To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS
User’s Manual

VB850ES

32-Bit Microprocessor Core

Architecture

Document No. U15943EJ4VOUMOO (4th edition)
Date Published February 2010 NS

© NEC Electronics Corporation 2002
Printed in Japan

[MEMO]

2 User's Manual U15943EJ4VOUM

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected
wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH
(MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the
device when the input level is fixed, and also in the transition period when the input level passes through the
area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS
devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related
to unused pins must be judged separately for each device and according to related specifications governing
the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction
of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of
static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control
must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators
that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work benches
and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices
must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted
semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device.
Immediately after the power source is turned ON, devices with reset functions have not yet been initialized.
Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not
initialized until the reset signal is received. A reset operation must be executed immediately after power-on
for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for
each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an 1/O pull-up power supply while
the device is not powered. The current injection that results from input of such a signal or 1/O pull-up power
supply may cause malfunction and the abnormal current that passes in the device at this time may cause
degradation of internal elements. Input of signals during the power off state must be judged separately for
each device and according to related specifications governing the device.

User's Manual U15943EJ4VOUM

These commodities, technology or software, must be exported in accordance
with the export administration regulations of the exporting country.
Diversion contrary to the law of that country is prohibited.

The information in this document is current as of January, 2010. The information is subject to change without notice. For

actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date

specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an

NEC Electronics sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC

Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of

third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the

use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual

property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in

semiconductor product operation and application examples. The incorporation of these circuits, software and information in

the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no

responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and

information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree

and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property

or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient

safety measures in their design, such as redundancy, fire-containment and anti-failure features.

NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The

"Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality

assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its

quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in

a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-
crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and
medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data

sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics,

they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a

given application.

(Note 1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned

subsidiaries.
(Note 2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined

above).
(MBEO909E)

User’s Manual U15943EJ4VOUM

<R>

Target Readers

Purpose

Organization

How to Use this Manual

Product Types

PREFACE

This manual is intended for users who wish to understand the functions of the V850ES
CPU core for designing application systems using the V850ES CPU core.

This manual is intended to give users an understanding of the architecture of the
V850ES CPU core described in the Organization below.

This manual contains the following information:
* Register set
* Data type
* Instruction format and instruction set
* Interrupt and exception
* Pipeline

It is assumed that the reader of this manual has general knowledge in the fields of
electrical engineering, logic circuits, and microcontrollers.

To learn about the hardware functions,
— Read Hardware User’s Manual of each product.

To learn about the functions of a specific instruction in detail,
— Read CHAPTER 5 INSTRUCTION.

The mark <R> shows major revised points. The revised points can be easily searched
by copying an “<R>" in the PDF file and specifying it in the “Find what: ” field.

This manual explains the products divided into types.
Check the corresponding product type before reading this manual.

Product Type Product Name

Type A 1 PD703229Y, 1 PD70F3229Y, V850ES/Fx2, V850ES/FE3"", V850ES/FF3™",

V850ES/FG3 (1 PD70F3374, 70F3375)""*, V850ES/FJ3 (1PD70F3378)"",
V850ES/Fx3-L, V850ES/Hx2, V850ES/Hx3 (without £ PD70F3757),
V850ES/Jx2, VB50ES/Jx3, VB50ES/Jx3-L, VB50ES/Kx1, VB50ES/Kx1+,
V850ES/Kx2, VB50ES/PM1, VB50ES/SA2, VB50ES/SA3, VB50ES/ST2,
V850ES/SG1, V850ES/Sx2, VB50ES/Sx3

Type B V850ES/FG3 (1 PD70F3376, 70F3377), VB50ES/FJ3 (1« PD70F3379, 70F3380,
70F3381, 70F3382), V850ES/FK3, V850ES/HJ3 (1 PD70F3757),V850ES/IE2,
V850ES/IK1, VB850ES/Jx3-E, V850ES/Jx3-H, V850ES/Jx3-U, VB50ES/ST3,

V850ES/Sx2-H

Note Products whose branch latency is set to 2 by using the option byte are type A
products, and products whose branch latency is set to 3 by using the option byte
are type B products.

User's Manual U15943EJ4VOUM 5

Conventions

Data significance:

Active low representation:

Note:
Caution:
Remark:

Numerical representation:

Higher digits on the left and lower digits on the right
xxxB (B is appended to pin or signal name)
Footnote for item marked with Note in the text
Information requiring particular attention
Supplementary information

Binary ... xxxx or xxxxB

Decimal ... xxxx

Hexadecimal ... xxxxH

Prefix indicating the power of 2 (address space, memory capacity):

K (Kilo): 2% =1,024
M (Mega): 22 = 1,024
G (Giga): 23%=1,0243

User's Manual U15943EJ4VOUM

CONTENTS

CHAPTER 1 GENERAL ...t iemss s s s s sssssms s s ssms s e ssmss s smms s sas s ams s e sanss s enssnns s ensnnsssnnsnnnes 11
R0 == 1 1 - 12
1.2 Internal Configuration ... s s e 13

CHAPTER 2 BREGISTER SET......cccociiisimtriisnmssissssmsssssssmsssssssmssssssssmsssssssmsssssssmss sssssmms s sassamss sassanssssssnnsns 14
2.1 Program RegiSTIErS........ccccuiuiremmrriisasrrnssmnssissmss s sssss s sss s s s ssm s sasssms s e s s s e s smm e e s smmn e eammn e e mmnneas 15
P YL (=Y T 2 (=T 1= (= 17

2.2.1 Interrupt status saving registers (EIPC, EIPSW)........cooiiiiiiiie et 18
2.2.2 NMI status saving registers (FEPC, FEPSW)cooiiiiiiii ittt 19
2.2.3 Exception cause register (ECR)coiiiiiiiie et 19
2.2.4 Program Status WOIA (PSW)ottt e e e e e e e s snr e e e saneee s 20
2.2.5 CALLT caller status saving registers (CTPC, CTPSW).....ccoiiiiiiiiiiieiiee e 21
2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)cocoiiiiiiiiiieeiec e 22
2.2.7 CALLT base poiNter (CTBP)ii ittt ettt ettt e bt e e e e st eene e sabeeennee e 22
2.2.8 Debug interface register (DIR) ..o e 23

CHAPTER 3 DATA TYPE....... i ssssss s ssssss s sssssms s s s ams s sa s ams s s e smms s enmmn s e amnn snnsnnnns 24
R T 7= = o 13 24
3.2 Data Representationcccccceiiiimrrinismsninismss s sss s s s s e e e e 26

T2 B 1 =T o 1= PP PRSPPI 26
T2 ¥ [o 1= o g T=To [N | (=TT PP 26
R T2 T T PR 26
R s 0 = = Y [T [T 1= o 26

CHAPTER 4 ADDRESS SPACE........ccoociiiimmriiemsr s isssms s sssssmss s smss s s sssms s ssssamss e ssmms s ssssmms s snssmnnns 27
L 111 = 3 T TV 1 o 28
4.2 AddressSing MOde........ccociiiiiimmiiiimnr s s s s e amn e e n e m e e e mn e e e nnnn s 29

4.2.1 INSTUCTION @AAIESS......uiiiiiiiiie it e s bbb e e s ra e 29
2 @ o T- T = g T BE=To [| (T SR 31

CHAPTER 5 INSTRUCTIONcccccciiiisscerrsssmserssssssesessssmsssesssmsesesssnsesssssnmsssessmsssesssnnesesssnmessessnnsesessannes 33
5.1 INStruction FOrMALcoiiiimiimrii s s s s s e s e e s nnan e nann 33
5.2 Outline of INSTrUCHIONS.......ciiiciiiii it s s s s e 37
L B [=3 T e 4 TS 41

Y 5 TSSO 43
Y5] PSSP P PO VP ORI PRSPPI 44
Y| 5 ST UR PRSP 45
AN ettt ettt ettt a et et e et e et eaeeeaeeeae e et eaeeeaeeeReeeR et aRee et eseeeeeneeeneeeseeaseeaseenseeneeaseeareenseaatens 46
= To7o o o PSRRI 47
1215 ST USP PRSP PP 49
21 PSSR 50
L0 0 R 51
L0 I R 52

User' s Manual U15943EJ4VOUM 7

CIMIP e et e e e e h e b e e ae e s n e e s n e sane e 54
O I P 55
DBRET ... e e e 56
DBTRAP e e e e s e a e s aa e e a s e e e 57
5] OSSP TP PR PR OPRN 58
DISPOSE ... oo e e 59
DIV e e e e e 61
[o OO PPN 62
DIVHU . .. et s e e s s e e e s a et e s e e e s ae e s e e e saa e san e e s see e saneesnne e e 64
3 65
PP 66
o TP PP 67
L L X OO P PR PROPRN 68
U 69
TP 70
N TSP TOP RO 71
[0 OO PP UR PR 72
0 73
0 PP 74
LD HU Lo e e e e a e s e e aa s e e e e 75
LD N e a e e e e e s e e e e e s e e e s e e se e e e e sane e eaen e e 76
1 T P 77
MOV e e e s e e e e h e h e e R R e h e e e s e 78
MOV E A et e e et ea e e e e e R oo e e e e e e e e s e san e eae e eee e e e eaeeeaeeereeereeereeeeenesanesaeeeeeeanas 79
MOV HI et e e s e e s e e e s ae e st e e s e e e s e e e s e e e sane e sane e e 80
VUL e 81
L PP 83
IMULHIL e e e s s s e s e e s aa e s e e s saa e s s e e e sme e s ane s enn e saes 84
IMIULU . e et et st sh e e s e e e s ab e e st e e s he e e s ae e e s ae e e sae e e saa e e san e e s ae e e saneeeane e e 85
N P 87
N PP 88
N 1 I PRSP 89
O T OO PP U PRRTR 90
L P 91
PREPARE ... e e s 92
L I PO 94
7Y o PP OO PSP 96
S A S e e e e 97
SATADD ... e e e h e R e a e e e e e e sae e eae e 98
ST S 10 = PP 99
SATSUBI ... e b b e h e e e e e e e s e e ne e 100
SATSUBR ... e e 101
S = I OO PO PR TP 102
S I PO PRUSRPR TP 103
S o | OO PP PPRUROP 105
SHRR e e 106
S I 1 TR PR ORI 107

User’ s Manual U15943EJ4VOUM

S 2 ST 109
SLD . HU et h et h R e e a R e R e Rt ee e Rt b e b n e e e naeenaeens 110
ST OSSR 111
T 1 SO PRR 112
TS I PSS 113
SIS I PO UP PR UPUSTR 114

S I = T O U TR 115

S 1 SRR 116

S 0T 117

Sl] OO U TR P PRSP 118

51U 2 U T 119

ST 2] O 120
X 17 121

S)= T PR U U R T PP ORI 122

S)G [RO ST 123
LI 72 S 124
155U 125

LIS TP O U U R PP PRSP 126

(O] = RS TR 127

(0] ST 128

7, 4= TS 129

ZXH b bt a e h R e E R e et ea et R e e R e Rt et eh e e R e e b e Ee e e naeenreenneeanas 130

5.4 Number of Instruction Execution CIoCk CyCIes........cccciiiiismmmnsmrnssmines s s sssssssssnes 131
CHAPTER 6 INTERRUPTS AND EXCEPTIONS........cccoocerrrrsemerrnsssmerrssssmsssssssmsssssssssssesssnssnesssnseneassn 135
Lo I) (= 0] o1 =TT o7 T 136
6.1.1 MaSKaDIE INTEITUPT ...t e e e e e e bt e e e e e e e anba e e e e e e e e s annreeeas 136

6.1.2 NON-Maskable INTEITUPT........coi e e e e s e e e s 138

6.2 EXCEPUION PrOCESSING ...ceiiiirerrrriisnrriissmssissssssssssssssnssssss s sasssss s sassssss s sssssss s sassnnsssnsssnnssansannesnnssnnes 139
LS I2 I o) 111 F= L LI (o =T o o) o PSR 139

SR) (o1 T o ([o] IR (=1 o PP PUPTP PR 140

L2 T B LY o 18T I 1 - | PSP P R 141

6.3 Restoring from Interrupt/Exception Processing.......cccccocuiirammmssnrnsssissmsmssssssssssssasssssmssssasssssnes 142
6.3.1 Restoring from interrupt and SOftware EXCEPLION.ocuuiiiiiiiie e e 142

6.3.2 Restoring from exception trap and debug trapcooviiiiiiiie i 143

L0 0 7 e = o A 1 0 144
7.1 Register Status After RESEtccccciiiiiicmiininiins s rssss s s e s e nanes 144
£~ 2= (1 T LU o 144
L0 0 Y = o - T | = 145
L I =T 1T =, 146
8.1.1 NON-DIOCKING [08A/STONE ...t ettt b e s sne e sanennee e 147

LS 2 o o Yo Qo = e o PP 148

8.1.3 Efficient pipeling PrOCESSINGutiiitiii ittt ettt s e e s e e e e b e s anee e e saneee s 149

8.2 Pipeline Flow During Execution of INStrUCLIONS.........ccccciiiiimriinimniinsss e sssanes 150

User' s Manual U15943EJ4VOUM 9

<R>

LS I o Y=o [T g 1 (U o] (o) 1= 150

8.2.2 STOIE INSIIUCTIONS ...ttt e sa e e e et e e e et e e e anne e e e eabeeesanreeesanees 151

8.2.3 MURIPIY INSTIUCHIONS ...ttt e e s e e e e s e st e e e e e e e e snnrneeas 151

8.2.4 Arithmetic operation iNSITUCHIONSoiciiiiiiiii e s 153

8.2.5 Saturated operation INSIIUCHIONS.........c.eiiiiiiiie ettt see e s sare e seeeeneeea 154

8.2.6 Logical operation INSTTUCIONSciiiiiiiiie e 154

8.2.7 Branch iNSIIUCHIONS.........ocuiiiiiiiii e 154

8.2.8 Bit manipulation iNSLIUCHIONS.coociiii e e 156

8.2.9 SPECIAI INSIIUCTIONSeiiitiietie ettt ab e st e e s b et e sae e e bt e e sae e e be e e saneeabeeeaneeeneean 156

8.2.10 Debug function iNSLIUCHIONSc.ciiiiiiii e 161

2 T o T Y= 110 L= 0 T =T o (= 162
8.3.1 AlIGNMENT NAZANT ...ttt e ettt e e e s e et et e e e e e e e s anbn e e e e e e e e annreeeas 162

8.3.2 Referencing execution result of load iNSTTUCHIONocviiiiiiiii e 163

8.3.3 Referencing execution result of Multiply iNSTrUCHION.........ccoiiiiiiiiiii e 164

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPCccccco i 165

8.3.5 Cautions When Creating PrOGIaMSuuiuieireariie ittt et e st e st et e e s e et e e sse e st e sne e s beesneesareeaneeenneeeas 165

8.4 Additional Items Related to Pipeline.........cccccuriiirmrrnismnmnims s s s 166
8.4.1 HAarvard arChitECIUIEiii e e e e e e s anr e e e 166

2 I 2] Lo o - i o PSSR 167
APPENDIX A NOTES.ccoiiicccrrrssmmrrssssneresssssesssssssesessssmesesssssssessssneseasssmsssassnmsseasssmsssassansssnssansnnesssn 169
A.1 Restriction on Conflict Between sld Instruction and Interrupt Requestcccccciiinriieennnee 169
W 0 9=~ 0] o] o PSPPSRt 169

ALT.2 COUNTEIMEBASUIEeeueiiiiie ettt ettt e sa e et e ea e s et e e ea et e eae e e sh et e aa et e abe e e eae e e be e e esn e e bee e eareeaneeeanneeneeaas 169

A.2 Restrictions on using the mul/mulu instruction..........ccucociicsmncesincc s 170
L= B B 1= T To) o] (o] IO PP P P PTPPP PP PR 170

A.2.2 COUNTEIMEBASUIEceuvieitieiite sttt e sttt e sttt s et sa et s et e e s be e e s ae e e e be e e saeeeabe e e asee e beeesaneeaneeeaseeeneeea 170
APPENDIX B INSTRUCTION LISTccccociirrsscrrrssssmerrsssssserssssmsssssssssssesssssessasssmsssesssnsesesssansssesssnsessssan 171
APPENDIX C INSTRUCTION OPCODE MAPciiiiiemnriniees s sssssssssssssss s sssssssssssssssssnnssssssnnses 185
APPENDIX D DIFFERENCES IN ARCHITECTURE OF V850 CPU AND V850E1 CPU............. 190
APPENDIX E INSTRUCTIONS ADDED FOR V850ES CPU COMPARED WITH V850 CPU...... 193
APPENDIX F REVISION HISTORYccoccococirirsscerrrssmerrssssssrssssssesssssssessssssmesssssmsssasssnsssessamsssesssnsnssssan 195
F.1 Major Revisions in This EditioN.......ccccuceecimiiismmiminsmsmmnnsssmnies s s snsssssssssssssssennsas 195
F.2 History of Revisions up to This Edition........c.cccouremmnmmnimnnmmis s s snssssssens 196

10 User s Manual U15943EJ4VOUM

CHAPTER 1 GENERAL

Real-time control systems are used in a wide range of applications, including:

» office equipment such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles,
» automobile electronics such as engine control systems and ABSs (Antilock Braking Systems), and
e factory automation equipment such as NC (Numerical Control) machine tools and various controllers.

The great majority of these systems conventionally employ 8-bit or 16-bit microcontrollers. However, the
performance level of these microcontrollers has become inadequate in recent years as control operations have risen
in complexity, leading to the development of increasingly complicated instruction sets and hardware design. As a
result, the need has arisen for a new generation of microcontrollers operable at much higher frequencies to achieve an
acceptable level of performance under today’s more demanding requirements.

The V850 Series of microcontrollers was developed to satisfy this need. This family uses RISC architecture that
can provide maximum performance with simpler hardware, allowing users to obtain a performance approximately 15
times higher than that of the existing 78K/Ill Series and 78K/IV Series of CISC single-chip microcontrollers at a lower
total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 Series is provided with special
instructions such as saturate, bit manipulate, and multiply/divide (executed by a hardware multiplier) instructions,
which are especially suited for digital servo control systems. Moreover, instruction formats are designed for maximum
compiler coding efficiency, allowing the reduction of object code sizes.

Furthermore, to improve the performance of the V850 Series, new CPU cores, the V850E1 and V850E2, are being
introduced. These CPU cores are based on the conventional V850 CPU and maintain upward instruction compatibility,
but feature enhanced operating frequencies and pipeline efficiency.

Another new CPU core, the V850ES, was developed for use in applications that primarily employ 16-bit
microcontrollers, and offers the kind of high performance at a low cost demanded in this field.

The V850ES is a high-performance, compact CPU core that provides a set of functions (operating frequency,
multiplier, DMA) optimized for the 16-bit microcontroller market, while maintaining compatibility with the V850E1 CPU
with a proven record in 150 MHz class products.

User's Manual U15943EJ4VOUM 11

CHAPTER 1 GENERAL

1.1 Features

(1) High-performance 32-bit architecture for embedded control
* Number of instructions: 80
e 32-bit general-purpose registers: 32
* Load/store instructions in long/short format
e 3-operand instruction
* 5-stage pipeline of 1 clock cycle per stage
* Hardware interlock on register/flag hazards
* Memory space Program space: 64 MB linear (Usable area: 16 MB linear space + internal RAM area 60 KB)
Data space: 4 GB linear

(2) Special instructions
e Saturation operation instructions
¢ Bit manipulation instructions
e Multiply instructions (On-chip hardware multiplier executing multiplication in 1 or 4 clocks)
16 bits x 16 bits — 32 bits
32 bits x 32 bits — 32 bits or 64 bits

12 User's Manual U15943EJ4VOUM

CHAPTER 1 GENERAL

1.2 Internal Configuration

The V850ES CPU executes almost all instructions such as address calculation, arithmetic and logical operation,

and data transfer in one clock by using a 5-stage pipeline.

It contains dedicated hardware such as a multiplier (16 x 16 bits) and a barrel shifter (32 bits/clock) to execute
complicated instructions at high speeds.

Figure 1-1 shows the internal block diagram.

Figure 1-1. Internal Block Diagram of V850ES CPU

ROM @

Instruction
queue

Program
counter

] Instruction

Multiplier |—
(16x16 > 32) [

'\

:'> Barrel N
General-purpose sr?i;tr:r —
register \
System register ALU v
2\
/1
N\
Data cache

cache

User's Manual U15943EJ4VOUM

13

CHAPTER 2 REGISTER SET

The registers can be classified into two types: program registers that can be used for general programming, and
system registers that can control the execution environment. All the registers are 32 bits wide.

Figure 2-1. Registers

(a) Program registers (b) System registers
31 0 31 0

(Zero register) EIPC (Interrupt status saving register)

=
o

r1 (Assembler-reserved register) EIPSW (Interrupt status saving register)

r3 (Stack pointer (SP)) FEPC (NMI status saving register)

-
=

(Global pointer (GP)) FEPSW (NMI status saving register)

r5 (Text pointer (TP))

6 | ECR (Exception cause register) |

8 | PSW (Program status word) |

r10 CTPC (CALLT caller status saving register)

ri1 CTPSW (CALLT caller status saving register)

r12

13 DBPC (Exception/debug trap status saving register)

14 DBPSW (Exception/debug trap status saving register)

r15
16 | CTBP (CALLT base pointer) |

7

r18 | DIR (Debug interface register) |

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30 (Element pointer (EP))

r31 (Link pointer (LP))

31 0

PC (Program counter)

14 User's Manual U15943EJ4VOUM

CHAPTER 2 REGISTER SET

2.1 Program Registers

There are general-purpose registers (r0 to r31) and program counter (PC) in the program registers.

Table 2-1. Program Registers

Program Register Name Function Description
General-purpose r0 Zero register Always holds 0.
register r Assembler-reserved register | Used as working register for address generation.
r2 Address/data variable register (when the real-time OS to be used is not using r2)
r3 Stack pointer (SP) Used for stack frame generation when function is called.
r4 Global pointer (GP) Used to access global variable in data area.
r5 Text pointer (TP) Used as register for pointing start address of text area (area
where program code is placed)
ré to r29 Address/data variable registers
r30 Element pointer (EP) Used as base pointer for address generation when memory
is accessed.
r31 Link pointer (LP) Used when compiler calls function.
Program counter PC Holds instruction address during program execution.

Remark For detailed descriptions of r1, r3 to r5, and r31 used by assembler and C compiler, refer to the CA850 (C
Compiler Package) Assembly Language User’s Manual.

(1) General-purpose registers (r0 to r31)
Thirty-two general-purpose registers, r0 to r31, are provided. All these registers can be used for data variable or
address variable.

However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

(a) ro0, r30

r0 and r30 are implicitly used by instructions. r0 is a register that always holds 0, and is used for operations

and offset 0 addressing.

r30 is used as a base pointer when accessing memory using the SLD and SST instructions.

(b) r1,r3tor5, r31
r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler.

Before using these registers, therefore, their contents must be saved so that they are not lost. The contents

must be restored to the registers after the registers have been used.

(c) r2

r2 is sometimes used by the real-time OS. When the real-time OS to be used is not using r2, r2 can be used

as a variable register.

User's Manual U15943EJ4VOUM

15

CHAPTER 2 REGISTER SET

(2) Program counter (PC)
This register holds an instruction address during program execution. The lower 26 bits of this register are valid,
and bits 31 to 26 are reserved for future function expansion (fixed to 0). If a carry occurs from bit 25 to bit 26, it is
ignored. Bit 0 is always fixed to 0, and execution cannot branch to an odd address.

Figure 2-2. Program Counter (PC)

31 26 25 10
\

Initial value

PC10/0]0/0/0/0 (Instruction address during execution) 00000000H

16 User's Manual U15943EJ4VOUM

CHAPTER 2 REGISTER SET

2.2 System Registers

The system registers control the CPU status and holds information on interrupts.
System registers can be read or written by specifying the relevant system register number from the following list
using a system register load/store instruction (LDSR or STSR).

Table 2-2. System Register Numbers

Register Register Name Operand Specifiability
No. LDSR STSR
Instruction | Instruction
0 Interrupt status saving register (EIPC) O o
1 Interrupt status saving register (EIPSW) O o
2 NMI status saving register (FEPC) (@) o
3 NMI status saving register (FEPSW) @) @)
4 Exception cause register (ECR) X o
5 Program status word (PSW) O o
6to 15 (Numbers reserved for future function expansion (operation cannot be guaranteed if X X
accessed))
16 CALLT caller status saving register (CTPC) @) @)
17 CALLT caller status saving register (CTPSW) @) ©)
18 Exception/debug trap status saving register (DBPC) O o
19 Exception/debug trap status saving register (DBPSW) (@) o
20 CALLT base pointer (CTBP) @) 0]
21 Debug interface register (DIR) X ©)
22 to 31 (Numbers reserved for future function expansion (operation cannot be guaranteed if X X
accessed))
Caution When returning from interrupt servicing using the RETI instruction after setting bit 0 of EIPC,

FEPC, or CTPC to 1 using the LDSR instruction, the value of bit 0 is ignored (because bit 0 of the
PC is fixed to 0). Therefore, be sure to set an even number (bit 0 = 0) when setting a value in

EIPC, FEPC, or CTPC.

Remark O: Accessible

x: Inaccessible

User's Manual U15943EJ4VOUM

17

CHAPTER 2 REGISTER SET

2.2.1 Interrupt status saving registers (EIPC, EIPSW)
Two interrupt status saving registers are provided: EIPC and EIPSW.
If a software exception or maskable interrupt occurs, the contents of the program counter (PC) are saved to EIPC,

and the contents of the program status word (PSW) are saved to EIPSW (if a non-maskable interrupt (NMI) occurs,
the contents are saved to NMI status saving registers (FEPC, FEPSW)).

