending exceptions

(1) Terminating exceptions

This is an exception acknowledged by interrupting an instruction before its operation is executed. These

exceptions include interrupts and imprecise exceptions.

Interrupts are generated by causes such as an interrupt or a hardware error and start up a program that is

unrelated to the program currently executing. Imprecise exceptions are caused by instruction operation, but they

do not start executing until the current instruction execution finishes; instead, they start executing during execution

of the subsequent instruction.

(2) Resumable exceptions

This is an exception acknowledged during the execution of instruction operation before the execution is finished.

Because this kind of an exception is correctly acknowledged without executing the next instruction, it is also called

a precise exception.

Unlike terminating-type imprecise exceptions, precise exceptions occur during instruction execution and cause the

execution of the instruction to stop. It is therefore possible to resume execution of the same instruction after the

exception has been processed. By specifying settings appropriate for the exception handling by using a memory

management or other function before resuming execution of the same instruction, complex memory management

can be achieved while retaining consistency in the logical behavior of the program.

(3) Pending exceptions

This is an exception acknowledged after the execution of an instruction finishes as a result of executing the

instruction operation. Pending exceptions include software exceptions.

Because pending exceptions are defined to occur as part of the normal operation of an instruction, unlike

resumable-type exceptions, the instruction that caused the exception finishes normally and is not re-executed.

These exceptions are mainly used as call gates for calls made by the management program.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 17 of 450
Dec 22, 2016

2.3.2 Exception Level
In this CPU, if an exception with a high degree of urgency occurs while another exception is being processed, the urgent

exception will be processed by priority. To make it possible to return to the interrupted exception handling after

acknowledging the urgent exception, even if the context had not been saved to the memory, exception causes are

managed in the following two hierarchical levels.

• EI level exception

• FE level exception

EI level exceptions are used for processing such as regular user processing, interrupt servicing, and OS processing. FE

level exceptions are used to enable interrupts with a high degree of urgency for the system or exceptions from the memory

management function that might occur during OS processing to be acknowledged even while an EI level exception is

being processed.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 18 of 450
Dec 22, 2016

2.4 Coprocessors
In this CPU, single-precision and double-precision FPU expansion functions are incorporated.

2.4.1 Coprocessor Use Permissions
To execute a coprocessor instruction or defined opcode processing, permission to use the corresponding coprocessor

instruction is necessary. Coprocessor use permissions are specified by the PSW.CU2 to PSW.CU0 bits, and, if an attempt

is made to execute an instruction for which the corresponding coprocessor use permission is cleared to 0, a coprocessor

unusable exception (UCPOP) occurs.

2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors
This CPU defines coprocessor use permissions to control the availability of the coprocessor for each program during CPU

operation. There are three coprocessor use permissions (CU0 to CU2), and their correspondences with the coprocessors

are shown in the following table.

Table 2-2 Correspondences Between Coprocessor Use Permissions and Coprocessors

Coprocessor Use Permission Coprocessor Function Exception Cause Code

CU0 Single-precision FPU
expansion function

80H

 Double-precision FPU
expansion function

CU1 Reserved 81H

CU2 Reserved 82H

2.4.3 Coprocessor Unusable Exceptions

A coprocessor unusable exception occurs if an attempt is made to execute a coprocessor instruction or access a system

register of the coprocessor without having the corresponding coprocessor use permission (PSW.CUn = 0).

2.4.4 System Registers
Some coprocessor functions are defined by system registers. The coprocessor use permission is necessary to access the

system register of a coprocessor function. For some system registers, the supervisor privilege (SV permission) is

necessary in addition to the coprocessor use permission.

For details about the permissions necessary to access system registers, see 2.5 Registers.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 19 of 450
Dec 22, 2016

2.5 Registers
This CPU defines program registers (general-purpose registers and the program counter PC) and system registers for

controlling the status and storing exception information.

2.5.1 Program Registers

The program registers include general-purpose registers (r0 to r31) and the program counter (PC).

Table 2-3 Program Registers

Category Access Permission Name

Program counter UM PC

General-purpose registers UM r0 to r31

Remark UM: User register. This register can always be accessed because no access permission is required.

2.5.2 System Registers
For details about program registers, see 3.1 Program Registers.

 Group numbers 0 to 3: Registers related to basic functions

 Group numbers 4 to 7: Registers related to the memory management function

 Group numbers 12 to 15: Registers defined in the CPU hardware specifications

 Group numbers 16 and later: Reserved for future expansion

For details about system registers, see the relevant sections in CHAPTER 3 REGISTER SET.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 20 of 450
Dec 22, 2016

2.5.3 Register Updating
There are several methods used to update registers. Normally, no particular restrictions apply when updating register by

using an instruction. However, when updating registers by using the following instructions, some restrictions might apply,

depending on the operating mode.

• LDSR

• STSR

(1) LDSR and STSR

The LDSR and STSR instructions can access all the system registers. However, If a system register is accessed

without the proper permission, a PIE exception or UCPOP exception might occur. For details about the access

permission for each register, see the description of system registers in CHAPTER 3 REGISTER SET. For details

about behaviors when a privilege violation occurs, see 2.1.3 CPU Operating Modes and Privileges.

Figure 2-3 shows the flow of executing the LDSR and STSR instructions.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 21 of 450
Dec 22, 2016

Figure 2-3 Flow of Executing the LDSR and STSR Instructions

Execution of an instruction starts

Are the terminating
exception acknowledgment

conditions satisfied?

Reflect operation results
(register/memory/
PC update, etc.)

Execution of the next
instruction starts

Exception transition processing
(register/PC update, etc.)

Execute register access

Yes (any exception)

No

Is this an undefined
register? (or is it handled

as undefined?)

No

Execute operation

Is the access permission
CUn, and PSW.CUn = 0?

Yes (UCPOP exception)

No

Is the access permission SV
and PSW.UM = 1?

Yes (PIE exception)

No

Yes

The read result is undefined
or write is ignored

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 22 of 450
Dec 22, 2016

2.5.4 Accessing Undefined Registers
If a system register number without any register assigned is accessed or if an inaccessible register is accessed, the

following results occur.

• Undefined registers are handled as having the SV permission. When they are accessed by an LDSR or

STSR instruction in user mode (PSW.UM = 1), a PIE exception occurs.

• For a read operation, the read result is undefined. If the read value is used in a program, unexpected

behaviors might occur.

• For a write operation, the write operation is ignored.

However, writing to the following system register numbers is prohibited.

Writing prohibited: [SR10, 1], [SR13, 1], [SR14, 1], [SR15, 1], [SR16, 1], [SR5, 2], [SR20, 5]

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 23 of 450
Dec 22, 2016

2.6 Data Types

2.6.1 Data formats

This CPU handles data in little endian format. This means that byte 0 of a halfword or a word is always the least significant

(rightmost) byte.

The supported data format is as follows.

• Byte (8-bit data)

• Halfword (16-bit data)

• Word (32-bit data)

• Double-word (64-bit data)

• Bit (1-bit data)

(1) Byte

A byte is 8 consecutive bits of data that starts from any byte boundary. Numbers from 0 to 7 are assigned to these

bits, with bit 0 as the LSB (least significant bit) and bit 7 as the MSB (most significant bit). The byte address is

specified as “A”.

(2) Halfword

A halfword is two consecutive bytes (16 bits) of data that starts from any byte boundary. Numbers from 0 to 15 are

assigned to these bits, with bit 0 as the LSB and bit 15 as the MSB. The bytes in a halfword are specified using

address “A”, so that the two addresses comprise byte data of “A” and “A+1”.

7 0

Data

Addresses A

L
S
B

M
S
B

15 7 0

Data

8

Addresses A A+1

M
S
B

L
S
B

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 24 of 450
Dec 22, 2016

(3) Word

A word is four consecutive bytes (32 bits) of data that starts from any byte boundary. Numbers from 0 to 31 are

assigned to these bits, with bit 0 as the LSB (least significant bit) and bit 31 as the MSB (most significant bit). A

word is specified by address “A” and consists of byte data of four addresses: “A”, “A+1”, “A+2”, and “A+3”.

(4) Double-word

A double-word is eight consecutive bytes (64 bits) that start from any 4-byte boundary. Numbers from 0 to 63 are

assigned to these bits, with bit 0 as the LSB and bit 63 as the MSB. A double-word is specified by address “A” and

consists of byte data of eight addresses: “A”, “A+1”, “A+2”, “A+3”, “A+4”, “A+5”, “A+6”, and “A+7”.

L
S

31 24 23 16 15 7 0

Data

8

AddressesAA+1A+2A+3
B

63 56 55 48 47 39 32

Data

40

AddressesA+4A+5A+6A+7

M
B
S

L
S

31 24 23 16 15 7 0

Data

8

AddressesAA+1A+2A+3
B

63 56 55 48 47 39 32

Data

40

AddressesA+4A+5A+6A+7

M
B
S
M
B
S

(5) Bit

A bit is bit data at the nth bit within 8-bit data that starts from any byte boundary. Each bit is specified using its byte

address “A” and its bit number “n” (n = 0 to 7).

L
S
B

31 24 23 16 15 7 0

Data

8

Addresses A A+1 A+2 A+3

M
S
B

7

Address “A” byte …....

0

Address A

Bit number n

Data

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 25 of 450
Dec 22, 2016

2.6.2 Data Representation

(1) Integers

Integers are represented as binary values using 2’s complement, and are used in one of four lengths: 64 bits, 32

bits, 16 bits, or 8 bits. Regardless of the length of an integer, its place uses bit 0 as the LSB, and this place gets

higher as the bit number increases. Because this is a 2’s complement representation, the MSB is used as a signed

bit.

The integer ranges for various data lengths are as follows.

• Double-word (64 bits): −9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

• Word (32 bits): −2,147,483,648 to +2,147,483,647

• Halfword (16 bits): −32,768 to +32,767

• Byte (8 bits): −128 to +127

(2) Unsigned integers

In contrast to “integers” which are data that can take either a positive or negative sign, “unsigned integers” are

never negative integers. Like integers, unsigned integers are represented as binary values, and are used in one of

four lengths: 64 bits, 32 bits, 16 bits, or 8 bits. Also like integers, the place of unsigned integers uses bit 0 as the

LSB and gets higher as the bit number increases. However, unsigned integers do not use a sign bit.

The unsigned integer ranges for various data lengths are as follows.

• Double-word (64 bits): 0 to 18,446,744,073,709,551,615

• Word (32 bits): 0 to 4,294,967,295

• Halfword (16 bits): 0 to 65,535

• Byte (8 bits): 0 to 255

(3) Bits

Bit data are handled as single-bit data with either of two values: cleared (0) or set (1). There are four types of bit-

related operations (listed below), which target only single-byte data in the memory space.

• Set

• Clear

• Invert

• Test

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 26 of 450
Dec 22, 2016

2.6.3 Data Alignment
The behavior when the result of address calculation is a misaligned address can be selected by using the MCTL.MA bit. If

the MCTL.MA bit has been cleared to 0, a misaligned access exception (MAE) occurs. If the MCTL.MA bit has been set to

1, a misaligned access exception (MAE) does not occur and accessing the address is possible.

When the data to be processed is in halfword format, misaligned access indicates the access to an address that is not at

the halfword boundary (where the address LSB = 0), and when the data to be processed is in word format, misaligned

access indicates the access to an address that is not at the word boundary (where the lower two bits of the address = 0).

For the double-word format only, a misaligned access exception does not occur when data is placed at the word boundary

rather than the double-word boundary (where the lower 3 bits of the address = 0).

In addition, even if the MCTL.MA bit is set (1), the double-word access to an address other than the word boundary

causes misaligned exception.

Cautions 1. The following instructions might possibly cause misaligned access. For details, see the
relevant descriptions in CHAPTER 7 INSTRUCTION.
• LD.H, LD.HU, LD.W, LD.DW
• SLD.H, SLD.HU, SLD.W
• ST.H, ST.W, ST.DW
• SST.H, SST.W

 • LDL.W, STC.W, CAXI

2. The following instructions do not cause misaligned access, because the address is rounded
in the instruction specification when the alignment specification is incorrect.
• PREPARE, DISPOSE
• PUSHSP, POPSP

3. For some hardware specifications, a misaligned access exception does not occur and the
hardware performs proper misaligned access. For details, see the hardware manual of the
product used.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 27 of 450
Dec 22, 2016

Figure 2-4 Example of Data Placement for Misaligned Access

(a) Byte access

(n+0)H

(n+1)H
← Byte boundary

← Byte boundary

← Byte boundary

Aligned access

(n+0)H

(n+1)H
← Byte boundary

← Byte boundary

← Byte boundary

Aligned access

(b) Halfword access

(2n+0)H
(2n+1)H
(2n+2)H
(2n+3)H ← Halfword boundary

← Halfword boundary

← Halfword boundary

Aligned access Misaligned access

(2n+0)H
(2n+1)H
(2n+2)H
(2n+3)H ← Halfword boundary

← Halfword boundary

← Halfword boundary

Aligned access Misaligned access

(c) Word access

(4n+0)H
(4n+1)H
(4n+2)H
(4n+3)H
(4n+4)H ← Word boundary

(4n+5)H
(4n+6)H
(4n+7)H

← Word boundary

← Word boundary

Aligned access Misaligned access

(4n+0)H
(4n+1)H
(4n+2)H
(4n+3)H
(4n+4)H ← Word boundary

(4n+5)H
(4n+6)H
(4n+7)H

← Word boundary

← Word boundary

Aligned access Misaligned access

(d) Double-word access

(8n+0)H
(8n+1)H
(8n+2)H
(8n+3)H
(8n+4)H
(8n+5)H
(8n+6)H
(8n+7)H

← Double-word boundary/Word boundary

Aligned access

(8n+8)H
(8n+9)H

(8n+10)H
(8n+11)H
(8n+12)H
(8n+13)H
(8n+14)H
(8n+15)H

Misaligned access

← Double-word boundary/Word boundary

← Word boundary

← Double-word boundary/Word boundary

← Word boundary

Misaligned access
(MAE exception does not occurNote)

(8n+0)H
(8n+1)H
(8n+2)H
(8n+3)H
(8n+4)H
(8n+5)H
(8n+6)H
(8n+7)H

← Double-word boundary/Word boundary

Aligned access

(8n+8)H
(8n+9)H

(8n+10)H
(8n+11)H
(8n+12)H
(8n+13)H
(8n+14)H
(8n+15)H

Misaligned access

← Double-word boundary/Word boundary

← Word boundary

← Double-word boundary/Word boundary

← Word boundary

Misaligned access
(MAE exception does not occurNote)

Note For details, see LD.DW and ST.DW in CHAPTER 7 INSTRUCTION.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 28 of 450
Dec 22, 2016

2.7 Address Space
This CPU supports a linear address space of up to 4 Gbytes. Both memory and I/O can be mapped to this address space

(using the memory mapped I/O method). The CPU outputs a 32-bit address for memory and I/O, in which the highest

address number is “232 − 1”.

The byte data placed at various addresses is defined with bit 0 as the LSB and bit 7 as the MSB. When the data is

comprised of multiple bytes, it is defined so that the byte data at the lowest address is the LSB and the byte data at the

highest address is the MSB (i.e., in little endian format).

This manual stipulates that, when representing data comprised of multiple bytes, the right edge must be represented as

the lower address and the left side as the upper address, as shown below.

Figure 2-5 Address Space Byte Format

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

15 7 0

Data

8

AddressAA+1

7 0

Data

AddressA

.......
Word data at
address “A”

..
Halfword data at

address “A”

...
Byte data at
address “A”

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

.......
Double-word data at

address “A”

63 56 55 48 47 39 32

Data

40

AddressA+4A+5A+6A+7

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

15 7 0

Data

8

AddressAA+1

7 0

Data

AddressA

.......
Word data at
address “A”

..
Halfword data at

address “A”

...
Byte data at
address “A”

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

.......
Double-word data at

address “A”

63 56 55 48 47 39 32

Data

40

AddressA+4A+5A+6A+7

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 29 of 450
Dec 22, 2016

2.7.1 Memory Map
This CPU is 32-bit architecture and supports a linear address space of up to 4 Gbytes. The whole range of this 4-Gbyte

address space can be addressed by instruction addressing (instruction access) and operand addressing (data access).

A memory map is shown in Figure 2-6.

Figure 2-6 Memory Map (Address Space)

00000000H
FFFFFFFFH

80000000H

7FFFFFFFH

Data
area

Program
area

4
 G

by
te

s

Address space

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 30 of 450
Dec 22, 2016

2.7.2 Instruction Addressing
The instruction address is determined based on the contents of the program counter (PC), and is automatically

incremented according to the number of bytes in the executed instruction. When a branch instruction is executed, the

addressing shown below is used to set the branch destination address to the PC.

(1) Relative addressing (PC relative)

Signed N-bit data (displacement: disp N) is added to the instruction code in the program counter (PC). In this case,

displacement is handled as 2’s complement data, and the MSB is a signed bit (S). If the displacement is less than

32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The JARL, JR, and Bcond instructions are used with this type of addressing.

Figure 2-7 Relative Addressing

Remark This is an example of 22-bit displacement.

31 0

PC

31 22 0

Sign extension S

+
21

0 disp22

Instruction
(branch destination)

31 0

PC

0

0

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 31 of 450
Dec 22, 2016

(2) Register addressing (register indirect)

The contents of the general-purpose register (reg1) or system register (regID) specified by the instruction are

transferred to the program counter (PC).

The JMP, CTRET, EIRET, FERET, and DISPOSE instructions are used with this type of addressing.

Figure 2-8 Register Addressing

(3) Based addressing

Contents that are specified by the instruction in the general-purpose register (reg1) and that include the added N-

bit displacement (dispN) are transferred to the program counter (PC). At this time, the displacement is handled as

a 2’s complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits are

sign-extended (N differs from one instruction to another).

The JMP instruction is used with this type of addressing.

Figure 2-9 Based Addressing

31 0

reg1 or regID

Instruction
(branch destination)

31 0

PC 0

31 0

reg1

31 0

S

+

0 disp32

Instruction
(branch destination)

31 0

PC 0

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 32 of 450
Dec 22, 2016

(4) Other addressing

A value specified by an instruction is transferred to the program counter (PC). How a value is specified is explained

in [Operation] or [Description] of each instruction.

The CALLT, SYSCALL, TRAP, FETRAP, and RIE instructions, and branch in case of an exception are used with

this type of addressing.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 33 of 450
Dec 22, 2016

2.7.3 Data Addressing
The following methods can be used to access the target registers or memory when executing an instruction.

(1) Register addressing

This addressing method accesses the general-purpose register or system register specified in the general-purpose

register field as an operand.

Any instruction that includes the operand reg1, reg2, reg3, or regID is used with this type of addressing.

(2) Immediate addressing

This address mode uses arbitrary size data as the operation target in the instruction code.

Any instruction that includes the operand imm5, imm16, vector, or cccc is used with this type of addressing.

Remark vector: This is immediate data that specifies the exception vector (00H to 1FH), and is an operand

used by the TRAP, FETRAP, and SYSCALL instructions. The data width differs from one

instruction to another.

 cccc: This is 4-bit data that specifies a condition code, and is an operand used in the CMOV

instruction, SASF instruction, and SETF instruction. One bit (0) is added to the higher position

and is then assigned to an opcode as a 5-bit immediate data.

(3) Based addressing

There are two types of based addressing, as described below.

(a) Type 1

The contents of the general-purpose register (reg1) specified at the addressing specification field in the

instruction code are added to the N-bit displacement (dispN) data sign-extended to word length to obtain the

operand address, and addressing accesses the target memory for the operation. At this time, the

displacement is handled as a 2’s complement data, and the MSB is a signed bit (S). If the displacement is less

than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The LD, ST, and CAXI instructions are used with this type of addressing.

Figure 2-10 Based Addressing (Type 1)

Remark This is an example of 16-bit displacement.

31 0

reg1

Target memory for
operation

31 0

Sign extension disp16

+
15 16

S

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 34 of 450
Dec 22, 2016

(b) Type 2

This addressing accesses a memory to be manipulated by using as an operand address the sum of the

contents of the element pointer (r30) and N-bit displacement data (dispN) that is zero-extended to a word

length. If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one instruction

to another).

The SLD instruction and SST instruction are used with this type of addressing.

Figure 2-11 Based Addressing (Type 2)

Remark This is an example of 8-bit displacement.

(4) Bit addressing

The contents of the general-purpose register (reg1) are added to the N-bit displacement (dispN) data sign-

extended to word length to obtain the operand address, and bit addressing accesses one bit (as specified by 3-bit

data “bit #3”) in one byte of the target memory space. At this time, the displacement is handled as a 2’s

complement data, and the MSB is a signed bit (S). If the displacement is less than 32 bits, the higher bits are sign-

extended (N differs from one instruction to another).

The CLR1, SET1, NOT1, and TST1 instructions are used with this type of addressing.

Figure 2-12 Bit Addressing

Remark n: Bit position specified by 3-bit data (bit #3) (n = 0 to 7)

This is an example of 16-bit displacement.

31 0

r30 (element pointer)

Target memory for
operation

31 0

0 (zero extension) disp8

+
7 8

31 0

reg1

Target memory for
operation

31 0

Sign extension disp16

+
15 16

n

S

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 35 of 450
Dec 22, 2016

(5) Post index increment/decrement addressing

The contents of the general-purpose register (reg1) are used as an operand address to access the target memory,

and then the general-purpose register (reg1) is updated. The register is updated by either incrementing or

decrementing it, and there are three types (1 to 3).

If the result of incrementing the general-purpose register (reg1) value exceeds the positive maximum value

0xFFFFFFFF, the result wraps around to 0x00000000, and, if the result of decrementing the general-purpose

register value is less than the positive minimum value 0x00000000, the result wraps around to 0xFFFFFFFF.

(a) Type 1

The general-purpose register (reg1) is updated by adding a constant that depends on the type of accessed

data (the size of the accessed data) to the contents of the general-purpose register (reg1). If the type of

accessed data is a byte, 1 is added, if the type is a halfword, 2 is added, if the type is a word, 4 is added, and

if the type is a double-word, 8 is added.

Figure 2-13 Post Index Increment/Decrement Addressing (Type 1)

reg1
31 0

31 0

+

Target memory for
operation

Access data size

reg1
31 0

reg1
31 0

31 0

+

Target memory for
operation

Access data size

reg1
31 0

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 36 of 450
Dec 22, 2016

(b) Type 2

The general-purpose register (reg1) is updated by subtracting a constant that depends on the size of the

accessed data from the contents of the general-purpose register (reg1). If the size of accessed data is a byte,

1 is subtracted, if the size is a halfword, 2 is subtracted, if the size is a word, 4 is subtracted, and if the size is

a double-word, 8 is subtracted.

Figure 2-14 Post Index Increment/Decrement Addressing (Type 2)

reg1
31 0

31 0

−

Target memory for
operation

Access data size

reg1
31 0

reg1
31 0

31 0

−

Target memory for
operation

Access data size

reg1
31 0

(c) Type 3

The general-purpose register (reg1) is updated by adding the contents of another general-purpose register

(reg2) to it. If the MSB of the general-purpose register (reg2) is 1, a negative value is indicated, so a post

decrement operation is performed. If this MSB is 0, a positive value is indicated, so a post increment operation

is performed. The value of the general-purpose register (reg2) does not change.

Figure 2-15 Post Index Increment/Decrement Addressing (Type 3)

reg1
31 0

31 0

+

Target memory for
operation

reg1
31 0

reg2
31 0

reg1
31 0

31 0

+

Target memory for
operation

reg1
31 0

reg2
31 0

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 37 of 450
Dec 22, 2016

(6) Other addressing

This addressing is to access a memory to be manipulated by using a value specified by an instruction as the

operand address. How a value is specified is explained in [Operation] or [Description] of each instruction.

The SWITCH, CALLT, SYSCALL, PREPARE, DISPOSE, PUSHSP, and POPSP instructions are used with this

type of addressing.

RH850G3M software CHAPTER 2 PROCESSOR MODEL

R01US0123EJ0140 Rev.1.40 Page 38 of 450
Dec 22, 2016

2.8 Acquiring the CPU Number
This CPU provides a method for identifying CPUs in a multi-processor system.

In the multi-processor configuration, you can identify which CPU core is running a program by referencing HTCFG0.PEID.

With HTCFG0.PEID, unique numbers are assigned within multi-processor systems.

2.9 System Protection Identifier
In this CPU, memory resources and peripheral devices are managed by system protection groups. By specifying the group

to which the program being executed belongs, you can assign operable memory resources and peripheral devices to each

machine.

The program being executed belongs to the group shown by MCFG0.SPID, and whether the memory resources and

peripheral devices are operable is decided using this SPID. Any value can be set to MCFG0.SPID by the supervisor.

Caution According to the value of MCFG0.SPID, how operations are assigned to memory resources and
peripheral devices is determined by the hardware specifications.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 39 of 450
Dec 22, 2016

CHAPTER 3 REGISTER SET

This chapter describes the program register and system register mounted on this CPU.

3.1 Program Registers
Program registers includes general-purpose registers (r0 to r31) and the program counter (PC). r0 always retains 0,
whereas the value after reset is undefined in r1 to r31.

Table 3-1 Program Registers

Program Register Name Function Description

General-
purpose registers

r0 Zero register Always retains 0

r1 Assembler reserved register Used as working register for generating addresses

r2 Register for address and data variables (used when the real-time OS used does not use this
register)

r3 Stack pointer (SP) Used for generating a stack frame when a function is called

r4 Global pointer (GP) Used for accessing a global variable in the data area

r5 Text pointer (TP) Used as a register that indicates the start of the text area
(area where program code is placed)

r6 to r29 Register for addresses and data variables

r30 Element pointer (EP) Used as a base pointer for generating addresses when
accessing memory

r31 Link pointer (LP) Used when the compiler calls a function

Program counter PC Retains instruction addresses during execution of programs

Remark For further descriptions of r1, r3 to r5, and r31 used for an assembler and/or C compiler, see the manual of

each software development environment.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 40 of 450
Dec 22, 2016

3.1.1 General-Purpose Registers
A total of 32 general-purpose registers (r0 to r31) are provided. All of these registers can be used for either data variables
or address variables.
Of the general-purpose registers, r0 to r5, r30, and r31 are assumed to be used for special purposes in software
development environments, so it is necessary to note the following when using them.

(a) r0, r3, and r30

These registers are implicitly used by instructions.
r0 is a register that always retains 0. It is used for operations that use 0, addressing with base address being 0,
etc.
r3 is implicitly used by the PREPARE, DISPOSE, PUSHSP, and POPSP instructions.
r30 is used as a base pointer when the SLD instruction or SST instruction accesses memory.

(b) r1, r4, r5, and r31
These registers are implicitly used by the assembler and C compiler.
When using these registers, register contents must first be saved so they are not lost and can be restored
after the registers are used.

(c) r2
This register is used by a real-time OS in some cases. If the real-time OS that is being used is not using r2, r2
can be used as a register for address variables or data variables.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 41 of 450
Dec 22, 2016

3.1.2 PC — Program Counter
The PC retains the address of the instruction being executed.

PC31 to PC0

31 0

PC
Value after reset

Note

Table 3-2 PC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 PC31 to PC1 These bits indicate the address of the instruction being executed. R/W Note

 0 PC0 This bit is fixed to 0. Branching to an odd number address is disabled. R/W 0

Note For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 42 of 450
Dec 22, 2016

3.2 Basic System Registers

The basic system registers are used to control CPU status and to retain exception information.

Basic system registers are read from or written to by using the LDSR and STSR instructions and specifying the system
register number, which is made up of a register number and selection ID.

Table 3-3 Basic System Registers (1/2)

Register No.

(regID, selID) Symbol Function Access Permission

SR0, 0 EIPC Status save registers when acknowledging EI level exception SV

SR1, 0 EIPSW Status save registers when acknowledging EI level exception SV

SR2, 0 FEPC Status save registers when acknowledging FE level exception SV

SR3, 0 FEPSW Status save registers when acknowledging FE level exception SV

SR5, 0 PSW Program status word Note 1

SR6, 0 FPSR (See 3.4 FPU Function Registers) CU0 and SV

SR7, 0 FPEPC (See 3.4 FPU Function Registers) CU0 and SV

SR8, 0 FPST (See 3.4 FPU Function Registers) CU0

SR9, 0 FPCC (See 3.4 FPU Function Registers) CU0

SR10, 0 FPCFG (See 3.4 FPU Function Registers) CU0

SR11, 0 FPEC (See 3.4 FPU Function Registers) CU0 and SV

SR13, 0 EIIC EI level exception cause SV

SR14, 0 FEIC FE level exception cause SV

SR16, 0 CTPC CALLT execution status save register UM

SR17, 0 CTPSW CALLT execution status save register UM

SR20, 0 CTBP CALLT base pointer UM

SR28, 0 EIWR EI level exception working register SV

SR29, 0 FEWR FE level exception working register SV

SR31, 0 (BSEL) (Reserved for backward compatibility with V850E2 series)Note 2 SV

Notes 1. The access permission differs depending on the bit. For details, see (5) PSW — Program status word in 3.2.1
Basic Registers.

 2. This bit is reserved to maintain backward compatibility with V850E2 series. This bit is always 0 when read.
Writing to this bit is ignored.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 43 of 450
Dec 22, 2016

Table 3-3 Basic System Registers (2/2)

Register No.

(regID, selID) Symbol Function Access Permission

SR0, 1 MCFG0 Machine configuration SV

SR2, 1 RBASE Reset vector base address SV

SR3, 1 EBASE Exception handler vector address SV

SR4, 1 INTBP Base address of the interrupt handler table SV

SR5, 1 MCTL CPU control SV

SR6, 1 PID Processor ID SV

SR11, 1 SCCFG SYSCALL operation setting SV

SR12, 1 SCBP SYSCALL base pointer SV

SR0, 2 HTCFG0 Thread configuration SV

SR6, 2 MEA Memory error address SV

SR7, 2 ASID Address space ID SV

SR8, 2 MEI Memory error information SV

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 44 of 450
Dec 22, 2016

(1) EIPC — Status save register when acknowledging EI level exception
When an EI level exception is acknowledged, the address of the instruction that was being executed when the EI
level exception occurred, or of the next instruction, is saved to the EIPC register (see 4.1.3 Exception Types).
Because there is only one pair of EI level exception status save registers, when processing multiple exceptions,
the contents of these registers must be saved by a program.
Be sure to set an even-numbered address to the EIPC register. An odd-numbered address must not be specified.

EIPC31 to EIPC0

31 0

EIPC
Value after reset

Undefined

Table 3-4 EIPC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 EIPC31 to
EIPC1

These bits indicate the PC saved when an EI level exception is
acknowledged.

R/W Undefined

 0 EIPC0 This bit indicates the PC saved when an EI level exception is
acknowledged.

Always set this bit to 0. Even if it is set to 1, the value transferred to the
PC when the EIRET instruction is executed is 0.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 45 of 450
Dec 22, 2016

(2) EIPSW — Status save register when acknowledging EI level exception
When an EI level exception is acknowledged, the current PSW setting is saved to the EIPSW register.
Because there is only one pair of EI level exception status save registers, when processing multiple exceptions,
the contents of these registers must be saved by a program.

Caution Bits 11 to 9 are related to the debug function and therefore cannot normally be changed.

DebugCU2 to
CU0

0

31 8 7 6 5 4 3 2 1 0

EIPSW N
P

S
A
T

E
P

I
D

O
V S ZC

Y
Value after reset

00000020H0 U
M 0 0 0 0

E
B
V

0 0 0 0

11 9101216 152930

0 0 0 0 0 0

19 18 17 14

Table 3-5 EIPSW Register Contents

Bit Name Description R/W
Value after
Reset

 31 — (Reserved for future expansion. Be sure to set to 0.) R 0

 30 UM This bit stores the PSW.UM bit setting when an EI level exception is
acknowledged.

R/W 0

 29 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

 18 to 16 CU2 to
CU0

These bits store the PSW.CU2-0 field setting when an EI level exception is
acknowledged. (CU2-1 are reserved for future expansion. Be sure to set to 0.)

R/W 0

 15 EBV This bit stores the PSW.EBV bit setting when an EI level exception is
acknowledged.

R/W 0

 14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

 11 to 9 Debug These bits store the PSW.Debug field setting when an EI level exception is
acknowledged.

R/W 0

 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

 7 NP This bit stores the PSW.NP bit setting when an EI level exception is
acknowledged.

R/W 0

 6 EP This bit stores the PSW.EP bit setting when an EI level exception is
acknowledged.

R/W 0

 5 ID This bit stores the PSW.ID bit setting when an EI level exception is
acknowledged.

R/W 1

 4 SAT This bit stores the PSW.SAT bit setting when an EI level exception is
acknowledged.

R/W 0

 3 CY This bit stores the PSW.CY bit setting when an EI level exception is
acknowledged.

R/W 0

 2 OV This bit stores the PSW.OV bit setting when an EI level exception is
acknowledged.

R/W 0

 1 S This bit stores the PSW.S bit setting when an EI level exception is
acknowledged.

R/W 0

 0 Z This bit stores the PSW.Z bit setting when an EI level exception is
acknowledged.

R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 46 of 450
Dec 22, 2016

(3) FEPC — Status save register when acknowledging FE level exception
When an FE level exception is acknowledged, the address of the instruction that was being executed when the FE
level exception occurred, or of the next instruction, is saved to the FEPC register (see 4.1.3 Exception Types).
Because there is only one pair of FE level exception status save registers, when processing multiple exceptions,
the contents of these registers must be saved by a program.
Be sure to set an even-numbered address to the FEPC register. An odd-numbered address must not be specified.

FEPC31 to FEPC0

31 0

FEPC
Value after reset

Undefined

Table 3-6 FEPC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 FEPC31 to
FEPC1

These bits indicate the PC saved when an FE level exception is
acknowledged.

R/W Undefined

 0 FEPC0 This bit indicates the PC saved when an FE level exception is
acknowledged.

Always set this bit to 0. Even if it is set to 1, the value transferred to the
PC when the FERET instruction is executed is 0.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 47 of 450
Dec 22, 2016

(4) FEPSW — Status save register when acknowledging FE level exception
When an FE level exception is acknowledged, the current PSW setting is saved to the FEPSW register.
Because there is only one pair of FE level exception status save registers, when processing multiple exceptions,
the contents of these registers must be saved by a program.

Caution Bits 11 to 9 are related to the debug function and therefore cannot normally be changed.

DebugCU2 to
CU0

0

31 8 7 6 5 4 3 2 1 0

FEPSW N
P

S
A
T

E
P

I
D

O
V S ZC

Y
Value after reset

00000020H0 U
M 0 0 0 0

E
B
V

0 0 0 0

11 9101216 152930

0 0 0 0 0 0

19 18 17 14

Table 3-7 FEPSW Register Contents

Bit Name Description R/W
Value after
Reset

 31 — (Reserved for future expansion. Be sure to set to 0.) R 0

 30 UM This bit stores the PSW.UM bit setting when an FE level exception is acknowledged. R/W 0

 29 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

 18 to 16 CU2 to
CU0

These bits store the PSW.CU2-0 field setting when an FE level exception is
acknowledged. (CU2-1 are reserved for future expansion. Be sure to set to 0.)

R/W 0

 15 EBV This bit stores the PSW.EBV bit setting when an FE level exception is
acknowledged.

R/W 0

 14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

 11 to 9 Debug These bits store the PSW.Debug field setting when an FE level exception is
acknowledged.

R/W 0

 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

 7 NP This bit stores the PSW.NP bit setting when an FE level exception is acknowledged. R/W 0

 6 EP This bit stores the PSW.EP bit setting when an FE level exception is acknowledged. R/W 0

 5 ID This bit stores the PSW.ID bit setting when an FE level exception is acknowledged. R/W 1

 4 SAT This bit stores the PSW.SAT bit setting when an FE level exception is
acknowledged.

R/W 0

 3 CY This bit stores the PSW.CY bit setting when an FE level exception is acknowledged. R/W 0

 2 OV This bit stores the PSW.OV bit setting when an FE level exception is acknowledged. R/W 0

 1 S This bit stores the PSW.S bit setting when an FE level exception is acknowledged. R/W 0

 0 Z This bit stores the PSW.Z bit setting when an FE level exception is acknowledged. R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 48 of 450
Dec 22, 2016

(5) PSW - Program status word
PSW (program status word) is a set of flags that indicate the program status (instruction execution result) and bits
that indicate the operation status of the CPU (flags are bits in the PSW that are referenced by a condition
instruction (Bcond, CMOV, etc.)).

Cautions 1. When the LDSR instruction is used to change the contents of bits 7 to 0 in this register, the

changed contents become valid from the instruction following the LDSR instruction.

 2. The access permission for the PSW register differs depending on the bit. All bits can be read, but
some bits can only be written under certain conditions. See Table 3-8 for the access permission for

each bit.

Table 3-8 Access Permission for PSW Register

Bit Access Permission When Reading Access Permission When Writing

30 UM UM SVNote

18 to 16 CU2 to CU0 SVNote

15 EBV SVNote

11 to 9 Debug SpecialNote

7 NP SVNote

6 EP SVNote

5 ID SVNote

4 SAT UM

3 CY UM

2 OV UM

1 S UM

0 Z UM

Note The access permission for the whole PSW register is UM, so the PIE exception does not occur even if the register

is written by using an LDSR instruction when PSW.UM is 1. In this case, writing is ignored.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 49 of 450
Dec 22, 2016

CU2 to
CU0

0

31 8 7 6 5 4 3 2 1 0

PSW N
P

S
A
T

E
P

I
D

O
V S ZC

Y
Value after reset

00000020H0 U
M 0 0 0 0

E
B
V

0 0 0 0

11 9101216 152930

0 0 0 0 0 0

19 18 17 1420

Debug

Table 3-9 PSW Register Contents (1/2)

Bit Name Description R/W

Value after
Reset

 31 — (Reserved for future expansion. Be sure to set to 0.) R 0

 30 UM This bit indicates that the CPU is in user mode (in UM mode).

 0: Supervisor mode

 1: User mode

R/W 0

 29 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

 18 to 16 CU2 to
CU0

These bits indicate the coprocessor use permissions. When the bit corresponding to
the coprocessor is 0, a coprocessor unusable exception occurs if an instruction for the
coprocessor is executed or a coprocessor resource (system register) is accessed.

 CU2 bit 18: (Reserved for future expansion. Be sure to set to 0.)

 CU1 bit 17: (Reserved for future expansion. Be sure to set to 0.)

 CU0 bit 16: FPU

R/W 000

 15 EBV This bit indicates the reset vector and exception vector operation. See the description
on RBASE and EBASE in this section.

R/W 0

 14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

 11 to 9 Debug This bit is used for the debug function for the development tool. Always set this bit to 0. — 0

 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

 7 NP This bit disables the acknowledgement of FE level exception. When an FE level
exception is acknowledged, this bit is set to 1 to disable the acknowledgement of EI
level and FE level exceptions. As for the exceptions which the NP bit disables the
acknowledgment, see Table 4-1 Exception Cause List.

0: The acknowledgement of FE level exception is enabled.

1: The acknowledgement of FE level exception is disabled.

R/W 0

 6 EP This bit indicates that an exception other than an interrupt is being serviced. It is set to
1 when the corresponding exception occurs. This bit does not affect acknowledging an
exception request even when it is set to 1.

 0: An interrupt is being serviced.

 1: An exception other than an interrupt is being serviced.

R/W 0

 5 ID This bit disables the acknowledgement of EI level exception. When an EI level or FE
level exception is acknowledged, this bit is set to 1 to disable the acknowledgement of
EI level exception. As for the exceptions which the ID bit disables the
acknowledgment, see Table 4-1 Exception Cause List. This bit is also used to
disable EI level exceptions from being acknowledged as a critical section while an
ordinary program or interrupt is being serviced. It is set to 1 when the DI instruction is
executed, and cleared to 0 when the EI instruction is executed.

The change of the ID bit by the EI or ID instruction will be enabled from the next
instruction.

0: The acknowledgement of EI level exception is enabled.

1: The acknowledgement of EI level exception is disabled.

R/W 1

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 50 of 450
Dec 22, 2016

Table 3-9 PSW Register Contents (2/2)

 Bit Name Description
R/W

Value after
Reset

 4 SATNote This bit indicates that the operation result is saturated because the result of a
saturated operation instruction operation has overflowed. This is a cumulative flag,
so when the operation result of the saturated operation instruction becomes
saturated, this bit is set to 1, but it is not later cleared to 0 when the operation result
for a subsequent instruction is not saturated. This bit is cleared to 0 by the LDSR
instruction. This bit is neither set to 1 nor cleared to 0 when an arithmetic operation
instruction is executed.

 0: Not saturated

 1: Saturated

R/W 0

 3 CY This bit indicates whether a carry or borrow has occurred in the operation result.

 0: Carry and borrow have not occurred.

 1: Carry or borrow has occurred.

R/W 0

 2 OVNote This bit indicates whether or not an overflow has occurred during an operation.

 0: Overflow has not occurred.

 1: Overflow has occurred.

R/W 0

 1 SNote This bit indicates whether or not the result of an operation is negative.

 0: Result of operation is positive or 0.

 1: Result of operation is negative.

R/W 0

 0 Z This bit indicates whether or not the result of an operation is 0.

 0: Result of operation is not 0.

 1: Result of operation is 0.

R/W 0

 Note The operation result of the saturation processing is determined in accordance with the contents of the OV
flag and S flag during a saturated operation. When only the OV flag is set to 1 during a saturated operation,
the SAT flag is set to 1.

Operation Result Status

Flag Status
Operation Result after

Saturation Processing

 SAT OV S

 Exceeded positive
maximum value

1 1 0 7FFFFFFFH

 Exceeded negative
maximum value

1 1 1 80000000H

 Positive (maximum value
not exceeded)

Value prior to
operation is
retained.

0 0 Operation result itself

 Negative (maximum value
not exceeded)

1

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 51 of 450
Dec 22, 2016

(6) EIIC — EI level exception cause
The EIIC register retains the cause of any EI level exception that occurs. The value retained in this register is an
exception code corresponding to a specific exception cause (see Table 4-1 Exception Cause List).

31 0

EIIC
Initial value
00000000HEIIC31 to EIIC0

Table 3-10 EIIC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 EIIC31
to EIIC0

These bits store the exception cause code when an EI level exception occurs.

The EIIC15-0 field stores the exception cause codes shown in Table 4-1.

The EIIC31-16 field stores detailed exception cause codes defined
individually for each exception. If there is no particular definition, these bits
are set to 0.

R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 52 of 450
Dec 22, 2016

(7) FEIC — FE level exception cause
The FEIC register retains the cause of any FE level exception that occurs. The value retained in this register is an
exception code corresponding to a specific exception cause (see Table 4-1 Exception Cause List).

31 0

FEIC
Value after reset

00000000HFEIC31 to FEIC0

Table 3-11 FEIC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 FEIC31 to
FEIC0

These bits store the exception cause code when an FE level exception
occurs.

The FEIC15-0 field stores the exception cause codes shown in Table 4-1.

The FEIC31-16 field stores detailed exception cause codes defined
individually for each exception. If there is no particular definition, these bits
are set to 0.

R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 53 of 450
Dec 22, 2016

(8) CTPC — Status save register when executing CALLT
When a CALLT instruction is executed, the address of the next instruction after the CALLT instruction is saved to
CTPC.
Be sure to set an even-numbered address to the CTPC register. An odd-numbered address must not be specified.

CTPC31 to CTPC0

31 0

CTPC
Value after reset

Undefined

Table 3-12 CTPC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 CTPC31 to
CTPC1

These bits indicate the PC of the instruction after the CALLT instruction. R/W Undefined

 0 CTPC0 This bit indicates the PC of the instruction after the CALLT instruction.

Always set this bit to 0. Even if it is set to 1, the value transferred to the
PC when the CTRET instruction is executed is 0.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 54 of 450
Dec 22, 2016

(9) CTPSW — Status save register when executing CALLT
When a CALLT instruction is executed, some of the PSW (program status word) settings are saved to CTPSW.

31 5 4 0

CTPSW 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0
Value after reset

00000000H
000 0 0

S
A
T

O
V S ZC

Y

3 2 1

Table 3-13 CTPSW Register Contents

Bit Name Description R/W
Value after
Reset

 31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

 4 SAT This bit stores the PSW.SAT bit setting when the CALLT instruction is executed. R/W 0

 3 CY This bit stores the PSW.CY bit setting when the CALLT instruction is executed. R/W 0

 2 OV This bit stores the PSW.OV bit setting when the CALLT instruction is executed. R/W 0

 1 S This bit stores the PSW.S bit setting when the CALLT instruction is executed. R/W 0

 0 Z This bit stores the PSW.Z bit setting when the CALLT instruction is executed. R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 55 of 450
Dec 22, 2016

(10) CTBP — CALLT base pointer
The CTBP register is used to specify table addresses of the CALLT instruction and generate target addresses.
Be sure to set the CTBP register to a halfword address.

31 0

CTBP CTBP31 to CTBP0
Value after reset

Undefined

Table 3-14 CTBP Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 CTBP31 to
CTBP1

These bits indicate the base pointer address of the CALLT instruction.

These bits indicate the start address of the table used by the CALLT
instruction.

R/W Undefined

 0 CTBP0 This bit indicates the base pointer address of the CALLT instruction.

These bits indicate the start address of the table used by the CALLT
instruction.

Always set this bit to 0.

R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 56 of 450
Dec 22, 2016

(11) ASID — Address space ID
This is the address space ID. This is used to identify the address space provided by the memory management
function.

31 10 9 0

ASID 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 ASID
Value after reset

Undefined

Table 3-15 ASID Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 10 — (Reserved for future expansion. Be sure to set to 0.) R 0

 9 to 0 ASID This is the address space ID. R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 57 of 450
Dec 22, 2016

(12) EIWR — EI level exception working register
The EIWR register is used as a working register when an EI level exception has occurred.

31 0

EIWR
Value after reset

UndefinedEIWR31 to EIWR0

Table 3-16 EIWR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 EIWR31 to
EIWR0

These bits constitute a working register that can be used for any purpose
during the processing of an EI level exception. Use this register for
purposes such as storing the values of general-purpose registers.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 58 of 450
Dec 22, 2016

(13) FEWR — FE level exception working register
The FEWR register is used as a working register when an FE level exception has occurred.

31 0

FEWR
Value after reset

UndefinedFEWR31 to FEWR0

Table 3-17 FEWR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 FEWR31 to
FEWR0

These bits constitute a working register that can be used for any purpose
during the processing of an FE level exception. Use this register for
purposes such as storing the values of general-purpose registers.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 59 of 450
Dec 22, 2016

(14) HTCFG0 — Thread configuration register

31 0

0 0 0 0 0 0 00 0 0 0 PEID
Value after reset

UndefinedHTCFG0

16 15

01 0 0 00 0

19 18

0 0 0

14

0 0 0 0 0 0 0 0

Table 3-18 HTCFG0 Register Contents

Bit Name Description R/W

Value after

Reset

 31 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

 18 to 16 PEID These bits indicate the processor element number. R Note 1

 15 — (Reserved for future expansion. Be sure to set to 1.) R 1

 14 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

 Note 1. When these bits are read, the CPU processor identifier defined in the product specifications is read. These
bits cannot be written. For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 60 of 450
Dec 22, 2016

(15) MEA — Memory error address register

31 0

MEA MEA
Value after reset

Undefined

Table 3-19 MEA Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 MEA These bits store the violation address when an MAE (misaligned) or MPU
occurs.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 61 of 450
Dec 22, 2016

(16) MEI — Memory error information register
This register is used to store information about the instruction that caused the exception when a misaligned (MAE)
or memory protection (MDP) exception occurs.

0 0

31 0

0 0 0 0 0 0 00 0 0 0
Value after reset

Undefined

1567

DS

821 20

MEI R
W

16 15 11 10

00 0 0 0 U

9

REG ITYPE

Table 3-20 MEI Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 21 — (Reserved for future expansion. Be sure to set to 0.) R 0

 20 to 16 REG These bits indicate the number of the source or destination register
accessed by the instruction that caused the exception.

For details, see Table 3-21.

R/W Undefined

 15 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

 10, 9 DS These bits indicate the type of data handled by the instruction that caused
the exception.Note

 0: Byte (8 bits)

 1: Halfword (16 bits)

 2: Word (32 bits)

 3: Double-word (64 bits)

For details, see Table 3-21.

R/W Undefined

8 U This bit indicates the sign extension method of the instruction that caused
the exception.

 0: Signed

 1: Unsigned

For details, see Table 3-21.

R/W Undefined

 7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

 5 to 1 ITYPE These bits indicate the instruction that caused the exception.

For details, see Table 3-21.

R/W Undefined

 0 RW This bit indicates whether the operation of the instruction that caused the
exception was read (Load-memory) or write (Store-memory).

 0: Read (Load-memory)

 1: Write (Store-memory)

For details, see Table 3-21.

