
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RH850G4MH

User’s Manual: Software

Rev.2.20 Dec. 2023

32

Renesas microcontroller

www.renesas.com

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be

touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in

a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level

at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated

due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to power supply or GND via a resistor if there is a possibility

that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications

governing the device.

5. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.)

and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level

is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

6. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

7. Power ON/OFF sequence

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply

after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal

power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing

malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged

separately for each device and according to related specifications governing the device.

Table of Contents

Section 1 Overview .. 11

1.1 Purpose of This User’s Manual .. 11

1.2 Features of the RH850G4MH .. 11

1.2.1 Multiprocessing Environment ... 12

Section 2 Instruction ... 13

2.1 Opcodes and Instruction Formats ... 13

2.1.1 CPU Instructions .. 13

2.1.2 Coprocessor Instructions ... 18

2.1.3 Reserved Instructions .. 20

2.2 Basic Instructions ... 21

2.2.1 Overview of Basic Instructions ... 21

2.2.2 Special Operations ... 26

2.2.3 Basic Instruction Set .. 27
2.2.3.1 ADD ... 30
2.2.3.2 ADDI .. 31
2.2.3.3 ADF .. 32
2.2.3.4 AND ... 34
2.2.3.5 ANDI .. 35
2.2.3.6 Bcond ... 36
2.2.3.7 BINS ... 39
2.2.3.8 BSH .. 41
2.2.3.9 BSW ... 42
2.2.3.10 CALLT .. 43
2.2.3.11 CAXI ... 45
2.2.3.12 CLIP.B .. 47
2.2.3.13 CLIP.BU ... 48
2.2.3.14 CLIP.H ... 49
2.2.3.15 CLIP.HU ... 50
2.2.3.16 CLL .. 51
2.2.3.17 CLR1 .. 52
2.2.3.18 CMOV .. 54
2.2.3.19 CMP ... 56
2.2.3.20 CTRET ... 57
2.2.3.21 DI ... 58
2.2.3.22 DISPOSE ... 59
2.2.3.23 DIV ... 62
2.2.3.24 DIVH .. 64
2.2.3.25 DIVHU .. 66
2.2.3.26 DIVQ .. 68
2.2.3.27 DIVQU .. 70
2.2.3.28 DIVU .. 72
2.2.3.29 EI .. 74

2.2.3.30 EIRET .. 75
2.2.3.31 FERET ... 76
2.2.3.32 FETRAP ... 77
2.2.3.33 HALT .. 79
2.2.3.34 HSH ... 81
2.2.3.35 HSW ... 82
2.2.3.36 JARL .. 83
2.2.3.37 JMP .. 85
2.2.3.38 JR ... 86
2.2.3.39 LD.B ... 88
2.2.3.40 LD.BU .. 91
2.2.3.41 LD.DW ... 93
2.2.3.42 LD.H ... 95
2.2.3.43 LD.HU .. 98
2.2.3.44 LD.W .. 101
2.2.3.45 LDL.BU .. 104
2.2.3.46 LDL.HU .. 106
2.2.3.47 LDL.W .. 108
2.2.3.48 LDM.MP ... 110
2.2.3.49 LDSR ... 112
2.2.3.50 LOOP ... 114
2.2.3.51 MAC ... 116
2.2.3.52 MACU .. 117
2.2.3.53 MOV ... 118
2.2.3.54 MOVEA .. 120
2.2.3.55 MOVHI ... 121
2.2.3.56 MUL ... 122
2.2.3.57 MULH ... 124
2.2.3.58 MULHI .. 126
2.2.3.59 MULU ... 127
2.2.3.60 NOP ... 129
2.2.3.61 NOT ... 130
2.2.3.62 NOT1 ... 131
2.2.3.63 OR .. 133
2.2.3.64 ORI ... 134
2.2.3.65 POPSP ... 135
2.2.3.66 PREPARE .. 137
2.2.3.67 PUSHSP .. 140
2.2.3.68 RESBANK .. 142
2.2.3.69 RIE ... 144
2.2.3.70 ROTL ... 146
2.2.3.71 SAR .. 147
2.2.3.72 SASF .. 149
2.2.3.73 SATADD .. 151
2.2.3.74 SATSUB ... 153
2.2.3.75 SATSUBI .. 155
2.2.3.76 SATSUBR .. 156
2.2.3.77 SBF .. 157
2.2.3.78 SCH0L ... 159
2.2.3.79 SCH0R ... 160

2.2.3.80 SCH1L ... 161
2.2.3.81 SCH1R ... 162
2.2.3.82 SET1 .. 163
2.2.3.83 SETF .. 165
2.2.3.84 SHL .. 167
2.2.3.85 SHR ... 169
2.2.3.86 SLD.B ... 171
2.2.3.87 SLD.BU .. 172
2.2.3.88 SLD.H .. 173
2.2.3.89 SLD.HU .. 174
2.2.3.90 SLD.W .. 175
2.2.3.91 SNOOZE .. 176
2.2.3.92 SST.B ... 178
2.2.3.93 SST.H .. 179
2.2.3.94 SST.W .. 180
2.2.3.95 ST.B ... 181
2.2.3.96 ST.DW ... 183
2.2.3.97 ST.H ... 185
2.2.3.98 ST.W .. 187
2.2.3.99 STC.B .. 190
2.2.3.100 STC.H .. 192
2.2.3.101 STC.W ... 194
2.2.3.102 STM.MP ... 196
2.2.3.103 STSR ... 199
2.2.3.104 SUB .. 201
2.2.3.105 SUBR ... 202
2.2.3.106 SWITCH ... 203
2.2.3.107 SXB .. 205
2.2.3.108 SXH .. 206
2.2.3.109 SYNCE ... 207
2.2.3.110 SYNCI .. 208
2.2.3.111 SYNCM .. 209
2.2.3.112 SYNCP ... 210
2.2.3.113 SYSCALL ... 211
2.2.3.114 TRAP ... 213
2.2.3.115 TST .. 215
2.2.3.116 TST1 .. 216
2.2.3.117 XOR ... 218
2.2.3.118 XORI .. 219
2.2.3.119 ZXB .. 220
2.2.3.120 ZXH .. 221

2.3 Cache Instructions .. 222

2.3.1 Overview of Cache Instructions ... 222

2.3.2 Cache Instruction Set ... 222
2.3.2.1 CACHE .. 223
2.3.2.2 PREF ... 225

2.4 Floating-Point Instructions .. 227

2.4.1 Instruction Formats .. 227

2.4.2 Overview of Floating-Point Instructions .. 228

2.4.3 Conditions for Comparison Instructions ... 231

2.4.4 Floating-Point Instruction Set ... 233
2.4.4.1 ABSF.D .. 235
2.4.4.2 ABSF.S .. 236
2.4.4.3 ADDF.D .. 237
2.4.4.4 ADDF.S .. 239
2.4.4.5 CEILF.DL ... 241
2.4.4.6 CEILF.DUL ... 243
2.4.4.7 CEILF.DUW ... 245
2.4.4.8 CEILF.DW .. 247
2.4.4.9 CEILF.SL ... 249
2.4.4.10 CEILF.SUL ... 251
2.4.4.11 CEILF.SUW ... 253
2.4.4.12 CEILF.SW .. 255
2.4.4.13 CMOVF.D .. 257
2.4.4.14 CMOVF.S ... 258
2.4.4.15 CMPF.D ... 259
2.4.4.16 CMPF.S ... 263
2.4.4.17 CVTF.DL .. 267
2.4.4.18 CVTF.DS .. 269
2.4.4.19 CVTF.DUL ... 270
2.4.4.20 CVTF.DUW .. 272
2.4.4.21 CVTF.DW ... 274
2.4.4.22 CVTF.HS .. 276
2.4.4.23 CVTF.LD .. 277
2.4.4.24 CVTF.LS .. 278
2.4.4.25 CVTF.SD .. 279
2.4.4.26 CVTF.SL .. 280
2.4.4.27 CVTF.SH .. 282
2.4.4.28 CVTF.SUL .. 283
2.4.4.29 CVTF.SUW .. 285
2.4.4.30 CVTF.SW ... 287
2.4.4.31 CVTF.ULD ... 289
2.4.4.32 CVTF.ULS .. 290
2.4.4.33 CVTF.UWD .. 291
2.4.4.34 CVTF.UWS .. 292
2.4.4.35 CVTF.WD ... 293
2.4.4.36 CVTF.WS ... 294
2.4.4.37 DIVF.D ... 295
2.4.4.38 DIVF.S ... 297
2.4.4.39 FLOORF.DL ... 299
2.4.4.40 FLOORF.DUL .. 301
2.4.4.41 FLOORF.DUW ... 303
2.4.4.42 FLOORF.DW ... 305
2.4.4.43 FLOORF.SL ... 307
2.4.4.44 FLOORF.SUL .. 309
2.4.4.45 FLOORF.SUW ... 311
2.4.4.46 FLOORF.SW .. 313
2.4.4.47 FMAF.S .. 315

2.4.4.48 FMSF.S .. 317
2.4.4.49 FNMAF.S ... 319
2.4.4.50 FNMSF.S ... 321
2.4.4.51 MAXF.D ... 323
2.4.4.52 MAXF.S .. 325
2.4.4.53 MINF.D ... 327
2.4.4.54 MINF.S ... 329
2.4.4.55 MULF.D .. 331
2.4.4.56 MULF.S .. 333
2.4.4.57 NEGF.D ... 335
2.4.4.58 NEGF.S .. 336
2.4.4.59 RECIPF.D .. 337
2.4.4.60 RECIPF.S .. 339
2.4.4.61 ROUNDF.DL .. 340
2.4.4.62 ROUNDF.DUL.. 342
2.4.4.63 ROUNDF.DUW .. 344
2.4.4.64 ROUNDF.DW ... 346
2.4.4.65 ROUNDF.SL .. 348
2.4.4.66 ROUNDF.SUL .. 350
2.4.4.67 ROUNDF.SUW .. 352
2.4.4.68 ROUNDF.SW ... 354
2.4.4.69 RSQRTF.D ... 356
2.4.4.70 RSQRTF.S ... 358
2.4.4.71 SQRTF.D ... 359
2.4.4.72 SQRTF.S ... 360
2.4.4.73 SUBF.D .. 361
2.4.4.74 SUBF.S .. 363
2.4.4.75 TRFSR ... 365
2.4.4.76 TRNCF.DL ... 366
2.4.4.77 TRNCF.DUL ... 368
2.4.4.78 TRNCF.DUW ... 370
2.4.4.79 TRNCF.DW .. 372
2.4.4.80 TRNCF.SL ... 374
2.4.4.81 TRNCF.SUL ... 376
2.4.4.82 TRNCF.SUW ... 378
2.4.4.83 TRNCF.SW .. 380

2.5 Extended Floating-point Instructions ... 382

2.5.1 Instruction Format .. 382

2.5.2 Extended Floating-point Instruction Set ... 384

2.5.3 Overview of the Extended Floating-point Vector Manipulation Instructions 387

2.5.4 Overview of the Extended Floating-point Vector Arithmetic Instructions 388
2.5.4.1 ABSF.S4 .. 390
2.5.4.2 ADDF.S4 .. 391
2.5.4.3 ADDRF.S4 ... 393
2.5.4.4 ADDSUBF.S4 .. 395
2.5.4.5 ADDSUBNF.S4 .. 397
2.5.4.6 ADDSUBNXF.S4 .. 399
2.5.4.7 ADDSUBXF.S4 .. 401
2.5.4.8 ADDXF.S4 ... 403

2.5.4.9 CEILF.SUW4 ... 405
2.5.4.10 CEILF.SW4 .. 407
2.5.4.11 CMOVF.W4 .. 409
2.5.4.12 CMPF.S4 ... 410
2.5.4.13 CVTF.HS4 .. 414
2.5.4.14 CVTF.SH4 .. 416
2.5.4.15 CVTF.SUW4 .. 418
2.5.4.16 CVTF.SW4 ... 420
2.5.4.17 CVTF.UWS4 .. 422
2.5.4.18 CVTF.WS4 ... 423
2.5.4.19 DIVF.S4 ... 424
2.5.4.20 FLOORF.SUW4 ... 426
2.5.4.21 FLOORF.SW4 .. 428
2.5.4.22 FLPV.S4 ... 430
2.5.4.23 FMAF.S4 .. 432
2.5.4.24 FMSF.S4 .. 434
2.5.4.25 FNMAF.S4 ... 436
2.5.4.26 FNMSF.S4 ... 438
2.5.4.27 LDV.DW ... 440
2.5.4.28 LDV.QW ... 442
2.5.4.29 LDV.W .. 443
2.5.4.30 LDVZ.H4 .. 445
2.5.4.31 MAXF.S4 .. 447
2.5.4.32 MAXRF.S4 ... 449
2.5.4.33 MINF.S4 ... 451
2.5.4.34 MINRF.S4 .. 453
2.5.4.35 MOVV.W4 .. 455
2.5.4.36 MULF.S4 .. 456
2.5.4.37 MULRF.S4 ... 458
2.5.4.38 MULXF.S4 ... 460
2.5.4.39 NEGF.S4 .. 462
2.5.4.40 RECIPF.S4 .. 463
2.5.4.41 ROUNDF.SUW4 .. 465
2.5.4.42 ROUNDF.SW4 ... 467
2.5.4.43 RSQRTF.S4 ... 469
2.5.4.44 SHFLV.W4 ... 471
2.5.4.45 SQRTF.S4 ... 472
2.5.4.46 STV.DW ... 474
2.5.4.47 STV.QW ... 476
2.5.4.48 STV.W .. 477
2.5.4.49 STVZ.H4 .. 479
2.5.4.50 SUBADDF.S4 .. 480
2.5.4.51 SUBADDNF.S4 .. 482
2.5.4.52 SUBADDNXF.S4 .. 484
2.5.4.53 SUBADDXF.S4 .. 486
2.5.4.54 SUBF.S4 .. 488
2.5.4.55 SUBRF.S4 ... 490
2.5.4.56 SUBXF.S4 .. 492
2.5.4.57 TRFSRV.W4 .. 494
2.5.4.58 TRNCF.SUW4.. 495

2.5.4.59 TRNCF.SW4 .. 497

Appendix A Number of Instruction Execution Clocks ... 499

A.1 Numbers of Clock Cycles for Execution ... 499

A.2 Number of G4MH Instruction Execution Clocks .. 500

RH850G4MH Software Section 1 Overview

R01US0209EJ0220 Rev.2.20 Page 11 of 512
December 20, 2023

Section 1 Overview

1.1 Purpose of This User’s Manual
This user’s manual is intended to describe the details of instructions available in the RH850G4MH.

There are some variations of RH850G4MH core. Those can be identified by PID value.

If there is a difference between variations, PID value is shown in this document. Other contents are common for all

variations.

The supported RH850G4MH cores are described below.

RH850G4MH Core name PID[31:24] Bit Value

RH850G4MH 06H

RH850G4MH2 07H

Note: For details of the RH850G4MH architecture, refer to the hardware manual of the product used.

1.2 Features of the RH850G4MH
The RH850G4MH has an architecture that is backward compatible with the 32-bit RISC RH850 Series microcontroller

at the instruction set level. It provides basic functionalities for multi-core systems including the exclusive control among

multiple cores.

Table 1.1 shows the features of the RH850G4MH.

Table 1.1 Features of the RH850G4MH

Item Features

CPU ● High performance 32-bit architecture for embedded control
● 32-bit internal data bus
● Thirty-two 32-bit general-purpose registers
● RISC type instruction set (backward compatible with V850, V850E1, V850E2, RH850G3M, and

RH850G3MH)
Long/short type load/store instructions
Three-operand instructions
Instruction set based on C

● CPU operating modes
User mode and supervisor mode

● Address space: 4-Gbyte linear space for both data and instructions
● Address space identifier SPID: 5 bits

Coprocessor ● A floating point operation coprocessor (FPU) can be installed.
Supports single precision (32-bit) and double precision (64-bit)
Supports IEEE754-compliant data types and exceptions
Rounding modes: Nearest, 0 direction, + direction, and − direction
Handling on non-normalized numbers: Truncated to 0, or an exception is reported to comply with
IEEE754.

● An extended floating-point operation coprocessor (FXU) can be installed.
Supports 4 single-precision (32-bit) parallel operations
Supports IEEE754-compliant data types and exceptions
Rounding modes: Nearest, 0 direction, + direction, and − direction
Handling on non-normalized numbers: Truncated to 0, or an exception is reported to comply with
IEEE754.

RH850G4MH Software Section 1 Overview

R01US0209EJ0220 Rev.2.20 Page 12 of 512
December 20, 2023

Exceptions/interrupts ● 16-level interrupt priority that can be specified for each channel
● 64-level interrupt priority that can be specified for each channel (Supported only when Architecture

Identifier bit PID[31:24] = 07H (RH850G4MH2))
● Vector selection method that can be selected according to performance requirements and the amount of

consumed memory
Direct branch method exception vector (direct vector method)
Address-table-referencing indirect branch method exception vector (table reference method)

● Support for high-speed context save and restoration processing on interrupt by using dedicated
instructions (PUSHSP, POPSP)

● Support for high-speed context save on interrupt by using the register bank feature
● Support for restoration from the register bank using a dedicated instruction (RESBANK)

Memory management ● A memory protection unit (MPU) can be installed.

Caches ● An instruction cache can be installed.

1.2.1 Multiprocessing Environment
The RH850G4MH provides a multiprocessing environment for software running on the system. It is equipped with a

multi-core support features to support MPMD (Multiple Program Multiple Data Stream) type multiprocessing

environments.

A multi-core system incorporates two or more processors which execute different sequences of instructions in parallel.

Its total processing performance is enhanced since it allows two or more programs to be executed simultaneously. On

the other hand, the transfer of processing that spans over two or more processors will impose heavier software burden.

If the processing is split in poor balance, for example, either one of the processors may have no instruction to execute,

resulting in decrease in processing efficiency.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 13 of 512
December 20, 2023

Section 2 Instruction

2.1 Opcodes and Instruction Formats
This CPU has two types of instructions: CPU instructions, which are defined as basic instructions, and coprocessor

instructions, which are defined according to the application.

2.1.1 CPU Instructions
Instructions classified as CPU instructions are allocated in the opcode area other than the area used in the format of the

coprocessor instructions shown in Section 2.1.2, Coprocessor Instructions.

CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several instructions that use option

data to add bits, enabling the configuration of 48-bit and 64-bit instructions. For details, see the opcode of the relevant

instruction in Section 2.2.3, Basic Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions are reserved for future

function expansion and cannot be used. For details, see Section 2.1.3, Reserved Instructions.

(1) reg-reg Instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general-purpose register specification fields.

15 4 0511 10

reg2 opcode reg1

(2) imm-reg Instruction (Format II)

A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a general-purpose register

specification field.

15 4 0511 10

reg2 opcode imm

(3) Conditional Branch Instruction (Format III)

A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

15 4 0711 10

disp opcode cond

6

disp

3

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 14 of 512
December 20, 2023

(4) 16-Bit Load/Store Instruction (Format IV)

A 16-bit instruction format consists of a 4-bit opcode field, a general-purpose register specification field, and a 7-bit

displacement field (or 6-bit displacement field + 1-bit sub- opcode field).

15 0711 10

reg2 opcode

6

disp

1

disp/sub-opcode

In addition, a 16-bit instruction format consists of a 7-bit opcode field, a general-purpose register specification field,

and a 4-bit displacement field.

15 4 011 10

reg2 opcode disp

3

(5) Jump Instruction (Format V)

A 32-bit instruction format consists of a 5-bit opcode field, a general-purpose register specification field, and a 22-bit

displacement field.

15 5 011 10

reg2 opcode disp

6 31 17 16

0

(6) 3-Operand Instruction (Format VI)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a 16-

bit immediate field.

15 5 011 10

reg1opcode imm

4 31 16

reg2

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 15 of 512
December 20, 2023

(7) 32-Bit Load/Store Instruction (Format VII)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register specification fields, and a 16-

bit displacement field (or 15-bit displacement field + 1-bit sub- opcode field).

15 5 011 10

reg1opcode disp

4 31 16

reg2

17

disp/sub-opcode

(8) Bit Manipulation Instruction (Format VIII)

A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a

general-purpose register specification field, and a 16-bit displacement field.

15 5 011 10

reg1opcode disp

4 31 16

sub

14

bit #

13

(9) Extended Instruction Format 1 (Format IX)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields, and

handles the other bits as a sub-opcode field.

CAUTION

Extended instruction format 1 might use part of the general-purpose register specification field or the sub-opcode field as

a system register number field, condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 2.2.3, Basic Instruction Set.

15 5 011 10

reg1opcode

4 31 16

reg2

17

0sub-opcode

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 16 of 512
December 20, 2023

(10) Extended Instruction Format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub- opcode field.

CAUTION

Extended instruction format 2 might use part of the general-purpose register specification field or the sub-opcode field as

a system register number field, condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 2.2.3, Basic Instruction Set.

15 5 011 10

opcode

4 31 1617

0sub-opcode sub-opcode/
imm/vector sub-opcode

(11) Extended Instruction Format 3 (Format XI)

This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose register specification fields,

and uses the other bits as a sub-opcode field.

CAUTION

Extended instruction format 3 might use part of the general-purpose register specification field or the sub-opcode field as

a system register number field, condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 2.2.3, Basic Instruction Set.

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

0

17

sub-opcode

(12) Extended Instruction Format 4 (Format XII)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose register specification fields, and

uses the other bits as a sub-opcode field.

CAUTION

Extended instruction format 4 might use part of the general-purpose register specification field or the sub-opcode field as

a system register number field, condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 2.2.3, Basic Instruction Set.

15 5 011 10

opcode reg3

4 31 16

reg2

27 26

0

17

sub-opcode sub-opcode

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 17 of 512
December 20, 2023

(13) Stack Manipulation Instruction Format (Format XIII)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, 5-bit sub-

opcode field, and one general-purpose register specification field (or 5-bit sub-opcode field).

The general-purpose register specification field is used as a sub-opcode filed, depending on the format of the

instruction.

15 5 011 10

immopcode list

31 162021

reg2

6 1

sub-opcode

(14) Load/Store Instruction 48-Bit Format (Format XIV)

This is a 48-bit instruction format that has a 6-bit opcode field, two general-purpose register specification fields, and a

23-bit displacement field, and uses the other bits as a sub-opcode field.

15 5 011 10

reg1opcode reg3

31 16204 27 26 19

47 32

sub-opcode disp (low) sub-opcode

disp (high)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 18 of 512
December 20, 2023

2.1.2 Coprocessor Instructions
Instructions in the following format are defined as coprocessor instructions.

(1) Coprocessor Instruction Format 1

This is a 32-bit instruction format used as a coprocessor instruction.

15 5 011 10

1 reg3

4 31 16

reg2

27 26

opcode

17

1 1 1 1 1 1 0

259 8 7 6

opcode or reg1

(2) Coprocessor Instruction Format 2

This is a 48-bit instruction format used as an extended floating-point arithmetic instruction.

15 5 011 10

wreg1 wreg3

31 16204 27 26 19

47 32

opcode

disp 16 / imm12 / sub-op / wreg2 / wreg4

1 1 1 1 0 1

6789

0 0 0 0 0

14 13 12

1 1 1 10

18 1721

Coprocessor instructions define the functions of each coprocessor.

(3) Coprocessor Unusable Exception

If an attempt is made to execute a coprocessor instruction defined by an opcode that refers to a nonexistent coprocessor

or a coprocessor that cannot be used due to the operational status of the device, a coprocessor unusable exception

(UCPOP) immediately occurs.

For details, see the hardware manual of the product used.

When a coprocessor cannot be used, even if the instruction is an undefined opcode, a coprocessor unusable exception

occurs in preference to a reserved instruction exception (RIE) if the opcode is included in the format above.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 19 of 512
December 20, 2023

(4) Coprocessor Instruction Code and Corresponding Coprocessor

Instruction codes in a coprocessor instruction format 1 are assigned to each coprocessor as shown in the following table.

When a coprocessor instruction is executed and a coprocessor unusable exception occurs, the exception cause code is

determined according to the following table. For details on the exception cause code of the coprocessor unusable

exception, see the hardware manual of the product used.

In addition, since instruction codes in a coprocessor instruction format 2 are all handled as an extended floating-point

arithmetic instruction, the exception cause code will be 81H.

Instruction Code

Corresponding
Coprocessor

Exception
Cause Code Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21

1 0 0 0 — — FPU 80H

1 0 0 1 0 0 FPU 80H

 0 1 FPU 80H

 1 0 FXU 81H

 1 1 FPU 80H

1 0 1 0 — — Reserved 82H

1 0 1 1 — — FXU 81H

1 1 0 0 — — Reserved 82H

1 1 0 1 — — Reserved 82H

1 1 1 0 — — Reserved 82H

1 1 1 1 — — Reserved 82H

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 20 of 512
December 20, 2023

2.1.3 Reserved Instructions
An opcode reserved for future function extension and for which no instruction is defined is defined as a reserved

instruction. A reserved instruction exceptions (RIE) can occur for the opcode of any reserved instruction.

The following opcodes are defined for this CPU as RIE instructions that will always cause a reserved instruction

exception:

15 4 0511 10

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

15 5 011 10

1 x x x x1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 31 16

x x x x x

 RIE instruction (16 bits)

 RIE instruction (32 bits)

(x = Don’t care, either 0 or 1)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 21 of 512
December 20, 2023

2.2 Basic Instructions

2.2.1 Overview of Basic Instructions

(1) Load Instructions

Execute data transfer from memory to register. The following instructions (mnemonics) are provided.

(a) LD Instructions

− LD.B: Load byte

− LD.BU: Load byte unsigned

− LD.DW: Load double word

− LD.H: Load halfword

− LD.HU: Load halfword unsigned

− LD.W: Load word

(b) SLD instructions

− SLD.B: Short format load byte

− SLD.BU: Short format load byte unsigned

− SLD.H: Short format load halfword

− SLD.HU: Short format load halfword unsigned

− SLD.W: Short format load word

(2) Store Instructions

Execute data transfer from register to memory. The following instructions (mnemonics) are provided.

(a) ST Instructions

− ST.B: Store byte

− ST.DW: Store double word

− ST.H: Store halfword

− ST.W: Store word

(b) SST instructions

− SST.B: Short format store byte

− SST.H: Short format store halfword

− SST.W: Short format store word

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 22 of 512
December 20, 2023

(3) Multiply Instructions

Execute multiplication in one clock cycle with the on-chip hardware multiplier. The following instructions (mnemonics)

are provided.

● MUL: Multiply word

● MULH: Multiply halfword

● MULHI: Multiply halfword immediate

● MULU: Multiply word unsigned

(4) Multiply-accumulate Instructions

After a multiplication operation, a value is added to the result. The following instructions (mnemonics) are available.

● MAC: Multiply and add word

● MACU: Multiply and add word unsigned

(5) Arithmetic Instructions

Add, subtract, transfer, or compare data between registers. The following instructions (mnemonics) are provided.

● ADD: Add

● ADDI: Add immediate

● CMP: Compare

● MOV: Move

● MOVEA: Move effective address

● MOVHI: Move high halfword

● SUB: Subtract

● SUBR: Subtract reverse

(6) Conditional Arithmetic Instructions

Add and subtract operations are performed under specified conditions. The following instructions (mnemonics) are

available.

● ADF: Add on condition flag

● SBF: Subtract on condition flag

(7) Saturated Operation Instructions

Execute saturated addition and subtraction. If the operation result exceeds the maximum positive value (7FFF FFFFH),

7FFF FFFFH returns. If the operation result exceeds the maximum negative value (8000 0000H), 8000 0000H returns.

The following instructions (mnemonics) are provided.

● SATADD: Saturated add

● SATSUB: Saturated subtract

● SATSUBI: Saturated subtract immediate

● SATSUBR: Saturated subtract reverse

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 23 of 512
December 20, 2023

(8) Logical Instructions

Include logical operation instructions. The following instructions (mnemonics) are provided.

● AND: AND

● ANDI: AND immediate

● NOT: NOT

● OR: OR

● ORI: OR immediate

● TST: Test

● XOR: Exclusive OR

● XORI: Exclusive OR immediate

(9) Data Manipulation Instructions

Include data manipulation instructions and shift instructions with arithmetic shift and logical shift. Operands can be

shifted by multiple bits in one clock cycle through the on-chip barrel shifter. The following instructions (mnemonics)

are provided.

● BINS: Bitfield Insert

● BSH: Byte swap halfword

● BSW: Byte swap word

● CLIP.B: Signed data conversion from word to byte with saturation

● CLIP.BU: Unsigned data conversion from word to byte with saturation

● CLIP.H: Signed data conversion from word to halfword with saturation

● CLIP.HU: Unsigned data conversion from word to halfword with saturation

● CMOV: Conditional move

● HSH: Halfword swap halfword

● HSW: Halfword swap word

● ROTL: Rotate left

● SAR: Shift arithmetic right

● SASF: Shift and set flag condition

● SETF: Set flag condition

● SHL: Shift logical left

● SHR: Shift logical right

● SXB: Sign extend byte

● SXH: Sign extend halfword

● ZXB: Zero extend byte

● ZXH: Zero extend halfword

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 24 of 512
December 20, 2023

(10) Bit Search Instructions

The specified bit values are searched among data stored in registers.

● SCH0L: Search zero from left

● SCH0R: Search zero from right

● SCH1L: Search one from left

● SCH1R: Search one from right

(11) Divide Instructions

Execute division operations. Regardless of values stored in a register, the operation can be performed using a constant

number of steps. The following instructions (mnemonics) are provided.

● DIV: Divide word

● DIVH: Divide halfword

● DIVHU: Divide halfword unsigned

● DIVU: Divide word unsigned

(12) High-speed Divide Instructions

These instructions perform division operations. The number of valid digits in the quotient is determined in advanced

from values stored in a register, so the operation can be performed using a minimum number of steps. The following

instructions (mnemonics) are provided.

● DIVQ: Divide word quickly

● DIVQU: Divide word unsigned quickly

(13) Branch Instructions

Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch instruction (Bcond) which

accommodates the flag status to switch controls. Program control can be transferred to the address specified by a branch

instruction. The following instructions (mnemonics) are provided.

● Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV, BNZ, BP, BR, BSA, BV,

BZ): Branch on condition code

● JARL: Jump and register link

● JMP: Jump register

● JR: Jump relative

(14) Loop Instruction
● LOOP: Loop

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 25 of 512
December 20, 2023

(15) Bit Manipulation Instructions

Execute logical operation on memory bit data. Only a specified bit is affected. The following instructions (mnemonics)

are provided.

● CLR1: Clear bit

● NOT1: Not bit

● SET1: Set bit

● TST1: Test bit

(16) Special Instructions

Include instructions not provided in the categories of instructions described above. The following instructions

(mnemonics) are provided.

● CALLT: Call with table look up

● CAXI: Compare and exchange for interlock

● CLL: Clear load link

● CTRET: Return from CALLT

● DI: Disable interrupt

● DISPOSE: Restore registers from stack

● EI: Enable interrupt

● EIRET: Return from EI-level trap or interrupt

● FERET: Return from FE-level trap or interrupt

● FETRAP: FE-level trap

● HALT: Halt

● LDSR: Load to system register

● LDL.BU: Load linked byte unsigned

● LDL.HU: Load linked halfword unsigned

● LDL.W:

● LDM.MP:

Load linked word

Load Multiple MPU entries from memory (Supported only when Architecture Identifier bit

PID[31:24] = 07H (RH850G4MH2))

● NOP: No operation

● POPSP: Pop registers from stack

● PREPARE: Save registers to stack

● PUSHSP: Push registers to stack

● RESBANK: Restore contexts from register bank

● RIE: Reserved instruction exception

● SNOOZE: Snooze

● STSR: Store contents of system register

● STC.B: Store conditional byte

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 26 of 512
December 20, 2023

● STC.H: Store conditional halfword

● STC.W:

● STM.MP:

Store conditional word

Store Multiple MPU entries to memory (Supported only when Architecture Identifier bit PID[31:24]

= 07H (RH850G4MH2))

● SWITCH: Jump with table look up

● SYNCE: Synchronize exceptions

● SYNCI: Synchronize instruction fetch

● SYNCM: Synchronize memory

● SYNCP: Synchronize pipeline

● SYSCALL: System call

● TRAP: Trap

2.2.2 Special Operations

(1) Divide by Zero

The results of executing a divide instruction by a zero divisor are summarized below.

Quotient Old Value Retained

Remainder 0

PSW.OV 1

PSW.S 0

PSW.Z 0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 27 of 512
December 20, 2023

2.2.3 Basic Instruction Set
This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

● Instruction format: Indicates how the instruction is written and its operand(s) (for symbols, see Table 2.1).

● Operation: Indicates the function of the instruction (for symbols, see Table 2.2).

● Format: Indicates the instruction format (see Section 2.1, Opcodes and Instruction Formats).

● Opcode: Indicates the bit field of the instruction opcode (for symbols, see Table 2.3).

● Flag: Indicates the change of flags of PSW (program status word) after the instruction execution.

“0” is to clear (reset), “1” to set, and “—” to remain unchanged.

● Description: Describes the operation of the instruction.

● Supplement: Provides supplementary information on the instruction.

● Caution: Provides precautionary notes.

Table 2.1 Conventions of Instruction Format

Symbol Meaning

reg1 General-purpose register (as source register)

reg2 General-purpose register (primarily as destination register with some as source registers)

reg3 General-purpose register (primarily used to store the remainder of a division result and/or the higher 32 bits of a
multiplication result)

bit#3 3-bit data to specify bit number

imm × ×-bit immediate data

disp × ×-bit displacement data

regID System register number

selID System register selection ID

vector × Data to specify vector (× indicates the bit size)

cond Condition code (see Table 2.4)

cccc 4-bit data to specify condition code (see Table 2.4)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

rh-rt Indicates multiple general-purpose registers, from the general-purpose register indicated by rh to the general-
purpose register indicated by rt.

eh-et Indicates multiple system registers of MPU entry (MPLA, MPUA, MPAT), from the entry number indicated by eh to
the entry number indicated by et.

[]+ Post increment addressing

[]− Post decrement addressing

Table 2.2 Conventions of Operation (1/2)

Symbol Meaning

← Assignment

GR [a] Value stored in general-purpose register a

SR [a, b] Value stored in system register (RegID = a, SelID = b)

(n:m) Bit selection. Select from bit n to bit m.

CheckException(a) Checks the conditions for generating the exception “a” and, if one is detected, suspends the instruction
execution and performs exception processing.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 28 of 512
December 20, 2023

Table 2.2 Conventions of Operation (2/2)

Symbol Meaning

zero-extend (n) Zero-extends “n” to word

sign-extend (n) Sign-extends “n” to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

extract-bit (a, b) Extracts value of bit b of data a

set-bit (a, b) Sets value of bit b of data a

not-bit (a, b) Inverts value of bit b of data a

clear-bit (a, b) Clears value of bit b of data a

saturated (n) Performs saturated processing of “n”.

If n ≥ 7FFF FFFFH, n = 7FFF FFFFH.

If n ≤ 8000 0000H, n = 8000 0000H.

clip (a, b, c) Performs saturated processing on the word data “a” assuming the sign “b” and converts it to data of the
size “c”.
● If the sign “b” is Sign and the size “c” is Byte:

When 0000 007FH < a ≤ 7FFF FFFFH, the result is 0000 007FH.

When 8000 0000H ≤ a < FFFF FF80H, the result is FFFF FF80H.
● If the sign “b” is Unsign and the size “c” is Byte:

When 0000 00FFH < a, the result is 0000 00FFH.
● If the sign “b” is Sign and the size “c” is Halfword:

When 0000 7FFFH < a ≤ 7FFF FFFFH, the result is 0000 7FFFH.

When 8000 0000H ≤ a < FFFF 8000H, the result is FFFF 8000H.
● If the sign “b” is Unsign and the size “c” is Halfword:

When 0000 FFFFH < a, the result is 0000 FFFFH.

result Outputs results on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

== Comparison (true upon a match)

!= Comparison (true upon a mismatch)

+ Add

− Subtract

|| Bit concatenation

× Multiply

÷ Divide

% Remainder of division results

AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by Logical left-shift

logically shift right by Logical right-shift

arithmetically shift right by Arithmetic right-shift

P-TYPE_Addressing() Handles post index increment/decrement addressing.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 29 of 512
December 20, 2023

Table 2.3 Conventions of Opcode

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

D 1-bit data of displacement (indicates higher bits of displacement)

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

V 1-bit data of code specifying vector (indicates higher bits of vector)

v 1-bit data of code specifying vector

cccc 4-bit data for condition code specification (See Table 2.4)

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list

S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list

P 1-bit data of code specifying PSW in register list

Table 2.4 Condition Codes

Condition Code (cccc) Condition Name Condition Formula

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T Always (Unconditional)

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 30 of 512
December 20, 2023

2.2.3.1 ADD
<Arithmetic instruction>

Add register/immediate

ADD
Add

[Instruction format] (1) ADD reg1, reg2

(2) ADD imm5, reg2

[Operation] (1) GR[reg2] ← GR[reg2] + GR[reg1]

(2) GR[reg2] ← GR[reg2] + sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode]

 15 0

(1) rrrrr001110RRRRR

 15 0

(2) rrrrr010010iiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

(2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of

general-purpose register reg2 and stores the result in general-purpose register reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 31 of 512
December 20, 2023

2.2.3.2 ADDI
<Arithmetic instruction>

Add immediate

ADDI
Add immediate

[Instruction format] ADDI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110000RRRRR iiiiiiiiiiiiiiii

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise “0”.

 SAT —

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 32 of 512
December 20, 2023

2.2.3.3 ADF
<Conditional Operation Instructions>

Add on condition flag

ADF
Conditional add

[Instruction format] ADF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3] ← GR [reg1] + GR [reg2] + 1

else GR [reg3] ← GR [reg1] + GR [reg2] + 0

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww011101cccc0

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 33 of 512
December 20, 2023

[Description] Adds 1 to the result of adding the word data of general-purpose register reg1 to the word

data of general-purpose register reg2 and stores the result of addition in general-purpose

register reg3, if the condition specified as condition code “cccc” is satisfied.

If the condition specified as condition code “cccc” is not satisfied, the word data of general-

purpose register reg1 is added to the word data of general-purpose register reg2, and the

result is stored in general-purpose register reg3.

General-purpose registers reg1 and reg2 are not affected. Designate one of the condition

codes shown in the following table as [cccc]. (cccc is not equal to 1101.)

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 34 of 512
December 20, 2023

2.2.3.4 AND
<Logical instruction>

AND

AND
AND

[Instruction format] AND reg1, reg2

[Operation] GR[reg2] ← GR[reg2] AND GR[reg1]

[Format] Format I

[Opcode]

15 0

rrrrr001010RRRRR

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 35 of 512
December 20, 2023

2.2.3.5 ANDI
<Logical instruction>

AND immediate

ANDI
AND immediate

[Instruction format] ANDI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] AND zero-extend (imm16)

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110110RRRRR iiiiiiiiiiiiiiii

[Flags] CY —

 OV 0

 S 0

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] ANDs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-

extended to word length, and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 36 of 512
December 20, 2023

2.2.3.6 Bcond
<Branch instruction>

Branch on condition code

Bcond
Conditional branch

[Instruction format] (1) Bcond disp9

(2) Bcond disp17

[Operation] (1) if conditions are satisfied

then PC ← PC + sign-extend (disp9)

(2) if conditions are satisfied

then PC ← PC + sign-extend (disp17)

[Format] (1) Format III

(2) Format VII

[Opcode]

 15 0

(1) ddddd1011dddcccc

dddddddd is the higher 8 bits of disp9.

cccc is the condition code of the condition indicated by cond (For details, see Table 2.5
Bcond Instructions).

 15 0 31 16

(2) 00000111111Dcccc ddddddddddddddd1

Dddddddddddddddd is the higher 16 bits of disp17.

cccc is the condition code of the condition indicated by cond (For details, see Table 2.5
Bcond Instructions).

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 37 of 512
December 20, 2023

[Description] (1) Checks each PSW flag specified by the instruction and branches if a condition is met;

otherwise, executes the next instruction. The PC of branch destination is the sum of

the current PC value and the 9-bit displacement (= 8-bit immediate data shifted by 1

and sign-extended to word length).

(2) Checks each PSW flag specified by the instruction and then adds the result of

logically shifting the 16-bit immediate data 1 bit to the left and sign-extending it to

word length to the current PC value if the conditions are satisfied. Control is then

transferred. If the conditions are not satisfied, the system continues to the next

instruction. BR (0101) cannot be specified as the condition code.

[Supplement] Bit 0 of the 9-bit displacement is masked to “0”. The current PC value used for calculation

is the address of the first byte of this instruction. The displacement value being “0” signifies

that the branch destination is the instruction itself.

Table 2.5 Bcond Instructions

Instruction Condition Code (cccc) Flag Status Branch Condition

Signed integer BGE 1110 (S xor OV) = 0 Greater than or equal signed

BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal signed

BLT 0110 (S xor OV) = 1 Less than signed

Unsigned integer BH 1011 (CY or Z) = 0 Higher (Greater than)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

BNL 1001 CY = 0 Not lower (Greater than or equal)

Common BE 0010 Z = 1 Equal

BNE 1010 Z = 0 Not equal

Others BC 0001 CY = 1 Carry

BF 1010 Z = 0 False

BN 0100 S = 1 Negative

BNC 1001 CY = 0 No carry

BNV 1000 OV = 0 No overflow

BNZ 1010 Z = 0 Not zero

BP 1100 S = 0 Positive

BR 0101 — Always (Unconditional)
Cannot be specified when using
instruction format (2).

BSA 1101 SAT = 1 Saturated

BT 0010 Z = 1 True

BV 0000 OV = 1 Overflow

BZ 0010 Z = 1 Zero

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 38 of 512
December 20, 2023

CAUTIONS

1. The branch condition loses its meaning if a conditional branch instruction is executed on a signed integer (BGE,

BGT, BLE, or BLT) when the saturated operation instruction sets “1” to the SAT flag. In normal operations, if an

overflow occurs, the S flag is inverted (0 → 1 or 1 → 0). This is because the result is a negative value if it exceeds

the maximum positive value and it is a positive value if it exceeds the maximum negative value. However, when a

saturated operation instruction is executed, and if the result exceeds the maximum positive value, the result is

saturated with a positive value; if the result exceeds the maximum negative value, the result is saturated with a

negative value. Unlike the normal operation, the S flag is not inverted even if an overflow occurs. Thus, the S flag is

affected differently when the instruction is a saturate operation, as opposed to an ordinary arithmetic operation. A

branch condition which is an XOR of S and OV flags will therefore, have no meaning.

2. For Bcond disp17 (instruction format (2)), BR (0101) cannot be specified as the condition code.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 39 of 512
December 20, 2023

2.2.3.7 BINS
<Data manipulation instruction>

Bitfield Insert

BINS
Insert bit in register

[Instruction format] BINS reg1, pos, width, reg2

[Operation] GR[reg2] ← GR[reg2] (31:width+pos) || GR[reg1] (width-1:0) || GR[reg2] (pos-1:0)

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr111111RRRRR MMMMK0001001LLL0 (msb ≥ 16, lsb ≥ 16)

15 0 31 16

rrrrr111111RRRRR MMMMK0001011LLL0 (msb ≥ 16, lsb < 16)

15 0 31 16

rrrrr111111RRRRR MMMMK0001101LLL0 (msb < 16, lsb < 16)

Most significant bit of field to be updated: msb = pos+width-1

Least significant bit of field to be updated: lsb = pos

MMMM = lower 4 bits of msb, KLLL = lower 4 bits of lsb

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result is “0”; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 40 of 512
December 20, 2023

[Description] Loads the lower width bits in general-purpose register reg1 and stores them from the bit

position bit pos + width – 1 in the specified field in general-purpose register reg2 in bit pos.

This instruction does not affect any fields in general-purpose register reg2 except the

specified field, nor does it affect general-purpose register reg1.

[Supplement] The most significant bit (msb: bit pos + width – 1) in the field in general-purpose register

reg2 to be updated and the least significant bit (lsb: bit pos) in this field are specified by

using, respectively the lower 4 bits, the MMMM and KLLL fields in the BINS instruction.

The lower 3 bits of the sub-opcode field (bits 23 to 21) differ depending on the msb and lsb

values.

The operation is undefined if msb < lsb.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 41 of 512
December 20, 2023

2.2.3.8 BSH
<Data manipulation instruction>

Byte swap halfword

BSH
Byte swap of halfword data

[Instruction format] BSH reg2, reg3

[Operation] GR[reg3] ← GR[reg2] (23:16) || GR[reg2] (31:24) || GR[reg2] (7:0) || GR[reg2] (15:8)

[Format] Format XII

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101000010

[Flags] CY “1” when there is at least one byte value of zero in the lower halfword of the

operation result; otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” when lower halfword of operation result is “0”; otherwise, “0”.

 SAT —

[Description] Executes endian swap.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 42 of 512
December 20, 2023

2.2.3.9 BSW
<Data manipulation instruction>

Byte swap word

BSW
Byte swap of word data

[Instruction format] BSW reg2, reg3

[Operation] GR[reg3] ← GR[reg2] (7:0) || GR[reg2] (15:8) || GR[reg2] (23:16) || GR[reg2] (31:24)

[Format] Format XII

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101000000

[Flags] CY “1” when there is at least one byte value of zero in the word data of the operation

result; otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT —

[Description] Executes endian swap.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 43 of 512
December 20, 2023

2.2.3.10 CALLT
<Special instruction>

Call with table look up

CALLT
Subroutine call with table look up

[Instruction format] CALLT imm6

[Operation] adr ← CTBP + zero-extend (imm6 logically shift left by 1)Note 1

CheckException(MDP)

CTPC ← PC + 2 (return PC)

CTPSW(4:0) ← PSW(4:0)

PC ← CTBP + zero-extend (Load-memory (adr, Halfword))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format II

[Opcode]

15 0

0000001000iiiiii

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 44 of 512
December 20, 2023

[Description] The following steps are taken.