Except for part of instructions, the address of the instruction next to the one executed when the software exception

or maskable interrupt has occurred is saved to the EIPC (see Table 6-1 Interrupt/Exception Codes).
The current value of the PSW is saved to the EIPSW.

Because only one pair of interrupt status saving registers is provided, the contents of these registers must be
saved by program when multiple interrupts are enabled.

Bits 31 to 26 of the EIPC and bits 31 to 8 of the EIPSW are reserved for future function expansion (fixed to 0).

Figure 2-3. Interrupt Status Saving Registers (EIPC, EIPSW)

31 26 25 0

ettt Initial value
EIPC|0|0|0|0|0]|O

\ (Contents of PC) OxxxxxxxH
(x: Undefined)

31 8 2

e
Initial value
EIPSW|0|0]|0 0\0 00 0\0 00 0\0 00 0\0 0|0 0\0 0\0 0\ (Contents of PSW) 000000xxH

(x: Undefined)

18 User's Manual U15943EJ4VOUM

CHAPTER 2 REGISTER SET

2.2.2 NMI status saving registers (FEPC, FEPSW)

Two NMI status saving registers are provided: FEPC and FEPSW.

If a non-maskable interrupt (NMI) occurs, the contents of the program counter (PC) are saved to FEPC, and the
contents of the program status word (PSW) are saved to FEPSW.

Except for part of instructions, the address of the instruction next to the one executed when the NMI has occurred
is saved to the FEPC (see Table 6-1 Interrupt/Exception Codes).

The current value of the PSW is saved to the FEPSW.

Because only one pair of NMI status saving registers is provided, the contents of these registers must be saved by
program when multiple interrupts are enabled.

Bits 31 to 26 of the FEPC and bits 31 to 8 of the FEPSW are reserved for future function expansion (fixed to 0).

Figure 2-4. NMI Status Saving Registers (FEPC, FEPSW)

et rrrr-rrr -ttt T

Initial value
FEPC|O0 \ 0|0 \ 0|00 (Contents of PC) 0x00xxxxH

(x: Undefined)

Initial value
FEPSW O\O O\OOOOO\O O\OOOOO\OOOOO\O O\OO (Contents of PSW) 000000scH

(x: Undefined)

2.2.3 Exception cause register (ECR)

The exception cause register (ECR) holds the cause information when an exception or interrupt occurs. The ECR
holds an exception code which identifies each interrupt source (see Table 6-1 Interrupt/Exception Codes). This is a
read-only register, and therefore, no data can be written to it by using the LDSR instruction.

Figure 2-5. Exception Cause Register (ECR)

31 16 15 0
T T Initial value
ECR FECC EICC 00000000H
Bit position | Bit name Function
31t0 16 FECC Exception code of non-maskable interrupt (NMI)
15t00 EICC Exception code of exception or maskable interrupt

User's Manual U15943EJ4VOUM 19

CHAPTER 2 REGISTER SET

2.2.4 Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the status of the program (result of instruction

execution) and the status of the CPU.

If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the new value
immediately after the LDSR instruction has been executed. In setting the ID flag to 1, however, interrupt requests are

already disabled even while the LDSR instruction is executing.

Bits 31 to 8 are reserved for future function expansion (fixed to 0).

Figure 2-6. Program Status Word (PSW) (1/2)

31 8 76 543210
S oy
Psw |o|o o|ojolo|ololo|ojolo|ojolojololofololojololo|NEIIRICIO|s]z|!nitalvalue
P/PID|T|Y|V 00000020H
Bit position | Flag name Function
7 NP Indicates that non-maskable interrupt (NMI) processing is in progress. This flag is set to 1
when NMI request is acknowledged, and multiple interrupts are disabled.
0: NMI processing is not in progress
1: NMI processing is in progress
6 EpP Indicates that exception processing is in progress. This flag is set to 1 when an exception
occurs. Even when this bit is set, interrupt requests can be acknowledged.
0: Exception processing is not in progress
1: Exception processing is in progress
5 ID Indicates whether maskable interrupt request can be acknowledged.
0: Interrupt can be acknowledged
1: Interrupt cannot be acknowledged
4 SAT Indicates that an overflow has occurred in a saturate operation and the result is saturated.
This is a cumulative flag. When the result is saturated, the flag is set to 1 and is not cleared
to 0 even if the next result does not saturate. To clear this flag to 0, use the LDSR
instruction. This flag is neither set to 1 nor cleared to 0 by execution of arithmetic operation
instruction.
0: Not saturated
1: Saturated
3 cy Indicates whether carry or borrow occurred as a result of the operation.
0: Carry or borrow did not occur
1: Carry or borrow occurred
5 ove Indicates whether overflow occurred as a result of the operation.
0: Overflow did not occur
1: Overflow occurred
1 ghete Indicates whether the result of the operation is negative.
0: Result is positive or zero
1: Result is negative
0 7 Indicates whether the result of the operation is zero.
0: Result is not zero
1: Result is zero
Note In the case of saturate instructions, the SAT, S, and OV flags will be set according to the result of the
operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag has
been set to 1 during saturate operation.

20

User's Manual U15943EJ4VOUM

CHAPTER 2 REGISTER SET

Figure 2-6. Program Status Word (PSW) (2/2)

Status of operation Status of flag Operation result of saturation
result SAT oV s processing
Maximum positive 1 1 0 7FFFFFFFH
value is exceeded
Maximum negative 1 1 1 80000000H
value is exceeded
Positive (Not exceeding | Holds the 0 0 Operation result
maximum value) value before
Negative (Not exceeding| operation 1

maximum value)

2.2.5 CALLT caller status saving registers (CTPC, CTPSW)

Two CALLT caller status saving registers are provided: CTPC and CTPSW.

If a CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and the contents
of the program status word (PSW) are saved to CTPSW.

The contents saved to the CTPC are the address of the instruction next to the CALLT instruction.

The current value of the PSW is saved to the CTPSW.

Bits 31 to 26 of the CTPC and bits 31 to 8 of the CTPSW are reserved for future function expansion (fixed to 0).

Figure 2-7. CALLT Caller Status Saving Registers (CTPC, CTPSW)

Initial value
CTPC 0~0 0j0j0/0 (Contents of PC) OxxxXxxxH

(x: Undefined)

CTPSW 0\0 o ololololojololo 0\0 0 0\0 0\0 0 0\0 010 0| (Contents of PSW) 'gggﬂg;i::

(x: Undefined)

User's Manual U15943EJ4VOUM 21

CHAPTER 2 REGISTER SET

2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)

Two exception/debug trap status saving registers are provided: DBPC and DBPSW.

If an exception trap or debug trap occurs, the contents of the program counter (PC) are saved to DBPC, and the
contents of the program status word (PSW) are saved to DBPSW.

The contents saved to the DBPC are the address of the instruction next to the one executed when the exception
trap or debug trap has occurred.

The current value of the PSW is saved to the DBPSW.

Bits 31 to 26 of the DBPC and bits 31 to 8 of the DBPSW are reserved for future function expansion (fixed to 0).

Figure 2-8. Exception/Debug Trap Status Saving Registers (DBPC, DBPSW)

31 26 25 0
e rrrrrrrr -t Initial value
DBPC|0 |0 0~0 0|0 (Contents of PC) Oxxx00xxH
(x: Undefined)
31 8 0
T .
Initial value
DBPSW |0 |0 O\O ojojojoj0f0|l0O|O|O|O|O|O|O|O|O|0O|O|0O|0O]|O (Contents of PSW) 000000xxH

(x: Undefined)

2.2.7 CALLT base pointer (CTBP)

The CALLT base pointer (CTBP) is used to specify a table address and to generate a target address (bit 0 is fixed
to 0).

Bits 31 to 26 are reserved for future function expansion (fixed to 0).

Figure 2-9. CALLT Base Pointer (CTBP)

31 26 25 0
I

Initial value
CTBP|0|0|0|0|0O|O (Base address) 0 0x000000cH

(x: Undefined)

22 User's Manual U15943EJ4VOUM

CHAPTER 2 REGISTER SET

2.2.8 Debug interface register (DIR)

The debug interface register (DIR) indicates whether the status is normal mode or debug mode.

The DM bit is set to 1 when an exception trap occurs or when the DBTRAP instruction is executed, and is cleared
to 0 when the DBRET instruction is executed.

The contents of the DIR register can be read by setting them to a general-purpose register using the STSR
instruction. The DIR register cannot be written.

Bits 31 to 1 are reserved for future function expansion (fixed to 0).

Figure 2-10. Debug Interface Register (DIR)

31 10
bR |o|o|o|o|ololo|ololo]ololojojolojo]olo/o]olo/o]olo/o]ololo]o|o|D]|!nitalvale
M | 00000000H
Bit position | Bit name Function
0 DM Set to 1 when an exception trap occurs or when the DBTRAP instruction is executed, and

cleared to 0 when the DBRET instruction is executed.
0: Normal mode
1: Debug mode

User's Manual U15943EJ4VOUM 23

CHAPTER 3 DATA TYPE

3.1 Data Format

The following data types are supported (see 3.2 Data Representation).

* Integer (32, 16, 8 bits)
* Unsigned integer (32, 16, 8 bits)
* Bit

Three types of data lengths: word (32 bits), halfword (16 bits), and byte (8 bits) are supported. Byte 0 of any data
is always the least significant byte (this is called little endian) and shown at the rightmost position in figures throughout
this manual.

The following paragraphs describe the data format where data of fixed length is in memory.

(1) Word
A word is 4-byte (32-bit) contiguous data that starts from any word boundary"®. Each bit is assigned a number
from 0 to 31. The LSB (Least Significant Bit) is bit 0 and the MSB (Most Significant Bit) is bit 31. A word is
specified by its address A (with the 2 lowest bits fixed to 0 when misalign access is disabled"), and occupies 4
bytes, A, A+1, A+2, and A+3.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

ooz |X

Data

owr- |o

A+3 A+2 A+1 A Address

24 User's Manual U15943EJ4VOUM

CHAPTER 3 DATA TYPE

(2) Halfword
A halfword is 2-byte (16-bit) contiguous data that starts from any halfword boundary"*®. Each bit is assigned a
number from 0 to 15. The LSB is bit 0 and the MSB is bit 15. A halfword is specified by its address A (with the
lowest bit fixed to 0"*), and occupies 2 bytes, A and A+1.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

Data

SIPHE

ownr- (o

A+1 A Address

(3) Byte
A byte is 8-bit contiguous data that starts from any byte boundary"*°. Each bit is assigned a number from 0 to 7.
The LSB is bit 0 and the MSB is bit 7. A byte is specified by its address A.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

owr- |o

Data

A Address

(4) Bit
A bit is 1-bit data at the nth bit position in 8-bit data that starts from any byte boundary™. A bit is specified by its
address A and bit number n.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

7 n 0 Bit number

Byte of address A ... Data

A Address

User’s Manual U15943EJ4VOUM 25

CHAPTER 3 DATA TYPE

3.2 Data Representation

3.2.1 Integer

An integer is expressed as a binary number of 2’'s complement and is 32, 16, or 8 bits long. Regardless of its
length, the bit 0 of an integer is the least significant bit. The higher the bit number, the more significant the bit.
Because 2’s complement is used, the most significant bit is used as a sign bit.

The integer range of each data length is as follows.

o Word (32 bits): —2,147,483,648 to +2,147,483,647
e Halfword (16 bits): —32,768 to +32,767
e Byte (8 bits): -128 to +127

3.2.2 Unsigned integer

While an integer is data that can take either a positive or a negative value, an unsigned integer is an integer that is
not negative. Like an integer, an unsigned integer is also expressed as 2’s complement and is 32, 16, or 8 bits long.
Regardless of its length, bit O of an unsigned integer is the least significant bit, and the higher the bit number, the more
significant the bit. However, no sign bit is used.

The unsigned integer range of each data length is as follows.

e Word (32 bits): 0 to 4,294,967,295
e Halfword (16 bits): 0 to 65,535
¢ Byte (8 bits): 0to 255

3.2.3 Bit

1-bit data that can take a value of O (cleared) or 1 (set) can be handled as a bit data. Bit manipulation can be
performed only to 1-byte data in the memory space in the following four ways:

e SET1
e CLR1
e NOT1
e TSTH

3.3 Data Alignment
Due to the incorporation of a misalign function, data that is allocated to the memory can be placed at any address
regardless of the data format (word data, halfword data). However, if word data is not aligned at a word boundary (the

lower 2 bits of the address are 0), or halfword data is not aligned at a halfword boundary (the lowest bit of the address
is 0), one or more surplus bus cycles are generated, which lowers the bus efficiency.

26 User's Manual U15943EJ4VOUM

CHAPTER 4 ADDRESS SPACE

The VB50ES CPU supports a 4 GB linear address space. Both memory and I/O are mapped to this address space
(memory-mapped I/0). The VB50ES CPU outputs 32-bit addresses to the memory and I/0. The maximum address is

2%2.1,

Byte data allocated at each address is defined with bit 0 as LSB and bit 7 as MSB. In regards to multiple-byte data,
the byte with the lowest address value is defined to have the LSB and the byte with the highest address value is
defined to have the MSB (little endian).

Data consisting of 2 bytes is called a halfword, and 4-byte data is called a word.

In this User’s Manual, data consisting of 2 or more bytes is illustrated as shown below, with the lower address

shown on the right and the higher address on the left.

Word at
address A

Halfword at
address A

Byte at
address A

A+3

A+2

A+1

A+1

Data

Address

Data

Address

Data
Address

User's Manual U15943EJ4VOUM

27

CHAPTER 4 ADDRESS SPACE

4.1 Memory Map

The V850ES CPU employs a 32-bit architecture and supports a linear address space (data area) of up to 4 GB for
operand addressing (data access).

It supports a linear address space (program area) of up to 64 MB for instruction addressing. However, areas
usable as program area are a linear address space of up to 16 MB and the internal RAM area (60 KB max.).

Figure 4-1 shows the memory map.

Figure 4-1. Memory Map

(a) Address space (b) Program area
. - o
FFFFFFFFH A 3FFFFFF Peripheral /0 A
3FFF000H area (4 KB)
3FFEFFFH
Internal
60 KB
RAM area
3FF0000H
3FEFFFFH
Data area
(4 GB linear) Reserved 64 MB
1000000H
OFFFFFFH i
External
memory area
04000000H
O03FFFFFFH A 16 MB
Program area Internal ROM
(64 MB linear) area
00000000H Yy 0000000H \ A
Remark [~]: Use as program area is prohibited

28 User’s Manual U15943EJ4VOUM

CHAPTER 4 ADDRESS SPACE

4.2 Addressing Mode

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch
operations; and operand addresses used for data access.

4.2.1 Instruction address

An instruction address is determined by the contents of the program counter (PC), and is automatically
incremented (+2) according to the number of bytes of an instruction to be fetched each time an instruction has been
executed. When a branch instruction is executed, the branch destination address is loaded into the PC using one of
the following two addressing modes:

(1) Relative addressing (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: dispx) is added to the value of the program
counter (PC). At this time, the displacement is treated as 2’s complement data with bits 8 and 21 serving as sign
bits (S).
This addressing is used for JARL disp22, reg2, JR disp22, and Bcond disp9 instructions.

Figure 4-2. Relative Addressing (1/2)

(a) JARL disp22, reg2 instruction, JR disp22 instruction

31 26 25 0
T e rrrrrrrrrrrr -t

0 000O0OO PC 0

31 22 21 + 0
T e rrrrr ot

Sign extension S disp22 0

31 26 25 ‘ 0
T e rrrrrrrrrrrr -t

0 000O0OO PC 0

Memory to be manipulated

User’'s Manual U15943EJ4VOUM 29

CHAPTER 4 ADDRESS SPACE

Figure 4-2. Relative Addressing (2/2)

(b) Bcond disp9 instruction

31 26 25 0
T T e rrrrr-rrr -ttt T T 1T T T 1T 1]
000O0O00O PC 0
31 + 9 8 0
e rrrrrrr-r -t °r - T 71T T T T

Sign extension S disp9 0

31 26 25 ‘ 0
T T e rrrrr-rrr -ttt T T 1T T T 1T 1]

000O0O00O PC 0

Memory to be manipulated

(2) Register addressing (register indirect)
The contents of a general-purpose register (reg1) specified by an instruction are transferred to the program
counter (PC).
This addressing is applied to the JMP [reg1] instruction.

Figure 4-3. Register Addressing (JMP [reg1] Instruction)

31 0
[s O B S B O B B N B
regi
31 26 25 ‘ 0
[s B S B S B B O B
000000 PC 0

Memory to be manipulated

30 User’s Manual U15943EJ4VOUM

CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes:

(1) Register addressing
The general-purpose register or system register specified in the general-purpose register specification field is
accessed as operand.
This addressing mode applies to instructions using the operand format reg1, reg2, reg3, or regID.

(2) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code.
This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: Operand that is 5-bit immediate data to specify trap vector (O0OH to 1FH), and is used in TRAP
instruction.
ccec: Operand consisting of 4-bit data used in CMOV, SASF, and SETF instructions to specify
condition code. Assigned as part of instruction code as 5-bit immediate data by appending 1-
bit 0 above highest bit.

(3) Based addressing
The following two types of based addressing are supported:

(a) Type1i
The address of the data memory location to be accessed is determined by adding the value in the specified
general-purpose register (reg1) to the 16-bit displacement value (disp16) contained in the instruction code.
This addressing mode applies to instructions using the operand format disp16 [reg1].

Figure 4-4. Based Addressing (Type 1)

31 0
et rrrtrrrrrrrr-r -ttt T
regi
+
31 16 15 0

T I
Sign extension disp16

Memory to be manipulated

User’'s Manual U15943EJ4VOUM 31

CHAPTER 4 ADDRESS SPACE

(b) Type 2
The address of the data memory location to be accessed is determined by adding the value in the element
pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).
This addressing mode applies to SLD and SST instructions.

Figure 4-5. Based Addressing (Type 2)

et rrrtrrrrrrrr-r -ttt T
r30 (element pointer)

+

et rrrtrrrrrrrr-r -t T
0 (Zero extension) disp8 or disp7

Memory to be manipulated

Remark Byte access: disp7
Halfword access and word access: disp8

(4) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space to
be manipulated by using an operand address which is the sum of the contents of a general-purpose register
(reg1) and a 16-bit displacement (disp16) sign-extended to a word length.
This addressing mode applies only to bit manipulate instructions.

Figure 4-6. Bit Addressing

31 0
T T T T T
regi
+
31 16 15 0
T oot
Sign extension disp16

Memory to be manipulated

n

-
|

Remark n: Bit position specified with 3-bit data (bit#3) (n =0 to 7)

32 User’s Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

5.1 Instruction Format

There are two types of instruction formats: 16-bit and 32-bit. The 16-bit format instructions include binary operation,
control, and conditional branch instructions, and the 32-bit format instructions include load/store, jump, and
instructions that handle 16-bit immediate data.

An instruction is actually stored in memory as follows:

¢ Lower bytes of instruction (including bit 0) — lower address
* Higher bytes of instruction (including bit 15 or bit 31) — higher address

Caution Some instructions have an unused field (RFU). This field is reserved for future expansion and
must be fixed to 0.

(1) reg-reg instruction (Format I)
A 16-bit instruction format having a 6-bit opcode field and two general-purpose register specification fields.

reg2 opcode regi

(2) imm-reg instruction (Format Il)
A 16-bit instruction format having a 6-bit opcode field, 5-bit immediate field, and a general-purpose register
specification field.

User’s Manual U15943EJ4VOUM 33

CHAPTER 5 INSTRUCTION

(3) Conditional branch instruction (Format Ill)
A 16-bit instruction format having a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

(4) 16-bit load/store instruction (Format IV)
A 16-bit instruction format having a 4-bit opcode field, a general-purpose register specification field, and a 7-bit
displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

reg2 opcode disp ‘

L disp/sub-opcode

A 16-bit instruction format having a 7-bit opcode field, a general-purpose register specification field, and a 4-bit
displacement field.

(5) Jump instruction (Format V)
A 32-bit instruction format having a 5-bit opcode field, a general-purpose register specification field, and a 22-bit
displacement field.

34 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

(6) 3-operand instruction (Format VI)
A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and a 16-
bit immediate field.

(7) 32-bit load/store instruction (Format VII)
A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and a 16-
bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

ﬂ
)
Q
N
o
°
o)
o)
o3
o
=
o)
Q
py
o
(2]
©

disp/sub-opcode J

(8) Bit manipulation instruction (Format VIil)
A 32-bit instruction format having a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a general-
purpose register specification field, and a 16-bit displacement field.

151413 1110 5 4 0 31 16
e rrrrrrrerr et et

sub | bit# opcode regi disp

(9) Extended instruction format 1 (Format IX)
A 32-bit instruction format having a 6-bit opcode field, 6-bit sub-opcode field, and two general-purpose register
specification fields (one field may be register number field (regID) or condition code field (cond)).

15 1110 5 4 0 31 2726 2120 1716
ey e et

reg2 opcode reg1/reglD/cond RFU sub-opcode RFU 0

User's Manual U15943EJ4VOUM 35

CHAPTER 5 INSTRUCTION

(10) Extended instruction format 2 (Format X)

A 32-bit instruction format having a 6-bit opcode field and 6-bit sub-opcode field.

15

1312 1110

2120

17 16

R
| |RFU

opcode

RFU/imm/vector

sub-opcode

R
RFU

L

RFU/sub-opcode

(11) Extended instruction format 3 (Format XI)

A 32-bit instruction format having a 6-bit opcode field, 6-bit and 1-bit sub-opcode field, and three general-purpose

register specification fields.

2120

18 17 16

sub-opcode

] T
RFU | |

sub-opcode J

(12) Extended instruction format 4 (Format Xil)

A 32-bit instruction format having a 6-bit opcode field, 4-bit and 1-bit sub-opcode field, 10-bit immediate field, and

two general-purpose register specification fields.

27 26

23 22

18 17 16

sub-opcode

T
imm (high)

sub-opcode J

(13) Stack manipulation instruction 1 (Format XIII)

A 32-bit instruction format having a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, and one

general-purpose register specification field (or 5-bit sub-opcode field).

2120

16

reg2/sub-opcode

36

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

5.2 Outline of Instructions

Q)

()

(©)

Load instructions

Transfer data from memory to a register. The following instructions (mnemonics) are provided.

(a) LD instructions

e LD.B: Load byte

e LD.BU: Load byte unsigned

e LD.H: Load halfword

e LD.HU: Load halfword unsigned
e LDW: Load word

(b) SLD instructions

e SLD.B: Short format load byte

e SLD.BU: Short format load byte unsigned

e SLD.H: Short format load halfword

e SLD.HU: Short format load halfword unsigned
e SLD.W: Short format load word

Store instructions

Transfer data from register to a memory. The following instructions (mnemonics) are provided.

(a) ST instructions

e ST.B: Store byte
e ST.H: Store halfword
e ST.W: Store word

(b) SST instructions
e SST.B: Short format store byte
e SST.H: Short format store halfword

e SST.W: Short format store word

Multiply instructions

Execute multiply processing in 1 to 5 clocks with on-chip hardware multiplier. The following instructions

(mnemonics) are provided.

e MUL: Multiply word

e MULH: Multiply halfword

e MULHI: Multiply halfword immediate
e MULU: Multiply word unsigned

User's Manual U15943EJ4VOUM

37

CHAPTER 5 INSTRUCTION

38

(4) Arithmetic operation instructions

(5)

(6)

Add, subtract, divide, transfer, or compare data between registers.

are provided.

e ADD:
e ADDI:
e CMOV:
e CMP:
e DIV:

e DIVH:
e DIVHU:
e DIVU:
¢ MOV:
e MOVEA:
e MOVHI:
e SASF:
e SETF:
e SUB:
¢ SUBR:

Add

Add immediate
Conditional move
Compare

Divide word

Divide halfword

Divide halfword unsigned
Divide word unsigned
Move

Move effective address
Move high halfword

Shift and set flag condition
Set flag condition
Subtract

Subtract reverse

Saturated operation instructions

Execute saturation addition and subtraction.