R/W Undefined

 Note Even if the data is divided and access is made several times due to the specifications of the hardware, the original

data type indicated by the instruction is stored.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 62 of 450
Dec 22, 2016

Table 3-21 Instructions Causing Exceptions and Values of MEI Register

Instruction REG DS U RW ITYPE

SLD.B dst 0 (Byte) 0 (Signed) 0 (Read) 00000b

SLD.BU dst 0 (Byte) 1 (Unsigned) 0 (Read) 00000b

SLD.H dst 1 (Half-word) 0 (Signed) 0 (Read) 00000b

SLD.HU dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00000b

SLD.W dst 2 (Word) 0 (Signed) 0 (Read) 00000b

SST.B src 0 (Byte) 0 (Signed) 1 (Write) 00000b

SST.H src 1 (Half-word) 0 (Signed) 1 (Write) 00000b

SST.W src 2 (Word) 0 (Signed) 1 (Write) 00000b

LD.B (disp16) dst 0 (Byte) 0 (Signed) 0 (Read) 00001b

LD.BU (disp16) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00001b

LD.H (disp16) dst 1 (Half-word) 0 (Signed) 0 (Read) 00001b

LD.HU (disp16) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00001b

LD.W (disp16) dst 2 (Word) 0 (Signed) 0 (Read) 00001b

ST.B (disp16) src 0 (Byte) 0 (Signed) 1 (Write) 00001b

ST.H (disp16) src 1 (Half-word) 0 (Signed) 1 (Write) 00001b

ST.W (disp16) src 2 (Word) 0 (Signed) 1 (Write) 00001b

LD.B (disp23) dst 0 (Byte) 0 (Signed) 0 (Read) 00010b

LD.BU (disp23) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00010b

LD.H (disp23) dst 1 (Half-word) 0 (Signed) 0 (Read) 00010b

LD.HU (disp23) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00010b

LD.W (disp23) dst 2 (Word) 0 (Signed) 0 (Read) 00010b

ST.B (disp23) src 0 (Byte) 0 (Signed) 1 (Write) 00010b

ST.H (disp23) src 1 (Half-word) 0 (Signed) 1 (Write) 00010b

ST.W (disp23) src 2 (Word) 0 (Signed) 1 (Write) 00010b

LD.DW (disp23) dst 3 (Double-word) 0 (Signed) 0 (Read) 00010b

ST.DW (disp23) src 3 (Double-word) 0 (Signed) 1 (Write) 00010b

LDL.W dst 2 (Word) 0 (Signed) 0 (Read) 00111b

STC.W src 2 (Word) 0 (Signed) 1 (Write) 00111b

CAXI dst 2 (Word) 1 (Unsigned) 0 (Read)Note 1 01000b

SET1 - 0 (Byte) 1 (Unsigned) 0 (Read)Note 1 01001b

CLR1 - 0 (Byte) 1 (Unsigned) 0 (Read)Note 1 01001b

NOT1 - 0 (Byte) 1 (Unsigned) 0 (Read)Note 1 01001b

TST1 - 0 (Byte) 1 (Unsigned) 0 (Read) 01001b

PREPARE - 2 (Word) 1 (Unsigned) 1 (Write) 01100b

DISPOSE - 2 (Word) 1 (Unsigned) 0 (Read) 01100b

PUSHSP - 2 (Word) 1 (Unsigned) 1 (Write) 01101b

POPSP - 2 (Word) 1 (Unsigned) 0 (Read) 01101b

SWITCH - 1 (Half-word) 0 (Signed) 0 (Read) 10000b

CALLT - 1 (Half-word) 1 (Unsigned) 0 (Read) 10001b

SYSCALL - 2 (Word) 1 (Unsigned) 0 (Read) 10010b

CACHE - - - 0 (Read) 10100b

Interrupt (table reference

method)Note 2

- 2 (Word) 1 (Unsigned) 0 (Read) 10101b

Notes 1. This exception occurs when the instruction executes a read access.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 63 of 450
Dec 22, 2016

 2. When the interrupt vector of the table reference method is read.

 Remark dst: Destination register number, src: Source register number

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 64 of 450
Dec 22, 2016

(17) RBASE — Reset vector base address
This register indicates the reset vector address when there is a reset. If the PSW.EBV bit is 0, this vector address
is also used as the exception vector address.

31 0

RBASE RBASE31 to RBASE9 0
Value after reset

Note
000 0 0 0 0 RI

NT

89

Table 3-22 RBASE Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 9 RBASE31 to
RBASE9

These bits indicate the reset vector when there is a reset. When
PSW.EBV = 0, this address is also used as the exception vector.

The RBASE8-0 bits are not assigned as names because these bits are
always 0.

R Note

 8 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

 0 RINT When the RINT bit is set, the exception handler address for interrupt
processing is reduced. See 4.5.1 (1) Direct vector method. This bit is
valid when PSW.EBV = 0.

R Note

 Note The value after reset depends on the hardware specifications. For details, see the hardware manual of the product

used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 65 of 450
Dec 22, 2016

(18) EBASE — Exception handler vector address
This register indicates the exception handler vector address. This register is valid when the PSW.EBV bit is 1.

EBASE EBASE31 to EBASE9 0
Value after reset

Undefined
000 0 0 0 0 RI

NT

31 089

Table 3-23 EBASE Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 9 EBASE31 to
EBASE9

The exception handler routine address is changed to the address
resulting from adding the offset address of each exception to the base
address specified for this register.

The EBASE8-0 bits are not assigned as names because these bits are
always 0.

R/W Undefined

 8 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

 0 RINT When the RINT bit is set, the exception handler address for interrupt
processing is reduced. See 4.5.1 (1) Direct vector method.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 66 of 450
Dec 22, 2016

(19) INTBP — Base address of the interrupt handler table
This register indicates the base address of the table when the table reference method is selected as the interrupt
handler address selection method.

INTBP INTBP31 to INTBP9 0
Value after reset

Undefined
000 0 0 0 0 0

31 089

Table 3-24 INTBP Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 9 INTBP31 to
INTBP9

These bits indicate the base pointer address for an interrupt when the
table reference method is used.

The value indicated by these bits is the first address in the table used to
determine the exception handler when the interrupt specified by the table
reference method (EIINT0 to EIINT511) is acknowledged.

The INTBP8-0 bits are not assigned as names because these bits are
always 0.

R/W Undefined

 8 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 67 of 450
Dec 22, 2016

(20) PID — Processor ID
The PID register retains a processor identifier that is unique to the CPU. The PID register is a read-only register.

Cautions The PID register indicates information used to identify the incorporated CPU core and CPU core

configuration. Usage such that the software behavior varies dynamically according to the PID register
information is not assumed.

31 0

PID PID

Value after reset
Defined for each

processor

Table 3-25 PID Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 24 PID Architecture Identifier
This identifier indicates the architecture of the processor.

R Note 1

 23 to 8 Function Identifier
This identifier indicates the functions of the processor.
These bits indicate whether or not functions defined per bit are
implemented (1: implemented, 0: not implemented).

Bit 23 to 11: Reserved

Bit 10: Double-precision floating-point operation function

Bit 9: Single-precision floating-point operation function

Bit 8: Memory protection unit (MPU) function

Note If a double-precision floating-point operation function is
implemented (when bit 10 is 1), a single-precision floating-
point operation function is also always implemented (bit 9 is
1).

R Note 1

 7 to 0 Version Identifier

This identifier indicates the version of the processor.

R Note 1

 Note 1. For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 68 of 450
Dec 22, 2016

(21) SCCFG — SYSCALL operation setting
This register is used to set operations related to the SYSCALL instruction. Be sure to set an appropriate value to
this register before using the SYSCALL instruction.

31 0

SCCFG
Value after reset

UndefinedSIZE

78

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000

Table 3-26 SCCFG Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

 7 to 0 SIZE These bits specify the maximum number of entries of a table that the
SYSCALL instruction references. The maximum number of entries the
SYSCALL instruction references is 1 if SIZE is 0, and 256 if SIZE is
255. By setting the maximum number of entries appropriately in
accordance with the number of functions branched by the SYSCALL
instruction, the memory area can be effectively used.
If a vector exceeding the maximum number of entries is specified for
the SYSCALL instruction, the first entry is selected. Place an error
processing routine at the first entry.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 69 of 450
Dec 22, 2016

(22) SCBP — SYSCALL base pointer
The SCBP register is used to specify a table address of the SYSCALL instruction and generate a target address.
Be sure to set an appropriate value to this register before using the SYSCALL instruction.
Be sure to set a word address to the SCBP register.

31 0

SCBP SCBP31 to SCBP0
Value after reset

Undefined

Table 3-27 SCBP Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 2 SCBP31
to SCBP2

These bits indicate the base pointer address of the SYSCALL instruction.

These bits indicate the start address of the table used by the SYSCALL
instruction.

R/W Undefined

 1, 0 SCBP1,
SCBP0

These bits indicate the base pointer address of the SYSCALL instruction.

These bits indicate the start address of the table used by the SYSCALL
instruction.

Always set these bits to 0.

R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 70 of 450
Dec 22, 2016

(23) MCFG0 — Machine configuration
This register indicates the CPU configuration.

31 0

MCFG0

1

0 0 0 0 0 0 0000

16 15

SPID

24

0 0 0

23

0 0 0 0 0 0 0 0

23
Value after reset

Undefined
1 0 0

Table 3-28 MCFG0 Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 24 — (Reserved for future expansion. Be sure to set to 0.) R 0

 23 to 16 SPID These bits indicate the system protection number.
The SPID bit width depends on the product and the value that can be
written might therefore be restricted.

For details, see the hardware manual of the product used.

R/W Note

 15 to 3 — (Reserved for future expansion. Be sure to set to 0.) R 0

 2 — (Reserved for future expansion. Be sure to set to 1.) R 1

 1, 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

 Note For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 71 of 450
Dec 22, 2016

(24) MCTL — Machine control
This register is used to control the CPU.

31 0

MCTL
Value after reset

Undefined
U
I
C

1 0 0 0 0 0 0 0 0 0 00000000

30

M
A000000

12

0 0 0 0 0 0

Table 3-29 MCTL Register Contents

Bit Name Description R/W

Value after
Reset

 31 — (Reserved for future expansion. Be sure to set to 1.) R 1

 30 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

 1 MA This bit specifies the operation when a misaligned access occurs.

0: When a misaligned access occurs, an exception always
occurs. Note 2

1: Hardware operates normally. Note 3

R/WNote 1 0Note 1

 0 UIC This bit is used to control the interrupt enable/disable operation in
user mode. When this bit is set to 1, executing the EI/DI instruction in
user mode become possible.

R/W 0

 Notes 1. The value after reset and whether each bit can be written depend on the hardware specifications.
For details, see the hardware manual of the product used.

 2. Excluding LD.DW and ST.DW instructions executed at an address at a word boundary.

 3. The case in which an MAE exception occurs and the case in which access is performed by
hardware are normally defined separately by the hardware specifications. For details, see the
hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 72 of 450
Dec 22, 2016

3.3 Interrupt Function Registers

3.3.1 Interrupt Function System Registers
Interrupt function system registers are read from or written to by using the LDSR and STSR instructions and specifying the
system register number, which is made up of a register number and selection ID.

Table 3-30 Interrupt Function System Registers

Register No.

(regID, selID) Symbol Function
Access
Permission

SR7, 1 FPIPR FPI exception interrupt priority setting SV

SR10, 2 ISPR Priority of interrupt being serviced SV

SR11, 2 PMR Interrupt priority masking SV

SR12, 2 ICSR Interrupt control status SV

SR13, 2 INTCFG Interrupt function setting SV

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 73 of 450
Dec 22, 2016

(1) FPIPR — FPI exception interrupt priority setting
This register is used to specify the interrupt priority of FPI exceptions.

FPIPR

31 5 4 0

FPIPR 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0
Value after reset

00000000H
000 0 0

Table 3-31 FPIPR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

 4 to 0 FPIPR These bits are used to specify the interrupt priority of floating-point
operation exceptions (imprecise) (FPI). Specify values from 0 to 16.
Specifying 17 or greater is prohibited.Note 1

FPI exceptions are handled using the specified interrupt priority. If an FPI
exception occurs at the same time as an interrupt that has the same priority,
the FPI exception is prioritized.

Caution If 17 or greater is specified, it is handled as 16.

R/W 0

 Note 1. The settable value may differ depending on the hardware specifications. For details, see the
hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 74 of 450
Dec 22, 2016

(2) ISPR — Priority of interrupt being serviced
This register holds the priority of the EIINTn interrupt being serviced. This priority value is then used to perform
priority ceiling processing when multiple interrupts are generated.

01531

ISPR
Value after reset

00000000H
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ISP15 to ISP0

16

Table 3-32 ISPR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 16 — (Reserved for future expansion. Be sure to set to 0.) R 0

 15 to 0 ISP15 to
ISP0

These bits indicate the acknowledgment status of an EIINTn interrupt with a
priorityNote 1 that corresponds to the relevant bit position.

0: An interrupt request for an interrupt whose priority corresponds to the
relevant bit position has not been acknowledged.

1: An interrupt request for an interrupt whose priority corresponds to the
relevant position is being serviced by the CPU core.

The bit positions correspond to the following priority levels.

RNote 4 0

 Bit Priority

 0 Priority 0 (highest)

 1 Priority 1

 14 Priority 14

 15 Priority 15

When an interrupt request (EIINTn) is acknowledged, the bit corresponding
to the acknowledged interrupt request is automatically set to 1. If PSW.EP
is 0 when the EIRET instruction is executed, the bit with the highest priority
among the ISP15-0 bits that are set (0 is the highest priority) is cleared to
0Note 2.

While a bit in this register is set to 1, same or lower priority interrupts
(EIINTn) and the FPI exceptionNote 3 are masked. Priority level judgment is
therefore not performed when the system is determining whether to
acknowledge an exception, meaning that exceptions will not be
acknowledged. For details, see 4.1.5 Exception Acknowledgment
Priority and Pending Conditions.

When performing software-based priority control using the PMR register, be
sure to clear this register by using the INTCFG.ISPC bit.

 Notes 1. For details, see 4.1.5 Exception Acknowledgment Priority and Pending Conditions.

 2. Interrupt acknowledgment and auto-updating of values when the EIRET instruction is executed
are disabled by setting (1) the INTCFG.ISPC bit. It is recommended to enable auto-updating of
values, so in normal cases, the INTCFG.ISPC bit should be cleared to 0.

 3. The FPI exception has the same priority level as an interrupt (EIINTn), so it is affected by the
setting of the ISPR register in the same way as an interrupt. The priority level of the FPI exception
is specified by the FPIPR register.

 4. This is R or R/W, depending on the setting of the INTCFG.ISPC bit. It is recommended to use this
register as a read-only (R) register.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 75 of 450
Dec 22, 2016

(3) PMR — Interrupt priority masking
This register is used to mask the specified interrupt priority.

01531

PMR
Value after reset

00000000H
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PM15 to PM0

16

Table 3-33 PMR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 16 — (Reserved for future expansion. Be sure to set to 0.) R 0

 15 to 0 PM15 to
PM0

These bits mask an interrupt request with a priority level that corresponds to
the relevant bit position.

0: Servicing of an interrupt request with a priority that corresponds to the
relevant bit position is enabled.

1: Servicing of an interrupt request with a priority that corresponds to the
relevant bit position is disabled.

The bit positions correspond to the following priority levels:

R/W 0

 Bit Priority

 0 Priority 0 (highest)

 1 Priority 1

 14 Priority 14

 15 Priority 15 and priority 16 (lowest)Note 3

While a bit in this register is set to 1, interrupts (EIINTn) with the priority
corresponding to that bit and the FPI exceptionNote 1 are masked. Priority
level judgment is therefore not performed when the system is determining
whether to acknowledge an exception, meaning that exceptions will not be
acknowledgedNote 2.

 Notes 1. The FPI exception has the same priority level as an interrupt (EIINTn), so it is affected by the
setting of the PMR register in the same way as an interrupt. The priority level of the FPI exception
is specified by the FPIPR register.

 2. Specify the masks by setting the bits to 1 in order from the lowest-priority bit. For example, FF00H
can be set, but F0F0H or 00FFH cannot.

 3. The corresponding priority level may differ depending on the hardware specifications. For details,
see the hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 76 of 450
Dec 22, 2016

(4) ICSR — Interrupt control status
This register indicates the interrupt control status in the CPU.

31 1 0

ICSR PM
EI

Value after reset
00000000H

0 PM
FP0 0 0 0

2

Table 3-34 ICSR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

 1 PMFP This bit indicates that an FPI exception with the priority level masked by the
PMR register exists.

R 0

 0 PMEI This bit indicates that an interrupt (EIINTn) with the priority level masked by
the PMR register exists.

R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 77 of 450
Dec 22, 2016

(5) INTCFG — Interrupt function setting
This register is used to specify settings related to the CPU’s internal interrupt function.

31 1 0

INTCFG IS
PC

Value after reset
00000000H

0 00 0 0 0

Table 3-35 INTCFG Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

 0 ISPC This bit changes how the ISPR register is written.

0: The ISPR register is automatically updated. Updates triggered by the
program (via execution of LDSR instruction) are ignored.

1: The ISPR register is not automatically updated. Updates triggered by
the program (via execution of LDSR instruction) are performed.

If this bit is cleared to 0, the bits of the ISPR register are automatically set to
1 when an interrupt (EIINTn) is acknowledged, and cleared to 0 when the
EIRET instruction is executed. In this case, the bits are not updated by an
LDSR instruction executed by the program.

If this bit is set to 1, the bits of the ISPR register are not updated by the
acknowledgement of an interrupt (EIINTn) or by execution of the EIRET
instruction. In this case, the bits can be updated by an LDSR instruction
executed by the program.

In normal cases, the ISPC bit should be cleared. When performing
software-based priority control, however, set this bit (1) and perform priority
control by using the PMR register.

R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 78 of 450
Dec 22, 2016

3.4 FPU Function Registers

3.4.1 Floating-Point Registers
The FPU uses the CPU general-purpose registers (r0 to r31). There are no register files used only for floating-point
operations.

• Single-precision floating-point instruction:
Thirty-two 32-bit registers can be specified. These general-purpose registers correspond to r0 to r31.

• Double-precision floating-point instruction:
Sixteen 64-bit registers can be specified. Paired general-purpose registers are used as register pairs ({r1, r0}, {r3, r2} …
{r31, r30}). Each register pair is specified in the instruction format with an even numbered register. Because r0 is a zero
register (always holds 0), in principle {r1, r0} cannot be used by a double-precision floating-point instruction.

3.4.2 Floating-Point Function System Registers
The FPU can use the following system registers to control floating-point operations. Floating-point function system
registers are read from or written to by using the LDSR and STSR instructions and specifying the system register number,
which is made up of a register number and selection ID.

• FPSR: This register is used to control and monitor exceptions. It also holds the result of compare operations,

and sets the FPU operation mode. Its bits are used to set condition code, exception mode, subnormal

number flush enable, rounding mode control, cause, exception enable, and preservation.

• FPEPC: This register stores the program counter value for the instruction where a floating-point operation

exception has occurred.

• FPST: This register reflects the contents of the FPSR register bits related to the operation status.

• FPCC: This register reflects the contents of the FPSR.CC(7:0) bits.

• FPCFG: This register reflects the contents of the FPSR register bits related to the operation settings.

• FPEC: This register controls checking and canceling the pending status of the FPI exception.

Table 3-36 FPU System Registers

Register No.

(regID, selID) Symbol Function
Access
Permission

SR6, 0 FPSR Floating-point configuration/status CU0 and SV

SR7, 0 FPEPC Floating-point exception program counter CU0 and SV

SR8, 0 FPST Floating point status CU0

SR9, 0 FPCC Floating-point comparison result CU0

SR10, 0 FPCFG Floating-point configuration CU0

SR11, 0 FPEC Floating-point exception control CU0 and SV

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 79 of 450
Dec 22, 2016

(1) FPSR — Floating-point configuration/status
This register indicates the execution status of floating-point operations and any exceptions that occur.
For details about exception, see 6.1.5 Floating-Point Operation Exceptions.

31

FPSR CC7 CC6 CC4

29 28

15
Value after reset

Note

CC5 CC3

27

CC2 CC1 CC0 FN IF PEM 0 RM FS 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

Cause bits (XC)
E U IOZV

Enable bits (XE) Preservation bits (XP)
IUOZV IUOZV

Table 3-37 FPSR Register Contents (1/2)

Bit Name Description R/W

Value after
Reset

 31 to 24 CC(7:0) These are the CC (condition) bits. They store the results of floating-
point comparison instructions. The CC7-0 bits are not affected by any
instructions except the comparison instruction and LDSR instruction.

 0: Comparison result is false
 1: Comparison result is true

R/W Undefined

 23 FN This bit enables flush-to-nearest mode. When the FN bit is set to 1, if
the rounding mode is RN and the operation result is a subnormal
number, the number is flushed to the nearest number. For details, see
6.1.11 Flush to Nearest.

R/W 0

 22 IF This bit accumulates and indicates information about the flushing of
input operands. For details about flushing subnormal numbers, see
6.1.9 Flushing Subnormal Numbers.

R/W 0

 21 PEM This bit specifies whether to handle an exception as a precise
exception. If the PEM bit is 1, exceptions that are caused by the
execution of a floating-point operation instruction are handled as
precise exceptions.

R/W 0

 20 — (Reserved for future expansion. Be sure to set to 0.) R 0

 Note See the descriptions of each bit.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 80 of 450
Dec 22, 2016

Table 3-37 FPSR Register Contents (2/2)

Bit Name Description R/W

Value after
Reset

 19, 18 RM These are the rounding mode control bits. The RM bits define the
rounding mode that the FPU uses for all floating-point instructions.

R/W 00

 RM Bits

Mnemonic Description

 19 18

 0 0 RN Rounds the result to the nearest
representable value. If the value is
exactly in-between the two nearest
representable values, the result is
rounded toward the value whose least
significant bit is 0.

 0 1 RZ Rounds the result toward 0. The result
is the nearest to the value that does not
exceed the absolute value of the result
with infinite accuracy.

 1 0 RP Rounds the result toward +∞. The
result is nearest to a value greater than
the accurate result with infinite
accuracy.

 1 1 RM Rounds the result toward −∞. The result
is nearest to a value less than the
accurate result with infinite accuracy.

 17 FS This bit enables values that could not be normalized (subnormal
numbers) to be flushed. If the FS bit is set, input operands and
operation results that are subnormal numbers are flushed without
causing an unimplemented operation exception (E). An input operand
that is a subnormal number is flushed to 0 with the same sign.
Operation results that are subnormal numbers either become 0 or the
minimum normalized number, depending on the rounding mode.

R/W 1

 Operation Result
that is a Subnormal
Number

Rounding Mode and Value after Flushing

 RNNote RZ RP RM

 Positive +0 +0 +2Emin +0

 Negative −0 −0 −0 −2Emin

Note If the rounding mode is RN and the FPSR.FN bit is set,
flushing will occur in the direction of higher accuracy. For
details, see 6.1.11 Flush to Nearest.

 16 — (Reserved for future expansion. Be sure to set to 0.) R 0

 15 to
10

XC

(E, V, Z, O, U, I)

These are the cause bits. For details, see 3.4.2 (1) (a) Cause bits
(XC).

R/W Undefined

 9 to 5 XE

(V, Z, O, U, I)

These are the enable bits. For details, see 3.4.2 (1) (b) Enable bits
(XE).

R/W 0

 4 to 0 XP

(V, Z, O, U, I)

These are the preservation bits. For details, see 3.4.2 (1) (c)
Preservation bits (XP).

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 81 of 450
Dec 22, 2016

(a) Cause bits (XC)
Bits 15 to 10 in the FPSR register are cause bits, which indicate the occurrence and cause of a floating-point
operation exception. If an exception defined by IEEE754 is generated, when an enable bit is set to 1
corresponding to the exception, a cause bit is set, and the exception then occurs. When two or more
exceptions occur during a single instruction, each corresponding bit is set to 1.
If two or more exceptions are detected, as long as the enable bit corresponding to one of the exceptions is set
to 1, the exception occurs. In this case, the cause bits of all the detected exceptions, including exceptions
whose enable bits are cleared to 0, are set to 1.
The cause bits are rewritten by a floating-point instruction (except the TRFSR instruction) where the floating-
point operation exception occurred. The E bit is set to 1 when software emulation is required, otherwise it is
cleared to 0. Other bits are set to 1 or cleared to 0 depending on whether or not an IEEE754-defined
exception has occurred.
When a floating-point operation exception has occurred, the operation result is not stored, and only the cause
bits are affected.
When the cause bits are set to 1 by an LDSR instruction, a floating-point operation exception does not occur.

(b) Enable bits (XE)

Bits 9 to 5 in the FPSR register are the enable bits, which enable floating-point operation exceptions. When an
IEEE754-defined exception occurs, a floating-point operation exception occurs if the enable bit corresponding
to the exception has been set to 1.
There are no enable bits corresponding to an unimplemented operation exception (E). An unimplemented
operation exception (E) always occurs as a floating-point operation exception.
If the corresponding enable bit has not been set to 1, no exception occurs and the default result defined by
IEEE754 is stored.

(c) Preservation bits (XP)

Bits 4 to 0 in the FPSR register are preservation bits. These bits store and indicate the detected exception
after reset. An exception defined by IEEE754 occurs, and if a floating-point operation exception is not
generated, the preservation bit is set to 1, otherwise it does not change. The preservation bits are not cleared
to 0 by the floating-point operation. However, these bits can be set and cleared by software when an LDSR
instruction is used to write a new value to the FPSR register.
There are no preservation bits corresponding to unimplemented operation exceptions (E). An unimplemented
operation exception (E) always occurs as a floating-point operation exception.

Remark For details about the exception types and how they relate to particular bits, see Figure 6-6 Cause,

Enable, and Preservation Bits of FPSR Register.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 82 of 450
Dec 22, 2016

(2) FPEPC — Floating-point exception program counter
When an exception that is enabled by an enable bit occurs, the program counter (PC) of the instruction that
caused the exception is stored.

31 8 7 3 2 1 011 910 4561213141530 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPEPC31 to FPEPC0FPEPC
Value after reset

Undefined

Table 3-38 FPEPC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 FPEPC31 to
FPEPC1

These bits store the program counter (PC) of the floating-point
instruction that caused the exception when a floating-point operation
exception that is enabled by an enable bit occurs.

R/W Undefined

 0 FPEPC0 This bit stores the program counter (PC) of the floating-point instruction
that caused the exception when a floating-point operation exception that
is enabled by an enable bit occurs

Always set this bit to 0.

R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 83 of 450
Dec 22, 2016

(3) FPST — Floating-point operation status
This register reflects the contents of the FPSR register bits related to the operation status.

31

FPST 0 0 0

29 28

15
Value after reset

Undefined

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

Cause bits (XC)0
Z OVE

0 Preservation bits (XP)IF00
IU IUOZV

0

Table 3-39 FPST Register Contents

Bit Name Description R/W
Value after
Reset

 31 to 14 — (Reserved for future expansion. Be sure to set to 0.) R 0

 13 to 8 XC

(E, V, Z, O, U, I)

These are cause bits. For details, see 3.4.2 (1) (a) Cause bits
(XC). Values written to these bits are reflected in FPSR.XC bits.

R/W Undefined

 7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

 5 IF This bit accumulates and indicates information about the flushing of
input operands. For details about flushing subnormal numbers, see
6.1.9 Flushing Subnormal Numbers. Value written to this bit is
reflected in FPSR.IF bit.

R/W 0

 4 to 0 XP

(V, Z, O, U, I)

These are preservation bits. For details, see 3.4.2 (1) (c)
Preservation bits (XP). Values written to these bits are reflected in
FPSR.XP bits.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 84 of 450
Dec 22, 2016

(4) FPCC — Floating-point operation comparison result
This register reflects the contents of the FPSR.CC(7:0) bits.

31

FPCC 0 0 0

29 28

15
Value after reset

Undefined

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

0 0 0000 CC5CC6CC700 CC0CC1CC2CC3CC4

0

Table 3-40 FPCC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

 7 to 0 CC(7:0) These are CC (condition) bits. They store the result of a floating-
point comparison instruction. The CC(7:0) bits are not affected by
any instructions except the comparison instruction and LDSR
instruction. Values written to these bits are reflected in the CC(7:0)
bits of FPSR.
 0: Comparison result is false
 1: Comparison result is true

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 85 of 450
Dec 22, 2016

(5) FPCFG — Floating-point operation configuration
This register reflects the contents of the FPSR register bits related to the operation settings.

RM 0

31

FPCFG 0 0 0

29 28

15
Value after reset

00000000H

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

0 0 0000 00
IUOZV

0

Enable bits (XE)

Table 3-41 FPCFG Register Contents

Bit Name Description R/W
Value after
Reset

 31 to 10 — (Reserved for future expansion. Be sure to set to 0.) R 0

 9, 8 RM These are rounding mode control bits. The RM bits define the
rounding mode that the FPU uses for all floating-point instructions.
Values written to these bits are reflected in RM bits of FPSR.

R/W 0

 RM Bits

Mnemonic Description

 9 8

 0 0 RN Rounds the result to the nearest
representable value. If the value is
exactly in-between the two
representable values, the result is
rounded toward the value whose
least significant bit is 0.

 0 1 RZ Rounds the result toward 0. The
result is the nearest to the value
that does not exceed the absolute
value of the result with infinite
accuracy.

 1 0 RP Rounds the result toward +∞. The
result is nearest to a value greater
than the accurate result with infinite
accuracy.

 1 1 RM Rounds the result toward -∞. The
result is nearest to a value less than
the accurate result with infinite
accuracy.

 7 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

 4 to 0 XE

(V, Z, O, U, I)

These are the enable bits. For details, see 3.4.2 (1) (b) Enable bits
(XE). Values written to these bits are reflected in the FPSR.XE bits.

R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 86 of 450
Dec 22, 2016

(6) FPEC — Floating-point exception control
This register controls the floating-point operation exception.

Caution For how to handle the FPEC register, see 4.4 Exception Management.

31

FPEC 0 0 0

29 28

15
Value after reset

00000000H

0 0

27

0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

30

0 0 0000 00000 FPI
VD0000

0

Table 3-42 FPEC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

 0 FPIVDNote This bit indicates the status of reporting the FPI exception.

If this bit is set to 1, the FPI exception is reported to the CPU but is not
acknowledged. It is automatically cleared to 0 when the CPU
acknowledges the FPI exception.

While this bit is set to 1, all the floating-point instructions are
invalidated.

Report of the FPI exception can be canceled by clearing (0) this bit by
the LDSR instruction while it is set to 1. When report of the FPI
exception is canceled, the CPU does not acknowledge the FPI
exception.

 0: FPI exception is not reported.

 1: FPI exception is reported.

R/W 0

 Note The FPIVD bit can only be cleared to 0 by the write operation of the LDSR instruction. It cannot be

set to 1.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 87 of 450
Dec 22, 2016

3.5 MPU Function Registers

3.5.1 MPU Function System Registers
MPU function system registers are read from or written to by using the LDSR and STSR instructions and specifying the
system register number, which is made up of a register number and selection ID.

Table 3-43 MPU Function System Registers (1/2)

Register No.

(regID, selID) Symbol Function
Access
Permission

SR0, 5 MPM Memory protection operation mode setting SV

SR1, 5 MPRC MPU region control SV

SR4, 5 MPBRGN MPU base region number SV

SR5, 5 MPTRGN MPU end region number SV

SR8, 5 MCA Memory protection setting check address SV

SR9, 5 MCS Memory protection setting check size SV

SR10, 5 MCC Memory protection setting check command SV

SR11, 5 MCR Memory protection setting check result SV

SR0, 6 MPLA0 Protection area minimum address SV

SR1, 6 MPUA0 Protection area maximum address SV

SR2, 6 MPAT0 Protection area attribute SV

SR4, 6 MPLA1 Protection area minimum address SV

SR5, 6 MPUA1 Protection area maximum address SV

SR6, 6 MPAT1 Protection area attribute SV

SR8, 6 MPLA2 Lower address of the protection area SV

SR9, 6 MPUA2 Protection area maximum address SV

SR10, 6 MPAT2 Protection area attribute SV

SR12, 6 MPLA3 Protection area minimum address SV

SR13, 6 MPUA3 Protection area maximum address SV

SR14, 6 MPAT3 Protection area attribute SV

SR16, 6 MPLA4 Protection area minimum address SV

SR17, 6 MPUA4 Protection area maximum address SV

SR18, 6 MPAT4 Protection area attribute SV

SR20, 6 MPLA5 Protection area minimum address SV

SR21, 6 MPUA5 Protection area maximum address SV

SR22, 6 MPAT5 Protection area attribute SV

SR24, 6 MPLA6 Protection area minimum address SV

SR25, 6 MPUA6 Protection area maximum address SV

SR26, 6 MPAT6 Protection area attribute SV

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 88 of 450
Dec 22, 2016

Table 3-43 MPU Function System Registers (2/2)

Register No.

(regID, selID) Symbol Function
Access
Permission

SR28, 6 MPLA7 Protection area minimum address SV

SR29, 6 MPUA7 Protection area maximum address SV

SR30, 6 MPAT7 Protection area attribute SV

SR0, 7 MPLA8 Protection area minimum address SV

SR1, 7 MPUA8 Protection area maximum address SV

SR2, 7 MPAT8 Protection area attribute SV

SR4, 7 MPLA9 Protection area minimum address SV

SR5, 7 MPUA9 Protection area maximum address SV

SR6, 7 MPAT9 Protection area attribute SV

SR8, 7 MPLA10 Protection area minimum address SV

SR9, 7 MPUA10 Protection area maximum address SV

SR10, 7 MPAT10 Protection area attribute SV

SR12, 7 MPLA11 Protection area minimum address SV

SR13, 7 MPUA11 Protection area maximum address SV

SR14, 7 MPAT11 Protection area attribute SV

SR16, 7 MPLA12 Protection area minimum address SV

SR17, 7 MPUA12 Protection area maximum address SV

SR18, 7 MPAT12 Protection area attribute SV

SR20, 7 MPLA13 Protection area minimum address SV

SR21, 7 MPUA13 Protection area maximum address SV

SR22, 7 MPAT13 Protection area attribute SV

SR24, 7 MPLA14 Protection area minimum address SV

SR25, 7 MPUA14 Protection area maximum address SV

SR26, 7 MPAT14 Protection area attribute SV

SR28, 7 MPLA15 Protection area minimum address SV

SR29, 7 MPUA15 Protection area maximum address SV

SR30, 7 MPAT15 Protection area attribute SV

Note The number of incorporated MPLAn, MPUAn, and MPATn (n = 0 to 15) registers depends on the hardware
specifications. For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 89 of 450
Dec 22, 2016

(1) MPM — Memory protection operation mode
The memory protection mode register is used to define the basic operating state of the memory protection function.

31 1 0

MPM
M
P
E

Value after reset
00000000H

0 D
X

D
W

D
R 0 0

S
V
P

0 0 0 0

28 711 910

Table 3-44 MPM Register Contents (1/2)

Bit Name Description R/W

Value after
Reset

 31 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

 10 DX This bit specifies the default operation when an instruction is executed
at an address that does not exist in a protection area. “0” is fixed for this
bit in this CPU. Default operation is prohibited. Be sure to set to 0.

0: Disable executing an instruction at an address that does not exist
in a protection area.

1: Enable executing an instruction at an address that does not exist
in a protection area.

The setting of this bit affects the access operation when the protection
areas overlap. For details, see 5.1.4 Caution Points for Protection
Area Setup.

R 0

 9 DW This bit specifies the default operation when writing to an address that
does not exist in a protection area. “0” is fixed for this bit in this CPU.
Default operation is prohibited. Be sure to set to 0.

0: Disable writing to an address that does not exist in a protection
area.

1: Enable writing to an address that does not exist in a protection
area.

The setting of this bit affects the access operation when the protection
areas overlap. For details, see 5.1.4 Caution Points for Protection
Area Setup.

R 0

 8 DR This bit specifies the default operation when reading from an address
that does not exist in a protection area. “0” is fixed for this bit in this
CPU. Default operation is prohibited. Be sure to set to 0.

0: Disable reading from an address that does not exist in a
protection area.

1: Enable reading from an address that does not exist in a
protection area.

The setting of this bit affects the access operation when the protection
areas overlap. For details, see 5.1.4 Caution Points for Protection
Area Setup.

R 0

 7 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 90 of 450
Dec 22, 2016

Table 3-44 MPM Register Contents (2/2)

Bit Name Description R/W

Value after
Reset

 1 SVP In SV mode (when PSW.UM = 0), this bit is used to specify whether to
restrict access according to the SX, SW, and SR bits of the MPAT
register for each protection area.Note 1

0: As usual, implicitly enable all access in SV mode.

1: Restrict access according to the SX, SW, and SR bits even in SV
mode.Note 2

R/W 0

 0 MPE This bit is used to specify whether to enable or disable MPU function.

0: Disable

1: Enable

R/W 0

 Notes 1. When the SVP bit is set to 1, access is restricted according to the setting of each protection area
even in SV mode. Therefore, specify protection areas before setting the SVP bit to prevent the
access of the program itself from being restricted.

 2. If access is restricted in SV mode, execution of MDP exceptions or the MIP exception handling itself
might not be possible depending on the settings. Be careful to specify settings so that access to the
memory area necessary for the exception handler and exception handling is permitted.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 91 of 450
Dec 22, 2016

(2) MPRC — MPU region control
Bits used to perform special memory protection function operations are located in this register.

E
1

E
3

E
2

E
10

E
9

E
8

8 7 6 5 4 3 2 1 011 9101215 14 1331

MPRC E
0

Value after reset
00000000H

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E
15

E
14

E
13

E
12

E
11

E
7

E
6

E
5

E
4

Table 3-45 MPRC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 16 — (Reserved for future expansion. Be sure to set to 0.) R 0

 15 to 0 E15 to E0 These are the enable bits for each protection area. Bit En is a copy of bit
MPATn.E (where n = 15 to 0).

For the number of protection areas, see the hardware manual of the
product used.

R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 92 of 450
Dec 22, 2016

(3) MPBRGN — MPU base region
This register indicates the minimum usable MPU area number.

MPBRGN

31 0

MPBRGN 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0
Value after reset

00000000H
0 0 0

45

Table 3-46 MPBRGN Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

 4 to 0 MPBRGN These bits indicate the smallest number of an MPU area.

These bits always indicate 0.

R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 93 of 450
Dec 22, 2016

(4) MPTRGN — MPU end region
This register indicates the maximum usable MPU area number + 1.

MPTRGN

31 0

MPTRGN 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0
Value after reset

Note
0 0 0

45

Table 3-47 MPTRGN Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

 4 to 0 MPTRGN These bits indicate the largest number of an MPU area + 1.

These bits indicate the maximum number of MPU areas incorporated
into the hardware.

R Note

 Note For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 94 of 450
Dec 22, 2016

(5) MCA — Memory protection setting check address
This register is used to specify the base address of the area for which a memory protection setting check is to be
performed.

MCA MCA31 to MCA0
Value after reset

Undefined

31 0

Table 3-48 MCA Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 MCA31
to MCA0

These bits are used to specify the starting address of the memory area
which subjects to a memory protection setting check in bytes.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 95 of 450
Dec 22, 2016

(6) MCS — Memory protection setting check size
This register is used to specify the size of the area for which a memory protection setting check is to be performed.

MCS MCS31 to MCS0
Value after reset

Undefined

31 0

Table 3-49 MCS Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 MCS31 to
MCS0

These bits are used to specify the size of the memory area which
subjects to a memory protection setting check and the size of the target
area in bytes. Because the specified size is assumed to represent an
unsigned integer, it is not possible to check an area in the direction in
which the address value decreases relative to the MCA register value.

Do not specify 00000000H for the MCS register.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 96 of 450
Dec 22, 2016

(7) MCC — Memory protection setting check command
This command register is used to start a memory protection setting check.

MCC MCC31 to MCC0
Value after reset

00000000H

31 0

Table 3-50 MCC Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 MCC31 to
MCC0

When any value is written to the MCC register, a memory protection
setting check starts. By setting up the MCA/MCS register and then
writing to the MCC register, results are stored in MCR.

Because the check is started by any written value, a check can be
started by using r0 as the source register without using any
unnecessary registers. Note that, for the check, the results are applied
according to each area setting regardless of the state of the PSW.UM
bit.

When the MCC register is read, value 00000000H is always returned.

R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 97 of 450
Dec 22, 2016

(8) MCR — Memory protection setting check result
This register is used to store the results of a memory protection setting check.
Be sure to clear bits 31 to 9, 7, and 6.

Cautions 1. If the specified area to be checked crosses 00000000H or 7FFFFFFFH, it is judged as an area

setting error, and the MCR.OV bit is set to 1. This means that the MCR.OV bit must be checked to

access the check results. Do not use the check result until it is confirmed that the result is not
invalid (OV = 0).

 2. When the default set (MPM.DX, DW, DR) is set to 1, it disables sometimes to get the correct result.
If enabling the specified default operation, do not use the memory protection setting check function.

31

MCR 0 0 0

29 28

15
Value after reset

Undefined
0

0 0

27

0 0 0 0 0 0 0 0 0 0 0

26 25 24 23 22 21 18 17 1620 19

14 13 12 11 10 9 8

0 0 0 0 0 0 OV 0

7 6 5 4 3 2 1 0

UXE UWE URE0 SXE SWE SRE

30

Table 3-51 MCR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 9 — (Reserved for future expansion. Be sure to set to 0.) R 0

 8 OV If the specified area includes 00000000H or 7FFFFFFFH, 1 is stored
in this bit. In other cases, 0 is stored in this bit.

R/W Undefined

 7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

 5 SXE If the specified area is contained within one protection area and
execution is permitted for that area in supervisor mode, 1 is stored in
this bit. In other cases, 0 is stored in this bit.

R/W Undefined

 4 SWE If the specified area is contained within one protection area and writing
to that area is permitted in supervisor mode, 1 is stored in this bit. In
other cases, 0 is stored in this bit.

R/W Undefined

 3 SRE If the specified area is contained within one protection area and
reading from that area is permitted in supervisor mode, 1 is stored in
this bit. In other cases, 0 is stored in this bit.

R/W Undefined

 2 UXE If the specified area is contained within one protection area and
execution is permitted for that area in user mode, 1 is stored in this bit.
In other cases, 0 is stored in this bit.

R/W Undefined

 1 UWE If the specified area is contained within one protection area and writing
to that area is permitted in user mode, 1 is stored in this bit. In other
cases, 0 is stored in this bit.

R/W Undefined

 0 URE If the specified area is contained within one protection area and
reading from that area is permitted in user mode, 1 is stored in this bit.
In other cases, 0 is stored in this bit.

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 98 of 450
Dec 22, 2016

(9) MPLAn — Protection area minimum address
These registers indicate the minimum address of area n (where n = 0 to 15). The number of protection area n
depends on the hardware specifications. For details, see the hardware manual of the product used.

31 0

MPLAn MPLAn
Value after reset

Undefined
0 0

2 1

Table 3-52 MPLAn Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 2 MPLA31 to
MPLA2

These bits indicate the minimum address of area n.

The MPLAn.MPLA1-0 bits are used implicitly set to 0.

R/W Undefined

 1, 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 99 of 450
Dec 22, 2016

(10) MPUAn — Protection area maximum address
These registers indicate the maximum address of area n (where n = 0 to 15). The number of protection area n
depends on the hardware specifications. For details, see the hardware manual of the product used.

31 0

MPUAn MPUAn
Value after reset

Undefined0 0

2 1

Table 3-53 MPUAn Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 2 MPUA31 to
MPUA2

These bits indicate the maximum address of area n.

The MPUAn.MPUA1-0 bits are used implicitly set to 1.

R/W Undefined

 1, 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 100 of 450
Dec 22, 2016

(11) MPATn — Protection area attribute
These registers indicate the attributes of area n (where n = 0 to 15). The number of protection area n depends on
the hardware specifications. For details, see the hardware manual of the product used.

0MPATn ASID 0 0 0
Value after reset

Undefined
SXGE SWSRUXUWUR

31 08 7 4 3 2 16 525 1626 15

0 00 0000 00 00

Table 3-54 MPATn Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

 25 to 16 ASID These bits indicate the ASID value to be used as the area match
condition.

R/W Undefined

 15 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

 7 E This bit indicates whether area n is enabled or disabled.

 0: Area n is disabled.

 1: Area n is enabled.

R/W 0

 6 G 0: ASID match is used as the condition.

 1: ASID match is not used as the condition.

If this bit is 0, MPATn.ASID = ASID.ASID is used as the area match
condition.

If this bit is 1, the values of MPATn.ASID and ASID.ASID are not used as
the area match condition.

R/W Undefined

 5 SX This bit indicates the execution privilege for the supervisor mode. Note 1

 0: Execution is disabled.

 1: Execution is enabled.

R/W Undefined

 4 SW This bit indicates the write permission for the supervisor mode.Note 1

 0: Writing is disabled.

 1: Writing is enabled.

R/W Undefined

 3 SR This bit indicates the read permission for the supervisor mode.Note 1

 0: Reading is disabled.

 1: Reading is enabled.

R/W Undefined

 2 UX This bit indicates the execution privilege for the user mode.

 0: Execution is disabled.

 1: Execution is enabled.

R/W Undefined

 1 UW This bit indicates the write permission for the user mode.

 0: Writing is disabled.

 1: Writing is enabled.

R/W Undefined

 0 UR This bit indicates the read permission for the user mode.

 0: Reading is disabled.

 1: Reading is enabled

R/W Undefined

 Note 1. If access is restricted in SV mode, execution of MDP exceptions or the MIP exception handling itself
might not be possible depending on the settings. Be careful to specify settings so that access to the
memory area necessary for the exception handler and exception handling is permitted.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 101 of 450
Dec 22, 2016

3.6 Cache Operation Function Registers

3.6.1 Cache Control Function System Registers
Cache control function system registers are read from or written to by using the LDSR and STSR instructions and
specifying the system register number, which is made up of a register number and selection ID.

Table 3-55 Cache Control System Registers

Register No.

(regID, selID) Symbol Function
Access
Permission

SR16, 4 ICTAGL Instruction cache tag Lo access SV

SR17, 4 ICTAGH Instruction cache tag Hi access SV

SR18, 4 ICDATL Instruction cache data Lo access SV

SR19, 4 ICDATH Instruction cache data Hi access SV

SR24, 4 ICCTRL Instruction cache control SV

SR26, 4 ICCFG Instruction cache configuration SV

SR28, 4 ICERR Instruction cache error SV

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 102 of 450
Dec 22, 2016

(1) ICTAGL — Instruction cache tag Lo access
This register is used by the CIST/CILD instruction in relation to the instruction cache. During execution of CIST,
values that are stored to the tag RAM for the instruction cache are stored. During execution of CILD, values read
from the tag RAM for the instruction cache are stored.

LRUICTAGL LPN 0 0
Value after reset

Undefined
0 0 L 0 V

31 010 5 46 3 2 19 7

U
ndefined

Table 3-56 ICTAGL Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 10 LPN These bits store physical page number bits 24 to 12.

Be sure to set bits 31 to 25, and 10 to 0.

R/W Undefined

 9 to 7 — (Reserved for future expansion. Be sure to set to 0.) R 0

 6 — (Reserved for future expansion. Be sure to set to 0.) R Undefined

 5, 4 LRU These bits indicate LRU information of specified cache line. LRU
information cannot be freely changed to any value by the CIST instruction.

R/W Undefined

 3 — (Reserved for future expansion. Be sure to set to 0.) R 0

 2 L This bit stores the lock information. R/W Undefined

 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

 0 V This bit stores valid/invalid information of specified cache line. R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 103 of 450
Dec 22, 2016

(2) ICTAGH — Instruction cache tag Hi access
This register is used by the CIST/CILD instruction in relation to the instruction cache. During execution of CIST,
values that are stored to the tag RAM for the instruction cache are stored. During execution of CILD, values read
from the tag RAM for the instruction cache are stored.

31 0

ICTAGH
Value after reset

Undefined

78

WDPDWTPT 0 0 0 0

2324 16 15

DATAECC TAGECC

30 29 28 27

0 0 0 0 0

6 5 2 1 U
ndefined

U
ndefined

U
ndefined

Table 3-57 ICTAGH Register Contents

Bit Name Description R/W

Value after
Reset

 31 WD When this bit is set to 1 during CIST execution, data RAM of cache is
updated.

R/W Undefined

 30 PD When this bit is set to 1 during CIST execution, values in the DATAECC
field are overwritten to ECC for data RAM. When this value is 0, ECC is
generated automatically from the write data.

R/W Undefined

 29 WT When this bit is set to 1 during CIST execution, tag RAM of cache is
updated.

R/W Undefined

 28 PT When this bit is set to 1 during CIST execution, values in the TAGECC
field are overwritten to ECC for tag RAM. When this value is 0, ECC is
generated automatically from the write data.

R/W Undefined

 27 to 24 — (Reserved for future expansion. Be sure to set to 0.) R 0

 23 to 16 DATAECC These bits store ECC for data RAM. R/W Undefined

 15 to 8 TAGECC These bits store ECC for tag RAM.

Write 0 to bit 15.

R/W Undefined

 7 — (Reserved for future expansion. Be sure to set to 0.) R 0

 6 — (Reserved for future expansion. Be sure to set to 0.) R Undefined

 5 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

 1, 0 — (Reserved for future expansion. Be sure to set to 0.) R Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 104 of 450
Dec 22, 2016

(3) ICDATL — Instruction cache data Lo access
This register is used by the CIST/CILD instruction in relation to the instruction cache. During execution of CIST,
values that are stored to the data RAM for the instruction cache are stored. During execution of CILD, values read
from the data RAM for the instruction cache are stored.

31 0

ICDATL DATAL
Value after reset

Undefined

Table 3-58 ICDATL Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 DATAL Bits 31 to 0 or bits 95 to 64 are stored among the instruction data of a
block in the specified cache line.

The stored bits are specified by the offset of index.

Offset of index = 0000 : Bits 31 to 0

Offset of index = 1000 : Bits 95 to 64

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 105 of 450
Dec 22, 2016

(4) ICDATH — Instruction cache data Hi access
This register is used by the CIST/CILD instruction in relation to the instruction cache. During execution of CIST,
values that are stored to the data RAM for the instruction cache are stored. During execution of CILD, values read
from the data RAM for the instruction cache are stored.

31 0

ICDATH DATAH
Value after reset

Undefined

Table 3-59 ICDATH Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 0 DATAH Bits 63 to 32 or bits 127 to 96 are stored among the instruction data of a
block in the specified cache line.

The stored bits are specified by the offset of index.

Offset of index = 0000 : Bits 63 to 32

Offset of index = 1000 : Bits 127 to 96

R/W Undefined

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 106 of 450
Dec 22, 2016

(5) ICCTRL — Instruction cache control
This register is used to control the instruction cache.

31 0

ICCTRL 0 0 0 0 0 0 00 000 0 0 0 0 0 D1
EIV 1 0 0 0

Value after reset
0001 0003H

0ICH
CLR0 0 0 0

ICH
EM
K

ICH
EIV0 ICH

EN

128 79

0

315161718

Table 3-60 ICCTRL Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 18 — (Reserved for future expansion. Be sure to set to 0.) R 0

 17 D1EIV This bit selects the operation in response to 1-bit errors in the data RAM.

 0: After the error is corrected, processing continues, but the entry that
had an error is retained.

 1: The error is not corrected, the entry is cleared, and fetching is
repeated.

This bit is read as the previous value until the setting is actually reflected
in the instruction cache.

R/W 0

 16 — (Reserved for future expansion. Be sure to set to 1.) R 1

 15 to 9 — (Reserved for future expansion. Be sure to set to 0.) R 0

 8 ICHCLR When this bit is set to 1, the entire instruction cache is cleared. After this
bit is set to 1, it is read as 1 until clearing is completed. The bit is cleared
to 0 once clearing is completed.

R/W 0

 7 to 3 — (Reserved for future expansion. Be sure to set to 0.) R 0

 2 ICHEIV When this bit is set to 1, the instruction cache is automatically set as
invalid (the ICHEN bit is cleared to 0) whenever a cache error occurs.

R/W 0

 1 ICHEMK When this bit is set to 1, it masks notification of cache error exceptions
for the CPU after a cache error has occurred.

R/W 1

 0 ICHEN This bit indicates valid/invalid status of instruction cache.

 0: Instruction cache is invalid

 1: Instruction cache is valid

This bit is read as the previous value until the setting is actually reflected
in the instruction cache.

R/W 1

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 107 of 450
Dec 22, 2016

(6) ICCFG — Instruction cache configuration
This register indicates the instruction cache configuration.

ICHWAY

31 0

ICCFG
Value after reset

Note

78

0 0 0 0 0 0 0 0

1415

ICHSIZE0 0 0 0 10 0 0

34

ICHLINE0

1617

Table 3-61 ICCFG Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 17 — (Reserved for future expansion. Be sure to set to 0.) R 0

 16 — (Reserved for future expansion. Be sure to set to 1.) R 1

 15 — (Reserved for future expansion. Be sure to set to 0.) R 0

 14 to 8 ICHSIZE These bits indicate the size (in Kbytes) of the instruction cache.