 <1> Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and

zero- extended to word length, to generate a 32-bit table entry address.

 <2> Confirms whether an exception is detected for the address generated in step <1>.

 <3> Transfers the contents of both return PC and PSW to CTPC and CTPSW.

 <4> Loads the halfword entry data of the address generated in step <1> and zero-

extend to word length.

 <5> Adds the CTBP value to the data generated in step <4> to generate a 32-bit target

address.

 <6> Branches to the target address generated in step <5>.

CAUTIONS

1. When an exception occurs during memory access, the instruction execution is aborted after the end of the read

cycle. An interrupt might be accepted after the end of the read cycle.

2. Memory protection is performed when executing a memory read operation to read the CALLT instruction table.

When memory protection is enabled, the data for generating a target address from a table allocated in an area to

which access from a user program is prohibited cannot be loaded.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 45 of 512
December 20, 2023

2.2.3.11 CAXI
<Special instruction>

Compare and exchange for interlock

CAXI
Comparison and swap

[Instruction format] CAXI [reg1], reg2, reg3

[Operation] adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

token ← Load-memory (adr, Word)

result ← GR[reg2] − token

If result == 0

then Store-memory (adr, GR[reg3],Word)

 GR[reg3] ← token

else Store-memory (adr, token, Word)

 GR[reg3] ← token

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww00011101110

[Flags] CY “1” if a borrow to the MSB occurs in the result operation; otherwise, “0”.

 OV “1” if overflow occurs in the operation result; otherwise, “0”.

 S “1” if result is negative; otherwise, “0”.

 Z “1” if result is 0; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 46 of 512
December 20, 2023

[Description] Word data is read from the specified address and compared with the word data in general-

purpose register reg2, and the result is indicated by flags in the PSW. Comparison is

performed by subtracting the read word data from the word data in general-purpose register

reg2. If the comparison result is “0”, word data in general-purpose register reg3 is stored in

the generated address, otherwise the read word data is stored in the generated address.

Afterward, the read word data is stored in general-purpose register reg3. General-purpose

registers reg1 and reg2 are not affected.

CAUTIONS

1. Although this instruction expects an atomic access to be made for the purpose of exclusive control, whether an

atomic access can be made is determined by the target memory to be accessed and the bus system specifications.

For details, see the hardware manual of the product used.

2. The CAXI instruction is included for backward compatibility. If you are using a multi-core system and require an

atomic guarantee, use the LDL.W and STC.W instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 47 of 512
December 20, 2023

2.2.3.12 CLIP.B
<Data manipulation instruction>

Signed data conversion from word to byte with saturation

CLIP.B
(Signed) Data conversion from word to byte with saturation

[Instruction format] CLIP.B reg1, reg2

[Operation] GR[reg2] ← clip (GR[reg1], Sign, Byte)

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr111111RRRRR 0000000000001000

[Flags] CY 0

 OV “1” if saturation occurs, otherwise, 0.

 S “1” if the operation result is negative, otherwise, 0.

 Z “1” if the operation result is 0, otherwise, 0.

 SAT “1” if OV = 1, otherwise, does not change.

[Description] Regards the word data in the general-purpose register reg1 as signed word data and stores it

in reg2 as signed byte data. If the value of the original data exceeds 0000 007FH which is

the positive maximum value of byte data, the instruction stores 0000 007FH in the general-

purpose register reg2. If the value falls below FFFF FF80H which is the negative minimum

value, the instruction stores FFFF FF80H in the general-purpose register reg2, with the SAT

flag set (to 1), respectively. The general-purpose register reg1 is not affected by this

operation.

CAUTION

When clearing the SAT flag to 0, load data in the PSW with the LDSR instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 48 of 512
December 20, 2023

2.2.3.13 CLIP.BU
<Data manipulation instruction>

Unsigned data conversion from word to byte with saturation

CLIP.BU
(Unsigned) Data conversion from word to byte with saturation

[Instruction format] CLIP.BU reg1, reg2

[Operation] GR[reg2] ← clip (GR[reg1], Unsign, Byte)

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr111111RRRRR 0000000000001010

[Flags] CY 0

 OV “1” if saturation occurs, otherwise, 0.

 S 0

 Z “1” if the operation result is 0, otherwise, 0.

 SAT “1” if OV = 1, otherwise, does not change.

[Description] Regards the word data in the general-purpose register reg1 as unsigned word data and

stores it in reg2 as unsigned byte data. If the value of the original data exceeds 0000 00FFH

which is the maximum value of the byte data, the instruction stores 0000 00FFH in the

general-purpose register reg2 and sets the SAT flag (to 1). The general-purpose register

reg1 is not affected by this operation.

CAUTION

When clearing the SAT flag to 0, load data in the PSW with the LDSR instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 49 of 512
December 20, 2023

2.2.3.14 CLIP.H
<Data manipulation instruction>

Signed data conversion from word to halfword with saturation

CLIP.H
(Signed) Data conversion from word to halfword with saturation

[Instruction format] CLIP.H reg1, reg2

[Operation] GR[reg2] ← clip (GR[reg1], Sign, Halfword)

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr111111RRRRR 0000000000001100

[Flags] CY 0

 OV “1” if saturation occurs, otherwise, 0.

 S “1” if the operation result is negative, otherwise, 0.

 Z “1” if the operation result is 0, otherwise, 0.

 SAT “1” if OV = 1, otherwise, does not change.

[Description] Regards the word data in the general-purpose register reg1 as signed word data and stores it

in reg2 as signed halfword data. If the value of the original data exceeds 0000 7FFFH which

is the positive maximum value of halfword data, the instruction stores 0000 7FFFH in the

general-purpose register reg2. If the value falls below FFFF 8000H which is the negative

minimum value, the instruction stores FFFF 8000H in the general-purpose register reg2,

with the SAT flag set (to 1), respectively. The general-purpose register reg1 is not affected

by this operation.

CAUTION

When clearing the SAT flag to 0, load data in the PSW with the LDSR instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 50 of 512
December 20, 2023

2.2.3.15 CLIP.HU
<Data manipulation instruction>

Unsigned data conversion from word to halfword with saturation

CLIP.HU
(Unsigned) Data conversion from word to halfword with saturation

[Instruction format] CLIP.HU reg1, reg2

[Operation] GR[reg2] ← clip (GR[reg1], Unsign, Halfword)

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr111111RRRRR 0000000000001110

[Flags] CY 0

 OV “1” if saturation occurs, otherwise, 0.

 S 0

 Z “1” if the operation result is 0, otherwise, 0.

 SAT “1” if OV = 1, otherwise, does not change.

[Description] Regards the word data in the general-purpose register reg1 as unsigned word data and

stores it in reg2 as unsigned halfword data. If the value of the original data exceeds

0000 FFFFH which is the maximum value of the halfword data, the instruction stores

0000 FFFFH in the general-purpose register reg2 and sets the SAT flag (to 1). The general-

purpose register reg1 is not affected by this operation

CAUTION

When clearing the SAT flag to 0, load data in the PSW with the LDSR instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 51 of 512
December 20, 2023

2.2.3.16 CLL
<Special instruction>

Clear Load Link

CLL
Clear atomic manipulation link

[Instruction format] CLL

[Operation] LLbit ← 0

[Format] Format X

[Opcode]

15 0 31 16

1111111111111111 1111000101100000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Causes the link that is created with the LDL instruction to be lost. For operations related to

the loss of a link, see the hardware manual of the product used.

CAUTION

In systems such as a multi-core system, how the CLL instruction operates depends on the system configuration of the

product. For details, see the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 52 of 512
December 20, 2023

2.2.3.17 CLR1
<Bit manipulation instruction>

Clear bit

CLR1
Bit clear

[Instruction format] (1) CLR1 bit#3, disp16[reg1]

(2) CLR1 reg2, [reg1]

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← clear-bit (token, bit#3)

Store-memory (adr, token, Byte)

(2) adr ← GR[reg1]Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← clear-bit (token, reg2)

Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

 15 0 31 16

(1) 10bbb111110RRRRR dddddddddddddddd

 15 0 31 16

(2) rrrrr111111RRRRR 0000000011100100

[Flags] CY —

 OV —

 S —

 Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 53 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, then the bits indicated by the 3-bit bit number are cleared (0) and

the data is written back to the original address. If the specified bit of the byte data

read is 0, the Z flag is set (1); if the specified bit is 1, the Z flag is cleared (0).

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address.

Byte data is read from the generated address, the bits indicated by the lower three bits

of reg2 are cleared (0), and the data is written back to the original address. If the

specified bit of the byte data read is 0, the Z flag is set (1); if the specified bit is 1, the

Z flag is cleared (0).

[Supplement] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is

executed, and does not indicate the content of the specified bit after this instruction is

executed.

CAUTION

Although this instruction expects that atomic accesses are made for the purpose of exclusive control, whether atomic

accesses are actually possible is determined by the specifications for the target memory and bus system. For details,

see the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 54 of 512
December 20, 2023

2.2.3.18 CMOV
<Data manipulation instruction>

Conditional move

CMOV
Conditional move

[Instruction format] (1) CMOV cccc, reg1, reg2, reg3

(2) CMOV cccc, imm5, reg2, reg3

[Operation] (1) if conditions are satisfied

then GR[reg3] ← GR[reg1]

else GR[reg3] ← GR[reg2]

(2) if conditions are satisfied

then GR[reg3] ← sign-extended (imm5)

else GR[reg3] ← GR[reg2]

[Format] (1) Format XI

(2) Format XII

[Opcode]

 15 0 31 16

(1) rrrrr111111RRRRR wwwww011001cccc0

 15 0 31 16

(2) rrrrr111111iiiii wwwww011000cccc0

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 55 of 512
December 20, 2023

[Description] (1) When the condition specified by condition code “cccc” is met, data in general-

purpose register reg1 is transferred to general-purpose register reg3. When that

condition is not met, data in general-purpose register reg2 is transferred to general-

purpose register reg3. Specify one of the condition codes shown in the following table

as “cccc”.

Condition
Code Name Condition Formula

 Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

(2) When the condition specified by condition code “cccc” is met, 5-bit immediate data

sign- extended to word-length is transferred to general-purpose register reg3. When

that condition is not met, the data in general-purpose register reg2 is transferred to

general- purpose register reg3. Specify one of the condition codes shown in the

following table as “cccc”.

Condition
Code Name Condition Formula

 Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Supplement] See the description of the SETF instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 56 of 512
December 20, 2023

2.2.3.19 CMP
<Arithmetic instruction>

Compare register/immediate (5-bit)

CMP
Compare

[Instruction format] (1) CMP reg1, reg2

(2) CMP imm5, reg2

[Operation] (1) result ← GR[reg2] − GR[reg1]

(2) result ← GR[reg2] − sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode]

 15 0

(1) rrrrr001111RRRRR

 15 0

(2) rrrrr010011iiiii

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] (1) Compares the word data of general-purpose register reg2 with the word data of

general- purpose register reg1 and outputs the result through the PSW flags.

Comparison is performed by subtracting the reg1 contents from the reg2 word data.

General-purpose registers reg1 and reg2 are not affected.

(2) Compares the word data of general-purpose register reg2 with the 5-bit immediate

data, sign-extended to word length, and outputs the result through the PSW flags.

Comparison is performed by subtracting the sign-extended immediate data from the

reg2 word data. General-purpose register reg2 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 57 of 512
December 20, 2023

2.2.3.20 CTRET
<Special instruction>

Return from CALLT

CTRET
Return from subroutine call

[Instruction format] CTRET

[Operation] PC ← CTPC

PSW (4:0) ← CTPSW (4:0)

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 0000000101000100

[Flags] CY Value read from CTPSW is set.

 OV Value read from CTPSW is set.

 S Value read from CTPSW is set.

 Z Value read from CTPSW is set.

 SAT Value read from CTPSW is set.

[Description] Loads the return PC and PSW (the lower 5 bits) from the appropriate system register and

returns from a routine under CALLT instruction. The following steps are taken:

 <1> The return PC and the return PSW (the lower 5 bits) are loaded from the CTPC

and CTPSW (the lower 5 bits).

 <2> The values are restored in PC and PSW (the lower 5 bits) and the control is

transferred to the return address.

CAUTION

When the CTRET instruction is executed, only the lower 5 bits of the PSW register are updated; the higher 27 bits retain

their previous values.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 58 of 512
December 20, 2023

2.2.3.21 DI
<Special instruction>

Disable interrupt

DI
Disable EI level maskable exception

[Instruction format] DI

[Operation] PSW.ID ← 1 (Disables EI level maskable exception)

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 0000000101100000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

 ID 1

[Description] Sets the ID bit of the PSW to 1 to disable EI level maskable exceptions from the next

instruction of this instruction.

[Supplement] Overwrite of the ID bit in the PSW by this instruction becomes valid as of the next

instruction.

If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-privileged

instruction. If the MCTL.UIC bit has been set to 1, this instruction can always be executed.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 59 of 512
December 20, 2023

2.2.3.22 DISPOSE
<Special instruction>

Function dispose

DISPOSE
Restore registers from stack

[Instruction format] (1) DISPOSE imm5, list12

(2) DISPOSE imm5, list12, [reg1]

[Operation] (1) tmp ← sp + zero-extend (imm5 logically shift by 2)

foreach (all regs in list12) {

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 GR[reg in list12] ← Load-memory (adr, Word)

 tmp ← tmp + 4

}

sp ← tmp

(2) tmp ← sp + zero-extend (imm5 logically shift by 2)

foreach (all regs in list12) {

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 GR[reg in list12] ← Load-memory (adr, Word)

 tmp ← tmp + 4

}

PC ← GR[reg1]

sp ← tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. When loading to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode]

 15 0 31 16

(1) 0000011001iiiiiL LLLLLLLLLLL00000

 15 0 31 16

(2) 0000011001iiiiiL LLLLLLLLLLLRRRRR

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list

“list12” (for example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in

list12).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 60 of 512
December 20, 2023

list12 is a 32-bit register list, defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20 … 1 0

r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 — r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when

any of these bits is set (1), it specifies a corresponding register operation as a processing

target. For example, when r20 and r30 are specified, the values in list12 appear as shown

below (register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

● When all of the register’s non-corresponding bits are “0”: 0800 0001H

● When all of the register’s non-corresponding bits are “1”: 081F FFFFH

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word

length, to sp; returns to general-purpose registers listed in list12 by loading the data

from the address specified by sp and adds 4 to sp.

(2) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word

length, to sp; returns to general-purpose registers listed in list12 by loading the data

from the address specified by sp and adds 4 to sp; and transfers the control to the

address specified by general-purpose register reg1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 61 of 512
December 20, 2023

[Supplement] General-purpose registers in list12 are loaded in descending order (r31, r30, ... r20).

The imm5 restores a stack frame for automatic variables and temporary data.

The lower 2 bits of the address specified by sp is always masked to “0” and aligned to the

word boundary.

CAUTIONS

1. When an exception occurs during the execution of the instruction, the execution of the instruction is suspended

even when not all general-purpose registers are restored. An interrupt might be accepted during restoring the

general-purpose registers, or before updating the sp (r3) after the restoration is completed. In these cases, the sp

retains the old value that is established before the instruction is executed. The PC is not altered if the instruction is

in the instruction format (2). Once the instruction execution is suspended, it is unable to know which general-

purpose registers have been restored. Since the return PC from the exception processing is that of this DISPOSE

instruction, unless none of the resources associated with the execution of the DISPOSE instruction are altered

during the exception processing, the DISPOSE instruction that has been suspended can be re-executed precisely

after control is returned from the exception processing. The re-execution starts at the beginning of the DISPOSE

instruction processing.

2. For instruction format (2) DISPOSE imm5, list12, [reg1], do not specify r0 for reg1.

3. If none of the general-purpose registers is specified in list12, no memory access is made and the instruction

execution is completed. Since no memory access is made, no MDP exception is generated. The value of imm5

shifted 2 bits to the left is added to the sp. For the DISPOSE instruction of the instruction format (2), control is

transferred to the address that is specified in the general-purpose register reg1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 62 of 512
December 20, 2023

2.2.3.23 DIV
<Divide instruction>

Divide word

DIV
Division of (signed) word data

[Instruction format] DIV reg1, reg2, reg3

[Operation] GR[reg2] ← GR[reg2] ÷ GR[reg1]

GR[reg3] ← GR[reg2] % GR[reg1]

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww01011000000

[Flags] CY —

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result quotient is negative; otherwise, “0”.

 Z “1” if the operation result quotient is “0”; otherwise, “0”.

 SAT —

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1 and stores the quotient to general-purpose register reg2 with the remainder set

to general-purpose register reg3. General-purpose register reg1 is not affected. An overflow

occurs when division by zero is executed. For details, see Section 2.2.2, Special
Operations.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 63 of 512
December 20, 2023

[Supplement] Overflow occurs when the maximum negative value (8000 0000H) is divided by –1 with the

quotient = 8000 0000H and when the data is divided by 0.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIV instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon

returning from the exception. General-purpose register reg1 and general-purpose register

reg2 retain their values prior to execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the operation result quotient is not

stored in reg2, so the flag is undefined.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 64 of 512
December 20, 2023

2.2.3.24 DIVH
<Divide instruction>

Divide halfword

DIVH
Division of (signed) halfword data

[Instruction format] (1) DIVH reg1, reg2

(2) DIVH reg1, reg2, reg3

[Operation] (1) GR[reg2] ← GR[reg2] ÷ sign-extend (GR[reg1] (15:0))

(2) GR[reg2] ← GR[reg2] ÷ sign-extend (GR[reg1] (15:0))

GR[reg3] ← GR[reg2] % sign-extend (GR[reg1] (15:0))

[Format] (1) Format I

(2) Format XI

[Opcode]

 15 0

(1) rrrrr000010RRRRR

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16

(2) rrrrr111111RRRRR wwwww01010000000

[Flags] CY —

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result quotient is negative; otherwise, “0”.

 Z “1” if the operation result quotient is “0”; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 65 of 512
December 20, 2023

[Description] (1) Divides the word data of general-purpose register reg2 by the lower halfword data of

general-purpose register reg1 and stores the quotient to general-purpose register reg2.

General-purpose register reg1 is not affected. An overflow occurs when division by

zero is executed. For details, see Section 2.2.2, Special Operations.

(2) Divides the word data of general-purpose register reg2 by the lower halfword data of

general-purpose register reg1 and stores the quotient to general-purpose register reg2

with the remainder set to general-purpose register reg3. General-purpose register reg1

is not affected. An overflow occurs when division by zero is executed. For details, see

Section 2.2.2, Special Operations.

[Supplement] (1) The remainder is not stored. Overflow occurs when the maximum negative value

(8000 0000H) is divided by –1 with the quotient = 8000 0000H and when the data is

divided by 0.

When an exception occurs during execution of this instruction, the execution is

aborted to process the exception. The execution resumes at the original instruction

address upon returning from the exception. General-purpose register reg1 and

general-purpose register reg2 retain their values prior to execution of this instruction.

(2) Overflow occurs when the maximum negative value (8000 0000H) is divided by –1

with the quotient = 8000 0000H and when the data is divided by 0.

If general-purpose register reg2 and general-purpose register reg3 are the same

register, the remainder is stored in that register. When an exception occurs during the

DIVH instruction execution, the execution is aborted to process the exception. The

execution resumes at the original instruction address upon returning from the

exception. General-purpose register reg1 and general- purpose register reg2 retain

their values prior to execution of this instruction.

CAUTIONS

1. If general-purpose registers reg2 and reg3 are specified as being the same register, the operation result quotient is

not stored in reg2, so the flag is undefined.

2. Do not specify r0 as reg1 and reg2 for DIVH reg1 and reg2 in instruction format (1).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 66 of 512
December 20, 2023

2.2.3.25 DIVHU
<Divide instruction>

Divide halfword unsigned

DIVHU
Division of (unsigned) halfword data

[Instruction format] DIVHU reg1, reg2, reg3

[Operation] GR[reg2] ← GR[reg2] ÷ zero-extend (GR[reg1] (15:0))

GR[reg3] ← GR[reg2] % zero-extend (GR[reg1] (15:0))

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww01010000010

[Flags] CY —

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the MSB of the word data of the quotient as the result of operation is “1”;

otherwise, “0”.

 Z “1” if the operation result quotient is “0”; otherwise, “0”.

 SAT —

[Description] Divides the word data of general-purpose register reg2 by the lower halfword data of

general- purpose register reg1 and stores the quotient to general-purpose register reg2 with

the remainder set to general-purpose register reg3. General-purpose register reg1 is not

affected. An overflow occurs when division by zero is executed. For details, see Section
2.2.2, Special Operations.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 67 of 512
December 20, 2023

 [Supplement] Overflow occurs by division by zero.

If general-purpose register reg2 and general-purpose register reg3 are the same register, the

remainder is stored in that register.

When an exception occurs during the DIVHU instruction execution, the execution is

aborted to process the exception. The execution resumes at the original instruction address

upon returning from the exception. General-purpose register reg1 and general-purpose

register reg2 retain their values prior to execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the operation result quotient is not

stored in reg2, so the flag is undefined.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 68 of 512
December 20, 2023

2.2.3.26 DIVQ
<High-speed divide instructions>

Divide word quickly

DIVQ
Division of (signed) word data (variable steps)

[Instruction format] DIVQ reg1, reg2, reg3

[Operation] GR[reg2] ← GR[reg2] ÷ GR[reg1]

GR[reg3] ← GR[reg2] % GR[reg1]

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww01011111100

[Flags] CY —

 OV “1” when overflow occurs; otherwise, “0”.

 S “1” when operation result quotient is a negative value; otherwise, “0”.

 Z “1” when operation result quotient is a “0”; otherwise, “0”.

 SAT —

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, stores the quotient in reg2, and stores the remainder in general-purpose

register reg3. General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1

and reg2, then this operation is executed.

An overflow occurs when division by zero is executed. For details, see Section 2.2.2,
Special Operations.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 69 of 512
December 20, 2023

[Supplement] (1) Overflow occurs when the maximum negative value (8000 0000H) is divided by –1

(with the quotient = 8000 0000H) and when the data is divided by 0.

If general-purpose register reg2 and general-purpose register reg3 are the same

register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is

aborted.

After exception handling is completed, the execution resumes at the original

instruction address when returning from the exception. General-purpose register reg1

and general- purpose register reg2 retain their values prior to execution of this

instruction.

(2) The smaller the difference in the number of valid bits between reg1 and reg2, the

smaller the number of execution cycles. In most cases, the number of instruction

cycles is smaller than that of the ordinary division instruction. If data of 16-bit integer

type is divided by another. 16-bit integer type data, the difference in the number of

valid bits is 15 or less, and the operation is completed within 20 cycles.

CAUTIONS

1. If general-purpose registers reg2 and reg3 are specified as being the same register, the operation result quotient is

not stored in reg2, so the flag is undefined.

2. For the accurate number of execution cycles, see APPENDIX A.

3. If the number of execution cycles must always be constant to guarantee real-time features, use the ordinary division

instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 70 of 512
December 20, 2023

2.2.3.27 DIVQU
<High-speed divide instructions>

Divide word unsigned quickly

DIVQU
Division of (unsigned) word data (variable steps)

[Instruction format] DIVQU reg1, reg2, reg3

[Operation] GR[reg2] ← GR[reg2] ÷ GR[reg1]

GR[reg3] ← GR[reg2] % GR[reg1]

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww01011111110

[Flags] CY —

 OV “1” when overflow occurs; otherwise, “0”.

 S “1” when the MSB of the word data of the quotient as the result of operation is

“1”; otherwise, “0”.

 Z “1” when operation result quotient is a “0”; otherwise, “0”

 SAT —

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, stores the quotient in reg2, and stores the remainder in general-purpose

register reg3. General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1

and reg2, then this operation is executed.

An overflow occurs when division by zero is executed. For details, see Section 2.2.2,
Special Operations.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 71 of 512
December 20, 2023

[Supplement] (1) An overflow occurs when there is division by zero.

If general-purpose register reg2 and general-purpose register reg3 are the same

register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is

aborted. After exception handling is completed, using the return address as this

instruction’s start address, the execution resumes when returning from the exception.

General-purpose register reg1 and general-purpose register reg2 retain their values

prior to execution of this instruction.

(2) The smaller the difference in the number of valid bits between reg1 and reg2, the

smaller the number of execution cycles. In most cases, the number of instruction

cycles is smaller than that of the ordinary division instruction. If data of 16-bit integer

type is divided by another. 16-bit integer type data, the difference in the number of

valid bits is 15 or less, and the operation is completed within 20 cycles.

CAUTIONS

1. If general-purpose registers reg2 and reg3 are specified as being the same register, the operation result quotient is

not stored in reg2, so the flag is undefined.

2. For the accurate number of execution cycles, see APPENDIX A.

3. If the number of execution cycles must always be constant to guarantee real-time features, use the ordinary division

instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 72 of 512
December 20, 2023

2.2.3.28 DIVU
<Divide instruction>

Divide word unsigned

DIVU
Division of (unsigned) word data

[Instruction format] DIVU reg1, reg2, reg3

[Operation] GR[reg2] ← GR[reg2] ÷ GR[reg1]

GR[reg3] ← GR[reg2] % GR[reg1]

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww01011000010

[Flags] CY —

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” when operation result quotient word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result quotient is “0”; otherwise, “0”.

 SAT —

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1 and stores the quotient to general-purpose register reg2 with the remainder set

to general-purpose register reg3. General-purpose register reg1 is not affected.

An overflow occurs when division by zero is executed. For details, see Section 2.2.2,
Special Operations.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 73 of 512
December 20, 2023

[Supplement] An overflow occurs when there is division by zero.

If general-purpose register reg2 and general-purpose register reg3 are the same register, the

remainder is stored in that register.

When an exception occurs during the DIVU instruction execution, the execution is aborted

to process the exception.

The execution resumes at the original instruction address upon returning from the

exception. General-purpose register reg1 and general-purpose register reg2 retain their

values prior to execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the operation result quotient is not

stored in reg2, so the flag is undefined.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 74 of 512
December 20, 2023

2.2.3.29 EI
<Special instruction>

Enable interrupt

EI
Enable EI level maskable exception

[Instruction format] EI

[Operation] PSW.ID ← 0 (enables EI level maskable exception)

[Format] Format X

[Opcode]

15 0 31 16

1000011111100000 0000000101100000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

 ID 0

[Description] Clears the ID flag of the PSW to “0” and enables the acknowledgement of EI-level

maskable exception starting the next instruction.

[Supplement] If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-privileged

instruction.

If the MCTL.UIC bit has been set to 1, this instruction can always be executed.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 75 of 512
December 20, 2023

2.2.3.30 EIRET
<Special instruction>

Return from EI level trap or interrupt

EIRET
Return from EI level exception

[Instruction format] EIRET

[Operation] PC ← EIPC

PSW ← EIPSW

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 0000000101001000

[Flags] CY Value read from EIPSW is set

 OV Value read from EIPSW is set

 S Value read from EIPSW is set

 Z Value read from EIPSW is set

 SAT Value read from EIPSW is set

[Description] Returns execution from an EI level exception. The return PC and PSW are loaded from the

EIPC and EIPSW registers and set in the PC and PSW, and control is passed.

If EP = 0, it means that interrupt (EIINTn) processing has finished, so the corresponding bit

of the ISPR register is cleared. For details, see ISPR register in the hardware manual of the

product used.

[Supplement] This instruction is a supervisor-privileged instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 76 of 512
December 20, 2023

2.2.3.31 FERET
<Special instruction>

Return from FE level trap or interrupt

FERET
Return from FE level exception

[Instruction format] FERET

[Operation] PC ← FEPC

PSW ← FEPSW

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 0000000101001010

[Flags] CY Value read from FEPSW is set

 OV Value read from FEPSW is set

 S Value read from FEPSW is set

 Z Value read from FEPSW is set

 SAT Value read from FEPSW is set

[Description] Returns execution from an FE level exception. The return PC and PSW are loaded from the

FEPC and FEPSW registers and set in the PC and PSW, and control is passed.

[Supplement] This instruction is a supervisor-privileged instruction.

CAUTION

The FERET instruction can also be used as a hazard barrier instruction when the CPU’s operating status (PSW) is

changed by a control program such as the OS. Use the FERET instruction to clarify the program blocks on which to

effect the hardware function associated with the UM bit in the PSW when these bits are changed to accord with the

mounted CPU. The hardware function that operates in accordance with the PSW value updated by the FERET

instruction is guaranteed to be effected from the instruction indicated by the return address of the FERET instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 77 of 512
December 20, 2023

2.2.3.32 FETRAP
<Special instruction>

FE-level Trap

FETRAP
FE level software exception

[Instruction format] FETRAP vector4

[Operation] FEPC ← PC + 2 (return PC)

FEPSW ← PSW

FEIC ← exception cause codeNote 1

PSW.UM ← 0

PSW.NP ← 1

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler addressNote 1

Note 1. See the hardware manual of the product used.

[Format] Format I

[Opcode]

15 0

0vvvv00001000000

Where vvvv is vector4.

Do not set 0H to vector4 (vvvv ≠ 0000).

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 78 of 512
December 20, 2023

[Description] Saves the contents of the return PC (address of the instruction next to the FETRAP

instruction) and the current contents of the PSW to FEPC and FEPSW, respectively, stores

the exception cause code in the FEIC register, and updates the PSW according to the

exception causes listed in the hardware manual of the product used.

Execution then branches to the exception handler address and exception handling is started.

Table 2.6 shows the correspondence between vector4 and exception cause codes and

exception handler address offset. Exception handler addresses are calculated based on the

offset addresses listed in Table 2.6. For details, see the hardware manual of the product

used.

Table 2.6 Correspondence between vector4 and Exception Cause Codes and

Exception Handler Address Offset

vector4 Exception Cause Code Offset Address

0H Not specifiable

1H 0000 0031H 30H

2H 0000 0032H

...

FH 0000 003FH

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 79 of 512
December 20, 2023

2.2.3.33 HALT
<Special instruction>

Halt

HALT
Halt

[Instruction format] HALT

[Operation] Stop execution of subsequent instructions until a HALT state release request is generated.

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 0000000100100000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 80 of 512
December 20, 2023

[Description] Places the CPU core in the HALT state.

The return to the normal execution state from the HALT state is triggered by the occurrence

of a specific exception request.

If an exception is acknowledged while the system is in HALT state, the return PC of that

exception is the PC of the instruction that follows the HALT instruction.

The conditions for releasing the HALT state are given below.

● A terminating-type exception occurs

Even if the conditions (values of PSW.ID and PSW.NP) for acknowledging the above

exception are not satisfied, the HALT state is released if there is an exception request.

(Example: The HALT state is released when an EIINT request occurs even when PSW.ID

= 1.)

The HALT state is not released if the terminating-type exceptions are masked by the

following mask functions:

● Terminating exceptions are masked by an interrupt channel mask setting specified by

the interrupt controllerNote 1.

● Terminating exceptions are masked by a mask setting specified by using the floating-

point operation exception enable bit.

● Terminating exceptions are masked by a mask setting defined by a hardware function

other than the above.

Note 1. The HALT state is released when the masking is carried out using only the ISPR,

PLMR registers and PSW.EIMASK bit (Supported only when Architecture

Identifier bit PID[31:24] = 07H (RH850G4MH2)).

[Supplement] This instruction is a supervisor-privileged instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 81 of 512
December 20, 2023

2.2.3.34 HSH
<Data manipulation instructions>

Halfword swap halfword

HSH
Halfword swap of halfword data

[Instruction format] HSH reg2, reg3

[Operation] GR[reg3] ← GR[reg2]

[Format] Format XII

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101000110

[Flags] CY “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

 SAT —

[Description] Stores the content of general-purpose register reg2 in general-purpose register reg3, and

stores the flag judgment result in PSW.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 82 of 512
December 20, 2023

2.2.3.35 HSW
<Data manipulation instructions>

Halfword swap word

HSW
Halfword swap of word data

[Instruction format] HSW reg2, reg3

[Operation] GR[reg3] ← GR[reg2] (15:0) || GR[reg2] (31:16)

[Format] Format XII

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101000100

[Flags] CY “1” when there is at least one halfword of zero in the word data of the operation

result; otherwise; “0”.

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if operation result word data is “0”; otherwise, “0”.

 SAT —

[Description] Executes endian swap.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 83 of 512
December 20, 2023

2.2.3.36 JARL
<Branch instruction>

Jump and register link

JARL
Branch and register link

[Instruction format] (1) JARL disp22, reg2

(2) JARL disp32, reg1

(3) JARL [reg1], reg3

[Operation] (1) GR [reg2] ← PC + 4

PC ← PC + sign-extend (disp22)

(2) GR [reg1] ← PC + 6

PC ← PC + disp32

(3) GR[reg3] ← PC + 4

PC ← GR[reg1]

[Format] (1) Format V

(2) Format VI

(3) Format XI

[Opcode]

 15 0 31 16

(1) rrrrr11110dddddd ddddddddddddddd0

ddddddddddddddddddddd is the higher 21 bits of disp22.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

(2) 00000010111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

 15 0 31 16

(3) 11000111111RRRRR WWWWW00101100000

WWWWW ≠ 00000 (Do not specify r0 for reg3.)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 84 of 512
December 20, 2023

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Saves the current PC value + 4 in general-purpose register reg2, adds the 22-bit

displacement data, sign-extended to word length, to PC; stores the value in and

transfers the control to PC. Bit 0 of the 22-bit displacement is masked to “0”.

(2) Saves the current PC value + 6 in general-purpose register reg1, adds the 32-bit

displacement data to PC and stores the value in and transfers the control to PC. Bit 0

of the 32-bit displacement is masked to “0”.

(3) Stores the current PC value + 4 in reg3, specifies the contents of reg1 for the PC

value, and then transfers the control. If reg1 and reg3 are the same, before store the

value of current PC +4, specifies the contents of reg1 for the PC.

[Supplement] The current PC value used for calculation is the address of the first byte of this instruction

itself. The jump destination is this instruction with the displacement value = 0.

JARL instruction corresponds to the call function of the subroutine control instruction, and

saves the return PC address in the general register which is specified by JARL instruction.

JMP instruction corresponds to the return function of the subroutine control instruction, and

can be used to specify general-purpose register containing the return address as reg1 to the

return PC.

CAUTION

Do not specify r0 for the general-purpose register reg2 in the instruction format (1) JARL disp22, reg2.

Do not specify r0 for the general-purpose register reg1 in the instruction format (2) JARL disp32, reg1.

Do not specify r0 for the general-purpose register reg3 in the instruction format (3) JARL [reg1], reg3.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 85 of 512
December 20, 2023

2.2.3.37 JMP
<Branch instruction>

Jump register

JMP
Unconditional branch (register relative)

[Instruction format] (1) JMP [reg1]

(2) JMP disp32[reg1]

[Operation] (1) PC ← GR[reg1]

(2) PC ← GR[reg1] + disp32

[Format] (1) Format I

(2) Format VI

[Opcode]

 15 0

(1) 00000000011RRRRR

 15 0 31 16 47 32

(2) 00000110111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Transfers the control to the address specified by general-purpose register reg1. Bit 0

of the address is masked to “0”.

(2) Adds the 32-bit displacement to general-purpose register reg1, and transfers the

control to the resulting address. Bit 0 of the address is masked to “0”.

[Supplement] Using this instruction as the subroutine control instruction requires the return PC to be

specified by general-purpose register reg1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 86 of 512
December 20, 2023

2.2.3.38 JR
<Branch instruction>

Jump relative

JR
Unconditional branch (PC relative)

[Instruction format] (1) JR disp22

(2) JR disp32

[Operation] (1) PC ← PC + sign-extend (disp22)

(2) PC ← PC + disp32

[Format] (1) Format V

(2) Format VI

[Opcode]

 15 0 31 16

(1) 0000011110dddddd ddddddddddddddd0

ddddddddddddddddddddd is the higher 21 bits of disp22.

 15 0 31 16 47 32

(2) 0000001011100000 ddddddddddddddd0 DDDDDDDDDDDDDDDD

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 87 of 512
December 20, 2023

[Description] (1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC

and stores the value in and transfers the control to PC. Bit 0 of the 22-bit displacement

is masked to “0”.

(2) Adds the 32-bit displacement data to the current PC and stores the value in PC and

transfers the control to PC. Bit 0 of the 32-bit displacement is masked to “0”.

[Supplement] The current PC value used for calculation is the address of the first byte of this instruction

itself. The displacement value being “0” signifies that the branch destination is the

instruction itself.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 88 of 512
December 20, 2023

2.2.3.39 LD.B
<Load instruction>

Load byte

LD.B
Load of (signed) byte data

[Instruction format] (1) LD.B disp16[reg1], reg2

(2) LD.B disp23[reg1], reg3

(3) LD.B [reg1]+, reg3

(4) LD.B [reg1]−, reg3

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MDP)

GR[reg2] ← sign-extend (Load-memory (adr, Byte))

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MDP)

GR[reg3] ← sign-extend (Load-memory (adr, Byte))

(3) adr ← GR [reg1]Note 1

CheckException (MDP)

GR [reg3] ← sign-extend (Load-memory (adr, Byte))

GR [reg1] ← GR [reg1] + 1

(4) adr ← GR [reg1]Note 1

CheckException (MDP)

GR [reg3] ← sign-extend (Load-memory (adr, Byte))

GR [reg1] ← GR [reg1] – 1

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 89 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) rrrrr111000RRRRR dddddddddddddddd

 15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00010111111RRRRR wwwww01101110000

 15 0 31 16

(4) 00100111111RRRRR wwwww01101110000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 90 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign- extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, sign-extended to word length, and stored in general-purpose

register reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign- extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, sign-extended to word length, and stored in general-purpose

register reg3.

(3) Reads the byte data addressed by the word data specified in the general-purpose

register reg1, sign-extends it to word length, and stores the result in the general-

purpose register reg3. Adds 1 to the contents of the general-purpose register reg1 and

stores the result in the general-purpose register reg1.

(4) Reads the byte data addressed by the word data specified in the general-purpose

register reg1, sign-extends it to word length, and stores the result in the general-

purpose register reg3. Subtracts 1 from the contents of the general-purpose register

reg1 and stores the result in the general-purpose register reg1.

CAUTION

Do not specify a same register in reg1 and reg3 for the instruction formats (3) and (4).

If a same register is specified, the results of updating reg1 is stored for this CPU.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 91 of 512
December 20, 2023

2.2.3.40 LD.BU
<Load instruction>

Load byte unsigned

LD.BU
Load of (unsigned) byte data

[Instruction format] (1) LD.BU disp16[reg1], reg2

(2) LD.BU disp23[reg1], reg3

(3) LD.BU [reg1]+, reg3

(4) LD.BU [reg1]−, reg3

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MDP)

GR[reg2] ← zero-extend (Load-memory (adr, Byte))

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Byte))

(3) adr ← GR[reg1]Note 1

CheckException(MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Byte))

GR[reg1] ← GR[reg1] + 1

(4) adr ← GR[reg1]Note 1

CheckException(MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Byte))

GR[reg1] ← GR[reg1] − 1

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

[Opcode]

 15 0 31 16

(1) rrrrr11110bRRRRR ddddddddddddddd1

ddddddddddddddd is the higher 15 bits of disp16, and b is bit 0 of disp16.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 92 of 512
December 20, 2023

 15 0 31 16 47 32

(2) 00000111101RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00011111111RRRRR wwwww01101110000

 15 0 31 16

(4) 00101111111RRRRR wwwww01101110000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, zero-extended to word length, and stored in general-purpose

register reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, zero-extended to word length, and stored in general-purpose

register reg3.

(3) Reads the byte data addressed by the word data specified in the general-purpose

register reg1, zero-extends it to word length, and stores the result in the general-

purpose register reg3. Adds 1 to the contents of the general-purpose register reg1 and

stores the result in the general-purpose register reg1.

(4) Reads the byte data addressed by the word data specified in the general-purpose

register reg1, zero-extends it to word length, and stores the result in the general-

purpose register reg3. Subtracts 1 from the contents of the general-purpose register

reg1 and stores the result in the general-purpose register reg1.

CAUTIONS

1. Do not specify r0 in reg2 for the instruction format (1).

2. Do not specify a same register in reg1 and reg3 for the instruction formats (3) and (4). If a same register is

specified, the results of updating reg1 is stored for this CPU.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 93 of 512
December 20, 2023

2.2.3.41 LD.DW
<Load instruction>

Load Double-word

LD.DW
Load of double-word data

[Instruction format] LD.DW disp23[reg1], reg3

[Operation] adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MAE)

CheckException (MDP)

data ← Load-memory (adr, Double-word)

GR[reg3 + 1] || GR[reg3] ← data

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] Format XIV

[Opcode]

15 0 31 16 47 32

00000111101RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

Where RRRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 94 of 512
December 20, 2023

[Description] Generates a 32-bit address by adding a 23-bit displacement value sign-extended to word

length to the word data of general-purpose register reg1. Double-word data is read from the

generated 32-bit address and the lower 32 bits are stored in general-purpose register reg3,

and the higher 32 bits in reg3 + 1.

[Supplement] reg3 must be an even-numbered register. If an odd-numbered register is specified in reg3,

bit 0 of the register number is ignored and the register is handled as an even-numbered

register.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. No misalignment exception will occur, however, if the address calculation results in a word boundary.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 95 of 512
December 20, 2023

2.2.3.42 LD.H
<Load instruction>

Load halfword

LD.H
Load of (unsigned) halfword data

[Instruction format] (1) LD.H disp16[reg1], reg2

(2) LD.H disp23[reg1], reg3

(3) LD.H [reg1]+, reg3

(4) LD.H [reg1]−, reg3

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg2] ← sign-extend (Load-memory (adr, Halfword))

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← sign-extend (Load-memory (adr, Halfword))

(3) adr ← GR [reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR [reg3] ← sign-extend (Load-memory (adr, Halfword))

GR [reg1] ← GR [reg1] + 2

(4) adr ← GR [reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR [reg3] ← sign-extend (Load-memory (adr, Halfword))

GR [reg1] ← GR [reg1] – 2

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 96 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) rrrrr111001RRRRR ddddddddddddddd0

Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00010111111RRRRR wwwww01101110100

 15 0 31 16

(4) 00100111111RRRRR wwwww01101110100

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 97 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this 32-bit address, sign-extended to word length, and stored in general-purpose

register reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this 32-bit address, sign-extended to word length, and stored in general-purpose

register reg3.

(3) Reads the halfword data addressed by the word data specified in the general-purpose

register reg1, sign-extends it to word length, and stores the result in the general-

purpose register reg3. Adds 2 to the contents of the general-purpose register reg1 and

stores the result in the general-purpose register reg1.

(4) Reads the halfword data addressed by the word data specified in the general-purpose

register reg1, sign-extends it to word length, and stores the result in the general-

purpose register reg3. Subtracts 2 from the contents of the general-purpose register

reg1 and stores the result in the general-purpose register reg1.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Do not specify a same register in reg1 and reg3 for the instruction formats (3) and (4). If a same register is

specified, the results of updating reg1 is stored for this CPU.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 98 of 512
December 20, 2023

2.2.3.43 LD.HU
<Load instruction>

Load halfword unsigned

LD.HU
Load of (signed) halfword data

[Instruction format] (1) LD.HU disp16[reg1], reg2

(2) LD.HU disp23[reg1], reg3

(3) LD.HU [reg1]+, reg3

(4) LD.HU [reg1]−, reg3

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg2] ← zero-extend (Load-memory (adr, Halfword))

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Halfword))

(3) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Halfword))

GR[reg1] ← GR[reg1] + 2

(4) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Halfword))

GR[reg1] ← GR[reg1] − 2

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 99 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) rrrrr111111RRRRR ddddddddddddddd1

Where ddddddddddddddd is the higher 15 bits of disp16.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

(2) 00000111101RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00011111111RRRRR wwwww01101110100

 15 0 31 16

(4) 00101111111RRRRR wwwww01101110100

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 100 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this 32-bit address, zero-extended to word length, and stored in general-purpose

register reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this address, zero-extended to word length, and stored in general-purpose register

reg3.

(3) Reads the halfword data addressed by the word data specified in the general-purpose

register reg1, zero-extends it to word length, and stores the result in the general-

purpose register reg3. Adds 2 to the contents of the general-purpose register reg1 and

stores the result in the general-purpose register reg1.

(4) Reads the halfword data addressed by the word data specified in the general-purpose

register reg1, zero-extends it to word length, and stores the result in the general-

purpose register reg3. Subtracts 2 from the contents of the general-purpose register

reg1 and stores the result in the general-purpose register reg1.

CAUTIONS

1. Do not specify r0 for reg2.

2. A misalignment exception (MAE) will occur if the address calculation results in misaligned access.

3. Do not specify a same register in reg1 and reg3 for the instruction formats (3) and (4). If a same register is

specified, the results of updating reg1 is stored for this CPU.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 101 of 512
December 20, 2023

2.2.3.44 LD.W
<Load instruction>

Load word

LD.W
Load of word data

[Instruction format] (1) LD.W disp16[reg1], reg2

(2) LD.W disp23[reg1], reg3

(3) LD.W [reg1]+ , reg3

(4) LD.W [reg1]– , reg3

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg2] ← Load-memory (adr, Word)

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← Load-memory (adr, Word)

(3) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← Load-memory (adr, Word)

GR[reg1] ← GR [reg1] + 4

(4) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← Load-memory (adr, Word)

GR[reg1] ← GR[reg1] − 4

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 102 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) rrrrr111001RRRRR ddddddddddddddd1

Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00010111111RRRRR wwwww01101111000

 15 0 31 16

(4) 00100111111RRRRR wwwww01101111000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 103 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Word data is read from

this 32-bit address, and stored in general-purpose register reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Word data is read from

this address, and stored in general-purpose register reg3.