The following instructions (mnemonics)

If the result of the operation exceeds the maximum positive

value (7FFFFFFFH), 7FFFFFFFH is returned. If the result of the operation exceeds the maximum negative
value (80000000H), 80000000H is returned. The following instructions (mnemonics) are provided.

e SATADD:

e SATSUB:

e SATSUBI:
e SATSUBR:

Saturated add

Saturated subtract

Saturated subtract immediate
Saturated subtract reverse

Logical operation instructions
These instructions include logical operation and shift instructions. The shift instructions include arithmetic
shift and logical shift instructions. Operands can be shifted by two or more bit positions in one clock cycle by

the on-chip barrel shifter. The following instructions (mnemonics) are provided.

e AND:
e ANDI:
e BSH:
e BSW:
e HSW:
o NOT:
e OR:

e ORI

e SAR:
e SHL:
e SHR:
e SXB:
o SXH:

AND

AND immediate
Byte swap halfword
Byte swap word
Halfword swap word
NOT

OR

OR immediate

Shift arithmetic right
Shift logical left
Shift logical right
Sign extend byte
Sign extend halfword

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

7)

®)

©)

o TST: Test

e XOR: Exclusive OR

¢ XORI: Exclusive OR immediate
o ZXB: Zero extend byte

o ZXH: Zero extend halfword

Branch instructions

These instructions include unconditional branch instructions (JARL, JMP, JR) and conditional branch
instruction (Bcond) which alters the control depending on the status of flags. Program control can be
transferred to the address specified by a branch instruction. The following instructions (mnemonics) are
provided.

e Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV, BNZ, BP, BR, BSA, BV,
BZ): Branch on condition code

o JARL: Jump and register link
o JMP: Jump register
e JR: Jump relative

Bit manipulation instructions
Execute a logical operation to the specified bit data in memory. The following instructions (mnemonics) are

provided.

e CLR1: Clear bit
e NOTI1: Not bit
e SETI: Set bit
e TST1: Test bit

Special instructions
These instructions are instructions not included in the categories of instructions described above. The
following instructions (mnemonics) are provided.

o CALLT: Call with table look up
e CTRET: Return from CALLT

e DI: Disable interrupt

e DISPOSE: Function dispose

o EI: Enable interrupt

e HALT: Halt

e LDSR: Load system register

e NOP: No operation

e PREPARE: Function prepare

o RETI: Return from trap or interrupt
e STSR: Store system register

e SWITCH: Jump with table look up
o TRAP: Trap

User's Manual U15943EJ4VOUM 39

CHAPTER 5 INSTRUCTION

40

(10) Debug function instructions
These instructions are instructions reserved for debug function. The following instructions (mnemonics) are
provided.

e DBRET: Return from debug trap
e DBTRAP: Debug trap

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

5.3 Instruction Set

In this section, mnemonic of each instruction is described divided into the following items.

¢ Instruction format: Indicates the description and operand of the instruction (for symbols, see Table 5-1).

e Operation:
e Format:
e Opcode:
e Flag:

e Explanation:

Indicates the function of the instruction (for symbols, see Table 5-2).

Indicates the instruction format (see 5.1 Instruction Format).

Indicates the bit field of the instruction opcode (for symbols, see Table 5-3).
Indicates the operation of the flag which is altered after executing the instruction.
0 indicates clear (reset), 1 indicates set, and — indicates no change.

Explains the operation of the instruction.

e Remark: Explains the supplementary information of the instruction.
e Caution: Indicates the cautions.
Table 5-1. Conventions of Instruction Format
Symbol Meaning
reg1 General-purpose register (used as source register)
reg2 General-purpose register (mainly used as destination register. Some are also used as source registers)
reg3 General-purpose register (mainly used as remainder of division results or higher 32 bits of multiply
results)
bit#3 3-bit data for specifying bit number
immx x-bit immediate data
dispx x-bit displacement data
reglD System register number
vector 5-bit data for trap vector (00H to1FH) specification
ccee 4-bit data for condition code specification
sp Stack pointer (r3)
ep Element pointer (r30)
listx Lists of registers (x is a maximum number of registers)
Table 5-2. Conventions of Operation (1/2)
Symbol Meaning
“— Assignment
GRI] General-purpose register
SRI] System register

zero-extend (n)

Zero-extends n to word

sign-extend (n)

Sign-extends n to word

load-memory (a, b)

Reads data of size b from address a

store-memory (a, b, c)

Writes data b of size ¢ to address a

load-memory-bit (a, b)

Reads bit b from address a

store-memory-bit (a, b, c)

Writes ¢ to bit b of address a

User's Manual U15943EJ4VOUM

11

CHAPTER 5 INSTRUCTION

Table 5-2. Conventions of Operation (2/2)

Symbol

Meaning

saturated (n)

Performs saturation processing of n.
If n > 7FFFFFFFH as result of calculation, n = 7FFFFFFFH.
If n < 80000000H as result of calculation, n = 80000000H.

result Reflects result on flag
Byte Byte (8 bits)

Halfword Halfword (16 bits)
Word Word (32 bits)

+ Add

- Subtract

[Bit concatenation

X Multiply

= Divide

% Remainder of division results
AND And

OR Or

XOR Exclusive Or

NOT Logical negate

logically shift left by

Logical left shift

logically shift right by

Logical right shift

arithmetically shift right by

Arithmetic right shift

Table 5-3. Conventions of Opcode

Symbol Meaning
R 1-bit data of code specifying reg1 or regID
r 1-bit data of code specifying reg2
w 1-bit data of code specifying reg3

1-bit data of displacement

| 1-bit data of immediate (indicates higher bits of immediate)
i 1-bit data of immediate
ccee 4-bit data for condition code specification
CCCC 4-bit data for condition code specification of Bcond instruction
bbb 3-bit data for bit number specification
L 1-bit data of code specifying program register in register list

42

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Add register/immediate

ADD

Add

Instruction format (1) ADD reg1, reg2

(2) ADD immb, reg2
Operation (1) GR[reg2] « GR [reg2] + GR [reg1]

(2) GR[reg2] « GR [reg2] + sign-extend (immb5)
Format (1) Format |

(2) Formatll
Opcode 15 0

(1) | rrrrr001110RRRRR |

15 0

@) | rrrrr010010iiiii |
Flag CcY 1 if a carry occurs from MSB; otherwise, 0.

ov 1 if overflow occurs; otherwise, 0.

S 1 if the operation result is negative; otherwise, 0.

Z 1 if the operation result is 0; otherwise 0.

SAT -
Explanation (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result to general-purpose register reg2. The data of general-
purpose register reg1 is not affected.

(2) Adds 5-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg2, and stores the result to general-purpose register reg2.

User's Manual U15943EJ4VOUM 43

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

ADDI

Add immediate

Add Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

44

ADDI imm16, reg1, reg2

GR [reg2] < GR [reg1] + sign-extend (imm16)

Format VI
15 0 31 16
rrrrr110000RRRRR iiidiiiiiiiidididiii

CcY 1 if a carry occurs from MSB; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.

S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is 0; otherwise 0.
SAT -

Adds 16-bit immediate data, sign-extended to word length, to the word data of general-purpose
register reg1, and stores the result to general-purpose register reg2. The data of general-

purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

AND

AND

And

Instruction format

Operation

Format

Opcode

Flag

Explanation

AND reg1, reg2

GR [reg2] « GR [reg2] AND GR [reg1]

Format |

15 0

rrrrr001010RRRRR

cy -

ov o0

S 1 if the MBS of the word data of the operation result is 1; otherwise, 0.
Z 1 if the operation result is 0; otherwise 0.

SAT -

ANDs the word data of general-purpose register reg2 with the word data of general-purpose
register reg1, and stores the result to general-purpose register reg2. The data of general-
purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM 45

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

ANDI

AND immediate

And Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

46

ANDI imm16, reg1, reg2

GR [reg2] « GR [reg1] AND zero-extend (imm16)

Format VI

15 0 31 16

rrrrr110110RRRRR iiididiiidiiiidiiidii

cY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the operation result is 0; otherwise 0.

SAT -

ANDs the word data of general-purpose register reg1 with the value of the 16-bit immediate
data, zero-extended to word length, and stores the result to general-purpose register reg2. The
data of general-purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond

Branch on Condition Code

Instruction format Bcond disp9

Operation if conditions are satisfied
then PC « PC + sign-extend (disp9)

Format Format Il
Opcode 15 0
dddddl0lldddcccc

dddddddd is the higher 8 bits of disp9.

Flag CY -
ov -
S —
Z —
SAT -

Explanation Tests each flag of PSW specified by the instruction. Branches if a specified condition is
satisfied; otherwise, executes the next instruction. The branch destination PC holds the sum of
the current PC value and 9-bit displacement, which is 8-bit immediate shifted 1 bit and sign-
extended to word length.

Remark Bit 0 of the 9-bit displacement is masked to 0. The current PC value used for calculation is the

address of the first byte of this instruction. If the displacement value is 0, therefore, the branch
destination is this instruction itself.

User's Manual U15943EJ4VOUM 47

CHAPTER 5 INSTRUCTION

Table 5-4. Bcond Instructions

Instruction Condition Code Status of Flag Branch Condition
(cccoe)
Signed BGE 1110 (Sxor0OV)=0 Greater than or equal signed
integer BGT 1111 ((SxorOV)orz)=0 Greater than signed
BLE 0111 ((SxorOV)orz)=1 Less than or equal signed
BLT 0110 (S xor OV) =1 Less than signed
Unsigned BH 1011 (CYorz)=0 Higher (Greater than)
integer BL 0001 cY=1 Lower (Less than)
BNH 0011 (CYorz)=1 Not higher (Less than or equal)
BNL 1001 Cy=0 Not lower (Greater than or equal)
Common BE 0010 Z=1 Equal
BNE 1010 Z=0 Not equal
Others BC 0001 CY=1 Carry
BN 0100 S=1 Negative
BNC 1001 CY=0 No carry
BNV 1000 ov=0 No overflow
BNZ 1010 Z=0 Not zero
BP 1100 S=0 Positive
BR 0101 - Always (unconditional)
BSA 1101 SAT =1 Saturated
BV 0000 oV =1 Overflow
BZ 0010 Z=1 Zero
Caution If executing a conditional branch instruction of a signed integer (BGE, BGT, BLE, or BLT) when the SAT

48

flag is set to 1 as a result of executing a saturated operation instruction, the branch condition loses its
meaning. In ordinary operations, if an overflow occurs, the S flag is inverted (0 - 1 or 1 — 0). This is
because the result is a negative value if it exceeds the maximum positive value and it is a positive value if it
exceeds the maximum negative value. However, when a saturated operation instruction is executed, and if
the result exceeds the maximum positive value, the result is saturated with a positive value; if the result
exceeds the maximum negative value, the result is saturated with a negative value. Unlike the ordinary
operation, therefore, the S flag is not inverted even if an overflow occurs.
differently when the instruction is a saturate operation, as opposed to an ordinary operation.

condition which is an XOR of S and OV flags will therefore have no meaning.

User's Manual U15943EJ4VOUM

Hence, the S flag is affected
A branch

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

BSH

Byte swap halfword

Byte Swap Halfword

Instruction format

Operation

Format

Opcode

Flag

Explanation

BSH reg2, reg3

GR [reg3] « GR [reg2] (23:16) || GR [reg2] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)

Format XIlI

15 0 31 16

rrrrr11111100000 wwwww01101000010

CcY 1 if one or more bytes in result lower halfword is 0; otherwise O.

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the lower halfword data of the operation result is 0; otherwise, 0.
SAT -

Endian translation.

User's Manual U15943EJ4VOUM 49

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Byte swap word

BSW

Byte Swap Word

Instruction format BSW reg2, reg3

Operation GR [reg3] < GR [reg2] (7:0) || GR [reg2] (15:8) || GR [reg2] (23:16) || GR [reg2] (31:24)
Format Format XII
Opcode 15 0 31 16

rrrrr11111100000 wwwww01101000000

Flag CcYy 1 if one or more bytes in result word is 0; otherwise 0.
ov o0
S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the word data of the operation result is 0; otherwise, 0.
SAT -
Explanation Endian translation.

50 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

CALLT

Call with table look up

Call with Table Look Up

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

CALLT immé

CTPC « PC + 2 (return PC)

CTPSW « PSW

adr « CTBP + zero-extend (immé6 logically shift left by 1)
PC « CTBP + zero-extend (Load-memory (adr, Halfword))

Format Il

15 0

cYy -
ov -
S -
Z -
SAT -

Saves the restore PC and PSW to CTPC and CTPSW. Adds the CTBP and data of imme,
logically shifted left by 1 and zero-extended to word length, to generate a 32-bit table entry
address. Then load the halfword entry data, zero-extended to word length, and adds the data
and CTBP to generate a 32-bit target address. Then jump to a target address.

If an interrupt is generated during instruction execution, the execution of that instruction may

stop after the end of the read/write cycle. Execution is resumed after returning from the
interrupt.

User's Manual U15943EJ4VOUM 51

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

CLR1

Clear bit

Clear Bit

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

52

(1)
)
(1)

)

z
SAT

(1)

)

The

CLR1 bit#3, disp16 [reg1]
CLR1 reg2, [reg1]

adr « GR [reg1] + sign-extend (disp16)

Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 0)

adr < GR [reg1]

Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 0)

Format VIl
Format IX

15 0 31 16
| 10bbbl111110RRRRR | dddddddddddddddd |

15 0 31 16
|rrrrr111111RRRRR |OOOOOOOOlllOOlOO |

1 if bit specified by operands = 0, 0 if bit specified by operands = 1

Adds the data of general-purpose register reg1 to the 16-bit displacement, sign-extended
to word length, to generate a 32-bit address. Then reads the byte data referenced by the
generated address, clears the bit specified by the bit number of 3 bits, and rewrites the
original address.

Reads the data of general-purpose register reg1 to generate a 32-bit address. Then reads
the byte data referenced by the generated address, clears the bit specified by the data of
lower 3 bits of reg2, and rewrites the original address.

Z flag of the PSW indicates whether the specified bit was a 0 or 1 before this instruction is

executed. It does not indicate the content of the specified bit after this instruction has been
executed.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Conditional move

CMOV

Conditional Move

Instruction format (1) CMOV cccc, reg1, reg2, reg3
(2) CMOV cccc, imm5, reg2, reg3

Operation (1) if conditions are satisfied
then GR [reg3] « GR [reg1]
else GR [reg3] < GR [reg?]
(2) if conditions are satisfied
then GR [reg3] « sign-extend (imm5)
else GR [reg3] « GR [reg2]

Format (1) Format XI
(2) Format Xl

Opcode 15 0 31 16
(1) |rrrrrllllllRRRRR |wwwwwOllOOlccccO |

15 0 31 16

Flag CcYy -
ov -
S —
Z —
SAT -

Explanation (1) The general-purpose register reg3 is set to the data of general-purpose register reg1 if a
condition specified by condition code “cccc” is satisfied; otherwise, set to the data of
general-purpose register reg2. One of the codes shown in Table 5-5 Condition Codes
should be specified as the condition code “cccc”.

(2) The general-purpose register reg3 is set to the data of 5-bit immediate, sign-extended to
word length, if a condition specified by condition code “cccc” is satisfied; otherwise, set to
the data of general-purpose register reg2. One of the codes shown in Table 5-5
Condition Codes should be specified as the condition code “cccc”.

Remark See SETF instruction.

User's Manual U15943EJ4VOUM 53

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Compare register/immediate (5-bit)

CMP

Compare

Instruction format (1) CMP reg1, reg2
(2) CMP imm5, reg2

Operation (1) result « GR [reg2] — GR [reg1]
(2) result « GR [reg2] — sign-extend (immb5)

Format (1) Format |
(2) Formatll

Opcode 15 0
(1) |rrrrrOOllllRRRRR |

15 0

Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
ov 1 if overflow occurs; otherwise 0.
S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.
SAT -

Explanation (1) Compares the word data of general-purpose register reg2 with the word data of general-
purpose register reg1, and indicates the result by using the flags of PSW. To compare, the
contents of general-purpose register reg1 are subtracted from the word data of general-
purpose register reg2. The data of general-purpose registers regl and reg2 are not
affected.

(2) Compares the word data of general-purpose register reg2 with 5-bit immediate data, sign-
extended to word length, and indicates the result by using the flags of PSW. To compare,
the contents of the sign-extended immediate data is subtracted from the word data of
general-purpose register reg2. The data of general-purpose register reg2 is not affected.

54 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

Return from CALLT

CTRET

Return from CALLT

Instruction format CTRET

Operation PC <« CTPC
PSW « CTPSW
Format Format X
Opcode 15 0 31 16

0000011111100000 0000000101000100

Flag CY Value read from CTPSW is restored.
ov Value read from CTPSW is restored.
S Value read from CTPSW is restored.
z Value read from CTPSW is restored.
SAT Value read from CTPSW is restored.

Explanation Fetches the restore PC and PSW from the appropriate system register and returns from a
routine called by CALLT instruction. The operations of this instruction are as follows:

(1) The restore PC and PSW are read from the CTPC and CTPSW.

(2) Once the PC and PSW are restored to the return values, control is transferred to the return
address.

User's Manual U15943EJ4VOUM 55

CHAPTER 5 INSTRUCTION

<Debug function instruction>

Return from debug trap

DBRET

Return from debug trap

Instruction format DBRET

Operation PC <« DBPC
PSW « DBPSW

Format Format X

Opcode 15 0 31 16
0000011111100000 0000000101000110

Flag cY Value read from DBPSW is restored.
ov Value read from DBPSW is restored.
S Value read from DBPSW is restored.
z Value read from DBPSW is restored.
SAT Value read from DBPSW is restored.

Explanation Fetches the restore PC and PSW from the appropriate system register and returns from debug
mode.
Caution Because the DBRET instruction is for debugging, it is essentially used by debug tools. When a

debug tool is using this instruction, therefore, use of it in the application may cause a
malfunction.

56 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Debug function instruction>

Debug trap

DBTRAP

Debug trap

Instruction format DBTRAP

Operation DBPC « PC + 2 (restore PC)
DBPSW « PSW
PSW.NP « 1
PSW.EP « 1
PSW.ID « 1
PC « 00000060H

Format Format |

Opcode 15 0
1111100001000000

Flag CY -
ov -
S —
Z —
SAT -

Explanation Saves the contents of the restore PC (address of the instruction following the DBTRAP
instruction) and the PSW to the DBPC and DBPSW, respectively, and sets the NP, EP, and ID
flags of PSW to 1.
Next, the handler address (00000060H) of the exception trap is set to the PC, and control shifts
to the PC. PSW flags other than NP, EP, and ID flags are unaffected.
Note that the value saved to the DBPC is the address of the instruction following the DBTRAP
instruction.

Caution Because the DBTRAP instruction is for debugging, it is essentially used by debug tools. When

a debug tool is using this instruction, therefore, use of it in the application may cause a
malfunction.

User's Manual U15943EJ4VOUM 57

CHAPTER 5 INSTRUCTION

<Special instruction>

Disable interrupt

DI

Disable Interrupt

Instruction format DI

Operation PSW.ID « 1 (Disables maskable interrupt)
Format Format X
Opcode 15 0 31 16

0000011111100000 0000000101100000

Flag CcYy -

Explanation Sets the ID flag of the PSW to 1 to disable the acknowledgement of maskable interrupts during
execution of this instruction.

Remark Interrupts are not sampled during execution of this instruction. The PSW flag actually becomes
valid at the start of the next instruction. But because interrupts are not sampled during
instruction execution, interrupts are immediately disabled. Non-maskable interrupts (NMI) are
not affected by this instruction.

58 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

Function dispose

DISPOSE

Function Dispose

Instruction format (1) DISPOSE immb, list12
(2) DISPOSE immb, list12, [reg1]

Operation (1) sp « sp + zero-extend (immb5 logically shift left by 2)
GR [reg in list12] « Load-memory (sp, Word)
sp«sp+4

repeat 2 steps above until all regs in list12 are loaded
(2) sp « sp + zero-extend (immb5 logically shift left by 2)
GR [reg in list12] « Load-memory (sp, Word)
Ssp«sp+4
repeat 2 states above until all regs in list12 are loaded
PC « GR [reg1]

Format Format XIlI

Opcode 15 0 31 16

RRRRR must not be 00000.

In addition, LLLLLLLLLLLL indicates the value of corresponding bit in the register list
(list12) (for example, “L” of the bit 21 in the opcode indicates the value of bit 21 of the
list12).

The list12 is a 32-bit register list defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20 --- 1 0

r24 | r25 | r26 | 27 | r20 [r21 | r22 [r23 | ¥r28 [r29 | r31 - r30

General-purpose registers (r20 to r31) correspond to the bits 31 to 21 and 0, and the
register corresponding to the bit being set (to 1) is specified as the target of manipulation.
Any values can be set to bits 20 to 1 since these bits are not corresponding to registers.

User's Manual U15943EJ4VOUM 59

CHAPTER 5 INSTRUCTION

Flag

Explanation

Remark

Caution

60

cy -
ov -
S -
Z -
SAT -

(1) Adds the data of 5-bit immediate immb5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pop (load data from the address specified by sp and adds 4 to sp)
general-purpose registers listed in list12. Bit O of the address is masked to 0.

(2) Adds the data of 5-bit immediate imm5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pop (load data from the address specified by sp and adds 4 to
sp) general-purpose registers listed in list12, transfers control to the address specified by
general-purpose register reg1. Bit 0 of the address is masked to 0.

General-purpose registers in list12 are loaded in the downward direction. (r31, r30, ... r20)

The 5-bit immediate imm5 is used to restore a stack frame for auto variables and temporary
data.

The lower 2-bit of address specified by sp is always masked to 0 even if misaligned access is
enabled.

If an interrupt occurs before updating the sp, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction (sp will retain their original
values prior to the start of execution).

If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are
complete. Execution is resumed after returning from the interrupt.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Divide word
Divide Word
Instruction format DIV reg1, reg2, reg3
Operation GR [reg2] < GR [reg2] +~ GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]
Format Format XI
Opcode 15 0 31 16
rrrrrl111111RRRRR wwwww01011000000
Flag CcY -
ov 1 if overflow occurs; otherwise, 0.
S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is O; otherwise, 0.
SAT -
Explanation Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1, and stores the quotient to general-purpose register reg2, and the remainder to
general-purpose register reg3. If the data is divided by 0, overflow occurs, and the quotient is
undefined. The data of general-purpose register reg1 is not affected.

Remark Overflow occurs when the maximum negative value (80000000H) is divided by —1 (in which
case the quotient is 80000000H) and when data is divided by 0 (in which case the quotient is
undefined).

If an interrupt occurs while this instruction is executed, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction. Also, general-purpose
registers reg1 and reg2 will retain their original values prior to the start of execution.

If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(= reg3).

User's Manual U15943EJ4VOUM 61

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

DIVH

Divide halfword

Divide Halfword

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

62

(1)
)

DIVH reg1, reg2
DIVH reg1, reg2, reg3

GR [reg2] « GR [reg2] +~ GR [reg1]
GR [reg2] « GR [reg2] +~ GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format |
Format XI

15 0

(1) |rrrrrOOOOIORRRRR |

)

cYy
ov
S

4
SAT

(1)

15 0 31 16
| rrrrr111111RRRRR | wwwww01010000000

1 if overflow occurs; otherwise, 0.
1 if the operation result is negative; otherwise, 0.
1 if the operation result is O; otherwise, 0.

Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register reg1, and stores the quotient to general-purpose register reg2. If
the data is divided by 0, overflow occurs, and the quotient is undefined. The data of
general-purpose register reg1 is not affected.

Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register reg1, and stores the quotient to general-purpose register reg2,
the remainder to general-purpose register reg3. If the data is divided by 0, overflow occurs,
and the quotient is undefined. The data of general-purpose register reg1 is not affected.

The remainder is not stored. Overflow occurs when the maximum negative value
(80000000H) is divided by —1 (in which case the quotient is 80000000H) and when data is
divided by 0 (in which case the quotient is undefined). If an interrupt occurs while this
instruction is executed, execution is aborted, and the interrupt is processed. Upon
returning from the interrupt, the execution is restarted from the beginning, with the return
address being the start address of this instruction. Also, general-purpose registers reg1
and reg2 will retain their original values prior to the start of execution.

Do not specify r0 as the destination register reg2.

The higher 16 bits of general-purpose register reg1 are ignored when division is executed.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

(2) Overflow occurs when the maximum negative value (80000000H) is divided by —1 (in
which case the quotient is 80000000H) and when data is divided by 0 (in which case the
quotient is undefined).

If an interrupt occurs while this instruction is executed, execution is aborted, and the
interrupt is processed. Upon returning from the interrupt, the execution is restarted from
the beginning, with the return address being the start address of this instruction. Also,
general-purpose registers reg1 and reg2 will retain their original values prior to the start of
execution.

The higher 16 bits of general-purpose register reg1 are ignored when division is executed.
If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(= reg3).

User's Manual U15943EJ4VOUM 63

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

DIVHU

Divide halfword unsigned

Divide Halfword Unsigned

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

64

DIVHU reg1, reg2, reg3

GR [reg2] < GR [reg2] +~ GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format XI

15 0 31 16

rrrrr111111RRRRR wwwww01010000010

cy -

ov 1 if overflow occurs; otherwise, 0.

S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is O; otherwise, 0.

SAT -

Divides the word data of general-purpose register reg2 by the lower halfword data of general-
purpose register reg1, and stores the quotient to general-purpose register reg2, and the
remainder to general-purpose register reg3. If the data is divided by 0, overflow occurs, and
the quotient is undefined. The data of general-purpose register reg1 is not affected.

Overflow occurs when data is divided by 0 (in which case the quotient is undefined).

If an interrupt occurs while this instruction is executed, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction. Also, general-purpose
registers reg1 and reg2 will retain their original values prior to the start of execution.

If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(= reg3).

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Divide word unsigned

DIVU

Divide Word Unsigned

Instruction format DIVU regl, reg2, reg3

Operation GR [reg2] < GR [reg2] +~ GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format Format Xl

Opcode 15 0 31 16
rrrrr111111RRRRR wwwww01011000010

Flag CcY -
ov 1 if overflow occurs; otherwise, 0.
S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is O; otherwise, 0.
SAT -
Explanation Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1, and stores the quotient to general-purpose register reg2, and the remainder to
general-purpose register reg3. If the data is divided by 0, overflow occurs, and the quotient is
undefined. The data of general-purpose register reg1 is not affected.

Remark Overflow occurs when data is divided by 0 (in which case the quotient is undefined).
If an interrupt occurs while this instruction is executed, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction. Also, general-purpose
registers reg1 and reg2 will retain their original values prior to the start of execution.
If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(= reg3).