 000 0000: No instruction cache

 000 0001: 1 Kbyte

 000 0010: 2 Kbytes

 000 0100: 4 Kbytes

 000 1000: 8 Kbytes

 001 0000: 16 Kbytes

 010 0000: 32 Kbytes

 100 0000: 64 Kbytes

 Other than above: Setting prohibited

R Note

 7 to 4 ICHLINE These bits indicate the number of lines for each way in the instruction
cache.

 0000: No instruction cache

 0001: 32 lines

 0010: 64 lines

 0100: 128 lines

 1000: 256 lines

 Other than above: Setting prohibited

R Note

 3 to 0 ICHWAY These bits indicate the number of ways in the instruction cache.

 0000: No instruction cache

 0001: 1 way

 0010: 2 ways

 0100: 4 ways

 1000: 8 ways

 Other than above: Setting prohibited

R Note

 Note The value after reset depends on the hardware specifications. For details, see the hardware manual of
the product used.

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 108 of 450
Dec 22, 2016

(7) ICERR — Instruction cache error

This register is used to store cache error information for the instruction cache.

After the ICHERR bit is set to 1, any subsequent cache error information that is generated is not stored until this
setting is explicitly cleared to 0. In addition, the ICERR register is not updated while cache operation by the CILD
instruction is executed.

31 0

ICERR CIS
TW

ES
MH

ESP
BSE

EST
E1

EST
E2

ES
DE

ES
DC 0 0

ER
MM
H

ER
MPB
SE

ERM
TE1

ERM
TE2

ERM
DC

ERM
DE

Value after reset

Undefined
ICHEIX

ICH
ER
Q

0ICH
ED

ICH
ERR

121213

0 ICH
ET

3451516

ICH
EWY

30 29 28 27 26 25 24 23 22 21 20 19 18 17 14

0

Table 3-62 ICERR Register Contents

Bit Name Description R/W

Value after

Reset

 31 CISTW This bit is set to indicate that the destination way specified for a CISTI

instruction was in error. Although the entry information is overwritten so that

writing is completed, the V bit will be cleared the next time the cache line is

read (i.e. reading will be judged to have missed the cache). However,

setting of this bit is not accompanied by an exception for the CPU.

R/W Undefined

 30 — (Reserved for future expansion. Be sure to set to 0.) R 0

 29 ESMH Error status: Multi hit R/W Undefined

 28 ESPBSE Error status: WAY error R/W Undefined

 27 ESTE1 Error status: Tag RAM 1-bit error R/W Undefined

 26 ESTE2 Error status: Tag RAM 2-bit error R/W Undefined

 25 ESDC Error status: Data RAM 1-bit correction R/W Undefined

 24 ESDE Error status: Data RAM 2-bit error R/W Undefined

 23, 22 — (Reserved for future expansion. Be sure to set to 0.) R 0

 21 ERMMH Error exception notification mask : Multi bit R/W 0

 20 ERMPBSE Error exception notification mask : WAY error R/W 0

 19 ERMTE1 Error exception notification mask : Tag RAM 1-bit error R/W 0

 18 ERMTE2 Error exception notification mask : Tag RAM 2-bit error R/W 0

 17 ERMDC Error exception notification mask : Data RAM 1-bit correction R/W 0

 16 ERMDE Error exception notification mask : Data RAM 2-bit error R/W 0

 15 — (Reserved for future expansion. Be sure to set to 0.) R 0

 14, 13 ICHEWY These bits retain the way number where a cache error occurred. R/W Undefined

 12 to 5 ICHEIX These bits retain the cache index where a cache error occurred. R/W Undefined

 4 ICHERQ When this bit is set to 1, this bit indicates that cache error exception

notification is in progress. However, if cache error exception notification has

been masked, the CPU is not notified even when 1 has been set to this bit.

R/W 0

 3 ICHED This bit indicates that an error has occurred in data RAM. R/W 0

 2 ICHET This bit indicates that an error has occurred in tag RAM. R/W 0

 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

 0 ICHERR This bit is set to 1 when a cache error has occurred. R/W 0

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 109 of 450
Dec 22, 2016

3.7 Data Buffer Operation Registers

3.7.1 Data Buffer Control System Registers
Data buffer control system registers are read from or written to by using the LDSR and STSR instructions and specifying
the system register number, which is made up of a register number and selection ID. For data buffer functions, see the
hardware manual of the product used.

Table 3-63 List of Data Buffer Operation Registers

Register No. Name Function Access Permission

SR 24, 13 CDBCR Data buffer control register SV

RH850G3M software CHAPTER 3 REGISTER SET

R01US0123EJ0140 Rev.1.40 Page 110 of 450
Dec 22, 2016

(1) CDBCR — Data buffer control register
This is the register for controlling data buffer.

C
D

BC
LR

0 00 0 0

2 1 031

CDBCR

C
D

BEN

Initial value
00000001H0 0

Table 3-64 CDBCR Register Contents

Bit Name Description R/W

Value after
Reset

 31 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

 1 CDBCLR When this bit is set to 1, data buffer is all cleared. This bit is always read
as 0.

W 0

 0 CDBEN This bit specifies enables or disables of the data buffer.

0: Data buffer is disabled.

1: Data buffer is enabled.

R/W 1

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 111 of 450
Dec 22, 2016

CHAPTER 4 EXCEPTIONS AND INTERRUPTS

An exception is an unusual event that forces a branch operation from the current program to another program, due to

certain causes.

A program at the branch destination of each exception is called an “exception handler”.

Caution This CPU handles interrupts as types of exceptions.

4.1 Outline of Exceptions

This section describes the elements that assign properties to exceptions, and shows how exceptions work.

4.1.1 Exception Cause List

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 112 of 450
Dec 22, 2016

P
rio

rit
y

Le
ve

l
P

rio
rit

y
ID

N
P

U
M

ID
N

P
EP

EB
V

RE
SE

T
R

es
et

R
es

et
 in

pu
tN

ot
e3

Te
rm

in
at

in
g

－
－

N
on

e
1

－
x

x
0

1
0

0
0

FE
N

M
I

FE
N

M
I i

nt
er

ru
pt

In
te

rru
pt

 c
on

tro
lle

rN
ot

e3
Te

rm
in

at
in

g
FE

N
o

E0
H

3
1

x
x

0
1

1
0

s
SY

SE
R

R
S

ys
te

m
 e

rro
r

S
ys

te
m

 e
rro

r i
np

utN
ot

e3
Te

rm
in

at
in

g
FE

N
o

10
H

-1
FH

N
ot

e3
3

2
x

x
0

1
1

1
s

FE
IN

T
FE

IN
T

in
te

rru
pt

In
te

rru
pt

 c
on

tro
lle

rN
ot

e3
Te

rm
in

at
in

g
FE

Y
es

F0
H

3
3

x
0

0
1

1
0

s
FP

I
FP

U
 e

xc
ep

tio
n

(im
pr

ec
is

e)
E

xe
cu

tio
n

of
 a

n
FP

U
 in

st
ru

ct
io

n
Te

rm
in

at
in

g
EI

R
et

ur
n:

 Y
es

,
R

es
to

ra
tio

n:
 N

o
72

H
4

N
ot

e4
0

0
0

1
s

1
s

EI
IN

T0
-5

11
U

se
r i

nt
er

ru
pt

In
te

rru
pt

 c
on

tro
lle

rN
ot

e3
Te

rm
in

at
in

g
EI

Y
es

10
00

H
-1

1F
FH

N
ot

e6
4

N
ot

e4
0

0
0

1
s

0
s

M
IP

M
em

or
y

pr
ot

ec
tio

n
ex

ce
pt

io
n

(e
xe

cu
tio

n
pr

iv
ile

ge
)

M
em

or
y

pr
ot

ec
tio

n
vi

ol
at

io
n

R
es

um
ab

le
FE

Y
es

90
H

10
1

x
x

0
1

1
1

s

SY
SE

RR
S

ys
te

m
 e

rro
r

E
rr

or
 in

pu
t d

ur
in

g
in

st
ru

ct
io

n
fe

tc
h

N
ot

e3
R

es
um

ab
le

FE
N

o
10

H
-1

FH
N

ot
e3

10
3

x
x

0
1

1
1

s
RI

E
R

es
er

ve
d

in
st

ru
ct

io
n

ex
ce

pt
io

n
E

xe
cu

tio
n

of
 a

 re
se

rv
ed

 in
st

ru
ct

io
n

R
es

um
ab

le
FE

Y
es

60
H

10
4

x
x

0
1

1
1

s

U
C

PO
P

C
op

ro
ce

ss
or

 u
nu

sa
bl

e
ex

ce
pt

io
n

Ex
ec

ut
io

n
of

 a
 c

op
ro

ce
ss

or
 in

st
ru

ct
io

n/
ac

ce
ss

 p
er

m
is

si
on

 v
io

la
tio

n
R

es
um

ab
le

FE
Y

es
80

H
-8

2H
N

ot
e9

10
5

x
x

0
1

1
1

s

PI
E

P
riv

ile
ge

 in
st

ru
ct

io
n

ex
ce

pt
io

n
E

xe
cu

tio
n

of
 a

 p
riv

ile
ge

d
in

st
ru

ct
io

n/
ac

ce
ss

 p
er

m
is

si
on

 v
io

la
tio

n
R

es
um

ab
le

FE
Y

es
A0

H
10

6
x

x
0

1
1

1
s

M
AE

M
is

al
ig

nm
en

t e
xc

ep
tio

n
M

is
al

ig
ne

d
ac

ce
ss

 o
cc

ur
re

nc
e

R
es

um
ab

le
FE

Y
es

C
0H

11
N

ot
e7

x
x

0
1

1
1

s
M

D
P

M
em

or
y

pr
ot

ec
tio

n
ex

ce
pt

io
n

(a
cc

es
s

pr
iv

ile
ge

)
M

em
or

y
pr

ot
ec

tio
n

vi
ol

at
io

n
R

es
um

ab
le

FE
Y

es
91

H
11

N
ot

e7
x

x
0

1
1

1
s

FP
P

FP
U

 e
xc

ep
tio

n
(p

re
ci

se
)

E
xe

cu
tio

n
of

 a
n

FP
U

 in
st

ru
ct

io
n

R
es

um
ab

le
EI

Y
es

71
H

11
N

ot
e7

x
x

0
1

s
1

s
SY

SC
AL

L
S

ys
te

m
 c

al
l

E
xe

cu
tio

n
of

 th
e

S
Y

S
C

A
LL

 in
st

ru
ct

io
n

P
en

di
ng

EI
Y

es
80

00
H

-8
0F

FH
12

N
ot

e8
x

x
0

1
s

1
s

FE
TR

AP
FE

 le
ve

l t
ra

p
E

xe
cu

tio
n

of
 th

e
FE

TR
A

P
 in

st
ru

ct
io

n
P

en
di

ng
FE

Y
es

31
H

-3
FH

12
N

ot
e8

x
x

0
1

1
1

s
TR

AP
0

E
I l

ev
el

 tr
ap

 0
E

xe
cu

tio
n

of
 th

e
TR

A
P

 in
st

ru
ct

io
n

P
en

di
ng

EI
Y

es
40

H
-4

FH
12

N
ot

e8
x

x
0

1
s

1
s

TR
AP

1
E

I l
ev

el
 tr

ap
 1

E
xe

cu
tio

n
of

 th
e

TR
A

P
 in

st
ru

ct
io

n
P

en
di

ng
EI

Y
es

50
H

-5
FH

12
N

ot
e8

x
x

0
1

s
1

s

E
xc

ep
tio

n
C

au
se

C
od

e
N

ot
e5

P
rio

rit
y

O
rd

er
N

ot
e2

A
ck

no
w

le
dg

m
en

t
C

on
di

tio
n

(P
S

W
）

U
pd

at
e(

PS
W

)

E
xc

ep
tio

n
N

am
e

S
ou

rc
e

Ty
pe

N
ot

e1
S

av
ed

R
es

ou
rc

e
R

et
ur

n/
R

es
to

ra
tio

n

R
em

ar
k

s:
 R

et
ai

ne
d,

 x
: N

ot
 a

n
ac

kn
ow

le
dg

m
en

t c
on

di
tio

n
N

ot
es

 1
. F

or
 d

et
ai

ls
, s

ee
4.

1.
3

Ty
pe

s
of

 E
xc

ep
tio

ns
.

 2

. T
he

 a
ck

no
w

le
dg

m
en

t p
rio

rit
y

fo
r e

xc
ep

tio
ns

 is
 c

he
ck

ed
 b

y
th

e
pr

io
rit

y
le

ve
l,

an
d

th
en

 p
rio

rit
y.

 A
 s

m
al

le
r v

al
ue

 h
as

 a
 h

ig
he

r p
rio

rit
y.

Fo

r d
et

ai
ls

, s
ee

4.
1.

4
Ex

ce
pt

io
n

A
ck

no
w

le
dg

m
en

t C
on

di
tio

ns
 a

nd
 P

rio
rit

y
O

rd
er

.

 3
. F

or
 d

et
ai

ls
, s

ee
 th

e
ha

rd
w

ar
e

m
an

ua
l o

f t
he

 p
ro

du
ct

 u
se

d.

 4
. T

he
 p

rio
rit

ie
s

of
 E

IIN
T0

 to
 E

IIN
T5

11
 a

nd
 F

P
I v

ar
y

de
pe

nd
in

g
on

 th
e

re
gi

st
er

 s
et

tin
g.

Fo

r d
et

ai
ls

, s
ee

4.
1.

5
In

te
rr

up
t E

xc
ep

tio
n

Pr
io

rit
y

an
d

Pr
io

rit
y

M
as

ki
ng

.

 5
. T

he
 lo

w
er

 1
6

bi
ts

 o
f t

he
 e

xc
ep

tio
n

ca
us

e
co

de
 a

re
 s

ho
w

n.
 T

he
 h

ig
he

r 1
6

bi
ts

 o
f t

he
 e

xc
ep

tio
n

ca
us

e
co

de
 c

on
ta

in
 th

e
de

ta
ile

d
co

de
 d

ef
in

ed
 fo

r e
ac

h
ex

ce
pt

io
n.

Th

es
e

bi
ts

 a
re

 0
00

0H
 u

nl
es

s
ot

he
rw

is
e

sp
ec

ifi
ed

 in
 th

e
de

sc
rip

tio
n

of
 th

e
fu

nc
tio

n.

 6
. 1

00
0H

 to
 1

1F
FH

 (c
ha

nn
el

s
0

to
 5

11
) a

re
 s

el
ec

te
d

ac
co

rd
in

g
to

 th
e

ch
an

ne
l.

 7

. T
hi

s
de

pe
nd

s
on

 th
e

op
er

at
io

n
or

de
r o

f i
ns

tru
ct

io
ns

.

 8
. T

he
se

 e
xc

ep
tio

ns
 o

cc
ur

 e
xc

lu
si

ve
ly

 b
ec

au
se

 th
ey

 o
cc

ur
 d

ue
 to

 in
st

ru
ct

io
n

ex
ec

ut
io

n.
 T

he
re

 is
 n

o
pr

io
rit

y
w

ith
in

 th
e

sa
m

e
pr

io
rit

y
le

ve
l.

 9

. 8
0H

 to
 8

2H
 c

or
re

sp
on

d
to

 th
e

co
pr

oc
es

so
r u

se
 p

er
m

is
si

on
 (C

U
0

to
 C

U
2)

, r
es

pe
ct

iv
el

y.

Ta
bl

e
4-

1　
E

xc
ep

tio
n

C
au

se
 L

is
t

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 113 of 450
Dec 22, 2016

4.1.2 Overview of Exception Causes
The following is an overview of the exception causes handled in this CPU.

(1) RESET

These are signals generated when inputting a reset. For details, see CHAPTER 8 RESET.

(2) FENMI, FEINT, and EIINT

These are interrupt signals that are input from the interrupt controller to activate a certain program. For details

about the interrupt functions, see 3.3 Interrupt Function Registers and the specifications of the interrupt

controller incorporated in your product.

In addition, be sure to place a SYNCP instruction at the start of the exception handlers for these exceptions (in

case of EIINT, this only applies if the direct vector method is in use). For details, see 4.2.2 Points for Caution on

the Acceptance of Exceptions.

(3) SYSERR

This is a system error exception. This exception occurs when an error defined by the hardware specifications is

detected. An error that occurs at an instruction fetch access is reported as a resumable-type SYSERR exception.

Other errors are reported as a terminating-type SYSERR exception.

In addition, be sure to place a SYNCP instruction at the start of the exception handler for this exception. For details,

see 4.2.2 Points for Caution on the Acceptance of Exceptions.

Caution The cause of an SYSERR exception is determined according to the hardware functions. For details, see

the hardware manual of the product used.

(4) FPI and FPP

These are exceptions that occur when a floating-point instruction is being executed. For details, see 6.1 Floating-

Point Operation.

In addition, be sure to place the SYNCP instruction at the start of the exception handlers for these exceptions. For

details, see 4.2.2 Points for Caution on the Acceptance of Exceptions.

(5) MIP and MDP

These are exceptions that occur when the MPU detects a violation. Detecting an exception is performed when the

address at which the instruction will access the memory is calculated. For details, see 5.1 Memory Protection

Unit (MPU).

(6) RIE

This is a reserved instruction exception. This exception occurs when an attempt is made to execute the opcode of

an instruction other than an instruction whose operation is defined. The operation is the same as a RIE instruction

whose operation is defined. For details, see 7.1.3 Reserved Instructions and the RIE instruction in CHAPTER 7

INSTRUCTION.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 114 of 450
Dec 22, 2016

(7) PIE

This is a privilege instruction exception. This exception occurs when an attempt is made to execute an instruction

that does not have the required privilege. For details, see 2.1.3 CPU Operating Modes and Privileges, 2.2

Instruction Execution, and 2.5.3 (1) LDSR and STSR.

(8) UCPOP

This is an exception that occurs when an attempt is made to execute a coprocessor instruction when the

coprocessor in question is not usable. For details, see 2.4 Coprocessors.

(9) MAE

This is an exception that occurs when the result of address calculation is a misaligned address. For details, see

2.6.3 Data Alignment.

(10) TRAP, FETRAP, and SYSCALL

These are exceptions that occur according to the result of instruction execution. For details, see CHAPTER 7

INSTRUCTION.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 115 of 450
Dec 22, 2016

4.1.3 Types of Exceptions
This CPU divides exceptions into the following three types according how they are executed.

• Terminating exceptions

• Resumable exceptions

• Pending exceptions

(1) Terminating exceptions

This is an exception acknowledged by interrupting an instruction before its operation is executed. These

exceptions include interrupts and imprecise exceptions.

These interrupts do not occur as a result of executing the current instruction and are not related to the instruction.

When an interrupt occurs, the PSW.EP bit is cleared to 0, unlike other exceptions. Consequently, termination of

the exception handler routine is reported to the external interrupt controller when the return instruction is executed.

Be sure to execute an instruction that returns execution from an interrupt while the PSW.EP bit is cleared to 0.

Caution The PSW.EP bit is cleared to 0 only when an interrupt (INT0 to INT511, FEINT, or FENMI) is

acknowledged. It is set to 1 when any other exception occurs.

If an instruction to return execution from the exception handler routine that has been started by

generation of an interrupt is executed while the PSW.EP bit is set to 1, the resources on the external
interrupt controller might not be released, causing malfunctioning.

If the result of executing the instruction before the interrupted instruction was invalid, there is a delay, and then an

imprecise exception occurs. For an imprecise exception, because instructions following the instruction that caused

the exception might have already finished executing, resulting in the CPU state at the time of the exception cause

not being saved, it is not possible to restore the original processing for re-execution after the processing of this

kind of exception.

The return PC of a terminating exception is the PC of the terminated instruction (current PC).

(2) Resumable exceptions

This is an exception acknowledged during the execution of instruction operation before the execution is finished.

Because this kind of an exception is correctly acknowledged without executing the next instruction, it is also called

a precise exception. General-purpose registers or system registers are not updated because of the occurrence of

this exception. The return PC from the exception also points to the instruction where the exception occurred, so

execution can be restarted from the state of before the exception occurred.

The return PC of a resumable exception is the PC of the instruction which caused the exception (current PC).

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 116 of 450
Dec 22, 2016

(3) Pending exceptions

This is an exception acknowledged after the execution of an instruction finishes as a result of executing the

instruction operation. Pending exceptions include software exceptions. Because pending exceptions occur as a

result of normal instruction execution, the processing resumes with the instruction following the instruction that

caused the pending exceptions when processing control is returned. The original processing can be normally

continued after the exception handling.

The return PC of a pending exception is the PC of the next instruction (next PC).

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 117 of 450
Dec 22, 2016

4.1.4 Exception Acknowledgment Conditions and Priority Order
The CPU acknowledges only one exception at specific timing based on the exception acknowledgment conditions and

priority order. The exception to be acknowledged is determined based on the exception acknowledgment conditions and

priority order, as shown in Figure 4-1 below.

Figure 4-1 Exception Acknowledgment Conditions and Priority Order

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Priority 1

Priority x

Priority 1

Priority y

Priority level 1

•
•

•
•

•
•

• Priority level n

Exception
acknowledged

Selection by
priorityNote

Selection by
priority levelNote

(Priority 1)

Selection by
priorityNote

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Priority 1

Priority x

Priority 1

Priority y

Priority level 1

•
•

•
•

•
•

• Priority level n

Exception
acknowledged

Selection by
priorityNote

Selection by
priority levelNote

(Priority 1)

Selection by
priorityNote

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

Note See Table 4-1.

In Table 4-1, an exception with "0" in the acknowledgment condition column can be acknowledged when the

corresponding bit is "0." For this kind of exception, acknowledgment is held pending when the corresponding bit is "1."

When it changes to "0" and the acknowledgment conditions are met, acknowledgment of the exception becomes possible.

If no value is specified for a bit, it is not an acknowledgment condition. If multiple bits are specified as conditions, all the

conditions must be met simultaneously.

If more than two exceptions satisfy the acknowledgment conditions simultaneously, one exception is selected according to

the priority order. The priority order is determined in multiple stages; priority level, and then priority. A smaller number has

a higher priority.

When a terminating exception is not acknowledged, it is held pending. If it occurs at the time of a reset, it is not held

pending. For details, see 4.2.1 Special Operations.

For details about acknowledgment conditions, priority level, and priority, see Table 4-1 Exception Cause List.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 118 of 450
Dec 22, 2016

4.1.5 Interrupt Exception Priority and Priority Masking
An interrupt (EIINTn) and imprecise floating-point exception (FPI) can be masked for each exception priority or interrupt

priority by setting registers. This function allows the software implementation of an interrupt ceiling with a more flexible

software structure and no maintenance.

Caution In V850E2 products, the ISPR, PMR, and ICSR registers were defined as functions of the interrupt

controller. In this CPU, they are defined as functions of the CPU, but their functions are basically
equivalent. Note that there are some differences in functionality.

Figure 4-2 shows an overview of the functions of interrupt exception priority and priority masking.

Figure 4-2 Interrupt Exception Priority and Priority Masking

Request flag
Interrupt request

Mask

Interrupt request
to the CPU core

Priority
judgment

FPEC.FPIVD
FPI exception causeNote 2

Mask by
ISPR

Mask by
PMR

Priority
judgment of
EIINTn and

FPI exception

FPIPR
(FPI exception priority specification)

To exception
priority order

judgment
if not masked

Setting for each channel

Request flag
Interrupt request

Mask

Setting for each channel

Interrupt
controllerNote 1

mask

mask

ICSR.
PMEI

ICSR.
PMFP

If masked by PMRNote 3

Notes 1. For details about the interrupt controller, see the hardware manual of the product used.
 2. An FPI exception cause might occur if it is allowed by the FPU and if imprecise exceptions are specified. For

details, see 6.1.5 Floating-Point Calculation Exception and 6.1.7 Precise Exceptions and Imprecise
Exceptions.

 3. The PMEI and PMFP bits in the ICSR register show EIINTn or FPI masked by PMR. If EIINTn or FPI is masked
by the ISPR register or the masking specification of another function before masked by the PMR register, the
PMEI and PMFP bits are not affected.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 119 of 450
Dec 22, 2016

(1) Interrupt priority

For an interrupt (EIINTn) and imprecise floating-point exception (FPI), the exception priority can be changed by

setting registers. EIINTn and FPI are defined with the same priority level, and you can control the priority

relationship between EIINTn and FPI by changing their exception priorities.

The priority relationship between EIINTn and FPI is shown in Figure 4-3. If they have the same priority, FPI has

precedence. The priority of FPI can be set by using the FPIPR register.

Figure 4-3 Priority Relationship between EIINTn and FPI

FPI Priority 0
EIINTn Priority 0

FPI Priority 1
EIINTn Priority 1

FPI Priority 2
EIINTn Priority 2

EIINTn Priority 13
FPI Priority 14

EIINTn Priority 14
FPI Priority 15

EIINTn Priority 15
FPI Priority 16

High priority

Low priority

• • • • • • •

• • • • • • •

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 120 of 450
Dec 22, 2016

(2) Interrupt priority mask

EIINTn and FPI might be masked at different priorities by the ISPR register and PMR register. These registers

should be used as follows.

For the ISPR register, the bit corresponding to the priority is set (1) when the hardware acknowledges an interrupt,

and interrupts with the same or lower priority are masked. When the EIRET instruction corresponding to the

interrupt is executed, the corresponding bit of the ISPR register is cleared (0) to clear the mask.

This automatic interrupt ceiling makes multiplexed interrupt servicing easy without using software control.

The PMR register allows you to mask specific interrupt priorities with software. Use it to raise the level of the

interrupt ceiling temporarily in a program. The mask setting specified by the ISPR register and the mask setting of

PMR might overlap, and an interrupt is masked if it is masked with one or the other of them. Normally, use the

PMR register to raise the ceiling value from the ceiling value of the ISPR register.

The function of the INTCFG register allows you to disable auto update of the ISPR register upon acknowledgment

of and return from an interrupt. To perform interrupt ceiling control by using software without using the function of

the ISPR register, set (1) the ISPC bit of the INTCFG register, clear the ISPR register, and then control the ceiling

value with software by using the PMR register.

Also, when you are using the PMR register, you can check if any interrupt is masked with the PMR register by

using the ICSR register.

(3) Differences in operation between EIINTn and FPI

EIINTn and FPI behave in the same way up to acknowledgment of an exception. However, their operations partly

differ after acknowledgment.

For acknowledgment of an FPI exception, the ISPR register is not updated. As a result, multiple interrupts with a

lower priority than the FPI exception might occur when the PSW.ID bit is cleared (0) by the EI instruction during

FPI exception handling, releasing the interrupt disabled state.

Generally, an FPI exception is used by setting a higher priority than programs using the FPU. As a result, when an

interrupt with a lower priority is acknowledged during an FPI exception, another FPI exception might occur before

the FPI exception handling is complete. Therefore, interrupt priority masking must be specified properly by using

the PMR register before releasing the interrupt disabled state during an FPI exception.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 121 of 450
Dec 22, 2016

4.1.6 Return and Restoration
When exception handling has been performed, it might affect the original program that was interrupted by the

acknowledged exception. This effect is indicated from two perspectives: “Return” and “Restoration”.

• Return: Indicates whether or not the original program can be re-executed from where it was interrupted.

• Restoration: Indicates whether or not the processor statuses (status of processor resources such as general-purpose

registers and system registers) can be restored as they were when the original program was interrupted.

An exception that cannot be returned or restored from ("No" in Table 4-1) might cause the return PC to be lost, making it

impossible to return from the exception to the original processing by using a return instruction. An exception whose trigger

cannot be selected is an unreturnable or unrestorable exception.

For an unrestorable exception, it is possible to return to the original program flow. However, because the state before the

occurrence of the exception cannot be restored at that point, care must be taken in continuing subsequent program

operation.

4.1.7 Context Saving

To save the current program sequence when an exception occurs, appropriately save the following resources according to

the function definitions.

• Program counter (PC)

• Program status word (PSW)

• Exception cause code (EIIC, FEIC)

• Work system register (EIWR, FEWR)

The resource to use as the saving destination is determined according to the exception type. Saved resource

determination is described below.

(1) Context saving

Exceptions with certain acknowledgment conditions might not be acknowledged at the start of exception handling,

based on the pending bits (PSW.ID and NP bits) that are automatically set when another exception is

acknowledged.

To enable processing of multiple exceptions of the same level that can be acknowledged again, certain information

about the corresponding return registers and exception causes must be saved, such as to a stack. This information

that must be saved is called the “context”.

In principle, before saving the context, caution is needed to avoid the occurrence of exceptions at the same level.

The work system registers that can be used for work to save the context, and the system registers that must be at

least saved to enable multiple exception handling are called basic context registers. These basic context registers

are provided for each level.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 122 of 450
Dec 22, 2016

Table 4-2 Basic Context Registers

Exception Level Basic Context Registers

EI level EIPC, EIPSW, EIIC, EIWR

FE level FEPC, FEPSW, FEIC, FEWR

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 123 of 450
Dec 22, 2016

4.2 Operation When Acknowledging an Exception

Check whether each exception that is reported during instruction execution is acknowledged according to the priority. The

procedure for exception-specific acknowledgment operation is shown below.

<1> Check whether the acknowledgment conditions are satisfied and whether exceptions are acknowledged according

to their priority.

<2> Calculate the exception handler address according to the current PSW valueNote 1.

<3> For FE level exceptions, the following processing is performed.

• Saving the PC to FEPC

• Saving the PSW to FEPSW

• Storing the exception cause code in FEIC

• Updating the PSWNote 2

• Store the exception handler address calculated in <2> in the PC, and then pass control to the exception handler.

<4> For EI level exceptions, the following processing is performed.

• Saving the PC to EIPC

• Saving the PSW to EIPSW

• Storing the exception cause code in EIIC

• Updating the PSWNote 2

• Store the exception handler address calculated in <2> in the PC, and then pass control to the exception handler.

Notes 1. For details, see 4.5 Exception Handler Address.
 2. For the values to be updated, see Table 4-1 Exception Cause List.

The following figure shows steps <1> to <4>.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 124 of 450
Dec 22, 2016

Figure 4-4 Operation When Acknowledging an Exception

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 125 of 450
Dec 22, 2016

4.2.1 Special Operations

(1) EP bit of PSW register

If an interrupt is acknowledged, the PSW.EP bit is cleared to 0. If an exception other than an interrupt is

acknowledged, the PSW.EP bit is set to 1.

Depending on the EP bit setting, the operation changes when the EIRET or FERET instruction is executed. If the

EP bit is cleared to 0, the bit with the highest priority (0 is the highest) among the bits set to 1 in ISPR.ISP15 to

ISPR.ISP0 is cleared to 0. Also, the end of the exception handling routine is reported to the external interrupt

controller. This function is necessary for correctly controlling resources, such as a request flag, on the interrupt

controller when an interrupt is acknowledged or when execution returns from the interrupt.

To return from an interrupt, be sure to execute the return instruction with the EP bit cleared to 0.

(2) Coprocessor unusable exception

For coprocessor unusable exceptions, the exception occurrence opcode corresponding to the status of the CU bit

of the PSW register differs according to the specifications of each product.

For coprocessor instructions and defined opcodes, if an attempt is made to execute a coprocessor instruction that

is not included in the product or for which the operation state prevents use, or an LDSR or STSR instruction

attempts to access a coprocessor system register, a coprocessor unusable exception (UCPOP) immediately

occurs.

For details, see 2.4.3 Coprocessor Unusable Exceptions.

(3) Reserved instruction exception

If an opcode that is reserved for future function extension and for which no instruction is defined is executed, a

reserved instruction exception (RIE) occurs.

However, which of the following two types of operations each opcode is to perform might be defined by the

hardware specifications.

• Reserved instruction exception occurs.

• Operates as a defined instruction.

An opcode for which a reserved instruction exception occurs is always defined as an RIE instruction.

(4) Reset

Reset is performed in the same way as exception handling, but it is not regarded as EI level exception or FE level

exception. The reset operation is the same that of an exception without acknowledgment conditions, but the value

of each register is changed to the value after reset. In addition, execution does not return from the reset status.

All exceptions that have occurred at the same time as CPU initialization are canceled and not acknowledged even

after CPU initialization.

For details, see CHAPTER 8 RESET.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 126 of 450
Dec 22, 2016

4.2.2 Points for Caution on the Acceptance of Exceptions

Be sure to place a SNYCP instruction at the start of handers for exceptions of set E listed below. If this is not done,

instructions of set B listed below, which are to be executed after an exception of set E has been acknowledged, may not

be executed normally.

In cases where it is difficult to place the SYNCP instruction at the start of the handler, the alternative methods listed below

are available.

• Place the SYNCP instruction between instructions of set B and the start of the handler for the exception of set E.

• Do not include instructions of set A listed below in programs that may be interrupted by exceptions of set E.

- Instructions of set A: CALLT, SYSCALL, and SWITCH instructions, and handling in response to EIINT interrupts

with the table reference method (not including cases where the table for EIINT interrupts is

located at the code flash memory)

- Instructions of set B: PUSHSP, PREPARE, POPSP, DISPOSE, CALLT, SYSCALL, and SWITCH instructions, and

handling in response to EIINT interrupts with the table reference method

- Exceptions of set E: FENMI, FEINT, EIINT (with the direct vector method), SYSERR, and FPI

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 127 of 450
Dec 22, 2016

4.3 Return from Exception Handling

To return from exception handling, execute the return instruction (EIRET or FERET) corresponding to the relevant

exception level.

When a context has been saved, such as to a stack, the context must be restored before executing the return instruction.

When execution is returned from an irrecoverable exception, the status before the exception occurs in the original program

cannot be restored. Consequently, the execution result might differ from that when the exception does not occur.

The EIRET instruction is used to return from EI level exception handling and the FERET instruction is used to return from

FE level exception handling.

When the EIRET or FERET instruction is executed, the CPU performs the following processing and then passes control to

the return PC address.

<1> When the EIRET instruction is executed, return PC and PSW are loaded from the EIPC and EIPSW registers.

When the FERET instruction is executed, return PC and PSW are loaded from the FEPC and FEPSW

registers.

<2> Control is passed to the address indicated by the return PC that were loaded.

<3> When the EIRET instruction is executed while EP = 0 and INTCFG.ISPC = 0, the CPU updates the ISPR

register.

When the FERET instruction is executed, the CPU does not update the ISPR register.

The flow for returning from exception handling using the EIRET or FERET instruction is shown below.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 128 of 450
Dec 22, 2016

Figure 4-5 Return Instruction-Based Exception Return Flow

Execute the return destination
instruction.

Yes

No

xxRET instructionNote1

PC ←xxPCNote2

PSW ←xxPSWNote3

Update the ISPR registerNote4

(PSW.EP = 0) &&
(INTCFG.ISPC = 0)?

Notes 1. It is the EIRET instruction when returning from an EI level exception, or the FERET instruction when

returning from an FE level exception.

 2. It is EIPC when returning from an EI level exception, or FEPC when returning from an FE level exception.

 3. It is EIPSW when returning from an EI level exception, or FEPSW when returning from an FE level

exception.

 4. Only for the EIRET instruction.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 129 of 450
Dec 22, 2016

4.4 Exception Management

This CPU has the following functions to manage exceptions in order to prevent mutual interference between programs

during multi-programming.

• Exception synchronization instruction (SYNCE)

• Function to check pending exception

• Function to cancel pending exception

This CPU defines imprecise exceptions that have a delay time until the exception handling is started after the cause of the

exception has been generated.

This CPU has an exception management function to wait for all exceptions caused by a program before the program is

changed or terminated, so that the exceptions are sequentially processed. This prevents the influence of illegal processing

of a certain program from reaching the other programs. It also prevents termination processing of a program from being

completed without the exceptions being processed.

4.4.1 Exception Synchronization Instruction

Imprecise exceptions can be synchronized using the SYNCE instruction. In this CPU, this is equivalent to an imprecise

floating-point operation exception (FPI). To acknowledge imprecise exceptions at any time, perform the following

procedure.

(1) Mask the acknowledgment conditions of the imprecise exception to be acknowledged (by clearing PSW.ID and

NP).

(2) Execute the exception synchronization instruction (SYNCE). At this point, all the imprecise exceptions that are

generated by the instructions preceding the SYNCE instruction have always been reported to the CPU. However,

acknowledging an exception might be masked by the acknowledgment condition set in (1) and the exception might

have been held pending.

(3) As a result of (2), an exception that is not masked is acknowledged. If there are two or more sources of exceptions,

the exceptions are sequentially acknowledged in accordance with their priority.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 130 of 450
Dec 22, 2016

4.4.2 Checking and Canceling Pending Exception
To check if there is an exception that is held pending, follow this procedure.

(1) Set a mask so that the acknowledgment conditions of the imprecise exception to be checked are not satisfied (by

setting PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise exceptions that are

generated by the instructions preceding the SYNCE instruction have always been reported to the CPU. The

exception to be checked is not acknowledged but held pending because of the mask set in (1). However, the other

exceptions might be acknowledged.

(3) Read the exception report bit of the exception to be checked. If the bit is 1, the exception has been held pending.

(4) Clear the mask set in (1) as necessary.

To not acknowledge but cancel a pending exception without executing exception handling, follow this procedure.

(1) Set a mask so that the acknowledgment conditions of the imprecise exception to be canceled are not satisfied (by

setting PSW.ID and NP).

(2) Execute the exception synchronization instruction (SYNCE). At this time, all the imprecise exceptions that are

generated by the instructions preceding the SYNCE instruction have always been reported to the CPU. The

exception to be canceled is not acknowledged but held pending because of the mask set in (1). However, the other

exceptions might be acknowledged.

(3) Clear the exception report bit of the exception to be canceled.

(4) Perform waiting processing until cancellation is completed. The instruction sequence of the waiting processing is

defined as the hardware specifications. See the hardware manual of the product used.

(5) When cancellation has been completed, clear the mask set in (1) as necessary.

The function to cancel each exception is provided by the following registers.

Table 4-3 Checking and Canceling Pending Exception

Exception Cause Canceling Bit Remark

FPI exception FPU instruction FPIVD bit in the FPEC register If this bit is cleared, disabling the
succeeding FPU instruction is canceled.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 131 of 450
Dec 22, 2016

4.5 Exception Handler Address

For this CPU, the exception handler address used for execution during reset input, exception acknowledgment, or interrupt

acknowledgment can be changed according to the settings.

4.5.1 Resets, Exceptions, and Interrupts

The exception handler address for resets and exceptions is determined by using the direct vector method, in which the

reference point of the exception handler address can be changed by using the PSW.EBV bit, RBASE register, and EBASE

register. For interrupts, the direct vector method and table reference method can be selected for each channel. If the table

reference method is selected, execution can branch to the address indicated by the exception handler table allocated in

the memory.

Caution 1. The exception handler address of EIINTn selected using the direct vector method differs from that of

V850E2 products. In V850E2 products, a different exception handler address is individually assigned to
each interrupt channel (EIINTn). In this CPU, one exception handler address is assigned to each

interrupt priority. Consequently, interrupts that have the same priority level branch to the same
exception handler.

(1) Direct vector method

The CPU uses the result of adding the exception cause offset shown in Table 4-4 Selection of Base

Register/Offset Address to the base address indicated by the RBASE or EBASE register as the exception

handler address.

Whether to use the RBASE or EBASE register as the base address is selected according to the PSW.EBV bitNote 1.

If the PSW.EBV bit is set to 1, the EBASE register value is used as the base address. If the bit is cleared to 0, the

RBASE register value is used as the base address.

However, reset input and some exceptionsNote 2 always refer to the RBASE register.

In addition, user interrupts refer to the RINT bit of the corresponding base register, and reduce the offset address

according to the bit status. If the RBASE.RINT bit or EBASE.RINT bit is set to 1, all user interrupts are handled

using an offset of 100H. If the bit is cleared to 0, the offset address is determined according to Table 4-4

Selection of Base Register/Offset Address.

Notes 1. Exception acknowledgment itself sometimes updates the status of the PSW.EBV bit. In this case, the base

register is selected based on the new bit value. For details, see 4.5 Exception Handler Address.
 2. The exceptions that always reference RBASE are determined according to the hardware specifications.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 132 of 450
Dec 22, 2016

Figure 4-6 Direct Vector Method

RBASE = EBASE RESET
SYSERR

INTPR15

• • •

INTPR14

(Empty)

RBASE
RESET

SYSERR

INTPR15

•••

INTPR14

EBASE

Address space Address space

INTPR15

• • •

INTPR14

(Empty)

(1) Example of use when RBASE = EBASE (2) Example of use when RBASE ≠ EBASE

(Empty)

FETRAP
FETRAP

FETRAP

SYSERR
(Empty)

Remark INTPRx is the same as EIINTn (priority x) in Table 4-4 Selection of Base Register/Offset Address.

The table below shows how base register selection and offset address reduction function for each exception to

determine the exception handler address. The PSW bit value determines the exception handler, based on the

value after being updated due to the acknowledgment of an exception.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 133 of 450
Dec 22, 2016

Table 4-4 Selection of Base Register/Offset Address

PSW.EBV = 0 PSW.EBV = 1 RINT = 0 RINT = 1

Base Register Offset Address

RESET RBASE NoneNote 1 000H 000H

SYSERRNote 3 EBASE 010H 010H

FETRAP 030H 030H

TRAP0 040H 040H

TRAP1 050H 050H

RIE 060H 060H

FPP/FPINote 3 070H 070H

UCPOP 080H 080H

MIP/MDP 090H 090H

PIE 0A0H 0A0H

DebugNote 2 0B0H 0B0H

MAE 0C0H 0C0H

(R.F.U.) 0D0H 0D0H

FENMINote 3 0E0H 0E0H

FEINTNote 3 0F0H 0F0H

EIINTn (priority 0)Note 3 100H 100H

EIINTn (priority 1)Note 3 110H

EIINTn (priority 2)Note 3 120H

EIINTn (priority 3)Note 3 130H

EIINTn (priority 4)Note 3 140H

EIINTn (priority 5)Note 3 150H

EIINTn (priority 6)Note 3 160H

EIINTn (priority 7)Note 3 170H

EIINTn (priority 8)Note 3 180H

EIINTn (priority 9)Note 3 190H

EIINTn (priority 10)Note 3 1A0H

EIINTn (priority 11)Note 3 1B0H

EIINTn (priority 12)Note 3 1C0H

EIINTn (priority 13)Note 3 1D0H

EIINTn (priority 14)Note 3 1E0H

EIINTn (priority 15)Note 3 1F0H

Notes 1. An exception generated to update EBV to 0.
 2. The exception for debug function.
 3. Be sure to place a SYNCP instruction at the start of handlers for these exceptions. For details, see 4.2.2

Points for Caution on the Acceptance of Exceptions.

Base register selection is used to execute the exception handling for resets and some hardware errors by using

programs in a relatively reliable area such as ROM instead of areas that are easily affected by software errors

such as RAM and cache areas. The user interrupt offset address reduction function is used to reduce the memory

size required by the exception handler for specific system-internal operating modes. The main purpose of this is to

minimize the amount of memory consumed in operating modes that use only the minimum functionality, which are

used, for example, during system maintenance and diagnosis.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 134 of 450
Dec 22, 2016

(2) Table reference method

In the direct vector method, there is one user-interrupt exception handler for each interrupt priority level, and

interrupt channels that indicate multiple interrupts with the same priority branch to the same interrupt handler, but

some users might want to use code areas that differ from the start time for each interrupt handler.

When using the table reference method, if the table reference method is specified as the interrupt channel vector

selection method for the interrupt controller, the method for determining the exception handler address when an

interrupt request corresponding to that interrupt channel is acknowledged differs as follows.

<1> In any of the following cases, the exception handler address is determined by using the direct vector

method.

 • When PSW.EBV = 0 and RBASE.RINT = 1

 • When PSW.EBV = 1 and EBASE.RINT = 1

 • When the interrupt channel setting is not the table reference method

<2> In cases other than <1>, calculate the table reference position.

 Exception handler address read position = INTBP register + channel number * 4 bytes

<3> Read word data starting at the interrupt handler address read position calculated in <2>.

<4> Use the word data read in <3> as the exception handler address.

Caution For details about the interrupt channel settings, see the hardware manual of the product used.

A table of exception handler address read positions corresponding to interrupt channels and an overview of the

placement in memory are shown below.

Table 4-5 Exception Handler Address Expansion

Type Exception Handler Address Read Position

EIINT interrupt channel 0 INTBP + 0 * 4

EIINT interrupt channel 1 INTBP + 1 * 4

... ...

EIINT interrupt channel 510 INTBP + 510 * 4

EIINT interrupt channel 511 INTBP + 511 * 4

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 135 of 450
Dec 22, 2016

Figure 4-7 Overview of Using the Table Reference Method

RBASE = EBASE

INTPR15

...
INTPR14

Address space

INTBP

...

INT3 INT2 INT1 INT0
INT7 INT6 INT5 INT4

Handler INT1

Handler INT0

INT511 INT510 INT509 INT508
INT507 INT506 INT505 INT504

Reference the
absolute address in
the table, and then
branch to the handler.

If not using the table
is specified (for each
channel), branch to
the fixed address
handler according to
the interrupt priority
level.

RESET
SYSERR
(Empty)
FETRAP

For details about the exception handler address selection method settings for each interrupt channel, see the

hardware manual of the product used.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 136 of 450
Dec 22, 2016

4.5.2 System Calls
For system call exceptions, the referenced table entry is selected according to the value of the vector specified

based on the opcode and the value of the SCCFG.SIZE bit, and the exception handler address is calculated

according to the contents of the table entry and the SCBP register value.

As an example, if table size n is specified by SCCFG.SIZE, the table entry is selected as shown below. Note that if

the vector specified by the SYSCALL instruction (vector 8) is greater than table size n, the table entry referenced

by vector n + 1 to 255 is table entry 0.

Table 4-6 System Calls

Vector Exception Cause Code Referenced Table Entry

0 0000 8000H Table entry 0

1 0000 8001H Table entry 1

2 0000 8002H Table entry 2

...

n − 1 0000 8000H + (n − 1)H Table entry n − 1

n 0000 8000H + nH Table entry n

n + 1 0000 8000H + (n + 1)H Table entry 0

...

254 0000 80FEH Table entry 0

255 0000 80FFH Table entry 0

Caution Because table entry 0 is selected even if a vector that exceeds n, which is specified for SCCFG.SIZE,

is specified, allocate the error processing routine.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 137 of 450
Dec 22, 2016

4.5.3 Models for Application
The following describes the relations among the RBASE, EBASE, and PSW.EBV bit, and the models intended for

application. Principally, in cases where a reset occurs and there is no main code in the address space, this main

code is first expanded into the address space (which is often in DRAM) by bootstrapping to enable execution, or it

is used to when inserting an instruction cache into an exception handling routine.

Immediately after a reset, when PSW.EBV = 0, operations use the ROM area where the minimum maintenance

code was placed as specified in RBASE. After bootstrapping, and after the required code has been expanded in

RAM, the code position in the RAM is set to the EBASE register and the PSB.EBV bit is set to 1Note 1.

Normally, this is the mode of software operations. As for exceptions or interrupts in the range of normal operations,

because they are acknowledged when PSW.EBV = 1, the code operates in the RAM area indicated by EBASE, but

in cases where phenomena (such as RAM errors or cache errors) occur that would indicate the RAM code itself

has not remained correct, an exception is triggered to clear to 0 the PSB.EBV bitNote 2. In such cases, there is a

possibility that the exception handler itself might not be executed correctly using the code at the position indicated

by EBASE, so control is moved to the exception handler in the ROM code indicated by RBASE and the PSW.EBV

bit is cleared to 0.

Once the PSW.EBV bit is cleared to 0, even if an ordinary exception were to occur while in this mode, the status of

the PSW.EBV bit is handed over, so that a mode enabling correct execution of RAM code is maintained, and

operation uses code in the ROM area indicated by RBASE until the PSW.EBV bit is set to 1 by the maintenance

code.

Notes 1. Normally, an EIRET or FERET instruction should be used to set the PSW.EBV bit to 1.
 2. The hardware specifications determine which exception has which cause, and whether or not an exception is

needed to clear PSW.EBV to 0.

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 138 of 450
Dec 22, 2016

Figure 4-8 Example of Model for Application (Operation Flow)

PSW.EBV = 0
RBASE = ROM area
EBASE = ROM area

PSW.EBV = 1
RBASE = ROM area
EBASE = RAM area

PSW.EBV = 0
RBASE = ROM area
EBASE = RAM area

Reset

Ordinary exception

Exception when execution
in RAM cannot be continued

Ordinary exception

Maintenance complete

Initialization complete

Normal status Maintenance status

PSW.EBV = 0
RBASE = ROM area
EBASE = ROM area

PSW.EBV = 1
RBASE = ROM area
EBASE = RAM area

PSW.EBV = 0
RBASE = ROM area
EBASE = RAM area

Reset

Ordinary exception

Exception when execution
in RAM cannot be continued

Ordinary exception

Maintenance complete

Initialization complete

Normal status Maintenance status

RH850G3M software CHAPTER 4 EXCEPTIONS AND INTERRUPTS

R01US0123EJ0140 Rev.1.40 Page 139 of 450
Dec 22, 2016

Figure 4-9 Example of Model for Application (Address Map)

(Empty)

RBASE = EBASE

INTPR15

...

INTPR14

RBASE

INTPR15

...

INTPR14

EBASE

Address space Address space

INTPR15

...
INTPR14

(1) Status when booted

DRAM/cache
area, etc.

Flash ROM, etc.

(2) Status after RAM setup

DRAM/cache
area, etc.

Boot ROM, etc.

RESET
SYSERR
(Empty)
FETRAP

RESET
SYSERR
(Empty)
FETRAP

SYSERR

FETRAP
(Empty)

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 140 of 450
Dec 22, 2016

CHAPTER 5 MEMORY MANAGEMENT

This CPU provides the following functions for managing the memory.

• Memory protection unit (MPU)

• Instruction cache function

• Mutual exclusion function

• Synchronization function

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 141 of 450
Dec 22, 2016

5.1 Memory Protection Unit (MPU)

Memory protection functions are provided in an MPU (memory protection unit) to maintain a smooth system by detecting

and preventing unauthorized use of system resources by unreliable programs, runaway events, etc.

5.1.1 Features

(1) Memory access control

Multiple protection areas can be assigned to the address space. Consequently, unauthorized program execution or

data manipulation by user programs can be detected and prevented. The upper and lower limit addresses of each

area can be specified so that the address space can be used precisely and efficiently.

(2) Access management for each CPU operation mode

In this CPU, several status bits are used to control access to resources, and these bits are used in combination to

perform protection that is appropriate, according to each program's level of reliability.