(3) Reads the word data addressed by the word data specified in the general-purpose

register reg1 into the general-purpose register reg3. Adds 4 to the contents of the

general-purpose register reg1 and stores the result in the general-purpose register

reg1.

(4) Reads the word data addressed by the word data specified in the general-purpose

register reg1 into the general-purpose register reg3. Subtracts 4 from the contents of

the general-purpose register reg1 and stores the result in the general-purpose register

reg1.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Do not specify a same register in reg1 and reg3 for the instruction formats (3) and (4). If a same register is

specified, the results of updating reg1 is stored for this CPU.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 104 of 512
December 20, 2023

2.2.3.45 LDL.BU
<Special instruction>

Load Linked byte unsigned

LDL.BU
Load to start atomic byte data manipulation

[Instruction format] LDL.BU [reg1], reg3

[Operation] adr ← GR[reg1]Note 1

CheckException (MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Byte))

LLbit ← 1Note 2

Note 1. An MDP exception may occur depending on the results of the address

calculation.

Note 2. For the link operation, see the hardware manual of the product used.

[Format] Format VII

[Opcode]

15 0 31 16

00001111111RRRRR wwwww01101110000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 105 of 512
December 20, 2023

[Description] Reads byte data from memory for an atomic read-modify-write, zero-extends it to word

length, and stores the results in the general-purpose register reg3. Then, generates a link

that corresponds to the address range including the specified address.

Subsequently, the link is lost if specific conditions are established before the STC.B

instruction corresponding to the LDL.BU instruction is executed. If the STC.B instruction

is executed with the link being lost, the result of the STC.B instruction indicates a failure.

If the STC.B instruction is executed with the link maintained, the result of the STC.B

instruction is a success, in which case the link is also lost.

The LDL.BU and STC.B instructions may be used to carry out memory updates precisely

in a multi-core system. The LDL.BU instruction and the STC.B instructions are intended

always to be used in pair.

CAUTION

If a link is generated with the LDL.BU instruction and the STC.H or STC.W instruction is used instead of the STC.B

instruction, the result will be a failure and the link be lost.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 106 of 512
December 20, 2023

2.2.3.46 LDL.HU
<Special instruction>

Load Linked halfword unsigned

LDL.HU
Load to start atomic halfword data manipulation

[Instruction format] LDL.HU [reg1], reg3

[Operation] adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← zero-extend (Load-memory (adr, Halfword))

LLbit ← 1Note 2

Note 1. An MAE or MDP exception may occur depending on the results of the address

calculation.

Note 2. For the link operation, see the hardware manual of the product used.

[Format] Format VII

[Opcode]

15 0 31 16

00001111111RRRRR wwwww01101110100

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 107 of 512
December 20, 2023

[Description] Reads halfword data from memory for an atomic read-modify-write, zero-extends it to

word length, and stores the results in the general-purpose register reg3. Then, generates a

link that corresponds to the address range including the specified address.

Subsequently, the link is lost if specific conditions are established before the STC.H

instruction corresponding to the LDL.HU instruction is executed. If the STC.H instruction

is executed with the link being lost, the result of the STC.H instruction indicates a failure.

If the STC.H instruction is executed with the link maintained, the result of the STC.H

instruction is a success, in which case the link is also lost.

The LDL.HU and STC.H instructions may be used to carry out memory updates precisely

in a multi-core system. The LDL.HU instruction and the STC.H instructions are intended

always to be used in pair.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. If a link is generated with the LDL.HU instruction and the STC.B or STC.W instruction is used instead of the STC.H

instruction, the result will be a failure and the link be lost.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 108 of 512
December 20, 2023

2.2.3.47 LDL.W
<Special instruction>

Load Linked word

LDL.W
Load to start atomic word data manipulation

[Instruction format] LDL.W [reg1], reg3

[Operation] adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg3] ← Load-memory (adr, Word)

LLbit ← 1Note 2

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

Note 2. For the link operation, see the hardware manual of the product used.

[Format] Format VII

[Opcode]

15 0 31 16

00000111111RRRRR wwwww01101111000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 109 of 512
December 20, 2023

[Description] In order to perform an atomic read-modify-write operation, word data is read from the

memory and stored in general-purpose register reg3. A link is then generated corresponding

to the address range that includes the specified address.

Subsequently, if a specific condition is satisfied before an STC.W instruction is executed

for this LDL.W instruction, the link will be deleted. If an STC.W instruction is executed

after the link has been deleted, STC.W execution will fail.

If an STC.W instruction is executed while the link is still available, STC.W execution will

succeed. The link is also deleted in this case.

The LDL.W and STC.W instructions can be used to accurately update the memory in a

multi- core system. The LDL.W and STC.W instructions are intended always to be used in

pair.

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic

guarantee is required when updating the memory in a multi-core system.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. If a link is generated with the LDL.W instruction and the STC.B or STC.H instruction is used instead of the STC.W

instruction, the result will be a failure and the link be lost.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 110 of 512
December 20, 2023

2.2.3.48 LDM.MP
<Special instruction>

Load Multiple MPU entries from memory

LDM.MP (Supported only when Architecture Identifier bit PID[31:24] = 07H (RH850G4MH2))
 Load MPU entries

[Instruction format] LDM.MP [reg1], eh-et,

[Operation] if (PSW.UM==0)

then

 if (eh ≤ et)

 then

 cur ← eh

 end ← et

 tmp ← reg1

 while (cur ≤ end) {

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 MPLA[cur] ← Load-memory (adr, Word)

 tmp ← tmp + 4

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 MPUA[cur] ← Load-memory (adr, Word)

 tmp ← tmp + 4

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 MPAT[cur] ← Load-memory (adr, Word)

 tmp ← tmp + 4

 cur ← cur + 1

 }

 else

else

Note 1. The lower 2 bits of adr are masked by 0.

Note 2. An MDP exception may occur as a result of address calculation.

[Format] Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 111 of 512
December 20, 2023

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww00101100110

rrrrr indicates eh.

wwwww indicates et.

RRRRR indicates reg1.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Descriptions] The word data is read from the address generated from the word data of the general-purpose

register reg1 and stored to the MPU protection area setting system registers (MPLA,

MPUA, and MPAT) according to the specified order. Word size is added to the address

each time the read data is stored to the system register. The contents of these system

registers is processed in ascending order, regardless of the value of MPIDX, from the entry

number indicated by eh to that indicated by et (eh, eh+1, eh+2, …, et). The bank specified

by MPBK is only to be processed.

Because it is an SV privilege instruction, a PIE exception will occur if it is executed when

PSW.UM is set (1).

[Supplement] This instruction stores data directly from memory to multiple target system registers. Using

this instruction can make the operation more efficient than loading data from memory to a

general-purpose register by using the LD.W instruction, specifying the entry via MPIDX,

and storing the data to a system register by using the LDSR instruction.

The lower 2-bit address generated from the general-purpose register reg1 is masked by 0

and aligned on a word boundary. The general-purpose register reg1 retains the original

value after the instruction execution is complete.

This instruction is an SV privilege instruction.

CAUTION

When an exception or an interrupt occurs during instruction execution and even if data from memory has not
been stored to all system registers, the instruction execution can be aborted and the exception or interrupt can
be accepted, when the acceptance condition is satisfied. When the execution is suspended, it is impossible to
know to which system registers data from memory has been stored. After the return from exception processing,
the suspended LDM.MP instruction can be precisely re-executed as long as resources related to execution of
the LDM.MP instruction are not changed during exception processing, for the return PC from an exception is
considered to be PC of this LDM.MP instruction. This instruction re-execution restarts the LDM.MP instruction
processing from the start.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 112 of 512
December 20, 2023

2.2.3.49 LDSR
<Special instruction>

Load to system register

LDSR
Load to system register

[Instruction format] LDSR reg2, regID, selID

LDSR reg2, regID

[Operation] SR[regID, selID] ← GR[reg2]Note 1

Note 1. An exception might occur depending on the access permission. For details, see

the hardware manual of the product used.

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr111111RRRRR sssss00000100000

rrrrr: regID, sssss: selID, RRRRR: reg2

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 113 of 512
December 20, 2023

[Description] Loads the word data of general-purpose register reg2 to the system register specified by the

system register number and selection ID (regID, selID). General-purpose register reg2 is

not affected. If selID is omitted, it is assumed that selID is 0.

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending

on the combination of CPU operating mode and system register to be accessed. For details,

see the hardware manual of the product used.

CAUTIONS

1. In this instruction, general-purpose register reg2 is used as the source register, but, for mnemonic description

convenience, the general-purpose register reg1 field is used in the opcode. The meanings of the register

specifications in the mnemonic descriptions and opcode therefore differ from those of other instructions.

2. The system register number or selection ID is a unique number used to identify each system register. How to

access undefined registers is described in the hardware manual of the product used, but accessing undefined

registers is not recommended.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 114 of 512
December 20, 2023

2.2.3.50 LOOP
<Loop instruction>

Loop

LOOP
Loop

[Instruction format] LOOP reg1, disp16

[Operation] GR[reg1] ← GR[reg1] + (−1)Note 1

if (GR[reg1] ! = 0)

then

 PC ← PC − zero-extend (disp16)

Note 1. −1 (FFFF FFFFH) is added. The carry flag is updated in the same way as when

the ADD instruction is executed.

[Format] Format VII

[Opcode]

15 0 31 16

00000110111RRRRR ddddddddddddddd1

Where ddddddddddddddd is the higher 15 bits of disp16.

[Flags] CY “1” if a carry occurs from MSB in the reg1 operation; otherwise, “0”.

 OV “1” if an overflow occurs in the reg1 operation; otherwise, “0”.

 S “1” if reg1 is negative; otherwise, “0”.

 Z “1” if reg1 is 0; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 115 of 512
December 20, 2023

[Description] Updates the general-purpose register reg1 by adding –1 from its contents. If the contents

after this update are not 0, the following processing is performed. If the contents are 0, the

system continues to the next instruction.

● The result of logically shifting the 15-bit immediate data 1 bit to the left and zero-

extending it to word length is subtracted from the current PC value, and then the control

is transferred.

● –1 (FFFF FFFFH) is added to general-purpose register reg1. The carry flag is updated in

the same way as when the ADD instruction, not the SUB instruction, is executed.

[Supplement] “0” is implicitly used for bit 0 of the 16-bit displacement. Note that, because the current PC

value used for calculation is the address of the first byte of this instruction, if the

displacement value is 0, the branch destination is this instruction.

CAUTION

Do not specify r0 for reg1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 116 of 512
December 20, 2023

2.2.3.51 MAC
<Multiply-accumulate instruction>

Multiply and add word

MAC
Multiply-accumulate for (signed) word data

[Instruction format] MAC reg1, reg2, reg3, reg4

[Operation] GR[reg4+1] || GR[reg4] ← GR[reg2] × GR[reg1] + GR[reg3+1] || GR[reg3]

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwww0011110mmmm0

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-

purpose register reg1, then adds the result (64-bit data) to 64-bit data consisting of the

lower 32 bits of general-purpose register reg3 and the data in general-purpose register

reg3+1 (for example, this would be “r7” if the reg3 value is r6 and “1” is added) as the

higher 32 bits. Of the result (64-bit data), the higher 32 bits are stored in general-purpose

register reg4+1 and the lower 32 bits are stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed

integers. This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

CAUTION

General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered register (r0, r2, r4, …, r30).

The result is undefined if an odd-numbered register (r1, r3, …, r31) is specified.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 117 of 512
December 20, 2023

2.2.3.52 MACU
<Multiply-accumulate instruction>

Multiply and add word unsigned

MACU
Multiply-accumulate for (unsigned) word data

[Instruction format] MACU reg1, reg2, reg3, reg4

[Operation] GR[reg4+1] || GR [reg4] ← GR[reg2] × GR[reg1] + GR[reg3+1] || GR[reg3]

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwww0011111mmmm0

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-

purpose register reg1, then adds the result (64-bit data) to 64-bit data consisting of the

lower 32 bits of general-purpose register reg3 and the data in general-purpose register

reg3+1 (for example, this would be “r7” if the reg3 value is r6 and “1” is added) as the

higher 32 bits. Of the result (64-bit data), the higher 32 bits are stored in general-purpose

register reg4+1 and the lower 32 bits are stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit unsigned

integers. This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

CAUTION

General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered register (r0, r2, r4, …, r30).

The result is undefined if an odd-numbered register (r1, r3, …, r31) is specified.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 118 of 512
December 20, 2023

2.2.3.53 MOV
<Arithmetic instruction>

Move register/immediate (5-bit)/immediate (32-bit)

MOV
Data transfer

[Instruction format] (1) MOV reg1, reg2

(2) MOV imm5, reg2

(3) MOV imm32, reg1

[Operation] (1) GR[reg2] ← GR[reg1]

(2) GR[reg2] ← sign-extend (imm5)

(3) GR[reg1] ← imm32

[Format] (1) Format I

(2) Format II

(3) Format VI

[Opcode]

 15 0

(1) rrrrr000000RRRRR

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0

(2) rrrrr010000iiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16 47 32

(3) 00000110001RRRRR iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.

I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 119 of 512
December 20, 2023

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Copies and transfers the word data of general-purpose register reg1 to general-

purpose register reg2. General-purpose register reg1 is not affected.

(2) Copies and transfers the 5-bit immediate data, sign-extended to word length, to

general- purpose register reg2.

(3) Copies and transfers the 32-bit immediate data to general-purpose register reg1.

CAUTION

Do not specify r0 as reg2 in MOV reg1, reg2 for instruction format (1) or in MOV imm5, reg2 for instruction format (2).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 120 of 512
December 20, 2023

2.2.3.54 MOVEA
<Arithmetic instruction>

Move effective address

MOVEA
Effective address transfer

[Instruction format] MOVEA imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110001RRRRR iiiiiiiiiiiiiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. Neither general-

purpose register reg1 nor the flags is affected.

[Supplement] This instruction is to execute a 32-bit address calculation with the PSW flag value

unchanged.

CAUTION

Do not specify r0 for reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 121 of 512
December 20, 2023

2.2.3.55 MOVHI
<Arithmetic instruction>

Move high halfword

MOVHI
Higher halfword transfer

[Instruction format] MOVHI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] + (imm16 || 016)

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110010RRRRR iiiiiiiiiiiiiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the word data with its higher 16 bits specified as the 16-bit immediate data and the

lower 16 bits being “0” to the word data of general-purpose register reg1 and stores the

result in general-purpose register reg2. Neither general-purpose register reg1 nor the flags is

affected.

[Supplement] This instruction is to generate the higher 16 bits of a 32-bit address.

CAUTION

Do not specify r0 for reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 122 of 512
December 20, 2023

2.2.3.56 MUL
<Multiply instruction>

Multiply word by register/immediate (9-bit)

MUL
Multiplication of (signed) word data

[Instruction format] (1) MUL reg1, reg2, reg3

(2) MUL imm9, reg2, reg3

[Operation] (1) GR[reg3] || GR[reg2] ← GR[reg2] × GR[reg1]

(2) GR[reg3] || GR[reg2] ← GR[reg2] × sign-extend (imm9)

[Format] (1) Format XI

(2) Format XII

[Opcode]

 15 0 31 16

(1) rrrrr111111RRRRR wwwww01000100000

 15 0 31 16

(2) rrrrr111111iiiii wwwww01001IIII00

iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 123 of 512
December 20, 2023

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-

purpose register reg1, then stores the higher 32 bits of the result (64-bit data) in

general- purpose register reg3 and the lower 32 bits in general-purpose register reg2.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed

integers. General-purpose register reg1 is not affected.

(2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data,

extended to word length, then stores the higher 32 bits of the result (64-bit data) in

general-purpose register reg3 and the lower 32 bits in general-purpose register reg2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register,

only the higher 32 bits of the multiplication result are stored in the register.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 124 of 512
December 20, 2023

2.2.3.57 MULH
<Multiply instruction>

Multiply halfword by register/immediate (5-bit)

MULH
Multiplication of (signed) halfword data

[Instruction format] (1) MULH reg1, reg2

(2) MULH imm5, reg2

[Operation] (1) GR[reg2] ← GR[reg2] (15:0) × GR[reg1] (15:0)

(2) GR[reg2] ← GR[reg2] × sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode]

 15 0

(1) rrrrr000111RRRRR

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0

(2) rrrrr010111iiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 125 of 512
December 20, 2023

[Description] (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword

data of general-purpose register reg1 and stores the result in general-purpose register

reg2. General-purpose register reg1 is not affected.

(2) Multiplies the lower halfword data of general-purpose register reg2 by the 5-bit

immediate data, sign-extended to halfword length, and stores the result in general-

purpose register reg2.

[Supplement] In the case of a multiplier or a multiplicand, the higher 16 bits of general-purpose registers

reg1 and reg2 are ignored.

CAUTION

Do not specify r0 for reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 126 of 512
December 20, 2023

2.2.3.58 MULHI
<Multiply instruction>

Multiply halfword by immediate (16-bit)

MULHI
Multiplication of (signed) halfword immediate data

[Instruction format] MULHI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] (15:0) × imm16

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110111RRRRR iiiiiiiiiiiiiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate

data and stores the result in general-purpose register reg2. General-purpose register reg1 is

not affected.

[Supplement] In the case of a multiplicand, the higher 16 bits of general-purpose register reg1 are

ignored.

CAUTION

Do not specify r0 for reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 127 of 512
December 20, 2023

2.2.3.59 MULU
<Multiply instruction>

Multiply word unsigned by register/immediate (9-bit)

MULU
Multiplication of (unsigned) word data

[Instruction format] (1) MULU reg1, reg2, reg3

(2) MULU imm9, reg2, reg3

[Operation] (1) GR[reg3] || GR[reg2] ← GR[reg2] × GR [reg1]

(2) GR[reg3] | GR[reg2] ← GR[reg2] × zero-extend (imm9)

[Format] (1) Format XI

(2) Format XII

[Opcode]

 15 0 31 16

(1) rrrrr111111RRRRR wwwww01000100010

 15 0 31 16

(2) rrrrr111111iiiii wwwww01001IIII10

iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 128 of 512
December 20, 2023

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-

purpose register reg1, then stores the higher 32 bits of the result (64-bit data) in

general-purpose register reg3 and the lower 32 bits in general-purpose register reg2.

General-purpose register reg1 is not affected.

(2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data,

zero-extended to word length, then stores the higher 32 bits of the result (64-bit data)

in general-purpose register reg3 and the lower 32 bits in general-purpose register

reg2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register,

only the higher 32 bits of the multiplication result are stored in the register.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 129 of 512
December 20, 2023

2.2.3.60 NOP
<Special instruction>

No operation

NOP
No operation

[Instruction format] NOP

[Operation] No operation is performed.

[Format] Format I

[Opcode]

15 0

0000000000000000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Performs no processing and executes the next instruction.

[Supplement] The opcode is the same as that of MOV r0, r0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 130 of 512
December 20, 2023

2.2.3.61 NOT
<Logical instruction>

NOT

NOT
Logical negation (1’s complement)

[Instruction format] NOT reg1, reg2

[Operation] GR[reg2] ← NOT (GR[reg1])

[Format] Format I

[Opcode]

15 0

rrrrr000001RRRRR

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] Logically negates the word data of general-purpose register reg1 using 1’s complement and

stores the result in general-purpose register reg2. General-purpose register reg1 is not

affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 131 of 512
December 20, 2023

2.2.3.62 NOT1
<Bit manipulation instruction>

NOT bit

NOT1
NOT bit

[Instruction format] (1) NOT1 bit#3, disp16[reg1]

(2) NOT1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← not-bit (token, bit#3)

Store-memory (adr, token, Byte)

(2) adr ← GR[reg1]Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← not-bit (token, reg2)

Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

 15 0 31 16

(1) 01bbb111110RRRRR dddddddddddddddd

 15 0 31 16

(2) rrrrr111111RRRRR 0000000011100010

[Flags] CY —

 OV —

 S —

 Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 132 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, then the bits indicated by the 3-bit bit number are inverted (0 → 1,

1 → 0) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the

specified bit is “1”, the Z flag is cleared to “0”.

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address.

Byte data is read from the generated address, then the bits specified by lower 3 bits of

general- purpose register reg2 are inverted (0 → 1, 1 → 0) and the data is written

back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the

specified bit is “1”, the Z flag is cleared to “0”.

[Supplement] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is

executed and does not indicate the content of the specified bit resulting from the instruction

execution.

CAUTION

Although this instruction expects that atomic accesses are made for the purpose of exclusive control, whether atomic

accesses are actually possible is determined by the specifications for the target memory and bus system. For details,

see the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 133 of 512
December 20, 2023

2.2.3.63 OR
<Logical instruction>

OR

OR
OR

[Instruction format] OR reg1, reg2

[Operation] GR[reg2] ← GR[reg2] OR GR[reg1]

[Format] Format I

[Opcode]

15 0

rrrrr001000RRRRR

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] ORs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 134 of 512
December 20, 2023

2.2.3.64 ORI
<Logical instruction>

OR immediate (16-bit)

ORI
OR immediate

[Instruction format] ORI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] OR zero-extend (imm16)

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110100RRRRR iiiiiiiiiiiiiiii

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] ORs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-

extended to word length, and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 135 of 512
December 20, 2023

2.2.3.65 POPSP
<Special instruction>

Pop registers from stack

POPSP
Pop registers from stack

[Instruction format] POPSP rh-rt

[Operation] if rh ≤ rt

then cur ← rt

 end ← rh

 tmp ← sp

 while (cur ≥ end) {

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 GR[cur] ← Load-memory (adr, Word)

 cur ← cur − 1

 tmp ← tmp + 4

 }

 sp ← tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode]

15 0 31 16

01100111111RRRRR wwwww00101100000

RRRRR indicates rh.

wwwww indicates rt.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 136 of 512
December 20, 2023

[Description] Loads general-purpose register rt to rh from the stack in descending order (rt, rt – 1, rt – 2,

…, rh). After all the registers down to the specified register have been loaded, sp is updated

(incremented).

[Supplement] The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and

exception handling is executed with the start address of this instruction used as the return

address. The POPSP instruction is then executed again. (The sp value from before the

exception handling is saved.)

CAUTIONS

1. If a specification is made such that the registers to be restored include the sp (r3) (rh has a value of 3 to 31), the sp

is not loaded with the value that is read from memory. For this reason, the instruction can be resumed correctly

even if it is suspended in the middle of execution.

2. When an exception occurs during the execution of the instruction, the execution of the instruction is suspended

even when not all general-purpose registers are restored. An interrupt might be accepted during restoring the

general-purpose registers, or before updating the sp after the restoration is completed. In these cases, the sp

retains the old value that is established before the instruction is executed. Once the instruction execution is

suspended, it is unable to know which general-purpose registers have been restored. Since the return PC from the

exception processing is that of this POPSP instruction, unless none of the resources associated with the execution

of the POPSP instruction are altered during the exception processing, the POPSP instruction that has been

suspended can be re-executed precisely after control is returned from the exception processing. The re-execution

starts at the beginning of the POPSP instruction processing.

3. If rh > rt, no memory access is performed and the execution of the instruction is completed. Since no memory

access is made, no MDP exception is generated. The sp retains the original value.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 137 of 512
December 20, 2023

2.2.3.66 PREPARE
<Special instruction>

Save registers to stack

PREPARE
Create stack frame

[Instruction format] (1) PREPARE list12, imm5

(2) PREPARE list12, imm5, sp/immNote 1

Note 1. The sp/imm values are specified by bits 19 and 20 of the sub-opcode.

[Operation] (1) tmp ← sp

foreach (all regs in list12) {

 tmp ← tmp − 4

 adr ← tmpNote 1, Note 2

 CheckException (MDP)

 Store-memory (adr, GR[reg in list12], Word)

}

sp ← tmp − zero-extend (imm5 logically shift left by 2)

(2) tmp ← sp

foreach (all regs in list12) {

 tmp ← tmp − 4

 adr ← tmpNote 1, Note 2

 CheckException (MDP)

 Store-memory (adr, GR[reg in list12], Word)

}

sp ← tmp − zero-extend (imm5 logically shift left by 2)

case

 ff = 00: ep ← sp

 ff = 01: ep ← sign-extend (imm16)

 ff = 10: ep ← imm16 logically shift left by 16

 ff = 11: ep ← imm32

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XIII

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 138 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) 0000011110iiiiiL LLLLLLLLLLL00001

 15 0 31 16 Option (47-32 or 63-32)

(2) 0000011110iiiiiL LLLLLLLLLLLff011 imm16/imm32

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32

and bits 63 to 48 are the higher 16 bits of imm32.

ff = 00: sp is loaded to ep

ff = 01: Sign-extended 16-bit immediate data (bits 47 to 32) is loaded to ep

ff = 10: 16-bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep

ff = 11: 32-bit immediate data (bits 63 to 32) is loaded to ep

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list

“list12” (for example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in

list12).

list12 is a 32-bit register list, defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20 … 1 0

r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 — r30

 Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when

any of these bits is set (1), it specifies a corresponding register operation as a processing

target. For example, when r20 and r30 are specified, the values in list12 appear as shown

below (register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

● When all of the register’s non-corresponding bits are “0”: 0800 0001H

● When all of the register’s non-corresponding bits are “1”: 081F FFFFH

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 139 of 512
December 20, 2023

[Description] (1) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value

and the data is stored in that address). Next, subtracts 5-bit immediate data, logically

left-shifted by 2 bits and zero-extended to word length, from sp.

(2) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value

and the data is stored in that address). Next, subtracts 5-bit immediate data, logically

left-shifted by 2 bits and zero-extended to word length, from sp.

Then, loads the data specified by the third operand (sp/imm) to ep.

[Supplement] list12 general-purpose registers are saved in ascending order (r20, r21, ..., r31).

imm5 is used to create a stack frame that is used for auto variables and temporary data.

The lower two bits of the address specified by sp are masked to 0 and aligned to the word

boundary.

CAUTIONS

1. When an exception occurs during the execution of the instruction, the execution of the instruction is suspended

even when not all general-purpose registers are saved. An interrupt might be accepted during saving the general-

purpose registers, or before updating the sp (r3) after the saving is completed. In these cases, the sp and ep (r30)

retain the old values that are established before the instruction is executed. Once the instruction execution is

suspended, it is unable to know which general-purpose registers have been saved. Since the return PC from the

exception processing is that of this PREPARE instruction, unless none of the resources associated with the

execution of the PREPARE instruction are altered during the exception processing, the PREPARE instruction that

has been suspended can be re-executed precisely after control is returned from the exception processing. The re-

execution starts at the beginning of the PREPARE instruction processing.

2. If none of the general-purpose registers is specified in list12, no memory access is made and the instruction

execution is completed. Since no memory access is made, no MDP exception is generated. On the sp, a

subtraction is performed with imm5 shifted 2 bits to the left. The ep is loaded with the specified value.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 140 of 512
December 20, 2023

2.2.3.67 PUSHSP
<Special instruction>

Push registers to stack

PUSHSP
Push registers to stack

[Instruction format] PUSHSP rh-rt

[Operation] if rh ≤ rt

then cur ← rh

 end ← rt

 tmp ← sp

 while (cur ≤ end) {

 tmp ← tmp − 4

 adr ← tmpNote 1, Note 2

 CheckException (MDP)

 Store-memory (adr, GR[cur], Word)

 cur ← cur + 1

 }

 sp ← tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode]

15 0 31 16

01000111111RRRRR wwwww00101100000

RRRRR indicates rh.

wwwww indicates rt.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 141 of 512
December 20, 2023

[Description] Stores general-purpose register rh to rt in the stack in ascending order (rh, rh + 1, rh + 2, …,

rt). After all the specified registers have been stored, sp is updated (decremented).

[Supplement] The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and

exception handling is executed with the start address of this instruction used as the return

address. The PUSHSP instruction is then executed again. (The sp value from before the

exception handling is saved.)

CAUTIONS

1. When an exception occurs during the execution of the instruction, the execution of the instruction is suspended

even when not all general-purpose registers are saved. An interrupt might be accepted during saving the general-

purpose registers, or before updating the sp (r3) after the saving is completed. In these cases, the sp retains the old

value that is established before the instruction is executed. Once the instruction execution is suspended, it is unable

to know which general-purpose registers have been saved. Since the return PC from the exception processing is

that of this PUSHSP instruction, unless none of the resources associated with the execution of the PUSHSP

instruction are altered during the exception processing, the PUSHSP instruction that has been suspended can be

re-executed precisely after control is returned from the exception processing. The re-execution starts at the

beginning of the PUSHSP instruction processing.

2. If rh > rt, no memory access is performed and the execution of the instruction is completed. Since no memory

access is made, no MDP exception is generated. The sp retains the original value.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 142 of 512
December 20, 2023

2.2.3.68 RESBANK
<Special instruction>

Restore contexts from register bank

RESBANK
Restore from register bank

[Instruction format] RESBANK

[Operation] if (RBNR.BN > 0)

then

 if (RBCR0.MD == 0)

 then

 adr ← RBIP – RBNR.BN × 60h

 CheckException (MDP)

 GR[30] ← Load-memory (adr, Word)

 cur ← 19

 adr ← adr + 4

 else

 adr ← RBIP – RBNR.BN × 90h

 cur ← 31

 adr ← adr + 4

 while (cur > 0) {

 CheckException(MDP)

 GR[cur] ← Load-memory (adr, Word)

 cur ← cur – 1

 adr ← adr + 4

 }

 CheckException (MDP)

 FPSR ← Load-memory (adr, Word)

 adr ← adr + 4

 CheckException (MDP)

 EIIC ← Load-memory (adr, Word)

 adr ← adr + 4

 CheckException (MDP)

 EIPSW ← Load-memory (adr, Word)

 adr ← adr + 4

 CheckException (MDP)

 EIPC ← Load-memory (adr, Word)

 RBNR.BN ← RBNR.BN – 1

 PSW.ID ← 1

else

 FEPC ← PC (return PC)

 FEPSW ← PSW

 FEIC ← Exception cause code (0000 001DH)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 143 of 512
December 20, 2023

 PSW.UM ← 0

 PSW.NP ← 1

 PSW.EP ← 1

 PSW.ID ← 1

 PC ← Exception handler address (offset address of 10H)

[Format] Format X

[Opcode]

15 0 31 16

0000011111100000 1000000101100000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Restores the values of the system registers and general-purpose registers from a register

bank.

If the value of RBNR.BN is 0, however, a resumable-type SYSERR exception is generated.

[Supplement] This instruction is a supervisor-privileged instruction.

When an exception occurs during the execution of the instruction, the execution of the

instruction is suspended even when not all the system registers and general-purpose

registers are restored. An interrupt might be accepted during restoring the general-purpose

registers, or before updating the sp after the restoration is completed. In these cases,

RBNR.BN and PSW.ID retain their original values established before the instruction is

executed. Once the instruction execution is suspended, it is unable to know which registers

have been restored. Since the return PC from the exception processing is that of this

RESBANK instruction, unless none of the resources associated with the execution of the

RESBANK instruction are altered during the exception processing, the RESBANK

instruction that has been suspended can be re-executed precisely after control is returned

from the exception processing. The re-execution starts at the beginning of the RESBANK

instruction processing.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 144 of 512
December 20, 2023

2.2.3.69 RIE
<Special instruction>

Reserved instruction exception

RIE
Reserved instruction exception

[Instruction format] (1) RIE

(2) RIE imm5, imm4

[Operation] FEPC ← PC (return PC)

FEPSW ← PSW

FEIC ← exception cause code (0000 0060H)

PSW.UM ← 0

PSW.NP ← 1

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler address (offset address 60H)

[Format] (1) Format I

(2) Format X

[Opcode]

 15 0

(1) 0000000001000000

 15 0 31 16

(2) iiiii1111111IIII 0000000000000000

Where iiiii = imm5, IIII = imm4.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 145 of 512
December 20, 2023

[Description] Saves the contents of the return PC (address of the RIE instruction) and the current contents

of the PSW to FEPC and FEPSW, respectively, stores the exception cause code in the FEIC

register, and updates the PSW according to the exception causes listed in the hardware

manual of the product used.

Execution then branches to the exception handler address and exception handling is started.

Exception handler addresses are calculated based on the offset address 60H. For details, see

the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 146 of 512
December 20, 2023

2.2.3.70 ROTL
<Data manipulation instruction>

Rotate Left

ROTL
Rotate

[Instruction format] (1) ROTL imm5, reg2, reg3

(2) ROTL reg1, reg2, reg3

[Operation] (1) GR[reg3] ← GR[reg2] rotate left by zero-extend (imm5)

(2) GR[reg3] ← GR[reg2] rotate left by GR[reg1]

[Format] Format VII

[Opcode]

 15 0 31 16

(1) rrrrr111111iiiii wwwww00011000100

 15 0 31 16

(2) rrrrr111111RRRRR wwwww00011000110

[Flags] CY “1” if operation result bit 0 is “1”; otherwise “0”, including if the rotate amount

is “0”.

 OV 0

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] (1) Rotates the word data of general-purpose register reg2 to the left by the specified shift

amount, which is indicated by a 5-bit immediate value zero-extended to word length.

The result is written to general-purpose register reg3. General-purpose register reg2 is

not affected.

(2) Rotates the word data of general-purpose register reg2 to the left by the specified shift

amount indicated by the lower 5 bits of general-purpose register reg1. The result is

written to general-purpose register reg3. General-purpose registers reg1 and reg2 are

not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 147 of 512
December 20, 2023

2.2.3.71 SAR
<Data manipulation instruction>

Shift arithmetic right by register/immediate (5-bit)

SAR
Arithmetic right shift

[Instruction format] (1) SAR reg1, reg2

(2) SAR imm5, reg2

(3) SAR reg1, reg2, reg3

[Operation] (1) GR[reg2] ← GR[reg2] arithmetically shift right by GR[reg1]

(2) GR[reg2] ← GR[reg2] arithmetically shift right by zero-extend (imm5)

(3) GR[reg3] ← GR[reg2] arithmetically shift right by GR[reg1]

[Format] (1) Format IX

(2) Format II

(3) Format XI

[Opcode]

 15 0 31 16

(1) rrrrr111111RRRRR 0000000010100000

 15 0

(2) rrrrr010101iiiii

 15 0 31 16

(3) rrrrr111111RRRRR wwwww00010100010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

 OV 0

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 148 of 512
December 20, 2023

[Description] (1) Arithmetically right-shifts the word data of general-purpose register reg2 by “n” (0 to

+31), the position specified by the lower 5 bits of general-purpose register reg1, by

copying the pre-shift MSB value to the post-shift MSB. The result is written to

general-purpose register reg2. General-purpose register reg1 is not affected.

(2) Arithmetically right-shifts the word data of general-purpose register reg2 by “n” (0 to

+31), the position specified by the 5-bit immediate data, zero-extended to word

length, by copying the pre-shift MSB value to the post-shift MSB. The result is

written to general-purpose register reg2.

(3) Arithmetically right-shifts the word data of general-purpose register reg2 by “n” (0 to

+31), the position specified by the lower 5 bits of general-purpose register reg1, by

copying the pre-shift MSB value to the post-shift MSB. The result is written to

general-purpose register reg3. General-purpose registers reg1 and reg2 are not

affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 149 of 512
December 20, 2023

2.2.3.72 SASF
<Data manipulation instruction>

Shift and set flag condition

SASF
Shift and flag condition setting

[Instruction format] SASF cccc, reg2

[Operation] if conditions are satisfied

 then GR[reg2] ← (GR[reg2] Logically shift left by 1) OR 0000 0001H

 else GR[reg2] ← (GR[reg2] Logically shift left by 1) OR 0000 0000H

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr1111110cccc 0000001000000000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 150 of 512
December 20, 2023

[Description] When the condition specified by condition code “cccc” is met, logically left-shifts data of

general-purpose register reg2 by 1 bit, and sets (1) the least significant bit (LSB). If a

condition is not met, logically left-shifts data of reg2 and clears the LSB.

Designate one of the condition codes shown in the following table as [cccc].

Condition
Code Name Condition Formula

 Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Supplement] See the SETF instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 151 of 512
December 20, 2023

2.2.3.73 SATADD
<Saturated operation instructions>

Saturated add register/immediate (5-bit)

SATADD
Saturated addition

[Instruction format] (1) SATADD reg1, reg2

(2) SATADD imm5, reg2

(3) SATADD reg1, reg2, reg3

[Operation] (1) GR[reg2] ← saturated (GR[reg2] + GR[reg1])

(2) GR[reg2] ← saturated (GR[reg2] + sign-extend (imm5))

(3) GR[reg3] ← saturated (GR[reg2] + GR[reg1])

[Format] (1) Format I

(2) Format II

(3) Format XI

[Opcode]

 15 0

(1) rrrrr000110RRRRR

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0

(2) rrrrr010001iiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16

(3) rrrrr111111RRRRR wwwww01110111010

[Flags] CY “1” if a carry occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if saturated operation result is negative; otherwise, “0”.

 Z “1” if saturated operation result is “0”; otherwise, “0”.

 SAT “1” if OV = 1; otherwise, does not change.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 152 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. However,

when the result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is

stored in reg2, and when it exceeds the maximum negative value 8000 0000H,

8000 0000H is stored in reg2; then the SAT flag is set (1). General-purpose register

reg1 is not affected.

(2) Adds the 5-bit immediate data, sign-extended to the word length, to the word data of

general-purpose register reg2, and stores the result in general-purpose register reg2.

However, when the result exceeds the maximum positive value 7FFF FFFFH,

7FFF FFFFH is stored in reg2, and when it exceeds the maximum negative value

8000 0000H, 8000 0000H is stored in reg2; then the SAT flag is set (1).

(3) Adds the word data of general-purpose register reg1 to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg3. However,

when the result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is

stored in reg3, and when it exceeds the maximum negative value 8000 0000H,

8000 0000H is stored in reg3; then the SAT flag is set (1). General-purpose registers

reg1 and reg2 are not affected.

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated.

The saturated operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 as reg2 in instruction format (1) SATADD reg1, reg2 and in instruction format (2) SATADD imm5,

reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 153 of 512
December 20, 2023

2.2.3.74 SATSUB
<Saturated operation instructions>

Saturated subtract

SATSUB
Saturated subtraction

[Instruction format] (1) SATSUB reg1, reg2

(2) SATSUB reg1, reg2, reg3

[Operation] (1) GR[reg2] ← saturated (GR[reg2] − GR[reg1])

(2) GR[reg3] ← saturated (GR[reg2] − GR[reg1])

[Format] (1) Format I

(2) Format XI

[Opcode]

 15 0

(1) rrrrr000101RRRRR

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

 15 0 31 16

(2) rrrrr111111RRRRR wwwww01110011010

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if saturated operation result is negative; otherwise, “0”.

 Z “1” if saturated operation result is “0”; otherwise, “0”.

 SAT “1” if OV = 1; otherwise, does not change.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 154 of 512
December 20, 2023

[Description] (1) Subtracts the word data of general-purpose register reg1 from the word data of

general- purpose register reg2 and stores the result in general-purpose register reg2. If

the result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in

reg2; if the result exceeds the maximum negative value 8000 0000H, 8000 0000H is

stored in reg2. The SAT flag is set to “1”. General-purpose register reg1 is not

affected.

(2) Subtracts the word data of general-purpose register reg1 from the word data of

general- purpose register reg2, and stores the result in general-purpose register reg3.

However, when the result exceeds the maximum positive value 7FFF FFFFH,

7FFF FFFFH is stored in reg3, and when it exceeds the maximum negative value

8000 0000H, 8000 0000H is stored in reg3; then the SAT flag is set (1). General-

purpose registers reg1 and reg2 are not affected.

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated.

The saturated operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 as reg2 in instruction format (1) SATSUB reg1, reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 155 of 512
December 20, 2023

2.2.3.75 SATSUBI
<Saturated operation instructions>

Saturated subtract immediate

SATSUBI
Saturated subtraction

[Instruction format] SATSUBI imm16, reg1, reg2

[Operation] GR[reg2] ← saturated (GR[reg1] − sign-extend (imm16))

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110011RRRRR iiiiiiiiiiiiiiii

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if saturated operation result is negative; otherwise, “0”.

 Z “1” if saturated operation result is “0”; otherwise, “0”.

 SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of

general-purpose register reg1 and stores the result in general-purpose register reg2. If the

result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in reg2; if

the result exceeds the maximum negative value 8000 0000H, 8000 0000H is stored in reg2.

The SAT flag is set to “1”. General-purpose register reg1 is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated. The saturated

operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 for reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 156 of 512
December 20, 2023

2.2.3.76 SATSUBR
<Saturated operation instructions>

Saturated subtract reverse

SATSUBR
Saturated reverse subtraction

[Instruction format] SATSUBR reg1, reg2

[Operation] GR[reg2] ← saturated (GR[reg1] − GR[reg2])

[Format] Format I

[Opcode]

15 0

rrrrr000100RRRRR

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if saturated operation result is negative; otherwise, “0”.

 Z “1” if saturated operation result is “0”; otherwise, “0”.

 SAT “1” if OV = 1; otherwise, does not change.

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. If the result

exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in reg2; if the

result exceeds the maximum negative value 8000 0000H, 8000 0000H is stored in reg2. The

SAT flag is set to “1”. General-purpose register reg1 is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated.

The saturated operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”

2. Do not specify r0 for reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 157 of 512
December 20, 2023

2.2.3.77 SBF
<Conditional operation instructions>

Subtract on condition flag

SBF
Conditional subtraction

[Instruction format] SBF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR[reg3] ← GR[reg2] − GR[reg1] − 1

else GR[reg3] ← GR[reg2] − GR[reg1] − 0

[Format] Format XI

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww011100cccc0

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if operation result is negative; otherwise, “0”.

 Z “1” if operation result is “0”; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 158 of 512
December 20, 2023

[Description] Subtracts 1 from the result of subtracting the word data of general-purpose register reg1

from the word data of general-purpose register reg2, and stores the result of subtraction in

general- purpose register reg3, if the condition specified by condition code “cccc” is

satisfied.

If the condition specified by condition code “cccc” is not satisfied, subtracts the word data

of general-purpose register reg1 from the word data of general-purpose register reg2, and

stores the result in general-purpose register reg3.

General-purpose registers reg1 and register 2 are not affected.

Designate one of the condition codes shown in the following table as [cccc]. (However,

cccc cannot equal 1101.)

Condition
Code Name Condition Formula

 Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 159 of 512
December 20, 2023

2.2.3.78 SCH0L
<Bit search instructions>

Search zero from left

SCH0L
Bit (0) search from MSB side

[Instruction format] SCH0L reg2, reg3

[Operation] GR[reg3] ← search zero from left of GR[reg2]

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101100100

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

 OV 0

 S 0

 Z “1” if bit (0) is not found; otherwise, “0”.

 SAT —

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and

writes the number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to

general- purpose register reg3 (e.g., when bit 31 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If

the bit (0) found is the LSB, the CY flag is set (1).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 160 of 512
December 20, 2023

2.2.3.79 SCH0R
<Bit search instructions>

Search zero from right

SCH0R
Bit (0) search from LSB side

[Instruction format] SCH0R reg2, reg3

[Operation] GR[reg3] ← search zero from right of GR[reg2]

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101100000

[Flags] CY “1” if bit (0) is found eventually; otherwise, “0”.

 OV 0

 S 0

 Z “1” if bit (0) is not found; otherwise, “0”.

 SAT —

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and

writes the number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to

general- purpose register reg3 (e.g., when bit 0 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If

the bit (0) found is the MSB, the CY flag is set (1).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 161 of 512
December 20, 2023

2.2.3.80 SCH1L
<Bit search instructions>

Search one from left

SCH1L
Bit (1) search from MSB side

[Instruction format] SCH1L reg2, reg3

[Operation] GR[reg3] ← search one from left of GR[reg2]

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101100110

[Flags] CY “1” if bit (1) is found eventually; otherwise, “0”.

 OV 0

 S 0

 Z “1” if bit (1) is not found; otherwise, “0”.

 SAT —

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and

writes the number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to

general- purpose register reg3 (e.g., when bit 31 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If

the bit (1) found is the LSB, the CY flag is set (1).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 162 of 512
December 20, 2023

2.2.3.81 SCH1R
<Bit search instructions>

Search one from right

SCH1R
Bit (1) search from LSB side

[Instruction format] SCH1R reg2, reg3

[Operation] GR[reg3] ← search one from right of GR [reg2]

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr11111100000 wwwww01101100010

[Flags] CY “1” if bit (1) is found eventually; otherwise, “0”.

 OV 0

 S 0

 Z “1” if bit (1) is not found; otherwise, “0”.

 SAT —

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and

writes the number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to

general- purpose register reg3 (e.g., when bit 0 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If

the bit (1) found is the MSB, the CY flag is set (1).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 163 of 512
December 20, 2023

2.2.3.82 SET1
<Bit manipulation instruction>

Set bit

SET1
Bit setting

[Instruction format] (1) SET1 bit#3, disp16[reg1]

 (2) SET1 reg2, [reg1]

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← set-bit (token, bit#3)

Store-memory (adr, token, Byte)

(2) adr ← GR[reg1]Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← set-bit (token, reg2)

Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

 15 0 31 16

(1) 00bbb111110RRRRR dddddddddddddddd

 15 0 31 16

(2) rrrrr111111RRRRR 0000000011100000

[Flags] CY —

 OV —

 S —

 Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 164 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, the bits indicated by the 3-bit bit number are set (1) and the data is

written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the

specified bit is “1”, the Z flag is cleared to “0”.

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address.