User's Manual U15943EJ4VOUM 65

CHAPTER 5 INSTRUCTION

<Special instruction>

El

Enable interrupt

Enable Interrupt

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

66

El

PSW.ID « 0 (enables maskable interrupt)

Format X

15 0 31 16

1000011111100000 0000000101100000

cYy -

Clears the ID flag of the PSW to 0 and enables the acknowledgement of maskable interrupts
beginning at the next instruction.

Interrupts are not sampled during instruction execution.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

HALT

Halt

Halt

Instruction format HALT

Operation Halts
Format Format X
Opcode 15 0 31 16

0000011111100000 0000000100100000

Flag CcYy -
ov -
S —
Z —
SAT -

Explanation Stops the operating clock of the CPU and places the CPU in the HALT mode.

Remark The HALT mode is exited by any of the following three events:

* Resetinput
¢ Non-maskable interrupt request (NMI input)
¢ Unmasked maskable interrupt request

If an interrupt is acknowledged during the HALT mode, the address of the following instruction

is stored in EIPC or FEPC.

User's Manual U15943EJ4VOUM

67

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

HSW

Halfword swap word

Halfword Swap Word

Instruction format

Operation

Format

Opcode

Flag

Explanation

68

HSW reg2, reg3

GR [reg3] « GR [reg2] (15:0) || GR [reg2] (31:16)

Format XII

15 0 31 16

rrrrr11111100000 wwwww01101000100

CcY 1 if one or more halfwords in result word is 0; otherwise 0.

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the word data of the operation result is 0; otherwise, O.

SAT -

Endian translation.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Branch instruction>

Jump and register link

JARL

Jump and Register Link

Instruction format JARL disp22, reg2

Operation GR [reg2] « PC + 4
PC « PC + sign-extend (disp22)

Format Format V

Opcode 15 0 31 16
rrrrr11110dddddd dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CY -
ov -
S —
Z —
SAT -

Explanation Saves the current PC value plus 4 to general-purpose register reg2, adds the current PC value
and 22-bit displacement, sign-extended to word length, and transfers control to that PC. Bit 0
of the 22-bit displacement is masked to 0.

Remark The current PC value used for calculation is the address of the first byte of this instruction. If
the displacement value is 0, the branch destination is this instruction itself.
This instruction is equivalent to a call subroutine instruction, and saves the restore PC address
to general-purpose register reg2. The JMP instruction, which is equivalent to a subroutine-
return instruction, can be used to specify as reg1 the general-purpose register containing the
return address saved during the JARL subroutine-call instruction, to restore the program
counter.

User's Manual U15943EJ4VOUM 69

CHAPTER 5 INSTRUCTION

<Branch instruction>

Jump register

JMP

Jump Register

Instruction format JMP [regi]

Operation PC « GR [reg1]
Format Format |
Opcode 15 0
00000000011RRRRR
Flag CcYy -
ov -
S —
Z —
SAT -
Explanation Transfers control to the address specified by general-purpose register reg1. Bit 0 of the

address is masked to 0.

Remark When using this instruction as the subroutine-return instruction, specify the general-purpose
register containing the return address saved during the JARL subroutine-call instruction, to
restore the program counter. When using the JARL instruction, which is equivalent to the
subroutine-call instruction, store the PC return address in general-purpose register reg2.

70 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Branch instruction>

Jump relative

JR

Jump Relative

Instruction format JR disp22

Operation PC « PC + sign-extend (disp22)
Format Format V
Opcode 15 0 31 16

0000011110dddddd dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag cYy -
ov -
S —
Z —
SAT -

Explanation Adds the 22-bit displacement, sign-extended to word length, to the current PC value and stores
the value in the PC, and then transfers control to that PC. Bit 0 of the 22-bit displacement is

masked to 0.

Remark The current PC value used for the calculation is the address of the first byte of this instruction
itself. Therefore, if the displacement value is 0, the jump destination is this instruction.

User's Manual U15943EJ4VOUM 71

CHAPTER 5 INSTRUCTION

<Load instruction>

Load byte
Load
Instruction format LD.B disp16 [reg1], reg2
Operation adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Byte))
Format Format VII
Opcode 15 0 31 16
rrrrr111000RRRRR dddddddddddddddd
Flag CcY -
ov -
S —
Z —
SAT -
Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Byte data is read from the generated address, sign-
extended to word length, and stored in general-purpose register reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral 1/0,
external memory), the bus cycle may be switched (this will not occur if the same resource is
accessed).

72 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

LD.BU

Load byte unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

LD.BU disp16 [reg1], reg2

adr < GR [reg1] + sign-extend (disp16)
GR [reg2] « zero-extend (Load-memory (adr, Byte))

Format VII

15 0 31 16
rrrrr11110bRRRRR dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16. b is the bit 0 of disp16.

CcY -
ov -
S —
7 -
SAT -

Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Byte data is read from the generated address, zero-
extended to word length, and stored in general-purpose register reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral 1/0O,
external memory), the bus cycle may be switched (this will not occur if the same resource is

accessed).

User's Manual U15943EJ4VOUM 73

CHAPTER 5 INSTRUCTION

<Load instruction>

LD.H

Load halfword

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

Remark

74

LD.H disp16 [reg1], reg2

adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Halfword))

Format VII

15 0 31 16
rrrrr111001RRRRR dddddddddddddddo

ddddddddddddddd is the higher 15 bits of disp16.

CcY -
ov -
S —
7 -
SAT -

Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Halfword data is read from the generated address, sign-
extended to word length, and stored in general-purpose register reg2.

For notes on misaligned access occurrence, see 3.3 Data Alignment.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral /O,
external memory), the bus cycle may be switched (this will not occur if the same resource is
accessed).

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

Load halfword unsigned

LD.HU

Load

Instruction format LD.HU disp16 [reg1], reg2
Operation adr < GR [reg1] + sign-extend (disp16)

GR [reg2] « zero-extend (Load-memory (adr, Halfword))
Format Format VII
Opcode 15 0 31 16

rrrrr111111RRRRR dddddddddddddddl

dddddddddddddda is the higher 15 bits of disp16.
Flag CY -

ov -

S —

Z —

SAT -
Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Halfword data is read from the generated address, zero-
extended to word length, and stored in general-purpose register reg2.

Caution For notes on misaligned access occurrence, see 3.3 Data Alignment.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral 1/0,
external memory), the bus cycle may be switched (this will not occur if the same resource is
accessed).

User's Manual U15943EJ4VOUM 75

CHAPTER 5 INSTRUCTION

<Load instruction>

Load word
Load
Instruction format LD.W disp16 [reg1], reg2
Operation adr « GR [reg1] + sign-extend (disp16)
GR [reg2] « Load-memory (adr, Word)
Format Format VII
Opcode 15 0 31 16
rrrrr111001RRRRR dddddddddddddddl
ddddddddddddddd is the higher 15 bits of disp16.
Flag CY -
ov -
S —
Z —
SAT -
Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Word data is read from the generated address.
Caution For notes on misaligned access occurrence, see 3.3 Data Alignment.
Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral /O,
external memory), the bus cycle may be switched (this will not occur if the same resource is
accessed).

76 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

LDSR

Load to system register

Load to System Register

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

LDSR reg2, reglD

SR [reglD] « GR [reg2]

Format IX

15 0 31 16

rrrrrl111111RRRRR 0000000000100000

Caution The source register in this instruction is represented by reg2 for convenience
of describing its mnemonic . In the opcode, however, the regi field is used
for the source register. Unlike other instructions therefore, the register
specified in the mnemonic description has a different meaning in the opcode.

rrrrr: reglD specification
RRRRR: reg2 specification

CY — (See Remark below.)
ov — (See Remark below.)
S — (See Remark below.)
z — (See Remark below.)
SAT — (See Remark below.)

Loads the word data of general-purpose register reg2 to a system register specified by the
system register number (reglD). The data of general-purpose register reg2 is not affected.

If the system register number (reglD) is equal to 5 (PSW register), the values of the
corresponding bits of the PSW are set according to the contents of reg2. Also, interrupts are
not sampled when the PSW is being written with a new value. If the ID flag is enabled with this
instruction, interrupt disabling begins at the start of execution, even though the ID flag does not
become valid until the beginning of the next instruction.

The system register number regID is a number which identifies a system register. Accessing

system registers which are reserved or write-prohibited is prohibited and will lead to undefined
results.

User's Manual U15943EJ4VOUM 77

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Move register/immediate (5-bit)/immediate (32-bit)

MOV

Move
Instruction format (1) MOV reg1, reg2
(2) MOV immb5, reg2
(3) MOV imm32, reg1
Operation (1) GR[reg2] « GR [regl]
(2) GR [reg2] « sign-extend (immb5)
(3) GR[reg1] « imm32
Format (1) Format |
(2) Formatli
(3) Format VI
Opcode 15 0
(1) | rrrrr000000RRRRR |
15 0
2 | rrrrr010000iiiii |
15 0 31 16 47 32
(3) | 00000110001RRRRR | iiiiiiiiiiiiiiii | ITIITITIITIIIIIII
i (bits 31 to 16) refers to the lower 16 bits of 32-bit imnmediate data.
T (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.
Flag cYy -
ov -
S —
Z —
SAT -
Explanation (1) Transfers the word data of general-purpose register reg1 to general-purpose register reg2.

The data of general-purpose register reg1 is not affected.

(2) Transfers the value of a 5-bit immediate data, sign-extended to word length, to general-
purpose register reg2.
Do not specify r0 as the destination register reg2.

(3) Transfers the value of a 32-bit immediate data to general-purpose register reg1.

78 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

MOVEA

Move effective address

Move Effective Address

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

MOVEA imm16, reg1, reg2

GR [reg2] « GR [reg1] + sign-extend (imm16)

Format VI

15 0 31 16

rrrrr110001RRRRR 1111111111111111

SAT -

Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg1, and stores the result to general-purpose register reg2. The data of
general-purpose register reg1 is not affected. The flags are not affected by the addition.

Do not specify rO as the destination register reg2.

This instruction calculates a 32-bit address and stores the result without affecting the PSW
flags.

User's Manual U15943EJ4VOUM 79

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Move high halfword

MOVHI

Move High Halfword

Instruction format MOVHI imm16, reg1, reg2

Operation GR [reg2] < GR [reg1] + (imm16 Il 06)
Format Format VI
Opcode 15 0 31 16
rrrrr110010RRRRR iiiiiiiiidiiiiiii
Flag CcYy -
ov -
S —
Z —
SAT -
Explanation Adds a word data, whose higher 16 bits are specified by the 16-bit immediate data and lower

16 bits are 0, to the word data of general-purpose register reg1 and stores the result in general-
purpose register reg2. The data of general-purpose register reg1 is not affected.

The flags are not affected by the addition.

Do not specify r0 as the destination register reg2.

Remark This instruction is used to generate the higher 16 bits of a 32-bit address.

80 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Multiply instruction>

MUL

Multiply word by register/immediate (9-bit)

Multiply Word

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

(1)
)

(1)

@)

CY
ov
S

z
SAT

M

MUL reg1, reg2, reg3
MUL imm9, reg2, reg3

GR [reg3] || GR [reg2] « GR [reg2] x GR [reg1]
GR [reg3] || GR [reg2] « GR [reg2] x sign-extend (imm9)

Format XI
Format XIlI

15 0 31 16
|rrrrrllllllRRRRR |wwwwwOlOOOlOOOOO |

15 0 31 16
|rrrrr111111iiiii |wwwww010011IIIOO |

IIII is the higher 4 bits of 9-bit immediate data.

Multiplies the word data of general-purpose register reg2 by the word data of general-
purpose register reg1, and stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2. The data of
general-purpose register reg1 is not affected.

Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, sign-
extended to word length, and stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are

stored in reg2 (= reg3).

User's Manual U15943EJ4VOUM 81

CHAPTER 5 INSTRUCTION

Caution (1) In the “MUL reg1, reg2, reg3” instruction, do not use registers in combinations that satisfy
all the following conditions; otherwise the operation is not guaranteed.

e regl =reg3
e regl #reg2
e regl #r0

e reg3 =10

<R> (2) For restrictions on using the mul/mulu instruction, refer to APPENDIX A NOTES.

82 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Multiply instruction>

Multiply halfword by register/immediate (5-bit)

MULH

Multiply Halfword

Instruction format (1) MULH regi, reg2
(2) MULH immb5, reg2

Operation (1) GR[reg2] (32) « GR [reg2] (16) x GR [reg1] (16)
(2) GR[reg2] « GR [reg2] x sign-extend (imm5)

Format (1) Format |
(2) Formatll
Opcode 15 0

(1) |rrrrr0001llRRRRR |

15 0

Flag CcYy -
ov -
S —
Z —
SAT -

Explanation (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of
general-purpose register reg1, and stores the result to general-purpose register reg2 as
word data.

The data of general-purpose register reg1 is not affected.
Do not specify r0 as the destination register reg2.

(2) Multiplies the lower halfword data of general-purpose register reg2 by a 5-bit immediate
data, sign-extended to halfword length, and stores the result to general-purpose register
reg2.

Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general-purpose registers reg1 and reg2 are ignored in this operation.

User's Manual U15943EJ4VOUM 83

CHAPTER 5 INSTRUCTION

<Multiply instruction>

Multiply halfword by immediate (16-bit)

MULHI

Multiply Halfword Immediate

Instruction format MULHI imm16, reg1, reg2

Operation GR [reg2] « GR [reg1] x imm16
Format Format VI
Opcode 15 0 31 16
rrrrr110111RRRRR 1iidiiiidiiiidiiiid
Flag CcYy -
ov -
S —
Z —
SAT -
Explanation Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate data,

and stores the result to general-purpose register reg2. The data of general-purpose register
reg1 is not affected.
Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general-purpose register reg1 are ignored in this operation.

84 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Multiply instruction>

MULU

Multiply word by register/immediate (9-bit)

Multiply Word Unsigned

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

(1)
)

(1)

@)

CY
ov
S

z
SAT

M

MULU reg1, reg2, reg3
MULU imm9, reg2, reg3

GR [reg3] || GR [reg2] « GR [reg2] x GR [reg1]
GR [reg3] || GR [reg2] < GR [reg2] x zero-extend (imm9)

Format XI
Format XIlI

15 0 31 16
|rrrrrllllllRRRRR |wwwwwOlOOOlOOOlO |

15 0 31 16
|rrrrr111111iiiii |wwwww010011III10 |

IIII is the higher 4 bits of 9-bit immediate data.

Multiplies the word data of general-purpose register reg2 by the word data of general-
purpose register reg1, and stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2.

The data of general-purpose register reg1 is not affected.

Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, zero-
extended to word length, and stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are

stored in reg2 (= reg3).

User's Manual U15943EJ4VOUM 85

CHAPTER 5 INSTRUCTION

(1) Inthe “MULU reg1, reg2, reg3” instruction, do not use registers in combinations that satisfy
all the following conditions; otherwise the operation is not guaranteed.

Caution

e reg1 =reg3
e regl1 #reg2
eregl =10
e reg3 # 10

<R> (2) For restrictions on using the mul/mulu instruction, refer to APPENDIX A NOTES.

86 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

No operation

NOP

No Operation

Instruction format NOP

Operation Executes nothing and consumes at least one clock.
Format Format |
Opcode 15 0

0000000000000000
Flag CcYy -

ov -

S —

Z —

SAT -
Explanation Executes nothing and consumes at least one clock cycle.
Remark The contents of the PC are incremented by two. The opcode is the same as that of MOV r0, r0.

User's Manual U15943EJ4VOUM 87

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

NOT

NOT

Not

Instruction format

Operation

Format

Opcode

Flag

Explanation

88

NOT reg1, reg2

GR [reg2] « NOT (GR [reg1])

Format |

15 0

rrrrr000001RRRRR

cY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.

SAT -

Logically negates (takes the 1’'s complement of) the word data of general-purpose register reg1,
and stores the result to general-purpose register reg2. The data of general-purpose register
reg1 is not affected.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

NOT bit

NOT1

Not Bit

Instruction format (1) NOT1 bit#3, disp16 [reg1]
(2) NOT1 reg2, [reg1]

Operation (1) adr « GR [reg1] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, Z flag)
(2) adr < GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, Z flag)

Format (1) Format VIII
(2) Format IX

Opcode 15 0 31 16
(1) |OlbbblllllORRRRR |dddddddddddddddd |

15 0 31 16
2) |rrrrr111111RRRRR |OOOOOOOOlllOOOlO |

Flag CcYy -
ov -
S —
Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -

Explanation (1) Adds the data of general-purpose register reg1 to a 16-bit displacement, sign-extended to
word length to generate a 32-bit address. Reads the byte data referenced by the generated
address, inverts the bit specified by the 3-bit bit number (0 — 1 or 1 — 0), and rewrites the
original address.

(2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Reads the
byte data referenced by the generated address, inverts the bit specified by the data of
lower 3 bits of reg2 (0 — 1 or 1 — 0), and rewrites the original address.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

User's Manual U15943EJ4VOUM 89

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

OR

OR

Instruction format

Operation

Format

Opcode

Flag

Explanation

90

OR reg1, reg2

GR [reg2] « GR [reg2] OR GR [reg1]

Format |

15 0

rrrrr001000RRRRR

cY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.

SAT -

ORs the word data of general-purpose register reg2 with the word data of general-purpose
register reg1, and stores the result to general-purpose register reg2. The data of general-
purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

ORI

OR immediate (16-bit)

Or Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

ORI imm186, reg1, reg2

GR [reg2] « GR [reg1] OR zero-extend (imm16)

Format VI

15 0 31 16

rrrrr110100RRRRR iiidiiididiiididiiiid

CcYy -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.

SAT -

ORs the word data of general-purpose register reg1 with the value of the 16-bit immediate data,
zero-extended to word length, and stores the result to general-purpose register reg2. The data
of general-purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM 91

CHAPTER 5 INSTRUCTION

<Special instruction>

Function prepare

PREPARE

Function Prepare

Instruction format (1) PREPARE list12, imm5
(2) PREPARE list12, imm5, sp/imm"*

Note sp/imm is specified by sub-opcode bits 20 and 19.

Operation (1) Store-memory (sp — 4, GR [reg in list12], Word) sp <« sp—4
repeat 1 step above until all regs in list12 is stored
sp « sp — zero-extend (immb5)
(2) Store-memory (sp — 4, GR [reg in list12], Word) sp < sp—4
repeat 1 step above until all regs in list12 is stored
sp « sp — zero-extend (immb5)
ep « sp/imm

Format Format Xl

Opcode 15 0 31 16

15 0 31 16 Optional (47 to 32 or 63 to 32)

(2) |OOOOOllllOiiiiiL |LLLLLLLLLLLff011 | imml6 / imm32 '

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32, bits
63 to 48 are the higher 16 bits of imm32.

ff = 00: load sp toep

f£f = 01: load 16-bit immediate data (bits 47 to 32), sign-extended, to ep

f££f = 10: load 16-bit immediate data (bits 47 to 32), logically shifted left by 16, to ep
£f = 11: load 32-bit immediate data (bits 63 to 32) to ep

In addition, LLLLLLLLLLLL indicates the value of corresponding bit in the register list (list12)
(for example, “L” of the bit 21 in the opcode indicates the value of bit 21 of the list12).

The list12 is a 32-bit register list defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20 --- 1 0

r24 | r25 | r26 | x27 | r20 [r21 | r22 [r23 | r28 [r29 | r31 - r30

General-purpose registers (r20 to r31) correspond to the bits 31 to 21 and 0, and the register
corresponding to the bit being set (to 1) is specified as the target of manipulation. Any values
can be set to bits 20 to 1 since these bits are not corresponding to registers.

92 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

Flag cYy -
ov -
S —
Z —
SAT -

Explanation (1) Push (subtract 4 from sp and store the data to that address) general-purpose registers
listed in list12. Then subtract the data of 5-bit immediate immb5, logically shifted left by 2
and zero-extended to word length, from sp.

(2) Push (subtract 4 from sp and store the data to that address) general-purpose registers
listed in list12. Then subtract the data of 5-bit immediate imm5, logically shifted left by 2
and zero-extended to word length, from sp.

Next, load the data specified by 3rd operand (sp/imm) to ep.

Remark General-purpose registers in list12 is stored on the upward direction. (r20, r21, ... r31)

The 5-bit immediate immb5 is used to make a stack frame for auto variables and temporary data.
The lower 2 bits of the address specified by sp are always masked to 0 even if misaligned
access is enabled.

If an interrupt occurs before updating the sp, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction (sp and ep will retain their
original values prior to the start of execution).

Caution If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are
complete.

User's Manual U15943EJ4VOUM 93

CHAPTER 5 INSTRUCTION

<Special instruction>

RETI

Return from trap or interrupt

Return from Trap or Interrupt

Instruction format

Operation

Format

Opcode

Flag

Explanation

94

RETI

if PSW.EP =1
then PC « EIPC

PSW « EIPSW
else if PSW.NP =1

then PC <« FEPC

PSW « FEPSW
else PC <« EIPC
PSW « EIPSW
Format X
15 0 31 16

0000011111100000 0000000101000000

CY Value read from FEPSW or EIPSW is restored.
ov Value read from FEPSW or EIPSW is restored.
S Value read from FEPSW or EIPSW is restored.
VA Value read from FEPSW or EIPSW is restored.
SAT Value read from FEPSW or EIPSW is restored.

This instruction reads the restore PC and PSW from the appropriate system register, and
operation returns from a software exception or interrupt routine. The operations of this
instruction are as follows:

(1) If the EP flag of the PSW is 1, the restore PC and PSW are read from the EIPC and
EIPSW, regardless of the status of the NP flag of the PSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restore PC and PSW
are read from the FEPC and FEPSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 0, the restore PC and PSW
are read from the EIPC and EIPSW.

(2) Once the restore PC and PSW values are set to the PC and PSW, the operation returns to
the address immediately before the trap or interrupt occurred.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

Caution

When returning from a non-maskable interrupt or software exception routine using the RETI
instruction, the NP and EP flags of PSW must be set accordingly to restore the PC and PSW:

* When returning from non-maskable interrupt routine using the RETI instruction:
NP=1andEP =0

* When returning from a software exception routine using the RETI instruction:
EP =1

Use the LDSR instruction for setting the flags.

Interrupts are not accepted in the latter half of the ID stage during LDSR execution because of
the operation of the interrupt controller.

User's Manual U15943EJ4VOUM 95

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SAR

Shift arithmetic right by register/immediate (5-bit)

Shift Arithmetic Right

Instruction format

Operation

Format

Opcode

Flag

Explanation

96

(1)
@)

(1
)

(1)
@)

1)

cYy

ov
S

4
SAT

(1)

SAR regl, reg2
SAR immb5, reg2

GR [reg2] « GR [reg2] arithmetically shift right by GR [reg1]
GR [reg2] « GR [reg2] arithmetically shift right by zero-extend

Format IX
Format Il

15 0 31 16
| rrrrr111111RRRRR | 0000000010100000

15 0

1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.
0

1 if the operation result is negative; otherwise, 0.

1 if the operation result is O; otherwise, 0.

Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’
positions, where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-
purpose register reg1 (after the shift, the MSB prior to shift execution is copied and set as
the new MSB value), and then writes the result to general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 retains the same value prior to
instruction execution. The data of general-purpose register reg1 is not affected.
Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’
positions, where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-
extended to word length (after the shift, the MSB prior to shift execution is copied and set
as the new MSB value), and then writes the result to general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 retains the same value prior to
instruction execution.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Shift and set flag condition

SASF

Shift and Set Flag Condition

Instruction format SASF cccc, reg2

Operation if conditions are satisfied
then GR [reg2] « (GR [reg2] Logically shift left by 1) OR 00000001H
else GR [reg?] « (GR [reg2] Logically shift left by 1) OR 00000000H

Format Format IX

Opcode 15 0 31 16
rrrrrl1111110cccc 0000001000000000

Flag cYy -
ov -
S —
Z —
SAT -

Explanation The general-purpose register reg2 is logically shifted left by 1, and its LSB is set to 1 if a
condition specified by condition code “cccc” is satisfied; otherwise, the general-purpose register
reg2 is logically shifted left by 1, and its LSB is set to 0.
One of the codes shown in Table 5-5 Condition Codes should be specified as the condition
code “cccc’.

Remark See SETF instruction.

User's Manual U15943EJ4VOUM 97

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

Saturated add register/immediate (5-bit)

SATADD

Saturated Add

Instruction format (1) SATADD regtl, reg2
(2) SATADD immb5, reg2

Operation (1) GR[reg2] « saturated (GR [reg2] + GR [reg1])
(2) GR[reg2] « saturated (GR [reg2] + sign-extend (imm5))

Format (1) Format |
(2) Formatli
Opcode 15 0

(1) |rrrrr0001lORRRRR |

15 0
(2) |rrrrr010001iiiii |

Flag CY 1 if a carry occurs from MSB; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose
register reg2, and stores the result to general-purpose register reg2. However, if the result
exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2.
The SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

Do not specify r0 as the destination register reg2.