5.1.2 MPU Operation Settings
Before using a protection area, set up operation of the MPU function in supervisor mode. Normally, it is assumed that this

setting is performed by management software, such as the OS.

Settings in supervisor mode fall into three types: initial settings, settings to change programs, and settings that are

changed when handling exceptions. The processing flow is illustrated below.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 142 of 450
Dec 22, 2016

Figure 5-1 Example of MPU Processing Flow

Supervisor mode User mode

Initial setting
(MPM setting)

Change programs
(protection area setup)

Switch to user mode

When handling
exceptions

(protection area setup)

Task switch occurs

Application

Exception
occurs

The initial settings are set as appropriate values in the MPM register. Always use the MPE bit to validate the MPU.

The SVP bit should be set to 1 only when protection is also being performed by a supervisor such as an OS.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 143 of 450
Dec 22, 2016

Caution Perform the following procedures in advance only when the SVP bit will be set to 1.

• Before setting (to 1) the SR, SW, or SX bit in the protection area, correctly set up the MPUAn and
MPLAn registers in the same protection area.

• No procedures are necessary if the SR, SW, and SX bits will not be set to 1.

• Note with caution that when the SVP bit is set to 1, the management program (OS, etc.) that sets the

SVP itself cannot be executed. If a setting error is made, continued execution might become
impossible due to recursive occurrence of MIP or MDP exceptions.

When switching programs, the protection area for the target program might need to be set up. For details about

protection area settings, see 5.1.3 Protection Area Settings.

During exception handling, unlike processing that sets a recovery as part of ordinary error processing, a

management program determines whether or not the address where the exception occurred can be used and,

when demand paging is performed to continue execution, the protection area might be changed.

As when programs are switched, protection area settings are changed, as described in 5.1.3 Protection Area

Settings below.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 144 of 450
Dec 22, 2016

5.1.3 Protection Area Settings

(1) Protection area settings

Set the respective protection areas appropriately. For details about registers, see CHAPTER 3 REGISTER

REFERENCE.

Some additional description is provided below regarding certain caution points.

(a) E bit

This sets the target protection area setup as enabled or disabled. When disabled, all settings are disabled.

Make sure valid setting values have been stored for other protection areas (MPUA, MPLA, and MPAT) before

or at the time when this bit is set to 1.

(b) UX, UR, and UW bits

These bits indicate the access privileges for the target protection area during user mode.

(c) SX, SR, and SW bits

These bits indicate the access privileges for the target protection area during supervisor mode. These bits are

valid only when the MPM.SVP bit has been set to 1. If the MPM.SVP bit has been cleared to 0, protection is

not performed while in supervisor mode, regardless of the values of the SX, SR, and SW bits, and the entire

address space becomes access-enabled.

(d) G bit and ASID field

These are the G (Global) bit and the ASID field for comparison. When the G bit is cleared to 0, the values in

the ASID register are compared to those in the MPAT.ASID field, and protection area settings are applied to

determine accessibility only when these values match. When the G bit is set to 1, protection area settings are

applied regardless of the ASID values.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 145 of 450
Dec 22, 2016

5.1.4 Caution Points for Protection Area Setup

(1) Crossing protection area boundaries

When the specified protection areas overlap, the access control settings for the overlapping parts differ depending

on the MPM.DX, DW, and DR bits. If access to the protection area is disabled by default, access is enabled by

priority; if access to the protection area is enabled by default, access is prohibited by priority.

In other words, when access to protection areas is disabled by default and multiple protection areas have been

specified, if access is enabled for either of the protection areas, access is judged to be enabled. If access to the

protection area is enabled by default and access is prohibited for either of the protection areas, access is judged to

be prohibited.

In addition, the bits for MPM.DX, DW, and DR in this CPU are fixed to 0, and default operation is prohibited.

(2) Invalid protection area settings

Protection area settings are invalid in the following case.

• When value set to lower-limit address is larger than value set to upper-limit address

Caution Note, however, that addresses are handled as unsigned integers (0H to FFFFFFFFH).

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 146 of 450
Dec 22, 2016

5.1.5 Access Control
In this CPU, accesses are controlled appropriately according to the settings specified as of the step described in 5.1.3

Protection Area Settings. In any of the cases listed below, the CPU ensures logical integrity by limiting actual access,

detecting violations before instruction execution is completed, and setting up exceptions.

• When about to execute an instruction that includes opcode, at an address outside the executable range

• When about to execute an instruction that reads from an address outside the read-accessible range

• When about to execute an instruction that writes to an address outside the write-accessible range

The specifics of access control vary depending on the hardware specifications, but all have the following points in common.

• When the access result is a prohibit judgment, it is not reflected in memory or I/O devices.

• When the access result is an enabled judgment, it is reflected in memory or I/O devices.

Cautions 1. Even when access is enabled, there might be cases where access is blocked by another function

that prohibits it.

 2. In some cases, access judged to be prohibited may be executed for a memory or I/O device. The

cases are as listed below.
・Reading local RAM

・Reading of code flash memory by an instruction prefetched from the instruction cache

Since execution in response to exceptions due to instructions that read from the local RAM or

execute the results of prefetching and so on is inhibited, such access does not affect the execution

of instructions. However, when a debugger is monitoring access to local RAM or code flash
memory, it may observe access judged to be prohibited.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 147 of 450
Dec 22, 2016

5.1.6 Violations and Exceptions
In this CPU, violations are detected during instruction fetch access or operand access according to the protection area

settings, and an exception is generated.

• Execution protection violation (during instruction access)

• Data protection violation (during operand access)

(1) Execution protection violation (MIP exception)

This violation is detected when an instruction is executed. An execution protection violation such as this is detected

when attempting to execute an instruction that has been placed in a non-executable area within the program area.

When an execution protection violation is detected, an MIP exception always occurs.

(2) Data protection violation (MDP exception)

This violation is detected during data access by an instruction. A data protection violation such as this is detected

when a memory access instruction attempts to access data from an access-prohibited part of the data area.

When a data protection violation is detected, an MDP exception always occurs.

(3) Exception cause code and exception address

When an instruction protection violation or data protection violation has been detected, the exception cause code

is determined as shown in Table 5-1. The determined exception cause code is set to the FEIC register.

The MEA register is used to store either the PC of the instruction that detected the instruction protection violation

or the access address used when the data protection violation occurred. The MEA register is shared in order to

prevent simultaneous occurrence of MIP and MDP exceptions. Also, when a data protection violation occurs, the

information of the instruction that caused the violation is stored in the MEI register.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 148 of 450
Dec 22, 2016

Table 5-1 Exception Cause Code of Memory Protection Violation

Exception

Operation Mode
When Violation
Occurred

Bit Number and Bit Name

31 to 25 24 23 22 21 20 19 18 17 16 15 to 0

— MS BL RMW SX SW SR UX UW UR —

MIP User mode 0 0 0 0 — — — — — — 90H

Supervisor mode 0 0 0 0 — — — — — — 90H

MDP User mode 0 Note 5 Note 4 Note 3 0 0 0 0 Note 2 Note 1 91H

Supervisor mode 0 0 Note 2 Note 1 0 0 0 91H

Notes 1. When a read violation is caused by an instruction that includes a read operation, either the SR or UR bit is set
to 1.

 2. When a write violation is caused by an instruction that includes a write operation, either the SW or UW bit is set
to 1.

 3. This bit is set to 1 when a violation is caused by the SET1, NOT1, CLR1, or CAXI instruction.
 4. This bit is set to 1 when a violation is caused by the PREPARE, DISPOSE, PUSHSP, or POPSP instruction.
 5. This bit is set to 1 when the instruction causing the violation performs a misaligned access.

Remark UR: A violation is detected during a read operation in user mode (PSW.UM = 1).

UW: A violation is detected during a write operation in user mode (PSW.UM = 1).

UX: A violation is detected during instruction execution in user mode (PSW.UM = 1).

SR: A violation is detected during a read operation in supervisor mode (PSW.UM = 0).

SW: A violation is detected during a write operation in supervisor mode (PSW.UM = 0).

SX: A violation is detected during instruction execution in supervisor mode (PSW.UM = 0).

RMW: Set to 1 when the instruction causing the violation contains a read-modify-write operation (SET1,

 NOT1, CLR1, or CAXI).

BL: Set to 1 when the instruction causing the violation performs a block transfer (PREPARE,

 DISPOSE, PUSHSP, or POPSP).

MS: Set to 1 when the instruction causing the violation performs a misaligned access.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 149 of 450
Dec 22, 2016

5.1.7 Memory Protection Setting Check Function
When configuring programs that provide a service for the OS (etc.), this CPU provides a memory protection setting check

function to enable implementation of a service protection function that checks in advance whether or not the data area to

be used for the requested operations is within an area that is accessible by the source that called the service. The OS can

use this function to verify the suitability of parameters set for system services provided by the user. Also, this verification

processing can be completed quickly when compared to software-based area setting read and comparison operations.

(1) Procedure

Set the base address (lower limit) of the target address range to the MCA register and the size of the target range

to the MCS register, then use the LDSR instruction (r0 specification is recommended) to access the MCC register

and execute a check. The results can be read from the MCR register by the STSR instruction.

Cautions 1. If the specified area to be checked crosses 00000000H or 7FFFFFFFH, it is judged as an area

setting error, and the MCR.OV bit is set to 1. This means that the MCR.OV bit must be checked to

access the check results. Do not use the check result until it is confirmed that the result is not
invalid (OV = 0).

 2. If the default operations specified by using the MPM.DX, DW, and DR bits are enabled (1), the

correct result might not be able to be obtained. If enabling the specified default operation, do not
use the memory protection setting check function.

(2) Sample code

It is assumed that the memory protection setting check function will be used for the following operations.

_service_protection:

 …

 ori 0x1000, r0, r12

 …

 mov ADDRESS, r10 // Store the start address of the area to be checked to r10

 mov SIZE, r11 // Store the size of the area to be checked to r11

 di

 ldsr r10, sr8, 5 // Set the address to MCA

 ldsr r11, sr9, 5 // Set the size to MCS

 ldsr r0, sr10, 5 // Start checking with MCC

 stsr sr11, r12, 5 // Get the results from MCR

 ei

 andi 0x0100, r12, r0

 bnz _overflow // Processing of invalid input when OV = 1

 br _result_check // Otherwise, result is determined

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 150 of 450
Dec 22, 2016

5.2 Cache

For information regarding the specific functions of mounted cache memory and which functions are mounted, see the

hardware manual of the product used.

5.2.1 Cache Operation Registers
Figure 5-2 shows the system registers for cache operation. The supervisor privilege is required for the operation.

Figure 5-2 Cache Operation Registers

ICTAGLICTAGH
ICDATLICDATH

ICCTRL
ICCFG

Cache errorCache access Cache control

ICERR
Instruction

ICTAGLICTAGH
ICDATLICDATH

ICCTRL
ICCFG

Cache errorCache access Cache control

ICERR
Instruction

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 151 of 450
Dec 22, 2016

5.2.2 Change Cache Use Mode

(1) Change use mode of instruction cache

When an instruction cache has been mounted, execution of instructions can be made more efficient by enabling an

instruction cache. By contrast, if the instruction code is placed in RAM and will be overwritten during processing, it

might be more advisable to not use an instruction cache.

The instruction cache use mode can be changed by using the ICCTRL.ICHEN bit. To enable an instruction cache,

set the ICHEN bit to 1.

To disable the instruction cache, clear the ICHEN bit to 0.

Completion in executing the LDSR instruction that sets ICHEN might not coincide with completion of the instruction

cache operations. As in the following sample code, the SYNCI instruction is executed after the settings are

changed to ensure that the change in instruction cache settings take effect.

LDSR r10, sr24, 4 // Change the instruction cache settings (ICCTRL)

 (setting value is stored in r10)

SYNCI // Syncs refetch to completion of LDSR instruction

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 152 of 450
Dec 22, 2016

5.2.3 Cache Operations using CACHE Instruction
The CACHE instruction manipulates data in the specified cache memory.

Such data manipulation by the CACHE instruction starts after updating of the cache memory by all preceding memory

access has been completed. Consequently, the result of preceding memory access is guaranteed to be the target for

operations using the CACHE instruction. Additionally, a suitable synchronization period is needed following execution of

the CACHE instruction to ensure that the results are reflected in subsequent instructions.

(1) Specification method for target of CACHE instruction

There are basically two ways to specify the target for operations.

• Directly specify the address to be accessed:

In this CPU, this is called the address specification method. In this case, the cache line containing the specified

address is subject to operation.

• Directly specify the cache memory's way number and line number:

In this CPU, this is called the index specification method. In this case, no hit judgment for the cache is performed, and

the operation is performed on the specified cache index. For details about the cache index specification method, see

5.2.5 Cache Index Specification Method.

(2) Operations performed using the CACHE instruction

The operations performed on the cache memory are broadly divided into the six types described below. Some of

these operations might not be supported, depending on the cache memory to be manipulated (instruction, data,

etc.). For details about each operation, see CHAPTER 7 INSTRUCTION.

(a) Cache Hit Block Invalidate/Cache Indexed Block Invalidate (CHBI/CIBI)

This disables the specified cache line. When using the address specification method, the cache line is

disabled only when there is a hit. When using the index method, the cache line is disabled. If the specified

cache line is locked, it is unlocked. This operation can be used in cases such as when the entire memory

cache is initialized by software.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 153 of 450
Dec 22, 2016

(b) Cache Fetch And Lock (CFAL)

This stores the data at the specified address to the cache memory. At this time, the cache line where the data

is stored is locked. This prevents the cache line from being switched. If the target cache line has already been

stored in the cache memory, it is simply locked. If the target cache line has already been stored in the cache

memory and is not locked, this operation is not performed.

This operation can be used to improve execution efficiency by reducing variations in instruction execution time

that occur due to cache misses in the specified memory area.

Caution The target cache line might not be able to be locked, such as when all cache ways are locked. This

operation can be used to efficiently monopolize the cache memory, so note with caution the cache

locking specifications and the number of cache ways. For details, see the hardware manual of the
product used.

(c) Cache Indexed Load/Cache Indexed Store (CILD/CIST)

This operation is used to directly access the cache memory. Values can be written and read, via a system

register, at a position in the cache memory specified by using an index. Because cache data and cache tags

can be accessed directly, this operation can be used for purposes such as software debugging.

(d) Other operations

Other special operations related to manipulating the bus and memory, such as deleting links to enable efficient

exclusive access, might also be defined as cache operations. For details, see CHPTER 7 INSTRUCTION

REFERENCE.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 154 of 450
Dec 22, 2016

5.2.4 Cache Operation when the PREF Instruction is Executed
The PREF instruction is provided to realize efficient cache access by advising the CPU that an address is likely to be used

in a certain way in the near future. Getting the CPU to prefetch data into the cache memory before use in this way can

reduce the read wait time when a cache miss occurs.

Assuming support by compilers and other tools, the PREF instruction can be executed regardless of the CPU operating

mode. Execution of the PREF instruction does not cause an exception generated by the MPU, and has no effect on logical

operations, just like a NOP instruction.

Caution Because a data read request by the PREF instruction is rather speculative, it might not be executed

depending on the cache control policy or system conditions. For details, see the hardware manual of the
product used.

5.2.5 Cache Index Specification Method
For a cache instruction that uses the index specification method, explicitly specify the cache memory subject to operation

in the format shown in Figure 5-3, instead of specifying an address. The bit positions (x, y, z) of each field depend on the

size of the cache memory incorporated in the CPU core. Information about the incorporated cache memory and size can

be read from the ICCFG register.

Figure 5-3 Cache Memory Index Specification Method

Way Index Offset

31 0x y z

Way Index Offset

31 0x y z

Remark Way: Specify the way within the cache.

Index: Specify the cache index.

Offset: Specify the offset within the cache line.

Caution Bits 31 to x: Be sure to clear to 0.

Remark The Offset field indicates the byte position within the cache line. This setting is not required (i.e., ignored) in

normal index specification operations. For a CILD/CIST operation, it is used to specify a position within the

cache line when the ICDAT[HL] register is shorter than the cache line length.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 155 of 450
Dec 22, 2016

5.2.6 Execution Privilege of the CACHE/PREF Instruction
Because the CACHE instruction directly manipulates the contents of the cache memory, privileges are specified according

to the type of operation. When the CACHE instruction is executed without the privilege required for the CACHE operation,

a privilege violation exception (PIE) occurs.

On the other hand, the PREF instruction provides information for speculative execution, so it can be executed in any mode.

The privileges required by the different operations performed by the CACHE instruction are shown below.

(a) Operations allowed with the user privilege

Among address specification method operations, operations without a cache lock (CHBI) can be executed in

any operation mode.

(b) Operations requiring the supervisor privilege

Among address specification method operations, operations with a cache lock (CFAL) require the supervisor

privilege.

In addition, index specification method operations require the supervisor privilege.

5.2.7 Memory Protection for CACHE and PREF Instructions

When manipulating the cache by specifying an address for the CACHE instruction, it might become the target of memory

protection by the MPU. Memory protection is judged based on the operating mode in which the CACHE instruction is

executed, and it is handled as a data-side access.

No memory protection judgment is performed when using the index specification method or the PREF instruction.

Table 5-2 shows the correspondence between operations and access privileges.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 156 of 450
Dec 22, 2016

Table 5-2 Relationship Between Cache Operations and Permissions

Instruction Target Address/Index

Instruction

Execution Privilege Access Permission

CHBII Instruction Address UM Read

CIBII Instruction Index SV —

CFALI Instruction Address SV Read

CISTI Instruction Index SV —

CILDI Instruction Index SV —

(CLL instruction)Note — — — —

Note Functions as the CLL instruction. For details, see the description of the CLL instruction in CHAPTER 7

INSTRUCTION.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 157 of 450
Dec 22, 2016

5.3 Mutual Exclusion

This CPU provides instructions that enable shared resources to be controlled mutually exclusively from multiple programs

when the system is operating in a multi-processor environment.

When using mutual exclusion, mutual exclusion variables have to be defined in the memory and all programs must

operate in accordance with the appropriate instruction flow.

Caution Embedded CPUs in a single-processor configuration use a programming model in which data coherence

is maintained by disabling the acknowledgment of maskable interrupts. This is a very easy and sure

method of maintaining data coherence, but naturally in a multi-processor, multiple programs might be

executing and attempting to use the data at the same time. In this case it is not possible to maintain data
coherence simply by disabling maskable interrupt acknowledgment.

5.3.1 Shared Data that does not Require Mutual Exclusion Processing

This CPU maintains data access coherence even in a multi-processor environment by enabling the following types of

access.

• Access in which the data is aligned to the size that matches the data type (aligned access)

 - LD, ST, SLD, SST, LDL, and STC instructions

• Access by using a bit manipulation instruction (SET1, CLR1, or NOT1) (read-modify-write)

• Access by using the CAXI instruction (read-modify-write)

With some exceptions, mutual exclusion is achieved by using these types of data access. In other words, it is guaranteed

that while one CPU is executing the instructions that perform the above data accesses, another CPU is not accessing the

data in question. This is known as an instruction being executed atomically or an instruction providing an atomic guarantee.

Note that the atomic execution of an instruction means that a data access bus transaction completes with no disruption; it

does not necessarily mean that a series of transactions has been completed.

Caution The extent to which coherency is guaranteed might be limited, depending on the hardware specifications.

For example, for some memories, coherency might not be preserved even if aligned access is used. For
details, see the hardware manual of the product used.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 158 of 450
Dec 22, 2016

5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions
The LDL.W and STC.W instructions can be used to perform mutual exclusion over multiple data arrays.

When acquiring a lock by using the LDL.W and STC.W instructions in a pair, first a link is created by using the LDL.W

instruction and then the STC.W instruction is executed.

At this time, if data is written to the address at which the link was created before the STC.W instruction is executed, the

link is immediately deleted, the subsequent execution of the STC.W instruction fails, and a lock fails to be acquired.

(1) Link

Each link (LLbit) includes information on the address at which it was created, which is used to control whether the

STC instruction executes successfully or fails, and whether the link is deleted.

A link is created when the LDL.W instruction is executed. If the LDL.W instruction is executed again after a link has

been created, another link is created, which overwrites the first link. In other words, only one link exists at a time,

and that link contains the address information of the LDL.W executed last.

Links are deleted when certain event or address conditions are satisfied. Table 5-3 shows the link deletion

conditions. A link is deleted if any of the conditions shown in Table 5-3 are satisfied.

Table 5-3 Link Deletion Conditions

Target Link Event Condition Remark

All links in the
system (including
those in other CPU
cores)

If a write operation occurs in a 32-byte-aligned address
range that includes the address of the link in question

ST, SST, and STC instructions

SET1, NOT1, CLR1, and CAXI
instructions

PREPARE and PUSHSP instructions

CPU core link Execution of STC.W instruction The link is deleted whether the
instruction executes successfully or fails

Execution of CLL instruction Use a CLL instruction to clear a link in a
function explicitly (abortion of an atomic
operation).

Exception acknowledgment

Execution of return instruction Does not include CTRET instruction

Caution Links that are deleted by a write operation are deleted in 32-byte units. Therefore, the best way to

prevent execution of the STC.W instruction from failing in this case is to allocate only one mutual

exclusion variable per 32 bytes of memory. If more than one mutual exclusion variable is allocated in a

32-byte range, thrashing might occur when an attempt is made to acquire a lock on a mutual exclusion
variable.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 159 of 450
Dec 22, 2016

(2) Sample code

The sample code of a spinlock executed by using the LDL.W and STC.W instructions is shown below.

Lock acquisition

 mov lock_adr, r20

Lock: ldl.w [r20], r21

 cmp r0, r21

 bnz Lock_wait

 mov 1, r21

 stc.w r21, [r20]

 cmp r0, r21

 bnz Lock_success

Lock_wait:

 snooze

 br Lock

Lock_success:

Lock release

 st.w r0, 0[r20]

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 160 of 450
Dec 22, 2016

5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction
The SET1 instruction can be used to perform mutual exclusion over multiple data arrays. By executing the SET1

instruction on the same bit in the memory and then checking the PSW.Z flag, which indicates the execution result, it can

be determined whether lock acquisition succeeded or failed.

Cautions 1. Depending on the hardware specifications, the system performance might drop if exclusive control

is executed frequently by using the SET1 instruction, because this causes the bus to be occupied

for a long time. It is therefore recommended to execute exclusive control by using the LDL/STC
instructions as much as possible.

 2. When performing mutual exclusion by using the SET1 instruction, to prevent the problem of

excessive bus occupancy described in Caution 1 above, execute the snooze instruction before

attempting to acquire a lock again after lock acquisition has failed, and adjust the lock acquisition
loop execution interval.

(1) Sample code

The sample code of a spinlock executed by using the SET1 instruction is shown below.

Lock acquisition

 mov lock_adr, r20

Lock: set1 0, 0[r20]

 bz Lock_success

 snooze

 br Lock

Lock_success:

Lock release

clr1 0, 0[r20]

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 161 of 450
Dec 22, 2016

5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction
The CAXI instruction can be used to perform mutual exclusion over multiple data arrays. By executing the CAXI instruction

on the same word in the memory and then checking the destination register, it can be determined whether lock acquisition

succeeded or failed.

Cautions 1. Depending on the hardware specifications, the system performance might drop if
exclusive control is executed frequently by using the CAXI instruction, because this
causes the bus to be occupied for a long time. It is therefore recommended to execute
exclusive control by using the LDL/STC instructions as much as possible.

 2. When performing mutual exclusion by using the CAXI instruction, to prevent the problem
of excessive bus occupancy described in Caution 1 above, execute the snooze
instruction before attempting to acquire a lock again after lock acquisition has failed, and
adjust the lock acquisition loop execution interval.

(1) Sample code

The sample code of a spinlock executed by using the CAXI instruction is shown below.

Lock acquisition

 mov lock_adr, r20

Lock: mov 1, r21

 caxi [r20], r0, r21

 bz Lock_success

 snooze

 br Lock

Lock_success:

Lock release

 st.w r0, 0[r20]

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 162 of 450
Dec 22, 2016

5.4 Synchronization Function

In order to improve the processing performance, this CPU executes subsequent instructions before the operation of the

preceding instruction is completed, when there is no dependency between the instructions. For this reason, when the

subsequent instructions need to wait for the completion of the operation of the preceding instruction, the synchronization

procedure is required. This CPU provides the following four special instructions for the synchronization.

The SYNCP instruction is the special instruction, which synchronizes the pipeline to reflect the result of the preceding

instructions to the subsequent instructions. The SYNCP instruction waits for the result of load instructions (until the loaded

data is stored in a register), but does not wait for the result of store instructions (until the destination memory or memory-

mapped control register is updated). Therefore, when the result of store instruction needs to be reflected to the

subsequent instructions, perform a dummy read of the destination memory or control register of the store instruction, and

then execute the SYNCP instruction.

The SYNCM instruction is the special instruction, which synchronizes memory accesses. The SYNCM instruction waits for

the result of all preceding load instructions (until the loaded data is stored in a register) and the result of all preceding store

instructions (until the destination memory or memory-mapped control register is updated). However, the SYNCM

instruction may not guarantee the completion of updating of the memory or control register if it is attached to the bus-

system or peripheral device, which completes store operation speculatively (i.e., updating of the memory or control

register is delayed). When the result of updating of such memory or control register needs to be reflected to the

subsequent instructions, perform a dummy read of the destination memory or control register of the store instruction, and

then execute the SYNCP instruction.

The SYNCI instruction is the special instruction, which synchronizes instruction fetches. The SYNCI instruction discards

unexecuted instructions in the pipeline, and re-fetches the subsequent instructions. The SYNCI instruction is used to

reflect the result of the preceding instructions to the instruction fetch of the subsequent instructions. When the result of the

store instruction needs to be reflected to the instruction fetch of the subsequent instruction (e.g., when updating memory to

realize self-programming program or updating the control register to switch the code flash memory area), perform a

dummy read of the destination of the store instruction, execute the SYNCP instruction, and then execute the SYNCI

instruction.

The SYNCE instruction is the special instruction, which synchronizes all preceding imprecise exceptions (FPI exceptions).

Execute the SYNCE instruction when all preceding FPI exceptions need to be accepted. The SYNCE instruction can be

used to guarantee completion of exception handling by the preceding task before a task is changed or terminated in a

multi-processing environment.

Table 5-4 shows the effect of the synchronization instructions.

For the hazard resolution procedure for system registers, see APPENDIX A, HAZARD RESOLUTION PROCEDURE FOR

SYSTEM REGISTERS.

RH850G3M software CHAPTER 5 MEMORY MANAGEMENT

R01US0123EJ0140 Rev.1.40 Page 163 of 450
Dec 22, 2016

Table 5-4 Effect of Synchronization Instructions

SYNC
Instruction

Synchronization Guaranteed by the SYNC Instruction

Synchronization of Instruction Fetch Synchronization of Execution of the Preceding Instruction

Re-fetch of
Subsequent
Instructions

Cache
Instruction/Instruction
to Update Cache
Operation Function
Register

Calculation
Instruction Load Instruction Store Instruction FPI Exception

SYNCP — — Completion of
execution

Completion of
execution Note 1

— —

SYNCM — — Completion of
execution

Completion of
execution Note 1

Completion of
execution Note 2

—

SYNCI Re-fetch after
synchronization
of execution of
the preceding
instruction

Completion of
execution Note 3

Completion of
execution

— — —

SYNCE — — — — — Acceptance of
exception

Remark: “—”: Not guaranteed
Notes 1. The SYNC instruction waits until the loaded data is stored in a register.
 2. The SYNC instruction waits until the destination memory or control register is updated.

However, there may exist destinations, whose update cannot be guaranteed by the SYNC instruction.
For details, see the hardware manual of the product used.

 3. When completion of instruction cache clearance is confirmed, check the read value of the ICCTRL.ICHCLR bit.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 164 of 450
Dec 22, 2016

CHAPTER 6 COPROCESSOR

6.1 Floating-Point Operation

The floating-point unit (FPU) operates as the CPU coprocessor, and executes floating-point instructions.

Either single-precision (32-bit) or double-precision (64-bit) data can be used. In addition, floating-point values and fixed-

point values can be converted.

The FPU of this CPU conforms to ANSI/IEEE standard 754-2008 (IEEE Standard for Floating-Point Arithmetic).

(1) Floating-point instructions

This FPU inherits the V850EFC and VR Series floating-point instruction sets, so software properties from both the

V850EFC and VR Series can be easily ported.

• Instructions equivalent to the floating-point instructions available in the VR Series are supported.

• The following four V850EFC instructions are supported.

MAXF.S, MINF.S, MAXF.D, and MINF.D

• Supports the flag transfer instruction which transfers the floating-point configuration/status register’s condition

bits to the Z flag of the PSW register.

TRFSR

• Supports conditional move instruction, to accelerate conditional branch.

CMOVF.S, CMOVF.D

• Supports unsigned conversion instructions which efficiently execute format conversions with unsigned integers.

• Supports the CEIL and FLOOR instructions, which efficiently execute conversion of the format to the nearest

integer.

• Supports fused-multiply-add instructions that execute multiply-add operations with high accuracy.

• Supports half-precision floating-point format conversion instructions for storing data efficiently.

Supports condition bits (8 bits) for storing floating-point comparison results.

Supports two FPU execution modes: precise mode and imprecise mode

(2) Register set

• Floating-point operation registers: Uses general-purpose registers

(not special-purpose register for floating-point operations)

• Floating-point system registers:

FPSR − Floating-point configuration/status

FPEPC − Floating-point exception program counter

FPST − Floating-point status

FPCC − Floating-point comparison result

FPCFG − Floating-point configuration

FPEC − Floating-point exception control

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 165 of 450
Dec 22, 2016

6.1.1 Configuration of Floating -Point Operation Function
(1) Not implemented

If the floating-point operation function is not implemented, all the floating-point instructions cannot be used. If an

attempt is made to execute such an instruction, a coprocessor unusable exception occurs. In addition, the

operation of all the floating-point system registers is undefined. Therefore, do not manipulate these registers by

LDSR and STSR.

(2) Implementing only single precision

If only the floating-point operation function with single precision is implemented, only floating-point instructions

classified as single precisionNote 1 can be used. If an attempt is made to execute a floating-point instruction

classified as double precisionNote 2, a coprocessor unusable exception occurs. All the floating-point system

registers supply the function described in 3.4 FPU Function Registers.

Notes 1. The single-precision floating-point instruction is the instruction described as (Single) in the description

of each instruction in 7.4.4 Floating-Point Instruction Set.
 2. The double-precision floating-point instruction is the instruction described as (Double) in the description

of each instruction in 7.4.4 Floating-Point Instruction Set.

(3) Implementing single precision and double precision

All the floating-point instructions can be used when floating-point instructions of single precision and double

precision are implemented. All the floating-point system registers supply the functions described in 3.4 FPU

Function Registers.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 166 of 450
Dec 22, 2016

6.1.2 Data Types

(1) Floating-point format

The FPU supports 32-bit (single precision) and 64-bit (double precision) IEEE754 floating-point operations.

The single-precision floating-point format consists of a 24-bit signed fraction (s + f) and an 8-bit exponent (e), as

shown in Figure 6-1.

Figure 6-1 Single-precision Floating-point Format

The double-precision floating-point format consists of a 53-bit signed fraction (s + f) and an 11-bit exponent (e), as

shown in Figure 6-2.

Figure 6-2 Double-precision Floating-Point Format

A numerical value in the floating-point format includes the following three areas.

• Sign bit: s

• Exponent: e = E + bias value

• Fraction: f = .b1b2...bP-1 (value lower than the first decimal place)

The bias value for the single-precision format is 127. For double-precision format, the bias value is 1023.

The range of the exponent value E when unbiased covers all integers from Emin to Emax, along with two reserved

values, Emin −1 (±0 or subnormal number), and Emax +1 (±∞ or NaN: not-a-number). A numeric value other than

0 is represented in one format, depending on the single-precision and double-precision formats.

The numeric value (v) represented in this format can be calculated by the expression shown in Table 6-1.

s
Sign

1

0 30 23 22
e

Exponent
f

Fraction
8 23

3 1

s
Sign

1

0 62 52 51
e

Exponent
f

Fraction
11 52

63

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 167 of 450
Dec 22, 2016

Table 6-1 Calculation Expression of Floating-Point Value

Type Calculation Expression

NaN (not-a-number) If E = Emax + 1 and f ≠ 0 then v = NaN regardless of s

±∞ (infinite number) If E = Emax + 1 and f = 0 then v = (−1)s∞

Normalized number If Emin ≤ E ≤ Emax then v = (−1)s2E (1.f)

Subnormal number If E = Emin − 1 and f ≠ 0 then v = (−1)s2Emin (0.f)

±0 (zero) If E = Emin − 1 and f = 0 then v = (−1)s0

• NaN (not-a-number)

IEEE754 defines a floating-point value called NaN (not-a-number). Because this value is not a numerical value, it

does not have any “greater than” or “less than” relationships to other values.

If v is NaN in all of the floating-point formats, it might be either SignalingNaN (S-NaN) or QuietNaN (Q-NaN),

depending on the value of the most significant bit of f. If the most significant bit of f is set, v is QuietNaN; if the most

significant bit is cleared, it is SignalingNaN.

Table 6-2 shows the value of each parameter defined in floating-point formats.

Table 6-2 Floating-Point Formats and Parameter Values

Parameter

Format

Single Precision Double Precision

Emax +127 +1023

Emin −126 −1022

Bias value of exponent +127 +1023

Length of exponent (number of bits) 8 11

Integer bits Cannot be seen Cannot be seen

Length of fraction (number of bits) 23 52

Length of format (number of bits) 32 64

Table 6-3 shows the minimum and maximum values that can be represented in floating-point formats.

Table 6-3 Floating-Point Minimum and Maximum Values

Type Value

Minimum value of single-precision floating point 1.40129846e − 45

Minimum value of single-precision floating point (normal) 1.17549435e − 38

Maximum value of single-precision floating point 3.40282347e + 38

Minimum value of double-precision floating point 4.9406564584124654e − 324

Minimum value of double-precision floating point (normal) 2.2250738585072014e − 308

Maximum value of double-precision floating point 1.7976931348623157e + 308

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 168 of 450
Dec 22, 2016

(2) Fixed-point formats

The value of a fixed point is held in the format of 2’s complement. Figure 6-3 shows a 32-bit fixed-point format and

Figure 6-4 shows a 64-bit fixed-point format. No signed bits exist in the unsigned fixed-point format, and all bits

represent the integer value.

Figure 6-3 32-bit Fixed-Point Format

Figure 6-4 64-bit Fixed-Point Format

(3) Expanded floating-point format

This CPU supports the 16-bit (half-precision) IEEE754 floating-point format as a floating-point format for storing

data. The half-precision floating-point format is used to decrease the amount of data; it is not supported for

arithmetic operations. Instructions are available for converting single-precision floating-point format data into half-

precision floating-point data and vice-versa. The half-precision floating-point format consists of an 11-bit signed

fraction (s + f) and a 5-bit exponent (e), as shown in Figure 6-5.

Figure 6-5 Half-Precision Floating-Point Format

s
Sign

1

0 14 10 9
e

Exponent
f

Fraction
5 10

15

s
Sign

1

0 30
i

Integer
31

3 1

s
Sign

1

0 62
i

Integer
63

63

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 169 of 450
Dec 22, 2016

Like other floating-point formats, the numeric values represented in this format can be calculated by using the

expressions shown in Table 6-1. The values of the parameters defined by the half-precision floating-point format

are shown in Table 6-4.

Table 6-4 Half-Precision Floating-Point Format and Parameter Values

Parameter Half Precision

Emax +15

Emin −14

Bias value of exponent +15

Length of exponent (number of bits) 5

Integer bits Cannot be seen

Length of fraction (number of bits) 10

Length of format (number of bits) 16

Table 6-5 shows the minimum and maximum values that can be represented in the half-precision floating-point

format.

Table 6-5 Half-Precision Floating-Point Minimum and Maximum Values

Type Value

Minimum value of half-precision floating point 5.96046e − 8

Maximum value of half-precision floating point (normal) 6.10352e − 5

Maximum value of half-precision floating point 65504

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 170 of 450
Dec 22, 2016

6.1.3 Register Set
The FPU uses the CPU general-purpose registers (r0 to r31). There are no register files used only for floating-point

operations.

• Single-precision floating-point instruction:

32 registers (32 bits each) can be specified. These general-purpose registers correspond to r0 to r31.

• Double-precision floating-point instruction:

16 registers (64 bits each) can be specified. Paired general-purpose registers are used as register pairs ({r1, r0},

{r3, r2} … {r31, r30}). Each register pair is specified in the instruction format with an even numbered register.

Because r0 is a zero register (always holds “0”), in principle {r1, r0} cannot be used by a double-precision

floating-point instruction.

(1) Floating-point system registers

Six system registers can be used by the FPU.

• FPSR: This register is used to control and monitor exceptions. It also holds the result of compare operations,

and sets the FPU operation mode. Its bits are used to set condition code, exception mode, subnormal number

flush enable, rounding mode control, cause, exception enable, and preservation.

• FPEPC: This register stores the program counter value for the instruction where a floating-point operation

exception has occurred.

• FPST: This register reflects the contents of the FPSR register bits related to the operation status.

• FPCC: This register reflects the contents of the CC(7:0) bits of the FPSR register.

• FPCFG: This register reflects the contents of the FPSR register bits related to the operation settings.

• FPEC: This register controls checking and canceling the pending status of the FPI exception.

For details about the floating-point system registers, see 3.4 FPU Function Registers.

6.1.4 Floating-Point Instructions
Floating-point instructions are divided into single-precision instructions (single) and double-precision instructions (double),

and include the following instructions (mnemonics).

For details about the floating-point instructions, see 7.4 Floating-Point Instructions.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 171 of 450
Dec 22, 2016

6.1.5 Floating-Point Operation Exceptions
This section describes how the FPU processes floating-point operation exceptions.

(1) Types of exceptions

When floating-point operations or processing of operation results cannot be done using the ordinary method, a

floating-point operation exception occurs.

One of the following two operations is performed when a floating-point operation exception has occurred.

• When exceptions are enabled

The cause bit is set in the floating-point configuration/status register (FPSR), and processing (by software) is

passed to the exception handler routine.

• When exceptions are prohibited

The preservation bit is set in the floating-point configuration/status register (FPSR), an appropriate value (initial

value) is stored in the FPU destination register, then execution is continued.

The FPU uses cause bits, enable bits, and preservation bits (status flags) to support the following five types of

IEEE754-defined exception causes.

• Inexact operation (I)

• Overflow (O)

• Underflow (U)

• Division by zero (Z)

• Invalid operation (V)

A sixth type of exception cause is unimplemented operation (E), which causes an exception when a floating-point

operation cannot be executed. This exception requires processing by software. An unimplemented operation

exception (E) occurs when exceptions are always enabled, rather than by using properties, enable bits, or

preservation bits.

Figure 6-6 shows the FPSR register bits that are used to support exceptions.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 172 of 450
Dec 22, 2016

Figure 6-6 Cause, Enable, and Preservation Bits of FPSR Register

The five exceptions (V, Z, O, U, and I) defined by IEEE754 are enabled when the corresponding enable bits are

set. When an exception occurs, if the corresponding enable bit has been set, the FPU sets the corresponding

cause bit. If the exception can be acknowledged, processing is passed to the exception handler routine. If

exceptions are prohibited, the exception corresponding preservation bit is set, and processing is not passed to the

exception handler routine.

Cause bit (XC) I U O Z V E

10 11 12 13 14 Bit 15

Enable bit (XE) I U O Z V

5 6 7 8 Bit 9

Preservation bit (XP) I U O Z V

0 1 2 3 Bit 4

Inexact operation
Underflow

Overflow
Division by zero

Invalid operation
Unimplemented operation

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 173 of 450
Dec 22, 2016

(2) Exception handling

When a floating-point operation exception occurs, the cause bits of the FPSR register indicate the cause of the

floating-point operation exception.

(a) Status flag

A corresponding preservation bit is available for each IEEE754-defined exception. The preservation bit is set

when the corresponding exception is prohibited but the exception condition has been detected. The

preservation bit is set or reset whenever new values are written to the FPSR register by the LDSR instruction.

If an exception is prohibited by an enable bit, predetermined processing is performed by the FPU. This

processing provides an initial value as the result, rather than a floating-point operation result. This initial value

is determined according to the type of exception. For an overflow exception or underflow exception, the initial

value also differs depending on the current rounding mode. Table 6-6 shows the initial values provided for

each of the FPU IEEE754-defined exceptions.

Table 6-6 FPU Initial Values for IEEE754-Defined Exceptions

Area Description Rounding Mode Initial Value

V Invalid operation — Quiet not-a-number (Q-NaN)

Z Division by zero — Correctly signed ∞

O Overflow RN ∞ with sign of intermediate result

 RZ Maximum normalized number with sign of intermediate result

 RP Negative overflow: Maximum negative normalized number
Positive overflow: +∞

 RM Positive overflow: Maximum positive normalized number
Negative overflow: −∞

U UnderflowNote 1 RNNote 2 0 with sign of intermediate result

 RZ 0 with sign of intermediate result

 RP Positive underflow: Minimum positive normalized number
Negative underflow: 0

 RM Negative underflow: Minimum negative normalized number
Positive underflow: 0

I Inexact operation — Rounded result

Notes 1. If the FPSR.FS bit is cleared, an unimplemented operation exception (E) will occur if an underflow occurs
in the rounded result; an underflow exception (U) will not occur. If the FS bit of the FPSR register is set,
the flushed result is used as the default value

 2. If the rounding mode is RN and the FN bit of the FPSR register is set, flushing will occur in the direction
of higher accuracy. For details, see 6.1.11 Flush to Nearest.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 174 of 450
Dec 22, 2016

6.1.6 Exception Details
The following describes the conditions under which each of the FPU exceptions occurs and the FPU responses.

(1) Inexact exception (I)

In the following cases, the FPU detects an inexact exception.

• When the precision of the rounded result is dropped

• When the rounded result overflows while overflow exceptions are prohibited

• When the rounded result underflows while underflow exceptions are prohibited

• When the operand that is a subnormal number is flushed, neither an invalid operation exception (V) nor a division

by zero exception (Z) is detected, and the other operands are not Q-NaN

Caution If the FS bit of the FPSR register is cleared and the operation result underflows, an unimplemented

operation exception (E) occurs. In such cases, the underflow exception is not detected, so the inexact
exception is not detected either.

(a) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved, and an

inexact exception occurs.

(b) If exception is not enabled

If no other exception occurs, the rounded result or the result that underflows or overflows is stored in the

destination register.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 175 of 450
Dec 22, 2016

(2) Invalid operation exception (V)

An invalid operation exception occurs when one of both of the operands is invalid.

• Arithmetic operation with S-NaN included in operands. The conditional move instruction (CMOV), absolute value

(ABS), and arithmetic negation (NEG) are not handled as arithmetic operations, but minimum value (MIN) and

maximum value (MAX) are handled as arithmetic operations.

• Multiplication: ±0 × ±∞ or ±∞ × ±0

• Fused-multiply-add: (±0 × ±∞) + c or (±∞ × ±0) + c. But only if c is not Q-NaN.

• Addition/subtraction or multiply-add operationNote:

 Addition of infinite values with different signs or subtraction of infinite values with the same sign

• Division: ±0 ÷ ±0 or ±∞ ÷ ±∞

• Square root: When operand is less than 0

• Conversion to integer when source is outside of integer range.

• Comparison: With condition codes 8 to 15, if the operand is unordered (see Table 7-10 Definitions of

Condition Code Bits and Their Logical Inversions)

Note When the multiplication result is infinite or when adding or subtracting between infinities

(a) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved, and an

invalid operation exception occurs.

(b) If exception is not enabled

If no other exception occurs, and the destination is a floating-point format, Q-NaN is stored in the destination

register. If the destination has an integer format, see the operation result description of each instruction for the

value to be stored in the destination register.

(3) Division by zero exception (Z)

A division by zero exception occurs when a divisor is 0 and a dividend is a finite number other than 0.

(a) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved, and a

division by zero exception occurs.

(b) If exception is not enabled

If no other exception occurs, a correctly signed infinite number (±∞) is stored in the destination register.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 176 of 450
Dec 22, 2016

(4) Overflow exception (O)

An overflow exception is detected if the exponent range is infinite and if the result of the rounded floating point is

greater than maximum finite number in the destination format.

(a) If exception is enabled
The contents of the destination register are not changed, the contents of the source register are saved, and an

overflow exception occurs.

(b) If exception is not enabled
If no other exception occurs, the initial value that is determined by the rounding mode and the sign of the
intermediate result is stored in the destination register (see Table 6-6 FPU Initial Values for IEEE754-
defined Exceptions).

(5) Underflow exception (U)

If the operation result is −2Emin to +2Emin (but not zero), an underflow exception is detected.

Although IEEE754 defines several methods for detecting an underflow, the same method should be used to detect

underflows, regardless of the processing to be performed.

The following two methods can be used to detect an underflow for binary floating point numbers.

• The result calculated after rounding and using an infinite exponent range is not zero and is within ±2Emin.

• The result calculated before rounding and using an infinite exponent range and precision is not zero and is within

±2Emin.

In this CPU, an underflow is detected before rounding.

Or the rounded result is one of the following, an inexact result is detected.

• When a given result differs from the result calculated when the exponent range and precision are infinite)

In this CPU, the behavior when an inexact result is detected differs as follows depending on whether underflow

exceptions are enabled or disabled:

(a) If exception is enabled
When the FS bit of the FPSR register has been set, if exceptions are enabled, an underflow exception (U)

occurs. When the FS bit of the FPSR register has been set, if exceptions are not enabled but inexact

exceptions are enabled, an inexact exception (I) occurs.

(b) If exception is not enabled
If the FS bit of the FPSR register has been set, the initial value determined according to the rounding mode
and intermediate result value is stored in the destination register (see Table 6-6 FPU Initial Values for
IEEE754-defined Exceptions).

Caution If the FS bit of the FPSR register has not been set, an unimplemented operation exception (E) occurs

regardless of whether or not exceptions are enabled. Because an unimplemented operation exception
(E) must occur, an underflow exception (U) does not occur.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 177 of 450
Dec 22, 2016

(6) Unimplemented operation exception (E)

The E bit is set and an unimplemented operation exception (E) occurs when an abnormal operand or abnormal

result that cannot be correctly processed by hardware has been detected. The operand and destination register

contents do not change.

If the FS bit of the FPSR register has been set, an unimplemented operation exception (E) will not occur.

If the FS bit of the FPSR register has been cleared, an unimplemented operation exception (E) will occur under the

following conditions (except for CMOVF.D, CMOVF.S, CMPF.D, CMPF.S, ABSF.D, ABSF.S, MAXF.D, MAXF.S,

MINF.D, MINF.S, NEGF.D, NEGF.S and CVTF.HS instructions).

• When the operand is a subnormal number

• When the operation result is a subnormal number, or an underflow has occurred

Cautions 1. For details about the processing when an unimplemented operation exception (E) occurs, see
6.1.10 Selection of Floating-Point Operation Model.

 2. If the FS bit of the FPSR register is set to 1, an unimplemented operation exception (E) will not
occur under any circumstances.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 178 of 450
Dec 22, 2016

6.1.7 Precise Exceptions and Imprecise Exceptions
Each floating-point operation exception can be specified as an exception that occurs precisely (precise exception) or

imprecisely (imprecise exception).

The default setting is that imprecise exceptions occur. To generate precise exceptions, the exception mode must be

changed.

This CPU specifies precise exception mode by setting the PEM bit of the FPSR register.

(1) Precise exceptions

When a precise exception is specified, the CPU does not start execution of any subsequent instructions until the

already started floating-point instruction has been completed. Consequently, when an exception occurs, the

program can continue after emulation by software.

The program counter for the instruction where a floating-point operation exception has occurred is stored in the

EIPC register and FPEPC register. When returning from emulation processing, an EIRET instruction is executed.

Any floating-point operation exception that has occurred during precise exception mode is acknowledged

immediately, regardless of the status of the ID bit or NP bit of PSW.

(2) Imprecise exceptions

When an imprecise exception is specified, the CPU is able to start execution of subsequent instructions even

before the already started floating-point instruction has been completed. Consequently, when an exception occurs,

the subsequent instructions are executed speculatively, so if an exception occurs, emulation becomes difficult but

the throughput of instruction execution can be greatly increased.

When a floating-point operation exception occurs for a floating-point instruction executed in imprecise exception

mode, the results of subsequent floating-point instructions (except for a TRFSR instruction) are not reflected in the

general-purpose register after the exception is acknowledged and until processing of the exception handler routine

starts, and no other floating-point operation exceptions occur. This is called an “invalidating instruction”.

The program counter for the instruction where a floating-point operation exception has occurred is stored in the

FPEPC register, and the program counter for an instruction that is interrupted when an exception is acknowledged

is stored in the EIPC register.

A floating-point operation exception that has occurred in imprecise exception mode is held pending when the ID bit

of PSW = 1 or when the NP bit = 1. In such cases, when an LDSR instruction is used to set the NP and ID bits of

the PSW register as “0”, the pending exception is acknowledged.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 179 of 450
Dec 22, 2016

6.1.8 Saving and Returning Status
When a floating-point operation exception occurs, the PC and PSW are saved to the EIPC and EIPSW registers

respectively, and the exception code is saved to the EIIC register.

A floating-point operation exception code is 71H for a precise exception and 72H for an imprecise exception.

When an EI level exception is acknowledged while processing a floating-point operation exception, an EIPC register

override occurs, which prevents the returning to the instruction that caused the floating-point operation exception to occur.

When acknowledgment of EI level exceptions is required, the contents of the EIPC, EIPSW, and EIIC registers must be

saved, such as to a stack.

When a floating-point instruction is used in a floating-point operation exception handler routine, the FPSR and FPEPC

registers will be overridden if another floating-point operation exception occurs. In such cases, the FPSR and FPEPC

registers should be saved at the start of the floating-point operation exception handler processing, and should be returned

at the end of the handler processing. When precise exception mode is specified, execute the SYNCI instruction after the

FPSR and FPEPC registers are saved. When imprecise exception mode is specified and it is necessary to return to the

original program, execute the SYNCE instruction at the end of the handler processing, and then execute the EIRET

instruction.

The cause bits of the FPSR register hold the results from only one enabled exception. In any case, the previous results

are held until the next enabled exception occurs.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 180 of 450
Dec 22, 2016

6.1.9 Flushing Subnormal Numbers
This CPU can process subnormal numbers—very small numbers that are lower than the minimum normalized number—in

one of the following two ways:

• Normalize the operand or operation result and continue executing arithmetic processing

• Generate an unimplemented operation exception (E) and execute exception handling

Executing software-based exception handling will obtain a more accurate result, but the amount of time required to

obtain the result will vary depending on the input value. In control systems that require a real-time performance,

therefore, this is usually unacceptable. In this case, it is important to obtain the result within a certain amount time

rather than focus on accuracy.