Byte data is read from the generated address, the lower 3 bits indicated of general-

purpose register reg2 are set (1) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the

specified bit is “1”, the Z flag is cleared to “0”.

[Supplement] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not

indicate the content of the specified bit resulting from the instruction execution.

CAUTION

Although this instruction expects that atomic accesses are made for the purpose of exclusive control, whether atomic

accesses are actually possible is determined by the specifications for the target memory and bus system.

For details, see the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 165 of 512
December 20, 2023

2.2.3.83 SETF
<Data manipulation instruction>

Set flag condition

SETF
Flag condition setting

[Instruction format] SETF cccc, reg2

[Operation] if conditions are satisfied

then GR[reg2] ← 0000 0001H

else GR[reg2] ← 0000 0000H

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr1111110cccc 0000000000000000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 166 of 512
December 20, 2023

[Description] When the condition specified by condition code “cccc” is met, stores “1” to general-

purpose register reg2 if a condition is met and stores “0” if a condition is not met.

Designate one of the condition codes shown in the following table as [cccc].

Condition
Code Name Condition Formula

 Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

[Supplement] Examples of SETF instruction:

(1) Translation of multiple condition clauses

If A of statement if (A) in C language consists of two or greater condition clauses (a1,

a2, a3, and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The

object code executes “conditional branch” by checking the result of evaluation

equivalent to an. Because a pipeline operation requires more time to execute

“condition judgment” + “branch” than to execute an ordinary operation, the result of

evaluating each condition clause if (an) is stored in register Ra. By performing a

logical operation to Ran after all the condition clauses have been evaluated, the

pipeline delay can be prevented.

(2) Double-length operation

To execute a double-length operation, such as “Add with Carry”, the result of the CY

flag can be stored in general-purpose register reg2. Therefore, a carry from the lower

bits can be represented as a numeric value.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 167 of 512
December 20, 2023

2.2.3.84 SHL
<Data manipulation instruction>

Shift logical left by register/immediate (5-bit)

SHL
Logical left shift

[Instruction format] (1) SHL reg1, reg2

(2) SHL imm5, reg2

(3) SHL reg1, reg2, reg3

[Operation] (1) GR[reg2] ← GR[reg2] logically shift left by GR[reg1]

(2) GR[reg2] ← GR[reg2] logically shift left by zero-extend (imm5)

(3) GR[reg3] ← GR[reg2] logically shift left by GR[reg1]

[Format] (1) Format IX

(2) Format II

(3) Format XI

[Opcode]

 15 0 31 16

(1) rrrrr111111RRRRR 0000000011000000

 15 0

(2) rrrrr010110iiiii

 15 0 31 16

(3) rrrrr111111RRRRR wwwww00011000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

 OV 0

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 168 of 512
December 20, 2023

[Description] (1) Logically left-shifts the word data of general-purpose register reg2 by “n” (0 to +31),

the position specified by the lower 5 bits of general-purpose register reg1, by shifting

“0” to LSB. The result is written to general-purpose register reg2. General-purpose

register reg1 is not affected.

(2) Logically left-shifts the word data of general-purpose register reg2 by “n” (0 to +31),

the position specified by the 5-bit immediate data, zero-extended to word length, by

shifting “0” to LSB. The result is written to general-purpose register reg2.

(3) Logically left-shifts the word data of general-purpose register reg2 by “n” (0 to +31),

the position specified by the lower 5 bits of general-purpose register reg1, by shifting

“0” to LSB. The result is written to general-purpose register reg3. General-purpose

registers reg1 and reg2 are not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 169 of 512
December 20, 2023

2.2.3.85 SHR
<Data manipulation instruction>

Shift logical right by register/immediate (5-bit)

SHR
Logical right shift

[Instruction format] (1) SHR reg1, reg2

(2) SHR imm5, reg2

(3) SHR reg1, reg2, reg3

[Operation] (1) GR[reg2] ← GR[reg2] logically shift right by GR[reg1]

(2) GR[reg2] ← GR[reg2] logically shift right by zero-extend (imm5)

(3) GR[reg3] ← GR[reg2] logically shift right by GR[reg1]

[Format] (1) Format IX

(2) Format II

(3) Format XI

[Opcode]

 15 0 31 16

(1) rrrrr111111RRRRR 0000000010000000

 15 0

(2) rrrrr010100iiiii

 15 0 31 16

(3) rrrrr111111RRRRR wwwww00010000010

[Flags] CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

 OV 0

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 170 of 512
December 20, 2023

[Description] (1) Logically right-shifts the word data of general-purpose register reg2 by “n” (0 to

+31), the position specified by the lower 5 bits of general-purpose register reg1, by

shifting “0” to MSB. The result is written to general-purpose register reg2. General-

purpose register reg1 is not affected.

(2) Logically right-shifts the word data of general-purpose register reg2 by “n” (0 to

+31), the position specified by the 5-bit immediate data, zero-extended to word

length, by shifting “0” to MSB. The result is written to general-purpose register reg2.

(3) Logically right-shifts the word data of general-purpose register reg2 by “n” (0 to

+31), the position specified by the lower 5 bits of general-purpose register reg1, by

shifting “0” to MSB. The result is written to general-purpose register reg3. General-

purpose registers reg1 and reg2 are not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 171 of 512
December 20, 2023

2.2.3.86 SLD.B
<Load instruction>

Short format load byte

SLD.B
Load of (signed) byte data

[Instruction format] SLD.B disp7[ep], reg2

[Operation] adr ← ep + zero-extend (disp7)Note 1

CheckException(MDP)

GR[reg2] ← sign-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr0110ddddddd

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the generated address, sign-extended to

word length, and stored in reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 172 of 512
December 20, 2023

2.2.3.87 SLD.BU
<Load instruction>

Short format load byte unsigned

SLD.BU
Load of (unsigned) byte data

[Instruction format] SLD.BU disp4[ep], reg2

[Operation] adr ← ep + zero-extend (disp4)Note 1

CheckException (MDP)

GR[reg2] ← zero-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr0000110dddd

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the generated address, zero-extended to

word length, and stored in reg2.

CAUTION

Do not specify r0 for reg2.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 173 of 512
December 20, 2023

2.2.3.88 SLD.H
<Load instruction>

Short format load halfword

SLD.H
Load of (signed) halfword data

[Instruction format] SLD.H disp8[ep], reg2

[Operation] adr ← ep + zero-extend (disp8)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg2] ← sign-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address. Halfword data is read from this 32-bit address, sign-extended to

word length, and stored in general-purpose register reg2.

CAUTION

A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 174 of 512
December 20, 2023

2.2.3.89 SLD.HU
<Load instruction>

Short format load halfword unsigned

SLD.HU
Load of (unsigned) halfword data

[Instruction format] SLD.HU disp5[ep], reg2

[Operation] adr ← ep + zero-extend (disp5)Note 1

CheckException (MAE)

CheckException (MDP)

GR [reg2] ← zero-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr0000111dddd

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

dddd is the higher 4 bits of disp5.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the element pointer to the 5-bit displacement data, zero-extended to word length, to

generate a 32-bit address. Halfword data is read from this 32-bit address, zero-extended to

word length, and stored in general-purpose register reg2.

CAUTIONS

1. Do not specify r0 for reg2.

2. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 175 of 512
December 20, 2023

2.2.3.90 SLD.W
<Load instruction>

Short format load word

SLD.W
Load of word data

[Instruction format] SLD.W disp8 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp8)Note 1

CheckException (MAE)

CheckException (MDP)

GR[reg2] ← Load-memory (adr, Word)

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr1010dddddd0

dddddd is the higher 6 bits of disp8.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address. Word data is read from this 32-bit address, and stored in general-

purpose register reg2.

CAUTION

A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 176 of 512
December 20, 2023

2.2.3.91 SNOOZE
<Special instruction>

Snooze

SNOOZE
Snooze

[Instruction format] Snooze

[Operation] Snooze while hardware-defined period

[Format] Format X

[Opcode]

15 0 31 16

0000111111100000 0000000100100000

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 177 of 512
December 20, 2023

[Description] Temporarily suspends the execution of instructions for the period specified in the SNZCFG

register.

Upon the lapse of the specified period or a state transition occurs, execution is

automatically resumed starting at the next instruction.

The SNOOZE state is released under the following conditions:

● The specified period has elapsed.

● A terminating-type exception occurs

Even if the conditions (values of the PSW.ID and PSW.NP) for acknowledging the above

exceptions are not satisfied, the SNOOZE state is released if there is an exception request.

(Example: The SNOOZE state is released when an EIINT request occurs even when

PSW.ID = 1.).

The SNOOZE state is not released if the terminating-type exceptions are masked by the

following mask functions:

● Terminating exceptions are masked by an interrupt channel mask setting specified by

the interrupt controllerNote 1.

● Terminating exceptions are masked by a mask setting specified by using the floating-

point operation exception enable bit.

● Terminating exceptions are masked by a mask setting defined by a hardware function

other than the above.

Note 1. The SNOOZE state is released when the masking is carried out using only the

ISPR , PLMR registers and PSW.EIMASK bit (Supported only when Architecture

Identifier bit PID[31:24] = 07H (RH850G4MH2)).

[Supplement] This instruction is used to prevent the CPU performance from dropping in a multi-core

system due to bus band occupancy during a spinlock.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 178 of 512
December 20, 2023

2.2.3.92 SST.B
<Store instruction>

Short format store byte

SST.B
Storage of byte data

[Instruction format] SST.B reg2, disp7[ep]

[Operation] adr ← ep + zero-extend (disp7)Note 1

CheckException (MDP)

Store-memory (adr, GR[reg2], Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr0111ddddddd

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the element pointer to the 7-bit displacement data, zero-extended to word length, to

generate a 32-bit address and stores the data of the lowest byte of reg2 to the generated

address.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 179 of 512
December 20, 2023

2.2.3.93 SST.H
<Store instruction>

Short format store halfword

SST.H
Storage of halfword data

[Instruction format] SST.H reg2, disp8[ep]

[Operation] adr ← ep + zero-extend (disp8)Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg2], Halfword)

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr1001ddddddd

ddddddd is the higher 7 bits of disp8.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address, and stores the lower halfword data of reg2 to the generated 32-bit

address.

CAUTION

A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 180 of 512
December 20, 2023

2.2.3.94 SST.W
<Store instruction>

Short format store word

SST.W
Storage of word data

[Instruction format] SST.W reg2, disp8[ep]

[Operation] adr ← ep + zero-extend (disp8)Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg2], Word)

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] Format IV

[Opcode]

15 0

rrrrr1010dddddd1

dddddd is the higher 6 bits of disp8.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address and stores the word data of reg2 to the generated 32-bit address.

CAUTION

A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 181 of 512
December 20, 2023

2.2.3.95 ST.B
<Store instruction>

Store byte

ST.B
Storage of byte data

[Instruction format] (1) ST.B reg2, disp16[reg1]

(2) ST.B reg3, disp23[reg1]

(3) ST.B reg3, [reg1]+

(4) ST.B reg3, [reg1]−

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)Note 1

CheckException (MDP)

Store-memory (adr, GR[reg2], Byte)

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MDP)

Store-memory (adr, GR[reg3], Byte)

(3) adr ← GR[reg1]Note 1

CheckException (MDP)

Store-memory (adr, GR[reg3], Byte)

GR[reg1] ← GR[reg1] + 1

(4) adr ← GR[reg1]Note 1

CheckException (MDP)

Store-memory (adr, GR[reg3], Byte)

GR[reg1] ← GR[reg1] − 1

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 182 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) rrrrr111010RRRRR dddddddddddddddd

 15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwddddddd1101 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00010111111RRRRR wwwww01101110010

 15 0 31 16

(4) 00100111111RRRRR wwwww01101110010

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lowest byte data

of general-purpose register reg2 to the generated address.

(2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lowest byte data

of general-purpose register reg3 to the generated address.

(3) Stores the byte data from the lowest byte field of the general-purpose register reg3 in

the address that is generated from the word data in the general-purpose register reg1.

Adds 1 to the contents of the general-purpose register reg1 and stores the result in the

general-purpose register reg1.

(4) Stores the byte data from the lowest byte field of the general-purpose register reg3 in

the address that is generated from the word data in the general-purpose register reg1.

Subtract 1 from the contents of the general-purpose register reg1 and stores the result

in the general-purpose register reg1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 183 of 512
December 20, 2023

2.2.3.96 ST.DW
<Store instruction>

Store double-word

ST.DW
Storage of double-word data

[Instruction format] ST.DW reg3, disp23[reg1]

[Operation] adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MAE)

CheckException (MDP)

data ← GR[reg3+1] || GR[reg3]

Store-memory (adr, data, Double-word)

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] Format XIV

[Opcode]

15 0 31 16 47 32

00000111101RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

Where RRRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 184 of 512
December 20, 2023

[Description] Adds the data of general-purpose register reg1 to a 23-bit displacement value sign-extended

to word length to generate a 32-bit address. Double-word data consisting of the lower 32

bits of the word data of general-purpose register reg3 and the higher 32 bits of the word

data of reg3 + 1 is then stored at this address.

[Supplement] reg3 must be an even-numbered register. If an odd-numbered register is specified in reg3,

bit 0 of the register number is ignored and the register is handled as an even-numbered

register.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. No misalignment exception will occur, however, if the address calculation results in a word boundary.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 185 of 512
December 20, 2023

2.2.3.97 ST.H
<Store instruction>

Store halfword

ST.H
Storage of halfword data

[Instruction format] (1) ST.H reg2, disp16[reg1]

(2) ST.H reg3, disp23[reg1]

(3) ST.H reg3, [reg1]+

(4) ST.H reg3, [reg1]−

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg2], Halfword)

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg3], Halfword)

(3) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg3], Halfword)

GR[reg1] ← GR[reg1] + 2

(4) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg3], Halfword)

GR[reg1] ← GR[reg1] − 2

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 186 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) rrrrr111011RRRRR ddddddddddddddd0

Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

(2) 00000111101RRRRR wwwwwdddddd01101 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00010111111RRRRR wwwww01101110110

 15 0 31 16

(4) 00100111111RRRRR wwwww01101110110

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lower halfword

data of general-purpose register reg2 to the generated address.

(2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lower halfword

data of general-purpose register reg3 to the generated address.

(3) Stores the halfword data from the lower-order field of the general-purpose register

reg3 in the address generated from the word data in the general-purpose register reg1.

Adds 2 to the contents of the general-purpose register reg1 and stores the result in the

general-purpose register reg1.

(4) Stores the halfword data from the lower-order field of the general-purpose register

reg3 in the address generated from the word data in the general-purpose register reg1.

Subtract 2 from the contents of the general-purpose register reg1 and stores the result

in the general-purpose register reg1.

CAUTION

A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 187 of 512
December 20, 2023

2.2.3.98 ST.W
<Store instruction>

Store word

ST.W
Storage of word data

[Instruction format] (1) ST.W reg2, disp16[reg1]

(2) ST.W reg3, disp23[reg1]

(3) ST.W reg3, [reg1]+

(4) ST.W reg3, [reg1]−

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg2], Word)

(2) adr ← GR[reg1] + sign-extend (disp23)Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg3], Word)

(3) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg3], Word)

GR[reg1] ← GR[reg1] + 4

(4) adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

Store-memory (adr, GR[reg3], Word)

GR[reg1] ← GR[reg1] − 4

Note 1. An MAE or MDP exception might occur depending on the result of address

calculation.

[Format] (1) Format VII

(2) Format XIV

(3) Format XI

(4) Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 188 of 512
December 20, 2023

[Opcode]

 15 0 31 16

(1) rrrrr111011RRRRR ddddddddddddddd1

Where ddddddddddddddd is the higher 15 bits of disp16.

 15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 15 0 31 16

(3) 00010111111RRRRR wwwww01101111010

 15 0 31 16

(4) 00100111111RRRRR wwwww01101111010

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 189 of 512
December 20, 2023

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the word data of

general- purpose register reg2 to the generated 32-bit address.

(2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the word data of

general- purpose register reg3 to the generated 32-bit address.

(3) Stores the word data from the general-purpose register reg3 in the address generated

from the word data in the general-purpose register reg1.

Adds 4 to the contents of the general-purpose register reg1 and stores the result in the

general-purpose register reg1.

(4) Stores the word data from t the general-purpose register reg3 in the address generated

from the word data in the general-purpose register reg1.

Subtract 4 from the contents of the general-purpose register reg1 and stores the result

in the general-purpose register reg1.

CAUTION

A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 190 of 512
December 20, 2023

2.2.3.99 STC.B
<Special instruction>

Store conditional byte

STC.B
Conditional storage when atomic byte data manipulation is complete

[Instruction format] STC.B reg3, [reg1]

[Operation] adr ← GR[reg1]Note 1

CheckException (MDP)

data ← GR[reg3]

token ← LLbitNote 2

if (token == 1)

then Store-memory (adr, data, Byte)

 GR[reg3] ← 1

else GR[reg3] ← 0

LLbit ← 0Note 2

Note 1. An MDP exception may occur depending on the results of the address

calculation.

Note 2. For the link operation, see the hardware manual of the product used.

[Format] Format VII

[Opcode]

15 0 31 16

00000111111RRRRR wwwww01101110010

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 191 of 512
December 20, 2023

[Description] This instruction can only be executed successfully if a link exists that corresponds to the

specified address. If a corresponding link exists, the byte data of general-purpose register

reg3 is stored in the memory and an atomic read-modify-write is executed.

If the corresponding link has been lost, the data is not stored in the memory and execution

of this instruction fails.

Whether execution of the STC.B instruction has succeeded or not can be ascertained by

checking the contents of general-purpose register reg3 after the instruction has been

executed. If execution of the STC.B instruction was successful, general-purpose register

reg3 will be set (1). If execution failed, reg3 will be cleared (0).

This instruction can be used together with the LDL.BU instruction to ensure accurate

updating of the memory in a multi-core system. The LDL.BU instruction and the STC.B

instructions are intended always to be used in pair.

CAUTION

If a link is generated with the LDL.BU instruction and the STC.H or STC.W instruction is used instead of the STC.B

instruction, the result will be a failure and the link be lost.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 192 of 512
December 20, 2023

2.2.3.100 STC.H
<Special instruction>

Store conditional halfword

STC.H
Conditional storage when atomic halfword data manipulation is complete

[Instruction format] STC.H reg3, [reg1]

[Operation] adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

data ← GR[reg3]

token ← LLbitNote 2

if (token == 1)

then Store-memory (adr, data, Halfword)

 GR[reg3] ← 1

else GR[reg3] ← 0

LLbit ← 0Note 2

Note 1. An MAE or MDP exception may occur depending on the results of the address

calculation.

Note 2. For the link operation, see the hardware manual of the product used.

[Format] Format VII

[Opcode]

15 0 31 16

00000111111RRRRR wwwww01101110110

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 193 of 512
December 20, 2023

[Description] This instruction can only be executed successfully if a link exists that corresponds to the

specified address. If a corresponding link exists, the halfword data of general-purpose

register reg3 is stored in the memory and an atomic read-modify-write is executed.

If the corresponding link has been lost, the data is not stored in the memory and execution

of this instruction fails.

Whether execution of the STC.H instruction has succeeded or not can be ascertained by

checking the contents of general-purpose register reg3 after the instruction has been

executed. If execution of the STC.H instruction was successful, general-purpose register

reg3 will be set (1). If execution failed, reg3 will be cleared (0).

This instruction can be used together with the LDL.HU instruction to ensure accurate

updating of the memory in a multi-core system. The LDL.HU instruction and the STC.H

instructions are intended always to be used in pair.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. If a link is generated with the LDL.HU instruction and the STC.B or STC.W instruction is used instead of the STC.H

instruction, the result will be a failure and the link be lost.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 194 of 512
December 20, 2023

2.2.3.101 STC.W
<Store instruction>

Store conditional word

STC.W
Conditional storage when atomic word data manipulation is complete

[Instruction format] STC.W reg3, [reg1]

[Operation] adr ← GR[reg1]Note 1

CheckException (MAE)

CheckException (MDP)

data ← GR[reg3]

token ← LLbitNote 2

if (token == 1)

then Store-memory (adr, data, Word)

 GR[reg3] ← 1

else GR[reg3] ← 0

LLbit ← 0Note 2

Note 1. An MAE or MDP exception may occur depending on the results of the address

calculation.

Note 2. For the link operation, see the hardware manual of the product used.

[Format] Format VII

[Opcode]

15 0 31 16

00000111111RRRRR wwwww01101111010

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 195 of 512
December 20, 2023

[Description] This instruction can only be executed successfully if a link exists that corresponds to the

specified address. If a corresponding link exists, the word data of general-purpose register

reg3 is stored in the memory and an atomic read-modify-write is executed.

If the corresponding link has been lost, the data is not stored in the memory and execution

of this instruction fails.

Whether execution of the STC.W instruction has succeeded or not can be ascertained by

checking the contents of general-purpose register reg3 after the instruction has been

executed. If execution of the STC.W instruction was successful, general-purpose register

reg3 will be set (1). If execution failed, reg3 will be cleared (0).

This instruction can be used together with the LDL.W instruction to ensure accurate

updating of the memory in a multi-core system. The LDL.W instruction and the STC.W

instructions are intended always to be used in pair.

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic

guarantee is required when updating the memory in a multi-core system.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. If a link is generated with the LDL.W instruction and the STC.B or STC.H instruction is used instead of the STC.W

instruction, the result will be a failure and the link be lost.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 196 of 512
December 20, 2023

2.2.3.102 STM.MP
<Special instruction>

Store Multiple MPU entries to memory

STM.MP (Supported only when Architecture Identifier bit PID[31:24] = 07H (RH850G4MH2))
 Store MPU entries

[Instruction format] STM.MP eh-et, [reg1]

[Operation] if (PSW.UM==0)

then

 if (eh ≤ et)

 then

 cur ← eh

 end ← et

 tmp ← reg1

 while (cur ≤ end) {

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 Store-memory (adr, MPLA[cur], Word)

 tmp ← tmp + 4

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 Store-memory (adr, MPUA[cur], Word)

 tmp ← tmp + 4

 adr ← tmpNote 1, Note 2

 CheckException(MDP)

 Store-memory (adr, MPAT[cur], Word)

 tmp ← tmp + 4

 cur ← cur + 1

 }

 else

else

Note 1. The lower 2 bits of adr are masked by 0.

Note 2. An MDP exception may occur as a result of address calculation.

[Format] Format XI

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 197 of 512
December 20, 2023

[Opcode]

15 0 31 16

rrrrr111111RRRRR wwwww00101100100

rrrrr indicates eh.

wwwww indicates et.

RRRRR indicates reg1.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Descriptions] The word data of the MPU protection area setting system registers (MPLA, MPUA, and

MPAT) is stored to the address generated from the word data of the general-purpose

register reg1 according to the specified order. Word size is added to the address each time

the word data of the system register is stored. The contents of these system registers is

processed in ascending order, regardless of the value of MPIDX, from the entry number

indicated by eh to that indicated by et (eh, eh+1, eh+2, …, et). The bank specified by

MPBK is only to be processed.

Because it is an SV privilege instruction, a PIE exception will occur if it is executed when

PSW.UM is set (1).

[Supplement] This instruction stores the target MPU protection area setting directly to memory. This

instruction can perform the operation more effectively than by specifying the entry via

MPIDX, reading the value of system register into a general-purpose register by STSR

instructions, and storing it to memory by ST.W instructions.

The lower 2-bit address generated from the general-purpose register reg1 is masked by 0

and aligned on a word boundary. The general-purpose register reg1 retains the original

value after the instruction execution is complete.

This instruction is an SV privilege instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 198 of 512
December 20, 2023

CAUTION

When an exception or an interrupt occurs during instruction execution and even if the contents of all system
registers has not been stored to the memory, instruction execution can be aborted and exceptions or interrupts
can be accepted, as long as the acceptance condition is satisfied. When the execution is suspended, it is
impossible to know the contents of which system registers has been stored to the memory. After the return from
exception processing, the suspended STM. MP instruction can be precisely re-executed as long as resources
related to execution of the STM.MP instruction are not changed during exception processing, for the return PC
from an exception is considered to be the PC of STM.MP instruction. This instruction re-execution restarts the
STM.MP instruction processing from the start.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 199 of 512
December 20, 2023

2.2.3.103 STSR
<Store instruction>

Store contents of system register

STSR
Storage of contents of system register

[Instruction format] STSR regID, reg2, selID

STSR regID, reg2

[Operation] GR[reg2] ← SR[regID, selID]Note 1

Note 1. An exception might occur depending on the access permission. For details, see

the hardware manual of the product used.

[Format] Format IX

[Opcode]

15 0 31 16

rrrrr111111RRRRR sssss00001000000

rrrrr: reg2, sssss: selID, RRRRR: regID

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Stores the system register contents specified by the system register number and selection ID

(regID, selID) in general-purpose register reg2. The system register is not affected. If selID

is omitted, it is assumed that selID is 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 200 of 512
December 20, 2023

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending

on the combination of CPU operating mode and system register to be accessed. For details,

see the hardware manual of the product used.

CAUTION

The system register number or selection ID is a unique number used to identify each system register. How to access

undefined registers is described in the hardware manual of the product used, but accessing undefined registers is not

recommended.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 201 of 512
December 20, 2023

2.2.3.104 SUB
<Arithmetic instruction>

Subtract

SUB
Subtraction

[Instruction format] SUB reg1, reg2

[Operation] GR[reg2] ← GR[reg2] − GR[reg1]

[Format] Format I

[Opcode]

15 0

rrrrr001101RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 202 of 512
December 20, 2023

2.2.3.105 SUBR
<Arithmetic instruction>

Subtract reverse

SUBR
Reverse subtraction

[Instruction format] SUBR reg1, reg2

[Operation] GR[reg2] ← GR[reg1] − GR[reg2]

[Format] Format I

[Opcode]

15 0

rrrrr001100RRRRR

[Flags] CY “1” if a borrow occurs from MSB; otherwise, “0”.

 OV “1” if overflow occurs; otherwise, “0”.

 S “1” if the operation result is negative; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 203 of 512
December 20, 2023

2.2.3.106 SWITCH
<Special instruction>

Jump with table look up

SWITCH
Jump with table look up

[Instruction format] SWITCH reg1

[Operation] adr ← (PC + 2) + (GR[reg1] logically shift left by 1)Note 1

CheckException (MDP)

PC ← (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format I

[Opcode]

15 0

00000000010RRRRR

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 204 of 512
December 20, 2023

[Description] The following steps are taken.

 <1> Adds the start address (the one subsequent to the SWITCH instruction) to

general- purpose register reg1, logically left-shifted by 1, to generate a 32-bit

table entry address.

 <2> Loads the halfword entry data indicated by the address generated in step <1>.

 <3> Adds the table start address after sign-extending the loaded halfword data and

logically left-shifting it by 1 (the one subsequent to the SWITCH instruction) to

generate a 32-bit target address.

 <4> Jumps to the target address generated in step <3>.

CAUTIONS

1. Do not specify r0 for reg1.

2. In the SWITCH instruction memory read operation executed in order to read the table, memory protection is

performed.

3. When an exception occurs during memory access, the instruction execution is aborted after the end of the read

cycle. An interrupt might be accepted after the end of the read cycle.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 205 of 512
December 20, 2023

2.2.3.107 SXB
<Data manipulation instruction>

Sign extend byte

SXB
Sign-extension of byte data

[Instruction format] SXB reg1

[Operation] GR[reg1] ← sign-extend (GR[reg1] (7:0))

[Format] Format I

[Opcode]

15 0

00000000101RRRRR

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Sign-extends the lowest byte of general-purpose register reg1 to word length.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 206 of 512
December 20, 2023

2.2.3.108 SXH
<Data manipulation instruction>

Sign extend halfword

SXH
Sign-extension of halfword data

[Instruction format] SXH reg1

[Operation] GR[reg1] ← sign-extend (GR[reg1] (15:0))

[Format] Format I

[Opcode]

15 0

00000000111RRRRR

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Sign-extends the lower halfword of general-purpose register reg1 to word length.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 207 of 512
December 20, 2023

2.2.3.109 SYNCE
<Special instruction>

Synchronize exceptions

SYNCE
Exception synchronization instruction

[Instruction format] SYNCE

[Operation] No operation is performed.

[Format] Format I

[Opcode]

15 0

0000000000011101

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Performs no specific processing that involves synchronization processing. When the

execution of the SYNCE instruction is completed, the PC proceeds to the next instruction.

However, an interrupt can be acknowledged.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 208 of 512
December 20, 2023

2.2.3.110 SYNCI
<Special instruction>

Synchronize instruction fetch

SYNCI
Instruction fetch synchronization instruction

[Instruction format] SYNCI

[Operation] Performs instruction fetch synchronization processing.

[Format] Format I

[Opcode]

15 0

0000000000011100

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Discards unexecuted instructions in the CPU, and re-fetches the subsequent instructions.

Prior to the instruction execution, waits for the completion of the execution of the

preceding instruction that is being executed, and the completion of the cache operation and

load processing which are executed independently of the instruction execution. The SYNCI

instruction does not wait for the completion of store processing.

[Supplement] For details on synchronization processing, see the hardware manual of the product used.

To implement “Self-modifying code” which rewrites instructions in memory, it is also

necessary to disable the instruction cache.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 209 of 512
December 20, 2023

2.2.3.111 SYNCM
<Special instruction>

Synchronize memory

SYNCM
Memory synchronize instruction

[Instruction format] SYNCM

[Operation] Performs memory access synchronization processing.

[Format] Format I

[Opcode]

15 0

0000000000011110

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Prior to the instruction execution, waits for the completion of execution of all preceding

instructions that are being executed, and the completion of the store and load processing

which are executed independently of the instruction execution. The execution of the

SYNCM instruction makes the master devices in the system ready for referencing the

results of memory accesses that precede the SYNCM instruction within the scope of the

store processing for which the SYNCM instruction can wait. The SYNCM instruction does

not wait for the completion of cache operation.

[Supplement] For details on synchronization processing, see the hardware manual of the product used.

For the scope of store processing for which the SYNCM instruction can wait, see the

hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 210 of 512
December 20, 2023

2.2.3.112 SYNCP
<Special instruction>

Synchronize pipeline

SYNCP
Pipeline synchronize instruction

[Instruction format] SYNCP

[Operation] Performs pipeline synchronization processing.

[Format] Format I

[Opcode]

15 0

0000000000011111

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Prior to the instruction execution, waits for the completion of execution of all preceding

instructions that are being executed. The SYNCP instruction waits for the completion of

load processing that is executed independently of the instruction execution. This guarantees

that the load data is stored in a general-purpose register. The SYNCP instruction does not

wait for the completion of store processing and cache operation which are executed

independently of the instruction execution.

[Supplement] For details on synchronization processing, see the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 211 of 512
December 20, 2023

2.2.3.113 SYSCALL
<Special instruction>

System call

SYSCALL
System call exception

[Instruction format] SYSCALL vector8

[Operation] tmp ← PSW

PSW.UM ← 0

PSW.EP ← 1

PSW.ID ← 1

if (vector8 <= SCCFG.SIZE) is satisfied

 then adr ← SCBP + zero-extend (vector8 logically shift left by 2)Note 3

 else adr ← SCBPNote 3

CheckException (MDP)Note 2

EIPC ← PC + 4 (return PC)

EIPSW ← tmp

EIIC ←exception cause codeNote 1

PC ← SCBP + Load-memory (adr, Word)

Note 1. See the hardware manual of the product used.

Note 2. When an exception occurs, the PSW before execution stored in tmp is saved.

Note 3. An MDP exception might occur depending on the result of address calculation.

[Format] Format X

[Opcode]

15 0 31 16

11010111111vvvvv 00VVV00101100000

Where VVV is the higher 3 bits of vector8 and vvvvv is the lower 5 bits of vector8.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 212 of 512
December 20, 2023

[Description] Calls OSʼs system services.

 <1> Generates a 32-bit table entry address by adding the value of the SCBP register

and vector8 that is logically shifted 2 bits to the left and zero-extended to a word

length. If vector8 is greater than the value specified by the SIZE bit of system

register SCCFG; however, vector8 that is used for the generation of a 32-bit

table entry address is handled as 0.

 <2> Confirms whether an exception is detected for the address generated in step <1>.

 <3> Saves the contents of the return PC (address of the instruction next to the

SYSCALL instruction) and PSW to EIPC and EIPSW.

 <4> Stores the exception cause code corresponding to vector8 in the EIIC register.

The exception cause code is the value of vector8 plus 8000H.

 <5> Updates the PSW according to the exception causes listed in the hardware

manual of the product used.

 <6> Loads the word of the address generated in <1>.

 <7> Generates a 32-bit target address by adding the value of the SCBP register to the

data in <6>.

 <8> Branches to the target address generated in step <7>.

CAUTIONS

1. This instruction is dedicated to call OSʼs system services. For the procedure to use it in a user program, refer to the

functional specifications for your OS.

2. The memory reads for table lookup during the SYSCALL instruction are subject to memory protection with the

supervisor privilege.

3. When an exception occurs during memory access, the instruction execution is aborted after the end of the read

cycle. An interrupt might be accepted after the end of the read cycle.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 213 of 512
December 20, 2023

2.2.3.114 TRAP
<Special instruction>

Trap

TRAP
Software exception

[Instruction format] TRAP vector5

[Operation] EIPC ← PC + 4 (return PC)

EIPSW ← PSW

EIIC ← exception cause codeNote 1

PSW.UM ← 0

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler addressNote 1

Note 1. See the hardware manual of the product used.

[Format] Format X

[Opcode]

15 0 31 16

00000111111vvvvv 0000000100000000

vvvvv = vector5

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 214 of 512
December 20, 2023

[Description] Saves the contents of the return PC (address of the instruction next to the TRAP

instruction) and the current contents of the PSW to EIPC and EIPSW, respectively, stores

the exception cause code in the EIIC register, and updates the PSW according to the

exception causes listed in the hardware manual of the product used.

Execution then branches to the exception handler address and exception handling is started.

The following table shows the correspondence between vector5 and exception cause codes

and exception handler address offset. Exception handler addresses are calculated based on

the offset addresses listed in the following table. For details, see the hardware manual of the

product used.

vector5 Exception Cause Code Offset Address

00H 0000 0040H 40H

01H 0000 0041H

…

0FH 0000 004FH

10H 0000 0050H 50H

11H 0000 0051H

…

1FH 0000 005FH

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 215 of 512
December 20, 2023

2.2.3.115 TST
<Logical instruction>

Test

TST
Test

[Instruction format] TST reg1, reg2

[Operation] result ← GR[reg2] AND GR[reg1]

[Format] Format I

[Opcode]

15 0

rrrrr001011RRRRR

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, 0.

 SAT —

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1. The result is not stored with only the flags being changed. General-purpose

registers reg1 and reg2 are not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 216 of 512
December 20, 2023

2.2.3.116 TST1
<Bit manipulation instruction>

Test bit

TST1
Bit test

[Instruction format] (1) TST1 bit#3, disp16[reg1]

(2) TST1 reg2, [reg1]

[Operation] (1) adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

(2) adr ← GR[reg1]Note 1

CheckException (MDP)

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

 15 0 31 16

(1) 11bbb111110RRRRR dddddddddddddddd

 15 0 31 16

(2) rrrrr111111RRRRR 0000000011100110

[Flags] CY —

 OV —

 S —

 Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

 SAT —

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 217 of 512
December 20, 2023

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data,

sign- extended to word length, to generate a 32-bit address; checks the bit specified by

the 3-bit number at the byte data location referenced by the generated address. If the

specified bit is “0”, “1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is

cleared to “0”. The byte data, including the specified bit, is not affected.

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address;

checks the bit specified by the lower 3 bits of reg2 at the byte data location referenced

by the generated address. If the specified bit is “0”, “1” is set to the Z flag of PSW

and if the bit is “1”, the Z flag is cleared to “0”. The byte data, including the specified

bit, is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 218 of 512
December 20, 2023

2.2.3.117 XOR
<Logical instruction>

Exclusive OR

XOR
Exclusive OR

[Instruction format] XOR reg1, reg2

[Operation] GR[reg2] ← GR[reg2] XOR GR[reg1]

[Format] Format I

[Opcode]

15 0

rrrrr001001RRRRR

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] Exclusively ORs the word data of general-purpose register reg2 with the word data of

general-purpose register reg1 and stores the result in general-purpose register reg2.

General- purpose register reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 219 of 512
December 20, 2023

2.2.3.118 XORI
<Logical instruction>

Exclusive OR immediate (16-bit)

XORI
Exclusive OR immediate

[Instruction format] XORI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] XOR zero-extend (imm16)

[Format] Format VI

[Opcode]

15 0 31 16

rrrrr110101RRRRR iiiiiiiiiiiiiiii

[Flags] CY —

 OV 0

 S “1” if operation result word data MSB is “1”; otherwise, “0”.

 Z “1” if the operation result is “0”; otherwise, “0”.

 SAT —

[Description] Exclusively ORs the word data of general-purpose register reg1 with the 16-bit immediate

data, zero-extended to word length, and stores the result in general-purpose register reg2.

General-purpose register reg1 is not affected.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 220 of 512
December 20, 2023

2.2.3.119 ZXB
<Data manipulation instruction>

Zero extend byte

ZXB
Zero-extension of byte data

[Instruction format] ZXB reg1

[Operation] GR[reg1] ← zero-extend (GR[reg1] (7:0))

[Format] Format I

[Opcode]

15 0

00000000100RRRRR

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Zero-extends the lowest byte of general-purpose register reg1 to word length.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 221 of 512
December 20, 2023

2.2.3.120 ZXH
<Data manipulation instruction>

Zero extend halfword

ZXH
Zero-extension of halfword data

[Instruction format] ZXH reg1

[Operation] GR[reg1] ← zero-extend (GR[reg1] (15:0))

[Format] Format I

[Opcode]

15 0

00000000110RRRRR

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Zero-extends the lower halfword of general-purpose register reg1 to word length.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 222 of 512
December 20, 2023

2.3 Cache Instructions

2.3.1 Overview of Cache Instructions
This CPU provides the cache instructions to enable efficient manipulation of the cache by the CPU.

The following cache instructions (mnemonics) are available.

● CACHE: Cache

● PREF: Prefetch

2.3.2 Cache Instruction Set
This section details each instruction, dividing each mnemonic (in alphabetical order) into the following items.

● Instruction format: Indicates how the instruction is written and its operand(s).

● Operation: Indicates the function of the instruction.

● Format: Indicates the instruction format.

● Opcode: Indicates the bit field of the instruction opcode.

● Description: Describes the operation of the instruction.

● Supplement: Provides supplementary information on the instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 223 of 512
December 20, 2023

2.3.2.1 CACHE
<Cache instruction>

Cache

CACHE
Cache operation

[Instruction format] CACHE cacheop, [reg1]

[Operation] Manipulates the cache specified by cacheop.

[Format] Format X

[Opcode]

15 0 31 16

111pp111111RRRRR PPPPP00101100000

ppPPPPP indicates cacheop.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Sets the word data of general-purpose register reg1 as a 32-bit address or the cache index

and manipulates the cache specified by cacheop. For details about the cache index

specification method, see the hardware manual of the product used.

[Supplement] Each cache operation has its own instruction execution privilege. For details about the

correspondence between cache operations and instruction execution privileges, see the

hardware manual of the product used.

When manipulating the cache by specifying the address, it might become the target of

memory protection by the MPU. For details about the relationship between cache

manipulation and memory protection, see the hardware manual of the product used.

Table 2.7 shows the cache operation of each CACHE instruction and the corresponding

cacheop. If a cacheop which is not defined in the table is specified, no operation is

performed, and also no memory protection is performed like a NOP instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 224 of 512
December 20, 2023

Table 2.7 Cache Operation

cacheop Target Processing
Cache
Specification Operation

0000000 Instruction CHBII Address (Cache Hit Block Invalidate, Instruction cache)

If the specified address hits an address in the instruction cache, the
corresponding cache line is disabled.

The lock is released if the cache line is locked.

If the specified address does not hit an address in the instruction cache,
no processing is performed.

0100000 Instruction CIBII Index (Cache Indexed Block Invalidate, Instruction cache)

Disables the instruction cache line of the specified index.

The lock is released if the cache line is locked.

This instruction can be used in cases such as when the entire cache is
initialized by software.

1000000 Instruction CFALI Address (Cache Fetch And Lock, Instruction cache)

Loads the data from the specified address and stores it in the instruction
cache. At this time, the corresponding cache line is locked.

If the data at the specified address is already stored in the instruction
cache, this instruction only locks the cache line. If the data at the
specified address is already stored in the instruction cache and the
corresponding cache line is locked, no processing is performed.

1100000 Instruction CISTI Index (Cache Indexed Store, Instruction cache)

Writes (stores) data from a system register to the instruction cache of
the specified index.

For details, see the hardware manual of the product used.

1100001 Instruction CILDI Index (Cache Indexed Load, Instruction cache)

Reads (loads) data from the instruction cache line of the specified index
to a system register.

For details, see the hardware manual of the product used.

1111110 — CLL — (Clear Load Link)

When this cacheop is specified, the instruction is not a CACHE
instruction, but it is the CLL instruction. The privilege check and memory
protection for the CACHE instruction are not performed in this case.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 225 of 512
December 20, 2023

2.3.2.2 PREF
<Cache instruction>

Prefetch

PREF
Prefetch

[Instruction format] PREF prefop, [reg1]

[Operation] Executes the prefetch operation specified by prefop.

[Format] Format X

[Opcode]

15 0 31 16

11011111111RRRRR PPPPP00101100000

PPPPP indicates prefop.

[Flags] CY —

 OV —

 S —

 Z —

 SAT —

[Description] Executes the prefetch operation specified by prefop on the word data of general-purpose

register reg1 used as a 32-bit address.

[Supplement] Even if the MPU detects a memory protection violation during the prefetch operation, no

MDP exception occurs. In such a case, the prefetch operation is canceled and no operation

is performed like a NOP instruction.

If the cache is disabled, the instruction performs the prefetch operation specified by prefop.

Table 2.8 shows the prefetch operation of the PREF instruction and the corresponding

prefop. If a prefop which is not defined in the table is specified, no operation is performed

like a NOP instruction.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 226 of 512
December 20, 2023

CAUTION

Be aware that even after the prefetch instruction has finished executing, a prefetch operation might not necessarily have

been performed.

Table 2.8 Prefetch Operation

prefop Target Processing
Cache
Specification Operation

00000 Instruction PREFI Address (Prefetch Instruction cache)

Stores the data at the specified address in the instruction cache. If the
data at the specified address is already stored in the instruction cache,
no processing is performed.

CAUTIONS

1. The size of data that is prefetched by a single prefetch operation is the cache line size of the instruction cache. For

details, see the hardware manual of the product used.

2. If the data at the specified address is already stored in the instruction cache, only the LRU information of the cache

line is updated.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 227 of 512
December 20, 2023

2.4 Floating-Point Instructions

2.4.1 Instruction Formats
All floating-point instructions are in 32-bit format. When an instruction is actually saved to memory, it is placed as

shown below.

● Lower part of instruction format (including bit 0) → Lower address side

● Higher part of instruction format (including bit 15 or bit 31) → Upper address side

(1) Format F: I

The 32-bit long floating-point instruction format includes a 6-bit opcode field, 4-bit sub- opcode field, three fields that

specify general-purpose registers, a 3-bit category field, and a 2- bit type field.

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

sub-opcode

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 228 of 512
December 20, 2023

2.4.2 Overview of Floating-Point Instructions
Floating-point instructions are divided into single-precision instructions (single) and double-precision instructions

(double), and include the following instructions (mnemonics).