(2) Adds a 5-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg2, and stores the result to general-purpose register reg2. However, if
the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in
reg2; if the result exceeds the maximum negative value 80000000H, 80000000H is stored
in reg2. The SAT flag is setto 1.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the saturated operation instruction has
been saturated, this flag is set to 1 and is not cleared to 0 even if the result of the subsequent
operation is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

98 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

Saturated subtract

SATSUB

Saturated Subtract

Instruction format SATSUB regfl, reg2

Operation GR [reg2] « saturated (GR [reg2] — GR [reg1])
Format Format |
Opcode 15 0
rrrrr000101RRRRR
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation Subtracts the word data of general-purpose register reg1 from the word data of general-
purpose register reg2, and stores the result to general-purpose register reg2. However, if the
result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The
SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U15943EJ4VOUM 99

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

Saturated subtract immediate

SATSUBI

Saturated Subtract Inmediate

Instruction format SATSUBI imm186, reg1, reg2

Operation GR [reg2] « saturated (GR [reg1] — sign-extend (imm16))
Format Format VI
Opcode 15 0 31 16
rrrrr110011RRRRR i1iiiididididididididiiii
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of
general-purpose register reg1, and stores the result to general-purpose register reg2. However,
if the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if
the result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The
SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

100 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR

Saturated Subtract Reverse

Instruction format SATSUBR reg1, reg2

Operation GR [reg2] « saturated (GR [reg1] — GR [reg2])
Format Format |
Opcode 15 0
rrrrr000100RRRRR
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-
purpose register reg1, and stores the result to general-purpose register reg2. However, if the
result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The
SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U15943EJ4VOUM 101

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

Set bit

SET1

Set Bit

Instruction format (1) SET1 bit#3, disp16 [reg1]
(2) SET1 reg2, [regl]

Operation (1) adr « GR [reg1] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 1)
(2) adr < GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 1)

Format (1) Format VIII
(2) Format IX

Opcode 15 0 31 16
(1) |OObbblllllORRRRR |dddddddddddddddd |

15 0 31 16
2) |rrrrr111111RRRRR |OOOOOOOOlllOOOOO |

Flag CcYy -

Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -

Explanation (1) Adds the 16-bit displacement, sign-extended to word length, to the data of general-purpose
register regl to generate a 32-bit address. Reads the byte data referenced by the
generated address, sets the bit specified by the 3-bit bit number (to 1), and rewrites the
original address.

(2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Reads the
byte data referenced by the generated address, sets the bit specified by the 3-bit bit
number (to 1), and rewrites the original address.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

102 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

SETF

Set flag condition

Set Flag Condition

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SET

F cccc, reg2

if conditions are satisfied

then
else

GR [reg2] « 00000001H
GR [reg2] « 00000000H

Format IX

15

0 31 16

rrrrrl1l111110cccc 0000000000000000

cY
ov
S

z
SAT

The

general-purpose register reg2 is set to 1 if a condition specified by condition code “cccc” is

satisfied; otherwise, 0 are stored in the register. One of the codes shown in Table 5-5

Con

dition Codes should be specified as the condition code “cccc”.

Here are some examples of using this instruction:

(1)

)

Translation of two or more condition clauses

If A of statement if (A) in C language consists of two or more condition clauses (a1, a2, as,
and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object code
executes “conditional branch” by checking the result of evaluation equivalent to an. Since a
pipeline processor takes more time to execute “condition judgment” + “branch” than to
execute an ordinary operation, the result of evaluating each condition clause if (an) is
stored in register Ra. By performing a logical operation to Ran after all the condition
clauses have been evaluated, the delay due to the pipeline can be prevented.

Double-length operation

To execute a double-length operation such as Add with Carry, the result of the CY flag can
be stored in general-purpose register reg2. Therefore, a carry from the lower bits can be
expressed as a numeric value.

User's Manual U15943EJ4VOUM 103

CHAPTER 5 INSTRUCTION

104

Table 5-5. Condition Codes

Condition Code

Condition Name

Condition Expression

(ccec)
0000 \ oV =1
1000 NV ov=0
0001 C/L CY =1
1001 NC/NL CY=0
0010 z Z=1
1010 NZ Z=0
0011 NH (CYorz)=1
1011 H (CYorz)=0
0100 S/N S=1
1100 NS/P S=0
0101 T always (unconditional)
1101 SA SAT =1
0110 LT (S xor QV) =1
1110 GE (SxorQV)=0
0111 LE ((SxorOV)orz)=1
1111 GT ((SxorOV)orz)=0

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SHL

Shift logical left by register/immediate (5-bit)

Shift Logical Left

Instruction format

Operation

Format

Opcode

Flag

Explanation

(1)
)

SHL regt, reg2
SHL immb5, reg2

GR [reg2] « GR [reg2] logically shift left by GR [reg1]

(2) GR[reg2] « GR [reg2] logically shift left by zero-extend (imm5)
(1) Format IX
(2) Formatll
15 0 31 16
(1) | rrrrr111111RRRRR | 0000000011000000
15 0
@) | rrrrr010110iiiii |
CcY 1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.
ov 0
S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is O; otherwise, 0.
SAT -

(1)

@)

Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-purpose register
reg1 (O is shifted to the LSB side), and then writes the result to general-purpose register
reg2. If the number of shifts is 0, general-purpose register reg2 retains the same value
prior to instruction execution. The data of general-purpose register reg1 is not affected.
Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to
word length (0 is shifted to the LSB side), and then writes the result to general-purpose
register reg2. If the number of shifts is 0, general-purpose register reg2 retains the value
prior to instruction execution.

User's Manual U15943EJ4VOUM 105

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SHR

Shift logical right by register/immediate (5-bit)

Shift Logical Right

Instruction format

Operation

Format

Opcode

Flag

Explanation

106

(1)
)

(@)
%
ov
S

4
SAT

(1)

SHR reg1, reg2
SHR immb5, reg2

GR [reg2] « GR [reg2] logically shift right by GR [reg1]
GR [reg2] « GR [reg2] logically shift right by zero-extend (immb5)

Format IX
Format Il

15 0 31 16
| rrrrr111111RRRRR | 0000000010000000

15 0

1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.
0

1 if the operation result is negative; otherwise, 0.

1 if the operation result is O; otherwise, 0.

Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions
where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-purpose register
regl (0 is shifted to the MSB side). This instruction then writes the result to general-
purpose register reg2. If the number of shifts is 0, general-purpose register reg2 retains
the same value prior to instruction execution. The data of general-purpose register reg1 is
not affected.

Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to
word length (0 is shifted to the MSB side). This instruction then writes the result to
general-purpose register reg2. If the number of shifts is 0, general-purpose register reg2
retains the same value prior to instruction execution.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

Short format load byte

SLD.B

Load
Instruction format SLD.B disp7 [ep], reg2
Operation adr < ep + zero-extend (disp7)
GR [reg2] « sign-extend (Load-memory (adr, Byte))
Format Format IV
Opcode 15 0
rrrrr0110ddddddd
Flag CcY -
ov -
S —
Z —
SAT -
Explanation Adds the 7-bit displacement, zero-extended to word length, to the element pointer to generate

a 32-bit address. Byte data is read from the generated address, sign-extended to word length,
and stored in reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

Caution (1) If an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed
after returning from the interrupt. Therefore, except in cases when clearly no interrupt is
generated, the LD instruction should be used for accessing I/O, FIFO types, or other
resources whose status is changed by the read cycle (the bus cycle is not re-executed
even if an interrupt is generated while the LD or store instruction is being executed).

(2) For the restriction on the conflict between the sld instruction and an interrupt request, refer
to APPENDIX A NOTES.

User's Manual U15943EJ4VOUM 107

CHAPTER 5 INSTRUCTION

<Load instruction>

SLD.BU

Short format load byte unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

108

SLD.BU disp4 [ep], reg2

adr < ep + zero-extend (disp4)
GR [reg2] « zero-extend (Load-memory (adr, Byte))

Format IV
15 0
rrrrr0000110dddd

rrrrr must not be 00000.

cYy -
ov -
S —
7 -
SAT -

Adds the 4-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Byte data is read from the generated address, zero-extended to word length,
and stored in reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

(1) If an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed
after returning from the interrupt. Therefore, except in cases when clearly no interrupt is
generated, the LD instruction should be used for accessing 1/0O, FIFO types, or other
resources whose status is changed by the read cycle (the bus cycle is not re-executed
even if an interrupt is generated while the LD or store instruction is being executed).

(2) For the restriction on the conflict between the sld instruction and an interrupt request, refer
to APPENDIX A NOTES.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

Short format load halfword

SLD.H

Load

Instruction format SLD.H disp8 [ep], reg2
Operation adr < ep + zero-extend (disp8)

GR [reg2] « sign-extend (Load-memory (adr, Halfword))
Format Format IV
Opcode 15 0

rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.
Flag CY -

ov -

S -

Z —

SAT -
Explanation Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate

a 32-bit address. Halfword data is read from the generated address, sign-extended to word
length, and stored in reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

Caution (1) For notes on misaligned access occurrence, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that
instruction may stop after the end of the read/write cycle. In this case, the instruction is re-
executed after returning from the interrupt. Therefore, except in cases when clearly no
interrupt is generated, the LD instruction should be used for accessing 1/O, FIFO types, or
other resources whose status is changed by the read cycle (the bus cycle is not re-
executed even if an interrupt is generated while the LD or store instruction is being
executed).

(2) For the restriction on the conflict between the sld instruction and an interrupt request, refer
to APPENDIX A NOTES.

User's Manual U15943EJ4VOUM 109

CHAPTER 5 INSTRUCTION

<Load instruction>

SLD.HU

Short format load halfword unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

110

SLD.HU disp5 [ep], reg2

adr < ep + zero-extend (disp5)
GR [reg2] « zero-extend (Load-memory (adr, Halfword))

Format IV

15 0
rrrrr0000111dddd

dddd is the higher 4 bits of disp5. rrrrr must not be 00000.

cYy -
ov -
S —
7 -
SAT -

Adds the 5-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Halfword data is read from the generated address, zero-extended to word
length, and stored in reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

(1) For notes on misaligned access occurrence, see 3.3 Data Alignment.
Also, if an interrupt is generated during instruction execution, the execution of that
instruction may stop after the end of the read/write cycle. In this case, the instruction is re-
executed after returning from the interrupt. Therefore, except in cases when clearly no
interrupt is generated, the LD instruction should be used for accessing 1/O, FIFO types, or
other resources whose status is changed by the read cycle (the bus cycle is not re-
executed even if an interrupt is generated while the LD or store instruction is being
executed).

(2) For the restriction on the conflict between the sld instruction and an interrupt request, refer
to APPENDIX A NOTES.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

Short format load word

SLD.W

Load
Instruction format SLD.W disp8 [ep], reg2
Operation adr < ep + zero-extend (disp8)
GR [reg2] « Load-memory (adr, Word)
Format Format IV
Opcode 15 0
rrrrr1010ddddddo
dddddd is the higher 6 bits of disp8.
Flag CY -
ov -
S —
Z —
SAT -
Explanation Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Word data is read from the generated address, and stored in reg2.
Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the start address of this instruction.

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

Caution (1) For notes on misaligned access occurrence, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that
instruction may stop after the end of the read/write cycle. In this case, the instruction is re-
executed after returning from the interrupt. Therefore, except in cases when clearly no
interrupt is generated, the LD instruction should be used for accessing 1/0, FIFO types, or
other resources whose status is changed by the read cycle (the bus cycle is not re-
executed even if an interrupt is generated while the LD or store instruction is being
executed).

(2) For the restriction on the conflict between the sld instruction and an interrupt request, refer
to APPENDIX A NOTES.

User's Manual U15943EJ4VOUM 111

CHAPTER 5 INSTRUCTION

<Store instruction>

Short format store byte

SST.B

Store
Instruction format SST.B reg?2, disp7 [ep]
Operation adr < ep + zero-extend (disp7)
Store-memory (adr, GR [reg2], Byte)
Format Format IV
Opcode 15 0
rrrrr0lllddddddd
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds the 7-bit displacement, zero-extended to word length, to the element pointer to generate

a 32-bit address, and stores the data of the lowest byte of reg2 in the generated address.
Remark Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

112 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Short format store halfword

SST.H

Store
Instruction format SST.H reg2, disp8 [ep]
Operation adr < ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Halfword)
Format Format IV
Opcode 15 0
rrrrr1001lddddddd
ddddddd is the higher 7 bits of disp8.
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address, and stores the lower halfword data of reg2 in the generated address.
Caution For notes on misaligned access occurrence, see 3.3 Data Alignment.
Remark Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

User's Manual U15943EJ4VOUM 113

CHAPTER 5 INSTRUCTION

<Store instruction>

Short format store word

SST.W

Store
Instruction format SST.W reg?2, disp8 [ep]
Operation adr < ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Word)
Format Format IV
Opcode 15 0
rrrrr1010ddddddl
dddddd is the higher 6 bits of disp8.
Flag cy -
ov -
S —
Z —
SAT -
Explanation Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address, and stores the word data of reg2 in the generated address.
Caution For notes on misaligned access occurrence, see 3.3 Data Alignment.
Remark Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

114 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Store byte
Store
Instruction format ST.B reg2, disp16 [reg1]
Operation adr < GR [reg1] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Byte)
Format Format VII
Opcode 15 0 31 16
rrrrr111010RRRRR dddddddddddddddd
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general-purpose

register reg1 to generate a 32-bit address, and stores the lowest byte data of general-purpose
register reg2 to the generated address.

Remark Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

User's Manual U15943EJ4VOUM 115

CHAPTER 5 INSTRUCTION

<Store instruction>

Store halfword

ST.H

Store

Instruction format ST.H reg2, disp16 [reg1]
Operation adr « GR [reg1] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Halfword)
Format Format VII
Opcode 15 0 31 16

rrrrr111011RRRRR dddddddddddddddo

dddddddddddddda is the higher 15 bits of disp16.
Flag cy -

ov -

S _

Z —

SAT -
Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general-purpose

register reg1 to generate a 32-bit address, and stores the lower halfword data of general-
purpose register reg2 in the generated address.

Caution For notes on misaligned access occurrence, see 3.3 Data Alignment.
Remark Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

116 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Store word
Store
Instruction format ST.W reg2, disp16 [reg1]
Operation adr < GR [reg1] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Word)
Format Format VII
Opcode 15 0 31 16
rrrrr111011RRRRR dddddddddddddddl
ddddddddddddddd is the higher 15 bits of disp16.
Flag cy -
ov -
S _
Z —
SAT -
Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general-purpose

register reg1 to generate a 32-bit address, and stores the word data of general-purpose
register reg2 in the generated address.

Caution For notes on misaligned access occurrence, see 3.3 Data Alignment.
Remark Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

User's Manual U15943EJ4VOUM 117

CHAPTER 5 INSTRUCTION

<Special instruction>

Store contents of system register

STSR

Store Contents of System Register

Instruction format STSR reglID, reg2

Operation GR [reg2] « SR [regID]
Format Format IX
Opcode 15 0 31 16

rrrrrl111111RRRRR 0000000001000000

Flag CcYy -

SAT -

Explanation Stores the contents of a system register specified by system register number (reglD) to
general-purpose register reg2. The contents of the system register are not affected.

Caution The system register number reglD is a number which identifies a system register. Accessing a
system register which is reserved is prohibited and will lead to undefined results.

118 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Subtract
Subtract
Instruction format SUB reg1, reg2
Operation GR [reg2] « GR [reg2] — GR [reg1]
Format Format |
Opcode 15 0
rrrrr001101RRRRR
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.
SAT -
Explanation Subtracts the word data of general-purpose register regl from the word data of general-

purpose register reg2, and stores the result to general-purpose register reg2. The data of
general-purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM 119

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Subtract reverse

SUBR

Subtract Reverse

Instruction format SUBR reg1, reg2

Operation GR [reg2] « GR [reg1] — GR [reg2]
Format Format |
Opcode 15 0
rrrrr001100RRRRR
Flag CcY 1 if a borrow to MSB occurs; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.
SAT -
Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1, and stores the result to general-purpose register reg2. The data of
general-purpose register reg1 is not affected.

120 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

Jump with table look up

SWITCH

Jump with Table Look Up

Instruction format SWITCH reg1

Operation adr « (PC + 2) + (GR [reg1] logically shift left by 1)
PC « (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Format Format |

Opcode 15 0
00000000010RRRRR

Flag CcY -
ov -
S —
Z —
SAT -

Explanation <1> Adds the table entry address (address following SWITCH instruction) and data of
general-purpose register reg1 logically shifted left by 1, and generates 32-bit table entry
address.

<2> Loads halfword data pointed by address generated in <1>.

<3> Sign-extends the loaded halfword data to word length, and adds the table entry address
after logically shifts it left by 1 bit (next address following SWITCH instruction) to
generate a 32-bit target address.

<4> Then jumps to the target address generated in <3>.

User's Manual U15943EJ4VOUM 121

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SXB

Sign extend byte

Sign Extend Byte

Instruction format

Operation

Format

Opcode

Flag

Explanation

122

SXB reg1

GR [reg1] « sign-extend (GR [reg1] (7:0))

Format |

15 0

00000000101RRRRR

cYy -
ov -
S -
Z -
SAT -

Sign-extends the lowest byte of general-purpose register reg1 to word length.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SXH

Sign extend halfword

Sign Extend Halfword

Instruction format

Operation

Format

Opcode

Flag

Explanation

SXH regl

GR [reg1] « sign-extend (GR [reg1] (15:0))

Format |

15 0

00000000111RRRRR

cYy -
ov -
S -
Z -
SAT -

Sign-extends the lower halfword of general-purpose register reg1 to word length.

User's Manual U15943EJ4VOUM

123

CHAPTER 5 INSTRUCTION

<Special instruction>

Trap

TRAP

Trap

Instruction format TRAP vector

Operation EIPC « PC + 4 (restore PC)
EIPSW « PSW
ECR.EICC « interrupt code
PSW.EP « 1
PSW.ID « 1
PC « 00000040H (vector = 00H to OFH)
00000050H (vector = 10H to 1FH)

Format Format X

Opcode 15 0 31 16
000001111114i4i4iii 0000000100000000

Flag cYy -
ov -
S —
Z —
SAT -

Explanation Saves the restore PC and PSW to EIPC and EIPSW, respectively; sets the exception code
(EICC of ECR) and the flags of the PSW (sets EP and ID flags to 1); jumps to the handler
address corresponding to the trap vector (00H to 1FH) specified by vector, and starts exception
processing.

The flags of PSW other than EP and ID flags are not affected.
The restore PC is the address of the instruction following the TRAP instruction.

124 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

TST

Test

Test

Instruction format

Operation

Format

Opcode

Flag

Explanation

TST regi, reg2

result < GR [reg2] AND GR [reg1]

Format |

15 0

rrrrr001011RRRRR

cY -

ov 0

S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.

SAT -

ANDs the word data of general-purpose register reg2 with the word data of general-purpose
register reg1. The result is not stored, and only the flags are changed. The data of general-
purpose registers reg1 and reg2 are not affected.

User's Manual U15943EJ4VOUM 125

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

Test bit
Test Bit

Instruction format (1) TST1 bit#3, disp16 [reg1]

(2) TST1 reg2, [regl]
Operation (1) adr « GR [reg1] + sign-extend (disp16)

Z flag < Not (Load-memory-bit (adr, bit#3))
(2) adr < GR [reg1]
Z flag < Not (Load-memory-bit (adr, reg2))

Format (1) Format VIII

(2) FormatIX
Opcode 15 0 31 16

(1) | 11bbb111110RRRRR | dddddddddddddddd |

15 0 31 16

(2) | rrrrr111111RRRRR | 0000000011100110 |
Flag cYy -

ov -

S —

z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1

SAT -
Explanation (1) Adds the data of general-purpose register reg1 to a 16-bit displacement, sign-extended to

word length, to generate a 32-bit address. Performs the test on the bit, specified by the 3-
bit bit number, at the byte data location referenced by the generated address. If the
specified bit is 0, the Z flag of PSW is set to 1; if the bit is 1, the Z flag is cleared to 0. The
byte data, including the specified bit, is not affected.

(2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Performs
the test on the bit, specified by the lower 3-bits of reg2, at the byte data location referenced
by the generated address. If the specified bit is 0, the Z flag of PSW is set to 1; if the bit is
1, the Z flag is cleared to 0. The byte data, including the specified bit, is not affected.

126 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

XOR

Exclusive OR

Exclusive Or

Instruction format

Operation

Format

Opcode

Flag

Explanation

XOR reg1, reg2

GR [reg2] « GR [reg2] XOR GR [reg1]

Format |

15 0

rrrrr001001RRRRR

cY -

ov 0

S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.

SAT -

Exclusively ORs the word data of general-purpose register reg2 with the word data of general-
purpose register reg1, and stores the result to general-purpose register reg2. The data of
general-purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM 127

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

XORI

Exclusive OR immediate (16-bit)

Exclusive Or Inmediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

128

XORI imm186, reg1, reg2

GR [reg2] « GR [reg1] XOR zero-extend (imm16)

Format VI

15 0 31 16
rrrrr110101RRRRR i1iiiididididididididiiii

cY -

ov 0

S 1 if the operation result is negative; otherwise, 0.
Z 1 if the operation result is 0; otherwise, 0.

SAT -

Exclusively ORs the word data of general-purpose register reg1 with a 16-bit immediate data,
zero-extended to word length, and stores the result to general-purpose register reg2. The data
of general-purpose register reg1 is not affected.

User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Zero extend byte

ZXB

Zero Extend Byte

Instruction format ZXB reg1

Operation GR [reg1] « zero-extend (GR [reg1] (7:0))
Format Format |
Opcode 15 0
000000001 00RRRRR
Flag CcYy -
ov -
S —
Z -
SAT -
Explanation Zero-extends the lowest byte of general-purpose register reg1 to word length.

User's Manual U15943EJ4VOUM 129

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Zero extend halfword

ZXH

Zero Extend Halfword

Instruction format ZXH reg1

Operation GR [reg1] « zero-extend (GR [reg1] (15:0))
Format Format |
Opcode 15 0
0000000011 0RRRRR
Flag CcYy -
ov -
S —
Z -
SAT -
Explanation Zero-extends the lower halfword of general-purpose register reg1 to word length.

130 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

5.4 Number of Instruction Execution Clock Cycles
A list of the number of instruction execution clocks when the internal ROM or internal RAM is used is shown below.
The number of instruction execution clock cycles differ depending on the combination of instructions. For details, see

CHAPTER 8 PIPELINE.

Table 5-6. List of Number of Instruction Execution Clock Cycles (1/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Load LD.B disp16 [reg1], reg2 4 1 1 Note 1
instructions LD.H disp16 [reg1] , reg2 4 1 1 Note 1

LD.W disp16 [reg1], reg2 4 1 1 Note 1
LD.BU disp16 [reg1], reg2 4 1 1 Note 1
LD.HU disp16 [reg1], reg2 4 1 1 Note 1
SLD.B disp7 [ep] , reg2 2 1 1 Note 2
SLD.BU disp4 [ep] , reg2 2 1 1 Note 2
SLD.H disp8 [ep] , reg2 2 1 1 Note 2
SLD.HU disp5 [ep] , reg2 2 1 1 Note 2
SLD.W disp8 [ep] , reg2 2 1 1 Note 2
Store ST.B reg2, disp16 [reg1] 4 1 1 1
instructions ST.H reg2, disp16 [reg1] 4 1 1 1
ST.W reg2, disp16 [reg1] 4 1 1 1
SST.B reg2, disp7 [ep] 2 1 1 1
SST.H reg2, disp8 [ep] 2 1 1 1
SST.W reg2, disp8 [ep] 2 1 1 1
Multiply MUL regl, reg2, reg3 4 1 4 5
instructions MUL immo, reg2, reg3 4 1 4 5
MULH regi, reg2 2 1 1 2
MULH imm5, reg2 2 1 1 2
MULHI imm16, reg1, reg2 4 1 1 2
MULU reg1, reg2, reg3 4 1 4 5
MULU imm9, reg2, reg3 4 1 4 5
Arithmetic ADD reg1, reg2 2 1 1 1
operation ADD imm5, reg2 2 1 1 1
instructions ADDI imm16, reg1, reg2 4 1 1 1
CMOV cccee, regl, reg2, reg3 4 1 1 1
CMOV cccce, immb, reg2, reg3 4 1 1 1
CMP regi, reg2 2 1 1 1
CMP imm5, reg2 2 1 1 1
DIV regi, reg2, reg3 4 35 35 35
DIVH reg1, reg2 2 35 35 35
DIVH regi, reg2, reg3 4 35 35 35
DIVHU reg1, reg2, reg3 4 34 34 34

User's Manual U15943EJ4VOUM 131

CHAPTER 5 INSTRUCTION

Table 5-6. List of Number of Instruction Execution Clock Cycles (2/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i r |
Arithmetic DIVU reg1, reg2, reg3 4 34 34 34
operation MOV reg1, reg2 2 1 1 1
instructions MOV imm5, reg2 2 1 1 1
MOV imm32, reg1 6 2 2 2
MOVEA imm16, reg1, reg2 4 1 1 1
MOVHI imm16, reg1, reg2 4 1 1 1
SASF ccce, reg2 4 1 1 1
SETF ccce, reg2 4 1 1 1
SuUB regi, reg2 2 1 1 1
SUBR reg1, reg2 2 1 1 1
Saturated SATADD regi, reg2 2 1 1 1
operation SATADD imm5, reg2 2 1 1 1
instructions SATSUB regi, reg2 2 1 1 1
SATSUBI imm16, reg1, reg2 4 1 1 1
SATSUBR regi, reg2 2 1 1 1
Logical AND regi, reg2 2 1 1 1
?Pefa“?” ANDI imm16, reg1, reg2 4 1 1 1
nstructions BSH reg2, reg3 4 1 1 1
BSW reg2, reg3 4 1 1 1
HSW reg2, reg3 4 1 1 1
NOT regi, reg2 2 1 1 1
OR reg1, reg2 2 1 1 1
ORI imm16, reg1, reg2 4 1 1 1
SAR regi, reg2 4 1 1 1
SAR imm5, reg2 2 1 1 1
SHL regi, reg2 4 1 1 1
SHL imm5, reg2 2 1 1 1
SHR regi, reg2 4 1 1 1
SHR imm5, reg2 2 1 1 1
SXB regi 2 1 1 1
SXH regi 2 1 1 1
TST regl, reg2 2 1 1 1
XOR regi, reg2 2 1 1 1
XORI imm16, reg1, reg2 4 1 1 1
ZXB regl 2 1 1 1
ZXH regi 2 1 1 1
<R> I Branch Bcond disp9 (When condition is satisfied) | 2 onotess4 oftotes .4 onotes a4
instructions disp9 (When condition is not 2 1 1 1
satisfied)

132 User's Manual U15943EJ4VOUM

CHAPTER 5 INSTRUCTION

Table 5-6. List of Number of Instruction Execution Clock Cycles (3/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i r |
Branch JARL disp22, reg2 4 onores oMot oneres
instructions JMP [reg1] 2 ghotes ghote ghote s
JR disp22 4 onred ofotes onores
Bit manipulation | CLR1 bit#3, disp16 [reg1] 4 ghees ghewes ghres
instructions CLR1 reg2, [reg1] 4 ghees ghoes ghees
NOT1 bit#3, disp16 [reg1] 4 ghees ghews ghres
NOT1 reg2, [regl] 4 ghoes ghes ghoes
SET1 bit#3, disp16 [reg1] 4 ghewes ghews 3hwes
SET1 reg2, [regl] 4 ghoes ghes ghoes
TSTH bit#3, disp16 [reg1] 4 ghewes ghews 3hres
TST1 reg2, [regl] 4 ghoes ghwes ghoes
Special CALLT imm6 2 greet gieres greet
instructions CTRET _ 4 otes otea gotes
DI - 4 1 1 1
DISPOSE imm5, list12 4 N+ | ne™et [pgqtees
DISPOSE immS5, list12, [reg1] 4 n+3"°% | n+3%°° [g’
El - 4 1 1 1
HALT - 4 1 1 1
LDSR reg2, reglD 4 1 1 1
NOP - 2 1 1 1
PREPARE list12, imm5 4 n+1""® n+1"° n+1"e®
PREPARE list12, imm5, sp 4 n+2"* n+2"° n+2M*
PREPARE list12, imm5, imm16 6 n+2"f | pg2tet [pgotees
PREPARE list12, imm5, imm32 8 n+3"°® | n+3%e° | na3%e’
RETI _ 4 getes getes gotes
STSR reglD, reg2 4 1 1 1
SWITCH regi 2 5 5 5
TRAP vector 4 ghewes ghewes gl
Debug function DBRET - 4 ghoes ghoes gheres
instructions DBTRAP _ 2 ghotes ghote ghote s
Undefined instruction code 4 3 3 3

Notes 1.
2.

o gk w

Depends on the number of wait states (2 if no wait states).