(1) Normalize the subnormal numbers and continue executing arithmetic processing

By setting the FS bit of the FPSR register to 1, this CPU can normalize the operand or operation result to a specific

value and continue executing arithmetic processing if a subnormal number is input as the operand or obtained as

the operation result. At this time, extremely small differences in values might not appear in the operation result.

For the operand and operation result, the values to which subnormal numbers are flushed when the FS bit is set

(1) are shown in Tables 6-7 and 6-8 below.

Table 6-7 Rounding Mode and Flush Value of Input Operand

Sign of Subnormal Operand

Rounding Mode and Value to Which Input Operand Is Flushed

RN RZ RP RM

+ +0

− −0

Table 6-8 Rounding Mode and Flush Value of Operation Result

Sign of Subnormal Operation Result

Rounding Mode and Value to Which Operation Result Is Flushed

RNNote RZ RP RM

+ +0 +0 +2Emin +0

− −0 −0 −0 −2Emin

Note If the rounding mode is RN and the FN bit of the FPSR register is set, flushing will occur in the direction

of higher accuracy. For details, see 6.1.11 Flush to Nearest.

Whether an input operand that is a subnormal number has been flushed or not can be checked by referencing the

IF bit of the FPSR register. Whether an operation result that is a subnormal number has been flushed or not can

be checked by referencing the U bit of the FPSR register.

Cautions 1. In control systems that require a real-time performance, it is recommended to always set the FS bit
to 1.

 2. If the FS bit of the FPSR register is set (1), an unimplemented operation exception (E) will not
occur under any circumstances.

 3. Whether the operation result is a subnormal number is judged by using the value before rounding.
 4. The IF bit of the FPSR register also accumulates and indicates information about flushing

instructions that have caused a floating-point operation exception.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 181 of 450
Dec 22, 2016

(2) Generate an unimplemented operation exception (E) and execute exception handling

By clearing the FS bit of the FPSR register to 0, an unimplemented operation exception (E) will occur if a

subnormal number is input as the operand or obtained as the operation result. When an unimplemented operation

exception occurs, software-based progressive underflow processing is performed in the floating-point operation

exception handling routine, enabling a more accurate result to be obtained. In this case, however, a real-time

processing performance might not be realized due to the software processing load.

Caution To obtain an accurate result when using software processing, floating-point operation exceptions must be able

to be acknowledged when an unimplemented operation exception occurs. Be sure, therefore, to set the PEM bit
of the FPSR register to 1 to enable the correct acknowledgment of floating-point operation exceptions.

(3) Instructions that can handle subnormal numbers

The following instructions can be executed without causing an unimplemented operation exception even if an

operand that is a subnormal number is input while the FS bit of the FPSR register is 0.

• Conditional move instruction (CMOV), absolute value (ABS), arithmetic negation (NEG)

• Minimum value (MIN), maximum value (MAX), compare (CMPF)

• Conversion from half-precision to single-precision (CVTF.HS)

(4) Instructions that are not affected by flushing subnormal numbers

For the following instructions, flushing does not occur even an operand that is a subnormal number is input while

the FS bit of the FPSR register is 1.

• Conditional move instruction (CMOV), absolute value (ABS), arithmetic negation (NEG)

• Minimum value (MIN), maximum value (MAX), compare (CMPF)

• Conversion from half-precision to single-precision (CVTF.HS)

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 182 of 450
Dec 22, 2016

6.1.10 Selection of Floating-Point Operation Model
This CPU has three recommended floating-point operation models that can be selected according to whether you want to

process floating point operations focusing on speed or accuracy.

If you want to focus on processing speed, select the do not generate exceptions model, in which processing performance

is prioritized by minimizing the occurrence of exceptions during the execution of floating point operations. By using this

model, the emulation processing overhead generated by exception handling can be removed, making it ideal for

applications that require a real-time performance, but that do not require such a high level of accuracy.

It is also possible to select an imprecise exception model, in which high-speed processing is executed as long as no

exceptions occur, but which switches to exception handling when an exception does occur. If you anticipate using this

model in applications such as those mentioned above that require high-speed processing, debugging can be made easier

by designing the software so that exceptions are detected and processed early, thus preserving an internal status close to

the status of when the event that caused the exception occurred.

For applications that require a high level of accuracy and that you want to manage by using software, select the precise

exception model, in which the system shifts to exception handling as soon as a floating-point operation exception is

detected. This model uses software-based processing to generate more accurate operation results.

(1) Do not generate exceptions model

If you want to use this model, which prioritizes processing speed and minimizes the occurrence of exceptions,

specify the following settings:

• Clear the enable bit of the FPSR register to 0 to suppress the occurrence of floating-point operation exceptions.

• Set the FS bit of the FPSR register to 1 to flush subnormal numbers.

• Use the single-precision floating-point format for processing that does not require a high level of accuracy.

By disabling the generation of floating-point operation exceptions that can be ignored during arithmetic processing,

arithmetic processing can continue to be executed using default values. Also, if progressive underflows can be

ignored when flushing subnormal numbers, arithmetic processing can continue to be executed using flushed

values. The use of single-precision instructions also generally reduces the number of execution clock cycles

(latency) required to complete the processing.

Detect exception events that occur during arithmetic processing by explicitly referencing cause flags set by using a

separate software program.

(2) Imprecise exception model

If you want to use this model, which prioritizes speed but also allows exceptions to be generated, specify the

following settings.

• Set the enable bit of the FPSR register to an appropriate value according to the necessity of exception handling

• Set the FS bit of the FPSR register to 1 to flush subnormal numbers.

• Use the single-precision floating-point format for processing that does not require a high level of accuracy.

• Clear the PEM bit of the FPSR register to 0 to specify the imprecise exception mode.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 183 of 450
Dec 22, 2016

By disabling the generation of floating-point operation exceptions that can be ignored during arithmetic processing,

arithmetic processing can continue to be executed using default values. Also, if progressive underflows can be

ignored when flushing subnormal numbers, arithmetic processing can continue to be executed using flushed

values. The use of single-precision instructions also generally reduces the number of execution clock cycles

(latency) required to complete the processing. The processing throughput in imprecise exception mode is therefore

higher than that in precise exception mode.

(3) Precise exception model

If you want to use this model, which allows exceptions to be processed as soon as they occur so that the

processing accuracy can be managed by using software, specify the following settings:

• Set the enable bit of the FPSR register to an appropriate value according to the necessity of exception handling

• Clear the FS bit of the FPSR register to 0 to generate an exception if a subnormal number exists.

• Use the single-precision floating-point format or double-precision floating-point format as required

• Set the PEM bit of the FPSR register to 1 to specify the precise exception mode.

Specifying these settings enables exceptions to be acknowledged immediately, at the instruction that caused the

exception. Subsequent instructions are not executed and the processor status of before the exception-causing

instruction was executed is retained. This enables software-based emulation in cases where extremely accurate

arithmetic operations are required. If an IEEE754 exception is triggered by the emulated operation, also emulate

that exception.

By searching for instructions by using the FPEPC register, the exception handler can determine the following.

• The instruction being executed

• The destination format

To obtain an accurately rounded result when an overflow exception, underflow exception (except one caused by a

conversion instruction), or inexact exception occurs, include program code that searches for the source register

and emulates the instruction in the exception handler routine.

To obtain an accurate result when an invalid operation exception or division by zero exception occurs, or an

overflow or underflow exception occurs during floating-point conversion, include program code in the exception

handler routine that searches for the instruction’s source register and obtains the operand value.

In the IEEE754 standard, it is recommended to prioritize overflow and underflow exceptions over inexact

exceptions. The exception priority can be specified by using software. Be sure to set the hardware enable bits of

the overflow, underflow, and inexact exceptions.

Note that if an attempt is made to execute an instruction with an invalid data format in the FPU, or if an operand

input or operation result is a subnormal number while the FS bit of the FPSR register is cleared (0), an

unimplemented operation exception (E) will occur (except for some instructions). In this case, neither the operand

nor the contents of the destination register will be changed.

RH850G3M software CHAPTER 6 COPROCESSOR

R01US0123EJ0140 Rev.1.40 Page 184 of 450
Dec 22, 2016

6.1.11 Flush to Nearest
This CPU provides flush-to-nearest mode, a feature for flushing to the nearest number with higher accuracy when a

flushing operation results subnormal number. Flush-to-nearest mode is enabled when the rounding mode is RN and the

FN bit of the FPSR register is set (1). When this mode is used, the FPU determines the value to which to flush the

subnormal number based on the number of the operation result and not just the sign. However, the result is flushed to

±2Emin, which is different from the value shown in Table 6-9, when the operation result of the subtract operation by SUBF,

FMSF, FNMSF instructions and the add operation of a negative value by ADDF, FMAF, FNMAF instructions becomes

±2(Emin-2). This feature has no effect in rounding modes other than RN or on the result of flushing an input operand.

Table 6-9 Rounding Mode and Value to Which Operation Result is Flushed

Value of Subnormal Operation Result

Rounding Mode and Value to Which Operation Result Is Flushed

RN

RZ RP RM FN = 1 FN = 0

+2Emin-1 ≤ Operation result < +2Emin +2Emin +0 +0 +2Emin +0

+0 < Operation result < +2Emin-1 +0

−2Emin-1 < Operation result < −0 −0 −0 −0 −0 −2Emin

−2Emin < Operation result ≤ −2Emin-1 −2Emin

Caution Whether the operation result is a subnormal number is judged by using the value before rounding.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 185 of 450
Dec 22, 2016

CHAPTER 7 INSTRUCTION

7.1 Opcodes and Instruction Formats

This CPU has two types of instructions: CPU instructions, which are defined as basic instructions, and coprocessor

instructions, which are defined according to the application.

7.1.1 CPU Instructions

Instructions classified as CPU instructions are allocated in the opcode area other than the area used in the format of the

coprocessor instructions shown in 7.1.2 Coprocessor Instructions.

CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several instructions that use option

data to add bits, enabling the configuration of 48-bit and 64-bit instructions. For details, see the opcode of the relevant

instruction in 7.2.2 Basic Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions are reserved for future

function expansion and cannot be used. For details, see 7.1.3 Reserved Instructions.

(1) reg-reg instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general-purpose register specification fields.

15 4 0511 10

reg2 opcode reg1

(2) imm-reg instruction (Format II)

A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a general-purpose register

specification field.

15 4 0511 10

reg2 opcode imm

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 186 of 450
Dec 22, 2016

(3) Conditional branch instruction (Format III)

A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

15 4 0711 10

disp opcode cond

6

disp

3

(4) 16-bit load/store instruction (Format IV)

A 16-bit instruction format consists of a 4-bit opcode field, a general-purpose register specification field, and a 7-bit

displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

15 0711 10

reg2 opcode

6

disp

1

disp/sub-opcode

In addition, a 16-bit instruction format consists of a 7-bit opcode field, a general-purpose register specification field,

and a 4-bit displacement field.

15 4 011 10

reg2 opcode disp

3

(5) Jump instruction (Format V)

A 32-bit instruction format consists of a 5-bit opcode field, a general-purpose register specification field, and a 22-

bit displacement field.

15 5 011 10

reg2 opcode disp

6 31 17 16

0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 187 of 450
Dec 22, 2016

(6) 3-operand instruction (Format VI)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit immediate field.

15 5 011 10

reg1opcode imm

4 31 16

reg2

(7) 32-bit load/store instruction (Format VII)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a

16-bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

15 5 011 10

reg1opcode disp

4 31 16

reg2

17

disp/sub-opcode

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a

general-purpose register specification field, and a 16-bit displacement field.

15 5 011 10

reg1opcode disp

4 31 16

sub

14

bit #

13

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 188 of 450
Dec 22, 2016

(9) Extended instruction format 1 (Format IX)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and handles the other bits as a sub-opcode field.

Caution Extended instruction format 1 might use part of the general-purpose register specification field or the

sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, see the description of each instruction in 7.2.2 Basic Instruction Set.

(10) Extended instruction format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub-opcode field.

Caution Extended instruction format 2 might use part of the general-purpose register specification field or the

sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, see the description of each instruction in 7.2.2 Basic Instruction Set.

(11) Extended instruction format 3 (Format XI)

This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose register specification

fields, and uses the other bits as a sub-opcode field.

Caution Extended instruction format 3 might use part of the general-purpose register specification field or the

sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, see the description of each instruction in 7.2.2 Basic Instruction Set.

15 5 0 11 10

reg1 opcode

4 31 16

reg2

17

0 sub-opcode

15 5 0 11 10

opcode

4 31 16 17

0 sub-opcode sub-opcode
sub-opcode
imm/vector

15 5 0 11 10

reg1 opcode reg3

4 31 16

reg2

27 26

0 sub-opcode

17

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 189 of 450
Dec 22, 2016

(12) Extended instruction format 4 (Format XII)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields,

and uses the other bits as a sub-opcode field.

Caution Extended instruction format 4 might use part of the general-purpose register specification field or the

sub-opcode field as a system register number field, condition code field, immediate field, or
displacement field. For details, see the description of each instruction in 7.2.2 Basic Instruction Set.

(13) Stack manipulation instruction format (Format XIII)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, 5-bit sub-

opcode field, and one general-purpose register specification field (or 5-bit sub-opcode field).

The general-purpose register specification field is used as a sub-opcode filed, depending on the format of the

instruction.

(14) Load/store instruction 48-bit format (Format XIV)

This is a 48-bit instruction format that has a 6-bit opcode field, two general-purpose register specification fields,

and a 23-bit displacement field, and uses the other bits as a sub-opcode field.

15 5 0 11 10

sub-opcode opcode reg3

4 31 16

reg2

27 26

0 sub-opcode

17

15 5 0 11 10

imm opcode list

31 16

sub-opcode

20 21

reg2

6 1

15 5 0 11 10

reg1 opcode reg3

31 16

sub-opcode

20 4 27 26

disp (low)

19

47 32

disp (high)

sub-opcode

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 190 of 450
Dec 22, 2016

7.1.2 Coprocessor Instructions
Instructions in the following format are defined as coprocessor instructions.

Coprocessor instructions define the functions of each coprocessor.

(1) Coprocessor unusable exception

If an attempt is made to execute a coprocessor instruction defined by an opcode that refers to a nonexistent

coprocessor or a coprocessor that cannot be used due to the operational status of the device, a coprocessor

unusable exception (UCPOP) immediately occurs.

For details, see 2.4.3 Coprocessor Unusable Exceptions.

7.1.3 Reserved Instructions
An opcode reserved for future function extension and for which no instruction is defined is defined as a reserved

instruction. It is defined by the hardware specifications that either of the following two types of operations is performed on

the opcode of a reserved instruction.

• A reserved instruction exception occurs

• The reserved instruction is executed as an instruction

In this CPU, the following opcodes define the RIE instruction, which always causes a reserved instruction exception to

occur.

• RIE instruction (16 bits)

• RIE instruction (32 bits)

 (x = Don’t care, either 0 or 1)

15 5 0 11 10
1 reg3

4 31 16

reg2

27 26

opcode

17

opcode or reg1

1 1 1 1 1 1 0
25 9 8 7 6

15 4 0 5 11 10

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

5 0 11 10

1 x x x x 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 31 16

x x x x x

15

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 191 of 450
Dec 22, 2016

7.2 Basic Instructions

7.2.1 Overview of Basic Instructions

(1) Load instructions

Execute data transfer from memory to register. The following instructions (mnemonics) are provided.

(a) LD instructions

• LD.B: Load byte

• LD.BU: Load byte unsigned

• LD.DW: Load double word

• LD.H: Load halfword

• LD.HU: Load halfword unsigned

• LD.W: Load word

(b) SLD instructions

• SLD.B: Short format load byte

• SLD.BU: Short format load byte unsigned

• SLD.H: Short format load halfword

• SLD.HU: Short format load halfword unsigned

• SLD.W: Short format load word

(2) Store instructions

Execute data transfer from register to memory. The following instructions (mnemonics) are provided.

(a) ST instructions

• ST.B: Store byte

• ST.DW: Store double word

• ST.H: Store halfword

• ST.W: Store word

(b) SST instructions

• SST.B: Short format store byte

• SST.H: Short format store halfword

• SST.W: Short format store word

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 192 of 450
Dec 22, 2016

(3) Multiply instructions

Execute multiplication in one clock cycle with the on-chip hardware multiplier. The following instructions

(mnemonics) are provided.

• MUL: Multiply word

• MULH: Multiply halfword

• MULHI: Multiply halfword immediate

• MULU: Multiply word unsigned

(4) Multiply-accumulate instructions

After a multiplication operation, a value is added to the result. The following instructions (mnemonics) are available.

• MAC: Multiply and add word

• MACU: Multiply and add word unsigned

(5) Arithmetic instructions

Add, subtract, transfer, or compare data between registers. The following instructions (mnemonics) are provided.

• ADD: Add

• ADDI: Add immediate

• CMP: Compare

• MOV: Move

• MOVEA: Move effective address

• MOVHI: Move high halfword

• SUB: Subtract

• SUBR: Subtract reverse

(6) Conditional arithmetic instructions

Add and subtract operations are performed under specified conditions. The following instructions (mnemonics) are

available.

• ADF: Add on condition flag

• SBF: Subtract on condition flag

(7) Saturated operation instructions

Execute saturated addition and subtraction. If the operation result exceeds the maximum positive value

(7FFFFFFFH), 7FFFFFFFH returns. If the operation result exceeds the maximum negative value (80000000H),

80000000H returns. The following instructions (mnemonics) are provided.

• SATADD: Saturated add

• SATSUB: Saturated subtract

• SATSUBI: Saturated subtract immediate

• SATSUBR: Saturated subtract reverse

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 193 of 450
Dec 22, 2016

(8) Logical instructions

Include logical operation instructions. The following instructions (mnemonics) are provided.

• AND: AND

• ANDI: AND immediate

• NOT: NOT

• OR: OR

• ORI: OR immediate

• TST: Test

• XOR: Exclusive OR

• XORI: Exclusive OR immediate

(9) Data manipulation instructions

Include data manipulation instructions and shift instructions with arithmetic shift and logical shift. Operands can be

shifted by multiple bits in one clock cycle through the on-chip barrel shifter. The following instructions (mnemonics)

are provided.

• BINS: Bitfield insert

• BSH: Byte swap halfword

• BSW: Byte swap word

• CMOV: Conditional move

• HSH: Halfword swap halfword

• HSW: Halfword swap word

• ROTL: Rotate left

• SAR: Shift arithmetic right

• SASF: Shift and set flag condition

• SETF: Set flag condition

• SHL: Shift logical left

• SHR: Shift logical right

• SXB: Sign-extend byte

• SXH: Sign-extend halfword

• ZXB: Zero-extend byte

• ZXH: Zero-extend halfword

(10) Bit search instructions

The specified bit values are searched among data stored in registers.

• SCH0L: Search zero from left

• SCH0R: Search zero from right

• SCH1L: Search one from left

• SCH1R: Search one from right

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 194 of 450
Dec 22, 2016

(11) Divide instructions

Execute division operations. Regardless of values stored in a register, the operation can be performed using a

constant number of steps. The following instructions (mnemonics) are provided.

• DIV: Divide word

• DIVH: Divide halfword

• DIVHU: Divide halfword unsigned

• DIVU: Divide word unsigned

(12) High-speed divide instructions

These instructions perform division operations. The number of valid digits in the quotient is determined in

advanced from values stored in a register, so the operation can be performed using a minimum number of steps.

The following instructions (mnemonics) are provided.

• DIVQ: Divide word quickly

• DIVQU: Divide word unsigned quickly

(13) Branch instructions

Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch instruction (Bcond) which

accommodates the flag status to switch controls. Program control can be transferred to the address specified by a

branch instruction. The following instructions (mnemonics) are provided.

• Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV, BNZ, BP, BR, BSA, BV,

BZ): Branch on condition code

• JARL: Jump and register link

• JMP: Jump register

• JR: Jump relative

(14) Loop instruction

• LOOP: Loop

(15) Bit manipulation instructions

Execute logical operation on memory bit data. Only a specified bit is affected. The following instructions

(mnemonics) are provided.

• CLR1: Clear bit

• NOT1: Not bit

• SET1: Set bit

• TST1: Test bit

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 195 of 450
Dec 22, 2016

(16) Special instructions

Include instructions not provided in the categories of instructions described above. The following instructions

(mnemonics) are provided.

• CALLT: Call with table look up

• CAXI: Compare and exchange for interlock

• CLL: Clear load link

• CTRET: Return from CALLT

• DI: Disable interrupt

• DISPOSE: Function dispose

• EI: Enable interrupt

• EIRET: Return from trap or interrupt

• FERET: Return from trap or interrupt

• FETRAP: Software trap

• HALT: Halt

• LDSR: Load system register

• LDL.W: Load linked word

• NOP: No operation

• POPSP: Pop registers from stack

• PREPARE: Function prepare

• PUSHSP: Push registers from stack

• RIE: Reserved instruction exception

• SNOOZE: Snooze

• STSR: Store system register

• STC.W: Store conditional word

• SWITCH: Jump with table look up

• SYNCE: Synchronize exceptions

• SYNCI: Synchronize memory for instruction writers

• SYNCM: Synchronize memory

• SYNCP: Synchronize pipeline

• SYSCALL: System call

• TRAP: Trap

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 196 of 450
Dec 22, 2016

7.2.2 Basic Instruction Set
This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

• Instruction format: Indicates how the instruction is written and its operand(s) (for symbols, see Table 7-1).

• Operation: Indicates the function of the instruction (for symbols, see Table 7-2).

• Format: Indicates the instruction format (see 7.1 Opcodes and Instruction Formats).

• Opcode: Indicates the bit field of the instruction opcode (for symbols, see Table 7-3).

• Flag: Indicates the change of flags of PSW (program status word) after the instruction execution.

“0” is to clear (reset), “1” to set, and “--” to remain unchanged.

• Description: Describes the operation of the instruction.

• Supplement: Provides supplementary information on the instruction.

• Caution: Provides precautionary notes.

Table 7-1 Conventions of Instruction Format

Symbol Meaning

reg1 General-purpose register (as source register)

reg2 General-purpose register (primarily as destination register with some as source registers)

reg3 General-purpose register (primarily used to store the remainder of a division result and/or the
higher 32 bits of a multiplication result)

bit#3 3-bit data to specify bit number

imm× ×-bit immediate data

disp× ×-bit displacement data

regID System register number

selID System register group number

vector× Data to specify vector (× indicates the bit size)

cond Condition code (see Table 7-4 Condition Codes)

cccc 4-bit data to specify condition code (see Table 7-4 Condition Codes)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

rh-rt Indicates multiple general-purpose registers, from the general-purpose register indicated by rh
to the general-purpose register indicated by rt.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 197 of 450
Dec 22, 2016

Table 7-2 Conventions of Operation

Symbol Meaning

← Assignment

GR [a] Value stored in general-purpose register a

SR [a, b] Value stored in system register (RegID = a, SelID = b)

(n:m) Bit selection. Select from bit n to bit m.

zero-extend (n) Zero-extends “n” to word

sign-extend (n) Sign-extends “n” to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

extract-bit (a, b) Extracts value of bit b of data a

set-bit (a, b) Sets value of bit b of data a

not-bit (a, b) Inverts value of bit b of data a

clear-bit (a, b) Clears value of bit b of data a

saturated (n) Performs saturated processing of “n.”
If n > 7FFFFFFFH, n = 7FFFFFFFH.
If n < 80000000H, n = 80000000H.

result Outputs results on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

== Comparison (true upon a match)

!= Comparison (true upon a mismatch)

+ Add

– Subtract

|| Bit concatenation

× Multiply

÷ Divide

% Remainder of division results

AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by Logical left-shift

logically shift right by Logical right-shift

arithmetically shift right by Arithmetic right-shift

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 198 of 450
Dec 22, 2016

Table 7-3 Conventions of Opcode

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

D 1-bit data of displacement (indicates higher bits of displacement)

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

V 1-bit data of code specifying vector (indicates higher bits of vector)

v 1-bit data of code specifying vector

cccc 4-bit data for condition code specification (See Table 7-4 Condition Codes)

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list

S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list

P 1-bit data of code specifying PSW in register list

Table 7-4 Condition Codes

Condition Code (cccc) Condition Name Condition Formula

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T Always (Unconditional)

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 199 of 450
Dec 22, 2016

<Arithmetic instruction>

Add register/immediate

ADD
Add

[Instruction format] (1) ADD reg1, reg2

 (2) ADD imm5, reg2

[Operation] (1) GR [reg2] ← GR [reg2] + GR [reg1]

 (2) GR [reg2] ← GR [reg2] + sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr001110RRRRR

 15 0

 (2) rrrrr010010iiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register reg1 is

not affected.

 (2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 200 of 450
Dec 22, 2016

<Arithmetic instruction>

Add immediate

ADDI
Add immediate

[Instruction format] ADDI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110000RRRRR iiiiiiiiiiiiiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise “0”.

SAT —

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1 is

not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 201 of 450
Dec 22, 2016

<Conditional Operation Instructions>

Add on condition flag

ADF
Conditional add

[Instruction format] ADF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3] ← GR [reg1] + GR [reg2] +1

else GR [reg3] ← GR [reg1] + GR [reg2] +0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011101cccc0

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] Adds 1 to the result of adding the word data of general-purpose register reg1 to the word data of

general-purpose register reg2 and stores the result of addition in general-purpose register reg3, if

the condition specified as condition code “cccc” is satisfied.

If the condition specified as condition code “cccc” is not satisfied, the word data of general-purpose

register reg1 is added to the word data of general-purpose register reg2, and the result is stored in

general-purpose register reg3.

General-purpose registers reg1 and reg2 are not affected. Designate one of the condition codes

shown in the following table as [cccc]. (cccc is not equal to 1101.)

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 202 of 450
Dec 22, 2016

<Logical instruction>

AND

AND
AND

[Instruction format] AND reg1, reg2

[Operation] GR [reg2] ← GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001010RRRRR

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose register

reg1 and stores the result in general-purpose register reg2. General-purpose register reg1 is not

affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 203 of 450
Dec 22, 2016

<Logical instruction>

AND immediate

ANDI
AND immediate

[Instruction format] ANDI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] AND zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110110RRRRR iiiiiiiiiiiiiiii

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] ANDs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 204 of 450
Dec 22, 2016

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond
Conditional branch

[Instruction format] (1) Bcond disp9

 (2) Bcond disp17

[Operation] (1) if conditions are satisfied

 then PC ← PC + sign-extend (disp9)

 (2) if conditions are satisfied

 then PC ← PC + sign-extend (disp17)

[Format] (1) Format III

 (2) Format VII

[Opcode] 15 0

(1) ddddd1011dddcccc

 dddddddd is the higher 8 bits of disp9.

cccc is the condition code of the condition indicated by cond (see Table 7-5 Bcond Instructions).

 15 0 31 16

(2) 00000111111DCCCC ddddddddddddddd1

 dddddddddddddddd is the higher 16 bits of disp17.

cccc is the condition code of the condition indicated by cond. (For details, see Table 7-5 Bcond

Instructions.)

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Checks each PSW flag specified by the instruction and branches if a condition is met;

otherwise, executes the next instruction. The PC of branch destination is the sum of the current PC

value and the 9-bit displacement (= 8-bit immediate data shifted by 1 and sign-extended to word

length).

 (2) Checks each PSW flag specified by the instruction and then adds the result of logically

shifting the 16-bit immediate data 1 bit to the left and sign-extending it to word length to the current

PC value if the conditions are satisfied. Control is then transferred. If the conditions are not satisfied,

the system continues to the next instruction. BR (0101) cannot be specified as the condition code.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 205 of 450
Dec 22, 2016

[Supplement] Bit 0 of the 9-bit displacement is masked to “0”. The current PC value used for calculation is the

address of the first byte of this instruction. The displacement value being “0” signifies that the branch

destination is the instruction itself.

Table 7-5 Bcond Instructions

Instruction
Condition Code
(cccc) Flag Status Branch Condition

Signed
integer

BGE 1110 (S xor OV) = 0 Greater than or equal to signed

BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal to signed

BLT 0110 (S xor OV) = 1 Less than signed

Unsigned
integer

BH 1011 (CY or Z) = 0 Higher (Greater than)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

BNL 1001 CY = 0 Not lower (Greater than or equal)

Common BE 0010 Z = 1 Equal

BNE 1010 Z = 0 Not equal

Others BC 0001 CY = 1 Carry

BF 1010 Z = 0 False

BN 0100 S = 1 Negative

BNC 1001 CY = 0 No carry

BNV 1000 OV = 0 No overflow

BNZ 1010 Z = 0 Not zero

BP 1100 S = 0 Positive

BR 0101 — Always (Unconditional)

Cannot be specified when using
instruction format (2).

BSA 1101 SAT = 1 Saturated

BT 0010 Z = 1 True

BV 0000 OV = 1 Overflow

BZ 0010 Z = 1 Zero

Cautions 1. The branch condition loses its meaning if a conditional branch instruction is executed on a

signed integer (BGE, BGT, BLE, or BLT) when the saturated operation instruction sets “1” to the

SAT flag. In normal operations, if an overflow occurs, the S flag is inverted (0 → 1 or 1 → 0). This

is because the result is a negative value if it exceeds the maximum positive value and it is a

positive value if it exceeds the maximum negative value. However, when a saturated operation

instruction is executed, and if the result exceeds the maximum positive value, the result is

saturated with a positive value; if the result exceeds the maximum negative value, the result is

saturated with a negative value. Unlike the normal operation, the S flag is not inverted even if an
overflow occurs.

 2. For Bcond disp17 (instruction format (2)), BR (0101) cannot be specified as the condition code.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 206 of 450
Dec 22, 2016

<Data manipulation instruction>

Bitfield Insert

BINS
Insert bit in register

[Instruction format] BINS reg1, pos, width, reg2

[Operation] GR [reg2] ← GR[reg2](31:width+pos) || GR[reg1](width-1:0) || GR[reg2](pos-1:0)

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR MMMMK0001001LLL0 (msb ≥ 16, lsb ≥ 16)

 15 0 31 16

 rrrrr111111RRRRR MMMMK0001011LLL0 (msb ≥ 16, lsb < 16)

 15 0 31 16

 rrrrr111111RRRRR MMMMK0001101LLL0 (msb < 16, lsb < 16)

 Most significant bit of field to be updated: msb = pos+width-1

Least significant bit of field to be updated: lsb = pos

MMMM = lower 4 bits of msb, KLLL = lower 4 bits of lsb

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if operation result is “0”; otherwise, “0”.

SAT —

[Description] Loads the lower width bits in general-purpose register reg1 and stores them from the bit position bit

pos + width −1 in the specified field in general-purpose register reg2 in bit pos. This instruction does

not affect any fields in general-purpose register reg2 except the specified field, nor does it affect

general-purpose register reg1.

[Supplement] The most significant bit (msb: bit pos + width − 1) in the field in general-purpose register reg2 to be

updated and the least significant bit (lsb: bit pos) in this field are specified by using, respectively the

lower 4 bits, the MMMM and KLLL fields in the BINS instruction.

The lower 3 bits of the sub-opcode field (bits 23 to 21) differ depending on the msb and lsb values.

The operation is undefined if msb < lsb.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 207 of 450
Dec 22, 2016

<Data manipulation instruction>

Byte swap halfword

BSH
Byte swap of halfword data

[Instruction format] BSH reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (23:16) || GR [reg2] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000010

[Flags] CY “1” when there is at least one byte value of zero in the lower halfword of the operation

result; otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” when lower halfword of operation result is “0”; otherwise, “0”.

 SAT —

[Description] Executes endian swap.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 208 of 450
Dec 22, 2016

<Data manipulation instruction>

Byte swap word

BSW
Byte swap of word data

[Instruction format] BSW reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (7:0) || GR [reg2] (15:8) || GR [reg2] (23:16) || GR [reg2] (31:24)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000000

[Flags] CY “1” when there is at least one byte value of zero in the word data of the operation

result; otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT —

[Description] Executes endian swap.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 209 of 450
Dec 22, 2016

<Special instruction>

Call with table look up

CALLT
Subroutine call with table look up

[Instruction format] CALLT imm6

[Operation] CTPC ← PC + 2 (return PC)

CTPSW(4:0) ← PSW(4:0)

adr ← CTBP + zero-extend (imm6 logically shift left by 1)Note

PC ← CTBP + zero-extend (Load-memory (adr, Half-word))

Note An MDP exception might occur depending on the result of address calculation.

[Format] Format II

[Opcode] 15 0

 0000001000iiiiii

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] The following steps are taken.

 (1) Transfers the contents of both return PC and PSW to CTPC and CTPSW.

 (2) Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and zero-

extended to word length, to generate a 32-bit table entry address.

 (3) Loads the halfword entry data of the address generated in step (2) and zero-extend to word

length.

 (4) Adds the CTBP value to the data generated in step (3) to generate a 32-bit target address.

 (5) Jumps to the target address.

Cautions 1. When an exception occurs during CALLT instruction execution, the execution is aborted after

the end of the read/write cycle.

 2. Memory protection is performed when executing a memory read operation to read the CALLT

instruction table. When memory protection is enabled, the data for generating a target address

from a table allocated in an area to which access from a user program is prohibited cannot be
loaded.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 210 of 450
Dec 22, 2016

<Special instruction>

Compare and exchange for interlock

CAXI
Comparison and swap

[Instruction format] CAXI [reg1], reg2, reg3

[Operation] adr ← GR[reg1]Note

 token ← Load-memory (adr, Word)

 result ← GR[reg2] − token

 If result == 0

 then Store-memory (adr, GR[reg3], Word)

 GR[reg3] ← token

 else Store-memory(adr, token, Word)

 GR[reg3] ← token

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww00011101110

[Flags] CY “1” if a borrow occurs in the result operation; otherwise, “0”

OV “1” if overflow occurs in the result operation; otherwise, “0”

S “1” if result is negative; otherwise, “0”

Z “1” if result is 0; otherwise, “0”

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 211 of 450
Dec 22, 2016

[Description] Word data is read from the specified address and compared with the word data in general-purpose

register reg2, and the result is indicated by flags in the PSW. Comparison is performed by

subtracting the read word data from the word data in general-purpose register reg2. If the

comparison result is “0”, word data in general-purpose register reg3 is stored in the generated

address, otherwise the read word data is stored in the generated address. Afterward, the read word

data is stored in general-purpose register reg3. General-purpose registers reg1 and reg2 are not

affected.

Cautions 1. This instruction provides an atomic guarantee aimed at exclusive control, and during the period

between read and write operations, the target address is not affected by access due to any other
cause.

2. The CAXI instruction is included for backward compatibility. If you are using a multi-core system
and require an atomic guarantee, use the LDL.W and STC.W instructions.

3. According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 212 of 450
Dec 22, 2016

<Special instruction>

Clear Load Link

CLL
Clear atomic manipulation link

[Instruction format] CLL

[Operation] Llbit ← 0

[Format] Format X

[Opcode] 15 0 31 16

 1111111111111111 1111000101100000

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] The thread link generated by the LDL.W instruction is deleted.

 For details about the link operation between the thread and core, see 5.3.2 Performing Mutual

Exclusion by Using the LDL.W and STC.W Instructions.

Caution In systems such as a multi-core system, how the CLL instruction operates depends on the system
configuration of the product. For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 213 of 450
Dec 22, 2016

<Bit manipulation instruction>

Clear bit

CLR1
Bit clear

[Instruction format] (1) CLR1 bit#3, disp16 [reg1]

 (2) CLR1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 token ← Load-memory (adr, Byte)

 Z flag ← Not (extract-bit (token, bit#3))

 token ← clear-bit (token, bit#3)

 Store-memory (adr, token, Byte)

 (2) adr ← GR [reg1]Note

 token ← Load-memory (adr, Byte)

 Z flag ← Not (extract-bit (token, reg2))

 token ← clear-bit (token, reg2)

 Store-memory (adr, token, Byte)

Note An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 10bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100100

[Flags] CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 214 of 450
Dec 22, 2016

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated address,

then the bits indicated by the 3-bit bit number are cleared (0) and the data is written back to the

original address.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, the bits indicated by the lower three bits of reg2 are cleared (0),

and the data is written back to the original address.

[Supplement] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is executed,

and does not indicate the content of the specified bit after this instruction is executed.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the period

between read and write operations, the target address is not affected by access due to any other
cause.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 215 of 450
Dec 22, 2016

<Data manipulation instruction>

Conditional move

CMOV
Conditional move

[Instruction format] (1) CMOV cccc, reg1, reg2, reg3

 (2) CMOV cccc, imm5, reg2, reg3

[Operation] (1) if conditions are satisfied

 then GR [reg3] ← GR [reg1]

 else GR [reg3] ← GR [reg2]

 (2) if conditions are satisfied

 then GR [reg3] ← sign-extended (imm5)

 else GR [reg3] ← GR [reg2]

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww011001cccc0

 15 0 31 16

 (2) rrrrr111111iiiii wwwww011000cccc0

[Flags] CY —

OV —

S —

Z —

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 216 of 450
Dec 22, 2016

[Description] (1) When the condition specified by condition code “cccc” is met, data in general-purpose register

reg1 is transferred to general-purpose register reg3. When that condition is not met, data in general-

purpose register reg2 is transferred to general-purpose register reg3. Specify one of the condition

codes shown in the following table as “cccc”.

Condition
code Name Condition formula

Condition
code Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

 (2) When the condition specified by condition code “cccc” is met, 5-bit immediate data sign-

extended to word-length is transferred to general-purpose register reg3. When that condition is not

met, the data in general-purpose register reg2 is transferred to general-purpose register reg3.

Specify one of the condition codes shown in the following table as “cccc”.

Condition
code Name Condition formula

Condition
code Name Condition formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (Unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Supplement] See the description of the SETF instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 217 of 450
Dec 22, 2016

<Arithmetic instruction>

Compare register/immediate (5-bit)

CMP
Compare

[Instruction format] (1) CMP reg1, reg2

 (2) CMP imm5, reg2

[Operation] (1) result ← GR [reg2] − GR [reg1]

 (2) result ← GR [reg2] − sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr001111RRRRR

 15 0

 (2) rrrrr010011iiiii

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] (1) Compares the word data of general-purpose register reg2 with the word data of general-

purpose register reg1 and outputs the result through the PSW flags. Comparison is performed by

subtracting the reg1 contents from the reg2 word data. General-purpose registers reg1 and reg2 are

not affected.

 (2) Compares the word data of general-purpose register reg2 with the 5-bit immediate data, sign-

extended to word length, and outputs the result through the PSW flags. Comparison is performed by

subtracting the sign-extended immediate data from the reg2 word data. General-purpose register

reg2 is not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 218 of 450
Dec 22, 2016

<Special instruction>

Return from CALLT

CTRET
Return from subroutine call

[Instruction format] CTRET

[Operation] PC ← CTPC

PSW(4:0) ← CTPSW(4:0)

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101000100

[Flags] CY Value read from CTPSW is set.

OV Value read from CTPSW is set.

S Value read from CTPSW is set.

Z Value read from CTPSW is set.

SAT Value read from CTPSW is set.

[Description] Loads the return PC and PSW (the lower 5 bits) from the appropriate system register and returns

from a routine under CALLT instruction. The following steps are taken:

 (1) The return PC and the return PSW (the lower 5 bits) are loaded from the CTPC and CTPSW.

 (2) The values are restored in PC and PSW (the lower 5 bits) and the control is transferred to the

return address.

Caution When the CTRET instruction is executed, only the lower 5 bits of the PSW register are updated; the

higher 27 bits retain their previous values.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 219 of 450
Dec 22, 2016

<Special instruction>

Disable interrupt

DI
Disable EI level maskable exception

[Instruction format] DI

[Operation] PSW.ID ← 1 (Disables EI level maskable interrupt)

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101100000

[Flags] CY —

OV —

S —

Z —

SAT —

ID 1

[Description] Sets “1” to the ID flag of the PSW to disable the acknowledgement of EI level maskable exceptions

after the execution of this instruction.

[Supplement] Overwrite of flags in the PSW by this instruction becomes valid as of the next instruction.

If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-level instruction.

If the MCTL.UIC bit has been set to 1, this instruction can always be executed.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 220 of 450
Dec 22, 2016

<Special instruction>

Function dispose

DISPOSE
Stack frame deletion

[Instruction format] (1) DISPOSE imm5, list12

 (2) DISPOSE imm5, list12, [reg1]

[Operation] (1) tmp ← sp + zero-extend (imm5 logically shift by 2)

 foreach (all regs in list12) {

 adr ← tmpNotes 1, 2

 GR[reg in list12] ← Load-memory (adr, Word)

 tmp ← tmp + 4

 }

 sp ← tmp

 (2) tmp ← sp + zero-extend (imm5 logically shift by 2)

 foreach (all regs in list12) {

 adr ← tmpNotes 1, 2

 GR[reg in list12] ← Load-memory (adr, Word)

 tmp ← tmp + 4

 }

 PC ← GR[reg1]

 sp ← tmp

 Notes 1. An MDP exception might occur depending on the result of address calculation.

 2. When loading to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011001iiiiiL LLLLLLLLLLL00000

 15 0 31 16

 (2) 0000011001iiiiiL LLLLLLLLLLLRRRRR

 RRRRR ≠ 00000 (Do not specify r0 for reg1.)

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for

example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in list12).

list12 is a 32-bit register list, defined as follows.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 221 of 450
Dec 22, 2016

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any of

these bits is set (1), it specifies a corresponding register operation as a processing target. For

example, when r20 and r30 are specified, the values in list12 appear as shown below (register bits

that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

• When all of the register’s non-corresponding bits are “0”: 08000001H

• When all of the register’s non-corresponding bits are “1”: 081FFFFFH

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to

sp; returns to general-purpose registers listed in list12 by loading the data from the address

specified by sp and adds 4 to sp.

 (2) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word length, to

sp; returns to general-purpose registers listed in list12 by loading the data from the address

specified by sp and adds 4 to sp; and transfers the control to the address specified by general-

purpose register reg1.

[Supplement] General-purpose registers in list12 are loaded in descending order (r31, r30, ... r20). The imm5

restores a stack frame for automatic variables and temporary data. The lower 2 bits of the address

specified by sp is always masked to “0” and aligned to the word boundary.

Cautions 1. If an exception occurs while this instruction is being executed, execution of the instruction might

be stopped after the read/write cycle and the register value write operation are completed, but sp

will retain its original value from before the start of execution. The instruction will be executed

again later, after a return from the exception.
 2. For instruction format (2) DISPOSE imm5, list12, [reg1], do not specify r0 for reg1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 222 of 450
Dec 22, 2016

<Divide instruction>

Divide word

DIV
Division of (signed) word data

[Instruction format] DIV reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000000

[Flags] CY —

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose register

reg1 and stores the quotient to general-purpose register reg2 with the remainder set to general-

purpose register reg3. General-purpose register reg1 is not affected. When division by zero occurs,

an overflow results and all operation results except for the OV flag are undefined.

[Supplement] Overflow occurs when the maximum negative value (80000000H) is divided by −1 with the quotient

= 80000000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIV instruction execution, the execution is aborted to process

the exception. The execution resumes at the original instruction address upon returning from the

exception. General-purpose register reg1 and general-purpose register reg2 retain their values prior

to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the operation

result quotient is not stored in reg2, so the flag is undefined.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 223 of 450
Dec 22, 2016

<Divide instruction>

Divide halfword

DIVH
Division of (signed) halfword data

[Instruction format] (1) DIVH reg1, reg2

 (2) DIVH reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] ÷ sign-extend(GR [reg1](15:0))

 (2) GR [reg2] ← GR [reg2] ÷ sign-extend(GR [reg1](15:0))

 GR [reg3] ← GR [reg2] % sign-extend(GR [reg1](15:0))

[Format] (1) Format I

 (2) Format XI

[Opcode] 15 0

 (1) rrrrr000010RRRRR

 RRRRR ≠ 00000 (Do not specify r0 for reg1.)

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01010000000

[Flags] CY —

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] (1) Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2. General-purpose

register reg1 is not affected. When division by zero occurs, an overflow results and all operation

results except for the OV flag are undefined.

 (2) Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2 with the remainder

set to general-purpose register reg3. General-purpose register reg1 is not affected. When division by

zero occurs, an overflow results and all operation results except for the OV flag are undefined.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 224 of 450
Dec 22, 2016

[Supplement] (1) The remainder is not stored. Overflow occurs when the maximum negative value

(80000000H) is divided by −1 with the quotient = 80000000H and when the data is divided by 0 with

quotient being undefined.

When an exception occurs during the DIVH instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon returning

from the exception. General-purpose register reg1 and general-purpose register reg2 retain their

values prior to execution of this instruction.

 (2) Overflow occurs when the maximum negative value (80000000H) is divided by −1 with the

quotient = 80000000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVH instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon returning

from the exception. General-purpose register reg1 and general-purpose register reg2 retain their

values prior to execution of this instruction.

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.
 2. Do not specify r0 as reg1 and reg2 for DIVH reg1 and reg2 in instruction format (1).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 225 of 450
Dec 22, 2016

<Divide instruction>

Divide halfword unsigned

DIVHU
Division of (unsigned) halfword data

[Instruction format] DIVHU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ zero-extend(GR [reg1](15:0))

GR [reg3] ← GR [reg2] % zero-extend(GR [reg1](15:0))

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01010000010

[Flags] CY —

OV “1” if overflow occurs; otherwise, “0”.

S “1” when the operation result quotient word data is “1”; otherwise, “0”

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2 with the remainder

set to general-purpose register reg3. General-purpose register reg1 is not affected. When division by

zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Supplement] Overflow occurs by division by zero (with the operation result being undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVHU instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon returning

from the exception. General-purpose register reg1 and general-purpose register reg2 retain their

values prior to execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the operation

result quotient is not stored in reg2, so the flag is undefined.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 226 of 450
Dec 22, 2016

<High-speed divide instructions>

Divide word quickly

DIVQ
Division of (signed) word data (variable steps)

[Instruction format] DIVQ reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011111100

[Flags] CY —

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT —

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose register

reg1, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2,

then this operation is executed. When division by zero occurs, an overflow results and all operation

results except for the OV flag are undefined.

[Supplement] (1) Overflow occurs when the maximum negative value (80000000H) is divided by −1 (with the

quotient = 80000000H) and when the data is divided by 0 with the quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After

exception handling is completed, the execution resumes at the original instruction address when

returning from the exception. General-purpose register reg1 and general-purpose register reg2

retain their values prior to execution of this instruction.

 (2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller the

number of execution cycles. In most cases, the number of instruction cycles is smaller than that of

the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit integer type

data, the difference in the number of valid bits is 15 or less, and the operation is completed within 20

cycles.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 227 of 450
Dec 22, 2016

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

 2. For the accurate number of execution cycles, see the appendix.

 3. If the number of execution cycles must always be constant to guarantee real-time features, use
the ordinary division instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 228 of 450
Dec 22, 2016

<High-speed divide instructions>

Divide word unsigned quickly

DIVQU
Division of (unsigned) word data (variable steps)

[Instruction format] DIVQU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011111110

[Flags] CY —

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT —

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose register

reg1, stores the quotient in reg2, and stores the remainder in general-purpose register reg3.

General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2,

then this operation is executed.

When division by zero occurs, an overflow results and all operation results except for the OV flag are

undefined.

[Supplement] (1) An overflow occurs when there is division by zero (the operation result is undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted. After

exception handling is completed, using the return address as this instruction’s start address, the

execution resumes when returning from the exception. General-purpose register reg1 and general-

purpose register reg2 retain their values prior to execution of this instruction.

 (2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller the

number of execution cycles. In most cases, the number of instruction cycles is smaller than that of

the ordinary division instruction. If data of 16-bit integer type is divided by another 16-bit integer type

data, the difference in the number of valid bits is 15 or less, and the operation is completed within 20

cycles.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 229 of 450
Dec 22, 2016

Cautions 1. If general-purpose registers reg2 and reg3 are specified as being the same register, the

operation result quotient is not stored in reg2, so the flag is undefined.

 2. For the accurate number of execution cycles, see the appendix.

 3. If the number of execution cycles must always be constant to guarantee real-time features, use
the ordinary division instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 230 of 450
Dec 22, 2016

<Divide instruction>

Divide word unsigned

DIVU
Division of (unsigned) word data

[Instruction format] DIVU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] ÷ GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww01011000010

[Flags] CY —

OV “1” if overflow occurs; otherwise, “0”.

S “1” when operation result quotient word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose register

reg1 and stores the quotient to general-purpose register reg2 with the remainder set to general-

purpose register reg3. General-purpose register reg1 is not affected.

When division by zero occurs, an overflow results and all operation results except for the OV flag are

undefined.

[Supplement] When an exception occurs during the DIVU instruction execution, the execution is aborted to

process the exception.

If reg2 and reg3 are the same register, the remainder is stored in that register.

The execution resumes at the original instruction address upon returning from the exception.

General-purpose register reg1 and general-purpose register reg2 retain their values prior to

execution of this instruction.

Caution If general-purpose registers reg2 and reg3 are specified as being the same register, the operation

result quotient is not stored in reg2, so the flag is undefined.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 231 of 450
Dec 22, 2016

<Special instruction>

Enable interrupt

EI
Enable EI level maskable exception

[Instruction format] EI

[Operation] PSW.ID ← 0 (enables EI level maskable exception)

[Format] Format X

[Opcode] 15 0 31 16

 1000011111100000 0000000101100000

[Flags] CY —

OV —

S —

Z —

SAT —

ID 0

[Description] Clears the ID flag of the PSW to “0” and enables the acknowledgement of maskable exceptions

starting the next instruction.

[Supplement] If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-level instruction.

If the MCTL.UIC bit has been set to 1, this instruction can always be executed.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 232 of 450
Dec 22, 2016

<Special instruction>

Return from trap or interrupt

EIRET
Return from EL level exception

[Instruction format] EIRET

[Operation] PC ← EIPC

 PSW ← EIPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101001000

[Flags] CY Value read from EIPSW is set

OV Value read from EIPSW is set

S Value read from EIPSW is set

Z Value read from EIPSW is set

SAT Value read from EIPSW is set

[Description] Returns execution from an EI level exception. The return PC and PSW are loaded from the EIPC

and EIPSW registers and set in the PC and PSW, and control is passed.

If EP = 0, it means that interrupt (EIINTn) processing has finished, so the corresponding bit of the

ISPR register is cleared.

[Supplement] This instruction is a supervisor-level instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 233 of 450
Dec 22, 2016

<Special instruction>

Return from trap or interrupt

FERET
Return from FE level exception

[Instruction format] FERET

[Operation] PC ← FEPC

 PSW ← FEPSW

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000101001010

[Flags] CY Value read from FEPSW is set

OV Value read from FEPSW is set

S Value read from FEPSW is set

Z Value read from FEPSW is set

SAT Value read from FEPSW is set

[Description] Returns execution from an FE level exception. The return PC and PSW are loaded from the FEPC

and FEPSW registers and set in the PC and PSW, and control is passed.