(1) Basic Operation Instructions
● ABSF.D: Floating-point Absolute Value (Double)

● ABSF.S: Floating-point Absolute Value (Single)

● ADDF.D: Floating-point Add (Double)

● ADDF.S: Floating-point Add (Single)

● DIVF.D: Floating-point Divide (Double)

● DIVF.S: Floating-point Divide (Single)

● MAXF.D: Floating-point Maximum (Double)

● MAXF.S: Floating-point Maximum (Single)

● MINF.D: Floating-point Minimum (Double)

● MINF.S: Floating-point Minimum (Single)

● MULF.D: Floating-point Multiply (Double)

● MULF.S: Floating-point Multiply (Single)

● NEGF.D: Floating-point Negate (Double)

● NEGF.S: Floating-point Negate (Single)

● RECIPF.D: Reciprocal of a floating-point value (Double)

● RECIPF.S: Reciprocal of a floating-point value (Single)

● RSQRTF.D: Reciprocal of the square root of a floating-point value (Double)

● RSQRTF.S: Reciprocal of the square root of a floating-point value (Single)

● SQRTF.D: Floating-point Square Root (Double)

● SQRTF.S: Floating-point Square Root (Single)

● SUBF.D: Floating-point Subtract (Double)

● SUBF.S: Floating-point Subtract (Single)

(2) Extended Basic Operation Instructions
● FMAF.S: Floating-point Fused-Multiply-Add (Single)

● FMSF.S: Floating-point Fused-Multiply-Subtract (Single)

● FNMAF.S: Floating-point Fused-Negate-Multiply-Add (Single)

● FNMSF.S: Floating-point Fused-Negate-Multiply-Subtract (Single)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 229 of 512
December 20, 2023

(3) Conversion Instructions
● CEILF.DL: Floating-point Convert Double to Long, round toward positive (Double)

● CEILF.DW: Floating-point Convert Double to Word, round toward positive (Double)

● CEILF.DUL: Floating-point Convert Double to Unsigned-Long, round toward positive (Double)

● CEILF.DUW: Floating-point Convert Double to Unsigned-Word, round toward positive (Double)

● CEILF.SL: Floating-point Convert Single to Long, round toward positive (Single)

● CEILF.SW: Floating-point Convert Single to Word, round toward positive (Single)

● CEILF.SUL: Floating-point Convert Single to Unsigned-Long, round toward positive (Single)

● CEILF.SUW: Floating-point Convert Single to Unsigned-Word, round toward positive (Single)

● CVTF.DL: Floating-point Convert Double to Long (Double)

● CVTF.DS: Floating-point Convert Double to Single (Double)

● CVTF.DUL: Floating-point Convert Double to Unsigned-Long (Double)

● CVTF.DUW: Floating-point Convert Double to Unsigned-Word (Double)

● CVTF.DW: Floating-point Convert Double to Word (Double)

● CVTF.LD: Floating-point Convert Long to Double (Double)

● CVTF.LS: Floating-point Convert Long to Single (Single)

● CVTF.SD: Floating-point Convert Single to Double (Double)

● CVTF.SL: Floating-point Convert Single to Long (Single)

● CVTF.SUL: Floating-point Convert Single to Unsigned-Long (Single)

● CVTF.SUW: Floating-point Convert Single to Unsigned-Word (Single)

● CVTF.SW: Floating-point Convert Single to Word (Single)

● CVTF.ULD: Floating-point Convert Unsigned-Long to Double (Double)

● CVTF.ULS: Floating-point Convert Unsigned-Long to Single (Single)

● CVTF.UWD: Floating-point Convert Unsigned-Word to Double (Double)

● CVTF.UWS: Floating-point Convert Unsigned-Word to Single (Single)

● CVTF.WD: Floating-point Convert Word to Double (Double)

● CVTF.WS: Floating-point Convert Word to Single (Single)

● FLOORF.DL: Floating-point Convert Double to Long, round toward negative (Double)

● FLOORF.DW: Floating-point Convert Double to Word, round toward negative (Double)

● FLOORF.DUL: Floating-point Convert Double to Unsigned-Long, round toward negative (Double)

● FLOORF.DUW: Floating-point Convert Double to Unsigned-Word, round toward negative (Double)

● FLOORF.SL: Floating-point Convert Single to Long, round toward negative (Single)

● FLOORF.SW: Floating-point Convert Single to Word, round toward negative (Single)

● FLOORF.SUL: Floating-point Convert Single to Unsigned-Long, round toward negative (Single)

● FLOORF.SUW: Floating-point Convert Single to Unsigned-Word, round toward negative (Single)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 230 of 512
December 20, 2023

● ROUNDF.DL: Floating-point Convert Double to Long, round to nearest (Double)

● ROUNDF.DW: Floating-point Convert Double to Word, round to nearest (Double)

● ROUNDF.DUL: Floating-point Convert Double to Unsigned-Long, round to nearest (Double)

● ROUNDF.DUW: Floating-point Convert Double to Unsigned-Word, round to nearest (Double)

● ROUNDF.SL: Floating-point Convert Single to Long, round to nearest (Single)

● ROUNDF.SW: Floating-point Convert Single to Word, round to nearest (Single)

● ROUNDF.SUL: Floating-point Convert Single to Unsigned-Long, round to nearest (Single)

● ROUNDF.SUW: Floating-point Convert Single to Unsigned-Word, round to nearest (Single)

● TRNCF.DL: Floating-point Convert Double to Long, round toward zero (Double)

● TRNCF.DUL: Floating-point Convert Double to Unsigned-Long, round toward zero (Double)

● TRNCF.DUW: Floating-point Convert Double to Unsigned-Word, round toward zero (Double)

● TRNCF.DW: Floating-point Convert Double to Word, round toward zero (Double)

● TRNCF.SL: Floating-point Convert Single to Long, round toward zero (Single)

● TRNCF.SUL: Floating-point Convert Single to Unsigned-Long, round toward zero (Single)

● TRNCF.SUW: Floating-point Convert Single to Unsigned-Word, round toward zero (Single)

● TRNCF.SW: Floating-point Convert Single to Word, round toward zero (Single)

● CVTF.HS: Floating-point Convert Half to Single (Single)

● CVTF.SH: Floating-point Convert Single to Half (Single)

(4) Comparison Instructions
● CMPF.S: Compare floating-point values (Single)

● CMPF.D: Compare floating-point values (Double)

(5) Conditional Move Instructions
● CMOVF.S: Floating-point conditional move (Single)

● CMOVF.D: Floating-point conditional move (Double)

(6) Condition Bit Transfer Instruction
● TRFSR: Transfers specified CC bit to Zero flag in PSW (Single)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 231 of 512
December 20, 2023

2.4.3 Conditions for Comparison Instructions
Floating-point comparison instructions (CMPF.D and CMPF.S) perform two floating-point data compare operations.

The result is determined based on the comparison condition contained in the data and code. Table 2.9 lists the

mnemonics for conditions that can be specified by comparison instructions.

The comparison instruction result is transferred by the TRFSR instruction to the Z flag of PSW (program status word),

and when performing a conditional branch, the condition logic is inverted and then can be used. Table 2.10 shows

logic inversion based on the true/false status of conditions. In a 4-bit condition code for a floating-point comparison

instruction, the condition is specified in the “True” column of the table. The conditional branch instruction BT performs

a branch when the comparison result is true, while BF performs a branch when the result is false.

Table 2.9 List of Conditions for Comparison Instructions

Mnemonic Definition Inverted Logic

F Always false (T) Always true

UN Unordered (OR) Ordered

EQ Equal (NEQ) Not equal

UEQ Unordered or equal (OLG) Ordered and less than or greater than

OLT Ordered and less than (UGE) Unordered or greater than or equal to

ULT Unordered or less than (OGE) Ordered and greater than or equal to

OLE Ordered and less than or equal to (UGT) Unordered or greater than

ULE Unordered or less than or equal to (OGT) Ordered and greater than

SF Signaling and false (ST) Signaling and true

NGLE Not greater than, not less than, and not equal to (GLE) Greater than, less than, or equal to

SEQ Signaling and equal to (SNE) Signaling and not equal to

NGL Not greater than and not less than (GL) Greater than or less than

LT Less than (NLT) Not less than

NGE Not greater than and not equal to (GE) Greater than or equal to

LE Less than or equal to (NLE) Not less than and not equal to

NGT Not greater than (GT) Greater than

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 232 of 512
December 20, 2023

Table 2.10 Definitions of Condition Code Bits and Their Logical Inversions

Mnemonic
(True)

Condition Code fcond

Bit Definition of Condition Code fcond(3:0)

Inverted Logic
(False)

Less than Equal to Unordered

Invalid operation
exception occurs
when unordered

Decimal Binary fcond(2) fcond(1) fcond(0) fcond(3)

F 0 0b0000 F F F No (T)

UN 1 0b0001 F F T No (OR)

EQ 2 0b0010 F T F No (NEQ)

UEQ 3 0b0011 F T T No (OLG)

OLT 4 0b0100 T F F No (UGE)

ULT 5 0b0101 T F T No (OGE)

OLE 6 0b0110 T T F No (UGT)

ULE 7 0b0111 T T T No (OGT)

SF 8 0b1000 F F F Yes (ST)

NGLE 9 0b1001 F F T Yes (GLE)

SEQ 10 0b1010 F T F Yes (SNE)

NGL 11 0b1011 F T T Yes (GL)

LT 12 0b1100 T F F Yes (NLT)

NGE 13 0b1101 T F T Yes (GE)

LE 14 0b1110 T T F Yes (NLE)

NGT 15 0b1111 T T T Yes (GT)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 233 of 512
December 20, 2023

2.4.4 Floating-Point Instruction Set
This section describes the following items in each instruction (based on alphabetical order of instruction mnemonics).

● Instruction format: Indicates how the instruction is written and its operand(s) (symbols are listed in Table 2.11).

● Operation: Indicates the function of the instruction. (symbols are listed in Table 2.12).

● Format: Indicates the instruction format (see Section 2.4.1, Instruction Formats).

● Opcode: Indicates the instruction opcode in bit fields (symbols are listed in Table 2.13).

● Description: Describes the operation of the instruction.

● Supplement: Provides supplementary information on the instruction.

Table 2.11 Instruction Format

Symbol Explanation

reg1 General-purpose register

reg2 General-purpose register

reg3 General-purpose register

reg4 General-purpose register

fcbit Specifies the bit number of the condition bit that stores the result of a floating- point comparison instruction.

imm   bit immediate data

fcond Specifies the mnemonic or condition code of the comparison condition of a comparison instruction (for details, see
Section 2.4.3, Conditions for Comparison Instructions).

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 234 of 512
December 20, 2023

Table 2.12 Operations

Symbol Explanation

← Assignment (input for)

GR [a] Value stored in general-purpose register a

SR [a, b] Value stored in system register (RegID = a, SelID = b)

result Result is reflected in flag

== Comparison (true upon a match)

+ Add

− Subtract

 Bit concatenation װ

 Multiply

÷ Divide

abs Absolute value

ceil Rounding in +∞ direction

compare Comparison

cvt Converts type according to rounding mode

floor Rounding in –∞ direction

max Maximum value

min Minimum value

neg Sign inversion

round Rounding to closest value

sqrt Square root

trunc Rounding in zero direction

fma (a, b, c) Result of multiplying a and b and then adding c

fms (a, b, c) Result of multiplying a and b and then subtracting c

Table 2.13 Opcodes

Symbol Explanation

R Single bit data of code specifying reg1

r Single bit data of code specifying reg2

w Single bit data of code specifying reg3

W Single bit data of code specifying reg4

I Single bit data of immediate data (indicates higher bit of immediate data)

i Single bit data of immediate data

fff 3-bit data that specifies the bit number (fcbit) of the condition bit that stores the result of a floating-point comparison
instruction

FFFF 4-bit data corresponding to the mnemonic or condition code (fcond) of the comparison condition of a comparison
instruction

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 235 of 512
December 20, 2023

2.4.4.1 ABSF.D
<Floating-point instruction>

Floating-point Absolute Value (Double)

ABSF.D
Floating-point absolute value (double precision)

[Instruction format] ABSF.D reg2, reg3

[Operation] reg3 ← abs (reg2)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction takes the absolute value from the double-precision floating-point format

contents of the register pair specified by general-purpose register reg2, and stores it in the

register pair specified by general-purpose register reg3.

[Floating-point operation

exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 236 of 512
December 20, 2023

2.4.4.2 ABSF.S
<Floating-point instruction>

Floating-point Absolute Value (Single)

ABSF.S
Floating-point absolute value (single precision)

[Instruction format] ABSF.S reg2, reg3

[Operation] reg3 ← abs (reg2)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction takes the absolute value from the single-precision floating-point format

contents of general-purpose register reg2, and stores it in general-purpose register reg3.

[Floating-point operation

exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 237 of 512
December 20, 2023

2.4.4.3 ADDF.D
<Floating-point instruction>

Floating-point Add (Double)

ADDF.D
Floating-point add (double precision)

[Instruction format] ADDF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 + reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction adds the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1 with the double-precision floating-point format

contents of the register pair specified by general-purpose register reg2, and stores the result

in the register pair specified by general-purpose register reg3. The operation is executed as

if it were of infinite accuracy, and the result is rounded in accordance with the current

rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 238 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 239 of 512
December 20, 2023

2.4.4.4 ADDF.S
<Floating-point instruction>

Floating-point Add (Single)

ADDF.S
Floating-point add (single precision)

[Instruction format] ADDF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 + reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction adds the single-precision floating-point format contents of general-purpose

register reg1 with the single-precision floating-point format contents of general-purpose

register reg2, and stores the result in general-purpose register reg3. The operation is

executed as if it were of infinite accuracy, and the result is rounded in accordance with the

current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 240 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 241 of 512
December 20, 2023

2.4.4.5 CEILF.DL
<Floating-point instruction>

Floating-point Convert Double to Long, round toward positive (Double)

CEILF.DL
Conversion to fixed-point format (double precision)

[Instruction format] CEILF.DL reg2, reg3

[Operation] reg3 ← ceil reg2 (double → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2 to 64-bit fixed-point format,

and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside

the range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 242 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 243 of 512
December 20, 2023

2.4.4.6 CEILF.DUL
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Long, round toward positive (Double)

CEILF.DUL
Conversion to unsigned fixed-point format (double precision)

[Instruction format] CEILF.DUL reg2, reg3

[Operation] reg3 ← ceil reg2 (double → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the

rounded result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 244 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 245 of 512
December 20, 2023

2.4.4.7 CEILF.DUW
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Word, round toward positive (Double)

CEILF.DUW
Conversion to unsigned fixed-point format (double precision)

[Instruction format] CEILF.DUW reg2, reg3

[Operation] reg3 ← ceil reg2 (double → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

The result is rounded in the +direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 246 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2 (A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 247 of 512
December 20, 2023

2.4.4.8 CEILF.DW
<Floating-point instruction>

Floating-point Convert Double to Word, round toward positive (Double)

CEILF.DW
Conversion to fixed-point format (double precision)

[Instruction format] CEILF.DW reg2, reg3

[Operation] reg3 ← ceil reg2 (double → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or -: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 248 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 249 of 512
December 20, 2023

2.4.4.9 CEILF.SL
<Floating-point instruction>

Floating-point Convert Single to Long, round toward positive (Single)

CEILF.SL
Conversion to fixed-point format (single precision)

[Instruction format] CEILF.SL reg2, reg3

[Operation] reg3 ← ceil reg2 (single → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the +direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 250 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] -Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 251 of 512
December 20, 2023

2.4.4.10 CEILF.SUL
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Long, round toward positive (Single)

CEILF.SUL
Conversion to unsigned fixed-point format (single precision)

[Instruction format] CEILF.SUL reg2, reg3

[Operation] reg3 ← ceil reg2 (single → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores

the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 252 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 253 of 512
December 20, 2023

2.4.4.11 CEILF.SUW
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Word, round toward positive (Single)

CEILF.SUW
Conversion to unsigned fixed-point format (single precision)

[Instruction format] CEILF.SUW reg2, reg3

[Operation] reg3 ← ceil reg2 (single → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

specified by general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores

the result in general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 254 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 255 of 512
December 20, 2023

2.4.4.12 CEILF.SW
<Floating-point instruction>

Floating-point Convert Single to Word, round toward positive (Single)

CEILF.SW
Conversion to fixed-point format (single precision)

[Instruction format] CEILF.SW reg2, reg3

[Operation] reg3 ← ceil reg2 (single → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-

purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 256 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 257 of 512
December 20, 2023

2.4.4.13 CMOVF.D
<Floating-point instruction>

Floating-point Conditional Move (Double)

CMOVF.D
Conditional move (double precision)

[Instruction format] CMOVF.D fcbit, reg1, reg2, reg3

[Operation] if (FPSR.CCn == 1) then

 reg3 ← reg1

else

 reg3 ← reg2

endif

Remark: n = fcbit

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 0 0 1 f f f 0

reg2 reg1 reg3*1 category type sub-op

Remark: fcbit: fff

Note 1. reg3: wwww != 0

wwww ≠ 0000 (do not set reg3 to r0)

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1),

data from the register pair specified by reg1 is stored in the register pair specified by reg3.

When these bits are false (0), data from the register pair specified by reg2 is stored in the

register pair specified by reg3.

[Floating-point operation

exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

CAUTION

Do not set reg3 to r0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 258 of 512
December 20, 2023

2.4.4.14 CMOVF.S
<Floating-point condition instruction>

Floating-point Conditional Move (Single)

CMOVF.S
Conditional move (single precision)

[Instruction format] CMOVF.S fcbit, reg1, reg2, reg3

[Operation] if (FPSR.CCn == 1) then

 reg3 ← reg1

else

 reg3 ← reg2

endif

Remark: n = fcbit

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 0 0 0 f f f 0

reg2 reg1 reg3* 1 category type sub-op

Remark: fcbit: fff

Note 1. reg3: wwwww != 0

wwwww ≠ 00000 (do not set reg3 to r0)

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1),

data from reg1 is stored in reg3. When these bits are false (0), the reg2 data is stored in

reg3.

[Floating-point operation

exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

CAUTION

Do not set reg3 to r0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 259 of 512
December 20, 2023

2.4.4.15 CMPF.D
<Floating-point instruction>

Compare floating-point values(Double)

CMPF.D
Floating-point comparison (double precision)

[Instruction format] CMPF.D fcond, reg2, reg1, fcbit

CMPF.D fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

 result.less ← 0

 result.equal ← 0

 result.unordered ← 1

 if fcond[3] == 1 then

 Invalid operation exception is detected.

 endif

else

 result.less ← reg2 < reg1

 result.equal ← reg2 == reg1

 result.unordered ← 0

endif

FPSR.CCn ← (fcond[2] & result.less) | (fcond[1] & result.equal) |

 (fcond[0] & result.unordered)

Remark: n = fcbit

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 0 F F F F 1 0 0 0 0 1 1 f f f 0

reg2 reg1 category type sub-op

Remark: fcond: FFFF
fcbit: fff

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 260 of 512
December 20, 2023

[Description] This instruction compares the double-precision floating-point format contents of the

register pair specified by general-purpose register reg2 with the double-precision floating-

point format contents of the register pair specified by general-purpose register reg1, based

on the condition “fcond”, and sets the result (1 if true, 0 if false) to the condition bits (the

CC(7:0) bits: bits 31 to 24) in the FPSR register specified by fcbit in the opcode. If fcbit is

omitted, the result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 2.14, Comparison
Conditions. If one of the values is not-a-number, and the MSB of the comparison

condition “fcond” has been set, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are enabled, the comparison result is not set and

processing is passed to the exception.

If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the

FPSR register is set, then the comparison result is set to the CC(7:0) bits of the FPSR

register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point

instruction (including a comparison), it is regarded as an invalid operation condition. When

using only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid

operation, it is simpler to use a program in which any NaN results in an error. In other

words, there is no need to insert code that checks for Q-NaN that would result in an

unordered result. Instead, the exception handling system should perform error processing

when an exception occurs after detecting an invalid operation. The following shows a

comparison that checks for a relationship of two numerical values and triggers an error

when an unordered result is detected.

Table 2.14 Comparison Conditions

Comparison
Conditions

Definition Description

Detection of Invalid
Operation
Exception by
Unordered fcond

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ?= reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ?< reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than No

OLE 6 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ?≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ?= reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ?< reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ?≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

Note: ?: Unordered (invalid comparison)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 261 of 512
December 20, 2023

 # When explicitly testing Q-NaN

 CMPF.D OLT,r12,r14,0 # Check if r12 < r14

 CMPF.D UN,r12,r14,1 # Check if Unordered

 TRFSR 0

 BT L2 # If true, go to L2

 TRFSR 1

 BT ERROR # If true, go to error processing

 # Enter code for processing when neither Unordered nor r12 < r14

L2:

Enter code for processing when r12 < r14

 :

When using a comparison to detect Q-NaN

 CMPF.D LT,r12,r14,0 # Check if r12 < r14

 TRFSR 0

 BT L2 # If true, go to L2

 # Enter code for processing when not r12 < r14

L2:

Enter code for processing when r12 < r14

 :

[Floating-point operation

exceptions]

Invalid operation exception (V)

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 262 of 512
December 20, 2023

[Operation result] [Condition code (fcond) = 0 to 7]

reg1(B)

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under

the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN Unorderd

S-NaN Unorderd[V]

[Condition code (fcond) = 8 to 15]

reg1(B)

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under

the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)
 ±0

±∞

Q-NaN
Unorderd[V]

S-NaN

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 263 of 512
December 20, 2023

2.4.4.16 CMPF.S
<Floating-point instruction>

Compare floating-point values (Single)

CMPF.S
Floating-point comparison (single precision)

[Instruction format] CMPF.S fcond, reg2, reg1, fcbit

CMPF.S fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

 result.less ← 0

 result.equal ← 0

 result.unordered ← 1

 if fcond[3] == 1 then

 Invalid operation exception is detected.

 endif

else

 result.less ← reg2 < reg1

 result.equal ← reg2 == reg1

 result.unordered ← 0

endif

FPSR.CCn ← (fcond[2] & result.less) | (fcond[1] & result.equal) |

 (fcond[0] & result.unordered)

Remark: n: fcbit

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R 0 F F F F 1 0 0 0 0 1 0 f f f 0

reg2 reg1 category type sub-op

Remark: fcond: FFFF
fcbit: fff

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 264 of 512
December 20, 2023

[Description] This instruction compares the single-precision floating-point format contents of general-

purpose register reg2 with the single-precision floating-point format contents of general-

purpose register reg1, based on the comparison condition “fcond”, then sets the result (1 if

true, 0 if false) to the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register

specified by fcbit in the opcode. If fcbit is omitted, the result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 2.15, Comparison
Conditions. If one of the values is not-a-number, and the MSB of the comparison

condition “fcond” has been set, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are enabled, the comparison result is not set and

processing is passed to the exception.

If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the

FPSR register is set, then the comparison result is set to the CC(7:0) bits of the FPSR

register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point

instruction (including a comparison), it is regarded as an invalid operation condition. When

using only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid

operation, it is simpler to use a program in which any NaN results in an error. In other

words, there is no need to insert code that explicitly checks for Q-NaN that would result in

an unordered result. Instead, the exception handling system should perform error

processing when an exception occurs after detecting an invalid operation. The following

shows a comparison that checks for a relationship of two numerical values and triggers an

error when an unordered result is detected.

Table 2.15 Comparison Conditions

Comparison
Conditions

Definition Description

Detection of
Invalid Operation
Exception by
Unordered fcond

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ?= reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ?< reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than No

OLE 6 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ?≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ?= reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ?< reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ?≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

Note: ?: Unordered (invalid comparison)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 265 of 512
December 20, 2023

 # When explicitly testing Q-NaN

 CMPF.S OLT,r12,r14,0 # Check if r12 < r14

 CMPF.S UN,r12,r14,1 # Check if Unordered

 TRFSR 0

 BT L2 # If true, go to L2

 TRFSR 1

 BT ERROR # If true, go to error processing

 # Enter code for processing when neither Unordered nor r12 < r14

L2:

Enter code for processing when r12 < r14

 :

When using a comparison to detect Q-NaN

 CMPF.S LT,r12,r14,0 # Check if r12 < r14

 TRFSR 0

 BT L2 # If true, go to L2

 # Enter code for processing when not r12 < r14

L2:

Enter code for processing when r12 < r14

 :

[Floating-point operation

exceptions]

Invalid operation exception (V)

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 266 of 512
December 20, 2023

[Operation result] [Condition code (fcond) = 0 to 7]

reg1(B)

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under

the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN Unorderd

S-NaN Unorderd[V]

[Condition code (fcond) = 8 to 15]

reg1(B)

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stores result of comparison (true or false) executed under

the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)
 ±0

±∞

Q-NaN
Unorderd[V]

S-NaN

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 267 of 512
December 20, 2023

2.4.4.17 CVTF.DL
<Floating-point instruction>

Floating-point Convert Double to Long (Double)

CVTF.DL
Conversion to fixed-point format (double precision)

[Instruction format] CVTF.DL reg2, reg3

[Operation] reg3 ← cvt reg2 (double → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 64-bit fixed-point format, in

accordance with the current rounding mode, and stores the result in the register pair specified

by general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or -∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 268 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] –Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 269 of 512
December 20, 2023

2.4.4.18 CVTF.DS
<Floating-point instruction>

Floating-point Convert Double to Single(Double)

CVTF.DS
Conversion to floating-point format (double precision)

[Instruction format] CVTF.DS reg2, reg3

[Operation] reg3 ← cvt reg2 (double → single)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2 to single-precision floating-

point format, and stores the result in general-purpose register reg3. The result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Single) +0 −0 +∞ −∞ Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 270 of 512
December 20, 2023

2.4.4.19 CVTF.DUL
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Long (Double)

CVTF.DUL
Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.DUL reg2, reg3

[Operation] reg3 ← cvt reg2 (double → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, in accordance with the current rounding mode, and stores the result in the register pair

specified by general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 271 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 272 of 512
December 20, 2023

2.4.4.20 CVTF.DUW
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Word (Double)

CVTF.DUW
Conversion to unsigned fixed-point format (double precision)

[Instruction format] CVTF.DUW reg2, reg3

[Operation] reg3 ← cvt reg2(double → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 273 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 274 of 512
December 20, 2023

2.4.4.21 CVTF.DW
<Floating-point instruction>

Floating-point Convert Double to Word (Double)

CVTF.DW
Conversion to fixed-point format (double precision)

[Instruction format] CVTF.DW reg2, reg3

[Operation] reg3 ← cvt reg2 (double → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 275 of 512
December 20, 2023

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 276 of 512
December 20, 2023

2.4.4.22 CVTF.HS
<Floating-point instruction>

Floating-point Convert Half to Single (Single)

CVTF.HS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.HS reg2, reg3

[Operation] reg3 ← cvt reg2 (half → single)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the half-precision floating-point format contents in

the lower 16 bits of general-purpose register reg2 to single-precision floating-point format,

rounding the result in accordance with the current rounding mode, and stores the result in

general-purpose register reg3.

[Floating-point operation

exceptions]

Invalid operation exception (V)

[Supplement] With the exception of not-a-number values, all half-precision floating-point format values

can be accurately converted into single-precision floating-point format values. A subnormal

input will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Single) +0 −0 +∞ −∞ Q-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 277 of 512
December 20, 2023

2.4.4.23 CVTF.LD
<Floating-point instruction>

Floating-point Convert Long to Double (Double)

CVTF.LD
Conversion to floating-point format (double precision)

[Instruction format] CVTF.LD reg2, reg3

[Operation] reg3 ← cvt reg2 (long-word → double)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to double-precision floating-point

format in accordance with the current rounding mode, and stores the result in the register

pair specified by general-purpose register reg3.

[Floating-point operation

exceptions]

Inexact exception (I)

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 278 of 512
December 20, 2023

2.4.4.24 CVTF.LS
<Floating-point instruction>

Floating-point Convert Long to Single (Single)

CVTF.LS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.LS reg2, reg3

[Operation] reg3 ← cvt reg2 (long-word → single)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to single-precision floating-point

format, and stores the result in general-purpose register reg3. The result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Inexact exception (I)

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 279 of 512
December 20, 2023

2.4.4.25 CVTF.SD
<Floating-point instruction>

Floating-point Convert Single to Double (Double)

CVTF.SD
Conversion to floating-point format (double precision)

[Instruction format] CVTF.SD reg2, reg3

[Operation] reg3 ← cvt reg2 (single → double)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of general-purpose register reg2 to double-precision floating-point format, in accordance

with the current rounding mode, and stores the result in the register pair specified by

general- purpose register reg3.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Double) +0 −0 +∞ −∞ Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 280 of 512
December 20, 2023

2.4.4.26 CVTF.SL
<Floating-point instruction>

Floating-point Convert Single to Long (Single)

CVTF.SL
Conversion to fixed-point format (single precision)

[Instruction format] CVTF.SL reg2, reg3

[Operation] reg3 ← cvt reg2 (single → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, in accordance with the current

rounding mode, and stores the result in the register pair specified by general-purpose register

reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 281 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 282 of 512
December 20, 2023

2.4.4.27 CVTF.SH
<Floating-point instruction>

Floating-point Convert Single to Half (Single)

CVTF.SH
Conversion to half-precision floating-point format (single precision)

[Instruction format] CVTF.SH reg2, reg3

[Operation] reg3 ← zero-extend (cvt reg2 (single → half))

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

in general-purpose register reg2 to half-precision floating-point format, rounding the result

in accordance with the current rounding mode. The result is zero-extended to word length

and stored in general-purpose register reg3.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Half) +0 −0 +∞ −∞ Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 283 of 512
December 20, 2023

2.4.4.28 CVTF.SUL
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Long (Single)

CVTF.SUL
Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.SUL reg2, reg3

[Operation] reg3 ← cvt reg2 (single → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, in accordance with the

current rounding mode, and stores the result in the register pair specified by general-purpose

register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 284 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 285 of 512
December 20, 2023

2.4.4.29 CVTF.SUW
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Word (Single)

CVTF.SUW
Conversion to unsigned fixed-point format (single precision)

[Instruction format] CVTF.SUW reg2, reg3

[Operation] reg3 ← cvt reg2 (single → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result

in general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the

rounded result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 286 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 287 of 512
December 20, 2023

2.4.4.30 CVTF.SW
<Floating-point instruction>

Floating-point Convert Single to Word (Single)

CVTF.SW
Conversion to fixed-point format (single precision)

[Instruction format] CVTF.SW reg2, reg3

[Operation] reg3 ← cvt reg2 (single → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-

purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 288 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 289 of 512
December 20, 2023

2.4.4.31 CVTF.ULD
<Floating-point instruction>

Floating-point Convert Unsigned-Long to Double (Double)

CVTF.ULD
Conversion to floating-point format (double precision)

[Instruction format] CVTF.ULD reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned long-word → double)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of

the register pair specified by general-purpose register reg2 to double-precision floating-

point format in accordance with the current rounding mode, and stores the result in the

register pair specified by general-purpose register reg3.

[Floating-point operation

exceptions]

Inexact exception (I)

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 290 of 512
December 20, 2023

2.4.4.32 CVTF.ULS
<Floating-point instruction>

Floating-point Convert Unsigned-Long to Single (Single)

CVTF.ULS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.ULS reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned long-word → single)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of

the register pair specified by general-purpose register reg2 to single-precision floating-point

format, and stores the result in general-purpose register reg3. The result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Inexact exception (I)

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 291 of 512
December 20, 2023

2.4.4.33 CVTF.UWD
<Floating-point instruction>

Floating-point Convert Unsigned-Word to Double (Double)

CVTF.UWD
Conversion to floating-point format (double precision)

[Instruction format] CVTF.UWD reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned word → double)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of

general-purpose register reg2 to double-precision floating-point format, in accordance with

the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation

exceptions]

None

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 292 of 512
December 20, 2023

2.4.4.34 CVTF.UWS
<Floating-point instruction>

Floating-point Convert Unsigned-Word to Single (Single)

CVTF.UWS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.UWS reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned word → single)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of

general-purpose register reg2 to single-precision floating-point format, and stores the result

in general-purpose register reg3. The result is rounded in accordance with the current

rounding mode.

[Floating-point operation

exceptions]

Inexact exception (I)

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 293 of 512
December 20, 2023

2.4.4.35 CVTF.WD
<Floating-point instruction>

Floating-point Convert Word to Double (Double)

CVTF.WD
Conversion to floating-point format (double precision)

[Instruction format] CVTF.WD reg2, reg3

[Operation] reg3 ← cvt reg2 (word → double)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-

purpose register reg2 to double-precision floating-point format, in accordance with the

current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point operation

exceptions]

None

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 294 of 512
December 20, 2023

2.4.4.36 CVTF.WS
<Floating-point instruction>

Floating-point Convert Word to Single (single)

CVTF.WS
Conversion to floating-point format (single precision)

[Instruction format] CVTF.WS reg2, reg3

[Operation] reg3 ← cvt reg2 (word → single)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-

purpose register reg2 to single-precision floating-point format, and stores the result in

general-purpose register reg3. The result is rounded in accordance with the current

rounding mode.

[Floating-point operation

exceptions]

Inexact exception (I)

[Operation result]

reg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 295 of 512
December 20, 2023

2.4.4.37 DIVF.D
<Floating-point instruction>

Floating-point Divide (Double)

DIVF.D
Floating-point division (double precision)

[Instruction format] DIVF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 ÷ reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 1 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction divides double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 by the double-precision floating-point format

contents of the register pair specified by general-purpose register reg1, and stores the result

in the register pair specified by general-purpose register reg3. The operation is executed as

if it were of infinite accuracy, and the result is rounded in accordance with the current

rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 296 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal
B ÷ A

+∞ −∞

−Normal −∞ +∞

+0
±∞[Z] Q-NaN[V]

+∞ −∞

−0 −∞ +∞

+∞ +0 −0 +0 −0
Q-NaN[V]

−∞ −0 +0 −0 +0

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 297 of 512
December 20, 2023

2.4.4.38 DIVF.S
<Floating-point instruction>

Floating-point Divide (Single)

DIVF.S
Floating-point division (single precision)

[Instruction format] DIVF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 ÷ reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 1 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction divides the single-precision floating-point format contents of general-

purpose register reg2 by the single-precision floating-point format contents of general-

purpose register reg1, and stores the result in general-purpose register reg3. The operation

is executed as if it were of infinite accuracy, and the result is rounded in accordance with

the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 298 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal
B÷A

+∞ −∞

−Normal −∞ +∞

+0
±∞[Z] Q-NaN[V]

+∞ −∞

−0 −∞ +∞

+∞ +0 −0 +0 −0
Q-NaN[V]

−∞ −0 +0 −0 +0

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 299 of 512
December 20, 2023

2.4.4.39 FLOORF.DL
<Floating-point instruction>

Floating-point Convert Double to Long, round toward negative (Double)

FLOORF.DL
Conversion to fixed-point format (double precision)

[Instruction format] FLOORF.DL reg2, reg3

[Operation] reg3 ← floor reg2 (double → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the –direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or -∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 300 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 301 of 512
December 20, 2023

2.4.4.40 FLOORF.DUL
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Long, round toward negative (Double)

FLOORF.DUL
Conversion to unsigned fixed-point format (double precision)

[Instruction format] FLOORF.DUL reg2, reg3

[Operation] reg3 ← floor reg2 (double → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the –direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 302 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 303 of 512
December 20, 2023

2.4.4.41 FLOORF.DUW
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Word, round toward negative (Double)

FLOORF.DUW
Conversion to unsigned fixed-point format (double precision)

[Instruction format] FLOORF.DUW reg2, reg3

[Operation] reg3 ← floor reg2 (double → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

The result is rounded in the –direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 304 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 305 of 512
December 20, 2023

2.4.4.42 FLOORF.DW
<Floating-point instruction>

Floating-point Convert Double to Word, round toward negative (Double)

FLOORF.DW
Conversion to fixed-point format (double precision)

[Instruction format] FLOORF.DW reg2, reg3

[Operation] reg3 ← floor reg2 (double → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the –∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 306 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 307 of 512
December 20, 2023

2.4.4.43 FLOORF.SL
<Floating-point instruction>

Floating-point Convert Single to Long, round toward negative (Single)

FLOORF.SL
Conversion to fixed-point format (single precision)

[Instruction format] FLOORF.SL reg2, reg3

[Operation] reg3 ← floor reg2 (single → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the –direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 308 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 309 of 512
December 20, 2023

2.4.4.44 FLOORF.SUL
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Long, round toward negative (Single)

FLOORF.SUL
Conversion to unsigned fixed-point format (single precision)

[Instruction format] FLOORF.SUL reg2, reg3

[Operation] reg3 ← floor reg2 (single → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in

the register pair specified by general-purpose register reg3.

The result is rounded in the –direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 310 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 311 of 512
December 20, 2023

2.4.4.45 FLOORF.SUW
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Word, round toward negative (Single)

FLOORF.SUW
Conversion to unsigned fixed-point format (single precision)

[Instruction format] FLOORF.SUW reg2, reg3

[Operation] reg3 ← floor reg2 (single → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the –direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 312 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 313 of 512
December 20, 2023

2.4.4.46 FLOORF.SW
<Floating-point instruction>

Floating-point Convert Single to Word, round toward negative (Single)

FLOORF.SW
Conversion to fixed-point format (single precision)

[Instruction format] FLOORF.SW reg2, reg3

[Operation] reg3 ← floor reg2 (single → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-

purpose register reg3.

The result is rounded in the –direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 314 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 315 of 512
December 20, 2023

2.4.4.47 FMAF.S
<Floating-point instruction>

Floating-point Fused-Multiply-add (Single)

FMAF.S
Floating-point fused-multiply-add operation (single precision)

[Instruction format] FMAF.S reg1, reg2, reg3

[Operation] reg3 ← fma (reg2, reg1, reg3)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 0 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, adds the single-precision floating-point format contents in general-

purpose register reg3, and stores the result in general-purpose register reg3. The operation

is executed as if it were of infinite accuracy. The result of the multiply operation is not

rounded, but the result of the add operation is rounded, in accordance with the current

rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 316 of 512
December 20, 2023

[Operation result]

reg3(C)

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

fma (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

±0 +Normal

fma (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

+∞ +Normal

+∞

+∞ Q-NaN[V]

−Normal Q-NaN[V] +∞

±0 Q-NaN[V]

+∞ +∞ Q-NaN[V]
Q-NaN[V]

+∞ Q-NaN[V]

−∞ Q-NaN[V] +∞ Q-NaN[V] +∞

−∞ +Normal

−∞

Q-NaN[V] −∞

−Normal −∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] −∞
Q-NaN[V]

Q-NaN[V] −∞

−∞ −∞ Q-NaN[V] −∞ Q-NaN[V]

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized numbers shown in the hardware

manual of the product used.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the ADDF and MULF instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 317 of 512
December 20, 2023

2.4.4.48 FMSF.S
<Floating-point instruction>

Floating-point Fused-Multiply-subtract (Single)

FMSF.S
Floating-point fused-multiply-subtract operation (single precision)

[Instruction format] FMSF.S reg1, reg2, reg3

[Operation] reg3 ← fms (reg2, reg1, reg3)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 0 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, subtracts the single-precision floating-point format contents in

general- purpose register reg3, and stores the result in general-purpose register reg3. The

operation is executed as if it were of infinite accuracy. The result of the multiply operation

is not rounded, but the result of the subtract operation is rounded, in accordance with the

current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 318 of 512
December 20, 2023

[Operation result]

reg3(C)

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

fms (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

±0 +Normal

fms (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

+∞ +Normal

−∞

Q-NaN[V] −∞

−Normal −∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] −∞
Q-NaN[V]

Q-NaN[V] −∞

−∞ −∞ Q-NaN[V] −∞ Q-NaN[V]

−∞ +Normal

+∞

+∞ Q-NaN[V]

−Normal Q-NaN[V] +∞

±0 Q-NaN[V]

+∞ +∞ Q-NaN[V]
Q-NaN[V]

+∞ Q-NaN[V]

−∞ Q-NaN[V] +∞ Q-NaN[V] +∞

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized numbers shown in the hardware

manual of the product used.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the SUBF and MULF instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 319 of 512
December 20, 2023

2.4.4.49 FNMAF.S
<Floating-point instruction>

Floating-point Fused-Negate-Multiply-add (Single)

FNMAF.S
Floating-point fused-multiply-add operation (single precision)

[Instruction format] FNMAF.S reg1, reg2, reg3

[Operation] reg3 ← neg (fma (reg2, reg1, reg3))

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 1 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, adds the single-precision floating-point format contents in general-

purpose register reg3, inverts the sign, and stores the result in general-purpose register reg3.

The operation is executed as if it were of infinite accuracy. The result of the multiply

operation is not rounded, but the result of the add operation is rounded, in accordance with

the current rounding mode. The signs are reversed after rounding.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 320 of 512
December 20, 2023

[Operation result]

reg3(C)

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

–fma (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

±0 +Normal

–fma (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

+∞ +Normal

−∞

−∞ Q-NaN[V]

−Normal Q-NaN[V] −∞

±0 Q-NaN[V]

+∞ −∞ Q-NaN[V]
Q-NaN[V]

−∞ Q-NaN[V]

−∞ Q-NaN[V] −∞ Q-NaN[V] −∞

−∞ +Normal

+∞

Q-NaN[V] +∞

−Normal +∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] +∞
Q-NaN[V]

Q-NaN[V] +∞

−∞ +∞ Q-NaN[V] +∞ Q-NaN[V]

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized numbers shown in the hardware

manual of the product used.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the ADDF, MULF, and NEGF instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 321 of 512
December 20, 2023

2.4.4.50 FNMSF.S
<Floating-point instruction>

Floating-point Fused-Negate-Multiply-subtract (Single)

FNMSF.S
Floating-point fused-multiply-subtract operation (single precision)

[Instruction format] FNMSF.S reg1, reg2, reg3

[Operation] reg3 ← neg (fms (reg2, reg1, reg3))

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 1 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, subtracts the single-precision floating-point format contents in

general- purpose register reg3, inverts the sign, and stores the result in general-purpose

register reg3. The operation is executed as if it were of infinite accuracy. The result of the

multiply operation is not rounded, but the result of the subtract operation is rounded, in

accordance with the current rounding mode. The signs are reversed after rounding.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 322 of 512
December 20, 2023

[Operation result]

reg3(C)

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

–fms (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

±0 +Normal

–fms (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

+∞ +Normal

+∞

Q-NaN[V] +∞

−Normal +∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] +∞
Q-NaN[V]

Q-NaN[V] +∞

−∞ +∞ Q-NaN[V] +∞ Q-NaN[V]

−∞ +Normal

−∞

−∞ Q-NaN[V]

−Normal Q-NaN[V] −∞

±0 Q-NaN[V]

+∞ −∞ Q-NaN[V]
Q-NaN[V]

−∞ Q-NaN[V]

−∞ Q-NaN[V] −∞ Q-NaN[V] −∞

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized numbers shown in the hardware

manual of the product used.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the SUBF, MULF, and NEGF instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 323 of 512
December 20, 2023

2.4.4.51 MAXF.D
<Floating-point instruction>

Floating-point Maximum (Double)

MAXF.D
Floating-point maximum value (double precision)

[Instruction format] MAXF.D reg1, reg2, reg3

[Operation] reg3 ← max (reg2, reg1)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the maximum value from the double-precision floating-point

format data in the register pair specified by general-purpose registers reg1 and reg2, and

stores it in the register pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point operation

exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or –0, it is undefined whether +0 or –0 is stored in

reg3.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 324 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

MAX (B, A) reg1(A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2(B) Q-NaN

S-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 325 of 512
December 20, 2023

2.4.4.52 MAXF.S
<Floating-point instruction>

Floating-point Maximum (Single)

MAXF.S
Floating-point maximum value (single precision)

[Instruction format] MAXF.S reg1, reg2, reg3

[Operation] reg3 ← max (reg2, reg1)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the maximum value from the single-precision floating-point format

data in general-purpose registers reg1 and reg2, and stores it in general-purpose register

reg3. If one of the source operands is S-NaN, an IEEE754-defined invalid operation

exception is detected. If invalid operation exceptions are not enabled, Q-NaN is stored and

no exception occurs.

[Floating-point operation

exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or –0, it is undefined whether +0 or –0 is stored in

reg3.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 326 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

MAX (B, A) reg1(A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2(A) Q-NaN

S-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 327 of 512
December 20, 2023

2.4.4.53 MINF.D
<Floating-point instruction>

Floating-point Minimum (Double)

MINF.D
Floating-point minimum value (double precision)

[Instruction format] MINF.D reg1, reg2, reg3

[Operation] reg3 ← min (reg2, reg1)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the minimum value from the double-precision floating-point

format data in the register pair specified by general-purpose registers reg1 and reg2, and

stores it in the register pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point operation

exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or −0, whether +0 or −0 is stored in reg3 is undefined.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 328 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

MIN (B, A) reg1(A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2(B) Q-NaN

S-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 329 of 512
December 20, 2023

2.4.4.54 MINF.S
<Floating-point instruction>

Floating-point Minimum (Single)

MINF.S
Floating-point minimum value (single precision)

[Instruction format] MINF.S reg1, reg2, reg3

[Operation] reg3 ← min (reg2, reg1)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction extracts the minimum value from the single-precision floating-point format

data in general-purpose registers reg1 and reg2, and stores it in general-purpose register

reg3. If one of the source operands is S-NaN, an IEEE754-defined invalid operation

exception is detected. If invalid operation exceptions are not enabled, Q-NaN is stored and

no exception occurs.

[Floating-point operation

exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or –0, whether +0 or –0 is stored in reg3 is undefined.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 330 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

MIN (B, A) reg1(A)

−Normal

+0

−0

+∞

−∞

Q-NaN reg2(B) Q-NaN

S-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 331 of 512
December 20, 2023

2.4.4.55 MULF.D
<Floating-point instruction>

Floating-point Multiply (Double)

MULF.D
Floating-point multiplication (double precision)

[Instruction format] MULF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 × reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 1 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the double-precision floating-point format contents in the

register pair specified by general-purpose register reg2 by the double-precision floating-

point format contents in the register pair specified by general-purpose register reg1 and

stores the results in the register pair specified by general-purpose register reg3.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 332 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B × A

+∞ −∞

−Normal −∞ +∞

+0
Q-NaN[V]

−0

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 333 of 512
December 20, 2023

2.4.4.56 MULF.S
<Floating-point instruction>

Floating-point Multiply (Single)

MULF.S
Floating-point multiplication (single precision)

[Instruction format] MULF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 × reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 1 0 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction multiplies the single-precision floating-point format contents of general-

purpose register reg2 by the single-precision floating-point format contents of general-

purpose register reg1, and stores the result in general-purpose register reg3.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 334 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B × A

+∞ −∞

−Normal −∞ +∞

+0
Q-NaN[V]

−0

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 335 of 512
December 20, 2023

2.4.4.57 NEGF.D
<Floating-point instruction>

Floating-point Negate (Double)

NEGF.D
Floating-point sign inversion (double precision)

[Instruction format] NEGF.D reg2, reg3

[Operation] reg3 ← neg reg2

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction inverts the sign of double-precision floating-point format contents of the

register pair specified by general-purpose register reg2, and stores the results in the register

pair specified by the general- purpose register reg3.

[Floating-point operation

exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 336 of 512
December 20, 2023

2.4.4.58 NEGF.S
<Floating-point instruction>

Floating-point Negate (Single)

NEGF.S
Floating-point sign inversion (single precision)

[Instruction format] NEGF.S reg2, reg3

[Operation] reg3 ← neg reg2

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction inverts the sign of the single-precision floating-point format contents of

general-purpose register reg2, and stores the result in general-purpose register reg3.