Depends on the number of wait states (1 if no wait states).

3 if there is an instruction rewriting the PSW contents immediately before.
+1 clock for type B products.

In case of no wait states (3 + number of read access wait states).

n is the total number of cycles to load registers in list12 (Depends on the number of wait states, n is
the number of registers in list12 if no wait states. The operation when n = 0 is the same as when n =

1).

User's Manual U15943EJ4VOUM

133

CHAPTER 5 INSTRUCTION

134

Remarks 1. Operand convention

Symbol

Meaning

regi

General-purpose register (used as source register)

reg2

General-purpose register (mainly used as destination register. Some are also used as
source registers.)

reg3

General-purpose register (mainly used as remainder of division results or higher 32 bits
of multiply results)

bit#3

3-bit data for bit number specification

immx

x-bit immediate data

dispx

x-bit displacement data

reglD

System register number

vector

5-bit data for trap vector (00H to 1FH) specification

Ccccce

4-bit data condition code specification

sp

Stack pointer (r3)

ep

Element pointer (r30)

listx

List of registers (x is a maximum number of registers)

2. Execution clock convention

Symbol

Meaning

When other instruction is executed immediately after executing an instruction (issue)

When the same instruction is repeatedly executed immediately after the instruction has
been executed (repeat)

When a subsequent instruction uses the result of execution of the preceding instruction
immediately after its execution (latency)

User's Manual U15943EJ4VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Interrupts are events that occur independently of the program execution and are divided into two types: maskable
interrupts and non-maskable interrupts (NMI). In contrast, exceptions are events whose occurrence is dependent on
the program execution and are divided into three types: software exception, exception trap, and debug trap.

When an interrupt or exception occurs, control is transferred to a handler whose address is determined by the
source of the interrupt or exception. The source of the interrupt/exception is specified by the exception code that is
stored in the exception cause register (ECR). Each handler analyzes the ECR register and performs appropriate
interrupt servicing or exception processing. The restore PC and restore PSW are written to the status saving registers
(EIPC, EIPSW or FEPC, FEPSW).

To restore execution from interrupt or software exception processing, use the RETI instruction. To restore
execution from exception trap or debug trap, use the DBRET instruction. Read the restore PC and restore PSW from

the status saving register, and transfer control to the restore PC.

Table 6-1. Interrupt/Exception Codes

Interrupt/Exception Source Classification | Exception Handler Restore PC
Name Trigger Code Address
Non-maskable interrupt (NMI)**®" NMIO input Interrupt 0010H 00000010H [next PC"*?
NMI1 input Interrupt 0020H 00000020H | next PC"****°
NMI2 input™* Interrupt 0030H 00000030H | next PCM'*=?*
Maskable interrupt Note 5 Interrupt Note 5 Note 6 next PC"°?
Software exception | TRAPOn (n =0 to FH) [TRAP instruction Exception 004nH 00000040H next PC
TRAP1n (n=0to FH) | TRAP instruction Exception 005nH 00000050H next PC
Exception trap (ILGOP) lllegal instruction Exception 0060H 00000060H next PC"°”
code
Debug trap DBTRAP Exception 0060H 00000060H next PC
instruction
Notes 1. The trigger of the non-maskable interrupt incorporated differs depending on the product.

2. Except when an interrupt is acknowledged during execution of the one of the instructions listed below
(if an interrupt is acknowledged during instruction execution, execution is stopped, and then resumed
after the completion of interrupt servicing. In this case, the address of the stopped instruction is the
restored PC.).

e Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W), divide instructions (DIV, DIVH,

DIVU, DIVHU)
¢ PREPARE, DISPOSE instruction (only if an interrupt is generated before the stack pointer is
updated)
3. The PC cannot be restored by the RETI instruction. Perform a system reset after interrupt servicing.
4. Acknowledged even if the NP flag of PSW is set to 1.
5. Differs depending on the type of the interrupts.
6. Higher 16 bits are 0000H and lower 16 bits are the same value as the exception code.
7. The execution address of the illegal instruction is obtained by “Restore PC — 4”.
Remark Restore PC: PC value saved to the EIPC or FEPC when interrupt/exception processing is started

next PC: PC value that starts processing after interrupt/exception processing

User's Manual U15943EJ4VOUM 135

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.1 Interrupt Servicing

6.1.1 Maskable interrupt

The maskable interrupt can be masked by the interrupt control register of the interrupt controller (INTC).

The INTC issues an interrupt request to the CPU, based on the acknowledged interrupt with the highest priority.

If a maskable interrupt occurs due to interrupt request input (INT input), the CPU performs the following steps, and
transfers control to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(38) Writes exception code to lower halfword of ECR (EICC).

(4) Sets ID flag of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for each interrupt to PC and transfers control.

The EIPC and EIPSW are used as the status saving registers. INT inputs are held pending in the interrupt
controller (INTC) when one of the following two conditions occur: when the INT input is masked by its interrupt
controller, or when an interrupt service routine is currently being executed (when the NP flag of the PSW is 1 or when
the ID flag of the PSW is 1). Interrupts are enabled by clearing the mask condition or by setting the NP and ID flags of
the PSW to 0 with the LDSR instruction, which will be enabling new maskable interrupt servicing by a pending INT
input.

The EIPC and EIPSW registers must be saved by program to enable nesting of interrupts because there is only
one set of EIPC and EIPSW is provided.

Maskable interrupt servicing format is shown below.

136 User's Manual U15943EJ4VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Figure 6-1. Maskable Interrupt Servicing Format

INTC processing

CPU processing

_ Interrupt request input
(INT input)

No

Interrupt request?

Priority higher than

Is the interrupt
mask released?

No

that of interrupt currently
serviced?

Priority higher

No

than that of other interrupt
request?

ighest default
priority of interrupt requests

No

with the same priority?

1 (Maskable interrupt request)

No

(Interrupt request pending)

PSW.NP =0

No

PSW.ID=0

EIPC -«— Restore PC
EIPSW -— PSW
ECR.EICC «— Exception code
PSW.EP =—0

PSW.ID =1

PC -— Handler address

C Interrupt servicing) Clnterrupt servicing pending)

User's Manual U15943EJ4VOUM

137

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.1.2 Non-maskable interrupt

The non-maskable interrupt cannot be disabled by an instruction and therefore can always be acknowledged. The
non-maskable interrupt is generated by the NMI input.

When the non-maskable interrupt is generated, the CPU performs the following steps, and transfers control to the
handler routine.

(1) Saves restore PC to FEPC.

(2) Saves current PSW to FEPSW.

(3) Writes exception code (0010H) to higher halfword of ECR (FECC).

(4) Sets NP and ID flags of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for the non-maskable interrupt to PC and transfers control.

The FEPC and FEPSW are used as the status saving registers.

Non-maskable interrupts are held pending in the interrupt controller when another non-maskable interrupt is
currently being executed (when the NP flag of the PSW is 1). Non-maskable interrupts are enabled by setting the NP
flag of the PSW to 0 with the RETI and LDSR instructions, which will be enabling new non-maskable interrupt
servicing by a pending non-maskable interrupt request.

In the case of products that incorporate an interrupt trigger for NMI2, only when NMI2 is generated during the
interrupt servicing of NMIO and NMI1, NMI2 servicing is executed regardless of the value of NP flag.

Non-maskable interrupt servicing format is shown below.

Figure 6-2. Non-Maskable Interrupt Servicing Format

- (NMI input)

X Non-maskable interrupt request

INTC acknowledgement

CPU processing
No

PSW.NP =0

Yes

FEPC -— Restore PC
FEPSW -— PSW
ECR.FECC -— Exception code
PSWINP =1

PSW.EP =0

PSW.ID -1

PC -— Handler address

(Interrupt servicing) (Interrupt request pending)

138 User's Manual U15943EJ4VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2 Exception Processing

6.2.1 Software exception
A software exception is generated when the TRAP instruction is executed and is always acknowledged.
If a software exception occurs, the CPU performs the following steps, and transfers control to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower 16 bits (EICC) of ECR (interrupt source).

(4) Sets EP and ID flags of PSW to 1.

(5) Sets handler address (00000040H or 00000050H) for software exception to PC and transfers control.

Software exception processing format is shown below.

Figure 6-3. Software Exception Processing Format

T (TRAP instruction)

CPU processing

EIPC < Restore PC
EIPSW «— PSW
ECR.EICC < Exception code
PSW.EP «— 1

PSW.ID «— 1

PC < Handler address

C Exception processing)

User's Manual U15943EJ4VOUM 139

<R>

<R>

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2.2 Exception trap

An exception trap is an exception requested when an instruction is illegally executed. The illegal opcode trap
(ILGOP) is the exception trap.

An illegal opcode instruction has an instruction code with an opcode (bits 10 through 5) of 111111B and a sub-
opcode (bits 26 through 23) of 0111B through 1111B and a sub-opcode (bit 16) of 0B. When this kind of an illegal
opcode instruction is executed, an exception trap occurs.

Figure 6-4. lllegal Instruction Code

15 13 12 11 10 5 4 0 31 27 26 23 22 21 20 17 16
T T

X X XIx X1 1 1 11 1]X X X X X|X X X X X to X X|x x x x|O0

Remark x: don’t care, []: opcode/sub-opcode

If an exception trap occurs, the CPU performs the following steps, and transfers control to the handler routine.

(1) Saves restore PC to DBPC.

(2) Saves current PSW to DBPSW.

(3) Sets NP, EP, and ID flags of PSW to 1.

(4) Sets DM flag of DIR to 1

(5) Sets handler address (00000060H) for exception trap to PC and transfers control.

Exception trap processing format is shown below.

Figure 6-5. Exception Trap Processing Format

- Exception trap
(ILGOP) occurs

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
DIR.DM
PC

(Exception processing)

CPU processing

Restore PC
PSW

1

1

1

1
00000060H

T

Caution The operation when executing the instruction not defined as an instruction or illegal instruction
is not guaranteed.

Remark The execution address of the illegal instruction is obtained by “Restore PC — 4”.

140 User’'s Manual U15943EJ4VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2.3 Debug trap

A debug trap is an exception generated when the DBTRAP instruction is executed or when a debug function trap
occurs, and is always acknowledged.

If a debug trap occurs, the CPU performs the following steps.

(1) Saves restore PC to DBPC.

(2) Saves current PSW to DBPSW.

(3) Sets NP, EP, and ID flags of PSW to 1.

(4) Sets DM flag of DIR to 1.

(5) Sets handler address (00000060H) for debug trap to PC and transfers control.

Debug trap processing format is shown below.

Figure 6-6. Debug Trap Processing Format

T (DBTRAP instruction)

CPU processing

DBPC < Restore PC
DBPSW «— PSW
PSW.NP «— 1

PSW.EP «— 1

PSW.ID « 1

DIR.DM «— 1

PC <~ 00000060H

CDebug monitor routine processing)

User's Manual U15943EJ4VOUM 141

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.3 Restoring from Interrupt/Exception Processing

6.3.1 Restoring from interrupt and software exception

All restoration from interrupt servicing and software exception is executed by the RETI instruction.

With the RETI instruction, the CPU performs the following steps, and transfers control to the address of the restore

PC.

(1) If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restore PC and PSW are read from the

FEPC and FEPSW. Otherwise, the restore PC and PSW are read from the EIPC and EIPSW.
(2) Control is transferred to the address of the restored PC and PSW.

When execution has returned from each interrupt servicing, the NP and EP flags of the PSW must be set to the
following values by using the LDSR instruction immediately before the RETI instruction, in order to restore the PC and

PSW normally:

¢ To restore from non-maskable interrupt servicing: NP flag of PSW =1, EP flag=0

e To restore from maskable interrupt servicing:

¢ To restore from exception processing:

EP flag of PSW =1

Restoration from interrupt/exception processing format is shown below.

NP flag of PSW =0, EP flag = 0

Figure 6-7. Restoration from Interrupt/Software Exception Processing Format

(RET]I instruction)

<Restore from
software exception> No

Yes
<Restore from maskable interrupt>

No <Restore from non-maskable interrupt>

PC
PSW

«—
“—

EIPC
EIPSW

-

PC

PSW <« FEPSW

« FEPC

-

Jump to address of
restore PC

)

142

User's Manual U15943EJ4VOUM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.3.2 Restoring from exception trap and debug trap

Restoration from exception trap and debug trap is executed by the DBRET instruction.

With the DBRET instruction, the CPU performs the following steps, and transfers control to the address of the
restore PC.

(1) The restore PC and PSW are read from the DBPC and DBPSW.
(2) Control is transferred to the address of the restored PC and PSW.
(3) If restoring from exception trap or debug trap, the DM flag of DIR is cleared to 0.

Restoration from exception trap/debug trap processing format is shown below.

Figure 6-8. Restoration from Exception Trap/Debug Trap Processing Format

(DBRET instruction)

PC -—DBPC
PSW -— DBPSW
DIR.DM -—0

(Jump to address of restore PC)

User's Manual U15943EJ4VOUM 143

CHAPTER 7 RESET

7.1 Register Status After Reset
When a low-level signal is input to the reset pin, the system is reset, and program registers and system registers
are set in the status shown in Table 7-1. When the reset signal goes high, the reset status is cleared, and program

execution begins. If necessary, initialize the contents of each register by program control.

Table 7-1. Register Status After Reset

Register Status After Reset (Initial Value)

Program registers General-purpose register (r0) 00000000H (Fixed)

General-purpose register (r1 to r31) Undefined

Program counter (PC) 00000000H
System registers Interrupt status saving register (EIPC) 0xxxxxxxH

Interrupt status saving register (EIPSW) 00000xxxH

NMI status saving register (FEPC) OxxxxxxxH

NMI status saving register (FEPSW) 00000xxxH

Exception cause register (ECR) 00000000H

Program status word (PSW) 00000020H

CALLT caller status saving register (CTPC) 0xxxxxxxH

CALLT caller status saving register (CTPSW) 00000xxxH

Exception/debug trap status saving register (DBPC) 0xxxxxxxH

Exception/debug trap status saving register (DBPSW) 00000xxxH

CALLT base pointer (CTBP) OxxxxxxxH

Debug interface register (DIR) 00000000H

Remark x: Undefined
7.2 Starting Up
The CPU begins program execution from address 00000000H after it has been reset.

After reset, no immediate interrupt requests are acknowledged. To enable interrupts by program, clear the ID flag
of the PSW to 0.

144 User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

The V850ES CPU is based on the RISC architecture and executes almost all the instructions in one clock cycle
under control of a 5-stage pipeline. The instruction execution sequence usually consists of five stages including fetch
(IF) to write back (WB) stages. The execution time of each stage differs depending on the type of the instruction and
the type of the memory to be accessed. As an example of pipeline operation, Figure 8-1 shows the processing of the
CPU when 9 standard instructions are executed in succession.

Figure 8-1. Example of Executing Nine Standard Instructions

Time flow (state) >

Internalsystemclock|||||||||||||||||||||||||||

Processing CPU performs | | | | | i i ! ! i i i
simultaneously 1 <1> 1 <2> | <3> | <4> | <5> | <6> | <7> | <8> | <9> 1<10>i<11> i <12> i <13> i
Instruction 1 IF ID EX |MEM| WB i i i
Instruction 2.................. IF ID EX |MEM| WB i i i
INStUCHON 3 +.vvoevereereeeieianen. IF | ID | EX |MEM| WB | | |
INSEUCHON 4 - vvvvvoreeerseeeeeeeiiseeeeeons IF | ID | EX |[MEM| WB
INSHUCHON 5 rvvvvvevreeeeeeesereeeveeeeseesseeeeneennes IF | ID | EX [MEM| WB ’ ‘ ‘ ‘
INSEIUCHION 6 +ovveeeeeeeeeeeee e e IF ID EX |MEM| WB
INSHUCHON 7 oo IF | ID | EX |MEM| WB L
INSErUCHION 8 +vvvereermeiee e IF ID EX |MEM| WB
v INSEIUCHION 9 -eeeeeiiiie e e e IF ID EX |MEM| WB
IEnd of (Endof (Endof jEndof Endof |Endof |Endof |Endof |End of
:instruc- instruc- | instruc- jinstruc- |instruc- | instruc- | instruc- | instruc- |instruc-
Ition1 Ition2 1tion3 ition4 ition5 tion6 ition7 ition8 ition9 |
Executes instruction every 1 clock cycle
IF (instruction fetch): Instruction is fetched and fetch pointer is incremented.
ID (instruction decode): Instruction is decoded, immediate data is generated, and register is read.
EX (execution of ALU, multiplier, and barrel shifter): The decoded instruction is executed.
MEM (memory access): The memory at specified address is accessed.
WB (write back): The result of execution is written to register.

<1> through <13> in the figure above indicate the states of the CPU. In each state, write back (WB) of instruction n,
memory access (MEM) of instruction n+1, execution (EX) of instruction n+2, decoding (ID) of instruction n+3, and
fetching (IF) of instruction n+4 are simultaneously performed. It takes five clock cycles to process a standard
instruction, including IF stage to WB stage. Because five instructions can be processed at the same time, however, a
standard instruction can be executed in 1 clock on the average.

User's Manual U15943EJ4VOUM 145

CHAPTER 8 PIPELINE

8.1 Features

The VB50ES CPU, by optimizing the pipeline, improves the CPI (Cycle per instruction) rate over the previous V850
CPU.

The pipeline configuration of the V850ES CPU is shown in Figure 8-2.

Figure 8-2. Pipeline Configuration

Master pipeline (V850 CPU compatible)

ID EX DF WB
IF o
Asynchronous WB pipeline
Bcond/SLD L
Pipeline - MEM WB
ID "

Address calculation stage Load, store buffer (1 stage each)

Remark DF (data fetch): Execution data is transferred to the WB stage.

146 User’'s Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.1.1 Non-blocking load/store

As the pipeline does not stop during external memory access, efficient processing is possible.

For example, Figure 8-3 shows a comparison of pipeline operations between the V850 CPU and the V850ES CPU

when an ADD instruction is executed after the execution of a load instruction for external memory.

Figure 8-3. Non-Blocking Load/Store

(a) Previous version (V850 CPU): Pipeline is stopped until MEM stage is complete

Load instructi IE D EX MEM (external memory)"*® WB
oad instruction T | T2 | T3
ADD instruction IF ID EX (MEM) wB
Next instruction IF ID EX MEM wB

Note The basic bus cycle for the external memory is 3 clocks.

(b) VB50ES CPU: Efficient pipeline processing through use of asynchronous WB pipeline

)) IE D EX MEM (external memory)"* WB
Load instruction T | To
ADD instruction IF ID EX DF wB
Next instruction IF ID EX MEM wB

Note The basic bus cycle for the external memory of MEMC is 2 clocks.

(1)

()

V850 CPU
The EX stage of the ADD instruction is usually executed in 1 clock. However, a wait time is generated in the
EX stage of the ADD instruction during execution of the MEM stage of the previous load instruction. This is
because the same stage of the 5 instructions on the pipeline cannot be executed in the same internal clock
interval. This also causes a wait time to be generated in the ID stage of the next instruction after the ADD
instruction.

V850ES CPU

An asynchronous WB pipeline for the instructions that are necessary for the MEM stage is provided in
addition to the master pipeline. The MEM stage of the load instruction is therefore processed on this
asynchronous WB pipeline. Because the ADD instruction is processed on the master pipeline, a wait time is
not generated, making it possible to execute instructions efficiently as shown in Figure 8-3.

User's Manual U15943EJ4VOUM 147

CHAPTER 8 PIPELINE

8.1.2 2-clock branch

When executing a branch instruction, the branch destination is decided in the ID stage.

In the case of the conventional V850 CPU, the branch destination of when the branch instruction is executed was
decided after execution of the EX stage, but in the case of the VB50ES CPU, due to the addition of a address
calculation stage for branch/SLD instruction, the branch destination is decided in the ID stage. Therefore, it is
possible to fetch the branch destination instruction 1 clock faster than in the conventional V850 CPU.

Figure 8-4 shows a comparison between the V850 CPU and the VB50ES CPU of pipeline operations with branch
instructions.

Figure 8-4. Pipeline Operations with Branch Instructions

(a) Previous version (V850 CPU)

*‘Branch destination decided in EX stage

Branch instruction IF ID EX MEM WB :
Branch destination IF ID EX MEM WB
instruction

(b) V850ES CPU

*‘Branch destination decided in ID stage

Branch instruction IF ID EX MEM WB i
Branch destination IF ID EX MEM WB
instruction

2 clocks |

Remark Type B product executes interleave access to the internal flash memory or internal mask ROM.
Therefore, it takes two clocks to fetch an instruction immediately after an interrupt has occurred or after
a branch destination instruction has been executed. Consequently, it takes three clocks to execute the
ID stage of the branch destination instruction.

Example
Interleave
access
1
Instruction 1 IF IF ID EX MEM | WB
Instruction 2 IF IF ID EX MEM WB
Instruction 3 IF IF ID EX MEM wB |
Branch instruction IF IF ID
Branch destination instruction IF ‘ IF ‘ ID ‘ EX ‘MEM‘ WB|
3 clocks

148 User’'s Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.1.3 Efficient pipeline processing

Because the VB850ES CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master
pipeline, it is possible to perform efficient pipeline processing.

Figure 8-5 shows an example of a pipeline operation where the next branch instruction was fetched in the IF stage
of the ADD instruction (Instruction fetch from the ROM directly connected to the dedicated bus is performed in 32-bit
units. Both ADD instructions and branch instructions in Figure 8-5 use a 16-bit format instruction).

Figure 8-5. Parallel Execution of Branch Instructions

(a) Previous version (V850 CPU)

ADD instruction IF ID EX (MEM) WB

Branch instruction i IF ID EX MEM WB i

Branch destination instruction IF ID EX MEM
| 5 clocks
[=

(b) V850ES CPU

ADD instruction IF ID EX DF WB
Branch instruction IF ID EX MEM WB
Branch destination instruction IF ID EX MEM WB

3 clocks

(1) v8s0 CPU
Although the instruction codes up to the next branch instruction are fetched in the IF stage of the ADD
instruction, the ID stage of the ADD instruction and the ID stage of the branch instruction cannot execute

together within the same clock. Therefore, it takes 5 clocks from the branch instruction fetch to the branch
destination instruction fetch.

(2) V850ES CPU
Because V850ES CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master
pipeline, the parallel execution of the ID stage of the ADD instruction and the ID stage of the branch
instruction within the same clock is possible. Therefore, it takes only 3 clocks from the branch instruction
fetch start to the branch destination instruction completion.

Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed
simultaneously, the NOP instruction may keep the delay time from being generated.

User's Manual U15943EJ4VOUM 149

CHAPTER 8 PIPELINE

8.2 Pipeline Flow During Execution of Instructions

This section explains the pipeline flow during the execution of instructions.

In pipeline processing, the CPU is already processing the next instruction when the memory or I/O write cycle is
generated. As a result, I/O manipulations and interrupt request masking will be reflected later than next instructions
are issued (ID stage).

When an interrupt mask manipulation is performed, maskable interrupt acknowledgement is disabled from the
instruction immediately after an instruction because the CPU detects access to the internal INTC (ID stage) and
performs interrupt request mask processing.