[Supplement] This instruction is a supervisor-level instruction.

Caution The FERET instruction can also be used as a hazard barrier instruction when the CPU’s operating

status (PSW) is changed by a control program such as the OS. Use the FERET instruction to clarify

the program blocks on which to effect the hardware function associated with the UM bit in the PSW

when these bits are changed to accord with the mounted CPU. The hardware function that operates

in accordance with the PSW value updated by the FERET instruction is guaranteed to be effected
from the instruction indicated by the return address of the FERET instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 234 of 450
Dec 22, 2016

<Special instruction>

FE-level Trap

FETRAP
FE level software exception

[Instruction format] FETRAP vector4

[Operation] FEPC ← PC + 2 (return PC)

FEPSW ← PSW

 FEIC ← exception cause codeNote 1

PSW.UM ← 0

PSW.NP ← 1

PSW.EP ← 1

PSW.ID ← 1

 PC ← exception handler addressNote 2

Notes 1. See Table 4-1 Exception Cause List.

 2. See 4.5 Exception Handler Address.

[Format] Format I

[Opcode] 15 0

 0vvvv00001000000

 Where vvvv is vector4.

 Do not set 0H to vector4 (vvvv ≠ 0000).

[Flags] CY —

OV —

S —

Z —

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 235 of 450
Dec 22, 2016

[Description] Saves the contents of the return PC (address of the instruction next to the FETRAP instruction) and

the current contents of the PSW to FEPC and FEPSW, respectively, stores the exception cause

code in the FEIC register, and updates the PSW according to the exception causes listed in Table 4-

1. Execution then branches to the exception handler address and exception handling is started.

Table 7-6 shows the correspondence between vector4 and exception cause codes and exception

handler address offset. Exception handler addresses are calculated based on the offset addresses

listed in Table 7-6. For details, see 4.5 Exception Handler Address.

Table 7-6 Correspondence between vector4 and Exception Cause Codes

and Exception Handler Address Offset

vector4
Exception Cause
Code Offset Address

00H Not specifiable

01H 00000031H 30H

02H 00000032H

...

0FH 0000003FH

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 236 of 450
Dec 22, 2016

<Special instruction>

Halt

HALT
Halt

[Instruction format] HALT

[Operation] Places the CPU core in the HALT state.

[Format] Format X

[Opcode] 15 0 31 16

 0000011111100000 0000000100100000

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Places the CPU core that executed the HALT instruction in the HALT state.

 Occurrence of the HALT state release request will return the system to normal execution status.

 If an exception is acknowledged while the system is in HALT state, the return PC of that exception is

the PC of the instruction that follows the HALT instruction.

The HALT state is released under the following condition.
• A terminating exception occurs

 Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID or NP

value), as long as a HALT mode release request exists, HALT state is released (for example, even if

PSW.ID = 1, HALT state is released when INT0 occurs).

Note, however, that the HALT mode will not be released if terminating exceptions are masked by the

following mask settings, which are defined individually for each function:
• Terminating exceptions are masked by an interrupt channel mask setting specified by

the interrupt controllerNote.
• Terminating exceptions are masked by a mask setting specified by using the floating-

point operation exception enable bit.
• Terminating exceptions are masked by a mask setting defined by a hardware function

other than the above.

Note This does not include masking specified by the ISPR and PMR registers.

[Supplement] This instruction is a supervisor-level instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 237 of 450
Dec 22, 2016

<Data manipulation instructions>

Halfword swap halfword

HSH
Halfword swap of halfword data

[Instruction format] HSH reg2, reg3

[Operation] GR [reg3] ← GR [reg2]

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000110

[Flags] CY “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

SAT —

[Description] Stores the content of general-purpose register reg2 in general-purpose register reg3, and stores the

flag judgment result in PSW.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 238 of 450
Dec 22, 2016

<Data manipulation instruction>

Halfword swap word

HSW
Halfword swap of word data

[Instruction format] HSW reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (15:0) || GR [reg2] (31:16)

[Format] Format XII

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101000100

[Flags] CY “1” when there is at least one halfword of zero in the word data of the operation result;

otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT —

[Description] Executes endian swap.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 239 of 450
Dec 22, 2016

<Branch instruction>

Jump and register link

JARL
Branch and register link

[Instruction format] (1) JARL disp22, reg2

 (2) JARL disp32, reg1

 (3) JARL [reg1], reg3

[Operation] (1) GR [reg2] ← PC + 4

PC ← PC + sign-extend (disp22)

 (2) GR [reg1] ← PC + 6

PC ← PC + disp32

 (3) GR[reg3] ← PC + 4

PC ← GR[reg1]

[Format] (1) Format V

 (2) Format VI

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr11110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (2) 00000010111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

 RRRRR ≠ 00000 (Do not specify r0 for reg1.)

 15 0 31 16

 (3) 11000111111RRRRR WWWWW00101100000

 WWWWW ≠ 00000 (Do not specify r0 for reg3.)

[Flags] CY —

OV —

S —

Z —

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 240 of 450
Dec 22, 2016

[Description] (1) Saves the current PC value + 4 in general-purpose register reg2, adds the 22-bit

displacement data, sign-extended to word length, to PC; stores the value in and transfers the control

to PC. Bit 0 of the 22-bit displacement is masked to “0”.

 (2) Saves the current PC value + 6 in general-purpose register reg1, adds the 32-bit

displacement data to PC and stores the value in and transfers the control to PC. Bit 0 of the 32-bit

displacement is masked to “0”.

 (3) Stores the current PC value + 4 in reg3, specifies the contents of reg1 for the PC value, and

then transfers the control.

[Supplement] The current PC value used for calculation is the address of the first byte of this instruction itself. The

jump destination is this instruction with the displacement value = 0. JARL instruction corresponds to

the call function of the subroutine control instruction, and saves the return PC address in either reg1

or reg2. JMP instruction corresponds to the return function of the subroutine control instruction, and

can be used to specify general-purpose register containing the return address as reg1 to the return

PC.

Caution Do not specify r0 for the general-purpose register reg2 in the instruction format (1) JARL disp22, reg2.

Do not specify r0 for the general-purpose register reg1 in the instruction format (2) JARL disp32, reg1.
Do not specify r0 for the general-purpose register reg3 in the instruction format (3) JARL [reg1], reg3.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 241 of 450
Dec 22, 2016

<Branch instruction>

Jump register

JMP
Unconditional branch (register relative)

[Instruction format] (1) JMP [reg1]

 (2) JMP disp32 [reg1]

[Operation] (1) PC ← GR [reg1]

 (2) PC ← GR [reg1] + disp32

[Format] (1) Format I

 (2) Format VI

[Opcode] 15 0

 (1) 00000000011RRRRR

 15 0 31 16 47 32

 (2) 00000110111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Transfers the control to the address specified by general-purpose register reg1. Bit 0 of the

address is masked to “0”.

 (2) Adds the 32-bit displacement to general-purpose register reg1, and transfers the control to the

resulting address. Bit 0 of the address is masked to “0”.

[Supplement] Using this instruction as the subroutine control instruction requires the return PC to be specified by

general-purpose register reg1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 242 of 450
Dec 22, 2016

<Branch instruction>

Jump relative

JR
Unconditional branch (PC relative)

[Instruction format] (1) JR disp22

 (2) JR disp32

[Operation] (1) PC ← PC + sign-extend (disp22)

 (2) PC ← PC + disp32

[Format] (1) Format V

 (2) Format VI

[Opcode] 15 0 31 16

 (1) 0000011110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

 15 0 31 16 47 32

 (2) 0000001011100000 ddddddddddddddd0 DDDDDDDDDDDDDDDD

 DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC and stores

the value in and transfers the control to PC. Bit 0 of the 22-bit displacement is masked to “0”.

 (2) Adds the 32-bit displacement data to the current PC and stores the value in PC and transfers

the control to PC. Bit 0 of the 32-bit displacement is masked to “0”.

[Supplement] The current PC value used for calculation is the address of the first byte of this instruction itself. The

displacement value being “0” signifies that the branch destination is the instruction itself.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 243 of 450
Dec 22, 2016

<Load instruction>

Load byte

LD.B
Load of (signed) byte data

[Instruction format] (1) LD.B disp16 [reg1] , reg2

(2) LD.B disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 GR [reg2] ← sign-extend (Load-memory (adr, Byte))

(2) adr ← GR [reg1] + sign-extend (disp23)Note

 GR [reg3] ← sign-extend (Load-memory (adr, Byte))

Note An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr111000RRRRR dddddddddddddddd

 15 0 31 16 47 32

 (2) 00000111100RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

 ddddddd is the lower side bits 6 to 1 of disp23.

 DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated address,

sign-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated address,

sign-extended to word length, and stored in general-purpose register reg3.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 244 of 450
Dec 22, 2016

<Load instruction>

Load byte unsigned

LD.BU
Load of (unsigned) byte data

[Instruction format] (1) LD.BU disp16 [reg1] , reg2

(2) LD.BU disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 GR [reg2] ← zero-extend (Load-memory (adr, Byte))

(2) adr ← GR [reg1] + sign-extend (disp23)Note

 GR [reg3] ← zero-extend (Load-memory (adr, Byte))

Note An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr11110bRRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16, and b is bit 0 of disp16.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (2) 00000111101RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated address,

zero-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated address,

zero-extended to word length, and stored in general-purpose register reg3.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 245 of 450
Dec 22, 2016

Caution Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 246 of 450
Dec 22, 2016

<Load instruction>

Load Double Word

LD.DW
Load of doubleword data

[Instruction format] LD.DW disp23[reg1], reg3

[Operation] adr ← GR [reg1] + sign-extend (disp23)Note

data ← Load-memory (adr, Double-word)

GR [reg3 + 1] || GR [reg3] ← data

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format XIV

[Opcode] 15 0 31 16 47 32

 00000111101RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

 Where RRRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Generates a 32-bit address by adding a 23-bit displacement value sign-extended to word length to

the word data of general-purpose register reg1. Doubleword data is read from the generated 32-bit

address and the lower 32 bits are stored in general-purpose register reg3, and the higher 32 bits in

reg3 + 1.

[Supplement] reg3 must be an even-numbered register.

Cautions 1. According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.

For details, see the hardware manual of the product used.

 2. However, a misaligned access exception will not occur if the result of address calculation has a
word boundary.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 247 of 450
Dec 22, 2016

<Load instruction>

Load halfword

LD.H
Load of (unsigned) halfword data

[Instruction format] (1) LD.H disp16 [reg1] , reg2

(2) LD.H disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

(2) adr ← GR [reg1] + sign-extend (disp23)Note

 GR [reg3] ← sign-extend (Load-memory (adr, Halfword))

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr111001RRRRR ddddddddddddddd0

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

 (2) 00000111100RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit address,

sign-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit address,

sign-extended to word length, and stored in general-purpose register reg3.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 248 of 450
Dec 22, 2016

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 249 of 450
Dec 22, 2016

<Load instruction>

Load halfword unsigned

LD.HU
Load of (signed) halfword data

[Instruction format] (1) LD.HU disp16 [reg1] , reg2

(2) LD.HU disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 GR [reg2] ← zero-extend (Load-memory (adr, Halfword))

(2) adr ← GR [reg1] + sign-extend (disp23)Note

 GR [reg3] ← zero-extend (Load-memory (adr, Halfword))

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (2) 00000111101RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

OV —

S —

Z —

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 250 of 450
Dec 22, 2016

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this 32-bit address,

zero-extended to word length, and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Halfword data is read from this address,

zero-extended to word length, and stored in general-purpose register reg3.

Cautions 1. Do not specify r0 for reg2.

 2. According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 251 of 450
Dec 22, 2016

<Load instruction>

Load word

LD.W
Load of word data

[Instruction format] (1) LD.W disp16 [reg1] , reg2

(2) LD.W disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 GR [reg2] ← Load-memory (adr, Word)

(2) adr ← GR [reg1] + sign-extend (disp23)Note

 GR [reg3] ← Load-memory (adr, Word)

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr111001RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

 (2) 00000111100RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Word data is read from this 32-bit address,

and stored in general-purpose register reg2.

 (2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Word data is read from this address, and

stored in general-purpose register reg3.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 252 of 450
Dec 22, 2016

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 253 of 450
Dec 22, 2016

<Special instruction>

Load Linked

LDL.W
Load to start atomic word data manipulation

[Instruction format] LDL.W [reg1], reg3

[Operation] adr ← GR[reg1]Note 1

GR[reg3] ← Load-memory (adr, Word)

LLbit ← 1Note 2

 Notes 1. An MAE, MDP, or DTLBE exception might occur depending on the result of address

calculation.

 2. The result of an interrupt or exception, or the execution of a CLL, EIRET, or FERET

instruction is LLbit ← 0.

[Format] Format VII

[Opcode] 15 0 31 16

 00000111111RRRRR wwwww01101111000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] In order to perform an atomic read-modify-write operation, word data is read from the memory and

stored in general-purpose register reg3. A link is then generated corresponding to the address range

that includes the specified address.

Subsequently, if a specific condition is satisfied before an STC.W instruction is executed for this

LDL.W instruction, the link will be deleted. If an STC.W instruction is executed after the link has

been deleted, STC.W execution will fail.

If an STC.W instruction is executed while the link is still available, STC.W execution will succeed.

The link is also deleted in this case.

The LDL.W and STC.W instructions can be used to accurately update the memory in a multi-core

system.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 254 of 450
Dec 22, 2016

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic guarantee is

required when updating the memory in a multi-core system.

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 255 of 450
Dec 22, 2016

<Special instruction>

Load to system register

LDSR
Load to system register

[Instruction format] LDSR reg2, regID, selID

LDSR reg2, regID

[Operation] SR [regID, selID] ← GR [reg2]Note

Note An exception might occur depending on the access permission. For details, see 2.5.3

Register Updating.

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR sssss00000100000

rrrrr: regID, sssss: selID, RRRRR: reg2

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Loads the word data of general-purpose register reg2 to the system register specified by the system

register number and group number (regID, selID). General-purpose register reg2 is not affected. If

selID is omitted, it is assumed that selID is 0.

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending on the

combination of CPU operating mode and system register to be accessed. For details, see 2.5.3

Register Updating.

Cautions 1. In this instruction, general-purpose register reg2 is used as the source register, but, for

mnemonic description convenience, the general-purpose register reg1 field is used in the

opcode. The meanings of the register specifications in the mnemonic descriptions and opcode

therefore differ from those of other instructions.

 2. The system register number or group number is a unique number used to identify each system
register. How to access undefined registers is described in 2.5.4 Accessing Undefined
Registers, but accessing undefined registers is not recommended.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 256 of 450
Dec 22, 2016

<Loop instruction>

Loop

LOOP

[Instruction format] LOOP reg1,disp16

[Operation] GR[reg1] ← GR[reg1] + (-1)Note

 if (GR[reg1] != 0)

then

 PC ← PC - zero-extend (disp16)

Note −1 (0xFFFFFFFF) is added. The carry flag is updated in the same way as when the ADD

instruction is executed.

[Format] Format VII

[Opcode] 15 0 31 16

 00000110111RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

[Flags] CY “1” if a carry occurs from MSB in the reg1 operation; otherwise, “0”.

OV “1” if an overflow occurs in the reg1 operation; otherwise, “0”.

S “1” if reg1 is negative; otherwise, “0”.

Z “1” if reg1 is 0; otherwise, “0”.

SAT —

[Description] Updates the general-purpose register reg1 by adding -1 from its contents. If the contents after this

update are not 0, the following processing is performed. If the contents are 0, the system continues

to the next instruction.

 • The result of logically shifting the 15-bit immediate data 1 bit to the left and zero-extending it to

word length is subtracted from the current PC value, and then the control is transferred.

 • −1 (0xFFFFFFFF) is added to general-purpose register reg1. The carry flag is updated in the same

way as when the ADD instruction, not the SUB instruction, is executed.

[Supplement] “0” is implicitly used for bit 0 of the 16-bit displacement. Note that, because the current PC value

used for calculation is the address of the first byte of this instruction, if the displacement value is 0,

the branch destination is this instruction.

Caution Do not specify r0 for reg1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 257 of 450
Dec 22, 2016

<Multiply-accumulate instruction>

Multiply and add word

MAC
Multiply-accumulate for (signed) word data

[Instruction format] MAC reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] ← GR [reg2] × GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011110mmmm0

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this

would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit data),

the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are stored in

general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered register

(r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3, …, r31) is specified.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 258 of 450
Dec 22, 2016

<Multiply-accumulate instruction>

Multiply and add word unsigned

MACU
Multiply-accumulate for (unsigned) word data

[Instruction format] MACU reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] ← GR [reg2] × GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwww0011111mmmm0

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example, this

would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result (64-bit data),

the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32 bits are stored in

general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

Caution General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered register

(r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3, …, r31) is specified.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 259 of 450
Dec 22, 2016

<Arithmetic instruction>

Move register/immediate (5-bit) /immediate (32-bit)

MOV
Data transfer

[Instruction format] (1) MOV reg1, reg2

 (2) MOV imm5, reg2

 (3) MOV imm32, reg1

[Operation] (1) GR [reg2] ← GR [reg1]

 (2) GR [reg2] ← sign-extend (imm5)

 (3) GR [reg1] ← imm32

[Format] (1) Format I

 (2) Format II

 (3) Format VI

[Opcode] 15 0

 (1) rrrrr000000RRRRR

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010000iiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

 (3) 00000110001RRRRR iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.

I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Copies and transfers the word data of general-purpose register reg1 to general-purpose

register reg2. General-purpose register reg1 is not affected.

 (2) Copies and transfers the 5-bit immediate data, sign-extended to word length, to general-

purpose register reg2.

 (3) Copies and transfers the 32-bit immediate data to general-purpose register reg1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 260 of 450
Dec 22, 2016

Caution Do not specify r0 as reg2 in MOV reg1, reg2 for instruction format (1) or in MOV imm5, reg2 for

instruction format (2).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 261 of 450
Dec 22, 2016

<Arithmetic instruction>

Move effective address

MOVEA
Effective address transfer

[Instruction format] MOVEA imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110001RRRRR iiiiiiiiiiiiiiii

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. Neither general-purpose register

reg1 nor the flags is affected.

[Supplement] This instruction is to execute a 32-bit address calculation with the PSW flag value unchanged.

Caution Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 262 of 450
Dec 22, 2016

<Arithmetic instruction>

Move high halfword

MOVHI
Higher halfword transfer

[Instruction format] MOVHI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + (imm16 || 016)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110010RRRRR iiiiiiiiiiiiiiii

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the word data with its higher 16 bits specified as the 16-bit immediate data and the lower 16

bits being “0” to the word data of general-purpose register reg1 and stores the result in general-

purpose register reg2. Neither general-purpose register reg1 nor the flags is affected.

[Supplement] This instruction is to generate the higher 16 bits of a 32-bit address.

Caution Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 263 of 450
Dec 22, 2016

<Multiply instruction>

Multiply word by register/immediate (9-bit)

MUL
Multiplication of (signed) word data

[Instruction format] (1) MUL reg1, reg2, reg3

 (2) MUL imm9, reg2, reg3

[Operation] (1) GR [reg3] || GR [reg2] ← GR [reg2] × GR [reg1]

 (2) GR [reg3] || GR [reg2] ← GR [reg2] × sign-extend (imm9)

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100000

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII00

iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then stores the higher 32 bits of the result (64-bit data) in general-purpose register

reg3 and the lower 32 bits in general-purpose register reg2.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

General-purpose register reg1 is not affected.

 (2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, extended to

word length, then stores the higher 32 bits of the result (64-bit data) in general-purpose register reg3

and the lower 32 bits in general-purpose register reg2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register, only the

higher 32 bits of the multiplication result are stored in the register.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 264 of 450
Dec 22, 2016

<Multiply instruction>

Multiply halfword by register/immediate (5-bit)

MULH
Multiplication of (signed) halfword data

[Instruction format] (1) MULH reg1, reg2

 (2) MULH imm5, reg2

[Operation] (1) GR [reg2] ← GR [reg2] (15:0) × GR [reg1] (15:0)

 (2) GR [reg2] ← GR [reg2] × sign-extend (imm5)

[Format] (1) Format I

 (2) Format II

[Opcode] 15 0

 (1) rrrrr000111RRRRR

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010111iiiii

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of

general-purpose register reg1 and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

 (2) Multiplies the lower halfword data of general-purpose register reg2 by the 5-bit immediate

data, sign-extended to halfword length, and stores the result in general-purpose register reg2.

[Supplement] In the case of a multiplier or a multiplicand, the higher 16 bits of general-purpose registers reg1 and

reg2 are ignored.

Caution Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 265 of 450
Dec 22, 2016

<Multiply instruction>

Multiply halfword by immediate (16-bit)

MULHI
Multiplication of (signed) halfword immediate data

[Instruction format] MULHI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1](15:0) × imm16

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110111RRRRR iiiiiiiiiiiiiiii

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate data and

stores the result in general-purpose register reg2. General-purpose register reg1 is not affected.

[Supplement] In the case of a multiplicand, the higher 16 bits of general-purpose register reg1 are ignored.

Caution Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 266 of 450
Dec 22, 2016

<Multiply instruction>

Multiply word unsigned by register/immediate (9-bit)

MULU
Multiplication of (unsigned) word data

[Instruction format] (1) MULU reg1, reg2, reg3

 (2) MULU imm9, reg2, reg3

[Operation] (1) GR [reg3] || GR [reg2] ← GR [reg2] × GR [reg1]

 (2) GR [reg3] || GR [reg2] ← GR [reg2] × zero-extend (imm9)

[Format] (1) Format XI

 (2) Format XII

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR wwwww01000100010

 15 0 31 16

 (2) rrrrr111111iiiii wwwww01001IIII10

 iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then stores the higher 32 bits of the result (64-bit data) in general-purpose register

reg3 and the lower 32 bits in general-purpose register reg2.

General-purpose register reg1 is not affected.

 (2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, zero-

extended to word length, then stores the higher 32 bits of the result (64-bit data) in general-purpose

register reg3 and the lower 32 bits in general-purpose register reg2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register, only the

higher 32 bits of the multiplication result are stored in the register.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 267 of 450
Dec 22, 2016

<Special instruction>

No operation

NOP
No operation

[Instruction format] NOP

[Operation] No operation is performed.

[Format] Format I

[Opcode] 15 0

 0000000000000000

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Performs no processing and executes the next instruction.

[Supplement] The opcode is the same as that of MOV r0, r0.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 268 of 450
Dec 22, 2016

<Logical instruction>

NOT

NOT
Logical negation (1’s complement)

[Instruction format] NOT reg1, reg2

[Operation] GR [reg2] ← NOT (GR [reg1])

[Format] Format I

[Opcode] 15 0

 rrrrr000001RRRRR

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] Logically negates the word data of general-purpose register reg1 using 1’s complement and stores

the result in general-purpose register reg2. General-purpose register reg1 is not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 269 of 450
Dec 22, 2016

<Bit manipulation instruction>

NOT bit

NOT1
NOT bit

[Instruction format] (1) NOT1 bit#3, disp16 [reg1]

 (2) NOT1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← not-bit (token, bit#3)

Store-memory (adr, token, Byte)

 (2) adr ← GR [reg1]Note

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← not-bit (token, reg2)

Store-memory (adr, token, Byte)

Note An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 01bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100010

[Flags] CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 270 of 450
Dec 22, 2016

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated address,

then the bits indicated by the 3-bit bit number are inverted (0 → 1, 1 → 0) and the data is written

back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is “1”, the

Z flag is cleared to “0”.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, then the bits specified by lower 3 bits of general-purpose

register reg2 are inverted (0 → 1, 1 → 0) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is “1”, the

Z flag is cleared to “0”.

[Supplement] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is executed

and does not indicate the content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the period

between read and write operations, the target address is not affected by access due to any other
cause.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 271 of 450
Dec 22, 2016

<Logical instruction>

OR

OR
OR

[Instruction format] OR reg1, reg2

[Operation] GR [reg2] ← GR [reg2] OR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001000RRRRR

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] ORs the word data of general-purpose register reg2 with the word data of general-purpose register

reg1 and stores the result in general-purpose register reg2. General-purpose register reg1 is not

affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 272 of 450
Dec 22, 2016

<Logical instruction>

OR immediate (16-bit)

ORI
OR immediate

[Instruction format] ORI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] OR zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110100RRRRR iiiiiiiiiiiiiiii

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] ORs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-extended

to word length, and stores the result in general-purpose register reg2. General-purpose register reg1

is not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 273 of 450
Dec 22, 2016

<Special instruction>

Pop registers from Stack

POPSP
POP from the stack

[Instruction format] POPSP rh-rt

[Operation] if rh ≤ rt

 then cur ← rt

 end ← rh

 tmp ← sp

 while (cur ≥ end) {

 adr ← tmpNotes 1, 2

 GR[cur] ← Load-memory (adr, Word)

 cur ← cur − 1

 tmp ← tmp + 4

 }

 sp ← tmp

Notes 1. An MDP exception might occur depending on the result of address calculation.

 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode] 15 0 31 16

 01100111111RRRRR wwwww00101100000

 RRRRR indicates rh.

 wwwww indicates rt.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Loads general-purpose register rt to rh from the stack in descending order (rt, rt –1, rt – 2, …, rh).

After all the registers down to the specified register have been loaded, sp is updated (incremented).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 274 of 450
Dec 22, 2016

[Supplement] The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and exception

handling is executed with the start address of this instruction used as the return address. The

POPSP instruction is then executed again. (The sp value from before the exception handling is

saved.)

Caution If a register that includes sp(r3) is specified as the restore register (rh = 3 to 31), the value read from

the memory is not stored in sp(r3). This allows the POPSP instruction to be correctly re-executed

after execution has been halted.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 275 of 450
Dec 22, 2016

<Special instruction>

Function prepare

PREPARE
Create stack frame

[Instruction format] (1) PREPARE list12, imm5

 (2) PREPARE list12, imm5, sp/immNote

 Note The sp/imm values are specified by bits 19 and 20 of the sub-opcode.

[Operation] (1) tmp ← sp

foreach (all regs in list12) {

 tmp ← tmp − 4

 adr ← tmpNotes 1, 2

 Store-memory (adr, GR[reg in list12], Word)

}

sp ← tmp − zero-extend (imm5 logically shift left by 2)

 (2) tmp ← sp

foreach (all regs in list12) {

 tmp ← tmp − 4

 adr ← tmpNotes 1, 2

 Store-memory (adr, GR[reg in list12], Word)

}

sp ← tmp − zero-extend (imm5 logically shift left by 2)

case

 ff = 00: ep ← sp

 ff = 01: ep ← sign-extend (imm16)

 ff = 10: ep ← imm16 logically shift left by 16

 ff = 11: ep ← imm32

Notes 1. An MDP exception might occur depending on the result of address calculation.

 2. The lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode] 15 0 31 16

 (1) 0000011110iiiiiL LLLLLLLLLLL00001

 15 0 31 16 Option (47-32 or 63-32)

 (2) 0000011110iiiiiL LLLLLLLLLLLff011 imm16 / imm32

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 276 of 450
Dec 22, 2016

 In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32 and bits 63 to

48 are the higher 16 bits of imm32.

 ff = 00: sp is loaded to ep

 ff = 01: Sign-extended 16-bit immediate data (bits 47 to 32) is loaded to ep

 ff = 10: 16-bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep

 ff = 11: 32-bit immediate data (bits 63 to 32) is loaded to ep

 The values of LLLLLLLLLLLL are the corresponding bit values shown in register list “list12” (for

example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in list12).

list12 is a 32-bit register list, defined as follows.

 31 30 29 28 27 26 25 24 23 22 21 20 ... 1 0

 r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 -- r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any of

these bits is set (1), it specifies a corresponding register operation as a processing target. For

example, when r20 and r30 are specified, the values in list12 appear as shown below (register bits

that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

 • When all of the register’s non-corresponding bits are “0”: 08000001H

 • When all of the register’s non-corresponding bits are “1”: 081FFFFFH

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] (1) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the

data is stored in that address). Next, subtracts 5-bit immediate data, logically left-shifted by 2 bits

and zero-extended to word length, from sp.

 (2) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and the

data is stored in that address). Next, subtracts 5-bit immediate data, logically left-shifted by 2 bits

and zero-extended to word length, from sp.

Then, loads the data specified by the third operand (sp/imm) to ep.

[Supplement] list12 general-purpose registers are saved in ascending order (r20, r21, ..., r31).

imm5 is used to create a stack frame that is used for auto variables and temporary data.

The lower two bits of the address specified by sp are masked to 0 and aligned to the word boundary.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 277 of 450
Dec 22, 2016

Caution If an exception occurs while this instruction is being executed, execution of the instruction might be

stopped after the write cycle and the register value write operation are completed, but sp will retain

its original value from before the start of execution. The instruction will be executed again later, after
a return from the exception.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 278 of 450
Dec 22, 2016

<Special instruction>

Push registers to Stack

PUSHSP

[Instruction format] PUSHSP rh-rt

[Operation] if rh ≤ rt

 then cur ← rh

 end ← rt

 tmp ← sp

 while (cur ≤ end) {

 tmp ← tmp − 4
 adr ← tmpNotes 1, 2

 Store-memory (adr, GR[cur], Word)

 cur ← cur + 1

 }

 sp ← tmp

Notes 1. An MDP exception might occur depending on the result of address calculation.

 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode] 15 0 31 16

 01000111111RRRRR wwwww00101100000

 RRRRR indicates rh.

 wwwww indicates rt.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Stores general-purpose register rh to rt in the stack in ascending order (rh, rh +1, rh + 2, …, rt). After

all the specified registers have been stored, sp is updated (decremented).

[Supplement] The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and exception

handling is executed with the start address of this instruction used as the return address. The

PUSHSP instruction is then executed again. (The sp value from before the exception handling is

saved.)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 279 of 450
Dec 22, 2016

<Special instruction>

Reserved instruction exception

RIE
Reserved instruction exception

[Instruction format] (1) RIE

(2) RIE imm5, imm4

[Operation] FEPC ← PC (return PC)

FEPSW ← PSW

FEIC ← exception cause code (00000060H)

PSW.UM ← 0

PSW.NP ← 1

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler address (offset address 60H)

[Format] (1) Format I

(2) Format X

[Opcode] 15 0

 (1) 0000000001000000

 15 0 31 16

 (2) iiiii1111111IIII 0000000000000000

 Where iiiii = imm5, IIII = imm4.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Saves the contents of the return PC (address of the RIE instruction) and the current contents of the

PSW to FEPC and FEPSW, respectively, stores the exception cause code in the FEIC register, and

updates the PSW according to the exception causes listed in Table 4-1. Execution then branches to

the exception handler address and exception handling is started.

Exception handler addresses are calculated based on the offset address 60H. For details, see 4.5

Exception Handler Address.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 280 of 450
Dec 22, 2016

<Data manipulation instruction>

Rotate Left

ROTL
Rotate

[Instruction format] (1) ROTL imm5, reg2, reg3

 (2) ROTL reg1,reg2,reg3

[Operation] (1) GR[reg3] ← GR[reg2] rotate left by zero-extend (imm5)

 (2) GR[reg3] ← GR[reg2] rotate left by GR[reg1]

[Format] Format VII

[Opcode] 15 0 31 16

 (1) rrrrr111111iiiii wwwww00011000100

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww00011000110

[Flags] CY “1” if operation result bit 0 is “1”; otherwise “0”, including if the rotate amount is “0”.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] (1) Rotates the word data of general-purpose register reg2 to the left by the specified shift

amount, which is indicated by a 5-bit immediate value zero-extended to word length. The result is

written to general-purpose register reg3. General-purpose register reg2 is not affected.

 (2) Rotates the word data of general-purpose register reg2 to the left by the specified shift

amount indicated by the lower 5 bits of general-purpose register reg1. The result is written to

general-purpose register reg3. General-purpose registers reg1 and reg2 are not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 281 of 450
Dec 22, 2016

<Data manipulation instruction>

Shift arithmetic right by register/immediate (5-bit)

SAR
Arithmetic right shift

[Instruction format] (1) SAR reg1, reg2

 (2) SAR imm5, reg2

 (3) SAR reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] arithmetically shift right by GR [reg1]

 (2) GR [reg2] ← GR [reg2] arithmetically shift right by zero-extend (imm5)

 (3) GR [reg3] ← GR [reg2] arithmetically shift right by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010100000

 15 0

 (2) rrrrr010101iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010100010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 282 of 450
Dec 22, 2016

[Description] (1) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by copying the pre-shift MSB

value to the post-shift MSB. The result is written to general-purpose register reg2. General-purpose

register reg1 is not affected.

 (2) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by copying the pre-shift

MSB value to the post-shift MSB. The result is written to general-purpose register reg2.

 (3) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by copying the pre-shift MSB

value to the post-shift MSB. The result is written to general-purpose register reg3. General-purpose

registers reg1 and reg2 are not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 283 of 450
Dec 22, 2016

<Data manipulation instruction>

Shift and set flag condition

SASF
Shift and flag condition setting

[Instruction format] SASF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 00000001H

 else GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000001000000000

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] When the condition specified by condition code “cccc” is met, logically left-shifts data of general-

purpose register reg2 by 1 bit, and sets (1) the least significant bit (LSB). If a condition is not met,

logically left-shifts data of reg2 and clears the LSB.

Designate one of the condition codes shown in the following table as [cccc].

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Supplement] See the SETF instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 284 of 450
Dec 22, 2016

<Saturated operation instructions>

Saturated add register/immediate (5-bit)

SATADD
Saturated addition

[Instruction format] (1) SATADD reg1, reg2

 (2) SATADD imm5, reg2

 (3) SATADD reg1, reg2, reg3

[Operation] (1) GR [reg2] ← saturated (GR [reg2] + GR [reg1])

 (2) GR [reg2] ← saturated (GR [reg2] + sign-extend (imm5))

 (3) GR [reg3] ← saturated (GR [reg2] + GR [reg1])

[Format] (1) Format I

 (2) Format II

 (3) Format XI

[Opcode] 15 0

 (1) rrrrr000110RRRRR

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0

 (2) rrrrr010001iiiii

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww01110111010

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg2. However, when the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2; then the SAT flag

is set (1). General-purpose register reg1 is not affected.

 (2) Adds the 5-bit immediate data, sign-extended to the word length, to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. However, when the

result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg2; then the SAT flag

is set (1).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 285 of 450
Dec 22, 2016

 (3) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg3. However, when the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg3; then the SAT flag

is set (1). General-purpose registers reg1 and reg2 are not affected.

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 as reg2 in instruction format (1) SATADD reg1, reg2 and in instruction format
(2) SATADD imm5, reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 286 of 450
Dec 22, 2016

<Saturated operation instruction>

Saturated subtract

SATSUB
Saturated subtraction

[Instruction format] (1) SATSUB reg1, reg2

 (2) SATSUB reg1, reg2, reg3

[Operation] (1) GR [reg2] ← saturated (GR [reg2] − GR [reg1])

 (2) GR [reg3] ← saturated (GR [reg2] − GR [reg1])

[Format] (1) Format I

 (2) Format XI

[Opcode] 15 0

 (1) rrrrr000101RRRRR

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16

 (2) rrrrr111111RRRRR wwwww01110011010

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] (1) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. If the result exceeds

the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register reg1 is not affected.

 (2) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg3. However, when the

result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg3, and when it

exceeds the maximum negative value 80000000H, 80000000H is stored in reg3; then the SAT flag

is set (1). General-purpose registers reg1 and reg2 are not affected.

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 as reg2 in instruction format (1) SATSUB reg1, reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 287 of 450
Dec 22, 2016

<Saturated operation instruction>

Saturated subtract immediate

SATSUBI
Saturated subtraction

[Instruction format] SATSUBI imm16, reg1, reg2

[Operation] GR [reg2] ← saturated (GR [reg1] − sign-extend (imm16))

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110011RRRRR iiiiiiiiiiiiiiii

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. If the result exceeds

the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register reg1 is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 288 of 450
Dec 22, 2016

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR
Saturated reverse subtraction

[Instruction format] SATSUBR reg1, reg2

[Operation] GR [reg2] ← saturated (GR [reg1] − GR [reg2])

[Format] Format I

[Opcode] 15 0

 rrrrr000100RRRRR

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. If the result exceeds the

maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the result exceeds the

maximum negative value 80000000H, 80000000H is stored in reg2. The SAT flag is set to “1”.

General-purpose register reg1 is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be cleared to

“0” even if the result of the subsequent operation is not saturated. The saturated operation

instruction is executed normally, even with the SAT flag set to “1”.

Cautions 1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

 2. Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 289 of 450
Dec 22, 2016

<Conditional operation instructions>

Subtract on condition flag

SBF
Conditional subtraction

[Instruction format] SBF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3] ← GR [reg2] − GR [reg1] −1

else GR [reg3] ← GR [reg2] − GR [reg1] −0

[Format] Format XI

[Opcode] 15 0 31 16

 rrrrr111111RRRRR wwwww011100cccc0

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if operation result is negative; otherwise, “0”.

Z “1” if operation result is “0”; otherwise, “0”.

SAT —

[Description] Subtracts 1 from the result of subtracting the word data of general-purpose register reg1 from the

word data of general-purpose register reg2, and stores the result of subtraction in general-purpose

register reg3, if the condition specified by condition code “cccc” is satisfied.

If the condition specified by condition code “cccc” is not satisfied, subtracts the word data of general-

purpose register reg1 from the word data of general-purpose register reg2, and stores the result in

general-purpose register reg3.

General-purpose registers reg1 and register 2 are not affected.

Designate one of the condition codes shown in the following table as [cccc]. (However, cccc cannot

equal 1101.)

Condition Code Name Condition Formula Condition Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) 1011 Setting prohibited

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 290 of 450
Dec 22, 2016

<Bit search instructions>

Search zero from left

SCH0L
Bit (0) search from MSB side

[Instruction format] SCH0L reg2, reg3

[Operation] GR [reg3] ← search zero from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100100

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 31 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the bit (0)

found is the LSB, the CY flag is set (1).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 291 of 450
Dec 22, 2016

<Bit search instructions>

Search zero from right

SCH0R
Bit (0) search from LSB side

[Instruction format] SCH0R reg2, reg3

[Operation] GR [reg3] ← search zero from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100000

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 0 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the bit (0)

found is the MSB, the CY flag is set (1).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 292 of 450
Dec 22, 2016

<Bit search instructions>

Search one from left

SCH1L
Bit (1) search from MSB side

[Instruction format] SCH1L reg2, reg3

[Operation] GR [reg3] ← search one from left of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100110

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 31 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the bit (1)

found is the LSB, the CY flag is set (1).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 293 of 450
Dec 22, 2016

<Bit search instructions>

Search one from right

SCH1R
Bit (1) search from LSB side

[Instruction format] SCH1R reg2, reg3

[Operation] GR [reg3] ← search one from right of GR [reg2]

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr11111100000 wwwww01101100010

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes the

number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-purpose

register reg3 (e.g., when bit 0 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the bit (1)

found is the MSB, the CY flag is set (1).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 294 of 450
Dec 22, 2016

<Bit manipulation instruction>

Set bit

SET1
Bit setting

[Instruction format] (1) SET1 bit#3, disp16 [reg1]

 (2) SET1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← set-bit (token, bit#3)

Store-memory (adr, token, Byte)

 (2) adr ← GR [reg1]Note

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← set-bit (token, reg2)

Store-memory (adr, token, Byte)

Note An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 00bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100000

[Flags] CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 295 of 450
Dec 22, 2016

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated address,

the bits indicated by the 3-bit bit number are set (1) and the data is written back to the original

address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is “1”, the

Z flag is cleared to “0”.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte data

is read from the generated address, the lower 3 bits indicated of general-purpose register reg2 are set

(1) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified bit is “1”, the

Z flag is cleared to “0”.

[Supplement] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate the

content of the specified bit resulting from the instruction execution.

Caution This instruction provides an atomic guarantee aimed at exclusive control, and during the period

between read and write operations, the target address is not affected by access due to any other
cause.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 296 of 450
Dec 22, 2016

<Data manipulation instruction>

Set flag condition

SETF
Flag condition setting

[Instruction format] SETF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2] ← 00000001H

 else GR [reg2] ← 00000000H

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr1111110cccc 0000000000000000

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] When the condition specified by condition code “cccc” is met, stores “1” to general-purpose register

reg2 if a condition is met and stores “0” if a condition is not met.

Designate one of the condition codes shown in the following table as [cccc].

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (Unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 297 of 450
Dec 22, 2016

[Supplement] Examples of SETF instruction:

 (1) Translation of multiple condition clauses

 If A of statement if (A) in C language consists of two or greater condition clauses (a1, a2,

a3, and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object code

executes “conditional branch” by checking the result of evaluation equivalent to an. Because a

pipeline operation requires more time to execute “condition judgment” + “branch” than to execute an

ordinary operation, the result of evaluating each condition clause if (an) is stored in register Ra. By

performing a logical operation to Ran after all the condition clauses have been evaluated, the

pipeline delay can be prevented.

 (2) Double-length operation

 To execute a double-length operation, such as “Add with Carry”, the result of the CY flag can be

stored in general-purpose register reg2. Therefore, a carry from the lower bits can be represented as

a numeric value.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 298 of 450
Dec 22, 2016

<Data manipulation instruction>

Shift logical left by register/immediate (5-bit)

SHL
Logical left shift

[Instruction format] (1) SHL reg1, reg2

 (2) SHL imm5, reg2

 (3) SHL reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] logically shift left by GR [reg1]

 (2) GR [reg2] ← GR [reg2] logically shift left by zero-extend (imm5)

 (3) GR [reg3] ← GR [reg2] logically shift left by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000011000000

 15 0

 (2) rrrrr010110iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00011000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] (1) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to LSB. The

result is written to general-purpose register reg2. General-purpose register reg1 is not affected.

 (2) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to LSB.

The result is written to general-purpose register reg2.

 (3) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to LSB. The

result is written to general-purpose register reg3. General-purpose registers reg1 and reg2 are not

affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 299 of 450
Dec 22, 2016

<Data manipulation instruction>

Shift logical right by register/immediate (5-bit)

SHR
Logical right shift

[Instruction format] (1) SHR reg1, reg2

 (2) SHR imm5, reg2

 (3) SHR reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] logically shift right by GR [reg1]

 (2) GR [reg2] ← GR [reg2] logically shift right by zero-extend (imm5)

 (3) GR [reg3] ← GR [reg2] logically shift right by GR [reg1]

[Format] (1) Format IX

 (2) Format II

 (3) Format XI

[Opcode] 15 0 31 16

 (1) rrrrr111111RRRRR 0000000010000000

 15 0

 (2) rrrrr010100iiiii

 15 0 31 16

 (3) rrrrr111111RRRRR wwwww00010000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] (1) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to MSB. The

result is written to general-purpose register reg2. General-purpose register reg1 is not affected.

 (2) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by shifting “0” to MSB.

The result is written to general-purpose register reg2.

 (3) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to MSB. The

result is written to general-purpose register reg3. General-purpose registers reg1 and reg2 are not

affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 300 of 450
Dec 22, 2016

<Load instruction>

Short format load byte

SLD.B
Load of (signed) byte data

[Instruction format] SLD.B disp7 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp7)Note

GR [reg2] ← sign-extend (Load-memory (adr, Byte))

Note An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr0110ddddddd

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to generate a

32-bit address. Byte data is read from the generated address, sign-extended to word length, and

stored in reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 301 of 450
Dec 22, 2016

<Load instruction>

Short format load byte unsigned

SLD.BU
Load of (unsigned) byte data

[Instruction format] SLD.BU disp4 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp4)Note

GR [reg2] ← zero-extend (Load-memory (adr, Byte))

Note An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr0000110dddd

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to generate a

32-bit address. Byte data is read from the generated address, zero-extended to word length, and

stored in reg2.

Caution Do not specify r0 for reg2.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 302 of 450
Dec 22, 2016

<Load instruction>

Short format load halfword

SLD.H
Load of (signed) halfword data

[Instruction format] SLD.H disp8 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp8)Note

GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr1000ddddddd

 ddddddd is the higher 7 bits of disp8.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate a

32-bit address. Halfword data is read from this 32-bit address, sign-extended to word length, and

stored in general-purpose register reg2.

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 303 of 450
Dec 22, 2016

<Load instruction>

Short format load halfword unsigned

SLD.HU
Load of (unsigned) halfword data

[Instruction format] SLD.HU disp5 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp5)Note

GR [reg2] ← zero-extend (Load-memory (adr, Halfword))

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr0000111dddd

 rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 dddd is the higher 4 bits of disp5.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the element pointer to the 5-bit displacement data, zero-extended to word length, to generate a

32-bit address. Halfword data is read from this 32-bit address, zero-extended to word length, and

stored in general-purpose register reg2.

Cautions 1. Do not specify r0 for reg2.

 2. According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 304 of 450
Dec 22, 2016

<Load instruction>

Short format load word

SLD.W
Load of word data

[Instruction format] SLD.W disp8 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp8)Note

GR [reg2] ← Load-memory (adr, Word)

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd0

 dddddd is the higher 6 bits of disp8.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate a

32-bit address. Word data is read from this 32-bit address, and stored in general-purpose register

reg2.

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 305 of 450
Dec 22, 2016

<Special instruction>

Snooze

SNOOZE
Snooze

[Instruction format] Snooze

[Operation] Snooze while hardware-defined period

[Format] Format X

[Opcode] 15 0 31 16

 0000111111100000 0000000100100000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Temporarily halts operation of the CPU core for the period defined by the hardware specifications or

when the CPU enters a specific state.
When the specified period has elapsed or the CPU exits the specified state, CPU operation
automatically resumes and instruction execution begins from the next instruction.
The SNOOZE state is released under the following conditions.

• The predefined period of time passes
• A terminating exception occurs

 Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID or NP
value), as long as a SNOOZE mode release request exists, the SNOOZE state is released (for
example, even if PSW.ID = 1, the SNOOZE state is released when INT0 occurs).
Note, however, that the SNOOZE mode will not be released if terminating exceptions are masked
by the following mask settings, which are defined individually for each function.

 • Terminating exceptions are masked by an interrupt channel mask setting specified by the interrupt
controllerNote.

 • Terminating exceptions are masked by a mask setting specified by using the floating-point
operation exception enable bit.

 • Terminating exceptions are masked by a mask setting defined by a hardware function other than
the above.

Note This does not include masking specified by the ISPR and PMR registers.

[Supplement] This instruction is used to prevent the CPU performance from dropping in a multi-core system due to

bus band occupancy during a spinlock.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 306 of 450
Dec 22, 2016

Caution 1. The period of the pause triggered by the SNOOZE instruction is defined according to the hardware

specifications of the CPU core. For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 307 of 450
Dec 22, 2016

<Store instruction>

Short format store byte

SST.B
Storage of byte data

[Instruction format] SST.B reg2, disp7 [ep]

[Operation] adr ← ep + zero-extend (disp7)Note

Store-memory (adr, GR [reg2] , Byte)

Note An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr0111ddddddd

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the element pointer to the 7-bit displacement data, zero-extended to word length, to generate a

32-bit address and stores the data of the lowest byte of reg2 to the generated address.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 308 of 450
Dec 22, 2016

<Store instruction>

Short format store halfword

SST.H
Storage of halfword data

[Instruction format] SST.H reg2, disp8 [ep]

[Operation] adr ← ep + zero-extend (disp8)Note

Store-memory (adr, GR [reg2] , Halfword)

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr1001ddddddd

 ddddddd is the higher 7 bits of disp8.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate a

32-bit address, and stores the lower halfword data of reg2 to the generated 32-bit address.

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 309 of 450
Dec 22, 2016

<Store instruction>

Short format store word

SST.W
Storage of word data

[Instruction format] SST.W reg2, disp8 [ep]

[Operation] adr ← ep + zero-extend (disp8)Note

Store-memory (adr, GR [reg2] , Word)

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode] 15 0

 rrrrr1010dddddd1

 dddddd is the higher 6 bits of disp8.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to generate a

32-bit address and stores the word data of reg2 to the generated 32-bit address.

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 310 of 450
Dec 22, 2016

<Store instruction>

Store byte

ST.B
Storage of byte data

[Instruction format] (1) ST.B reg2, disp16 [reg1]

 (2) ST.B reg3, disp23 [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 Store-memory (adr, GR [reg2], Byte)

 (2) adr ← GR [reg1] + sign-extend (disp23)Note

 Store-memory (adr, GR [reg3], Byte)

Note An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

 (2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr111010RRRRR dddddddddddddddd

 15 0 31 16 47 32

 (2) 00000111100RRRRR wwwwwddddddd1101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 [Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose

register reg2 to the generated address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lowest byte data of general-purpose

register reg3 to the generated address.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 311 of 450
Dec 22, 2016

<Store instruction>

Store Double Word

ST.DW
Storage of doubleword data

[Instruction format] ST.DW reg3, disp23[reg1]

[Operation] adr ← GR [reg1] + sign-extend (disp23)Note

data ← GR[reg3+1] || GR[reg3]

Store-memory (adr, data, Double-word)

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format XIV

[Opcode] 15 0 31 16 47 32

 00000111101RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

 Where RRRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the data of general-purpose register reg1 to a 23-bit displacement value sign-extended to word

length to generate a 32-bit address. Doubleword data consisting of the lower 32 bits of the word data

of general-purpose register reg3 and the higher 32 bits of the word data of reg3 + 1 is then stored at

this address.

[Supplement] reg3 must be an even-numbered register.

Cautions 1. According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

 2. However, a misaligned access exception will not occur if the result of address calculation has a
word boundary.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 312 of 450
Dec 22, 2016

<Store instruction>

Store halfword

ST.H
Storage of halfword data

[Instruction format] (1) ST.H reg2, disp16 [reg1]

 (2) ST.H reg3, disp23 [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 Store-memory (adr, GR [reg2], Halfword)

 (2) adr ← GR [reg1] + sign-extend (disp23)Note

 Store-memory (adr, GR [reg3], Halfword)

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

 (2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr111011RRRRR ddddddddddddddd0

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

 (2) 00000111101RRRRR wwwwwdddddd01101 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lower halfword data of general-purpose

register reg2 to the generated address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the lower halfword data of general-purpose

register reg3 to the generated address.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 313 of 450
Dec 22, 2016

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 314 of 450
Dec 22, 2016

<Store instruction>

Store word

ST.W
Storage of word data

[Instruction format] (1) ST.W reg2, disp16 [reg1]

 (2) ST.W reg3, disp23 [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

 Store-memory (adr, GR [reg2], Word)

 (2) adr ← GR [reg1] + sign-extend (disp23)Note

 Store-memory (adr, GR [reg3], Word)

Note An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

 (2) Format XIV

[Opcode] 15 0 31 16

 (1) rrrrr111011RRRRR ddddddddddddddd1

 Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

 (2) 00000111100RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

 Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the word data of general-purpose register

reg2 to the generated 32-bit address.