[Floating-point operation

exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 337 of 512
December 20, 2023

2.4.4.59 RECIPF.D
<Floating-point instruction>

Reciprocal of a Floating-point Value (Double)

RECIPF.D
Reciprocal (double precision)

[Instruction format] RECIPF.D reg2, reg3

[Operation] reg3 ← 1 ÷ reg2

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

reg2 reg3 category type sub-op

[Description] This instruction approximates the reciprocal of the double-precision floating-point format

contents of the register pair specified by general-purpose register reg2, and stores the result

in the register pair specified by general-purpose register reg3. The result differs from the

result obtained by using the DIVF instruction.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 338 of 512
December 20, 2023

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
1/A[I] +∞[Z] −∞[Z] +0 −0 Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

CAUTION

The results obtained fall within the 1ULP error range against the results of computing 1/x.

ULP: Unit in the Least-significant Place

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 339 of 512
December 20, 2023

2.4.4.60 RECIPF.S
<Floating-point instruction>

Reciprocal of a Floating-point Value (Single)

RECIPF.S
Reciprocal (single precision)

[Instruction format] RECIPF.S reg2, reg3

[Operation] reg3 ← 1 ÷ reg2

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 1 1 0

reg2 reg3 category type sub-op

[Description] This instruction approximates the reciprocal of the single-precision floating-point format

contents of general-purpose register reg2, and stores the result in general-purpose register

reg3. The result differs from the result obtained by using the DIVF instruction.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Underflow exception (U)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
1/A[I] +∞[Z] −∞[Z] +0 −0 Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

CAUTION

The results obtained fall within the 1ULP error range against the results of computing 1/x.

ULP: Unit in the Least-significant Place

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 340 of 512
December 20, 2023

2.4.4.61 ROUNDF.DL
<Floating-point instruction>

Floating-point Convert Double to Long, round to nearest (Double)

ROUNDF.DL
Convert to integer format (double-precision)

[Instruction format] ROUNDF.DL reg2, reg3

[Operation] reg3 ← round reg2 (double → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2 to 64-bit integer format and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number or not-a-number or if the rounded result is

outside the range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 341 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 342 of 512
December 20, 2023

2.4.4.62 ROUNDF.DUL
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Long, round to nearest (Double)

ROUNDF.DUL
Convert to unsigned integer format (double-precision)

[Instruction format] ROUNDF.DUL reg2, reg3

[Operation] reg3 ← round reg2 (double → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2 to unsigned 64-bit integer

format and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number, not-a-number, or negative number, or if the

rounded result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0 or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 343 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 344 of 512
December 20, 2023

2.4.4.63 ROUNDF.DUW
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Word, round to nearest (Double)

ROUNDF.DUW
Convert to unsigned integer format (double-precision)

[Instruction format] ROUNDF.DUW reg2, reg3

[Operation] reg3 ← round reg2 (double → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2 to unsigned 32-bit integer

format and stores the result in the general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number, not-a-number, or negative number, or if the

rounded result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0 or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 345 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 346 of 512
December 20, 2023

2.4.4.64 ROUNDF.DW
<Floating-point instruction>

Floating-point Convert Double to Word, round to nearest (Double)

ROUNDF.DW
Convert to integer format (double-precision)

[Instruction format] ROUNDF.DW reg2, reg3

[Operation] reg3 ← round reg2 (double → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents

of the register pair specified by general-purpose register reg2 to 32-bit integer format and

stores the result in the general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number or not-a-number or if the rounded result is

outside the range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 347 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 348 of 512
December 20, 2023

2.4.4.65 ROUNDF.SL
<Floating-point instruction>

Floating-point Convert Single to Long, round to nearest (Single)

ROUNDF.SL
Convert to integer format (single precision)

[Instruction format] ROUNDF.SL reg2, reg3

[Operation] reg3 ← round reg2 (single → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of the general-purpose register reg2 to 64-bit integer format and stores the result in the

general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number or not-a-number or if the rounded result is

outside the range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 349 of 512
December 20, 2023

 [Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 350 of 512
December 20, 2023

2.4.4.66 ROUNDF.SUL
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Long, round to nearest (Single)

ROUNDF.SUL
Convert to unsigned integer format (single precision)

[Instruction format] ROUNDF.SUL reg2, reg3

[Operation] reg3 ← round reg2 (single → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of the general-purpose register reg2 to unsigned 64-bit integer format and stores the result

in the register pair specified by general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number, not-a-number, or negative number, or if the

rounded result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation

exception is detected. If invalid operation exceptions are not enabled, the preservation bit

(bit 4) of the FPSR register is set as an invalid operation and no exception occurs. The

return value differs as follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0 or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 351 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 352 of 512
December 20, 2023

2.4.4.67 ROUNDF.SUW
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Word, round to nearest (Single)

ROUNDF.SUW
Convert to unsigned integer format (single precision)

[Instruction format] ROUNDF.SUW reg2, reg3

[Operation] reg3 ← round reg2 (single → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of the general-purpose register reg2 to unsigned 32-bit integer format and stores the result

in the general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number, not-a-number, or negative number, or if the

rounded result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation

exception is detected. If invalid operation exceptions are not enabled, the preservation bit

(bit 4) of the FPSR register is set as an invalid operation and no exception occurs. The

return value differs as follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0 or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 353 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 354 of 512
December 20, 2023

2.4.4.68 ROUNDF.SW
<Floating-point instruction>

Floating-point Convert Single to Word, round to nearest (Single)

ROUNDF.SW
Convert to integer format (single precision)

[Instruction format] ROUNDF.SW reg2, reg3

[Operation] reg3 ← round reg2 (single → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of the general-purpose register reg2 to 32-bit integer format and stores the result in the

general-purpose register reg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

If the source operand is an infinite number or not-a-number or if the rounded result is

outside the range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the

FPSR register is set as an invalid operation and no exception occurs. The return value

differs as follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 355 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 356 of 512
December 20, 2023

2.4.4.69 RSQRTF.D
<Floating-point instruction>

Reciprocal of the Square Root of a Floating-point Value (Double)

RSQRTF.D
Reciprocal of square root (double precision)

[Instruction format] RSQRTF.D reg2, reg3

[Operation] reg3 ← 1 ÷ (sqrt reg2)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-

point format contents of the register pair specified by general-purpose register reg2, then

approximates the reciprocal of this result and stores the result in the register pair specified

by general-purpose register reg3.

The result differs from the result obtained when using a combination of the SQRTF and

DIVF instructions.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 357 of 512
December 20, 2023

 [Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
1/√A[I] Q-NaN[V] +∞[Z] −∞[Z] +0 Q-NaN[V] Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

CAUTION

The results obtained fall within the 2ULP error range against the results of computing 1/√x.

ULP: Unit in the Least-significant Place

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 358 of 512
December 20, 2023

2.4.4.70 RSQRTF.S
<Floating-point instruction>

Reciprocal of the Square Root of a Floating-point Value (Single)

RSQRTF.S
Reciprocal of square root (single precision)

[Instruction format] RSQRTF.S reg2, reg3

[Operation] reg3 ← 1 ÷ (sqrt reg2)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-

point format contents of general-purpose register reg2, then approximates the reciprocal of

this result and stores it in general-purpose register reg3. The result differs from the result

obtained when using a combination of the SQRTF and DIVF instructions.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
1/√A[I] Q-NaN[V] +∞[Z] −∞[Z] +0 Q-NaN[V] Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

CAUTION

The results obtained fall within the 2ULP error range against the results of computing 1/√x.

ULP: Unit in the Least-significant Place

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 359 of 512
December 20, 2023

2.4.4.71 SQRTF.D
<Floating-point instruction>

Floating-point Square Root (Double)

SQRTF.D
Square root (double precision)

[Instruction format] SQRTF.D reg2, reg3

[Operation] reg3 ← sqrt reg2

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-

point format contents of the register pair specified by general-purpose register reg2, and

stores the result in the register pair specified by general-purpose register reg3. The

operation is executed as if it were of infinite accuracy, and the result is rounded in

accordance with the current rounding mode. When the source operand value is –0, the

result becomes –0.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
√A Q-NaN[V] +0 −0 +∞ Q-NaN[V] Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 360 of 512
December 20, 2023

2.4.4.72 SQRTF.S
<Floating-point instruction>

Floating-point Square Root (Single)

SQRTF.S
Square root (single precision)

[Instruction format] SQRTF.S reg2, reg3

[Operation] reg3 ← sqrt reg2

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

reg2 reg3 category type sub-op

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-

point format contents of general-purpose register reg2, and stores it in general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is

rounded in accordance with the current rounding mode. When the source operand value is

–0, the result becomes –0.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
√A Q-NaN[V] +0 −0 +∞ Q-NaN[V] Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 361 of 512
December 20, 2023

2.4.4.73 SUBF.D
<Floating-point instruction>

Floating-point Subtract (Double)

SUBF.D
Floating-point subtraction (double precision)

[Instruction format] SUBF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 − reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction subtracts the double-precision floating-point format contents of the register

pair specified by general-purpose register reg1 from the double-precision floating-point

format contents of the register pair specified by general-purpose register reg2, and stores

the result in the register pair specified by general-purpose register reg3. The operation is

executed as if it were of infinite accuracy, and the result is rounded in accordance with the

current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 362 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B – A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 363 of 512
December 20, 2023

2.4.4.74 SUBF.S
<Floating-point instruction>

Floating-point Subtract (Single)

SUBF.S
Floating-point subtraction (single precision)

[Instruction format] SUBF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 − reg1

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 1 0

reg2 reg1 reg3 category type sub-op

[Description] This instruction subtracts the single-precision floating-point format contents of general-

purpose register reg1 from the single-precision floating-point format contents of general-

purpose register reg2, and stores the result in general-purpose register reg3. The operation

is executed as if it were of infinite accuracy, and the result is rounded in accordance with

the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 364 of 512
December 20, 2023

[Operation result]

reg2(B)

reg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B – A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 365 of 512
December 20, 2023

2.4.4.75 TRFSR
<Floating-point instruction>

Transfers specified CC bit to Zero flag in PSW (Single)

TRFSR
Flag transfer

[Instruction format] TRFSR fcbit

TRFSR

[Operation] PSW.Z ← fcbit

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 f f f 0

 category type sub-op

Remark: fcbit: fff

[Description] This instruction transfers the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR

register specified by fcbit to the Z flag in the PSW. If fcbit is omitted, this instruction

transfers the CC0 bit (bit 24).

[Floating-point operation

exceptions]

None

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 366 of 512
December 20, 2023

2.4.4.76 TRNCF.DL
<Floating-point instruction>

Floating-point Convert Double to Long, round toward zero (Double)

TRNCF.DL
Conversion to fixed-point format (double precision)

[Instruction format] TRNCF.DL reg2, reg3

[Operation] reg3 ← trunc reg2 (double → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 367 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 368 of 512
December 20, 2023

2.4.4.77 TRNCF.DUL
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Long, round toward zero (Double)

TRNCF.DUL
Conversion to unsigned fixed-point format (double precision)

[Instruction format] TRNCF.DUL reg2, reg3

[Operation] reg3 ← trunc reg2 (double → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 369 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 370 of 512
December 20, 2023

2.4.4.78 TRNCF.DUW
<Floating-point instruction>

Floating-point Convert Double to Unsigned-Word, round toward zero (Double)

TRNCF.DUW
Conversion to unsigned fixed-point format (double precision)

[Instruction format] TRNCF.DUW reg2, reg3

[Operation] reg3 ← trunc reg2 (double → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 371 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 372 of 512
December 20, 2023

2.4.4.79 TRNCF.DW
<Floating-point instruction>

Floating-point Convert Double to Word, round toward zero (Double)

TRNCF.DW
Conversion to fixed-point format (double precision)

[Instruction format] TRNCF.DW reg2, reg3

[Operation] reg3 ← trunc reg2 (double → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 373 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 374 of 512
December 20, 2023

2.4.4.80 TRNCF.SL
<Floating-point instruction>

Floating-point Convert Single to Long, round toward zero (Single)

TRNCF.SL
Conversion to fixed-point format (single precision)

[Instruction format] TRNCF.SL reg2, reg3

[Operation] reg3 ← trunc reg2 (single → long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents

of general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the

register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to – 263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 263 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –263 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 375 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 376 of 512
December 20, 2023

2.4.4.81 TRNCF.SUL
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Long, round toward zero (Single)

TRNCF.SUL
Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUL reg2, reg3

[Operation] reg3 ← trunc reg2 (single → unsigned long-word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in

the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative value, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 377 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 378 of 512
December 20, 2023

2.4.4.82 TRNCF.SUW
<Floating-point instruction>

Floating-point Convert Single to Unsigned-Word, round toward zero (Single)

TRNCF.SUW
Conversion to unsigned fixed-point format (single precision)

[Instruction format] TRNCF.SUW reg2, reg3

[Operation] reg3 ← trunc reg2 (single → unsigned word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point number format

contents of general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 379 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 380 of 512
December 20, 2023

2.4.4.83 TRNCF.SW
<Floating-point instruction>

Floating-point Convert Single to Word, round toward zero (Single)

TRNCF.SW
Conversion to fixed-point format (single precision)

[Instruction format] TRNCF.SW reg2, reg3

[Operation] reg3 ← trunc reg2 (single → word)

[Format] Format F: I

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

[Description] This instruction arithmetically converts the single-precision floating-point number format

contents of general-purpose register reg2 to 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 381 of 512
December 20, 2023

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

reg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 382 of 512
December 20, 2023

2.5 Extended Floating-point Instructions
Extended floating-point instructions comprise the following two groups of instructions:

● Extended floating-point vector arithmetic instructions

A group of instructions that perform arithmetic operations on vector data.

● Extended floating-point vector manipulation instructions

A group of instructions that load, store, and move vector data.

2.5.1 Instruction Format
Extended floating-point instructions are represented in both 32- and 48-bit formats. They are allocated in memory as

follows:

● Lower-order part of the instruction in both formats (including bit 0) → On the lower-order side of the address

● Higher-order part of the instruction in both formats (including bits 15, 31 or 47) → On the higher-order side of the

address

(1) Format M: 2OP

A 32-bit instruction format that has a 6-bit opcode field and 2 vector register specification fields and that combines the

other bits in the sub-opcode field.

15 5 011 10

sub-opcodeopcode wreg3

4 31 16

wreg2

27 26

sub-opcode

(2) Format M: 3OP

A 32-bit instruction format that has a 6-bit opcode field and 3 vector register specification fields and that combines the

other bits in the sub-opcode field.

15 5 011 10

wreg1opcode wreg3

4 31 16

wreg2

27 26

sub-opcode

(3) Format M: 4OP

A 48-bit instruction format that has a 6-bit opcode field and 4 vector register specification fields and that combines the

other bits in the sub-opcode field.

15 5 011 10

wreg1opcode wreg3

31 164 27 26

47 32

sub-opcode sub-opcode

wreg2 wreg4sub-opcode

43 363742

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 383 of 512
December 20, 2023

(4) Format M: imm12

A 48-bit instruction format that has a 6-bit opcode field, 3 vector register specification fields, and a 12-bit immediate

field and that combines the other bits in the sub-opcode field.

The highest-order bit of the immediate field is allocated to the sub-opcode field.

15 5 011 10

wreg1opcode wreg3

31 164 27 26

47 32

sub-opcode sub-opcode

wreg2 Imm12 (Low)

43 42

(5) Format M: D

A 48-bit instruction format that has a 6-bit opcode field, 2 general-purpose register specification fields, a vector register

specification field, and a 16-bit displacement field and that combines the other bits in the sub-opcode field.

15 5 011 10

reg1opcode wreg3

31 164 27 26

47 32

reg2 sub-opcode

disp16

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 384 of 512
December 20, 2023

2.5.2 Extended Floating-point Instruction Set
This section describes the following items in each instruction (based on alphabetical order of instruction mnemonics).

● Instruction format: Indicates the formats of the instruction and its operand(s) (see Table 2.16 for symbols).

● Operation: Indicates the function of the instruction (see Table 2.17 for symbols).

● Format: Indicates the instruction format of the instruction by instruction format name (see

Section 2.5.1, Instruction Format).

● Opcode: Indicates the bit fields of the instruction opcode (see Table 2.18 for symbols).

● Description: Describes the operation of the instruction.

● Supplement: Provides supplementary information on the instruction.

Table 2.16 Instruction Format Legends

Symbol Meaning

reg n General-purpose register

imm  -bit immediate data

disp  -bit displacement data

wreg1 Vector register (used as source register)

wreg2 Vector register (used as source register)

wreg3 Vector register (primarily used as the destination register; also as the source register in some instructions.)

wreg4 Vector register (Used as the destination register.)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 385 of 512
December 20, 2023

Table 2.17 Operation Legends

Symbol Meaning

← Assignment

GR [a] Value stored in general-purpose register a

WR [a] Value stored in vector register a

CheckException (a) Checks the conditions for generating the exception a and, if one is detected, suspends the
instruction execution and performs exception processing.

result Reflect result in flags

zero-extend (n) Zero-extends n to word

sign-extend (n) Sign-extends n to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

abs (n) Absolute value of n

ceil (n) Rounds n toward +∞

cvt (n) Converts type of n according to rounding mode

floor (n) Rounds n toward −∞

max (a, b) Maximum value of a and b

min (a, b) Minimum value of a and b

neg (n) Sign inversion of n

round (n) Rounds n to closest value

sqrt (n) Square root of n

trunc (n) Rounds n to zero

fma (a, b, c) Result of multiplying a and b and then adding c

fms (a, b, c) Result of multiplying a and b and then subtracting c

Halfword Halfword (16 bits)

Word Word (32 bits)

Double-word Double-word (64 bits)

Quad-word Quad-word (128 bits)

+ Add

− Subtract

 Multiply

÷ Divide

== Match (true upon a match)

!= Mismatch (true upon a mismatch)

(n:m) or (n) Bit selection

(hx) x’th halfword element selected from vector data (x = 0 to 7).

h7 = (127:112), h6 = (111:96), h5 = (95:80), h4 = (79:64), h3 = (63:48), h2 = (47:32), h1 = (31:16),
h0 = (15:0)

(wx) x’th word element selected from vector data (x = 0 to 3).

w3 = (127:96), w1 = (95:64), w1 = (63:32), w0 = (31:0)

(dwx) x’th double-word element selected from vector data (x = 0 to 1).

dw1 = (127:64), dw0 = (63:0)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 386 of 512
December 20, 2023

Table 2.18 Legends for Opcodes

Symbol Meaning

R 1-bit data of code specifying wreg1 or regID

r 1-bit data of code specifying wreg2

w 1-bit data of code specifying wreg3

W 1-bit data of code specifying wreg4

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 387 of 512
December 20, 2023

2.5.3 Overview of the Extended Floating-point Vector Manipulation Instructions

(1) Vector Data Copy Instruction
● MOVV.W4: Move vector register to vector register

(2) Data Rearrangement Instructions
● FLPV.S4: Floating-point SIMD Flip (single)

● SHFLV.W4: Vector Shuffle

(3) Load to Vector Register Instructions
● LDV.DW: Load Vector (Double-Word)

● LDV.QW: Load Vector (Quad-Word)

● LDV.W: Load Vector (Word)

● LDVZ.H4: Load Vector at Even Halfword field

(4) Store from Vector Register Instructions
● STV.DW: Store Vector (Double-Word)

● STV.QW: Store Vector (Quad-Word)

● STV.W: Store Vector (Word)

● STVZ.H4: Store Vector at Even Halfword field

(5) Comparison/Conditional Move Instructions
● CMOVF.W4: Floating-point SIMD Conditional Move

● TRFSRV.W4: Transfers compare result to PSW

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 388 of 512
December 20, 2023

2.5.4 Overview of the Extended Floating-point Vector Arithmetic Instructions
These instructions perform floating-point arithmetic operations on vector data.

The available instructions (mnemonics) are listed below.

(1) Basic Arithmetic Instructions
● ABSF.S4: Floating-point SIMD Absolute (single)

● ADDF.S4: Floating-point SIMD Add (single)

● DIVF.S4: Floating-point SIMD Divide (single)

● MAXF.S4: Floating-point SIMD Maximum (single)

● MINF.S4: Floating-point SIMD Minimum (single)

● MULF.S4: Floating-point SIMD Multiply (single)

● NEGF.S4: Floating-point SIMD Negative (single)

● RECIPF.S4: Floating-point SIMD Reciprocal (single)

● RSQRTF.S4: Floating-point SIMD Reciprocal Square-Root (single)

● SQRTF.S4: Floating-point SIMD Square-Root (single)

● SUBF.S4: Floating-point SIMD Subtract (single)

(2) Extended Basic Operation Instructions
● FMAF.S4: Floating-point SIMD Fused-Multiply-Add (Single)

● FMSF.S4: Floating-point SIMD Fused-Multiply-Subtract (Single)

● FNMAF.S4: Floating-point SIMD Fused-Negative-Multiply-Add (Single)

● FNMSF.S4 Floating-point SIMD Fused-Negative-Multiply-Subtract (Single)

(3) Compound Arithmetic Instructions
● ADDSUBF.S4: Floating-point SIMD Add/Subtract (single)

● ADDSUBNF.S4: Floating-point SIMD Add/Subtract Negative (single)

● SUBADDF.S4: Floating-point SIMD Subtract/Add (single)

● SUBADDNF.S4: Floating-point SIMD Subtract/Add Negative (single)

(4) Exchange Arithmetic Instructions
● ADDXF.S4: Floating-point SIMD Add Exchange (single)

● MULXF.S4: Floating-point SIMD Multiply Exchange (single)

● SUBXF.S4: Floating-point SIMD Subtract Exchange (single)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 389 of 512
December 20, 2023

(5) Compound Exchange Arithmetic Instructions
● ADDSUBNXF.S4: Floating-point SIMD Add/Subtract Negative Exchange (single)

● ADDSUBXF.S4: Floating-point SIMD Add/Subtract Exchange (single)

● SUBADDNXF.S4: Floating-point SIMD Subtract/Add Negative Exchange (single)

● SUBADDXF.S4: Floating-point SIMD Subtract/Add Exchange (single)

(6) Reduction Arithmetic Instructions
● ADDRF.S4: Floating-point SIMD Add Reduction (single)

● MAXRF.S4: Floating-point SIMD Maximum Reduction (single)

● MINRF.S4: Floating-point SIMD Minimum Reduction (single)

● MULRF.S4: Floating-point SIMD Multiply Reduction (single)

● SUBRF.S4: Floating-point SIMD Subtract Reduction (single)

(7) Conversion Instructions
● CEILF.SUW4: Floating-point SIMD Convert Single to Unsigned Word, round toward positive (single)

● CEILF.SW4: Floating-point SIMD Convert Single to Word, round toward positive (single)

● CVTF.HS4: Floating-point SIMD Convert Half to Single (single)

● CVTF.SH4: Floating-point SIMD Convert Single to Half (single)

● CVTF.SUW4: Floating-point SIMD Convert Single to Unsigned Word (single)

● CVTF.SW4: Floating-point SIMD Convert Single to Word (single)

● CVTF.UWS4: Floating-point SIMD Convert Unsigned Word to Single (single)

● CVTF.WS4: Floating-point SIMD Convert Word to Single (single)

● FLOORF.SUW4: Floating-point SIMD Convert Single to Unsigned Word, round toward negative (single)

● FLOORF.SW4 Floating-point SIMD Convert Single to Word, round toward negative (single)

● ROUNDF.SUW4: Floating-point SIMD Convert Single to Unsigned Word, round to nearest (single)

● ROUNDF.SW4: Floating-point SIMD Convert Single to Word, round to nearest (single)

● TRNCF.SUW4: Floating-point SIMD Convert Single to Unsigned Word, round toward zero (single)

● TRNCF.SW4: Floating-point SIMD Convert Single to Word, round toward zero (single)

(8) Comparison Instruction
● CMPF.S4: Floating-point SIMD Comparison (single)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 390 of 512
December 20, 2023

2.5.4.1 ABSF.S4
<Extended Floating-point Instructions>

Floating-point Absolute Value (Single)

ABSF.S4
Floating-point absolute value (single)

[Instruction format] ABSF.S4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← abs(WR[wreg2](w3))

WR[wreg3](w2) ← abs(WR[wreg2](w2))

WR[wreg3](w1) ← abs(WR[wreg2](w1))

WR[wreg3](w0) ← abs(WR[wreg2](w0))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] Takes an absolute value of the single-precision floating-point number in the vector register

wreg2 and stores the result in the vector register wreg3.

[Floating-point operation

exceptions]

None

[Supplement] The subnormal number input will not be flushed even if the FS bit of FXSR is set to 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 391 of 512
December 20, 2023

2.5.4.2 ADDF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Add (single)

ADDF.S4
Extended floating-point add (single precision)

[Instruction format] ADDF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) + WR[wreg1](w3)

WR[wreg3](w2) ← WR[wreg2](w2) + WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) + WR[wreg1](w1)

WR[wreg3](w0) ← WR[wreg2](w0) + WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 0 0 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] Adds the single-precision floating-point data elements in the vector register wreg2 and the

single-precision floating point data elements in the vector register wreg1 and stores the

results in the respective data elements of the vector register wreg3.

The operation is executed as if it were of infinite precision and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 392 of 512
December 20, 2023

[Operation result]

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FXSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 393 of 512
December 20, 2023

2.5.4.3 ADDRF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Add Reduction (single)

ADDRF.S4
Extended floating-point add reduction (single precision)

[Instruction format] ADDRF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) + WR[wreg2](w2)

WR[wreg3](w2) ← WR[wreg1](w3) + WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) + WR[wreg2](w0)

WR[wreg3](w0) ← WR[wreg1](w1) + WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 1 0 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] Adds together the contents of the even-number elements and odd-number elements of the

single-precision floating-point data in the vector register wreg2 and store the results in the

odd-number element of the vector register wreg3.

Adds together the contents of the even-number elements and odd-number elements of the

single-precision floating-point data in the vector register wreg1 and store the results in the

even-number element of the vector register wreg3.

The operation is executed as if it were of infinite precision and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 394 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

B*4

A*4
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

A + B

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FXSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

Note 4. Refer to [Operation] for the operands A and B that are input to produce the output.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 395 of 512
December 20, 2023

2.5.4.4 ADDSUBF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Add/Subtract (single)

ADDSUBF.S4
Extended floating-point add/subtract (single precision)

[Instruction format] ADDSUBF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) + WR[wreg1](w3)

WR[wreg3](w2) ← WR[wreg2](w2) − WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) + WR[wreg1](w1)

WR[wreg3](w0) ← WR[wreg2](w0) − WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 0 0 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] Adds together the contents of single-precision floating-point data in the odd-number

element of the vector register wreg2 and the contents of the single-precision floating-point

data in the odd-number element of the vector register wreg1 and store the results in the odd-

number element of the vector register wreg3.

Subtracts the contents of single-precision floating-point data in the even-number element of

the vector register wreg1 from the contents of single-precision floating-point data in the

even-number element of the vector register wreg2 and stores the results in the even-number

element of the vector register wreg3.

The operation is executed as if it were of infinite precision and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 396 of 512
December 20, 2023

[Operation result] <Odd-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Even-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B − A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FXSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 397 of 512
December 20, 2023

2.5.4.5 ADDSUBNF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Add/Subtract Negative (single)

ADDSUBNF.S4
Extended floating-point Add/Subtract Negative (single precision)

[Instruction format] ADDSUBNF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← neg(WR[wreg2](w3) + WR[wreg1](w3))

WR[wreg3](w2) ← neg(WR[wreg2](w2) − WR[wreg1](w2))

WR[wreg3](w1) ← neg(WR[wreg2](w1) + WR[wreg1](w1))

WR[wreg3](w0) ← neg(WR[wreg2](w0) − WR[wreg1](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 1 0 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] Adds together the contents of single-precision floating-point data in the odd-number

element of the vector register wreg2 and the contents of single-precision floating-point data

in the odd-number element of the vector register wreg1 and stores the results in the odd-

number element of the vector register wreg3 with their sign inverted.

Subtracts the contents of single-precision floating-point data in the even-number element of

the vector register wreg1 from the contents of floating-point data in the even-number

element of the vector register wreg2 and stores the results in the even-number element of

the vector register wreg3 with their sign inverted.

The operation is executed as if it were of infinite precision and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 398 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result] <Odd-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B + A)

+∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V] +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Even-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B – A) −∞
+∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FXSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 399 of 512
December 20, 2023

2.5.4.6 ADDSUBNXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Add/Subtract Negative Exchange (single)

ADDSUBNXF.S4
Extended floating-point add/subtract negative exchange (single precision)

[Instruction format] ADDSUBNXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← neg(WR[wreg2](w3) + WR[wreg1](w2))

WR[wreg3](w2) ← neg(WR[wreg2](w2) − WR[wreg1](w3))

WR[wreg3](w1) ← neg(WR[wreg2](w1) + WR[wreg1](w0))

WR[wreg3](w0) ← neg(WR[wreg2](w0) − WR[wreg1](w1))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 1 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] Adds together the contents of single-precision floating-point data in the odd-number

element of the vector register wreg2 and the contents of single-precision floating-point data

in the even-number element of the vector register wreg1 and stores the results in the odd-

number element of the vector register wreg3 with their sign inverted.

Subtracts the contents of single-precision floating-point data in the odd-number element of

the vector register wreg1 from the contents of floating-point data in the even-number

element of the vector register wreg2 and stores the results in the even-number element of

the vector register wreg3 with their sign inverted.

The operation is executed as if it were of infinite precision and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 400 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result] <Odd-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B + A)

+∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V] +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Even-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B – A) −∞
+∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FXSR register is 1, subnormal numbers are flushed to the normalized

numbers shown in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 401 of 512
December 20, 2023

2.5.4.7 ADDSUBXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Add/Subtract Exchange (single)

ADDSUBXF.S4
Extended floating-point add//subtract exchange (single precision)

[Instruction format] ADDSUBXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) + WR[wreg1](w2)

WR[wreg3](w2) ← WR[wreg2](w2) − WR[wreg1](w3)

WR[wreg3](w1) ← WR[wreg2](w1) + WR[wreg1](w0)

WR[wreg3](w0) ← WR[wreg2](w0) − WR[wreg1](w1)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 0 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] Adds together the single-precision floating-point format contents in the odd-number

elements of vector register wreg2 and the single-precision floating-point format contents in

the even-number elements of vector register wreg1 and stores the results in the odd-number

elements of vector register wreg3.

Subtract the single-precision floating-point format contents in the odd-number elements of

vector register wreg1 from the single-precision floating-point format contents in the even-

number elements of vector register wreg2 and stores the results in the even-number

elements of vector register wreg3.

The operation is executed as if it were of infinite accuracy, and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 402 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result] <Odd-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Even-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B − A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 403 of 512
December 20, 2023

2.5.4.8 ADDXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Add Exchange (single)

ADDXF.S4
Extended floating-point add exchange (single precision)

[Instruction format] ADDXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) + WR[wreg1](w2)

WR[wreg3](w2) ← WR[wreg2](w2) + WR[wreg1](w3)

WR[wreg3](w1) ← WR[wreg2](w1) + WR[wreg1](w0)

WR[wreg3](w0) ← WR[wreg2](w0) + WR[wreg1](w1)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 0 0 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] Adds together the single-precision floating-point format contents in the odd-number

elements of vector register wreg2 and the single-precision floating-point format contents in

the even-number elements of vector register wreg1 and stores the results in the odd-number

elements of vector register wreg3.

Adds together the single-precision floating-point format contents in the even-number

elements of vector register wreg2 and the single-precision floating-point format contents in

the odd-number elements of vector register wreg1 and stores the results in the even-number

elements of vector register wreg3.

The operation is executed as if it were of infinite accuracy, and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 404 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 405 of 512
December 20, 2023

2.5.4.9 CEILF.SUW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Unsigned Word, round toward positive (single)

CEILF.SUW4
Extended floating-point type conversion (Single precision → unsigned integer)

[Instruction format] CEILF.SUW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← ceil(WR[wreg2](w3) (single → unsigned word))

WR[wreg3](w2) ← ceil(WR[wreg2](w2) (single → unsigned word))

WR[wreg3](w1) ← ceil(WR[wreg2](w1) (single → unsigned word))

WR[wreg3](w0) ← ceil(WR[wreg2](w0) (single → unsigned word))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 1 0 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] Arithmetically converts the single-precision floating-point format contents in the elements

of vector register wreg2 to an unsigned 32-bit integer format and stores the results in the

respective elements of vector register wreg3. The results are rounded toward +∞ regardless

of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the

rounded result is outside the range of 232 – 1 to 0, an IEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number outside the range of 232 – 1 to 0 or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 406 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 407 of 512
December 20, 2023

2.5.4.10 CEILF.SW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Word, round toward positive (single)

CEILF.SW4
Extended floating-point type conversion (Single precision → Integer)

[Instruction format] CEILF.SW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← ceil(WR[wreg2](w3) (single → word))

WR[wreg3](w2) ← ceil(WR[wreg2](w2) (single → word))

WR[wreg3](w1) ← ceil(WR[wreg2](w1) (single → word))

WR[wreg3](w0) ← ceil(WR[wreg2](w0) (single → word))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the single-precision floating-point format contents

of vector register wreg2 to 32-bit integer format, and stores the results in vector register

wreg3.

The results are rounded toward +∞ regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside

the range of 231 – 1 to – 231, an IEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 408 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 409 of 512
December 20, 2023

2.5.4.11 CMOVF.W4
<Extended Floating-point Instructions>

Floating-point SIMD Conditional Move

CMOVF.W4
Conditional move of vector register (Single precision)

[Instruction format] CMOVF.W4 wreg4, wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← (WR[wreg4](w3) != 0) ? WR[wreg1](w3): WR[wreg2](w3)

WR[wreg3](w2) ← (WR[wreg4](w2) != 0) ? WR[wreg1](w2): WR[wreg2](w2)

WR[wreg3](w1) ← (WR[wreg4](w1) != 0) ? WR[wreg1](w1): WR[wreg2](w1)

WR[wreg3](w0) ← (WR[wreg4](w0) != 0) ? WR[wreg1](w0): WR[wreg2](w0)

[Format] Format M: 4OP

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 1 1 0 0 0 0 1 1 1 0 1

sub-op wreg1 wreg3 sub-op

47 43 42 37 36 32

r r r r r 0 0 0 0 0 0 W W W W W

wreg2 sub-op wreg4

[Descriptions] This instruction stores each element of vector register wreg1 in the corresponding element

of vector register wreg3 if the value of the corresponding element of vector register wreg4

is set to a nonzero value.

If the each element of vector register wreg4 is set to 0, the corresponding element of vector

register wreg2 is stored in the corresponding element of vector register wreg3.

[Floating-point operation

exceptions]

None

CAUTION

Even when a nonzero value is set in bits 37 to 42, the opcode functions as the CMOVF.W4 instruction. An RIE exception

does not occur in such cases.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 410 of 512
December 20, 2023

2.5.4.12 CMPF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Comparison (single)

CMPF.S4
Extended floating-point comparison (Single precision)

[Instruction format] CMPF.S4 fcond, wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← cmpf (fcond, WR[wreg2](w3), WR[wreg1](w3))

WR[wreg3](w2) ← cmpf (fcond, WR[wreg2](w2), WR[wreg1](w2))

WR[wreg3](w1) ← cmpf (fcond, WR[wreg2](w1), WR[wreg1](w1))

WR[wreg3](w0) ← cmpf (fcond, WR[wreg2](w0), WR[wreg1](w0))

 cmpf (fcond, A, B) =

 if isNaN(A) or isNaN(B) then

 result.less ← 0

 result.equal ← 0

 result.unordered ← 1

 if fcond[3] == 1 then

 Invalid operation exception is detected.

 endif

 else

 result.less ←A < B

 result.equal ←A == B

 result.unordered ← 0

 endif

 result ← (fcond[2] & result.less) | (fcond[1] & result.equal) |

 (fcond[0] & result.unordered)

 return (result == true) ? FFFF FFFFH: 0000 0000H

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 0 F F F F 0

wreg2 wreg1 wreg3 category sub-op

Remark: FFFF = fcond.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 411 of 512
December 20, 2023

[Descriptions] This instruction compares the single-precision floating-point format contents of vector

register wreg1 with the single-precision floating-point format contents in each element of

vector register wreg2 based on the comparison condition fcond. The result of comparison is

stored in vector register wreg3.

For a description of the comparison condition fcond, see Table 2.19 Comparison
Conditions.

If one of the values is not-a-number and the MSB of the comparison condition fcond is set,

an IEEE754-defined invalid operation exception is detected. If invalid operation exceptions

are enabled, the comparison result is not set and processing proceeds with the processing of

the exception.

If no enable bit is set, no exception is generated, the preservation bit (bit 4) of the FXSR

register is set, and the comparison result is undefined.

For floating-point arithmetic instructions including comparison instructions, any

SignalingNaN (S-NaN) received as an operand value is regarded as an invalid operation

condition. If a comparison that results in an invalid operation not on only an S-NaN but

also on QuietNaN (Q-NaN) is used, the programming code for handling an error caused by

NaN can be made simpler. In other words, this dispenses with the code for explicitly

checking for Q-NaN which would lead to the "Unordered" result. Instead, make an

arrangement so that an exception should be generated upon detection of an invalid

operation and the error processing be handled by the exception processing system. Shown

below is an example of comparison in which two numeric values are compared for a

relationship and an error is signaled when an Unordered result is detected.

Table 2.19 Comparison Conditions

Comparison

Conditions

Definition Description

Detection of
Invalid
operation
Exception by
Unordered fcond

F 0 FALSE Always false No

UN 1 Unordered One of wreg1 and wreg2 is not-a-number No

EQ 2 wreg2 = wreg1 Ordered (both wreg1 and wreg2 is not not-a-number) and equal No

UEQ 3 wreg2 ?= wreg1 Unordered (at least, one of wreg1 and wreg2 is not-a-number) or equal No

OLT 4 wreg2 < wreg1 Ordered (both wreg1 and wreg2 are not not-a-number) and less than No

ULT 5 wreg2 ?< wreg1 Unordered (one of wreg1 and wreg2 is not-a-number) or less than No

OLE 6 wreg2 ≤ wreg1 Ordered (both wreg1 and wreg2 are not not-a-number) and less than or equal to No

ULE 7 wreg2 ?≤ wreg1 Unordered (one of wreg1 and wreg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of wreg1 and wreg2 is not-a-number Yes

SEQ 10 wreg2 = wreg1 Ordered (both wreg1 and wreg2 are not not-a-number) and equal Yes

NGL 11 wreg2 ?= wreg1 Unordered (one of wreg1 and wreg2 is not-a-number) or equal Yes

LT 12 wreg2 < wreg1 Ordered (both wreg1 and wreg2 are not not-a-number) and less than Yes

NGE 13 wreg2 ?< wreg1 Unordered (one of wreg1 and wreg2 is not-a-number) or less than Yes

LE 14 wreg2 ≤ wreg1 Ordered (both wreg1 and wreg2 are not not-a-number) and less than or equal to Yes

NGT 15 wreg2 ?≤ wreg1 Unordered (one of wreg1 and wreg2 is not-a-number) or less than or equal to Yes

Note: ?: Unordered (invalid comparison)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 412 of 512
December 20, 2023

 # Example of explicitly checking any Q-NaN in each element

 CMPF.S4 OLT,wr12,wr14,wr15 # Check wr14 < wr12 for each

element.

 CMPF.S4 UN,wr12,wr14,wr16 # Check for Unordered condition for

each element.

 TRFSRV.W4 4,wr15

 BT L2 # Branch to L2 if true.

 TRFSRV.W4 5,wr16

 BT ERROR # Branch to error processing if true.

 # Put the code to be executed if there is an element that is not Unordered and for which

wr14 < wr12 is not established.

L2:

Put the code to be executed when wr14 < wr12 is established for all elements.

 # Example of using the comparison for notifying Q-NaN

 CMPF.S4 LT,wr12,wr14,wr15 # Check wr14 < wr12 for each

element.

 TRFSRV.W4 4,wr15

 BT L2 # Branch to L2 if true.

 # Put the code to be executed if there is an element that wr14 < wr12 is not established.

L2:

Put the code to be executed when wr14 < wr12 is established for all elements.

 [Floating-point

operation exceptions]

Invalid operation exception (V)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 413 of 512
December 20, 2023

[Operation result] [Condition code (fcond) = 0 to 7]

wreg1(B)

wreg2(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stored in WR[wreg3] according to the result of comparison based on

 comparison conditions (fcond).

±0

±∞

Q-NaN Unorderd

S-NaN Unorderd[V]

[Condition code (fcond) = 8 to 15]

wreg1(B)

wreg2(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal
Stored in WR[wreg3] according to the result of comparison based on

 comparison conditions (fcond).

±0

±∞

Q-NaN
Unorderd[V]

S-NaN

Note: [] indicates an exception that must occur.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 414 of 512
December 20, 2023

2.5.4.13 CVTF.HS4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Half to Single (single)

CVTF.HS4
Extended floating-point type conversion (Half-precision → Single precision)

[Instruction format] CVTF.HS4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← cvt(WR[wreg2](h6) (half → single))

WR[wreg3](w2) ← cvt(WR[wreg2](h4) (half → single))

WR[wreg3](w1) ← cvt(WR[wreg2](h2) (half → single))

WR[wreg3](w0) ← cvt(WR[wreg2](h0) (half → single))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 1 1 0 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the half-precision floating-point format contents in

the lower-order 16 bits of each element of vector register wreg2 to single-precision

floating-point format in the current rounding mode and stores the result in the

corresponding element of vector register wreg3.

[Floating-point operation

exceptions]

Invalid operation exception (V)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 415 of 512
December 20, 2023

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Single) +0 −0 +∞ −∞ Q-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

[Supplement] This instruction can accurately convert data in all half-precision floating-point formats

except not-a-number to single-precision floating-point format. Any subnormal number

input is not flushed even when FXSR.FS = 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 416 of 512
December 20, 2023

2.5.4.14 CVTF.SH4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Half (single)

CVTF.SH4
Extended floating-point type conversion (Single precision → Half-precision)

[Instruction format] CVTF.SH4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← zero-extend(cvt(WR[wreg2](w3) (single → half)))

WR[wreg3](w2) ← zero-extend(cvt(WR[wreg2](w2) (single → half)))

WR[wreg3](w1) ← zero-extend(cvt(WR[wreg2](w1) (single → half)))

WR[wreg3](w0) ← zero-extend(cvt(WR[wreg2](w0) (single → half)))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 1 1 0 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the single-precision floating-point format contents

in each element of vector register wreg2 to half-precision floating-point format in the

current rounding mode. The results are zero-extended to word length and stored in the

corresponding element of vector register wreg3.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 417 of 512
December 20, 2023

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Half) +0 −0 +∞ −∞ Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 418 of 512
December 20, 2023

2.5.4.15 CVTF.SUW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Unsigned Word (single)

CVTF.SUW4
Extended floating-point type conversion (Single precision → Unsigned integer)

[Instruction format] CVTF.SUW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← cvt(WR[wreg2](w3) (single → unsigned word))

WR[wreg3](w2) ← cvt(WR[wreg2](w2) (single → unsigned word))

WR[wreg3](w1) ← cvt(WR[wreg2](w1) (single → unsigned word))

WR[wreg3](w0) ← cvt(WR[wreg2](w0) (single → unsigned word))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 1 0 0 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] Arithmetically converts the single-precision floating-point format contents in the elements

of vector register wreg2 to an unsigned 32-bit integer format and stores the results in the

respective elements of vector register wreg3.

When the source operand is infinite, not-a-number, or a negative number, or when the

rounded result is outside the range of 232 – 1 to 0, an IEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 419 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 420 of 512
December 20, 2023

2.5.4.16 CVTF.SW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Word (single)

CVTF.SW4
Extended floating-point type conversion (Single precision → Integer)

[Instruction format] CVTF.SW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← cvt(WR[wreg2](w3) (single → word))

WR[wreg3](w2) ← cvt(WR[wreg2](w2) (single → word))

WR[wreg3](w1) ← cvt(WR[wreg2](w1) (single → word))

WR[wreg3](w0) ← cvt(WR[wreg2](w0) (single → word))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 1 0 0 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the single-precision floating-point format contents

in vector register wreg2 to 32-bit integer format and stores the results in vector register

wreg3.

When the source operand is infinite, not-a-number, or when the rounded result is outside

the range of 231 – 1 to – 231, an IEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 421 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 422 of 512
December 20, 2023

2.5.4.17 CVTF.UWS4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Unsigned Word to Single (single)

CVTF.UWS4
Extended floating-point type conversion (Unsigned integer → Single precision)

[Instruction format] CVTF.UWS4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← cvt(WR[wreg2](w3) (unsigned word → single))

WR[wreg3](w2) ← cvt(WR[wreg2](w2) (unsigned word → single))

WR[wreg3](w1) ← cvt(WR[wreg2](w1) (unsigned word → single))

WR[wreg3](w0) ← cvt(WR[wreg2](w0) (unsigned word → single))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 1 0 1 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the unsigned 32-bit integer format contents in each

element of vector register wreg2 to single-precision floating-point format and stores the

results in the corresponding element of vector register wreg3. The results are rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Inexact exception (I)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 423 of 512
December 20, 2023

2.5.4.18 CVTF.WS4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Word to Single (single)

CVTF.WS4
Extended floating-point type conversion (Integer → Single precision)

[Instruction format] CVTF.WS4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← cvt(WR[wreg2](w3) (word → single))

WR[wreg3](w2) ← cvt(WR[wreg2](w2) (word → single))

WR[wreg3](w1) ← cvt(WR[wreg2](w1) (word → single))

WR[wreg3](w0) ← cvt(WR[wreg2](w0) (word → single))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 1 0 1 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the 32-bit integer format contents in vector register

wreg2 to single-precision floating-point format and stores the results in vector register

wreg3. The results are rounded in accordance with the current rounding mode.