8.2.1 Load instructions

Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the
MEM stages. However, when accessing the peripheral I/O area, blocking control is effected,
making it possible to wait for the end of the bus cycle at the MEM stage.

(1) LD instructions

[Instructions] LD.B, LD.BU, LD.H, LD.HU, LD.W

[Pipeline] <1> <2> <3> <4> <5> <6>
LD instruction IF 1D EX MEM |WB
Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. If an instruction using the
execution result is placed immediately after the LD instruction, data wait time occurs.

(2) SLD instructions

[Instructions] SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W

[Pipeline] <1> <2> <3> <4> <5> <6>
SLD instruction IF 1D MEM |WB
Next instruction IF ID EX MEM |WB |
[Description] The pipeline consists of 4 stages, IF, ID, MEM, and WB. If an instruction using the execution

result is placed immediately after the SLD instruction, data wait time occurs.

150 User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.2.2 Store instructions

Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the
MEM stages. However, when accessing the peripheral I/O area, blocking control is effected,
making it possible to wait for the end of the bus cycle at the MEM stage.

[Instructions] ST.B, ST.H, ST.W, SST.B, SST.H, SST.W

<1> <2> <3> <4> <5> <6>
_____ I
[Pipeline] Store instruction IF 1D EX MEM |WB |
Next instruction IF ID EX MEM |WB
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the WB stage, because no data is written to registers.

8.2.3 Multiply instructions

(1) Halfword data multiply instruction

[Instructions] MULH, MULHI

[Pipeline] (a) When next instruction is not multiply instruction
<1> <2> <3> <4> <5> <6>
Multiply instruction IF 1D EX1 EX2 |WB
Next instruction IF ID EX MEM |WB
(b) When next instruction is multiply instruction
<1> <2> <3> <4> <5> <6>
Multiply instruction 1 |IF 1D EX1 EX2 |WB
Multiply instruction 2 IF ID EX1 EX2 |WB |

[Description] The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB. The EX stage takes 2 clocks

because it is executed by a multiplier.

EX1 and EX2 stages (different from the normal EX

stage) can operate independently. Therefore, the number of clocks for instruction execution is

always 1 clock, even if several multiply instructions are executed in a row. However, if an

instruction using the execution result is placed immediately after a multiply instruction, data wait

time occurs.

User's Manual U15943EJ4VOUM

151

CHAPTER 8 PIPELINE

(2) Word data multiply instructions

[Instructions] MUL, MULU

[Pipeline] (a) When the next three instructions are not multiply instructions
<1> <2> <3> <4> <5> <6> <7> <8>
Multiply instruction |IF 1D EX1 EX1 EX1 EXA1 EX2 |WB |
Instruction 1 IF ID EX MEM [WB
Instruction 2 IF ID EX MEM |WB
Instruction 3 IF ID EX MEM |WB |

(b) When the next instruction is a multiply instruction
<1> <2> <3> <4> <5> <6> <7> <8> <9>

Multiply instruction 1 |IF 1D EX1 EX1 EX1 EX1 EX2 |WB
Multiply instruction 2 IF = = - ID EX1 EX2 |WB
(halfword)

—: ldle inserted for wait

(c) When the instruction following the next two instructions is a multiply instruction

<1> <2> <3> <4> <5> <6> <7> <8> <9>

Multiply instruction 1 |IF 1D EX1 EX1 EX1 EX1 EX2 |WB |
Instruction 1 IF ID EX MEM [WB

Instruction 2 IF ID EX MEM [(WB

Multiply instruction 2 IF — ID EX1 EX2 |WB |
(halfword)

—: Idle inserted for wait

[Description] The pipeline consists of 8 stages, IF, ID, EX1 (4 stages), EX2, and WB. The EX stage takes 5
clocks because it is executed by a multiplier. EX1 and EX2 stages (different from the normal
EX stage) can operate independently. Therefore, the number of clocks for instruction execution
is always 4 clocks, even if several multiply instructions are executed in a row. However, if an
instruction using the execution result is placed immediately after a multiply instruction, data wait
time occurs.

152 User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.2.4 Arithmetic operation instructions

(1) Instructions other than divide/move word instructions

[Instructions]

[Pipeline]

[Description]

ADD, ADDI, CMOV, CMP, MOV, MOVEA, MOVHI, SASF, SETF, SUB, SUBR

<1> <2> <3> <4>

<5> <6>

Arithmetic operation
instruction IF 1D EX DF WB
Next instruction IF ID EX MEM |WB

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

(2) Move word instruction

[Instructions]

[Pipeline]

[Description]

MOV imm32

Arithmetic operation
instruction IF 1D EX1

<1> <2> <3> <4> <5> <6> <7>
EX2 |DF WB
1D EX MEM |WB

Next instruction IF =

—: Idle inserted for wait

The pipeline consists of 6 stages, IF, ID, EX1, EX2 (normal EX stage), DF, and WB.

(3) Divide instructions

[Instructions]

[Pipeline]

[Description]

[Remark]

DIV, DIVH, DIVHU, DIVU

(a) DIV, DIVH instructions

<1> <2> <3 <4> S(<35> <36> <37> <38> <39> <40> <41>
?
Divide instruction IF 1D EX1 JEX2 S(EX33 |EX34 |EX35 | DF WB
/7
Next instruction IF - - S(- - ID EX MEM (wWB
)
Next to next instruction IF ID EX MEM |WB
—: Idle inserted for wait
(b) DIVHU, DIVU instructions
<1> <2> <3 <4> S(<35> <36> <37> <38> <39> <40>
?
Divide instruction IF D JEx1 JEX2 ¢ ¢—lExss|exas|oF |we
/
Next instruction IF — — S(— 1D EX MEM |WB
?
Next to next instruction IF ID EX MEM |WB

—: Idle inserted for wait

The pipeline consists of 39 stages, IF, ID, EX1 to EX35 (normal EX stage), DF, and WB for DIV
and DIVH instructions. The pipeline consists of 38 stages, IF, ID, EX1 to EX34 (normal EX
stage), DF, and WB for DIVHU and DIVU instructions.

If an interrupt occurs while a division instruction is executed, execution of the instruction is

stopped, and the interrupt is processed, assuming that the return address is the first address of

that instruction. After interrupt servicing has been completed, the division instruction is
executed again. In this case, general-purpose registers reg1 and reg2 hold the value before

the instruction is executed.

User's Manual U15943EJ4VOUM

153

CHAPTER 8 PIPELINE

8.2.5 Saturated operation instructions
[Instructions] SATADD, SATSUB, SATSUBI, SATSUBR

<1> <2> <3> <4> <5> <6>

L Saturated operation
[Pipeline] instruction IF ID EX DF WB

Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

8.2.6 Logical operation instructions

[Instructions] AND, ANDI, BSH, BSW, HSW, NOT, OR, ORI, SAR, SHL, SHR, SXB, SXH, TST, XOR, XORI,

ZXB, ZXH
<1> <2> <3> <4> <5> <6>
L Logical operation
[Pipeline] ins%ructiog IF ID EX DF WB

Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

8.2.7 Branch instructions
(1) Conditional branch instructions (except BR instruction)

[Instructions] Bcond instructions (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV,
BNZ, BP, BSA, BV, BZ)

[Pipeline] (a) When the condition is not satisfied
<1> <2> <3> <4> <5> <6>
Conditional branch Tt T X
instruction IF 1D EX MEM WB
Next instruction IF ID | EX | MEM |WB |

(b) When the condition is satisfied

<1> <2> <3> <4> <5> <6> <7>

Conditional branch Tt oo '

instruction IF 1D EX _|MEM WB

Next instruction (IF)

Branch destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

154 User’'s Manual U15943EJ4VOUM

<R>

CHAPTER 8 PIPELINE

[Description]

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage.

(a) When the condition is not satisfied
The number of execution clocks for the branch instruction is 1.

(b) When the condition is satisfied
The number of execution clocks for the branch instruction is 2.
instruction of the branch instruction is not executed.
If an instruction overwriting the contents of PSW occurs immediately before, the number of
execution clocks is 3 because of flag hazard occurrence.

IF stage of the next

(2) BR instruction, unconditional branch instructions (except JMP instruction)

[Instructions]

[Pipeline]

[Description]

(3) JMP instruction

[Pipeline]

[Description]

BR, JARL, JR
<1> <2> <3> <4> <5> <6> <7>
BRinstruction, CTTaT A 1T i
unconditional branch IF ID EX 'MEM WB* |
instruction R T T
Next instruction (IF)
Branch destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

WB*: No operation is performed in the case of the JR and BR instructions
but in the case of the JARL instruction, data is written to the restore
PC.

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage. However, in the case of the JARL instruction, data is written to the restore PC in the
WB stage. Also, the IF stage of the next instruction of the branch instruction is not executed.

<1> <2> <3> <4> <5> <6> <7>

JMP instruction ' D Ex i\/I:Ei\/I:];N:B: :]

Next instruction (IF)

Next to next instruction (IF)

Branch destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the MEM, and WB stages, because the branch destination is decided in the EX
stage.

User’s Manual U15943EJ4VOUM 155

CHAPTER 8 PIPELINE

8.2.8 Bit manipulation instructions

(1) CLR1, NOT1, SET1 instructions

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
Bit manipulation Tt
instruction IF 1D EX1 MEM JEX2 |MEM [WB .
Next instruction IF = = ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB

—: ldle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.
However, no operation is performed in the WB stage, because no data is written to registers.
In the case of these instructions, the memory access is read modify write, the EX stage
requires a total of 2 clocks, and the MEM stage requires a total of 2 cycles.

(2) TST1 instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
Bit manipulation oo _:_ T -:
instruction IF 1D EX1 MEM |EX2 |MEM ,WB
Next instruction IF — — ID EX MEM |WB
Next to next instruction IF 1D EX MEM |WB

—: ldle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.
However, no operation is performed in the second MEM and WB stages, because there is no
second memory access nor data write to registers.

In all, this instruction requires 2 clocks.

8.2.9 Special instructions

(1) CALLT instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
TTTATTTTA 1
CALLT instruction IF 1D MEM IEX MEM WB |
Next instruction (IF)
Branch destination instruction | IF | ID | EX | MEM |WB |

(IF): Instruction fetch that is not executed
[Description] The pipeline consists of 6 stages, IF, ID, MEM, EX, MEM, and WB. However, no operation is

performed in the second MEM and WB stages, because there is no memory access and no
data is written to registers.

156 User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

<R> (2) CTRET instruction

[Pipeline]

[Description]

<1> <2> <3> <4> <5> <6> <7>

CTRET instruction |IF___|ID1__|ID2 |EX MEM (WB |

Next instruction (IF)

Next to next instruction (IF)

Branch destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Register selection
ID2: Read CTPC

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and no data is written
to registers. Also, the IF stages of the next instruction and next to next instruction are not
executed.

(3) DI, El instructions

[Pipeline]

[Description]

[Remark]

<1> <2> <3> <4> <5> <6>

_____ T Th
DI, El instruction IF 1D EX MEM 'WB 1
Next instruction IF ID EX MEM |WB

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and data is not
written to registers.

Both the DI and El instructions do not sample an interrupt request. An interrupt is sampled as
follows while these instructions are executed.

Instruction immediately before [IF 1D EX MEM |WB | |
DI, El instruction IF ID EX MEM |WB
Instruction immediately after IF ID EX MEM |WB

T T

Last sampling of First sampling of
interrupt before interrupt after
execution of El or execution of El or DI
Dl instruction instruction

User’s Manual U15943EJ4VOUM 157

CHAPTER 8 PIPELINE

(4) DISPOSE instruction

[Pipeline] (a) When branch is not executed
<1> <2> <3> <4> S(<nN+2> <n+3> <n+4> <n+5> <n+6> <n+7>
DISPOSE instruction |IF 1D EX MEM S ; MEM |MEM [MEM |JWB
Next instruction IF - - 55 - ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB

—: Idle inserted for wait
n: Number of registers specified in the register list (list12)

<R> (b) When branch is executed
<1> <2> <3> <4> , <n+2> <n+3> <n+4> <n+5> <n+6>
?
DISPOSE instruction |IF 1D EX IMEM I S(|MEM IMEM IMEM IWB I
?
Next instruction (IF)
Branch destination instruction | IF | ID | EX |

(IF): Instruction fetch that is not executed
n: Number of registers specified in the register list (list12)

[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and
WB. The MEM stage requires n + 1 cycles.

(5) HALT instruction

[Pipeline]
<I> <> <3 <> 5> <6 HALT mode release
HALT T b
instruction IF 1D EX MEM WB
)
Next instruction IF = = |— |— | S s |— ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the
MEM and WB stages, because memory is not accessed and no data is written to registers.
Also, for the next instruction, the ID stage is delayed until the HALT mode is released.

(6) LDSR, STSR instructions

<1> <2> <3> <4> <5> <6>

. . LDSR, STSR
[Pipeline] instruction IF ID EX DF WB
Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB. If the STSR instruction using the
EIPC and FEPC system registers is placed immediately after the LDSR instruction setting
these registers, data wait time occurs.

158 User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

(7) NOP instruction

[Pipeline] NOP instruction IF ID EX MEM ‘WB .
Next instruction IF ID | EX | MEM |WB |
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because no operation and no memory access is

executed, and no data is written to registers.
Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed
simultaneously, the NOP instruction may keep the delay time from being generated.

(8) PREPARE instruction

[Pipeline] <1> <2> <3> <4> S; <n+2> <n+3> <n+4> <n+5> <n+6> <n+7>
PREPARE instruction | IF 1D EX MEM S s MEM |MEM |MEM |JWB
Next instruction IF — — 55 — ID EX MEM [(WB
Next to next instruction IF ID EX MEM [WB

—: Idle inserted for wait
n: Number of registers specified in the register list (list12)

[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and
WB. The MEM stage requires n + 1 cycles.

(9) RETI instruction

<1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] RETI instruction IF ID1__ |ID2 |EX MEM _E_N_B_ _ J:
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Register selection
ID2: Read EIPC/FEPC

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and no data is written
to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction and

next to next instruction are not executed.

User’s Manual U15943EJ4VOUM 159

CHAPTER 8 PIPELINE

(10) SWITCH instruction

[Pipeline] <1> <2> <3> <4> <5> } 56_>_ . f7_>_ . <8> <9> <10>
SWITCH instruction |IF 1D EX1 IMEM IEX2 |M_IEM_ _i WB _:
Next instruction (IF)
Branch destination instruction | IF | ID | EX | MEM |WB |

(IF): Instruction fetch that is not executed
[Description] The pipeline consists of 7 stages, IF, ID, EX1 (normal EX stage), MEM, EX2, MEM, and WB.
However, no operation is performed in the second MEM and WB stages, because there is no

memory access and no data is written to registers.

(11) TRAP instruction

<1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] TRAP instruction IF D1 ID2 IEX IDF |WB |
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Exception code (004nH, 005nH) detection (n = 0 to FH)
ID2: Address generation

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB. The ID stage requires 2
clocks. Also, the IF stages of the next instruction and next to next instruction are not executed.

160 User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.2.10 Debug function instructions

(1) DBRET instruction

<1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] DBRET instruction | IF ID1__|ID2 |EX MEM WB |
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Register selection
ID2: Read DBPC

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because the memory is not accessed and no data is
written to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction

and next to next instruction are not executed.

(2) DBTRAP instruction

<1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] DBTRAP instruction |IF ID1 ID2 |EX |DF |WB |
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Exception code (0060H) detection
ID2: Address generation

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. The ID stage requires 2
clocks. Also, the IF stages of the next instruction and next to next instruction are not executed.

User’s Manual U15943EJ4VOUM 161

CHAPTER 8 PIPELINE

8.3 Pipeline Disorder

The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage basically requires 1

clock for processing, but the pipeline may become disordered, causing the number of execution clocks to increase.
This section describes the main causes of pipeline disorder.

8.3.1 Alignment hazard

If the branch destination instruction address is not word aligned (A1 = 1, AO = 0) and is 4 bytes in length, it is
necessary to repeat IF twice in order to align instructions in word units. This is called an align hazard.
For example, the instructions a to e are placed from address XOH, and that instruction b consists of 4 bytes, and
the other instructions each consist of 2 bytes. In this case, instruction b is placed at X2H (A1 = A0 = 0), and is not
word aligned (A1 =0, A0 = 0). Therefore, when this instruction b becomes the branch destination instruction, an align
hazard occurs. When an align hazard occurs, the number of execution clocks of the branch instruction becomes 4.

Figure 8-6. Align Hazard Example

~— 32 bits —>

(a) Memory map

X8H | tiond

Instruc- | Instruc-

tion e

X4H |tion b

Instruc- | Instruc-

tion ¢

XOH | tion a

Instruc- | Instruc-

tion b

Address of branch destination
instruction (instruction b)

(b) Pipeline
<1> <2> <3> <4> <5> <6> <7> <8> <9>
Branch instruction [F_[io_ [ex |MEm iwe
Next instruction IF x
Branch destination instruction (instruction b) |IF1 |IF2 ID EX MEM [WB
Branch destination's next instruction (instruction c) IF ID EX MEM |WB
IF x: Instruction fetch that is not executed
IF1: First instruction fetch that occurs during align hazard. It is a 2-byte
fetch that fetches the 2 bytes on the lower address of instruction b.
IF2: Second instruction fetch that occurs during align hazard.

It is

normally a 4-byte fetch that fetches the 2 bytes on the higher address

of instruction b in addition to instruction ¢ (2-byte length).

Align hazards can be prevented through the following handling in order to obtain faster instruction execution.

o Use 2-byte branch destination instruction.
e Use 4-byte instructions placed at word boundaries (A1 = 0, AO = 0) for branch destination instructions.

162

User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.3.2 Referencing execution result of load instruction

For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the
contents of the same register are used by the instruction immediately after the load instruction, it is necessary to delay
the use of the register by this later instruction until the load instruction has ended using that register. This is called a
hazard.

The V850ES CPU has an interlock function to automatically handle this hazard by delaying the ID stage of the next
instruction.

The VB50ES CPU also has a short path that allows the data read during the MEM stage to be used in the ID stage
of the next instruction. This short path allows data to be read with the load instruction during the MEM stage and the
use of this data in the ID stage of the next instruction with the same timing.

As a result of the above, when using the execution result in the instruction following immediately after, the number
of execution clocks of the load instruction is 2.

Figure 8-7. Example of Execution Result of Load Instruction

<1> <2> <3> <4> <5> <6> <7> <8> <9>
Load instruction 1
(LD [R4], R6) [IF ID EX [MEMm; [wB
Instruction 2 (ADD 2, R6) IF IL ID ¥ |EX MEM [WB
Instruction 3 IF - ID EX MEM |(WB
Instruction 4 IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function
-1 Idle inserted for wait
Short path

As shown in Figure 8-7, when an instruction placed immediately after a load instruction uses its execution result, a
data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in execution speed
can be avoided by placing instructions that use the execution result of a load instruction at least 2 instructions after the
load instruction.

User’s Manual U15943EJ4VOUM 163

CHAPTER 8 PIPELINE

8.3.3 Referencing execution result of multiply instruction
For multiply instructions, the operation result is saved to the register in the WB stage. Therefore, if the contents of
the same register are used by the instruction immediately after the multiply instruction, it is necessary to delay the use
of the register by this later instruction until the multiply instruction has ended using that register (occurrence of hazard).
The VB50ES CPU'’s interlock function delays the ID stage of the instruction following immediately after. A short
path is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s operation result
to be used in the ID stage of the instruction following immediately after with the same timing.

Figure 8-8. Example of Execution Result of Multiply Instruction

(a) In the case of halfword data multiply instruction

<1> <2> <3> <4> <5> <6> <7> <8> <9>
Multiply instruction 1
(MULH 3, Ré) | 1F ID Ex1 |EX2, |wB
Instruction 2 (ADD 2, R6) IF IL D ¥ |EX MEM |WB
Instruction 3 IF - ID EX MEM |WB
Instruction 4 IF ID EX MEM |WB
IL: Idle inserted for data wait by interlock function
- Idle inserted for wait
Short path
(b) In the case of word data multiply instruction
<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11> <12>
Multiply instruction 1
(MULH 3, R6) I IF ID EX1 EX1 EX1 EX1 EX2 | |[WB
Instruction 2 (ADD 2, R6) IF IL IL IL IL ID ¥ |EX MEM |WB
Instruction 3 IF - - - - ID EX MEM |(WB
Instruction 4 IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function
- Idle inserted for wait
Short path

As shown in Figure 8-8, when an instruction placed immediately after a multiply instruction uses its execution result,
a data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in execution
speed can be avoided by placing instructions that use the execution result of a multiply instruction at least 2
instructions after the multiply instruction. However, in the case of the word data multiply instructions (MUL, MULU), if
the instruction that uses the result of the multiply instruction is not place at least five instructions after the multiply
instruction, an IL stage is inserted between 1 and 4.

164 User’'s Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC

When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately after
referencing the same system registers with the STSR instruction, the use of the system registers for the STSR
instruction is delayed until the setting of the system registers with the LDSR instruction is completed (occurrence of
hazard).

The VB50ES CPU’s interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an STSR
instruction following immediately after, the number of execution clocks of the LDSR instruction becomes 3.

Figure 8-9. Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

. . <1> <2> <3> <4> <5> <6> <7> <8> <9> <10>
LDSR instruction
(LDSRR6, 0) Nete [ID EX _|MEM [wB
OTen O e, F_ it L |b |ex [vem [ws
Next instruction IF - - ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function

-: Idle inserted for wait

Note System register 0 used for the LDSR and STSR instructions designates EIPC.

As shown in Figure 8-9, when an STSR instruction is placed immediately after an LDSR instruction that uses the
operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the interlock function
causes a data wait time to occur, and the execution speed is lowered. This drop in execution speed can be avoided
by placing STSR instructions that reference the execution result of the preceding LDSR instruction at least 3
instructions after the LDSR instruction.

8.3.5 Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised by
observing the following cautions.

e Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions after the
load instruction.

¢ Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2 instructions
after the multiply instruction.

¢ If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the LDSR
instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

e For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at the word
boundary.

User’s Manual U15943EJ4VOUM 165

CHAPTER 8 PIPELINE

8.4 Additional Items Related to Pipeline

8.4.1 Harvard architecture

The V850ES CPU uses the Harvard architecture to operate an instruction fetch path from internal ROM and a

memory access path to internal RAM independently. This eliminates bus arbitration conflicts between the IF and
MEM stages and allows orderly pipeline operation.

(1) V850ES CPU (Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruction 2 and
the IF stage of instruction 5 can be executed simultaneously with orderly pipeline operation.

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5

<1> <2> <3> <4> <5> <6> <7> <8> <9>
IF ID EX MEM |WB
IF ID EX MEM |WB
IF ID EX MEM |WB
IF ID EX MEM |WB
IF ID EX MEM |WB

(2) Not VB50ES CPU (Other than Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of instruction 2 and

the IF stage of instruction 5 are in contention, causing bus waiting to occur and slower execution time due to
disorderly pipeline operation.

<1> <2> <3>

Instruction 1

Instruction 2
Instruction 3

Instruction 4
Instruction 5

<4> <5> <6> <7> <8> <9> <10> <11>
IF ID EX MEM |WB
IF 1D - EX MEM |WB
IF - ID - EX MEM |WB
IF - ID EX MEM |(WB
IF ID EX MEM |WB

: ldle inserted for wait

166

User's Manual U15943EJ4VOUM

CHAPTER 8 PIPELINE

8.4.2 Short path
The V850ES CPU provides on chip a short path that allows the use of the execution result of the preceding
instruction by the following instruction before write back (WB) is completed for the previous instruction.

Example 1. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after

e VB850ES CPU (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the result is out (EX stage), without having to wait for
write back to be completed.

<1> <2> <3> <4> <5> <6>
ADD 2, R6 IF ID EX | [MEM |wB
MOV R6, R7 IF D V]|Ex [vem |ws |

¢ Not V850ES CPU (No short path)
The ID stage of the instruction following immediately after is delayed until write back of the
previous instruction is completed.

<1> <2> <3> <4> <5> <6> <7> <8>

ADD 2, R6 [IF ID EX [MEM [wB
MOV Ré, R7 IF - - ID EX |[vMEM |wB |

- Idle inserted for wait
Short path

User’s Manual U15943EJ4VOUM 167

CHAPTER 8 PIPELINE

Example 2. Data read from memory by the load instruction used by instruction following immediately after

e V850ES CPU (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the result is out (MEM stage), without having to wait for
write back to be completed.

<1> <2> <3> <4> <5> <6> <7> <8> <9>
LD [R4], R6 IF ID EX MEM | |WB
ADD 2, R6 IF IL D V[EX MEM |WB
Next instruction IF - ID EX MEM |(WB
Next to next instruction IF 1D EX MEM |WB

¢ Not V850ES CPU (No short path)
The ID stage of the instruction following immediately after is delayed until write back of the
previous instruction is completed.

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>
LD [R4], R6 IF ID EX MEM |WB
ADD 2, R6 IF - - ID EX MEM (WB
Next instruction IF ID EX MEM |WB
Next to next instruction IF 1D EX MEM |WB

IL: Idle inserted for data wait by interlock function
- Idle inserted for wait
Short path

168 User's Manual U15943EJ4VOUM

APPENDIX A NOTES

A.1 Restriction on Conflict Between sid Instruction and Interrupt Request

A.1.1 Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction
following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result
of the instruction in <1> may not be stored in a register.