 (2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-extended

to word length, to generate a 32-bit address and stores the word data of general-purpose register

reg3 to the generated 32-bit address.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 315 of 450
Dec 22, 2016

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 316 of 450
Dec 22, 2016

<Special instruction>

Store Conditional

STC.W
Conditional storage when atomic word data manipulation is complete

[Instruction format] STC.W reg3, [reg1]

[Operation] adr ← GR[reg1]Note 1

data ← GR[reg3]

 token ← LLbitNote 2

 if (token == 1)

 then Store-memory (adr, data, Word)

 GR[reg3] ← 1

 else GR[reg3] ← 0

 endif

 LLbit ← 0Note 2

Notes 1. An MAE, MDP exception might occur depending on the result of address calculation.

 2. For details about the link operation, see 5.3.2 Performing Mutual Exclusion by Using
the LDL.W and STC.W Instructions.

[Format] Format VII

[Opcode] 15 0 31 16

 00000111111RRRRR wwwww01101111010

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 317 of 450
Dec 22, 2016

[Description] This instruction can only be executed successfully if a link exists that corresponds to the specified

address. If a corresponding link exists, the word data of general-purpose register reg3 is stored in

the memory and an atomic read-modify-write is executed.

If the corresponding link has been lost, the data is not stored in the memory and execution of this

instruction fails.

Whether execution of the STC.W instruction has succeeded or not can be ascertained by checking

the contents of general-purpose register reg3 after the instruction has been executed. If execution of

the STC.W instruction was successful, general-purpose register reg3 will be set (1). If execution

failed, reg3 will be cleared (0).

This instruction can be used together with the LDL.W instruction to ensure accurate updating of the

memory in a multi-core system.

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic guarantee is

required when updating the memory in a multi-core system.

Caution According to the CPU core hardware specifications, a misaligned access exception (MAE) might

occur as a result of address calculation.
For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 318 of 450
Dec 22, 2016

<Special instruction>

Store contents of system register

STSR
Storage of contents of system register

[Instruction format] STSR regID, reg2, selID

STSR regID, reg2

[Operation] GR [reg2] ← SR [regID, selID]Note

Note An exception might occur depending on the access permission. For details, see 2.5.3
Register Updating.

[Format] Format IX

[Opcode] 15 0 31 16

 rrrrr111111RRRRR sssss00001000000

 rrrrr: reg2, sssss: selID, RRRRR: regID

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Stores the system register contents specified by the system register number and group number

(regID, selID) in general-purpose register reg2. The system register is not affected. If selID is

omitted, it is assumed that selID is 0.

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending on the

combination of CPU operating mode and system register to be accessed. For details, see 2.5.3

Register Updating.

Caution The system register number or group number is a unique number used to identify each system

register. How to access undefined registers is described in 2.5.4 Accessing Undefined Registers,
but accessing undefined registers is not recommended.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 319 of 450
Dec 22, 2016

<Arithmetic instruction>

Subtract

SUB
Subtraction

[Instruction format] SUB reg1, reg2

[Operation] GR [reg2] ← GR [reg2] − GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001101RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] Subtracts the word data of general-purpose register reg1 from the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose register reg1 is

not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 320 of 450
Dec 22, 2016

<Arithmetic instruction>

Subtract reverse

SUBR
Reverse subtraction

[Instruction format] SUBR reg1, reg2

[Operation] GR [reg2] ←GR [reg1] − GR [reg2]

[Format] Format I

[Opcode] 15 0

 rrrrr001100RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register reg1 is

not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 321 of 450
Dec 22, 2016

<Special instruction>

Jump with table look up

SWITCH
Jump with table look up

[Instruction format] SWITCH reg1

[Operation] adr ← (PC + 2) + (GR [reg1] logically shift left by 1)Note

PC ← (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Note An MDP exception might occur depending on the result of address calculation.

[Format] Format I

[Opcode] 15 0

 00000000010RRRRR

 RRRRR ≠ 00000 (Do not specify r0 for reg1.)

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] The following steps are taken.

(1) Adds the start address (the one subsequent to the SWITCH instruction) to general-purpose register

reg1, logically left-shifted by 1, to generate a 32-bit table entry address.

(2) Loads the halfword entry data indicated by the address generated in step (1).

(3) Adds the table start address after sign-extending the loaded halfword data and logically left-shifting it

by 1 (the one subsequent to the SWITCH instruction) to generate a 32-bit target address.

(4) Jumps to the target address generated in step (3).

Cautions 1. Do not specify r0 for reg1.

 2. In the SWITCH instruction memory read operation executed in order to read the table, memory
protection is performed.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 322 of 450
Dec 22, 2016

<Data manipulation instruction>

Sign extend byte

SXB
Sign-extension of byte data

[Instruction format] SXB reg1

[Operation] GR [reg1] ← sign-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000101RRRRR

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Sign-extends the lowest byte of general-purpose register reg1 to word length.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 323 of 450
Dec 22, 2016

<Data manipulation instruction>

Sign extend halfword

SXH
Sign-extension of halfword data

[Instruction format] SXH reg1

[Operation] GR [reg1] ← sign-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000111RRRRR

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Sign-extends the lower halfword of general-purpose register reg1 to word length.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 324 of 450
Dec 22, 2016

<Special instruction>

Synchronize exceptions

SYNCE
Exception synchronization instruction

[Instruction format] SYNCE

[Operation] Synchronizes exceptions.

[Format] Format I

[Opcode] 15 0

 0000000000011101

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Synchronizes all preceding imprecise exceptions (FPI exceptions) of this instruction. “Imprecise

exception synchronization” means that all imprecise exceptions, that are generated by the preceding

instructions, are notified to the CPU and are kept waiting until their priority is judged. If a condition of

acknowledging exceptions is satisfied when this instruction is executed, all imprecise exceptions

(FPI exceptions), that are generated by the preceding instructions, are always acknowledged by

executing the SYNCE instruction.

This instruction can be used to guarantee completion of exception handling by the preceding task

before a task is changed or terminated in a multi-processing environment.

[Supplement] For details about the synchronization function, see 5.4 Synchronization Function.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 325 of 450
Dec 22, 2016

<Special instruction>

Synchronize instruction pipeline

SYNCI
Instruction pipeline synchronization instruction

[Instruction format] SYNCI

[Operation] Synchronizes instruction fetches.

[Format] Format I

[Opcode] 15 0

 0000000000011100

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Discards unexecuted instructions in the pipeline, and re-fetches the subsequent instructions. The

SYNCI instruction waits for the completion of execution of the cache instruction and the instruction to

update the cache operation function registersNote. The SYNCI instruction does not wait for the result

of the preceding load and store instructions.

Note When completion of instruction cache clearance is confirmed, check the read value of the

ICCTRL.ICHCLR bit.

[Supplement] For details about the synchronization function, see 5.4 Synchronization Function.

 If the CPU includes an instruction cache, the instruction cache must be disabled to realize self-

programming code that alters instructions on the memory.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 326 of 450
Dec 22, 2016

<Special instruction>

Synchronize memory

SYNCM
Memory synchronize instruction

[Instruction format] SYNCM

[Operation] Synchronizes memory accesses.

[Format] Format I

[Opcode] 15 0

 0000000000011110

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Waits for the completion of execution of all preceding instructions and all preceding memory

accesses (load and store). By executing the SYNCM instruction, the result of the preceding memory

accesses can be referenced by any master device within the system.

[Supplement] For details about the synchronization function, see 5.4 Synchronization Function. The completion

of a store instruction may not be guaranteed by the SYNCM instruction depending on the destination

of the store instruction. For details, see the hardware manual of the product used.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 327 of 450
Dec 22, 2016

<Special instruction>

Synchronize pipeline

SYNCP
Pipeline synchronize instruction

[Instruction format] SYNCP

[Operation] Synchronizes pipeline.

[Format] Format I

[Opcode] 15 0

 0000000000011111

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Waits for the completion of execution of preceding instructions to reflect the result of the preceding

instructions to subsequent instructions. The SYNCP instruction waits for the completion of load

instruction (until the loaded data is stored in a register), but does not wait for the completion of store

instruction (until the destination memory or register is updated).

[Supplement] For details about the synchronization function, see 5.4 Synchronization Function.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 328 of 450
Dec 22, 2016

<Special instruction>

System call

SYSCALL
System call exception

[Instruction format] SYSCALL vector8

[Operation] EIPC ← PC + 4 (return PC)

EIPSW ← PSW

EIIC ← exception cause codeNote 1

PSW.UM ← 0

PSW.EP ← 1

PSW.ID ← 1

if (vector8 <= SCCFG.SIZE) is satisfied

 then adr ← SCBP + zero-extend (vector8 logically shift left by 2)Note 2

 else adr ← SCBPNote 2

PC ← SCBP + Load-memory (adr, Word)

Notes 1. See Table 4-1 Exception Cause List.

 2. An MDP exception might occur depending on the result of address calculation.

[Format] Format X

[Opcode] 15 0 31 16

 11010111111vvvvv 00VVV00101100000

 Where VVV is the higher 3 bits of vector8 and vvvvv is the lower 5 bits of vector8.

[Flags] CY —

OV —

S —

Z —

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 329 of 450
Dec 22, 2016

[Description] <1> Saves the contents of the return PC (address of the instruction next to the SYSCALL

instruction) and PSW to EIPC and EIPSW.

 <2> Stores the exception cause code corresponding to vector8 in the EIIC register.

The exception cause code is the value of vector8 plus 8000H.

 <3> Updates the PSW according to the exception causes listed in Table 4-1.

 <4> Generates a 32-bit table entry address by adding the value of the SCBP register and vector8

that is logically shifted 2 bits to the left and zero-extended to a word length.

 If vector8 is greater than the value specified by the SIZE bit of system register SCCFG; however,

vector8 that is used for the generation of a 32-bit table entry address is handled as 0.

 <5> Loads the word of the address generated in <4>.

 <6> Generates a 32-bit target address by adding the value of the SCBP register to the data in <5>.

 <7> Branches to the target address generated in <6>.

Caution In the SYSCALL instruction memory read operation executed in order to read the table, memory

protection is performed with the supervisor privilege.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 330 of 450
Dec 22, 2016

<Special instruction>

Trap

TRAP
Software exception

[Instruction format] TRAP vector5

[Operation] EIPC ← PC + 4 (return PC)

EIPSW ← PSW

EIIC ← exception cause codeNote 1

PSW.UM ← 0

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler addressNote 2

Notes 1. See Table 4-1 Exception Cause List.

 2. See 4.5 Exception Handler Address.

[Format] Format X

[Opcode] 15 0 31 16

 00000111111vvvvv 0000000100000000

 vvvvv = vector5

[Flags] CY —

OV —

S —

Z —

SAT —

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 331 of 450
Dec 22, 2016

[Description] Saves the contents of the return PC (address of the instruction next to the TRAP instruction) and the

current contents of the PSW to EIPC and EIPSW, respectively, stores the exception cause code in

the EIIC register, and updates the PSW according to the exception causes listed in Table 4-1.

Execution then branches to the exception handler address and exception handling is started.

The following table shows the correspondence between vector5 and exception cause codes and

exception handler address offset. Exception handler addresses are calculated based on the offset

addresses listed in the following table. For details, see 4.5 Exception Handler Address.

vector5
Exception Cause
Code Offset Address

00H 00000040H 40H

01H 00000041H

...

0FH 0000004FH

10H 00000050H 50H

11H 00000051H

...

1FH 0000005FH

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 332 of 450
Dec 22, 2016

<Logical instruction>

Test

TST
Test

[Instruction format] TST reg1, reg2

[Operation] result ← GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001011RRRRR

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, 0.

SAT —

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose register

reg1. The result is not stored with only the flags being changed. General-purpose registers reg1 and

reg2 are not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 333 of 450
Dec 22, 2016

<Bit manipulation instruction>

Test bit

TST1
Bit test

[Instruction format] (1) TST1 bit#3, disp16 [reg1]

 (2) TST1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

 (2) adr ← GR [reg1]Note

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

Note An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

 (2) Format IX

[Opcode] 15 0 31 16

 (1) 11bbb111110RRRRR dddddddddddddddd

 15 0 31 16

 (2) rrrrr111111RRRRR 0000000011100110

[Flags] CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address; checks the bit specified by the 3-bit bit

number at the byte data location referenced by the generated address. If the specified bit is “0”, “1”

is set to the Z flag of PSW and if the bit is “1”, the Z flag is cleared to “0”. The byte data, including

the specified bit, is not affected.

 (2) Reads the word data of general-purpose register reg1 to generate a 32-bit address; checks

the bit specified by the lower 3 bits of reg2 at the byte data location referenced by the generated

address. If the specified bit is “0”, “1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is

cleared to “0”. The byte data, including the specified bit, is not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 334 of 450
Dec 22, 2016

<Logical instruction>

Exclusive OR

XOR
Exclusive OR

[Instruction format] XOR reg1, reg2

[Operation] GR [reg2] ← GR [reg2] XOR GR [reg1]

[Format] Format I

[Opcode] 15 0

 rrrrr001001RRRRR

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] Exclusively ORs the word data of general-purpose register reg2 with the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 335 of 450
Dec 22, 2016

<Logical instruction>

Exclusive OR immediate (16-bit)

XORI
Exclusive OR immediate

[Instruction format] XORI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] XOR zero-extend (imm16)

[Format] Format VI

[Opcode] 15 0 31 16

 rrrrr110101RRRRR iiiiiiiiiiiiiiii

[Flags] CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

[Description] Exclusively ORs the word data of general-purpose register reg1 with the 16-bit immediate data,

zero-extended to word length, and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 336 of 450
Dec 22, 2016

<Data manipulation instruction>

Zero extend byte

ZXB
Zero-extension of byte data

[Instruction format] ZXB reg1

[Operation] GR [reg1] ← zero-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode] 15 0

 00000000100RRRRR

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Zero-extends the lowest byte of general-purpose register reg1 to word length.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 337 of 450
Dec 22, 2016

<Data manipulation instruction>

Zero extend halfword

ZXH
Zero-extension of halfword data

[Instruction format] ZXH reg1

[Operation] GR [reg1] ← zero-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode] 15 0

 00000000110RRRRR

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Zero-extends the lower halfword of general-purpose register reg1 to word length.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 338 of 450
Dec 22, 2016

7.3 Cache Instructions

7.3.1 Overview of Cache Instructions

This CPU provides the cache instructions to enable efficient manipulation of the cache by the CPU.
The following cache instructions (mnemonics) are available。

• CACHE: Cache

• PREF: Prefetch

7.3.2 Cache Instruction Set
This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

• Instruction format: Indicates how the instruction is written and its operand(s).

• Operation: Indicates the function of the instruction.

• Format: Indicates the instruction format.

• Opcode: Indicates the bit field of the instruction opcode.

• Description: Describes the operation of the instruction.

• Supplement: Provides supplementary information on the instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 339 of 450
Dec 22, 2016

<Cache instruction>

Cache

CACHE
Cache operation

[Instruction format] CACHE cacheop, [reg1]

[Operation] Manipulates the cache specified by cacheop.

[Format] Format X

[Opcode] 15 0 31 16

 111pp111111RRRRR PPPPP00101100000

 ppPPPPP indicates cacheop.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Sets the word data of general-purpose register reg1 as a 32-bit address or the cache index and

manipulates the cache specified by cacheop. For details about the cache index specification method,

see 5.2.5 Cache Index Specification Method.

[Supplement] Each cache operation has its own instruction execution privilege. For details about the

correspondence between cache operations and instruction execution privileges, see 5.2.6

Execution Privilege of the CACHE/PREF Instruction.

 When manipulating the cache by specifying the address, it might become the target of memory

protection by the MPU. For details about the relationship between cache manipulation and memory

protection, see 5.2.7 Memory Protection for Address Hit-Type Operations.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 340 of 450
Dec 22, 2016

Table 7-7 Cache Operation

cacheop Target Processing
Cache
Specification Operation

0000000 Instruction CHBII Address (Cache Hit Block Invalidate, Instruction cache)

If the specified address hits an address in the instruction cache,
the corresponding cache line is disabled. If the specified address
does not hit an address in the instruction cache, no processing is
performed.

0100000 Instruction CIBII Index (Cache Indexed Block Invalidate, Instruction cache)

Disables the instruction cache line of the specified index.

This instruction can be used in cases such as when the entire
memory cache is initialized by software.

1000000 Instruction CFALI Address (Cache Fetch And Lock, Instruction cache)

Loads the data from the specified address and stores it in the
instruction cache. At this time, the corresponding cache line is
locked. If the data at the specified address is already stored in the
instruction cache, this instruction only locks the cache line. If the
data at the specified address is already stored in the instruction
cache and the corresponding cache line is locked, no processing
is performed.

1100000 Instruction CISTI Index (Cache Indexed Store, Instruction cache)

Writes (stores) data from a system register to the instruction cache
line of the specified index. The specifications of the data to be
written and the system register depend on the specifications of the
CPU core. For details, see the hardware manual of the product
used.

1100001 Instruction CILDI Index (Cache Indexed Load, Instruction cache)

Reads (loads) data from the instruction cache line of the specified
index to a system register. The specifications of the data to be
read and the system register depend on the specifications of the
CPU core. For details, see the hardware manual of the product
used.

1111110 — CLL — (Clear Load Link-bit)

Functions as the CLL instruction.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 341 of 450
Dec 22, 2016

<Cache instruction>

Prefetch

PREF
Prefetch

[Instruction format] PREF prefop, [reg1]

[Operation] Executes the prefetch operation specified by prefop.

[Format] Format X

[Opcode] 15 0 31 16

 11011111111RRRRR PPPPP00101100000

 PPPPP indicates prefop.

[Flags] CY —

OV —

S —

Z —

SAT —

[Description] Executes the prefetch operation specified by prefop on the word data of general-purpose register

reg1 used as a 32-bit address.

[Supplement] The prefetch instruction does not generate an execution privilege exception in any CPU mode. If the

CPU being used does not contain a cache, this instruction will not generate a reserved instruction

exception and no processing is performed, in the same way as a NOP instruction.

A mismatch exception or access privilege exception will not be generated by the MMU memory

protection feature during a prefetch operation. If a mismatch or access privilege violation occurs, the

prefetch operation is implicitly ignored and no processing is performed, in the same way as a NOP

instruction.

Caution Be aware that even after the prefetch instruction has finished executing, a prefetch operation might not

necessarily have been performed.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 342 of 450
Dec 22, 2016

Table 7-8 Prefetch Operation

prefop Target Processing Cache Specification Operation

00000 Instruction PREFI Address (Prefetch Instruction cache)

Stores the data at the specified address in the instruction
cache. If the data at the specified address is already stored in
the instruction cache, no processing is performed.

Caution 1. The size of the data prefetched in one prefetch operation depends on the specifications of the CPU

core.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 343 of 450
Dec 22, 2016

7.4 Floating-Point Instructions

7.4.1 Instruction Formats

All floating-point instructions are in 32-bit format.

When an instruction is actually saved to memory, it is placed as shown below.

• Lower part of instruction format (including bit 0) → Lower address side

• Higher part of instruction format (including bit 15 or bit 31) → Upper address side

(1) Format F:I

The 32-bit long floating-point instruction format includes a 6-bit opcode field, 4-bit sub-opcode field, three fields that

specify general-purpose registers, a 3-bit category field, and a 2-bit type field.

sub-opcode

15 5 0 11 10

reg1 opcode reg3

4 31 16

reg2

27 26

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 344 of 450
Dec 22, 2016

7.4.2 Overview of Floating-Point Instructions
Floating-point instructions are divided into single-precision instructions (single) and double-precision instructions (double),

and include the following instructions (mnemonics).

(1) Basic operation instructions

• ABSF.D: Floating-point absolute value (Double)

• ABSF.S: Floating-point absolute value (Single)

• ADDF.D: Floating-point add (Double)

• ADDF.S: Floating-point add (Single)

• DIVF.D: Floating-point divide (Double)

• DIVF.S: Floating-point divide (Single)

• MAXF.D: Floating-point maximum (Double)

• MAXF.S: Floating-point maximum (Single)

• MINF.D: Floating-point minimum (Double)

• MINF.S: Floating-point minimum (Single)

• MULF.D: Floating-point multiply (Double)

• MULF.S: Floating-point multiply (Single)

• NEGF.D: Floating-point negate (Double)

• NEGF.S: Floating-point negate (Single)

• RECIPF.D: Reciprocal of a floating-point value (Double)

• RECIPF.S: Reciprocal of a floating-point value (Single)

• RSQRTF.D: Reciprocal of the square root of a floating-point value (Double)

• RSQRTF.S: Reciprocal of the square root of a floating-point value (Single)

• SQRTF.D: Floating-point square root (Double)

• SQRTF.S: Floating-point square root (Single)

• SUBF.D: Floating-point subtract (Double)

• SUBF.S: Floating-point subtract (Single)

(2) Extended basic operation instructions

• FMAF.S: Floating-point fused-multiply-add (Single)

• FMSF.S: Floating-point fused-multiply-subtract (Single)

• FNMAF.S: Floating-point fused-negate-multiply-add (Single)

• FNMSF.S: Floating-point fused-negate-multiply-subtract (Single)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 345 of 450
Dec 22, 2016

(3) Conversion instructions

• CEILF.DL: Floating-point convert double to long, round toward positive (Double)

• CEILF.DW: Floating-point convert double to word, round toward positive (Double)

• CEILF.DUL: Floating-point convert double to unsigned-long, round toward positive (Double)

• CEILF.DUW: Floating-point convert double to unsigned-word, round toward positive (Double)

• CEILF.SL: Floating-point convert single to long, round toward positive (Single)

• CEILF.SW: Floating-point convert single to word, round toward positive (Single)

• CEILF.SUL: Floating-point convert single to unsigned-long, round toward positive (Single)

• CEILF.SUW: Floating-point convert single to unsigned-word, round toward positive (Single)

• CVTF.DL: Floating-point convert double to long (Double)

• CVTF.DS: Floating-point convert double to single (Double)

• CVTF.DUL: Floating-point convert double to unsigned-long (Double)

• CVTF.DUW: Floating-point convert double to unsigned-word (Double)

• CVTF.DW: Floating-point convert double to long (Double)

• CVTF.LD: Floating-point convert long to double (Double)

• CVTF.LS: Floating-point convert long to single (Single)

• CVTF.SD: Floating-point convert single to double (Double)

• CVTF.SL: Floating-point convert single to long (Single)

• CVTF.SUL: Floating-point convert single to unsigned-long (Single)

• CVTF.SUW: Floating-point convert single to unsigned-word (Single)

• CVTF.SW: Floating-point convert single to long (Single)

• CVTF.ULD: Floating-point convert unsigned-long to double (Double)

• CVTF.ULS: Floating-point convert unsigned-long to single (Single)

• CVTF.UWD: Floating-point convert unsigned-word to double (Double)

• CVTF.UWS: Floating-point convert unsigned-word to single (Single)

• CVTF.WD: Floating-point convert word to double (Double)

• CVTF.WS: Floating-point convert word to single (Single)

• FLOORF.DL: Floating-point convert double to long, round toward negative (Double)

• FLOORF.DW: Floating-point convert double to long, round toward negative (Double)

• FLOORF.DUL: Floating-point convert double to unsigned-long, round toward negative (Double)

• FLOORF.DUW: Floating-point convert double to unsigned-word, round toward negative (Double)

• FLOORF.SL: Floating-point convert single to long, round toward negative (Single)

• FLOORF.SW: Floating-point convert single to long, round toward negative (Single)

• FLOORF.SUL: Floating-point convert single to unsigned-long, round toward negative (Single)

• FLOORF.SUW: Floating-point convert single to unsigned-word, round toward negative (Single)

• TRNCF.DL: Floating-point convert double to long, round toward zero (Double)

• TRNCF.DUL: Floating-point convert double to unsigned-long, round toward zero (Double)

• TRNCF.DUW: Floating-point convert double to unsigned-word, round toward zero (Double)

• TRNCF.DW: Floating-point convert double to long, round toward zero (Double)

• TRNCF.SL: Floating-point convert single to long, round toward zero (Single)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 346 of 450
Dec 22, 2016

• TRNCF.SUL: Floating-point convert single to unsigned-long, round toward zero (Single)

• TRNCF.SUW: Floating-point convert single to unsigned-word, round toward zero (Single)

• TRNCF.SW: Floating-point convert single to long, round toward zero (Single)

• CVTF.HS: Floating-point convert half to single (Single)

• CVTF.SH: Floating-point convert single to half (Single)

(4) Comparison instructions

• CMPF.S: Compare floating-point values (Single)

• CMPF.D: Compare floating-point values (Double)

(5) Conditional move instructions

• CMOVF.S: Floating-point conditional move (Single)

• CMOVF.D: Floating-point conditional move (Double)

(6) Condition bit transfer instruction

• TRFSR: Transfers specified CC bit to zero flag in PSW (Single)

7.4.3 Conditions for Comparison Instructions

Floating-point comparison instructions (CMPF.D and CMPF.S) perform two floating-point data compare operations. The

result is determined based on the comparison condition contained in the data and code. Table 7-9 lists the mnemonics for

conditions that can be specified by comparison instructions.

The comparison instruction result is transferred by the TRFSR instruction to the Z flag of PSW (program status word), and

when performing a conditional branch, the condition logic is inverted and then can be used. Table 7-10 shows logic

inversion based on the true/false status of conditions. In a 4-bit condition code for a floating-point comparison instruction,

the condition is specified in the “True” column of the table. The conditional branch instruction BT performs a branch when

the comparison result is true, while BF performs a branch when the result is false.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 347 of 450
Dec 22, 2016

Table 7-9 List of Conditions for Comparison Instructions

Mnemonic Definition Inverted Logic

F Always false (T) Always true

UN Unordered (OR) Ordered

EQ Equal (NEQ) Not equal

UEQ Unordered or equal (OLG) Ordered and less than or greater than

OLT Ordered and less than (UGE) Unordered or greater than or equal to

ULT Unordered or less than (OGE) Ordered and greater than or equal to

OLE Ordered and less than or equal to (UGT) Unordered or greater than

ULE Unordered or less than or equal to (OGT) Ordered and greater than

SF Signaling and false (ST) Signaling and true

NGLE Not greater than, not less than, and not
equal to

(GLE) Greater than, less than, or equal to

SEQ Signaling and equal to (SNE) Signaling and not equal to

NGL Not greater than and not less than (GL) Greater than or less than

LT Less than (NLT) Not less than

NGE Not greater than and not equal to (GE) Greater than or equal to

LE Less than or equal to (NLE) Not less than and not equal to

NGT Not greater than (GT) Greater than

Table 7-10 Definitions of Condition Code Bits and Their Logical Inversions

Mnemonic
(True)

Condition Code
fcond

Bit Definition of Condition Code fcond(3:0)

Inverted
Logic
(False)

Less than Equal to Unordered

Invalid Operation
Exception Occurs
when Unordered

Decimal Binary fcond(2) fcond(1) fcond(0) fcond(3)

F 0 0b0000 F F F No (T)

UN 1 0b0001 F F T No (OR)

EQ 2 0b0010 F T F No (NEQ)

UEQ 3 0b0011 F T T No (OLG)

OLT 4 0b0100 T F F No (UGE)

ULT 5 0b0101 T F T No (OGE)

OLE 6 0b0110 T T F No (UGT)

ULE 7 0b0111 T T T No (OGT)

SF 8 0b1000 F F F Yes (ST)

NGLE 9 0b1001 F F T Yes (GLE)

SEQ 10 0b1010 F T F Yes (SNE)

NGL 11 0b1011 F T T Yes (GL)

LT 12 0b1100 T F F Yes (NLT)

NGE 13 0b1101 T F T Yes (GE)

LE 14 0b1110 T T F Yes (NLE)

NGT 15 0b1111 T T T Yes (GT)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 348 of 450
Dec 22, 2016

7.4.4 Floating-Point Instruction Set
This section describes the following items in each instruction (based on alphabetical order of instruction mnemonics).

• Instruction format: Indicates how the instruction is written and its operand(s) (symbols are listed in Table 7-11).

• Operation: Indicates the function of the instruction. (symbols are listed in Table 7-12).

• Format: Indicates the instruction format (see 7.4.1 Instruction Formats).

• Opcode: Indicates the instruction opcode in bit fields (symbols are listed in Table 7-13).

• Description: Describes the operation of the instruction.

• Supplement: Provides supplementary information on the instruction.

Table 7-11 Instruction Format

Symbol Explanation

reg1 General-purpose register

reg2 General-purpose register

reg3 General-purpose register

reg4 General-purpose register

fcbit Specifies the bit number of the condition bit that stores the result of a floating-point comparison
instruction.

imm × × bit immediate data

fcond Specifies the mnemonic or condition code of the comparison condition of a comparison
instruction (for details, see 7.4.3 Conditions for Comparison Instructions).

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 349 of 450
Dec 22, 2016

Table 7-12 Operations

Symbol Explanation

← Assignment (input for)

GR [a] Value stored in general-purpose register a

SR [a, b] Value stored in system register (RegID = a, SelID = b)

result Result is reflected in flag.

== Comparison (true upon a match)

+ Add

− Subtract

 Bit concatenation

× Multiply

÷ Divide

abs Absolute value

ceil Rounding in +∞ direction

compare Comparison

cvt Converts type according to rounding mode

floor Rounding in −∞ direction

max Maximum value

min Minimum value

neg Sign inversion

round Rounding to closest value

sqrt Square root

trunc Rounding in zero direction

fma(a, b, c) Result of multiplying a and b and then adding c

fms(a, b, c) Result of multiplying a and b and then subtracting c

Table 7-13 Opcodes

Symbol Explanation

R Single bit data of code specifying reg1

r Single bit data of code specifying reg2

w Single bit data of code specifying reg3

W Single bit data of code specifying reg4

I Single bit data of immediate data (indicates higher bit of immediate data)

i Single bit data of immediate data

fff 3-bit data that specifies the bit number (fcbit) of the condition bit that stores the result of a
floating-point comparison instruction

FFFF 4-bit data corresponding to the mnemonic or condition code (fcond) of the comparison condition
of a comparison instruction

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 350 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Absolute Value (Double)

ABSF.D
Floating-point absolute value (double precision)

[Instruction format] ABSF.D reg2, reg3

[Operation] reg3 ← abs (reg2)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction takes the absolute value from the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores it in the register pair

specified by general-purpose register reg3.

[Floating-point operation exceptions] None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 351 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Absolute Value (Single)

ABSF.S
 Floating-point absolute value (single precision)

[Instruction format] ABSF.S reg2, reg3

[Operation] reg3 ← abs (reg2)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction takes the absolute value from the single-precision floating-point format contents of

general-purpose register reg2, and stores it in general-purpose register reg3.

[Floating-point operation exceptions] None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 352 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Add (Double)

ADDF.D
Floating-point add (double precision)

[Instruction format] ADDF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 + reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction adds the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1 with the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)

reg1 (A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

A+B

−Normal
−∞

+0

−0

+∞ +∞ Q-NaN [V]

−∞ −∞ Q-NaN [V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.
 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 353 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Add (Single)

ADDF.S
Floating-point add (single precision)

[Instruction format] ADDF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 + reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction adds the single-precision floating-point format contents of general-purpose

register reg1 with the single-precision floating-point format contents of general-purpose register

reg2, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)

reg1 (A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

A+B

−Normal
−∞

+0

−0

+∞ +∞ Q-NaN [V]

−∞ −∞ Q-NaN [V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 354 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Long, round toward positive (Double)

CEILF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] CEILF.DL reg2, reg3

[Operation] reg3 ← ceil reg2 (double → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the

result in the register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 355 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long, round toward positive (Double)

CEILF.DUL
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CEILF.DUL reg2, reg3

[Operation] reg3 ← ceil reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 356 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word, round toward positive (Double)

CEILF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CEILF.DUW reg2, reg3

[Operation] reg3 ← ceil reg2 (double → unsigned word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 357 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Word, round toward positive (Double)

CEILF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] CEILF.DW reg2, reg3

[Operation] reg3 ← ceil reg2 (double → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 358 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Long, round toward positive (Single)

CEILF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] CEILF.SL reg2, reg3

[Operation] reg3 ← ceil reg2 (single → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair

specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 359 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long, round toward positive (Single)

CEILF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CEILF.SUL reg2, reg3

[Operation] reg3 ← ceil reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents specified

by general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 360 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word, round toward positive (Single)

CEILF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CEILF.SUW reg2, reg3

[Operation] reg3 ← ceil reg2 (single → unsigned word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 361 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Word, round toward positive (Single)

CEILF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] CEILF.SW reg2, reg3

[Operation] reg3 ← ceil reg2 (single → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose

register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 362 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Conditional Move (Double)

CMOVF.D
Conditional move (double precision)

[Instruction format] CMOVF.D fcbit, reg1, reg2, reg3

[Operation] if (FPSR.CCn == 1) then

 reg3 ← reg1

else

 reg3 ← reg2

endif

Remark n = fcbit

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 0 0 1 f f f 0

 reg2 reg1 reg3 Note category type sub-op

 Note reg3: wwww! = 0

 wwww ≠ 0000 (do not set reg3 to r0)

 Remark fcbit: fff

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data from

the register pair specified by reg1 is stored in the register pair specified by reg3. When these bits

are false (0), data from the register pair specified by reg2 is stored in the register pair specified by

reg3.

[Floating-point operation exceptions] None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

Caution Do not set reg3 to r0.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 363 of 450
Dec 22, 2016

<Floating-point condition instruction >
Floating-point Conditional Move (Single)

CMOVF.S
Conditional move (single precision)

[Instruction format] CMOVF.S fcbit, reg1, reg2, reg3

[Operation] if (FPSR.CCn == 1) then

 reg3 ← reg1

else

 reg3 ← reg2

endif

Remark n = fcbit

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 0 0 0 f f f 0

 reg2 reg1 reg3Note category type sub-op

 Note reg3: wwwww! = 0

 wwwww ≠ 00000 (do not set reg3 to r0)

 Remark fcbit: fff

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data from

reg1 is stored in reg3. When these bits are false (0), the reg2 data is stored in reg3.

[Floating-point operation exceptions] None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

Caution Do not set reg3 to r0.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 364 of 450
Dec 22, 2016

<Floating-point instruction>
Compare floating-point values (Double)

CMPF.D
 Floating-point comparison (double precision)

[Instruction format] CMPF.D fcond, reg2, reg1, fcbit

CMPF.D fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

 result.less ← 0

 result.equal ← 0

 result.unordered ← 1

 if fcond[3] == 1 then

 Invalid operation exception is detected.

 endif

else

 result.less ← reg2 < reg1

 result.equal ← reg2 == reg1

 result.unordered ← 0

endif

FPSR.CCn ← (fcond[2] & result.less) | (fcond[1] & result.equal) | (fcond[0] & result.unordered)

 Remark n: fcbit

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 0 F F F F 1 0 0 0 0 1 1 f f f 0

 reg2 reg1 category type sub-op

 Remark fcond: FFFF

 fcbit: fff

[Description] This instruction compares the double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 with the double-precision floating-point format contents

of the register pair specified by general-purpose register reg1, based on the condition “fcond”, and

sets the result (1 if true, 0 if false) to the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR

register specified by fcbit in the opcode. If fcbit is omitted, the result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 7-14 Comparison

Conditions.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 365 of 450
Dec 22, 2016

 If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has been

set, an IEEE754-defined invalid operation exception is detected. If invalid operation exceptions

are enabled, the comparison result is not set and processing is passed to the exception.

 If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR

register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point instruction

(including a comparison), it is regarded as an invalid operation condition. When using only S-NaN

but also QuietNaN (Q-NaN) for a comparison that is an invalid operation, it is simpler to use a

program in which any NaN results in an error. In other words, there is no need to insert code that

checks for Q-NaN that would result in an unordered result. Instead, the exception handling system

should perform error processing when an exception occurs after detecting an invalid operation.

The following shows a comparison that checks for equivalence of two numerical values and

triggers an error when an unordered result is detected.

Table 7-14 Comparison Conditions

Comparison
Conditions

Definition Description

Detection of
invalid operation
exception by
unordered? fcond

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ? = reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

OLE 6 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ? = reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

Remark ?: Unordered (invalid comparison)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 366 of 450
Dec 22, 2016

When explicitly testing Q-NaN

 CMPF.D OLT, r12, r14, 0 # Check if r12 < r14

 CMPF.D UN, r12, r14, 1 # Check if unordered

 TRFSR 0

 BT L2 # If true, go to L2

 TRFSR 1

 BT ERROR # If true, go to error processing

Enter code for processing when neither unordered nor r12 < r14

 L2:

Enter code for processing when r12 < r14

 ...

When using a comparison to detect Q-NaN

 CMPF.D LT, r12, r14, 0 # Check if r12 ?< r14

 TRFSR 0

 BT L2 # If true, go to L2

Enter code for processing when not r12 < r14

 L2:

Enter code for processing when r12 < r14

 ...

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 367 of 450
Dec 22, 2016

[Operation result]

[Condition code (fcond) = 0 to 7]
 reg1 (B)

reg2 (A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under the
comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN Unordered

S-NaN Unordered [V]

[Condition code (fcond) = 8 to 15]
 reg1 (B)

reg2 (A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under the
comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN
Unordered [V]

S-NaN

Remark [] indicates an exception that must occur.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 368 of 450
Dec 22, 2016

<Floating-point instruction>
Compare floating-point values (Single)

CMPF.S
Floating-point comparison (single precision)

[Instruction format] CMPF.S fcond, reg2, reg1, fcbit

CMPF.S fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

 result.less ← 0

 result.equal ← 0

 result.unordered ← 1

 if fcond[3] == 1 then

 Invalid operation exception is detected.

 endif

else

 result.less ← reg2 < reg1

 result.equal ← reg2 == reg1

 result.unordered ← 0

endif

FPSR.CCn ← (fcond[2] & result.less) | (fcond[1] & result.equal) | (fcond[0] & result.unordered)

Remark n: fcbit

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R 0 F F F F 1 0 0 0 0 1 0 f f f 0

 reg2 reg1 category type sub-op

 Remark fcond: FFFF

 fcbit: fff

[Description] This instruction compares the single-precision floating-point format contents of general-purpose

register reg2 with the single-precision floating-point format contents of general-purpose register

reg1, based on the comparison condition “fcond”, then sets the result (1 if true, 0 if false) to the

condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register specified by fcbit in the opcode.

If fcbit is omitted, the result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 7-15 Comparison

Conditions.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 369 of 450
Dec 22, 2016

 If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has been

set, an IEEE754-defined invalid operation exception is detected. If invalid operation exceptions

are enabled, the comparison result is not set and processing is passed to the exception.

 If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR

register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point instruction

(including a comparison), it is regarded as an invalid operation condition. When using only S-NaN

but also QuietNaN (Q-NaN) for a comparison that is an invalid operation, it is simpler to use a

program in which any NaN results in an error. In other words, there is no need to insert code that

explicitly checks for Q-NaN that would result in an unordered result. Instead, the exception

handling system should perform error processing when an exception occurs after detecting an

invalid operation. The following shows a comparison that checks for equivalence of two numerical

values and triggers an error when an unordered result is detected.

Table7-15 Comparison Conditions

Comparison
Conditions

Definition Description

Detection of
invalid operation
exception by
unordered? fcond

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ? = reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

OLE 6 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ? = reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

Remark ?: Unordered (invalid comparison)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 370 of 450
Dec 22, 2016

When explicitly testing Q-NaN

 CMPF.S OLT, r12, r13, 0 # Check if r12 < r14

 CMPF.S UN, r12, r13, 1 # Check if unordered

 TRFSR 0

 BT L2 # If true, go to L2

 TRFSR 1

 BT ERROR # If true, go to error processing

Enter code for processing when neither unordered nor r12 < r14

 L2:

Enter code for processing when r12 < r14

 ...

When using a comparison to detect Q-NaN

 CMPF.S LT, r12, r13, 0 # Check if r12 ?< r14

 TRFSR 0

 BT L2 # If true, go to L2

Enter code for processing when not r12 < r14

 L2:

Enter code for processing when r12 < r14

 ...

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 371 of 450
Dec 22, 2016

[Operation result]

[Condition code (fcond) = 0 to 7]
 reg1 (B)

reg2 (A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under the
comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN Unordered

S-NaN Unordered [V]

[Condition code (fcond) = 8 to 15]
 reg1 (B)

reg2 (A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under the
comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN
Unordered [V]

S-NaN

Remark [] indicates an exception that must occur.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 372 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Long (Double)

CVTF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] CVTF.DL reg2, reg3

[Operation] reg3 ← cvt reg2 (double → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, in accordance

with the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 373 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Single (Double)

CVTF.DS
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.DS reg2, reg3

[Operation] reg3 ← cvt reg2 (double → single)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to single-precision floating-point format,

and stores the result in general-purpose register reg3. The result is rounded in accordance with

the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (Single) +0 −0 +∞ −∞ Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 374 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long (Double)

CVTF.DUL
Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.DUL reg2, reg3

[Operation] reg3 ← cvt reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, in

accordance with the current rounding mode, and stores the result in the register pair specified by

general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 375 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word (Double)

CVTF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.DUW reg2, reg3

[Operation] reg3 ← cvt reg2 (double → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 376 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Word (Double)

CVTF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] CVTF.DW reg2, reg3

[Operation] reg3 ← cvt reg2 (double → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 377 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Half to Single (Single)

CVTF.HS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.HS reg2, reg3

[Operation] reg3 ← cvt reg2 (half → single)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the half-precision floating-point format contents in the lower

16 bits of general-purpose register reg2 to single-precision floating-point format, rounding the

result in accordance with the current rounding mode, and stores the result in general-purpose

register reg3.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] With the exception of not-a-number values, all half-precision floating-point format values can be

accurately converted into single-precision floating-point format values. A subnormal input will not

be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (Half) +0 −0 +∞ −∞ Q-NaN Q-NaN [V]

Remark [] indicates an exception that must occur.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 378 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Long to Double (Double)

CVTF.LD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.LD reg2, reg3

[Operation] reg3 ← cvt reg2 (long-word → double)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair

specified by general-purpose register reg2 to double-precision floating-point format in accordance

with the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 379 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Long to Single (Single)

CVTF.LS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.LS reg2, reg3

[Operation] reg3 ← cvt reg2 (long-word → single)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair

specified by general-purpose register reg2 to single-precision floating-point format, and stores the

result in general-purpose register reg3. The result is rounded in accordance with the current

rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 380 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Double (Double)

CVTF.SD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.SD reg2, reg3

[Operation] reg3 ← cvt reg2 (single → double)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to double-precision floating-point format, in accordance with the

current rounding mode, and stores the result in the register pair specified by general-purpose

register reg3.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (Double) +0 −0 +∞ −∞ Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 381 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Long (Single)

CVTF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] CVTF.SL reg2, reg3

[Operation] reg3 ← cvt reg2 (single → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, in accordance with the current rounding

mode, and stores the result in the register pair specified by general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 382 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Half (Single)

CVTF.SH
Conversion to half-precision floating-point format (single precision)

[Instruction format] CVTF.SH reg2, reg3

[Operation] reg3 ← zero-extend (cvt reg2 (single → half))

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents in

general-purpose register reg2 to half-precision floating-point format, rounding the result in

accordance with the current rounding mode. The result is zero-extended to word length and stored

in general-purpose register reg3.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (Half) +0 −0 +∞ −∞ Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 383 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long (Single)

CVTF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.SUL reg2, reg3

[Operation] reg3 ← cvt reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, in accordance with the current

rounding mode, and stores the result in the register pair specified by general-purpose register

reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 384 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word (Single)

CVTF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.SUW reg2, reg3

[Operation] reg3 ← cvt reg2 (single → unsigned word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 385 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Word (Single)

CVTF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] CVTF.SW reg2, reg3

[Operation] reg3 ← cvt reg2 (single → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose

register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 386 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Unsigned-Long to Double (Double)

CVTF.ULD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.ULD reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned long-word → double)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to double-precision floating-point format in

accordance with the current rounding mode, and stores the result in the register pair specified by

general-purpose register reg3.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 387 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Unsigned-Long to Single (Single)

CVTF.ULS
 Conversion to floating-point format (single precision)

[Instruction format] CVTF.ULS reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned long-word → single)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to single-precision floating-point format,

and stores the result in general-purpose register reg3. The result is rounded in accordance with

the current rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 388 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Unsigned-Word to Double (Double)

CVTF.UWD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.UWD reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned word → double)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-

purpose register reg2 to double-precision floating-point format, in accordance with the current

rounding mode, and stores the result in the register pair specified by general-purpose register

reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation exceptions] None

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 389 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Unsigned-Word to Single (Single)

CVTF.UWS
 Conversion to floating-point format (single precision)

[Instruction format] CVTF.UWS reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned word → single)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-

purpose register reg2 to single-precision floating-point format, and stores the result in general-

purpose register reg3. The result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 390 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Word to Double (Double)

CVTF.WD
 Conversion to floating-point format (double precision)

[Instruction format] CVTF.WD reg2, reg3

[Operation] reg3 ← cvt reg2 (word → double)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose

register reg2 to double-precision floating-point format, in accordance with the current rounding

mode, and stores the result in the register pair specified by general-purpose register reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation exceptions] None

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 391 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Word to Single (single)

CVTF.WS
 Conversion to floating-point format (single precision)

[Instruction format] CVTF.WS reg2, reg3

[Operation] reg3 ← cvt reg2 (word → single)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose

register reg2 to single-precision floating-point format, and stores the result in general-purpose

register reg3. The result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Inexact exception (I)

[Operation result]

reg2 (A) +Integer −Integer 0 (integer)

Operation result
[exception]

A (Normal) +0

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 392 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Divide (Double)

DIVF.D
 Floating-point division (double precision)

[Instruction format] DIVF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 ÷ reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 1 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction divides double-precision floating-point format contents of the register pair specified

by general-purpose register reg2 by the double-precision floating-point format contents of the

register pair specified by general-purpose register reg1, and stores the result in the register pair

specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal
B÷A

+∞ −∞

−Normal −∞ +∞

+0
±∞ [Z] Q-NaN [V]

+∞ −∞

−0 −∞ +∞

+∞ +0 −0 +0 −0
Q-NaN [V]

−∞ −0 +0 −0 +0

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 393 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Divide (Single)

DIVF.S
Floating-point division (single precision)

[Instruction format] DIVF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 ÷ reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 1 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction divides the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal
B÷A

+∞ −∞

−Normal −∞ +∞

+0
±∞ [Z] Q-NaN [V]

+∞ −∞

−0 −∞ +∞

+∞ +0 −0 +0 −0
Q-NaN [V]

−∞ −0 +0 −0 +0

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 394 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Long, round toward negative (Double)

FLOORF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] FLOORF.DL reg2, reg3

[Operation] reg3 ← floor reg2 (double → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the

result in the register pair specified by general-purpose register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 395 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long, round toward negative (Double)

FLOORF.DUL
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] FLOORF.DUL reg2, reg3

[Operation] reg3 ← floor reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 396 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word, round toward negative (Double)

FLOORF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] FLOORF.DUW reg2, reg3

[Operation] reg3 ← floor reg2 (double → unsigned word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 397 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Word, round toward negative (Double)

FLOORF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] FLOORF.DW reg2, reg3

[Operation] reg3 ← floor reg2 (double → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 398 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Long, round toward negative (Single)

FLOORF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] FLOORF.SL reg2, reg3

[Operation] reg3 ← floor reg2 (single → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair

specified by general-purpose register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 399 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long, round toward negative (Single)

FLOORF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] FLOORF.SUL reg2, reg3

[Operation] reg3 ← floor reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 400 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word, round toward negative (Single)

FLOORF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] FLOORF.SUW reg2, reg3

[Operation] reg3 ← floor reg2 (single → unsigned word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 401 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Word, round toward negative (Single)

FLOORF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] FLOORF.SW reg2, reg3

[Operation] reg3 ← floor reg2 (single → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose

register reg3.