[Floating-point operation

exceptions]

Inexact exception (I)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Integer −Integer 0 (Integer)

Operation
result

[exception]
A (Normal) +0

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 424 of 512
December 20, 2023

2.5.4.19 DIVF.S4
<Extended Floating-point Instructions>

Floating-point Divide (Single)

DIVF.S4
Extended floating-point divide (Single precision)

[Instruction format] DIVF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) ÷ WR[wreg1](w3)

WR[wreg3](w2) ← WR[wreg2](w2) ÷ WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) ÷ WR[wreg1](w1)

WR[wreg3](w0) ← WR[wreg2](w0) ÷ WR[wreg1](w0)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 0 1 1 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction divides the single-precision floating-point format contents in each element

of vector register wreg2 by the single-precision floating-point format contents in vector

register wreg1 and stores the results in vector register wreg3. The operation is executed as

if it were of infinite accuracy and the result is rounded in accordance with the current

rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 425 of 512
December 20, 2023

[Operation result]

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal
B ÷ A

+∞ −∞

−Normal −∞ +∞

+0
±∞[Z] Q-NaN[V]

+∞ −∞

−0 −∞ +∞

+∞ +0 −0 +0 −0
Q-NaN[V]

−∞ −0 +0 −0 +0

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 426 of 512
December 20, 2023

2.5.4.20 FLOORF.SUW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Unsigned Word, round toward negative (single)

FLOORF.SUW4
Extended floating-point type conversion (Single precision → Unsigned integer)

[Instruction format] FLOORF.SUW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← floor WR[wreg2](w3) (single → unsigned word)

WR[wreg3](w2) ← floor WR[wreg2](w2) (single → unsigned word)

WR[wreg3](w1) ← floor WR[wreg2](w1) (single → unsigned word)

WR[wreg3](w0) ← floor WR[wreg2](w0) (single → unsigned word)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 1 1 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] Arithmetically converts the single-precision floating-point format contents in the elements

of vector register wreg2 to an unsigned 32-bit integer format and stores the results in the

respective elements of vector register wreg3.

The results are rounded toward –∞ regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or a negative number, or when the

rounded result is outside the range of 232 – 1 to 0, an IEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 427 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 428 of 512
December 20, 2023

2.5.4.21 FLOORF.SW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Word, round toward negative (single)

FLOORF.SW4
Extended floating-point type conversion (Single precision → Integer)

[Instruction format] FLOORF.SW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← floor WR[wreg2](w3) (single → word)

WR[wreg3](w2) ← floor WR[wreg2](w2) (single → word)

WR[wreg3](w1) ← floor WR[wreg2](w1) (single → word)

WR[wreg3](w0) ← floor WR[wreg2](w0) (single → word)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 1 1 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the single-precision floating-point format contents

in vector register wreg2 to 32-bit integer format and stores the results in vector register

wreg3.

The results are rounded toward -∞ regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside

the range of 231 – 1 to – 231, an IEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: – 231 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 429 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) +Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 430 of 512
December 20, 2023

2.5.4.22 FLPV.S4
<Extended Floating-point Instructions>

Floating-point SIMD Flip (single)

FLPV.S4
Extended floating-point data flip (Single precision)

[Instruction format] FLPV.S4 imm2, wreg2, wreg3

[Operation] if (imm2 == 0) then

 WR[wreg3](w3) ← WR[wreg2](w3)

 WR[wreg3](w2) ← neg(WR[wreg2](w2))

 WR[wreg3](w1) ← WR[wreg2](w1)

 WR[wreg3](w0) ← neg(WR[wreg2](w0))

else if (imm2 == 1) then

 WR[wreg3](w3) ← WR[wreg2](w2)

 WR[wreg3](w2) ← neg(WR[wreg2](w3))

 WR[wreg3](w1) ← WR[wreg2](w0)

 WR[wreg3](w0) ← neg(WR[wreg2](w1))

else if (imm2 == 2) then

 WR[wreg3](w3) ← neg(WR[wreg2](w3))

 WR[wreg3](w2) ← WR[wreg2](w2)

 WR[wreg3](w1) ← neg(WR[wreg2](w1))

 WR[wreg3](w0) ← WR[wreg2](w0)

else

 WR[wreg3](w3) ← neg(WR[wreg2](w2))

 WR[wreg3](w2) ← WR[wreg2](w3)

 WR[wreg3](w1) ← neg(WR[wreg2](w0))

 WR[wreg3](w0) ← WR[wreg2](w1)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 1 0 i i w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 431 of 512
December 20, 2023

 [Descriptions] This instruction exchanges between the even- and odd-number elements of vector register

wreg2 according to the 2-bit immediate value and flips the sign of the even- or odd-number

elements according to the 2-bit immediate value.

[Floating-point operation

exceptions]

None

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 432 of 512
December 20, 2023

2.5.4.23 FMAF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Fused-Multiply-Add (Single)

FMAF.S4
Extended floating-point fused-multiply-add operation (Single precision)

[Instruction format] FMAF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← fma(WR[wreg2](w3), WR[wreg1](w3), WR[wreg3](w3))

WR[wreg3](w2) ← fma(WR[wreg2](w2), WR[wreg1](w2), WR[wreg3](w2))

WR[wreg3](w1) ← fma(WR[wreg2](w1), WR[wreg1](w1), WR[wreg3](w1))

WR[wreg3](w0) ← fma(WR[wreg2](w0), WR[wreg1](w0), WR[wreg3](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 0 0 0 0 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction multiplies the single-precision floating-point format contents in each

element of vector register wreg2 by the single-precision floating-point format contents in

vector register wreg1, adds the results to the single-precision floating-point format contents

in vector register wreg3, and stores the results in the corresponding element of vector

register wreg3. The results of the multiply operation is not rounded, but the results of the

add operation is rounded in accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 433 of 512
December 20, 2023

[Operation result]

wreg3(C)

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

fma (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

±0 +Normal

fma (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

+∞ +Normal

+∞

+∞ Q-NaN[V]

−Normal Q-NaN[V] +∞

±0 Q-NaN[V]

+∞ +∞ Q-NaN[V]
Q-NaN[V]

+∞ Q-NaN[V]

−∞ Q-NaN[V] +∞ Q-NaN[V] +∞

−∞ +Normal

−∞

Q-NaN[V] −∞

−Normal −∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] −∞
Q-NaN[V]

Q-NaN[V] −∞

−∞ −∞ Q-NaN[V] −∞ Q-NaN[V]

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is explained in the hardware manual

of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

[Supplement] The results of the fused-multiply-add operation are rounded in accordance with the current

rounding mode. Consequently, the results of operation differ from the results of executing a

combination of the ADDF.S4 and MULF.S4 instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 434 of 512
December 20, 2023

2.5.4.24 FMSF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Fused-Multiply-Subtract (Single)

FMSF.S4
Extended floating-point fused-multiply-subtract operation (Single precision)

[Instruction format] FMSF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← fms(WR[wreg2](w3), WR[wreg1](w3), WR[wreg3](w3))

WR[wreg3](w2) ← fms(WR[wreg2](w2), WR[wreg1](w2), WR[wreg3](w2))

WR[wreg3](w1) ← fms(WR[wreg2](w1), WR[wreg1](w1), WR[wreg3](w1))

WR[wreg3](w0) ← fms(WR[wreg2](w0), WR[wreg1](w0), WR[wreg3](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 0 0 0 0 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction multiplies the single-precision floating-point format contents in each

element of vector register wreg2 by the single-precision floating-point format contents in

vector register wreg1, subtracts the single-precision floating-point format contents in vector

register wreg3, and stores the results in the corresponding elements of vector register

wreg3. The results of the multiply operation is not rounded, but the results of the subtract

operation is rounded in accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 435 of 512
December 20, 2023

[Operation result]

wreg3(C)

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

fms (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

±0 +Normal

fms (B, A, C)

+∞ −∞

−Normal −∞ +∞

±0 Q-NaN[V]

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

+∞ +Normal

−∞

Q-NaN[V] −∞

−Normal −∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] −∞
Q-NaN[V]

Q-NaN[V] −∞

−∞ −∞ Q-NaN[V] −∞ Q-NaN[V]

−∞ +Normal

+∞

+∞ Q-NaN[V]

−Normal Q-NaN[V] +∞

±0 Q-NaN[V]

+∞ +∞ Q-NaN[V]
Q-NaN[V]

+∞ Q-NaN[V]

−∞ Q-NaN[V] +∞ Q-NaN[V] +∞

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is explained in the hardware manual

of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

[Supplement] The results of the fused-multiply-subtract operation are rounded in accordance with the

current rounding mode. Consequently, the results of operation differ from the results of

executing a combination of the SUBF.S4 and MULF.S4 instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 436 of 512
December 20, 2023

2.5.4.25 FNMAF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Fused-Negative-Multiply-Add (Single)

FNMAF.S4
Extended floating-point fused-multiply-add operation (Single precision)

[Instruction format] FNMAF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← neg(fma(WR[wreg2](w3), WR[wreg1](w3), WR[wreg3](w3)))

WR[wreg3](w2) ← neg(fma(WR[wreg2](w2), WR[wreg1](w2), WR[wreg3](w2)))

WR[wreg3](w1) ← neg(fma(WR[wreg2](w1), WR[wreg1](w1), WR[wreg3](w1)))

WR[wreg3](w0) ← neg(fma(WR[wreg2](w0), WR[wreg1](w0), WR[wreg3](w0)))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 0 0 0 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction multiplies the single-precision floating-point format contents in each

element of vector register wreg2 by the single-precision floating-point format contents in

vector register wreg1, adds the results to the single-precision floating-point format contents

in vector register wreg3, and stores the results in the corresponding element of vector

register wreg3 with its sign inverted. The results of the multiply operation is not rounded,

but the results of the add operation is rounded in accordance with the current rounding

mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 437 of 512
December 20, 2023

[Operation result]

wreg3(C)

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

–fma (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

±0 +Normal

–fma (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

+∞ +Normal

−∞

−∞ Q-NaN[V]

−Normal Q-NaN[V] −∞

±0 Q-NaN[V]

+∞ −∞ Q-NaN[V]
Q-NaN[V]

−∞ Q-NaN[V]

−∞ Q-NaN[V] −∞ Q-NaN[V] −∞

−∞ +Normal

+∞

Q-NaN[V] +∞

−Normal +∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] +∞
Q-NaN[V]

Q-NaN[V] +∞

−∞ +∞ Q-NaN[V] +∞ Q-NaN[V]

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is explained in the hardware manual

of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

[Supplement] The results of the fused-multiply-add operation are rounded in accordance with the current

rounding mode. Consequently, the results of operation differ from the results of executing a

combination of the ADDF.S4, MULF.S4, and NEGF.S4 instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 438 of 512
December 20, 2023

2.5.4.26 FNMSF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Fused-Negative-Multiply-Subtract (Single)

FNMSF.S4
Extended floating-point fused-multiply-subtract operation (Single precision)

[Instruction format] FNMSF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← neg(fms(WR[wreg2](w3), WR[wreg1](w3), WR[wreg3](w3)))

WR[wreg3](w2) ← neg(fms(WR[wreg2](w2), WR[wreg1](w2), WR[wreg3](w2)))

WR[wreg3](w1) ← neg(fms(WR[wreg2](w1), WR[wreg1](w1), WR[wreg3](w1)))

WR[wreg3](w0) ← neg(fms(WR[wreg2](w0), WR[wreg1](w0), WR[wreg3](w0)))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 0 0 0 1 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction multiplies the single-precision floating-point format contents in each

element of vector register wreg2 by the single-precision floating-point format contents in

vector register wreg1, subtracts the single-precision floating-point format contents in vector

register wreg3, and stores the results in the corresponding elements of vector register wreg3

with its sign inverted. The results of the multiply operation is not rounded, but the results of

the subtract operation is rounded in accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 439 of 512
December 20, 2023

[Operation result]

wreg3(C)

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

±Normal +Normal

–fms (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

±0 +Normal

–fms (B, A, C)

−∞ +∞

−Normal +∞ −∞

±0 Q-NaN[V]

+∞ −∞ +∞
Q-NaN[V]

−∞ +∞

−∞ +∞ −∞ +∞ −∞

+∞ +Normal

+∞

Q-NaN[V] +∞

−Normal +∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] +∞
Q-NaN[V]

Q-NaN[V] +∞

−∞ +∞ Q-NaN[V] +∞ Q-NaN[V]

−∞ +Normal

−∞

−∞ Q-NaN[V]

−Normal Q-NaN[V] −∞

±0 Q-NaN[V]

+∞ −∞ Q-NaN[V]
Q-NaN[V]

−∞ Q-NaN[V]

−∞ Q-NaN[V] −∞ Q-NaN[V] −∞

Q-NaN ±Normal

Q-NaN ±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
 Q-NaN[V]

S-NaN Don’t care

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is explained in the hardware manual

of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

[Supplement] The results of the fused-multiply-subtract operation are rounded in accordance with the

current rounding mode. Consequently, the results of operation differ from the results of

executing a combination of the SUBF.S4, MULF.S4 and NEGF.S4 instructions.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 440 of 512
December 20, 2023

2.5.4.27 LDV.DW
<Extended Floating-point Instructions>

Load Vector (Double-Word)

LDV.DW
Load double-word data to vector register

[Instruction format] LDV.DW imm2, disp16[reg1], wreg3

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

val ← Load-memory(adr, Double-word)

WR[wreg3](dw1) ← (imm2[1] == 1) ? val: WR[wreg3](dw1)

WR[wreg3](dw0) ← (imm2[0] == 1) ? val: WR[wreg3](dw0)

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 1 1 0 i i 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 35 34 33 32

d d d d d d d d d d d d d 0 0 0

disp16

Where ii = 2-bit immediate data

ddddddddddddd = Higher-order 13 bits of disp16

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 441 of 512
December 20, 2023

[Descriptions] This instruction adds together the word data in general-purpose register reg1 and the 16-bit

displacement data that is sign-extended to word length to generate a 32-bit address. The

instruction reads double-word data from the generated 32-bit address. Each element of

vector register wreg3 is loaded with the read data when the corresponding bit in the 2-bit

immediate data is set to 1.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Since an arbitrary value can be set as the 2-bit immediate data, data can be stored in four ways. The read double-

word data can be stored in both elements of the vector register at the same time by setting both bits of the 2-bit

immediate data to 1. If both bits of the 2-bit immediate data are set to 0, the read double-word data is stored in none

of the elements of the vector register.

3. Even when a nonzero value is set in bits 32 to 34, the opcode functions as the LDV.DW instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the three lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 442 of 512
December 20, 2023

2.5.4.28 LDV.QW
<Extended Floating-point Instructions>

Load Vector (Quad-Word)

LDV.QW
Load quad-word data to vector register

[Instruction format] LDV.QW disp16[reg1], wreg3

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

WR[wreg3] ← Load-memory(adr, Quad-word)

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 1 0 1 0 0 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 35 34 33 32

d d d d d d d d d d d d 0 0 0 0

disp16

dddddddddddd = Higher-order 12 bits of disp16

[Descriptions] This instruction adds together the word data in general-purpose register reg1 and the 16-bit

displacement data that is sign-extended to word length to generate a 32-bit address. The

instruction reads quad-word data from the generated 32-bit address and stores it in vector

register wreg3.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Even when a nonzero value is set in bits 32 to 35, the opcode functions as the LDV.QW instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the four lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 443 of 512
December 20, 2023

2.5.4.29 LDV.W
<Extended Floating-point Instructions>

Load Vector (Word)

LDV.W
Load word data to vector register

[Instruction format] LDV.W imm4, disp16[reg1], wreg3

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

val ← Load-memory(adr, Word)

WR[wreg3](w3) (imm4[3] == 1) ? val: WR[wreg3](w3)

WR[wreg3](w2) (imm4[2] == 1) ? val: WR[wreg3](w2)

WR[wreg3](w1) (imm4[1] == 1) ? val: WR[wreg3](w1)

WR[wreg3](w0) (imm4[0] == 1) ? val: WR[wreg3](w0)

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 0 i i i i 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 35 34 33 32

d d d d d d d d d d d d d d 0 0

disp16

Where iiii = 4-bit immediate data

dddddddddddddd = Higher-order 14 bits of disp16

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 444 of 512
December 20, 2023

[Descriptions] This instruction adds together the word data in general-purpose register reg1 and the 16-bit

displacement data that is sign-extended to word length to generate a 32-bit address. The

instruction reads word data from the generated 32-bit address and stores it in vector register

wreg3. Each element of vector register wreg3 is loaded with the read data when the

corresponding bit in the 4-bit immediate data is set to 1.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Since an arbitrary value can be set as the 4-bit immediate data, data can be stored in 16 ways.

The read word data can be stored in all elements of the vector register at the same time by setting all bits of the 4-

bit immediate data to 1. If all bits of the 4-bit immediate data are set to 0, the read word data is stored in none of the

elements of the vector register.

3. Even when a nonzero value is set in bits 32 and 33, the opcode functions as the LDV.W instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the two lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 445 of 512
December 20, 2023

2.5.4.30 LDVZ.H4
<Extended Floating-point Instructions>

Load Vector at Even Halfword field

LDVZ.H4
Interleaved load of halfword to vector register

[Instruction format] LDVZ.H4 disp16[reg1], wreg3

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

val[63:0] ← Load-memory(adr, Double-word)

WR[wreg3](h7) ← 0

WR[wreg3](h6) ← val[63:48]

WR[wreg3](h5) ← 0

WR[wreg3](h4) ← val[47:32]

WR[wreg3](h3) ← 0

WR[wreg3](h2) ← val[31:16]

WR[wreg3](h1) ← 0

WR[wreg3](h0) ← val[15:0]

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 1 1 1 1 0 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 35 34 33 32

d d d d d d d d d d d d d 0 0 0

disp16

Where ddddddddddddd = Higher-order 13 bits of disp16

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 446 of 512
December 20, 2023

[Descriptions] This instruction reads double-word data from the 32-bit address which is generated by

adding together the data in general-purpose register reg1 and the 16-bit displacement data

that is sign-extended to word length. The read double-word data is zero-extended in 16-bit

units and stored in the respective elements of vector register wreg3.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Even when a nonzero value is set in bits 32 to 34, the opcode functions as the LDVZ.H4 instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the three lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 447 of 512
December 20, 2023

2.5.4.31 MAXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Maximum (single)

MAXF.S4
Extended floating-point maximum value (Single precision)

[Instruction format] MAXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← max (WR[wreg2](w3), WR[wreg1](w3))

WR[wreg3](w2) ← max (WR[wreg2](w2), WR[wreg1](w2))

WR[wreg3](w1) ← max (WR[wreg2](w1), WR[wreg1](w1))

WR[wreg3](w0) ← max (WR[wreg2](w0), WR[wreg1](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 0 1 0 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction stores the maximum values of the single-precision floating-point format

contents in each element of vector registers wreg1 and wreg2 in the corresponding elements

of vector register wreg3. If one of the source operands is S-NaN, an IEEE754-defined

invalid operation exception is detected. If invalid operation exceptions are not enabled, Q-

NaN is stored and no exception is generated.

[Floating-point operation

exceptions]

Invalid operation exception (V)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 448 of 512
December 20, 2023

[Operation result]

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

max (B, A) wreg1(A)

−Normal

+0

−0

+∞

−∞

Q-NaN wreg2(B) Q-NaN

S-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

[Supplement] If both of vector registers wreg1 and wreg2 are set to either +0 or –0, whether wreg3 is to

be loaded with either +0 or –0 is not defined.

The subnormal number input is not flushed even if FXSR.FS = 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 449 of 512
December 20, 2023

2.5.4.32 MAXRF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Maximum Reduction (single)

MAXRF.S4
Extended floating-point maximum value reduction (Single precision)

[Instruction format] MAXRF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← max (WR[wreg2](w3), WR[wreg2](w2))

WR[wreg3](w2) ← max (WR[wreg1](w3), WR[wreg1](w2))

WR[wreg3](w1) ← max (WR[wreg2](w1), WR[wreg2](w0))

WR[wreg3](w0) ← max (WR[wreg1](w1), WR[wreg1](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 1 1 0 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction stores the maximum values of the single-precision floating-point format

contents in the odd- and even-number elements of vector registers wreg1 in the even-

number elements of vector register wreg3.

This instruction stores the maximum values of the single-precision floating-point format

contents in the odd- and even-number elements of vector registers wreg2 in the odd-number

elements of vector register wreg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

is generated.

[Floating-point operation

exceptions]

Invalid operation exception (V)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 450 of 512
December 20, 2023

[Operation result]

B*2

A*2 +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

max (A, B) A

−Normal

+0

−0

+∞

−∞

Q-NaN B Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. Refer to [Operation] for the operands A and B that are input to produce the output.

[Supplement] If both of vector registers wreg1 and wreg2 are set to either +0 or –0, whether wreg3 is to

be loaded with either ＋0 or –0 is not defined.

The subnormal number input is not flushed even if FXSR.FS = 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 451 of 512
December 20, 2023

2.5.4.33 MINF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Minimum (single)

MINF.S4
Extended floating-point minimum value (Single precision)

[Instruction format] MINF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← min (WR[wreg2](w3), WR[wreg1](w3))

WR[wreg3](w2) ← min (WR[wreg2](w2), WR[wreg1](w2))

WR[wreg3](w1) ← min (WR[wreg2](w1), WR[wreg1](w1))

WR[wreg3](w0) ← min (WR[wreg2](w0), WR[wreg1](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 0 1 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction stores the minimum values of the single-precision floating-point format

contents in each element of vector registers wreg1 and wreg2 in the corresponding elements

of vector register wreg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

is generated.

[Floating-point operation

exceptions]

Invalid operation exception (V)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 452 of 512
December 20, 2023

[Operation result]

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

min (B, A) wreg1(A)

−Normal

+0

−0

+∞

−∞

Q-NaN wreg2(B) Q-NaN

S-NaN Q-NaN[V]

Note: [] indicates an exception that must occur.

[Supplement] If both of vector registers wreg1 and wreg2 are set to either +0 or –0, whether wreg3 is to

be loaded with either +0 or –0 is not defined.

The subnormal number input is not flushed even if FXSR.FS = 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 453 of 512
December 20, 2023

2.5.4.34 MINRF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Minimum Reduction (single)

MINRF.S4
Extended floating-point minimum value reduction (Single precision)

[Instruction format] MINRF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← min (WR[wreg2](w3), WR[wreg2](w2))

WR[wreg3](w2) ← min (WR[wreg1](w3), WR[wreg1](w2))

WR[wreg3](w1) ← min (WR[wreg2](w1), WR[wreg2](w0))

WR[wreg3](w0) ← min (WR[wreg1](w1), WR[wreg1](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 1 1 1 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction stores the minimum value of the single-precision floating-point format

contents in the odd- and even-number elements of vector registers wreg1 in the even-

number elements of vector register wreg3.

This instruction stores the minimum value of the single-precision floating-point format

contents in the odd- and even-number elements of vector registers wreg2 in the odd-number

elements of vector register wreg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

is generated.

[Floating-point operation

exceptions]

Invalid operation exception (V)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 454 of 512
December 20, 2023

[Operation result]

B*2

A*2 +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

min (A, B) A

−Normal

+0

−0

+∞

−∞

Q-NaN B Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. Refer to [Operation] for the operands A and B that are input to produce the output.

[Supplement] If both of vector registers wreg1 and wreg2 are set to either +0 or –0, whether wreg3 is to

be loaded with either +0 or –0 is not defined.

The subnormal number input is not flushed even if FXSR.FS = 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 455 of 512
December 20, 2023

2.5.4.35 MOVV.W4
<Extended Floating-point Instructions>

Move vector register to vector register

MOVV.W4
Move vector register

[Instruction format] MOVV.W4 wreg2, wreg3

[Operation] WR[wreg3] ← WR[wreg2]

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 1 1 1 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction stores the contents in each element of vector register wreg2 in the

corresponding element of vector register wreg3.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 456 of 512
December 20, 2023

2.5.4.36 MULF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Multiply (single)

MULF.S4
Extended floating-point multiplication (Single precision)

[Instruction format] MULF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) × WR[wreg1](w3)

WR[wreg3](w2) ← WR[wreg2](w2) × WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) × WR[wreg1](w1)

WR[wreg3](w0) ← WR[wreg2](w0) × WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 0 1 0 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction multiplies the single-precision floating-point format contents in each

element of vector wreg2 by the single-precision floating-point format contents in vector

register wreg1 and stores the results in the corresponding element of vector register wreg3.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 457 of 512
December 20, 2023

[Operation result]

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B × A

+∞ −∞

−Normal −∞ +∞

+0
Q-NaN[V]

−0

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 458 of 512
December 20, 2023

2.5.4.37 MULRF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Multiply Reduction (single)

MULRF.S4
Extended floating-point multiplication reduction (Single precision)

[Instruction format] MULRF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) × WR[wreg2](w2)

WR[wreg3](w2) ← WR[wreg1](w3) × WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) × WR[wreg2](w0)

WR[wreg3](w0) ← WR[wreg1](w1) × WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 1 1 0 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] The instruction multiples the single-precision floating-point contents in the even- and odd-

number elements of vector register wreg1 and stores the results in the even-number

elements of vector register wreg3.

The instruction multiples the single-precision floating-point contents in the even- and odd-

number elements of vector register wreg2 and stores the results in the odd-number elements

of vector register wreg3.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 459 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

B*4

A*4 +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

A × B

+∞ −∞

−Normal −∞ +∞

+0
Q-NaN[V]

−0

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

Note 4. Refer to [Operation] for the operands A and B that are input to produce the output.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 460 of 512
December 20, 2023

2.5.4.38 MULXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Multiply Exchange (single)

MULXF.S4
Extended floating-point multiply exchange (Single precision)

[Instruction format] MULXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) × WR[wreg1](w2)

WR[wreg3](w2) ← WR[wreg2](w2) × WR[wreg1](w3)

WR[wreg3](w1) ← WR[wreg2](w1) × WR[wreg1](w0)

WR[wreg3](w0) ← WR[wreg2](w0) × WR[wreg1](w1)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 0 1 0 0 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction multiples the single-precision floating-point contents in the even-number

elements of vector register wreg1 by the single-precision floating-point format contents in

the odd-number elements of vector register wreg2 and stores the results in the odd-number

elements of vector register wreg3.

This instruction multiples the single-precision floating-point contents in the odd-number

elements of vector register wreg1 by the single-precision floating-point format contents in

the even-number elements of vector register wreg2 and stores the results in the even-

number elements of vector register wreg3.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 461 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B × A

+∞ −∞

−Normal −∞ +∞

+0
Q-NaN[V]

−0

+∞ +∞ −∞
Q-NaN[V]

+∞ −∞

−∞ −∞ +∞ −∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 462 of 512
December 20, 2023

2.5.4.39 NEGF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Negative (single)

NEGF.S4
Extended floating-point sign inversion (Single precision)

[Instruction format] NEGF.S4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← neg(WR[wreg2](w3))

WR[wreg3](w2) ← neg(WR[wreg2](w2))

WR[wreg3](w1) ← neg(WR[wreg2](w1))

WR[wreg3](w0) ← neg(WR[wreg2](w0))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction inverts the sign of the single-precision floating-point format contents in

each element of vector register wreg2, and stores the results in the corresponding element

of vector register wreg3.

[Floating-point operation

exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FXSR register is 1.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 463 of 512
December 20, 2023

2.5.4.40 RECIPF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Reciprocal (single)

RECIPF.S4
Extended floating-point reciprocal (Single precision)

[Instruction format] RECIPF.S4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← 1 ÷ WR[wreg2](w3)

WR[wreg3](w2) ← 1 ÷ WR[wreg2](w2)

WR[wreg3](w1) ← 1 ÷ WR[wreg2](w1)

WR[wreg3](w0) ← 1 ÷ WR[wreg2](w0)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction approximates the reciprocal of the single-precision floating-point format

contents of vector register wreg2 and stores the result in vector register wreg3. The results

differs from the results obtained by using the DIVF.S4 instruction.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 464 of 512
December 20, 2023

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
1/A[I] +∞[Z] −∞[Z] +0 −0 Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

NOTE

The results fall within the error range of 1ULP against the results of calculating 1/x.

ULP: Unit in the Least-significant Place

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 465 of 512
December 20, 2023

2.5.4.41 ROUNDF.SUW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Unsigned Word, round to nearest (single)

ROUNDF.SUW4
Extended floating-point type conversion (Single precision → Unsigned integer)

[Instruction format] ROUNDF.SUW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← round WR[wreg2](w3) (single → unsigned word)

WR[wreg3](w2) ← round WR[wreg2](w2) (single → unsigned word)

WR[wreg3](w1) ← round WR[wreg2](w1) (single → unsigned word)

WR[wreg3](w0) ← round WR[wreg2](w0) (single → unsigned word)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] Arithmetically converts the single-precision floating-point format contents in the elements

of vector register wreg2 to unsigned 32-bit integer format and stores the results in the

respective elements of vector register wreg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the

rounded result is outside the range of 232 –1 to 0, an IEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 466 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 467 of 512
December 20, 2023

2.5.4.42 ROUNDF.SW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Word, round toward negative (single)

ROUNDF.SW4
Extended floating-point type conversion (Single precision → Integer)

[Instruction format] ROUNDF.SW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← round WR[wreg2](w3) (single → word)

WR[wreg3](w2) ← round WR[wreg2](w2) (single → word)

WR[wreg3](w1) ← round WR[wreg2](w1) (single → word)

WR[wreg3](w0) ← round WR[wreg2](w0) (single → word)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] Arithmetically converts the single-precision floating-point format contents in the elements

of vector register wreg2 to 32-bit integer format and stores the results in the respective

elements of vector register wreg3.

The result is rounded to the nearest value or an even number regardless of the current

rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside

the range of 231 – 1 to – 231, an IEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to the value of the source operand as follows:

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 468 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 469 of 512
December 20, 2023

2.5.4.43 RSQRTF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Reciprocal Square-Root (single)

RSQRTF.S4
Extended floating-point reciprocal square root (Single precision)

[Instruction format] RSQRTF.S4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← 1 ÷ (sqrt WR[wreg2](w3))

WR[wreg3](w2) ← 1 ÷ (sqrt WR[wreg2](w2))

WR[wreg3](w1) ← 1 ÷ (sqrt WR[wreg2](w1))

WR[wreg3](w0) ← 1 ÷ (sqrt WR[wreg2](w0))

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction approximates the reciprocal of the positive arithmetic square root of the

single-precision floating-point format contents in each element of vector register wreg2 and

stores the results in the corresponding element of vector register wreg3. The results differs

from the results obtained by executing a combination of SQRTF.S4 and DIVF.S4

instructions.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 470 of 512
December 20, 2023

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
1/√A[I] Q-NaN[V] +∞[Z] −∞[Z] +0 Q-NaN[V] Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

NOTE

The results fall within the error range of 2ULP against the results of calculating 1/√x.

ULP: Unit in the Least-significant Place

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 471 of 512
December 20, 2023

2.5.4.44 SHFLV.W4
<Extended Floating-point Instructions>

Vector Shuffle

SHFLV.W4
Vector shuffle

[Instruction format] SHFLV.W4 imm12, wreg1, wreg2, wreg3

[Operation] Sel3[2:0] || Sel2[2:0] || Sel1[2:0] || Sel0[2:0] ← imm12

foreach N (0, 1, 2, 3)

 case

 SelN = 7: WR[wreg3](wN) ← WR[wreg2](w3)

 SelN = 6: WR[wreg3](wN) ← WR[wreg2](w2)

 SelN = 5: WR[wreg3](wN) ← WR[wreg2](w1)

 SelN = 4: WR[wreg3](wN) ← WR[wreg2](w0)

 SelN = 3: WR[wreg3](wN) ← WR[wreg1](w3)

 SelN = 2: WR[wreg3](wN) ← WR[wreg1](w2)

 SelN = 1: WR[wreg3](wN) ← WR[wreg1](w1)

 SelN = 0: WR[wreg3](wN) ← WR[wreg1](w0)

[Format] Format M: Imm12

[Opcode]

15 11 10 5 4 0 31 27 26 21 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 1 1 0 1 0 I 1 1 1 0 1

sub-op wreg1 wreg3 sub-op

47 43 42 32

r r r r r i i i i i i i i i i i

wreg2 imm12

Where I = the higher-order 1 bit of 12-bit immediate data

iiiiiiiiiii = The lower-order 11 bits of 12-bit immediate data

[Descriptions] This instruction selects an arbitrary element of vector register wreg2 or wreg1 according to

the value of the 12-bit immediate data and updates each element of vector register wreg3

with the results. The 12-bit immediate data is aligned in 3 bit units, each of which specifies

one element to be selected.

For example, the element of vector register wreg1 or wreg2 designated by bits 2-0 of the

12-bit immediate data is stored in the 0th element of vector register wreg3.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 472 of 512
December 20, 2023

2.5.4.45 SQRTF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Square-Root (single)

SQRTF.S4
Extended floating-point square-root (Single precision)

[Instruction format] SQRTF.S4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← sqrt WR[wreg2](w3)

WR[wreg3](w2) ← sqrt WR[wreg2](w2)

WR[wreg3](w1) ← sqrt WR[wreg2](w1)

WR[wreg3](w0) ← sqrt WR[wreg2](w0)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction obtains the positive arithmetic square root of the single-precision floating-

point format contents in each element of vector register wreg2 and stores the results in the

corresponding element of vector register wreg3. The operation is executed as if it were of

infinite accuracy and the result is rounded in accordance with the current rounding mode. If

the source operand value is –0, the results become –0.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 473 of 512
December 20, 2023

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
√A Q-NaN[V] +0 −0 +∞ Q-NaN[V] Q-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 474 of 512
December 20, 2023

2.5.4.46 STV.DW
<Extended Floating-point Instructions>

Store Vector (Double-Word)

STV.DW
Store double-word data from vector register

[Instruction format] STV.DW imm1, wreg3, disp16[reg1]

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

val ← (imm1 == 1) ? WR[wreg3](dw1) : WR[wreg3](dw0)

Store-memory (adr, val, Double-word)

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 1 1 1 0 i 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 35 34 33 32

d d d d d d d d d d d d d 0 0 0

disp16

Where i = 1-bit immediate data

ddddddddddddd = Higher-order 13 bit of disp16.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 475 of 512
December 20, 2023

 [Descriptions] This instruction adds together the data in general-purpose register reg1 and the 16-bit

displacement data that is sign-extended to word length to generate a 32-bit address. The

double-word data from an arbitrary element of vector register wreg3 is stored in the address

that is generated. The element to be selected is specified by the 1-bit immediate value.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Even when a nonzero value is set in bits 32 to 34, the opcode functions as the STV.DW instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the three lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 476 of 512
December 20, 2023

2.5.4.47 STV.QW
<Extended Floating-point Instructions>

Store Vector (Quad-Word)

STV.QW
Store quad-word data from vector register

[Instruction format] STV.QW wreg3, disp16[reg1]

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

Store-memory (adr, WR[wreg3], Quad-word)

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 1 0 1 0 1 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 36 35 34 33 32

d d d d d d d d d d d d 0 0 0 0

disp16

Where dddddddddddd = Higher-order 12 bits of disp16.

[Descriptions] This instruction adds together the data in general-purpose register reg1 and the 16-bit

displacement data that is sign-extended to word length to generate a 32-bit address. The

quad-word data from vector register wreg3 is stored in the address that is generated.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Even when a nonzero value is set in bits 32 to 35, the opcode functions as the STV.QW instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the four lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 477 of 512
December 20, 2023

2.5.4.48 STV.W
<Extended Floating-point Instructions>

Store Vector (Word)

STV.W
Store word data from vector register

[Instruction format] STV.W imm2, wreg3, disp16[reg1]

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

val ← (imm2 == 0) ? WR[wreg3](w0):

 (imm2 == 1) ? WR[wreg3](w1):

 (imm2 == 2) ? WR[wreg3](w2):

 WR[wreg3](w3)

Store-memory (adr, val, Word)

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 1 0 0 i i 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 34 33 32

d d d d d d d d d d d d d d 0 0

disp16

Where ii = 2-bit immediate data

dddddddddddd = Higher-order 14 bits of disp16

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 478 of 512
December 20, 2023

[Descriptions] This instruction adds together the data in general-purpose register reg1 and the 16-bit

displacement data that is sign-extended to word length to generate a 32-bit address. The

word data from an arbitrary element of vector register wreg3 is stored in the address that is

generated.

The element to be selected is specified by the 2-bit immediate value.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Even when a nonzero value is set in bits 32 and 33, the opcode functions as the STV.W instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the two lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 479 of 512
December 20, 2023

2.5.4.49 STVZ.H4
<Extended Floating-point Instructions>

Store Vector at Even Halfword field

STVZ.H4
Interleaved store halfword from vector register

[Instruction format] STVZ.H4 wreg3, disp16[reg1]

[Operation] adr ← GR[reg1] + sign-extend (disp16)Note 1

CheckException(MAE)

CheckException(MDP)

val ← WR[wreg3](h6) || WR[wreg3](h4) || WR[wreg3](h2) || WR[wreg3](h0)

Store-memory(adr, val, Double-word)

Note 1. An MAE, or MDP exception might occur depending on the result of address

calculation.

[Format] Format M: D

[Opcode]

15 11 10 5 4 0 31 27 26 17 16

0 0 0 0 0 1 1 1 1 0 1 R R R R R w w w w w 0 1 1 1 1 1 1 1 1 0 1

sub-op reg1 wreg3 sub-op

47 35 34 33 32

d d d d d d d d d d d d d 0 0 0

disp16

Where ddddddddddddd = Higher-order 13 bits of disp16

[Descriptions] This instruction adds together the data in general-purpose register reg1 and the 16-bit

displacement data that is sign-extended to word length to generate a 32-bit address. The

lower-order 16 bits that are taken out of each element of vector register wreg3 are stored in

the address that is generated.

CAUTIONS

1. A misalignment exception (MAE) will occur if the address calculation results in a misaligned access.

2. Even when a nonzero value is set in bits 32 to 34, the opcode functions as the STVZ.H4 instruction. An RIE

exception does not occur in such cases. Moreover, the displacement operates as if the three lower-order bits were

set to 0.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 480 of 512
December 20, 2023

2.5.4.50 SUBADDF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Subtract/Add (single)

SUBADDF.S4
Extended floating-point subtract/add (Single precision)

[Instruction format] SUBADDF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) − WR[wreg1](w3)

WR[wreg3](w2) ← WR[wreg2](w2) + WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) − WR[wreg1](w1)

WR[wreg3](w0) ← WR[wreg2](w0) + WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 0 0 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction subtracts the single-precision floating-point format contents in the odd-

number elements of vector register wreg1 from the single-precision floating-point format

contents in the odd-number elements of vector register wreg2 and stores the results in the

odd-number elements of vector register wreg3.

This instruction also adds together the single-precision floating-point format contents in the

even-number elements of vector register wreg1 and the single-precision floating-point

format contents in the even-number elements of vector register wreg2 and stores the results

in the even-number elements of vector register wreg3.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 481 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result] <Even-number element>

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Odd-number element>

wreg2(B)

wreg1(A)
+Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B − A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 482 of 512
December 20, 2023

2.5.4.51 SUBADDNF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Subtract/Add Negative (single)

SUBADDNF.S4
Extended floating-point subtract/add negative (Single precision)

[Instruction format] SUBADDNF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← neg(WR[wreg2](w3) − WR[wreg1](w3))

WR[wreg3](w2) ← neg(WR[wreg2](w2) + WR[wreg1](w2))

WR[wreg3](w1) ← neg(WR[wreg2](w1) − WR[wreg1](w1))

WR[wreg3](w0) ← neg(WR[wreg2](w0) + WR[wreg1](w0))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 1 0 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction subtracts the single-precision floating-point format contents in the odd-

number elements of vector register wreg1 from the single-precision floating-point format

contents in the odd-number elements of vector register wreg2 and stores the results in the

odd-number elements of vector register wreg3 with their sign inverted.

The instruction also adds together the single-precision floating-point format contents in the

even-number elements of vector register wreg2 and the single-precision floating-point

format contents in the even-number elements of vector register wreg1 and stores the results

in the even-number elements of vector register wreg3 with their sign inverted.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 483 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result] <Even-number element>

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B + A)

+∞

−Normal

+0

−0

+∞ –∞ Q-NaN[V]

−∞ +∞ Q-NaN[V] +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Odd-number element>

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B – A) –∞
+∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ –∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 484 of 512
December 20, 2023

2.5.4.52 SUBADDNXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Subtract/Add Negative Exchange (single)

SUBADDNXF.S4
Extended floating-point subtract/add negative exchange (Single precision)

[Instruction format] SUBADDNXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← neg(WR[wreg2](w3) − WR[wreg1](w2))

WR[wreg3](w2) ← neg(WR[wreg2](w2) + WR[wreg1](w3))

WR[wreg3](w1) ← neg(WR[wreg2](w1) − WR[wreg1](w0))

WR[wreg3](w0) ← neg(WR[wreg2](w0) + WR[wreg1](w1))

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 1 1 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction subtracts the single-precision floating-point format contents in the even-

number elements of vector register wreg1 from the single-precision floating-point format

contents in the odd-number elements of vector register wreg2 and stores the results in the

odd-number elements of vector register wreg3 with their sign inverted.

The instruction also adds together the single-precision floating-point format contents in the

even-number elements of vector register wreg2 and the single-precision floating-point

format contents in the odd-number elements of vector register wreg1 and stores the results

in the even-number elements of vector register wreg3 with their sign inverted.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 485 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result] <Even-number element>

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B + A)

+∞

−Normal

+0

−0

+∞ –∞ Q-NaN[V]

−∞ +∞ Q-NaN[V] +∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Odd-number element>

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

–(B – A) −∞
+∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 486 of 512
December 20, 2023

2.5.4.53 SUBADDXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Subtract/Add Negative Exchange (single)

SUBADDXF.S4
Extended floating-point subtract/add exchange (Single precision)

[Instruction format] SUBADDXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) − WR[wreg1](w2)

WR[wreg3](w2) ← WR[wreg2](w2) + WR[wreg1](w3)

WR[wreg3](w1) ← WR[wreg2](w1) − WR[wreg1](w0)

WR[wreg3](w0) ← WR[wreg2](w0) + WR[wreg1](w1)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 1 0 1 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction subtracts the single-precision floating-point format contents in the even-

number elements of vector register wreg1 from the single-precision floating-point format

contents in the odd-number elements of vector register wreg2 and stores the results in the

odd-number elements of vector register wreg3.

The instruction also adds together the single-precision floating-point format contents in the

even-number elements of vector register wreg2 and the single-precision floating-point

format contents in the odd-number elements of vector register wreg1 and stores the results

in the even-number elements of vector register wreg3.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 487 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result] <Even-number element>

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B + A

−∞

−Normal

+0

−0

+∞ +∞ Q-NaN[V]

−∞ −∞ Q-NaN[V] −∞

Q-NaN Q-NaN

S-NaN Q-NaN[V]

<Odd-number element>

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B − A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 488 of 512
December 20, 2023

2.5.4.54 SUBF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Subtract (single)

SUBF.S4
Extended floating-point subtract (Single precision)

[Instruction format] SUBF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) − WR[wreg1](w3)

WR[wreg3](w2) ← WR[wreg2](w2) − WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) − WR[wreg1](w1)

WR[wreg3](w0) ← WR[wreg2](w0) − WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 0 0 1 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction subtracts the single-precision floating-point format contents in vector

register wreg1 from the single-precision floating-point format contents in each element of

vector register wreg2 and stores the results in the corresponding element of vector register

wreg3. The operation is executed as if it were of infinite accuracy and the result is rounded

in accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 489 of 512
December 20, 2023

[Operation result]

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B − A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 490 of 512
December 20, 2023

2.5.4.55 SUBRF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Subtract Reduction (single)

SUBRF.S4
Extended floating-point subtract reduction (Single precision)

[Instruction format] SUBRF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) − WR[wreg2](w2)

WR[wreg3](w2) ← WR[wreg1](w3) − WR[wreg1](w2)

WR[wreg3](w1) ← WR[wreg2](w1) − WR[wreg2](w0)

WR[wreg3](w0) ← WR[wreg1](w1) − WR[wreg1](w0)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 0 1 1 0 1 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction subtracts the single-precision floating-point format contents in the even-

number elements of vector register wreg2 from the single-precision floating-point format

contents in the odd-number elements of vector register wreg2 and stores the results in the

odd-number elements of vector register wreg3.

The instruction also subtracts the single-precision floating-point format contents in the

even-number elements of vector register wreg1 from the single-precision floating-point

format contents in the odd-number elements of vector register wreg1 and stores the results

in the even-number elements of vector register wreg3.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 491 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

B*4

A*4 +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B − A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

Note 4. Refer to [Operation] for the operands A and B that are input to produce the output.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 492 of 512
December 20, 2023

2.5.4.56 SUBXF.S4
<Extended Floating-point Instructions>

Floating-point SIMD Subtract Exchange (single)

SUBXF.S4
Extended floating-point subtract exchange (Single precision)

[Instruction format] SUBXF.S4 wreg1, wreg2, wreg3

[Operation] WR[wreg3](w3) ← WR[wreg2](w3) − WR[wreg1](w2)

WR[wreg3](w2) ← WR[wreg2](w2) − WR[wreg1](w3)

WR[wreg3](w1) ← WR[wreg2](w1) − WR[wreg1](w0)

WR[wreg3](w0) ← WR[wreg2](w0) − WR[wreg1](w1)

[Format] Format M: 3OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 1 1 1 0 0 0 1 1 0

wreg2 wreg1 wreg3 category sub-op

[Descriptions] This instruction subtracts the single-precision floating-point format contents in the even-

number elements of vector register wreg1 from the single-precision floating-point format

contents in the odd-number elements of vector register wreg2 and stores the results in the

odd-number elements of vector register wreg3.