The result is rounded in the −∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer)
+Max Int

[V]
−Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 402 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Fused-Multiply-add (Single)

FMAF.S
Floating-point fused-multiply-add operation (single precision)

[Instruction format] FMAF.S reg1, reg2, reg3

[Operation] reg3 ← fma (reg2, reg1, reg3)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-purpose

register reg2 with the single-precision floating-point format contents in general-purpose register

reg1, adds the single-precision floating-point format contents in general-purpose register reg3,

and stores the result in general-purpose register reg3. The operation is executed as if it were of

infinite accuracy. The result of the multiply operation is not rounded, but the result of the add

operation is rounded, in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 403 of 450
Dec 22, 2016

[Operation result]

reg3 (C)

 reg2 (B)

reg1 (A)

+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

 +Normal

FMA (A, B, C)

+∞ −∞

 −Normal −∞ +∞

±Normal ±0 Q-NaN [V]

 +∞ +∞ −∞
Q-NaN [V]

+∞ −∞

 −∞ −∞ +∞ −∞ +∞

 +Normal

FMA (A, B, C)

+∞ −∞

 −Normal −∞ +∞

±0 ±0 Q-NaN [V]

 +∞ +∞ −∞
Q-NaN [V]

+∞ −∞

 −∞ −∞ +∞ −∞ +∞

 +Normal

+∞

+∞ Q-NaN [V]

 −Normal Q-NaN [V] +∞

+∞ ±0 Q-NaN [V]

 +∞ +∞ Q-NaN [V]
Q-NaN [V]

+∞ Q-NaN [V]

 −∞ Q-NaN [V] +∞ Q-NaN [V] +∞

 +Normal

−∞

Q-NaN [V] −∞

 −Normal −∞ Q-NaN [V]

−∞ ±0 Q-NaN [V]

 +∞ Q-NaN [V] −∞
Q-NaN [V]

Q-NaN [V] −∞

 −∞ −∞ Q-NaN [V] −∞ Q-NaN [V]

 ±Normal

Q-NaN ±0 Q-NaN

 ±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN [V]

S-NaN Don’t care

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in accordance

with the current rounding mode. The result therefore differs from the result obtained when using a

combination of the ADDF and MULF instructions.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 404 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Fused-Multiply-subtract (Single)

FMSF.S
Floating-point fused-multiply-subtract operation (single precision)

[Instruction format] FMSF.S reg1, reg2, reg3

[Operation] reg3 ← fms (reg2, reg1, reg3)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-purpose

register reg2 with the single-precision floating-point format contents in general-purpose register

reg1, subtracts the single-precision floating-point format contents in general-purpose register reg3,

and stores the result in general-purpose register reg3. The operation is executed as if it were of

infinite accuracy. The result of the multiply operation is not rounded, but the result of the subtract

operation is rounded, in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 405 of 450
Dec 22, 2016

[Operation result]

reg3 (C)

 reg2 (B)

reg1 (A)

+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

 +Normal

FMS (A, B, C)

+∞ −∞

 −Normal −∞ +∞

±Normal ±0 Q-NaN [V]

 +∞ +∞ −∞
Q-NaN [V]

+∞ −∞

 −∞ −∞ +∞ −∞ +∞

 +Normal

FMS (A, B, C)

+∞ −∞

 −Normal −∞ +∞

±0 ±0 Q-NaN [V]

 +∞ +∞ −∞
Q-NaN [V]

+∞ −∞

 −∞ −∞ +∞ −∞ +∞

 +Normal

−∞

Q-NaN [V] −∞

 −Normal −∞ Q-NaN [V]

+∞ ±0 Q-NaN [V]

 +∞ Q-NaN [V] −∞
Q-NaN [V]

Q-NaN [V] −∞

 −∞ −∞ Q-NaN [V] −∞ Q-NaN [V]

 +Normal

+∞

+∞ Q-NaN [V]

 −Normal Q-NaN [V] +∞

−∞ ±0 Q-NaN [V]

 +∞ +∞ Q-NaN [V]
Q-NaN [V]

+∞ Q-NaN [V]

 −∞ Q-NaN [V] +∞ Q-NaN [V] +∞

 ±Normal

Q-NaN ±0 Q-NaN

 ±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN [V]

S-NaN Don’t care

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in accordance

with the current rounding mode. The result therefore differs from the result obtained when using a

combination of the SUBF and MULF instructions.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 406 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Fused-Negate-Multiply-add (Single)

FNMAF.S
Floating-point fused-multiply-add operation (single precision)

[Instruction format] FNMAF.S reg1, reg2, reg3

[Operation] reg3 ← neg (fma (reg2, reg1, reg3))

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 1 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-purpose

register reg2 with the single-precision floating-point format contents in general-purpose register

reg1, adds the single-precision floating-point format contents in general-purpose register reg3,

inverts the sign, and stores the result in general-purpose register reg3. The operation is executed

as if it were of infinite accuracy. The result of the multiply operation is not rounded, but the result

of the add operation is rounded, in accordance with the current rounding mode. The signs are

reversed after rounding.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 407 of 450
Dec 22, 2016

[Operation result]

reg3 (C)

 r eg2 (B)

reg1 (A)

+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

 +Normal

FNMA (A, B, C)

−∞ +∞

 −Normal +∞ −∞

±Normal ±0 Q-NaN [V]

 +∞ −∞ +∞
Q-NaN [V]

−∞ +∞

 −∞ +∞ −∞ +∞ −∞

 +Normal

FNMA (A, B, C)

−∞ +∞

 −Normal +∞ −∞

±0 ±0 Q-NaN [V]

 +∞ −∞ +∞
Q-NaN [V]

−∞ +∞

 −∞ +∞ −∞ +∞ −∞

 +Normal

−∞

−∞ Q-NaN [V]

 −Normal Q-NaN [V] −∞

+∞ ±0 Q-NaN [V]

 +∞ −∞ Q-NaN [V]
Q-NaN [V]

−∞ Q-NaN [V]

 −∞ Q-NaN [V] −∞ Q-NaN [V] −∞

 +Normal

+∞

Q-NaN [V] +∞

 −Normal +∞ Q-NaN [V]

−∞ ±0 Q-NaN [V]

 +∞ Q-NaN [V] +∞
Q-NaN [V]

Q-NaN [V] +∞

 −∞ +∞ Q-NaN [V] +∞ Q-NaN [V]

 ±Normal

Q-NaN ±0 Q-NaN

 ±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN [V]

S-NaN Don’t care

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in accordance

with the current rounding mode. The result therefore differs from the result obtained when using a

combination of the ADDF, MULF, and NEGF instructions.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 408 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Fused-Negate-Multiply-subtract (Single)

FNMSF.S
Floating-point fused-multiply-subtract operation (single precision)

[Instruction format] FNMSF.S reg1, reg2, reg3

[Operation] reg3 ← neg (fms (reg2, reg1, reg3))

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 1 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-purpose

register reg2 with the single-precision floating-point format contents in general-purpose register

reg1, subtracts the single-precision floating-point format contents in general-purpose register reg3,

inverts the sign, and stores the result in general-purpose register reg3. The operation is executed

as if it were of infinite accuracy. The result of the multiply operation is not rounded, but the result

of the subtract operation is rounded, in accordance with the current rounding mode. The signs are

reversed after rounding.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 409 of 450
Dec 22, 2016

[Operation result]

reg3 (C)

reg2 (B)

reg1 (A)

+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

 +Normal

FNMS (A, B, C)

−∞ +∞

 −Normal +∞ −∞

±Normal ±0 Q-NaN [V]

 +∞ −∞ +∞
Q-NaN [V]

−∞ +∞

 −∞ +∞ −∞ +∞ −∞

 +Normal

FNMS (A, B, C)

−∞ +∞

 −Normal +∞ −∞

±0 ±0 Q-NaN [V]

 +∞ −∞ +∞
Q-NaN [V]

−∞ +∞

 −∞ +∞ −∞ +∞ −∞

 +Normal

+∞

Q-NaN [V] +∞

 −Normal +∞ Q-NaN [V]

+∞ ±0 Q-NaN [V]

 +∞ Q-NaN [V] +∞
Q-NaN [V]

Q-NaN [V] +∞

 −∞ +∞ Q-NaN [V] +∞ Q-NaN [V]

 +Normal

−∞

−∞ Q-NaN [V]

 −Normal Q-NaN [V] −∞

−∞ ±0 Q-NaN [V]

 +∞ −∞ Q-NaN [V]
Q-NaN [V]

−∞ Q-NaN [V]

 −∞ Q-NaN [V] −∞ Q-NaN [V] −∞

 ±Normal

Q-NaN ±0 Q-NaN

 ±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN [V]

S-NaN Don’t care

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in accordance

with the current rounding mode. The result therefore differs from the result obtained when using a

combination of the SUBF, MULF, and NEGF instructions.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 410 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Maximum (Double)

MAXF.D
 Floating-point maximum value (double precision)

[Instruction format] MAXF.D reg1, reg2, reg3

[Operation] reg3 ← max (reg2, reg1)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the maximum value from the double-precision floating-point format data in

the register pair specified by general-purpose registers reg1 and reg2, and stores it in the register

pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or −0, it is undefined whether+0 or −0 is stored in reg3.

 A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

 reg2 (B)

reg1 (A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

MAX (A, B)

reg1 (A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2 (B) Q-NaN

S-NaN Q-NaN [V]

Remark [] indicates an exception that must occur.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 411 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Maximum (Single)

MAXF.S
 Floating-point maximum value (single precision)

[Instruction format] MAXF.S reg1, reg2, reg3

[Operation] reg3 ← max (reg2, reg1)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the maximum value from the single-precision floating-point format data in

general-purpose registers reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or −0, it is undefined whether +0 or −0 is stored in reg3.

 A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal

MAX (A, B)

reg1 (A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2 (A) Q-NaN

S-NaN Q-NaN [V]

Remark [] indicates an exception that must occur.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 412 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Minimum (Double)

MINF.D
Floating-point minimum value (double precision)

[Instruction format] MINF.D reg1, reg2, reg3

[Operation] reg3 ← min (reg2, reg1)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the minimum value from the double-precision floating-point format data in

the register pair specified by general-purpose registers reg1 and reg2, and stores it in the register

pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or −0, whether +0 or −0 is stored in reg3 is undefined.

 A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal

MIN (A, B)

reg1 (A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2 (B) Q-NaN

S-NaN Q-NaN [V]

Remark [] indicates an exception that must occur.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 413 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Minimum (Single)

MINF.S
Floating-point minimum value (single precision)

[Instruction format] MINF.S reg1, reg2, reg3

[Operation] reg3 ← min (reg2, reg1)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the minimum value from the single-precision floating-point format data in

general-purpose registers reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point operation exceptions] Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or −0, whether +0 or −0 is stored in reg3 is undefined.

 A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal

MIN (A, B)

reg1 (A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2 (B) Q-NaN

S-NaN Q-NaN [V]

Remark [] indicates an exception that must occur.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 414 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Multiply (Double)

MULF.D
 Floating-point multiplication (double precision)

[Instruction format] MULF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 × reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 1 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 by the double-precision floating-point format contents

of the register pair specified by general-purpose register reg1, and stores the result in the register

pair specified by general-purpose register reg3.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal

A × B

+∞ −∞

−Normal −∞ +∞

+0
Q-NaN [V]

−0

+∞ +∞ −∞
Q-NaN [V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 415 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Multiply (Single)

MULF.S
 Floating-point multiplication (single precision)

[Instruction format] MULF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 × reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 1 0 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, and stores the result in general-purpose register reg3.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)
reg1 (A)

Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal

A × B

+∞ −∞

−Normal −∞ +∞

+0
Q-NaN [V]

−0

+∞ +∞ −∞
Q-NaN [V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 416 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Negate (Double)

NEGF.D
 Floating-point sign inversion (double precision)

[Instruction format] NEGF.D reg2, reg3

[Operation] reg3 ← neg reg2

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction inverts the sign of double-precision floating-point format contents of the register

pair specified by general-purpose register reg2, and stores the result in the register pair specified

by general-purpose register reg3.

[Floating-point operation exceptions] None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 417 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Negate (Single)

NEGF.S
 Floating-point sign inversion (single precision)

[Instruction format] NEGF.S reg2, reg3

[Operation] reg3 ← neg reg2

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction inverts the sign of the single-precision floating-point format contents of general-

purpose register reg2, and stores the result in general-purpose register reg3.

[Floating-point operation exceptions] None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 418 of 450
Dec 22, 2016

<Floating-point instruction>
Reciprocal of a Floating-point Value (Double)

RECIPF.D
Reciprocal (double precision)

[Instruction format] RECIPF.D reg2, reg3

[Operation] reg3 ← 1 ÷ reg2

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction approximates the reciprocal of the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The result differs from the result obtained by using

the DIVF instruction.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Underflow exception (U)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

1/A [I] −∞ [Z] −∞ [Z] +0 −0 Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 419 of 450
Dec 22, 2016

<Floating-point instruction>
Reciprocal of a Floating-point Value (Single)

RECIPF.S
 Reciprocal (single precision)

[Instruction format] RECIPF.S reg2, reg3

[Operation] reg3 ← 1 ÷ reg2

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction approximates the reciprocal of the single-precision floating-point format contents

of general-purpose register reg2, and stores the result in general-purpose register reg3. The result

differs from the result obtained by using the DIVF instruction.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Underflow exception (U)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

1/A [I] +∞ [Z] -∞ [Z] +0 −0 Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 420 of 450
Dec 22, 2016

<Floating-point instruction>
Reciprocal of the Square Root of a Floating-point Value (Double)

RSQRTF.D
Reciprocal of square root (double precision)

[Instruction format] RSQRTF.D reg2, reg3

[Operation] reg3 ← 1 ÷ (sqrt reg2)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-point

format contents of the register pair specified by general-purpose register reg2, then approximates

the reciprocal of this result and stores the result in the register pair specified by general-purpose

register reg3.

The result differs from the result obtained when using a combination of the SQRTF and DIVF

instructions.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception] 1/√−A [I] Q-NaN [V] +∞ [Z] −∞ [Z] +0 Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 421 of 450
Dec 22, 2016

<Floating-point instruction>
Reciprocal of the Square Root of a Floating-point Value (Single)

RSQRTF.S
Reciprocal of square root (single precision)

[Instruction format] RSQRTF.S reg2, reg3

[Operation] reg3 ← 1 ÷ (sqrt reg2)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-point

format contents of general-purpose register reg2, then approximates the reciprocal of this result

and stores it in general-purpose register reg3. The result differs from the result obtained when

using a combination of the SQRTF and DIVF instructions.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception] 1/√−A [I] Q-NaN [V] +∞ [Z] −∞ [Z] +0 Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 422 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Square Root (Double)

SQRTF.D
Square root (double precision)

[Instruction format] SQRTF.D reg2, reg3

[Operation] reg3 ← sqrt reg2

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-point

format contents of the register pair specified by general-purpose register reg2, and stores the

result in the register pair specified by general-purpose register reg3. The operation is executed as

if it were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode. When the source operand value is −0, the result becomes −0.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal -Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception] √

−A Q-NaN [V] +0 −0 +∞ Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 423 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Square Root (Single)

SQRTF.S
Square root (single precision)

[Instruction format] SQRTF.S reg2, reg3

[Operation] reg3 ← sqrt reg2

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

 reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-point

format contents of general-purpose register reg2, and stores it in general-purpose register reg3.

The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance

with the current rounding mode. When the source operand value is −0, the result becomes −0.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception] √

−A Q-NaN [V] +0 −0 +∞ Q-NaN [V] Q-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 424 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Subtract (Double)

SUBF.D
 Floating-point subtraction (double precision)

[Instruction format] SUBF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 − reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction subtracts the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1 from the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2, and stores the result in the register

pair specified by general-purpose register reg3. The operation is executed as if it were of infinite

accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal

B − A

−∞

−Normal
+∞

+0

−0

+∞ −∞ Q-NaN [V]

−∞ +∞ Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 425 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Subtract (Single)

SUBF.S
 Floating-point subtraction (single precision)

[Instruction format] SUBF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 − reg1

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 1 0

 reg2 reg1 reg3 category type sub-op

[Description] This instruction subtracts the single-precision floating-point format contents of general-purpose

register reg1 from the single-precision floating-point format contents of general-purpose register

reg2, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

 reg2 (B)

reg1 (A)
Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Normal

B − A

−∞

−Normal
+∞

+0

−0

+∞ −∞ Q-NaN [V]

−∞ +∞ Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 426 of 450
Dec 22, 2016

<Floating-point instruction>
Transfers specified CC bit to Zero flag in PSW (Single)

TRFSR
Flag transfer

[Instruction format] TRFSR fcbit

 TRFSR

[Operation] PSW.Z ← fcbit

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 f f f 0

 category type sub-op

 Remark fcbit: fff

[Description] This instruction transfers the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register

specified by fcbit to the Z flag in the PSW. If fcbit is omitted, this instruction transfers the CC0 bit

(bit 24).

[Floating-point operation exceptions] None

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 427 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Long, round toward zero (Double)

TRNCF.DL
 Conversion to fixed-point format (double precision)

[Instruction format] TRNCF.DL reg2, reg3

[Operation] reg3 ← trunc reg2 (double → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and stores the

result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] -Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 428 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long, round toward zero (Double)

TRNCF.DUL
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] TRNCF.DUL reg2, reg3

[Operation] reg3 ← trunc reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 429 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word, round toward zero (Double)

TRNCF.DUW
 Conversion to unsigned fixed-point format (double precision)

[Instruction format] TRNCF.DUW reg2, reg3

[Operation] reg3 ← trunc reg2 (double → unsigned word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 232 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 430 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Double to Word, round toward zero (Double)

TRNCF.DW
 Conversion to fixed-point format (double precision)

[Instruction format] TRNCF.DW reg2, reg3

[Operation] reg3 ← trunc reg2 (double → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] −Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 431 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Long, round toward zero (Single)

TRNCF.SL
 Conversion to fixed-point format (single precision)

[Instruction format] TRNCF.SL reg2, reg3

[Operation] reg3 ← trunc reg2 (single → long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register pair

specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 − 1 to −263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 263 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −263 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] −Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 432 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long, round toward zero (Single)

TRNCF.SUL
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUL reg2, reg3

[Operation] reg3 ← trunc reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative value, or when the rounded result

is outside the range of 264 − 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 264 − 1 to 0, or +∞: 264 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 433 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word, round toward zero (Single)

TRNCF.SUW
 Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUW reg2, reg3

[Operation] reg3 ← trunc reg2 (single → unsigned word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 − 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number outside the range of 232 − 1 to 0, or +∞: 232 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: 0 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal -Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 [V] 0 (integer)
Max U-Int

[V]
0 [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 7 INSTRUCTION

R01US0123EJ0140 Rev.1.40 Page 434 of 450
Dec 22, 2016

<Floating-point instruction>
Floating-point Convert Single to Word, round toward zero (Single)

TRNCF.SW
 Conversion to fixed-point format (single precision)

[Instruction format] TRNCF.SW reg2, reg3

[Operation] reg3 ← trunc reg2 (single → word)

[Format] Format F:I

[Opcode] 15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

 r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

 reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-purpose

register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 − 1 to −231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is

set as an invalid operation and no exception occurs. The return value differs as follows, according

to differences among sources.

• Source is a positive number or +∞: 231 − 1 is returned.

• Source is a negative number, not-a-number, or −∞: −231 is returned.

[Floating-point operation exceptions] Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) Normal -Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation result
[exception]

A (integer) 0 (integer) Max Int [V] −Max Int [V]

Remarks 1. [] indicates an exception that must occur.

 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in 6.1.9 Flushing Subnormal Numbers.

RH850G3M software CHAPTER 8 RESET

R01US0123EJ0140 Rev.1.40 Page 435 of 450
Dec 22, 2016

CHAPTER 8 RESET

8.1 Status of Registers After Reset

If a reset signal is input by a method defined by the hardware specifications, the program registers and system registers

are placed in the status shown by the value after reset of each register in CHAPTER 3 REGISTER SET, and program

execution is started. Set the contents of each register to an appropriate value in the program.

The CPU executes a reset to start execution of a program from the reset address specified by 4.5 Exception Handler

Address.

Note that because the PSW.ID bit is set (1) immediately after a reset, conditional EI level exceptions will not be

acknowledged. To acknowledge conditional EI level exceptions, clear (0) the PSW.ID bit.

RH850G3M software APPENDIX A SYSTEM REGISTERS

R01US0123EJ0140 Rev.1.40 Page 436 of 450
Dec 22, 2016

APPENDIX A HAZARD RESOLUTION PROCEDURE FOR
SYSTEM REGISTERS

Certain system registers require the following procedures to resolve hazards when their values are updated by
the LDSR instruction.

• Instruction fetching

When an instruction is to be fetched after updating a register covered by the description below, after executing

the instruction to update the register, only allow the instruction fetch to start after execution of an EIRET,

FERET, or SYNCI instruction.

- PSW.UM，MCFG0.SPID

When an instruction is to be fetched after updating a register covered by the description below, execute the

instruction to update the register before allowing the instruction fetch to start.

- All registers related to ASID and MPU (register number: SR*,5-7)

• SYSCALL instruction

When a SYSCALL instruction is to be executed after updating the register below, execute a SYNCP

instruction after the instruction to update the register and before the SYSCALL instruction.

-SCCFG

• Load/Store

When an instruction associated with Load/Store after updating the registers below, execute a SYNCP
instruction after executing the instruction to update the registers before Load/Store instruction.

-ASID，MPU protection area setting register (Register number: SR*,6-7)

• Interrupt

Update the registers below when interrupt is inhibited. (PSW.ID=1).

-PSW.EBV，EBASE，INTBP，FPIPR，ISPR，PMR，ICSR，INTCFG

RH850G3M software APPENDIX A SYSTEM REGISTERS

R01US0123EJ0140 Rev.1.40 Page 437 of 450
Dec 22, 2016

• Operation to clear instruction cache

When completion of instruction cache clearance is confirmed, check the read value of the ICCTRL.ICHCLR
bit.

• FPU register update

After executing update instruction of the registers below, execute a SYNCP, EIRET or FERET instruction.

-All FPU-related registers (Register number: SR6-11,0)

• Change of FPP/FPI exception mode

When the FPP/FPI exception mode is changed, execute instructions of SYNCP and SYNCE first, and update
the register below.

To update registers, proceed “FPU register update” above also.

-FPSR.PEM

Remark: Executing instructions other than the floating-point operation instruction that generates an FPP/FPI
exception is possible among the SYNCP, SYNCE, and the instruction to update the register above.

• Coprocessor instruction

When a coprocessor instruction (floating-point operation instruction) is to be executed after updating the
register below, execute instructions of EIRET, FERET, SYNCI or SYNCP after executing the instruction to
update the registers and before executing a coprocessor instruction.

-PSW.CU0

RH850G3M software APPENDIX B Numbers of Instruction Execution Clock

R01US0123EJ0140 Rev.1.40 Page 438 of 450
Dec 22, 2016

APPENDIX B NUMBER OF INSTRUCTION EXECTUION
CLOCKS

RH850G3M software APPENDIX B Numbers of Instruction Execution Clock

R01US0123EJ0140 Rev.1.40 Page 439 of 450
Dec 22, 2016

B.1 Number of G3M Instruction Execution Clocks

4 1 1 3*1

6 1 1
4 1 1
6 1 1
4 1 1
6 1 1
4 1 1
6 1 1
4 1 1
6 1 1
6 1 1
2 1 1
2 1 1
2 1 1
2 1 1
2 1 1
4 1 1 1
6 1 1 1
4 1 1 1
6 1 1 1
4 1 1 1
6 1 1 1
6 1 1 1
2 1 1 1
2 1 1 1
2 1 1 1
4 1 1 3
4 1 1 3
2 1 1 3
2 1 1 3
4 1 1 3
4 1 1 3
4 1 1 3
4 1 1 3
4 1 1 3
2 1 1 1
2 1 1 1
4 1 1 1
2 1 1 1
2 1 1 1
2 1 1 1
2 1 1 1
6 1 1 1
4 1 1 1
4 1 1 1
2 1 1 1
2 1 1 1
4 1 1 1
4 1 1 1
2 1 1 1
2 1 1 1
4 1 1 1
2 1 1 1
4 1 1 1
4 1 1 1
2 1 1 1
2 1 1 1
4 1 1 1
2 1 1 1
2 1 1 1
4 1 1 1
2 1 1 1
2 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1
2 1 1 1
4 1 1 1
4 1 1 1

issue repeat latency

1) Basic instruction

Store instrucrion

ep relative

ep relative

Multiplication
instruction

Multiply-accumulate
operation

Arithmetic instruction

Operation with
condition

Saturated operation

Logical instruction

Data operation
instruction

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

3*1

Types of Instructions Mnemonics Operand
Instruction Length
(Number of Bytes)

Load instruction disp16 [reg1] , reg2
disp23 [reg1] , reg3
disp16 [reg1] , reg2
disp23 [reg1] , reg3
disp16 [reg1] , reg2
disp23 [reg1] , reg3
disp16 [reg1] , reg2
disp23 [reg1] , reg3
disp16 [reg1] , reg2
disp23 [reg1] , reg3
disp23 [reg1] , reg3
disp7 [ep] , reg2
disp4 [ep] , reg2
disp8 [ep] , reg2
disp5 [ep] , reg2
disp8 [ep] , reg2

reg2, disp16 [reg1]
reg3, disp23 [reg1]
reg2, disp16 [reg1]
reg3, disp23 [reg1]
reg2, disp16 [reg1]
reg3, disp23 [reg1]
reg3, disp23 [reg1]
reg2, disp7 [ep]
reg2, disp8 [ep]
reg2, disp8 [ep]
reg1, reg2, reg3
imm9, reg2, reg3
reg1, reg2
imm5, reg2
imm16, reg1, reg2
reg1, reg2, reg3
imm9, reg2, reg3
reg1, reg2, reg3, reg4
reg1, reg2, reg3, reg4
reg1, reg2
imm5, reg2
imm16, reg1, reg2
reg1, reg2
imm5, reg2
reg1, reg2
imm5, reg2
imm32, reg1
imm16, reg1, reg2
imm16, reg1, reg2
reg1, reg2
reg1, reg2
cccc, reg1, reg2, reg3
cccc, reg1, reg2, reg3
reg1, reg2

reg1, reg2

imm5, reg2
reg1, reg2, reg3

reg1, reg2, reg3
imm16, reg1, reg2

imm16, reg1, reg2

imm16, reg1, reg2

imm16, reg1, reg2
reg1, pos, width, reg2
reg2, reg3
reg2, reg3
cccc, reg1, reg2, reg3
cccc, imm5, reg2, reg3
reg2, reg3
reg2, reg3
imm5, reg2, reg3
reg1, reg2, reg3
reg1, reg2
imm5, reg2
reg1, reg2, reg3
cccc, reg2

reg1, reg2
reg1, reg2

reg1, reg2
reg1, reg2

reg1, reg2
reg1, reg2

RH850G3M software APPENDIX B Numbers of Instruction Execution Clock

R01US0123EJ0140 Rev.1.40 Page 440 of 450
Dec 22, 2016

4 1 1 1
4 1 1 1
2 1 1 1
4 1 1 1
4 1 1 1
2 1 1 1
4 1 1 1
2 1 1 1
2 1 1 1
2 1 1 1
2 1 1 1

Bit search instruction

cccc, reg2
reg1, reg2
imm5, reg2
reg1, reg2, reg3
reg1, reg2
imm5, reg2
reg1, reg2, reg3

reg1, reg2, reg3

reg1, reg2, reg3
reg1, reg2, reg3
reg1, reg2, reg3
reg1, reg2, reg3
reg1, reg2, reg3

disp22, reg2
disp32, reg1
[reg1], reg3
[reg1]
disp32 [reg1]

bit#3, disp16 [reg1]
reg2, [reg1]
bit#3, disp16 [reg1]
reg2, [reg1]
bit#3, disp16 [reg1]
reg2, [reg1]
bit#3, disp16 [reg1]
reg2, [reg1]

reg1
imm6

vector8
vector4
vector5

imm5, list12
imm5, list12, [reg1]
list12, imm5
list12, imm5, sp
list12, imm5, imm16
list12, imm5, imm16<<16
list12, imm5, imm32
rh-rt
rh-rt
reg2, regID, selID
regID, reg2, selID
[reg1], reg2, reg3
[reg1], reg3
reg3, [reg1]

disp9 (When Branch prediction is matched)

disp9 (When Branch prediction is not matched)

disp17 (When Branch prediction is matched)

disp17 (When Branch prediction is not matched)

disp22 (When Branch prediction is matched)

disp22 (When Branch prediction is not matched)
disp32 (When Branch prediction is matched)

disp32 (When Branch prediction is not matched)

reg1, reg2

reg2, reg3
reg2, reg3
reg2, reg3
reg2, reg3

reg1
reg1
reg1
reg1

4 1 1 1
4 1 1 1
4 1 1 1
4 1 1 1

Division instruction 4 19 19 19
2 19 19 19
4 19 19 19
4 19 19 19
4 19 19 19

High-speed divide
operation

4 N+3* ２ N+3* ２ N+3* ２

4 N+3* ２ N+3* ２ N+3* ２

Branch instructions 2 1** ３３ 1** ３３ 1** ３３

2 4** ３３ 4** ３３ 4** ３３

4 1* ３ 1* ３ 1* ３

4 4* ３ 4* ３ 4* ３

4 4 4 4
6 4 4 4
4 4 4 4
2 4 4 4
6 5 5 5
4 1** ３３ 1** ３３ 1** ３３

4 4** ３３ 4** ３３ 4** ３３

6 1** ３３ 1** ３３ 1** ３３

Loop instruction reg1, disp16 (When Branch prediction is matched) 4 1** ３３ 1** ３３ 1** ３３

reg1, disp16 (When Branch prediction is not matched) 4 4** ３３ 4** ３３ 4** ３３

Bit manipulation instruction 4 4** ４４ 4** ４４ 4** ４４

4 4** ４４ 4** ４４ 4** ４４

4 4** ４４ 4** ４４ 4** ４４

4 4** ４４ 4** ４４ 4** ４４

4 4** ４４ 4** ４４ 4** ４４

4 4** ４４ 4** ４４ 4** ４４

4 4** ４４ 4** ４４ 4** ４４

4 4** ４４ 4** ４４ 4** ４４

Special instruction
Table reference branch 2 8 8 8
Sub routine call 2 10 10 10

－ 4 7 7 7
System call exception 4 10 10 10
Software exception 2 7 7 7

4 7 7 7
Return from exception
processing

－ 4 7 7 7
－ 4 7 7 7

EI level interrupt － 4 3 3 3
－ 4 3 3 3

Restoration from &
storage on stack

4 n+2 n+2 n+2
4 n+4 n+4 n+4
4 n+2 n+2 n+2
4 n+2 n+2 n+2
6 n+2 n+2 n+2
6 n+2 n+2 n+2
8 n+2 n+2 n+2
4 n+2 n+2 n+2
4 n+2*7 *7

*7

*7

*7*7

*5 *5 *5

*5 *5 *5

*5 *5 *5

*5 *5 *5

*5 *5 *5

*5 *5 *5

*5 *5 *5

n+2 n+2

System register
operation

4 3*6 3 3
4 1 1 1

Exclusive control 4 4*4 4*4 4*4

4 1 1 3*2

4 1 1 1
Stop － 4 1 1 1

－ 4 Undefined Undefined Undefined

Synchronization － 2 Undefined Undefined Undefined

－ 2 Undefined Undefined Undefined

－ 2 Undefined Undefined Undefined

－ 2 Undefined Undefined Undefined

1) Basic instruction

Type of Instructions Mnemonics Operand
Instruction Length
(Number of Bytes)

Number of Excution Clocks

RH850G3M software APPENDIX B Numbers of Instruction Execution Clock

R01US0123EJ0140 Rev.1.40 Page 441 of 450
Dec 22, 2016

Others － 2 1 1 1
－ 4 7 7 7

1) Basic instruction

Type of Instructions Mnemonics Operand
Instruction Length
(Number of Bytes)

Number of Execution Clocks

Cache operation instruction 4 1 1 Undefined

Pre-fetch instruction 4 1 1 1

2) Cache instruction

Type of Instructions Mnemonics Operand
cacheop, [reg1]
prefop, [reg1]

Instruction Length
(Number of Bytes)

Number of Execution Clocks

**8

Floating-point arithmetic
operation

ABSF.S reg2, reg3 4 1 1 4 7 7 7
ADDF.S reg1, reg2, reg3 4 1 1 4 7 7 7
NEGF.S reg2, reg3 4 1 1 4 7 7 7
SUBF.S reg1, reg2, reg3 4 1 1 4 7 7 7

Floating-point multiplication MULF.S reg1, reg2, reg3 4 1 1 4 7 7 7
Multiply-accumulate/
subtract operation

FMAF.S reg1, reg2, reg3 4 1 1 4 7 7 7
FMSF.S reg1, reg2, reg3 4 1 1 4 7 7 7
FNMAF.S reg1, reg2, reg3 4 1 1 4 7 7 7
FNMSF.S reg1, reg2, reg3 4 1 1 4 7 7 7

Floating-point subtraction DIVF.S reg1, reg2, reg3 4 14 *9 14 17 20 20 20
Square root of a Floatingpoint
value /Reciprocal

RECIPF.S reg2, reg3 4 10 *9 10 13 16 16 16
RSQRTF.S reg2, reg3 4 14 *9 14 17 20 20 20
SQRTF.S reg2, reg3 4 14 *9 14 17 20 20 20
CVTF.HS reg2, reg3 4 1 1 4 7 7 7
CVTF.LS reg2, reg3 4 1 1 4 7 7 7
CVTF.SH reg2, reg3 4 1 1 4 7 7 7
CVTF.SL reg2, reg3 4 1 1 4 7 7 7
CVTF.SUL reg2, reg3 4 1 1 4 7 7 7
CVTF.SUW reg2, reg3 4 1 1 4 7 7 7
CVTF.SW reg2, reg3 4 1 1 4 7 7 7
CVTF.ULS reg2, reg3 4 1 1 4 7 7 7
CVTF.UWS reg2, reg3 4 1 1 4 7 7 7
CVTF.WS reg2, reg3 4 1 1 4 7 7 7
CEILF.SL reg2, reg3 4 1 1 4 7 7 7
CEILF.SUL reg2, reg3 4 1 1 4 7 7 7
CEILF.SUW reg2, reg3 4 1 1 4 7 7 7
CEILF.SW reg2, reg3 4 1 1 4 7 7 7
FLOORF.SL reg2, reg3 4 1 1 4 7 7 7
FLOORF.SUL reg2, reg3 4 1 1 4 7 7 7
FLOORF.SUW reg2, reg3 4 1 1 4 7 7 7
FLOORF.SW reg2, reg3 4 1 1 4 7 7 7
TRNCF.SL reg2, reg3 4 1 1 4 7 7 7
TRNCF.SUL reg2, reg3 4 1 1 4 7 7 7
TRNCF.SUW reg2, reg3 4 1 1 4 7 7 7
TRNCF.SW reg2, reg3 4 1 1 4 7 7 7

Floating-point comparison CMPF.S cond, reg1, reg2, cc 4 1 1 4 7 7 7
Transfer with conditions CMOVF.S cc, reg1, reg2, reg3 4 1 1 4 7 7 7
Bit transfer with conditions TRFSR cc 4 1 1 1 1 1 1

Floating-point maximum/
minimum values

MAXF.S reg1, reg2, reg3 4 1 1 4 7 7 7

MINF.S reg1, reg2, reg3 4 1 1 4 7 7 7

Conversion between floating-
point formats/
Conversion between fixed-
point and flating point
formats

Types of Instructions Mnemonics Operand

Number of Execution Clocks
(Imprecise)

Number of Execution Clocks
(Precise)

3) Floating-point operation instruction – single precision –

Instruction Length
(Number of Bytes)

RH850G3M software APPENDIX B Numbers of Instruction Execution Clock

R01US0123EJ0140 Rev.1.40 Page 442 of 450
Dec 22, 2016

*8

Floating-point arithmetic
operation

ABSF.D reg2, reg3 4 1 1 4 7 7 7
ADDF.D reg1, reg2, reg3 4 1 1 4 7 7 7
NEGF.D reg2, reg3 4 1 1 4 7 7 7
SUBF.D reg1, reg2, reg3 4 1 1 4 7 7 7

Floating-point multiplication MULF.D reg1, reg2, reg3 4 2 *9 2 5 8 8 8

Floating-point division DIVF.D reg1, reg2, reg3 4 30 *9 30 33 36 36 36
Square root of a Floatingpoint
value /Reciprocal

RECIPF.D reg2, reg3 4 26 *9 26 29 32 32 32
RSQRTF.D reg2, reg3 4 36 *9 36 39 42 42 42
SQRTF.D reg2, reg3 4 30 *9 30 33 36 36 36
CVTF.DL reg2, reg3 4 1 1 4 7 7 7
CVTF.DS reg2, reg3 4 1 1 4 7 7 7
CVTF.DUL reg2, reg3 4 1 1 4 7 7 7
CVTF.DUW reg2, reg3 4 1 1 4 7 7 7
CVTF.DW reg2, reg3 4 1 1 4 7 7 7
CVTF.LD reg2, reg3 4 1 1 4 7 7 7
CVTF.SD reg2, reg3 4 1 1 4 7 7 7
CVTF.ULD reg2, reg3 4 1 1 4 7 7 7
CVTF.UWD reg2, reg3 4 1 1 4 7 7 7
CVTF.WD reg2, reg3 4 1 1 4 7 7 7
CEILF.DL reg2, reg3 4 1 1 4 7 7 7
CEILF.DUL reg2, reg3 4 1 1 4 7 7 7
CEILF.DUW reg2, reg3 4 1 1 4 7 7 7
CEILF.DW reg2, reg3 4 1 1 4 7 7 7
FLOORF.DL reg2, reg3 4 1 1 4 7 7 7
FLOORF.DUL reg2, reg3 4 1 1 4 7 7 7
FLOORF.DUW reg2, reg3 4 1 1 4 7 7 7
FLOORF.DW reg2, reg3 4 1 1 4 7 7 7

TRNCF.DL reg2, reg3 4 1 1 4 7 7 7
TRNCF.DUL reg2, reg3 4 1 1 4 7 7 7
TRNCF.DUW reg2, reg3 4 1 1 4 7 7 7
TRNCF.DW reg2, reg3 4 1 1 4 7 7 7

Floating-point comparison CMPF.D cond, reg1, reg2, cc 4 1 1 4 7 7 7
Transfer with conditions CMOVF.D cc, reg1, reg2, reg3 4 1 1 4 7 7 7

Floating-point maximum/
minimum values

MAXF.D reg1, reg2, reg3 4 1 1 4 7 7 7

MINF.D reg1, reg2, reg3 4 1 1 4 7 7 7

Conversion between floating-
point formats/
Conversion between fixed-
point and floating point
formats

3) Floating-point operation instruction – single precision –

Types of Instructions Mnemonics Operand

Number of Execution Clocks
(Imprecise)

Number of Execution Clocks
(Precise)

Instruction Length
(Number of Bytes)

Note 1. When no waiting is required (3 + number of wait states for read access).
Note 2. N = int (((number of valid bits in absolute value of dividend) – (number of valid bits in absolute value of divisor)) ÷

2) + 1
If the result for N < 1, N becomes 1. Division by 0 leads to N being 0. The range of N is from 0 to 16.

Note 3. Executing an instruction to rewrite the contents of the PSW register immediately beforehand does not affect the
number of clock cycles for execution. Even if an immediately preceding instruction has rewritten the contents of a
register, parallel execution is possible.

Note 4. When no waiting is required (4 + number of wait states for read access)
Note 5. “n” depends on the total number of registers specified in the list and on the register numbers. When a pair of

consecutively numbered registers, such as r21 and r22, is specified, the operation will be completed in a single
round of access. When a pair of non-consecutive registers, such as r29 and r31, is specified, multiple rounds of
access may be required to complete the operation.
When no waiting is required, the values are as shown below.
PREPARE: Minimum value is 1, maximum value is 3
DISPOSE: Minimum value is 1, maximum value is 6 (if accompanied by JMP, add 2 clock cycles).
When n is 0, 1 clock cycle is required. (DISPOSE instruction with JMP: 3 clock cycles)

Note 6. In case of access to system registers which control operation (e.g. the PSW), stop the subsequent instructions. If
they do not stop, issue becomes set to 1.

RH850G3M software APPENDIX B Numbers of Instruction Execution Clock

R01US0123EJ0140 Rev.1.40 Page 443 of 450
Dec 22, 2016

Note 7. “n” depends on the total number of registers specified in the sequence of register numbers (rh-rt) and on the
register numbers.
When any pair of consecutive registers, such as r21 and r22, is specified, the operation is completed in a single
round of access.
When a pair of non-consecutive registers, such as r29 and r31, is specified, multiple rounds of access may be
required to complete the operation.
When no waiting is required, the values will be as follows:
PUSHSH: Minimum 1, maximum 8
POPSP: Minimum 1, maximum 16

Note 8. latency for the floating-point operation instruction, whereas latency + 1 for the instructions other than the floating-
point operation instruction.

Note 9. In precise mode, issue for the subsequent instructions other than the floating-point operation instruction is 1.

Remark 1. Example of execution clocks
Symbol Description

issue When the other instruction is executed immediately after the execution of the current
instruction

repeat When the same instruction is repeated immediately after the execution of the current
instruction

latency When the following instruction uses the result of the current instruction

RH850G3M software APPENDIX C REGISTER INDEX

R01US0123EJ0140 Rev.1.40 Page 444 of 450
Dec 22, 2016

APPENDIX C REGISTER INDEX

[A]

ASID 56

[C]
CDBCR 110

CTBP 55

CTPC 53

CTPSW 54

[E]
EBASE 65

EIIC 51

EIPC 44

EIPSW 45

EIWR 57

[F]
FEIC 52

FEPC 46

FEPSW 47

FEWR 58

FPCC 84

FPCFG 85

FPEC 86

FPEPC 82

FPIPR 73

FPSR 79

FPST 83

[H]
HTCFG0 59

[I]
ICCFG 107

ICCTRL 106

ICDATH 105

ICDATL 104

ICERR 108

ICSR 76

ICTAGH 103

ICTAGL 102

INTBP 66

INTCFG 77

ISPR 74

[M]
MCA 94

MCC 96

MCFG0 70

MCR 97

MCS 95

MCTL 71

MEA......................... 60

MEI 61

MPATn 100

MPBRGN 92

MPLAn 98

MPM 89

MPRC 91

MPTRGN 93

MPUAn 99

[P]
PC 41

PID 67

PMR 75

PSW 48

[R]
RBASE 64

[S]
SCBP 69

SCCFG 68

RH850G3M software APPENDIX D INSTRUCTION INDEX

R01US0123EJ0140 Rev.1.40 Page 445 of 450
Dec 22, 2016

APPENDIX D INSTRUCTION INDEX

[A]

ABSF.D 350

ABSF.S 351

ADD 199

ADDF.D 352

ADDF.S 353

ADDI 200

ADF 201

AND 202

ANDI 203

[B]
Bcond 204

BINS 206

BSH 207

BSW 208

[C]
CACHE 339

CALLT 209

CAXI 210

CEILF.DL 354

CEILF.DUL 355

CEILF.DUW 356

CEILF.DW 357

CEILF.SL 358

CEILF.SUL 359

CEILF.SUW 360

CEILF.SW 361

CLL 212

CLR1 213

CMOV 215

CMOVF.D 362

CMOVF.S 363

CMP 217

CMPF.D 364

CMPF.S 368

CTRET 218

CVTF.DL 372

CVTF.DS 373

CVTF.DUL 374

CVTF.DUW 375

CVTF.DW 376

CVTF.HS 377

CVTF.LD 378

CVTF.LS................ 379

CVTF.SD 380

CVTF.SH 382

CVTF.SL................ 381

CVTF.SUL 383

CVTF.SUW............ 384

CVTF.SW 385

CVTF.ULD 386

CVTF.ULS 387

CVTF.UWD 388

CVTF.UWS............ 389

CVTF.WD 390

CVTF.WS 391

[D]
DI 219

DISPOSE 220

DIV 222

DIVF.D 392

DIVF.S 393

DIVH 223

DIVHU 225

DIVQ 226

DIVQU 228

DIVU 230

[E]
EI 231

EIRET 232

[F]
FERET 233

FETRAP 234

FLOORF.DL 394

FLOORF.DUL 395

FLOORF.DUW 396

FLOORF.DW 397

FLOORF.SL 398

FLOORF.SUL 399

FLOORF.SUW 400

FLOORF.SW 401

FMAF.S 402

FMSF.S 404

FNMAF.S 406

FNMSF.S 408

[H]
HALT 236

HSH 237

HSW 238

[J]
JARL 239

JMP 241

JR 242

[L]
LD.B 243

LD.BU 244

LD.DW 246

LD.H 247

LD.HU 249

LD.W 251

LDL.W 253

LDSR 255

LOOP 256

[M]
MAC 257

MACU 258

MAXF.D 410

MAXF.S 411

MINF.D 412

MINF.S 413

MOV 259

MOVEA 261

MOVHI 262

MUL 263

MULF.D 414

MULF.S 415

MULH 264

MULHI 265

MULU 266

[N]
NEGF.D 416

NEGF.S 417

NOP 267

NOT 268

NOT1 269

[O]
OR 271

ORI 272

[P]
POPSP 273

PREF 341

PREPARE 275

PUSHSP 278

[R]
RECIPF.D 418

RECIPF.S 419

RIE 279

ROTL 280

RSQRTF.D 420

RSQRTF.S 421

[S]
SAR 281

SASF 283

SATADD 284

SATSUB 286

SATSUBI 287

SATSUBR 288

SBF 289

SCH0L 290

SCH0R 291

SCH1L 292

SCH1R 293

SET1 294

SETF 296

SHL 298

SHR 299

SLD.B 300

SLD.BU 301

RH850G3M software APPENDIX D INSTRUCTION INDEX

R01US0123EJ0140 Rev.1.40 Page 446 of 450
Dec 22, 2016

SLD.H 302

SLD.HU 303

SLD.W 304

SNOOZE 305

SQRTF.D 422

SQRTF.S 423

SST.B 307

SST.H 308

SST.W 309

ST.B 310

ST.DW 311

ST.H 312

ST.W 314

STC.W 316

STSR 318

SUB 319

SUBF.D 424

SUBF.S 425

SUBR 320

SWITCH 321

SXB 322

SXH 323

SYNCE 324

SYNCI 325

SYNCM 326

SYNCP 327

SYSCALL 328

[T]
TRAP 330

TRFSR 426

TRNCF.DL 427

TRNCF.DUL 428

TRNCF.DUW 429

TRNCF.DW 430

TRNCF.SL 431

TRNCF.SUL 432

TRNCF.SUW 433

TRNCF.SW 434

TST 332

TST1 333

[X]
XOR 334

XORI 335

[Z]
ZXB 336

ZXH 337

RH850G3M software APPENDIX E REVISION HISTORY

R01US0123EJ0140 Rev.1.40 Page 447 of 450
Dec 22, 2016

APPENDIX E REVISION HISTORY

E.1 Major Revisions in This Edition

Page Description Classification
CHAPTER 3 REGISTER SET
62 Table 3-21 Instructions Causing Exceptions and Values of MEI Register: RW of

CACHE, modified
(c)

108 3.6.1, (7) ICERR - Instruction cache error: Description added (c)
CHAPTER 5 MEMORY MANAGEMENT
149 5.1.7, (2) Sample code: Modified (be → bnz) (a)
155 5.2.7 Memory Protection for CACHE and PREF Instructions: Description modified (c)
CHAPTER 6 COPROCESSOR
168 6.1.2, (3) Expanded floating-point format: Description modified (single-precision

→ half-precision)
(a)

184 6.1.11 Flush to Nearest: Description modified (b)

Remark: The classification in the table above means as follows.
 (a): Error correction (b): Specifications added or changed (c): descriptions or notes added or changed

RH850G3M User’s Manual: Software

Publication Date: Rev.0.51 Aug 07, 2014
 Rev.1.00 Aug 28, 2014
 Rev.1.10 Sep 15, 2015
 Rev.1.20 Nov 30, 2015
 Rev.1.30 Jun 30, 2016
 Rev.1.40 Dec 22, 2016

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

RH850G3M

R01US0123EJ0140

	Cover
	Notice
	NOTES FOR CMOS DEVICES
	How to Use This Manual
	Table of Contents
	CHAPTER 1 OVERVIEW
	1.1 Features of the RH850G3M
	1.2 Changes from the V850E2M

	CHAPTER 2 PROCESSOR MODEL
	2.1 CPU Operating Modes
	2.1.1 Definition of CPU Operating Modes
	2.1.2 CPU Operating Mode Transition
	2.1.3 CPU Operating Modes and Privileges

	2.2 Instruction Execution
	2.3 Exceptions and Interrupts
	2.3.1 Types of Exceptions
	2.3.2 Exception Level

	2.4 Coprocessors
	2.4.1 Coprocessor Use Permissions
	2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors
	2.4.3 Coprocessor Unusable Exceptions
	2.4.4 System Registers

	2.5 Registers
	2.5.1 Program Registers
	2.5.2 System Registers
	2.5.3 Register Updating
	2.5.4 Accessing Undefined Registers

	2.6 Data Types
	2.6.1 Data formats
	2.6.2 Data Representation
	2.6.3 Data Alignment

	2.7 Address Space
	2.7.1 Memory Map
	2.7.2 Instruction Addressing
	2.7.3 Data Addressing

	2.8 Acquiring the CPU Number
	2.9 System Protection Identifier

	CHAPTER 3 REGISTER SET
	3.1 Program Registers
	3.1.1 General-Purpose Registers
	3.1.2 PC XE "PC" — Program Counter

	3.2 Basic System Registers
	3.3 Interrupt Function Registers
	3.3.1 Interrupt Function System Registers

	3.4 FPU Function Registers
	3.4.1 Floating-Point Registers
	3.4.2 Floating-Point Function System Registers

	3.5 MPU Function Registers
	3.5.1 MPU Function System Registers

	3.6 Cache Operation Function Registers
	3.6.1 Cache Control Function System Registers

	3.7 Data Buffer Operation Registers
	3.7.1 Data Buffer Control System Registers

	CHAPTER 4 EXCEPTIONS AND INTERRUPTS
	4.1 Outline of Exceptions
	4.1.1 Exception Cause List
	4.1.2 Overview of Exception Causes
	4.1.3 Types of Exceptions
	4.1.4 Exception Acknowledgment Conditions and Priority Order
	4.1.5 Interrupt Exception Priority and Priority Masking
	4.1.6 Return and Restoration
	4.1.7 Context Saving

	4.2 Operation When Acknowledging an Exception
	4.2.1 Special Operations
	4.2.2 Points for Caution on the Acceptance of Exceptions

	4.3 Return from Exception Handling
	4.4 Exception Management
	4.4.1 Exception Synchronization Instruction
	4.4.2 Checking and Canceling Pending Exception

	4.5 Exception Handler Address
	4.5.1 Resets, Exceptions, and Interrupts
	4.5.2 System Calls
	4.5.3 Models for Application

	CHAPTER 5 MEMORY MANAGEMENT
	5.1 Memory Protection Unit (MPU)
	5.1.1 Features
	5.1.2 MPU Operation Settings
	5.1.3 Protection Area Settings
	5.1.4 Caution Points for Protection Area Setup
	5.1.5 Access Control
	5.1.6 Violations and Exceptions
	5.1.7 Memory Protection Setting Check Function

	5.2 Cache
	5.2.1 Cache Operation Registers
	5.2.2 Change Cache Use Mode
	5.2.3 Cache Operations using CACHE Instruction
	5.2.4 Cache Operation when the PREF Instruction is Executed
	5.2.5 Cache Index Specification Method
	5.2.6 Execution Privilege of the CACHE/PREF Instruction
	5.2.7 Memory Protection for CACHE and PREF Instructions

	5.3 Mutual Exclusion
	5.3.1 Shared Data that does not Require Mutual Exclusion Processing
	5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions
	5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction
	5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction

	5.4 Synchronization Function

	CHAPTER 6 COPROCESSOR
	6.1 Floating-Point Operation
	6.1.1 Configuration of Floating -Point Operation Function
	6.1.2 Data Types
	6.1.3 Register Set
	6.1.4 Floating-Point Instructions
	6.1.5 Floating-Point Operation Exceptions
	6.1.6 Exception Details
	6.1.7 Precise Exceptions and Imprecise Exceptions
	6.1.8 Saving and Returning Status
	6.1.9 Flushing Subnormal Numbers
	6.1.10 Selection of Floating-Point Operation Model
	6.1.11 Flush to Nearest

	CHAPTER 7 INSTRUCTION
	7.1 Opcodes and Instruction Formats
	7.1.1 CPU Instructions
	7.1.2 Coprocessor Instructions
	7.1.3 Reserved Instructions

	7.2 Basic Instructions
	7.2.1 Overview of Basic Instructions
	7.2.2 Basic Instruction Set

	7.3 Cache Instructions
	7.3.1 Overview of Cache Instructions
	7.3.2 Cache Instruction Set

	7.4 Floating-Point Instructions
	7.4.1 Instruction Formats
	7.4.2 Overview of Floating-Point Instructions
	7.4.3 Conditions for Comparison Instructions
	7.4.4 Floating-Point Instruction Set

	CHAPTER 8 RESET
	8.1 Status of Registers After Reset

	APPENDIX A HAZARD RESOLUTION PROCEDURE FOR SYSTEM REGISTERS
	APPENDIX B NUMBER OF INSTRUCTION EXECTUION CLOCKS
	B.1 Number of G3M Instruction Execution Clocks

	APPENDIX C REGISTER INDEX
	APPENDIX D INSTRUCTION INDEX
	APPENDIX E REVISION HISTORY
	E.1 Major Revisions in This Edition

	Colophon
	Address List
	Back Cover