The instruction also subtracts the single-precision floating-point format contents in the odd-

number elements of vector register wreg1 from the single-precision floating-point format

contents in the even-number elements of vector register wreg2 and stores the results in the

even-number elements of vector register wreg3.

The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 493 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(B)

wreg1(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

+Normal

B − A +∞
−∞

−Normal

+0

−0

+∞ −∞ Q-NaN[V]

−∞ +∞ Q-NaN[V]

Q-NaN Q-NaN

S-NaN Q-NaN[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 494 of 512
December 20, 2023

2.5.4.57 TRFSRV.W4
<Extended Floating-point Instructions>

Transfers compare result to PSW

TRFSRV.W4
Vector register flag transfer

[Instruction format] TRFSRV.W4 imm3, wreg2

[Operation] val0 ← WR[wreg2](w0) == 0 ? 0: 1

val1 ← WR[wreg2](w1) == 0 ? 0: 1

val2 ← WR[wreg2](w2) == 0 ? 0: 1

val3 ← WR[wreg2](w3) == 0 ? 0: 1

imm3 = 0: PSW.Z ← val0

imm3 = 1: PSW.Z ← val1

imm3 = 2: PSW.Z ← val2

imm3 = 3: PSW.Z ← val3

imm3 = 4: PSW.Z ← val3 & val2 & val1 & val0

imm3 = 5: PSW.Z ← val3 | val2 | val1 | val0

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 1 1 1 1 1 0 0 i i i 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op category sub-op

Where iii = 3-bit immediate data

[Descriptions] This instruction generates a 0 if the value of each element of vector register wreg2 is 0 and

a 1 if the value is not 0, performs the operation specified by the 3-bit immediate data, and

transfers the result to the Z flag in the PSW.

[Floating-point operation

exceptions]

None

NOTE

The value of PSW.Z becomes 0 if 6 or 7 is specified in imm3.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 495 of 512
December 20, 2023

2.5.4.58 TRNCF.SUW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Unsigned Word, round toward zero (single)

TRNCF.SUW4
Extended floating-point type conversion (Single precision → Unsigned integer)

[Instruction format] TRNCF.SUW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← trunc WR[wreg2](w3) (single → unsigned word)

WR[wreg3](w2) ← trunc WR[wreg2](w2) (single → unsigned word)

WR[wreg3](w1) ← trunc WR[wreg2](w1) (single → unsigned word)

WR[wreg3](w0) ← trunc WR[wreg2](w0) (single → unsigned word)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the single-precision floating-point format contents

in each element of vector register wreg2 to 32-bit unsigned integer format and stores the

results in the corresponding element of vector register wreg3.

The results are rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the

rounded result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation

exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to value of the source as follows:

● Source is a positive number outside the value range of 232 – 1 to 0, or +∞: 232 – 1 is

returned.

● Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 496 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0[V] 0 (Integer) Max U-Int[V] 0[V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 497 of 512
December 20, 2023

2.5.4.59 TRNCF.SW4
<Extended Floating-point Instructions>

Floating-point SIMD Convert Single to Word, round toward zero (single)

TRNCF.SW4
Extended floating-point type conversion (Single precision → Integer)

[Instruction format] TRNCF.SW4 wreg2, wreg3

[Operation] WR[wreg3](w3) ← trunc WR[wreg2](w3) (single → word)

WR[wreg3](w2) ← trunc WR[wreg2](w2) (single → word)

WR[wreg3](w1) ← trunc WR[wreg2](w1) (single → word)

WR[wreg3](w0) ← trunc WR[wreg2](w0) (single → word)

[Format] Format M: 2OP

[Opcode]

15 11 10 5 4 0 31 27 26 25 23 22 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 1 1 0 1 0 0 0 0 0

wreg2 sub-op wreg3 category sub-op

[Descriptions] This instruction arithmetically converts the single-precision floating-point format contents

in each element of vector register wreg2 to 32-bit integer format and stores the results in the

corresponding element of vector register wreg3.

The results are rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside

the range of 231 – 1 to – 231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FXSR

register is set as an invalid operation and no exception occurs. The return value differs

according to value of the source as follows:

● Source is a positive number or +∞: 231 – 1 is returned.

● Source is a negative number, not-a-number, or –∞: – 231 is returned.

[Floating-point operation

exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

RH850G4MH Software Section 2 Instruction

R01US0209EJ0220 Rev.2.20 Page 498 of 512
December 20, 2023

NOTE

The cause and preservation bit fields of the FXSR register are loaded with the ORs of the floating-point exceptions

occurring in the individual elements, respectively.

[Operation result]

wreg2(A) +Normal −Normal +0 −0 +∞ −∞ Q-NaN S-NaN

Operation
result

[exception]
A (Integer) 0 (Integer) Max Int[V] −Max Int [V]

Note 1. [] indicates an exception that must occur.

Note 2. When FXSR.FS = 1, the subnormal number is flushed to the normalized number which is

explained in the hardware manual of the product used.

Note 3. The results of operations performed on the elements will not affect one another.

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 499 of 512
December 20, 2023

Appendix A Number of Instruction Execution Clocks

A.1 Numbers of Clock Cycles for Execution
Numbers of clock cycles for execution are given in this section. Since the G4MH has a pipelined architecture that

differs from that of other CPUs, the various values given cannot be treated in a uniform manner. Moreover, the number

of clock cycles required to execute an actual instruction may differ with the state of execution of the previous and next

instructions.

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 500 of 512
December 20, 2023

A.2 Number of G4MH Instruction Execution Clocks
Legend of Execution Clocks

Symbol Description

issue When the other instruction is executed immediately after the execution of the current instruction

repeat When the same instruction is repeated immediately after the execution of the current instruction

latency When the following instruction uses the result of the current instruction

(1/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Load instruction LD.B disp16[reg1],reg2 4 1 1 3*1

LD.B disp23[reg1],reg3 6 1 1 3*1

LD.B [reg1]+,reg3 4 1 1 3*1, 1*19

LD.B [reg1]−,reg3 4 1 1 3*1, 1*19

LD.BU disp16[reg1],reg2 4 1 1 3*1

LD.BU disp23[reg1],reg3 6 1 1 3*1

LD.BU [reg1]+,reg3 4 1 1 3*1, 1*19

LD.BU [reg1]−,reg3 4 1 1 3*1, 1*19

LD.DW disp23[reg1],reg3 6 1 1 3*1

LD.H disp16[reg1],reg2 4 1 1 3*1

LD.H disp23[reg1],reg3 6 1 1 3*1

LD.H [reg1]+,reg3 4 1 1 3*1, 1*19

LD.H [reg1]−,reg3 4 1 1 3*1, 1*19

LD.HU disp16[reg1],reg2 4 1 1 3*1

LD.HU disp23[reg1],reg3 6 1 1 3*1

LD.HU [reg1]+,reg3 4 1 1 3*1, 1*19

LD.HU [reg1]−,reg3 4 1 1 3*1, 1*19

LD.W disp16[reg1],reg2 4 1 1 3*1

LD.W disp23[reg1],reg3 6 1 1 3*1

LD.W [reg1]+,reg3 4 1 1 3*1, 1*19

LD.W [reg1]−,reg3 4 1 1 3*1, 1*19

SLD.B disp7[ep],reg2 2 1 1 3*1

SLD.BU disp4[ep],reg2 2 1 1 3*1

SLD.H disp8[ep],reg2 2 1 1 3*1

SLD.HU disp5[ep],reg2 2 1 1 3*1

SLD.W disp8[ep],reg2 2 1 1 3*1

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 501 of 512
December 20, 2023

(2/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Store
instruction

ST.B reg2,disp16[reg1] 4 1 1 1

ST.B reg3,disp23[reg1] 6 1 1 1

ST.B reg3,[reg1]+ 4 1 1 1, 1*19

ST.B reg3,[reg1]− 4 1 1 1, 1*19

ST.DW reg3,disp23[reg1] 6 1 1 1

ST.H reg2,disp16[reg1] 4 1 1 1

ST.H reg3,disp23[reg1] 6 1 1 1

ST.H reg3,[reg1]+ 4 1 1 1, 1*19

ST.H reg3,[reg1]− 4 1 1 1, 1*19

ST.W reg2,disp16[reg1] 4 1 1 1

ST.W reg3,disp23[reg1] 6 1 1 1

ST.W reg3,[reg1]+ 4 1 1 1, 1*19

ST.W reg3,[reg1]− 4 1 1 1, 1*19

SST.B reg2,disp7[ep] 2 1 1 1

SST.H reg2,disp8[ep] 2 1 1 1

SST.W reg2,disp8[ep] 2 1 1 1

Bit manipulation
instruction

CLR1 bit#3,disp16[reg1] 4 1*22 1*22 8*2,*23

CLR1 reg2,[reg1] 4 1*22 1*22 8*2,*23

NOT1 bit#3,disp16[reg1] 4 1*22 1*22 8*2,*23

NOT1 reg2,[reg1] 4 1*22 1*22 8*2,*23

SET1 bit#3,disp16[reg1] 4 1*22 1*22 8*2,*23

SET1 reg2,[reg1] 4 1*22 1*22 8*2,*23

TST1 bit#3,disp16[reg1] 4 1*22 1*22 8*2,*23

TST1 reg2,[reg1] 4 1*22 1*22 8*2,*23

Special
instruction

CAXI [reg1],reg2,reg3 4 10*24 10*24 8*2,*17,

10*2,*17

DISPOSE*4 imm5,list12 4 N+1*3 N+2*3 N+1*3

LDL.BU [reg1],reg3 4 12*24 12*24 9*2,*17,

12*2,*17

LDL.HU [reg1],reg3 4 12*24 12*24 9*2,*17,

12*2,*17

LDL.W [reg1],reg3 4 12*24 12*24 9*2,*17,

12*2,*17

POPSP rh-rt 4 N+1*5 N+2*5 N+1*5

LDM.MP [reg1], eh-et 4 N+8*14,*25 N+8*14,*25 N+8*14,*25

PREPARE list12,imm5 4 N+1*3 N+2*3 N+1*3

PREPARE list12,imm5,sp 4 N+2*3 N+3*3 N+2*3

PREPARE list12,imm5,imm16 6 N+2*3 N+3*3 N+2*3

PREPARE list12,imm5,imm16<<16 6 N+2*3 N+3*3 N+2*3

PREPARE list12,imm5,imm32 8 N+2*3 N+3*3 N+2*3

PUSHSP rh-rt 4 N+1*5 N+2*5 N+1*5

RESBANK 4 25, 30*20 25, 30*20 25, 30*20

STC.B reg3,[reg1] 4 8, 12*18,*24 8, 12*18,*24 6, 10*18

STC.H reg3,[reg1] 4 8, 12*18,*24 8, 12*18,*24 6, 10*18

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 502 of 512
December 20, 2023

 (3/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Special
instruction

STC.W reg3,[reg1] 4 8, 12*18,*24 8, 12*18,*24 6, 10*18

STM.MP eh-et, [reg1] 4 N+2*14,*25 N+2*14,*25 N+2*14,*25

Multiplication
instruction

MUL reg1,reg2,reg3 4 1 1 3

MUL imm9,reg2,reg3 4 1 1 3

MULH reg1,reg2 2 1 1 3

MULH imm5,reg2 2 1 1 3

MULHI imm16,reg1,reg2 4 1 1 3

MULU reg1,reg2,reg3 4 1 1 3

MULU imm9,reg2,reg3 4 1 1 3

Multiply-
accumulate
operation
instruction

MAC reg1,reg2,reg3,reg4 4 2 2 4

MACU reg1,reg2,reg3,reg4 4 2 2 4

Arithmetic
instruction

ADD reg1,reg2 2 1 1 1

ADD imm5,reg2 2 1 1 1

ADDI imm16,reg1,reg2 4 1 1 1

CMP reg1,reg2 2 1 1 1

CMP imm5,reg2 2 1 1 1

MOV reg1,reg2 2 1 1 1

MOV imm5,reg2 2 1 1 1

MOV imm32,reg1 6 1 1 1

MOVEA imm16,reg1,reg2 4 1 1 1

MOVHI imm16,reg1,reg2 4 1 1 1

SUB reg1,reg2 2 1 1 1

SUBR reg1,reg2 2 1 1 1

Conditional
operation
instruction

ADF cccc,reg1,reg2,reg3 4 1 1 1

SBF cccc,reg1,reg2,reg3 4 1 1 1

Saturated
operation
instruction

SATADD reg1,reg2 2 1 1 1

SATADD imm5,reg2 2 1 1 1

SATADD reg1,reg2,reg3 4 1 1 1

SATSUB reg1,reg2 2 1 1 1

SATSUB reg1,reg2,reg3 4 1 1 1

SATSUBI imm16,reg1,reg2 4 1 1 1

SATSUBR reg1,reg2 2 1 1 1

Logical
instruction

AND reg1,reg2 2 1 1 1

ANDI imm16,reg1,reg2 4 1 1 1

NOT reg1,reg2 2 1 1 1

OR reg1,reg2 2 1 1 1

ORI imm16,reg1,reg2 4 1 1 1

TST reg1,reg2 2 1 1 1

XOR reg1,reg2 2 1 1 1

XORI imm16,reg1,reg2 4 1 1 1

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 503 of 512
December 20, 2023

(4/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Data operation
instruction

BINS reg1,pos,width,reg2 4 1 1 1

BSH reg2,reg3 4 1 1 1

BSW reg2,reg3 4 1 1 1

CLIP.B reg1,reg2 4 1 1 1

CLIP.BU reg1,reg2 4 1 1 1

CLIP.H reg1,reg2 4 1 1 1

CLIP.HU reg1,reg2 4 1 1 1

CMOV cccc,reg1,reg2,reg3 4 1 1 1

CMOV cccc,imm5,reg2,reg3 4 1 1 1

HSH reg2,reg3 4 1 1 1

HSW reg2,reg3 4 1 1 1

ROTL imm5,reg2,reg3 4 1 1 1

ROTL reg1,reg2,reg3 4 1 1 1

SAR reg1,reg2 4 1 1 1

SAR imm5,reg2 2 1 1 1

SAR reg1,reg2,reg3 4 1 1 1

SASF cccc,reg2 4 1 1 1

SETF cccc,reg2 4 1 1 1

SHL reg1,reg2 4 1 1 1

SHL imm5,reg2 2 1 1 1

SHL reg1,reg2,reg3 4 1 1 1

SHR reg1,reg2 4 1 1 1

SHR imm5,reg2 2 1 1 1

SHR reg1,reg2,reg3 4 1 1 1

SXB reg1 2 1 1 1

SXH reg1 2 1 1 1

ZXB reg1 2 1 1 1

ZXH reg1 2 1 1 1

Bit search
instruction

SCH0L reg2,reg3 4 1 1 1

SCH0R reg2,reg3 4 1 1 1

SCH1L reg2,reg3 4 1 1 1

SCH1R reg2,reg3 4 1 1 1

Division
instruction

DIV reg1,reg2,reg3 4 1 19 19

DIVH reg1,reg2 2 1 19 19

DIVH reg1,reg2,reg3 4 1 19 19

DIVHU reg1,reg2,reg3 4 1 19 19

DIVU reg1,reg2,reg3 4 1 19 19

High-speed
divide operation
instruction

DIVQ reg1,reg2,reg3 4 1 N+3*6 N+3*6

DIVQU reg1,reg2,reg3 4 1 N+3*6 N+3*6

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 504 of 512
December 20, 2023

(5/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Branch
instruction*7

Bcond disp9 2 2/6*8 2/6*8 2/6*8

Bcond disp9 (Always) 2 2/3*8 2/3*8 2/3*8

Bcond disp17 4 2/6*8 2/6*8 2/6*8

JARL disp22,reg2 4 2/3*8 2/3*8 2/3*8

JARL disp32,reg1 6 2/3*8 2/3*8 2/3*8

JARL [reg1],reg3 4 2/6*8 2/6*8 2/6*8

JMP [reg1] 2 2/6*8 2/6*8 2/6*8

JMP disp32[reg1] 6 2/7*8 2/7*8 2/7*8

JR disp22 4 2/3*8 2/3*8 2/3*8

JR disp32 6 2/3*8 2/3*8 2/3*8

Loop instruction LOOP reg1,disp16 4 2/6*8 2/6*8 2/6*8

Special
instruction
(with branching)

CALLT imm6 2 17 17 17

CTRET — 4 8 8 8

DISPOSE imm5,list12,[reg1] 4 N+1/+8*9 N+2/+8*9 N+1/+8*9

EIRET — 4 8 8 8

FERET — 4 8 8 8

FETRAP vector 2 8 8 8

RIE — 4 8 8 8

TRAP vector5 4 8 8 8

SWITCH reg1 2 11, 18*8 11, 18*8 11, 18*8

SYSCALL vector8 4 17 17 17

Special
instruction

DI — 4 2 2 2

EI — 4 2 2 2

HALT — 4 *21 *21 *21

LDSR reg2,regID,selID 4 1*10 1*10 1

NOP — 2 1 1 1

SNOOZE — 4 *11 *11 *11

STSR regID,reg2,selID 4 1*10 1*10 3

SYNCE — 2 1 1 1

SYNCI — 2 *12 *12 *12

SYNCM — 2 *13 *13 *13

SYNCP — 2 *14 *14 *14

Cache
instruction

CACHE cacheop,[reg1] 4 *15 *15 *15

PREF prefop,[reg1] 4 *15 *15 *15

Floating-point
arithmetic
operation
(single
precision)

ABSF.S reg2,reg3 4 1 1 4

ADDF.S reg1,reg2,reg3 4 1 1 4

CEILF.SL reg2,reg3 4 1 1 4

CEILF.SUL reg2,reg3 4 1 1 4

CEILF.SUW reg2,reg3 4 1 1 4

CEILF.SW reg2,reg3 4 1 1 4

CMOVF.S cc,reg1,reg2,reg3 4 1 1 4

CMPF.S cond,reg1,reg2,cc 4 1 1 1

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 505 of 512
December 20, 2023

(6/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Floating-point
arithmetic
operation
(single
precision)

CVTF.HS reg2,reg3 4 1 1 4

CVTF.LS reg2,reg3 4 1 1 4

CVTF.SH reg2,reg3 4 1 1 4

CVTF.SL reg2,reg3 4 1 1 4

CVTF.SUL reg2,reg3 4 1 1 4

CVTF.SUW reg2,reg3 4 1 1 4

CVTF.SW reg2,reg3 4 1 1 4

CVTF.ULS reg2,reg3 4 1 1 4

CVTF.UWS reg2,reg3 4 1 1 4

CVTF.WS reg2,reg3 4 1 1 4

DIVF.S reg1,reg2,reg3 4 8*16 8 11

FLOORF.SL reg2,reg3 4 1 1 4

FLOORF.SUL reg2,reg3 4 1 1 4

FLOORF.SUW reg2,reg3 4 1 1 4

FLOORF.SW reg2,reg3 4 1 1 4

FMAF.S reg1,reg2,reg3 4 1 1 4

FMSF.S reg1,reg2,reg3 4 1 1 4

FNMAF.S reg1,reg2,reg3 4 1 1 4

FNMSF.S reg1,reg2,reg3 4 1 1 4

MAXF.S reg1,reg2,reg3 4 1 1 4

MINF.S reg1,reg2,reg3 4 1 1 4

MULF.S reg1,reg2,reg3 4 1 1 4

NEGF.S reg2,reg3 4 1 1 4

RECIPF.S reg2,reg3 4 8*16 8 11

ROUNDF.SL reg2,reg3 4 1 1 4

ROUNDF.SUL reg2,reg3 4 1 1 4

ROUNDF.SUW reg2,reg3 4 1 1 4

ROUNDF.SW reg2,reg3 4 1 1 4

RSQRTF.S reg2,reg3 4 21*16 21 24

SQRTF.S reg2,reg3 4 14*16 14 17

SUBF.S reg1,reg2,reg3 4 1 1 4

TRFSR cc 4 1 1 5

TRNCF.SL reg2,reg3 4 1 1 4

TRNCF.SUL reg2,reg3 4 1 1 4

TRNCF.SUW reg2,reg3 4 1 1 4

TRNCF.SW reg2,reg3 4 1 1 4

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 506 of 512
December 20, 2023

(7/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Floating-point
arithmetic
operation
(double
precision)

ABSF.D reg2,reg3 4 1 1 4

ADDF.D reg1,reg2,reg3 4 1 1 4

CEILF.DL reg2,reg3 4 1 1 4

CEILF.DUL reg2,reg3 4 1 1 4

CEILF.DUW reg2,reg3 4 1 1 4

CEILF.DW reg2,reg3 4 1 1 4

CMOVF.D cc,reg1,reg2,reg3 4 1 1 4

CMPF.D cond,reg1,reg2,cc 4 1 1 1

CVTF.DL reg2,reg3 4 1 1 4

CVTF.DS reg2,reg3 4 1 1 4

CVTF.DUL reg2,reg3 4 1 1 4

CVTF.DUW reg2,reg3 4 1 1 4

CVTF.DW reg2,reg3 4 1 1 4

CVTF.LD reg2,reg3 4 1 1 4

CVTF.SD reg2,reg3 4 1 1 4

CVTF.ULD reg2,reg3 4 1 1 4

CVTF.UWD reg2,reg3 4 1 1 4

CVTF.WD reg2,reg3 4 1 1 4

DIVF.D reg1,reg2,reg3 4 16*16 16 19

FLOORF.DL reg2,reg3 4 1 1 4

FLOORF.DUL reg2,reg3 4 1 1 4

FLOORF.DUW reg2,reg3 4 1 1 4

FLOORF.DW reg2,reg3 4 1 1 4

MAXF.D reg1,reg2,reg3 4 1 1 4

MINF.D reg1,reg2,reg3 4 1 1 4

MULF.D reg1,reg2,reg3 4 4 4 7

NEGF.D reg2,reg3 4 1 1 4

RECIPF.D reg2,reg3 4 16*16 16 19

ROUNDF.DL reg2,reg3 4 1 1 4

ROUNDF.DUL reg2,reg3 4 1 1 4

ROUNDF.DUW reg2,reg3 4 1 1 4

ROUNDF.DW reg2,reg3 4 1 1 4

RSQRTF.D reg2,reg3 4 45*16 45 48

SQRTF.D reg2,reg3 4 30*16 30 33

SUBF.D reg1,reg2,reg3 4 1 1 4

TRNCF.DL reg2,reg3 4 1 1 4

TRNCF.DUL reg2,reg3 4 1 1 4

TRNCF.DUW reg2,reg3 4 1 1 4

TRNCF.DW reg2,reg3 4 1 1 4

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 507 of 512
December 20, 2023

(8/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Extended
floating-point
arithmetic
operation

ABSF.S4 wreg2,wreg3 4 1 1 1

ADDF.S4 wreg1,wreg2,wreg3 4 2 2 5

ADDRF.S4 wreg1,wreg2,wreg3 4 2 2 5

ADDSUBF.S4 wreg1,wreg2,wreg3 4 2 2 5

ADDSUBNF.S4 wreg1,wreg2,wreg3 4 2 2 5

ADDSUBNXF.S4 wreg1,wreg2,wreg3 4 2 2 5

ADDSUBXF.S4 wreg1,wreg2,wreg3 4 2 2 5

ADDXF.S4 wreg1,wreg2,wreg3 4 2 2 5

CEILF.SUW4 wreg2,wreg3 4 2 2 5

CEILF.SW4 wreg2,wreg3 4 2 2 5

CMOVF.W4 wreg4,wreg1,wreg2,wreg3 6 1 1 1

CMPF.S4 fcond,wreg1,wreg2,wreg3 4 2 2 5

CVTF.HS4 wreg2,wreg3 4 2 2 5

CVTF.SH4 wreg2,wreg3 4 2 2 5

CVTF.SUW4 wreg2,wreg3 4 2 2 5

CVTF.SW4 wreg2,wreg3 4 2 2 5

CVTF.UWS4 wreg2,wreg3 4 2 2 5

CVTF.WS4 wreg2,wreg3 4 2 2 5

DIVF.S4 wreg1,wreg2,wreg3 4 16 16 19

FLOORF.SUW4 wreg2,wreg3 4 2 2 5

FLOORF.SW4 wreg2,wreg3 4 2 2 5

FLPV.S4 imm2,wreg2,wreg3 4 1 1 1

FMAF.S4 wreg1,wreg2,wreg3 4 2 2 5

FMSF.S4 wreg1,wreg2,wreg3 4 2 2 5

FNMAF.S4 wreg1,wreg2,wreg3 4 2 2 5

FNMSF.S4 wreg1,wreg2,wreg3 4 2 2 5

LDV.DW imm2,disp16[reg1],wreg3 6 1 1 4

LDV.QW disp16[reg1],wreg3 6 1 1 4

LDV.W imm4,disp16[reg1],wreg3 6 1 1 4

LDVZ.H4 disp16[reg1],wreg3 6 1 1 4

MAXF.S4 wreg1,wreg2,wreg3 4 2 2 5

MAXRF.S4 wreg1,wreg2,wreg3 4 2 2 5

MINF.S4 wreg1,wreg2,wreg3 4 2 2 5

MINRF.S4 wreg1,wreg2,wreg3 4 2 2 5

MOVV.W4 wreg2,wreg3 4 1 1 1

MULF.S4 wreg1,wreg2,wreg3 4 2 2 5

MULRF.S4 wreg1,wreg2,wreg3 4 2 2 5

MULXF.S4 wreg1,wreg2,wreg3 4 2 2 5

NEGF.S4 wreg2,wreg3 4 1 1 1

RECIPF.S4 wreg2,wreg3 4 16 16 19

ROUNDF.SUW4 wreg2,wreg3 4 2 2 5

ROUNDF.SW4 wreg2,wreg3 4 2 2 5

RSQRTF.S4 wreg2,wreg3 4 42 42 45

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 508 of 512
December 20, 2023

(9/9)

Types of
Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Extended
floating-point
arithmetic
operation

SHFLV.W4 imm12,wreg1,wreg2,wreg3 6 1 1 1

SQRTF.S4 wreg2,wreg3 4 28 28 31

STV.DW imm1,wreg3,disp16[reg1] 6 1 1 1

STV.QW wreg3,disp16[reg1] 6 1 1 1

STV.W imm2,wreg3,disp16[reg1] 6 1 1 1

STVZ.H4 wreg3,disp16[reg1] 6 1 1 1

SUBADDF.S4 wreg1,wreg2,wreg3 4 2 2 5

SUBADDNF.S4 wreg1,wreg2,wreg3 4 2 2 5

SUBADDNXF.S4 wreg1,wreg2,wreg3 4 2 2 5

SUBADDXF.S4 wreg1,wreg2,wreg3 4 2 2 5

SUBF.S4 wreg1,wreg2,wreg3 4 2 2 5

SUBRF.S4 wreg1,wreg2,wreg3 4 2 2 5

SUBXF.S4 wreg1,wreg2,wreg3 4 2 2 5

TRFSRV.W4 imm3,wreg2 4 1 1 1

TRNCF.SUW4 wreg2,wreg3 4 2 2 5

TRNCF.SW4 wreg2,wreg3 4 2 2 5

Note 1. If there are no wait states (cycles of waiting) associated with the memory access

Note 2. If there are no wait states (cycles of waiting) associated with the memory access

Note 3. N depends on the total number of registers specified as list12. It is independent of the arrangement of the register numbers.

Since up to two registers are handled in one cycle, the value if there are no wait states will be as follows.

 PREPARE: The minimum value is 1, and the maximum value is 6

 (one clock cycle is also added if the instruction includes updating of the EP register)

 DISPOSE: The minimum value is 1, and the maximum value is 6 (two clock cycles are added for JMP)

Note 4. This is the value of DISPOSE without branching. For details of DISPOSE with branching, refer to [Special instruction (with

branching)].

Note 5. N depends on the total number of registers specified as rh-rt.

Since up to two registers are handled in one cycle, the value if there are no wait states will be as follows.

 PUSHSP: The minimum value is 1, and the maximum value is 16

 POPSP: The minimum value is 1, and the maximum value is 16

Note 6. N = int (((Number of bits in the absolute value of the dividend) - (Number of bits in the absolute value of the divisor)) / 2) + 1.

However, when N < 1, N becomes 1, except in the case of division by zero, where N becomes 0. The range of N is 0 to 16.

Note 7. The number to the left of “/” indicates the number of clock cycles for execution at the time of a match with the predicted

branch destination, and the number to the right indicates the number of cycles for execution in the case of a non-match with

the predicted branch destination. The number of cycles for execution for instructions that do not perform branch prediction is

constant.

Note 8. If the branch prediction function is not used, whether it is or is not included, when the condition is met the number will be the

same as that for a non-match with the predicted branch destination, and when the condition is not met, it will be the same as

that for a match with the predicted branch destination. There is no change in the number of clock cycles even when the

instruction is immediately preceded by an instruction to rewrite the contents of the PSW.

Note 9. In a DISPOSE instruction with JMP, the branch is predicted. In the case of a non-match with the predicted branch destination,

the values for “issue” and “repeat” will be the same. Refer to Note 3 for the value of N.

Note 10. SelID = 0, 1, 2, 3, 5 (however, regID is 15 or less). Access to system register 10, 13 stops the issuing of subsequent

instruction. Otherwise, operation is with “issue” = 1, “repeat” = 1.

Note 11. Depends on the setting for operation of the SNOOZE instruction.

Note 12. Performs processing to synchronize instruction fetching.

RH850G4MH Software Appendix A Number of Instruction Execution Clocks

R01US0209EJ0220 Rev.2.20 Page 509 of 512
December 20, 2023

Note 13. Performs processing to synchronize memory access.

Note 14. Performs processing to synchronize pipeline.

Note 15. The instruction execution is completed, but completion of the internal processing depends on the internal state of the

instruction fetching unit.

Note 16. The “issue” value for instructions other than those involving floating point division (DIVF, RECIPF, RSQRTF, SQRTF) will be

1.

Note 17. The number of cycles differs according to whether the point for reference to the result of executing instruction is not or is the

load store unit, and are shown in that order.

Note 18. The number of cycles differs according to whether the STC instruction succeeds or fails. The order of the numbers is that for

failure, and then that for success.

Note 19. In the case of reference to the result of updating the base address.

Note 20. The number of cycles depends on the RBCR0.MD value. The left value for RBCR0.MD = 0, and the right value for

RBCR0.MD = 1.

Note 21. After waiting like the one due to the SYNCM instruction has finished, the execution changes to a HALT state.

Note 22. The subsequent instruction is accepted, but the blocking operation is performed for 6 cycles or more in memory access after

storing data to the store buffer inside the load store unit.

Note 23. To use the flag result, one-cycle penalty is always added to the latency.

Note 24. The number of execution clock cycles for “issue” and “repeat” of these instructions differs greatly from that of the CPU of

G3MH. This is because the pipelined architecture of the CPU of G4MH has been changed from that of G3MH, and therefore

measurement of execution clock cycles for “issue” and “repeat” of these instructions requires inclusion of the number of bus

access cycles.

Note 25. N is included in the total number of MPU entries specified in eh-et. Each entry has 3 registers, and since up to two registers

are processed in one cycle, the value if there are no wait states will be as follows.

N = int (Number of saved and restored MPU entries x 1.5 + 0.5); however, N is in the range of 0 to 32.

RH850G4MH Software REVISION HISTORY

R01US0209EJ0220 Rev.2.20 Page 510 of 512
December 20, 2023

REVISION HISTORY RH850G4MH User’s Manual: Software

Page Description Classification

— Unification of r01us0209ej0100 and r01us0431ej0050 with improvement Classification —

RH850G4MH User’s Manual: Software

Publication Date: Rev.1.00 Mar 30, 2018

 Rev.2.20 December 20, 2023

Published by: Renesas Electronics Corporation

RH850G4MH

R01US0209EJ0220

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Table of Contents
	Section 1 Overview
	1.1 Purpose of This User’s Manual
	1.2 Features of the RH850G4MH
	1.2.1 Multiprocessing Environment

	Section 2 Instruction
	2.1 Opcodes and Instruction Formats
	2.1.1 CPU Instructions
	(1) reg-reg Instruction (Format I)
	(2) imm-reg Instruction (Format II)
	(3) Conditional Branch Instruction (Format III)
	(4) 16-Bit Load/Store Instruction (Format IV)
	(5) Jump Instruction (Format V)
	(6) 3-Operand Instruction (Format VI)
	(7) 32-Bit Load/Store Instruction (Format VII)
	(8) Bit Manipulation Instruction (Format VIII)
	(9) Extended Instruction Format 1 (Format IX)
	(10) Extended Instruction Format 2 (Format X)
	(11) Extended Instruction Format 3 (Format XI)
	(12) Extended Instruction Format 4 (Format XII)
	(13) Stack Manipulation Instruction Format (Format XIII)
	(14) Load/Store Instruction 48-Bit Format (Format XIV)

	2.1.2 Coprocessor Instructions
	(1) Coprocessor Instruction Format 1
	(2) Coprocessor Instruction Format 2
	(3) Coprocessor Unusable Exception
	(4) Coprocessor Instruction Code and Corresponding Coprocessor

	2.1.3 Reserved Instructions

	2.2 Basic Instructions
	2.2.1 Overview of Basic Instructions
	(1) Load Instructions
	(2) Store Instructions
	(3) Multiply Instructions
	(4) Multiply-accumulate Instructions
	(5) Arithmetic Instructions
	(6) Conditional Arithmetic Instructions
	(7) Saturated Operation Instructions
	(8) Logical Instructions
	(9) Data Manipulation Instructions
	(10) Bit Search Instructions
	(11) Divide Instructions
	(12) High-speed Divide Instructions
	(13) Branch Instructions
	(14) Loop Instruction
	(15) Bit Manipulation Instructions
	(16) Special Instructions

	2.2.2 Special Operations
	(1) Divide by Zero

	2.2.3 Basic Instruction Set
	2.2.3.1 ADD
	2.2.3.2 ADDI
	2.2.3.3 ADF
	2.2.3.4 AND
	2.2.3.5 ANDI
	2.2.3.6 Bcond
	2.2.3.7 BINS
	2.2.3.8 BSH
	2.2.3.9 BSW
	2.2.3.10 CALLT
	2.2.3.11 CAXI
	2.2.3.12 CLIP.B
	2.2.3.13 CLIP.BU
	2.2.3.14 CLIP.H
	2.2.3.15 CLIP.HU
	2.2.3.16 CLL
	2.2.3.17 CLR1
	2.2.3.18 CMOV
	2.2.3.19 CMP
	2.2.3.20 CTRET
	2.2.3.21 DI
	2.2.3.22 DISPOSE
	2.2.3.23 DIV
	2.2.3.24 DIVH
	2.2.3.25 DIVHU
	2.2.3.26 DIVQ
	2.2.3.27 DIVQU
	2.2.3.28 DIVU
	2.2.3.29 EI
	2.2.3.30 EIRET
	2.2.3.31 FERET
	2.2.3.32 FETRAP
	2.2.3.33 HALT
	2.2.3.34 HSH
	2.2.3.35 HSW
	2.2.3.36 JARL
	2.2.3.37 JMP
	2.2.3.38 JR
	2.2.3.39 LD.B
	2.2.3.40 LD.BU
	2.2.3.41 LD.DW
	2.2.3.42 LD.H
	2.2.3.43 LD.HU
	2.2.3.44 LD.W
	2.2.3.45 LDL.BU
	2.2.3.46 LDL.HU
	2.2.3.47 LDL.W
	2.2.3.48 LDM.MP
	2.2.3.49 LDSR
	2.2.3.50 LOOP
	2.2.3.51 MAC
	2.2.3.52 MACU
	2.2.3.53 MOV
	2.2.3.54 MOVEA
	2.2.3.55 MOVHI
	2.2.3.56 MUL
	2.2.3.57 MULH
	2.2.3.58 MULHI
	2.2.3.59 MULU
	2.2.3.60 NOP
	2.2.3.61 NOT
	2.2.3.62 NOT1
	2.2.3.63 OR
	2.2.3.64 ORI
	2.2.3.65 POPSP
	2.2.3.66 PREPARE
	2.2.3.67 PUSHSP
	2.2.3.68 RESBANK
	2.2.3.69 RIE
	2.2.3.70 ROTL
	2.2.3.71 SAR
	2.2.3.72 SASF
	2.2.3.73 SATADD
	2.2.3.74 SATSUB
	2.2.3.75 SATSUBI
	2.2.3.76 SATSUBR
	2.2.3.77 SBF
	2.2.3.78 SCH0L
	2.2.3.79 SCH0R
	2.2.3.80 SCH1L
	2.2.3.81 SCH1R
	2.2.3.82 SET1
	2.2.3.83 SETF
	2.2.3.84 SHL
	2.2.3.85 SHR
	2.2.3.86 SLD.B
	2.2.3.87 SLD.BU
	2.2.3.88 SLD.H
	2.2.3.89 SLD.HU
	2.2.3.90 SLD.W
	2.2.3.91 SNOOZE
	2.2.3.92 SST.B
	2.2.3.93 SST.H
	2.2.3.94 SST.W
	2.2.3.95 ST.B
	2.2.3.96 ST.DW
	2.2.3.97 ST.H
	2.2.3.98 ST.W
	2.2.3.99 STC.B
	2.2.3.100 STC.H
	2.2.3.101 STC.W
	2.2.3.102 STM.MP
	2.2.3.103 STSR
	2.2.3.104 SUB
	2.2.3.105 SUBR
	2.2.3.106 SWITCH
	2.2.3.107 SXB
	2.2.3.108 SXH
	2.2.3.109 SYNCE
	2.2.3.110 SYNCI
	2.2.3.111 SYNCM
	2.2.3.112 SYNCP
	2.2.3.113 SYSCALL
	2.2.3.114 TRAP
	2.2.3.115 TST
	2.2.3.116 TST1
	2.2.3.117 XOR
	2.2.3.118 XORI
	2.2.3.119 ZXB
	2.2.3.120 ZXH

	2.3 Cache Instructions
	2.3.1 Overview of Cache Instructions
	2.3.2 Cache Instruction Set
	2.3.2.1 CACHE
	2.3.2.2 PREF

	2.4 Floating-Point Instructions
	2.4.1 Instruction Formats
	(1) Format F: I

	2.4.2 Overview of Floating-Point Instructions
	(1) Basic Operation Instructions
	(2) Extended Basic Operation Instructions
	(3) Conversion Instructions
	(4) Comparison Instructions
	(5) Conditional Move Instructions
	(6) Condition Bit Transfer Instruction

	2.4.3 Conditions for Comparison Instructions
	2.4.4 Floating-Point Instruction Set
	2.4.4.1 ABSF.D
	2.4.4.2 ABSF.S
	2.4.4.3 ADDF.D
	2.4.4.4 ADDF.S
	2.4.4.5 CEILF.DL
	2.4.4.6 CEILF.DUL
	2.4.4.7 CEILF.DUW
	2.4.4.8 CEILF.DW
	2.4.4.9 CEILF.SL
	2.4.4.10 CEILF.SUL
	2.4.4.11 CEILF.SUW
	2.4.4.12 CEILF.SW
	2.4.4.13 CMOVF.D
	2.4.4.14 CMOVF.S
	2.4.4.15 CMPF.D
	2.4.4.16 CMPF.S
	2.4.4.17 CVTF.DL
	2.4.4.18 CVTF.DS
	2.4.4.19 CVTF.DUL
	2.4.4.20 CVTF.DUW
	2.4.4.21 CVTF.DW
	2.4.4.22 CVTF.HS
	2.4.4.23 CVTF.LD
	2.4.4.24 CVTF.LS
	2.4.4.25 CVTF.SD
	2.4.4.26 CVTF.SL
	2.4.4.27 CVTF.SH
	2.4.4.28 CVTF.SUL
	2.4.4.29 CVTF.SUW
	2.4.4.30 CVTF.SW
	2.4.4.31 CVTF.ULD
	2.4.4.32 CVTF.ULS
	2.4.4.33 CVTF.UWD
	2.4.4.34 CVTF.UWS
	2.4.4.35 CVTF.WD
	2.4.4.36 CVTF.WS
	2.4.4.37 DIVF.D
	2.4.4.38 DIVF.S
	2.4.4.39 FLOORF.DL
	2.4.4.40 FLOORF.DUL
	2.4.4.41 FLOORF.DUW
	2.4.4.42 FLOORF.DW
	2.4.4.43 FLOORF.SL
	2.4.4.44 FLOORF.SUL
	2.4.4.45 FLOORF.SUW
	2.4.4.46 FLOORF.SW
	2.4.4.47 FMAF.S
	2.4.4.48 FMSF.S
	2.4.4.49 FNMAF.S
	2.4.4.50 FNMSF.S
	2.4.4.51 MAXF.D
	2.4.4.52 MAXF.S
	2.4.4.53 MINF.D
	2.4.4.54 MINF.S
	2.4.4.55 MULF.D
	2.4.4.56 MULF.S
	2.4.4.57 NEGF.D
	2.4.4.58 NEGF.S
	2.4.4.59 RECIPF.D
	2.4.4.60 RECIPF.S
	2.4.4.61 ROUNDF.DL
	2.4.4.62 ROUNDF.DUL
	2.4.4.63 ROUNDF.DUW
	2.4.4.64 ROUNDF.DW
	2.4.4.65 ROUNDF.SL
	2.4.4.66 ROUNDF.SUL
	2.4.4.67 ROUNDF.SUW
	2.4.4.68 ROUNDF.SW
	2.4.4.69 RSQRTF.D
	2.4.4.70 RSQRTF.S
	2.4.4.71 SQRTF.D
	2.4.4.72 SQRTF.S
	2.4.4.73 SUBF.D
	2.4.4.74 SUBF.S
	2.4.4.75 TRFSR
	2.4.4.76 TRNCF.DL
	2.4.4.77 TRNCF.DUL
	2.4.4.78 TRNCF.DUW
	2.4.4.79 TRNCF.DW
	2.4.4.80 TRNCF.SL
	2.4.4.81 TRNCF.SUL
	2.4.4.82 TRNCF.SUW
	2.4.4.83 TRNCF.SW

	2.5 Extended Floating-point Instructions
	2.5.1 Instruction Format
	(1) Format M: 2OP
	(2) Format M: 3OP
	(3) Format M: 4OP
	(4) Format M: imm12
	(5) Format M: D

	2.5.2 Extended Floating-point Instruction Set
	2.5.3 Overview of the Extended Floating-point Vector Manipulation Instructions
	(1) Vector Data Copy Instruction
	(2) Data Rearrangement Instructions
	(3) Load to Vector Register Instructions
	(4) Store from Vector Register Instructions
	(5) Comparison/Conditional Move Instructions

	2.5.4 Overview of the Extended Floating-point Vector Arithmetic Instructions
	(1) Basic Arithmetic Instructions
	(2) Extended Basic Operation Instructions
	(3) Compound Arithmetic Instructions
	(4) Exchange Arithmetic Instructions
	(5) Compound Exchange Arithmetic Instructions
	(6) Reduction Arithmetic Instructions
	(7) Conversion Instructions
	(8) Comparison Instruction
	2.5.4.1 ABSF.S4
	2.5.4.2 ADDF.S4
	2.5.4.3 ADDRF.S4
	2.5.4.4 ADDSUBF.S4
	2.5.4.5 ADDSUBNF.S4
	2.5.4.6 ADDSUBNXF.S4
	2.5.4.7 ADDSUBXF.S4
	2.5.4.8 ADDXF.S4
	2.5.4.9 CEILF.SUW4
	2.5.4.10 CEILF.SW4
	2.5.4.11 CMOVF.W4
	2.5.4.12 CMPF.S4
	2.5.4.13 CVTF.HS4
	2.5.4.14 CVTF.SH4
	2.5.4.15 CVTF.SUW4
	2.5.4.16 CVTF.SW4
	2.5.4.17 CVTF.UWS4
	2.5.4.18 CVTF.WS4
	2.5.4.19 DIVF.S4
	2.5.4.20 FLOORF.SUW4
	2.5.4.21 FLOORF.SW4
	2.5.4.22 FLPV.S4
	2.5.4.23 FMAF.S4
	2.5.4.24 FMSF.S4
	2.5.4.25 FNMAF.S4
	2.5.4.26 FNMSF.S4
	2.5.4.27 LDV.DW
	2.5.4.28 LDV.QW
	2.5.4.29 LDV.W
	2.5.4.30 LDVZ.H4
	2.5.4.31 MAXF.S4
	2.5.4.32 MAXRF.S4
	2.5.4.33 MINF.S4
	2.5.4.34 MINRF.S4
	2.5.4.35 MOVV.W4
	2.5.4.36 MULF.S4
	2.5.4.37 MULRF.S4
	2.5.4.38 MULXF.S4
	2.5.4.39 NEGF.S4
	2.5.4.40 RECIPF.S4
	2.5.4.41 ROUNDF.SUW4
	2.5.4.42 ROUNDF.SW4
	2.5.4.43 RSQRTF.S4
	2.5.4.44 SHFLV.W4
	2.5.4.45 SQRTF.S4
	2.5.4.46 STV.DW
	2.5.4.47 STV.QW
	2.5.4.48 STV.W
	2.5.4.49 STVZ.H4
	2.5.4.50 SUBADDF.S4
	2.5.4.51 SUBADDNF.S4
	2.5.4.52 SUBADDNXF.S4
	2.5.4.53 SUBADDXF.S4
	2.5.4.54 SUBF.S4
	2.5.4.55 SUBRF.S4
	2.5.4.56 SUBXF.S4
	2.5.4.57 TRFSRV.W4
	2.5.4.58 TRNCF.SUW4
	2.5.4.59 TRNCF.SW4

	Appendix A Number of Instruction Execution Clocks
	A.1 Numbers of Clock Cycles for Execution
	A.2 Number of G4MH Instruction Execution Clocks

	REVISION HISTORY
	Colophon
	BackCover