Instruction <1>
e |d instruction: Id.b, Id.h, Id.w, Id.bu, Id.hu
e sld instruction: sld.b, sld.h, sld.w, sld.bu, sid.hu
e Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov reg1, reg2 not regt, reg2 satsubr regi, reg2 satsub reg1, reg2
satadd regi, reg2 satadd immb5, reg2 or regt, reg2 xor regi, reg2
and regl, reg2 tst regi, reg2 subr regi, reg2 sub reg1, reg2
add regl, reg2 add imm5, reg2 cmp regl, reg2 cmp immb5, reg2
mulh regi, reg2 shr immb5, reg2 sar immb5, reg2 shl immb5, reg2
<Example>
<i> Idw [r11],r10 If the decode operation of the mov instruction <ii> immediately before the sld
. instruction <iii> and an interrupt request conflict before execution of the Id instruction
: <i> is complete, the execution result of instruction <i> may not be stored in a register.

<ii> mov r10, r28
<iii> sld.w 0x28, r10

A.1.2 Countermeasure
When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the
following methods.

¢ Insert a nop instruction immediately before the sld instruction.

e Do not use the same register as the sld instruction destination register in the above instruction <ii> executed
immediately before the sld instruction.

User’s Manual U15943EJ4VOUM 169

APPENDIX A NOTES

<R> A.2 Restrictions on using the mul/mulu instruction

A.2.1 Description

If a load instruction (Id or sld) is executed for an internal RAM area followed by a mul or mulu instruction, and then
another load instruction (Id or sld) is executed for a misaligned address in the next internal RAM or ROM area before
the mul or mulu instruction has finished executing, the results of executing the mul or mulu instruction and the load
instruction for the misaligned address might not be stored correctly in the registers.

This problem only occurs if one of the following registers is specified as operand of the mul or mulu instruction.

(a) r0 is specified for reg3
(b) The same register is specified for reg2 and reg3

<Example>
If the Id instruction is executed for the misaligned address in <iii> before the multiplication processing executed
by the mul instruction in <ii> is finished, the execution results for the multiplication instruction in <ii> and the load
instruction in <iii> might not be stored correctly in the registers.

<i> ldw [r11],r10 Load instruction for internal RAM area.
<ii> mul r12,r13,r0

<ii> Idw 2][r14],r15 Load instruction for a misaligned address in the internal RAM or
internal ROM area

A.2.2 Countermeasure
Make sure you satisfy the following conditions when specifying a register as the operand of the mul or mulu

instruction.

(a) Do not specify r0 for reg3.
(b) Specify a different register for reg2 and reg3.

170 User's Manual U14559EJ4VOUM

APPENDIX B

INSTRUCTION LIST

The instruction function list in alphabetical order is shown in Table B-1, and instruction list in format order is shown

in Table B-2.

Table B-1. Instruction Function List (in Alphabetical Order) (1/11)

Mnemonic

Operand

Format

Flag

CcY

ov

S

SAT

Instruction Function

ADD

reg1, reg2

01

01

01

01

Add. Adds the word data of reg1 to the word
data of reg2, and stores the result to reg2.

ADD

imm5, reg2

01

01

01

01

Add. Adds the 5-bit immediate data, sign-
extended to word length, to the word data of
reg2, and stores the result to reg2.

ADDI

imm16, reg1, reg2

\

01

01

01

01

Add Immediate. Adds the 16-bit immediate
data, sign-extended to word length, to the
word data of reg1, and stores the result to
reg2.

AND

reg1, reg2

01

01

And. ANDs the word data of reg2 with the
word data of reg1, and stores the result to
reg2.

ANDI

imm16, reg1, reg2

Vi

01

01

And. ANDs the word data of reg1 with the 16-
bit immediate data, zero-extended to word
length, and stores the result to reg2.

Bcond

disp9

Branch on Condition Code. Tests a condition
flag specified by an instruction. Branches if a
specified condition
executes the next instruction. The branch
destination PC holds the sum of the current
PC value and 9-bit displacement which is the
8-bit immediate shifted 1 bit and sign-extended
to word length.

is satisfied; otherwise,

BSH

reg2, reg3

Xl

01

01

01

Byte Swap Halfword. Performs endian

conversion.

BSW

reg2, reg3

Xl

01

01

01

Byte Swap Word. Performs endian conversion.

CALLT

imm6

Call with Table Look Up. Based on CTBP
contents, updates PC value and transfers
control.

CLR1

bit#3, disp16 [reg1]

Vil

01

Clear Bit. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Then clears the bit,
specified by the instruction bit field, of the byte
data referenced by the generated address.

User's Manual U15943EJ4VOUM

171

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (2/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

CLR1

reg2 [reg1]

01

Clear Bit. First, reads the data of regl to
generate a 32-bit address. Then clears the bit,
specified by the data of lower 3 bits of reg2 of
the byte data referenced by the generated
address.

CMOV

ccece, regl, reg2,
reg3

Xl

Conditional Move. reg3 is set to regl if a
condition specified by condition code “cccc” is
satisfied; otherwise, set to the data of reg2.

CMOV

ccee, immb, reg2,
reg3

Xl

Conditional Move. reg3 is set to the data of 5-
immediate, sign-extended to word length, if a
condition specified by condition code “cccc” is
satisfied; otherwise, set to the data of reg2.

CMP

regl, reg2

0/

0/

0/

0/

Compare. Compares the word data of reg2
with the word data of reg1, and indicates the
result by using the PSW flags. To compare,
the contents of reg1 are subtracted from the
word data of reg2.

CMP

immb5, reg2

01

01

01

01

Compare. Compares the word data of reg2
with the 5-bit immediate data, sign-extended to
word length, and indicates the result by using
the PSW flags. To compare, the contents of
the sign-extended immediate data are
subtracted from the word data of reg2.

CTRET

(None)

0/

01

(A

(4

01

Restore from CALLT. Restores the restore PC
and PSW from the appropriate system register
and restores from a routine called by CALLT.

DBRET

(None)

01

01

01

01

01

Return from debug trap. Restores the restore
PC and PSW from the appropriate system
register and restores from a debug monitor
routine.

DBTRAP

(None)

Debug trap. Saves the restore PC and PSW
to the appropriate system register and
transfers control by setting the PC to handler
address (00000060H).

DI

(None)

Disables Interrupt. Sets the ID flag of the PSW
to 1 to disable the acknowledgement of
maskable interrupts from acceptance;
interrupts are immediately disabled at the start
of this instruction execution.

DISPOSE

immb5, list12

Xl

Function Dispose. Adds the data of 5-bit
immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pop
(load data from the address specified by sp
and adds 4 to sp) general-purpose registers
listed in list12.

172

User's Manual U15943EJ4VOUM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (3/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

DISPOSE

immb5, list12, [reg1]

Xl

Function Dispose. Adds the data of 5-bit
immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pop
(load data from the address specified by sp
and adds 4 to sp) general-purpose registers
listed in list12, transfers control to the address
specified by reg1.

DIV

regl, reg2, reg3

Xl

0/

0/

(4

Divide Word. Divides the word data of reg2 by
the word data of reg1, and stores the quotient
to reg2 and the remainder to reg3.

DIVH

regl, reg2

0/1

(4

(4

Divide Halfword. Divides the word data of reg2
by the lower halfword data of reg1, and stores
the quotient to reg2.

DIVH

regl, reg2, reg3

Xl

01

01

01

Divide Halfword. Divides word data of reg2 by
lower halfword data of reg1, and stores the
quotient to reg2 and the remainder to reg3.

DIVHU

regl, reg2, reg3

Xl

01

01

01

Divide Halfword Unsigned. Divides word data
of reg2 by lower halfword data of reg1, and
stores the quotient to reg2 and the remainder
to reg3.

DIVU

regl, reg2, reg3

Xl

0/

01

(4

Divide Word Unsigned. Divides the word data
of reg2 by the word data of reg1, and stores
the quotient to reg2 and the remainder to reg3.

El

(None)

Enable Interrupt. Clears the ID flag of the PSW
to 0 and enables the acknowledgement of
maskable interrupts at the beginning of next
instruction.

HALT

(None)

Halt. Stops the operating clock of the CPU and
places the CPU in the HALT mode.

HSW

reg2, reg3

Xl

0/1

01

0/

Halfword Swap Word. Performs endian
conversion.

JARL

disp22, reg2

Jump and Register Link. Saves the current PC
value plus 4 to general-purpose register reg2,
adds a 22-bit displacement, sign-extended to
word length, to the current PC value, and
transfers control to the PC. Bit 0 of the 22-bit
displacement is masked to 0.

JMP

[reg1]

Jump Register. Transfers control to the
address specified by reg1. Bit 0 of the address
is masked to 0.

JR

disp22

Jump Relative. Adds a 22-bit displacement,
sign-extended to word length, to the current
PC value, and transfers control to the PC. Bit 0
of the 22-bit displacement is masked to 0.

User's Manual U15943EJ4VOUM

173

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (4/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

LD.B

disp16 [reg1], reg2

VI

Byte Load. Adds the data of reg1 to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Byte data is read
from the generated address, sign-extended to
word length, and then stored in reg2.

LD.BU

disp16 [reg1], reg2

VI

Unsigned Byte Load. Adds the data of regl
and the 16-bit displacement sign-extended to
word length, and generates a 32-bit address.
Then reads the byte data from the generated
address, zero-extends it to word length, and
stores it in reg2.

LD.H

disp16 [reg1], reg2

VI

Halfword Load. Adds the data of reg1 to a 16-
bit displacement, sign-extended to word
length, to generate a 32-bit address. Halfword
data is read from this 32-bit address with bit 0
masked to 0, sign-extended to word length,
and stored in reg2.

LD.HU

disp16 [reg1], reg2

VI

Unsigned Halfword Load. Adds the data of
regl and the 16-bit displacement sign-
extended to word length to generate a 32-bit
address. Reads the halfword data from the
address masking bit 0 of this 32-bit address to
0, zero-extends it to word length, and stores it
in reg2.

LD.W

disp16 [reg1], reg2

VI

Word Load. Adds the data of reg1 to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Word data is read
from this 32-bit address with bits 0 and 1
masked to 0, and stored in reg2.

LDSR

reg2, reglD

Load to System Register. Set the word data of
reg2 to a system register specified by regID. If
reglD is PSW, the values of the corresponding
bits of reg2 are set to the respective flags of
the PSW.

MOV

regil, reg2

Move. Transfers the word data of reg1 to reg2.

MOV

immb5, reg2

Move. Transfers the value of a 5-bit immediate
data, sign-extended to word length, to reg2.

MOV

imm32, reg1

\

Move. Transfers the 32-bit immediate data to
regl.

MOVEA

imm16, reg1, reg2

\

Move Effective Address. Adds a 16-bit
immediate data, sign-extended to word length,
to the word data of reg1, and stores the result
in reg2.

174

User's Manual U15943EJ4VOUM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (5/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

MOVHI

imm16, reg1, reg2

\

Move High Halfword. Adds word data, in which
the higher 16 bits are defined by the 16-bit
immediate data while the lower 16 bits are set
to 0, to the word data of reg1 and stores the
result in reg2.

MUL

regl, reg2, reg3

Xl

Multiply Word. Multiplies the word data of reg2
by the word data of reg1, and stores the result
in reg2 and reg3 as double-word data.

MUL

imm9, reg2, reg3

Xl

Multiply Word. Multiplies the word data of reg2
by the 9-bit immediate data sign-extended to
word length, and stores the result in reg2 and
reg3.

MULH

regl, reg2

Multiply Halfword. Multiplies the lower halfword
data of reg2 by the lower halfword data of
regl, and stores the result in reg2 as word
data.

MULH

immb5, reg2

Multiply Halfword. Multiplies the lower halfword
data of reg2 by a 5-bit immediate data, sign-
extended to halfword length, and stores the
result in reg2 as word data.

MULHI

imm16, reg1, reg2

\

Multiply Halfword Immediate. Multiplies the
lower halfword data of regl by a 16-bit
immediate data, and stores the result in reg2.

MULU

regl, reg2, reg3

Xl

Multiply Word Unsigned. Multiplies the word
data of reg2 by the word data of reg1, and
stores the result in reg2 and reg3 as double-
word data. reg1 is not affected.

MULU

imm9, reg2, reg3

Xl

Multiply Word Unsigned. Multiplies the word
data of reg2 by the 9-bit immediate data sign-
extended to word length, and store the result
in reg2 and reg3.

NOP

(None)

No Operation.

NOT

regil, reg2

01

01

Not. Logically negates (takes 1’s complement
of) the word data of reg1, and stores the result
in reg2.

NOT1

bit#3, disp16 [reg1]

Vil

01

Not Bit. First, adds the data of reg1 to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. The bit specified by
the 3-bit bit number is inverted at the byte data
location referenced by the generated address.

NOT1

reg2, [regi1]

01

Not Bit. First, reads reg1 to generate a 32-bit
address. The bit specified by the lower 3 bits
of reg2 of the byte data of the generated
address is inverted.

User's Manual U15943EJ4VOUM

175

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (6/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

OR

regil, reg2

01

01

Or. ORs the word data of reg2 with the word
data of reg1, and stores the result in reg2.

ORI

imm16, reg1, reg2

\

01

01

Or Immediate. ORs the word data of reg1 with
the 16-bit immediate data, zero-extended to
word length, and stores the result in reg2.

PREPARE

list12, imm5

Xl

Function Prepare. The general-purpose
register displayed in list12 is saved (4 is
subtracted from sp, and the data is stored in
that address). Next, the data is logically shifted
2 bits to the left, and the 5-bit immediate data
zero-extended to word length is subtracted
from sp.

PREPARE

list12, immb5,
sp/imm

Xl

Function Prepare. The general-purpose
register displayed in list12 is saved (4 is
subtracted from sp, and the data is stored in
that address). Next, the data is logically shifted
2 bits to the left, and the 5-bit immediate data
zero-extended to word length is subtracted
from sp. Then, the data specified by the third
operand is loaded to ep.

RETI

(None)

(4

(4

01

01

01

Return from Trap or Interrupt. Reads the
restore PC and PSW from the appropriate
system register, and restores from interrupt or
exception processing routine.

SAR

regl, reg2

01

01

01

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions,
where ‘n’ is specified by the lower 5 bits of
reg1 (the MSB prior to shift execution is copied
and set as the new MSB), and then writes the
result to reg2.

SAR

immb5, reg2

01

01

01

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions
specified by the lower 5-bit immediate data,
zero-extended to word length (the MSB prior to
shift execution is copied and set as the new
MSB), and then writes the result to reg2.

SASF

ccce, reg2

Shift and Set Flag Condition. reg2 is logically
shifted left by 1, and its LSB is set to 1 in a
condition specified by condition code “cccc” is
satisfied; otherwise, LSB is set to 0.

176

User's Manual U15943EJ4VOUM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (7/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

SATADD

regl, reg2

01

01

01

01

01

Saturated Add. Adds the word data of reg1 to
the word data of reg2, and stores the result in
reg2. However, if the result exceeds the
maximum positive value, the maximum
positive value is stored in reg2; if the result
exceeds the maximum negative value, the
maximum negative value is stored in reg2. The
SAT flag is set to 1.

SATADD

immb5, reg2

01

01

01

01

01

Saturated Add. Adds the 5-bit immediate data,
sign-extended to word length, to the word data
of reg2, and stores the result in reg2.
However, if the result exceeds the maximum
positive value, the maximum positive value is
stored in reg2; if the result exceeds the
maximum negative value, the maximum
negative value is stored in reg2. The SAT flag
is setto 1.

SATSUB

regi, reg2

01

01

01

0/1

0/

Saturated Subtract. Subtracts the word data of
regl from the word data of reg2, and stores
the result in reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored in reg2; if the
result exceeds the maximum negative value,
the maximum negative value is stored in reg2.
The SAT flag is setto 1.

SATSUBI

imm16, reg1, reg2

\

01

01

01

01

0/

Saturated Subtract Immediate. Subtracts a 16-
bit immediate data, sign-extended to word
length, from the word data of reg1, and stores
the result in reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored in reg2; if the
result exceeds the maximum negative value,
the maximum negative value is stored in reg2.
The SAT flag is setto 1.

SATSUBR

regi, reg2

01

01

01

01

(A

Saturated Subtract Reverse. Subtracts the
word data of reg2 from the word data of regt,
and stores the result in reg2. However, if the
result exceeds the maximum positive value,
the maximum positive value is stored in reg2; if
the result exceeds the maximum negative
value, the maximum negative value is stored in
reg2. The SAT flag is set to 1.

SET1

bit#3, disp16 [reg1]

Vil

01

Set Bit. First, adds a 16-bit displacement, sign-
extended to word length, to the data of reg1 to
generate a 32-bit address. The bits, specified
by the 3-bit bit number, are set at the byte data
location specified by the generated address.

User's Manual U15943EJ4VOUM

177

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (8/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

SET1

reg2, [reg1]

01

Set Bit. First, reads the data of general-
purpose register regl to generate a 32-bit
address. The bit, specified by the data of lower
3 bits of reg2, is set at the byte data location
referenced by the generated address.

SETF

cccc, reg2

Set Flag Condition. The reg2 is set to 1 if a
condition specified by condition code "cccc” is
satisfied; otherwise, a 0 is stored in reg2.

SHL

regl, reg2

01

01

01

Shift Logical Left. Logically shifts the word
data of reg2 to the left by ‘n’ positions (0 is
shifted to the LSB side), where ‘n’ is specified
by the lower 5 bits of reg1, and then writes the
result to reg2.

SHL

immb5, reg2

0/

01

01

Shift Logical Left. Logically shifts the word
data of reg2 to the left by ‘n’ positions (0 is
shifted to the LSB side), where ‘n’ is specified
by a 5-bit immediate data, zero-extended to
word length, and then writes the result to reg2.

SHR

regl, reg2

0/

01

0/1

Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by the lower 5 bits of reg1, and then writes the
result to reg2.

SHR

immb5, reg2

01

01

0/1

Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by a 5-bit immediate data, zero-extended to
word length, and then writes the result to reg2.

SLD.B

disp7 [ep], reg2

Byte Load. Adds the 7-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address. Byte data
is read from the generated address, sign-
extended to word length, and then stored in
reg2.

SLD.BU

disp4 [ep], reg2

Unsigned Byte Load. Adds the 4-bit
displacement, zero-extended to word length, to
the element pointer to generate a 32-bit
address. Byte data is read from the generated
address, zero-extended to word length, and
stored in reg2.

SLD.H

disp8 [ep], reg2

Halfword Load. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address. Halfword
data is read from the generated address, sign-
extended to word length, and stored in reg2.

178

User's Manual U15943EJ4VOUM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (9/11)

Mnemonic

Operand

Format

Flag

CY

ov

S

SAT

Instruction Function

SLD.HU

disp5 [ep], reg2

Unsigned Halfword Load. Adds the 5-bit
displacement, zero-extended to word length, to
the element pointer to generate a 32-bit
address. Halfword data is read from the
generated address, zero-extended to word
length, and stored in reg2.

SLD.W

disp8 [ep], reg2

Word Load. Adds the 8-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address. Word
data is read from the generated address, and
stored in reg2.

SST.B

reg2, disp7 [ep]

Byte Store. Adds the 7-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address, and
stores the data of the lowest byte of reg2 in the
generated address.

SST.H

reg2, disp8 [ep]

Halfword Store. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address, and
stores the lower halfword of reg2 in the
generated address.

SST.W

reg2, disp8 [ep]

Word Store. Adds the 8-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address, and
stores the word data of reg2 in the generated
address.

ST.B

reg2, disp16 [reg1]

VI

Byte Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
reg1 to generate a 32-bit address, and stores
the lowest byte data of reg2 in the generated
address.

ST.H

reg2, disp16 [reg1]

VI

Halfword Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
regl to generate a 32-bit address, and stores
the lower halfword of reg2 in the generated
address.

ST.W

reg2, disp16 [reg1]

VI

Word Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
reg1 to generate a 32-bit address, and stores
the word data of reg2 in the generated
address.

STSR

reglD, reg2

Store Contents of System Register. Stores the
contents of a system register specified by
reglD in reg2.

User's Manual U15943EJ4VOUM

179

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (10/11)

Mnemonic

Operand

Format

Flag

CYy | oV S

SAT

Instruction Function

SuB

regl, reg2

01 | 01 | 01

0/

Subtract. Subtracts the word data of reg1 from
the word data of reg2, and stores the result in
reg2.

SUBR

regl, reg2

01 | 01 | 01

0/1

Subtract Reverse. Subtracts the word data of
reg2 from the word data of reg1, and stores
the result in reg2.

SWITCH

regi

Jump with Table Look Up. Adds the table entry
address (address following SWITCH
instruction) and data of reg1 logically shifted to
the left by 1 bit, and loads the halfword entry
data specified by the table entry address.
Next, logically shifts to the left by 1 bit the
loaded data, and after sign-extending it to
word length, branches to the target address
added to the table entry address (instruction
following SWITCH instruction).

SXB

regi

Sign Extend Byte. Sign-extends the lowermost
byte of reg1 to word length.

SXH

regi

Sign Extend Halfword. Sign-extends lower
halfword of reg1 to word length.

TRAP

vector

Trap. Saves the restore PC and PSW; sets the
exception code and the flags of the PSW;
jumps to the address of the trap handler
corresponding to the trap vector specified by
vector, and starts exception processing.

TST

regil, reg2

- 0 01

0/1

Test. ANDs the word data of reg2 with the
word data of reg1. The result is not stored, and
only the flags are changed.

TST1

bit#3, disp16 [reg1]

Vil

01

Test Bit. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Performs the test
on the bit, specified by the 3-bit bit number, at
the byte data location referenced by the
generated address. If the specified bit is 0, the
Z flag is set to 1; if the bit is 1, the Z flag is
cleared to 0.

TST1

reg2, [reg1]

01

Test Bit. First, reads the data of regl to
generate a 32-bit address. If the bits indicated
by the lower 3 bits of reg2 of the byte data of
the generated address are 0, the Z flag is set
to 1, and if they are 1, the Z flag is cleared to
0.

XOR

regil, reg2

- 0 01

01

Exclusive Or. Exclusively ORs the word data
of reg2 with the word data of reg1, and stores
the result in reg2.

180

User's Manual U15943EJ4VOUM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (11/11)
Mnemonic Operand Format Flag Instruction Function
CY | ov S z SAT
XORI imm16, reg1, reg2 \ - 0 01 | 01 - Exclusive Or Immediate. Exclusively ORs the
word data of regl with a 16-bit immediate
data, zero-extended to word length, and stores
the result in reg2.
ZXB regi | - - - - - Zero Extend Byte. Zero-extends to word length
the lowest byte of reg1.
ZXH regi | - - - - - Zero Extend Halfword. Zero-extends to word

length the lower halfword of reg1.

User's Manual U15943EJ4VOUM

181

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction List (in Format Order) (1/3)

Format Opcode Mnemonic Operand

15 0| 31 16
0000000000000000 - NOP -
rrrrr000000RRRRR - MOV regi, reg2
rrrrr000001RRRRR - NOT regi, reg2
rrrrr000010RRRRR - DIVH regil, reg2
00000000010RRRRR - SWITCH regl
00000000011RRRRR - JMP [reg1]
rrrrr000100RRRRR - SATSUBR regl, reg2
rrrrr000101RRRRR - SATSUB regi, reg2
rrrrr000110RRRRR - SATADD regi, reg2
rrrrr000111RRRRR - MULH regil, reg2
00000000100RRRRR - ZXB reg1
00000000101RRRRR - SXB regl
00000000110RRRRR - ZXH reg1
00000000111RRRRR - SXH reg1
rrrrr001000RRRRR - OR regil, reg2
rrrrr001001RRRRR - XOR regi, reg2
rrrrr001010RRRRR - AND regl, reg2
rrrrr001011RRRRR - TST regi, reg2
rrrrr001100RRRRR - SUBR regi, reg2
rrrrr001101RRRRR - SuUB regi, reg2
rrrrr001110RRRRR - ADD regil, reg2
rrrrr001111RRRRR - CMP regil, reg2
1111100001000000 - DBTRAP -

Il rrrrr010000iiiii - MOV immb5, reg2
rrrrr010001iiiii - SATADD imm5, reg2
rrrrr010010iiiii - ADD immb5, reg2
rrrrr010011iiiii - CMP immb5, reg2
00000010004iiiiii - CALLT imm6
rrrrr010100iiiii - SHR immb5, reg2
rrrrr010101iiiii - SAR immb5, reg2
rrrrr010110iiiii - SHL immb5, reg2
rrrrr010111iiiii - MULH immb5, reg2

i dddddi0l1ldddcccc - Bcond disp9

182

User's Manual U15943EJ4VOUM

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction List (in Format Order) (2/3)

Format Opcode Mnemonic Operand

15 0| 31 16

v rrrrr0000110dddd - SLD.BU disp4 [ep], reg2
rrrrr0000111dddd - SLD.HU disp5 [ep], reg2
rrrrr0110ddddddd - SLD.B disp7 [ep], reg2
rrrrr0l1l11ddddddd - SST.B reg2, disp7 [ep]
rrrrr1000ddddddd - SLD.H disp8 [ep], reg2
rrrrr1001ddddddd - SST.H reg2, disp8 [ep]
rrrrr1010ddddddo - SLD.W disp8 [ep], reg2
rrrrr1010ddddddl - SST.W reg2, disp8 [ep]

Vv rrrrr11110dddddd | dddddddddddddddo |JARL disp22, reg2
0000011110dddddd | dddddddddddddddo |JR disp22

VI rrrrr110000RRRRR | iiiiiiiiiiiiiiii [ADDI imm16, reg1, reg2
rrrrr110001RRRRR [iiiiiiiiiiiiiiii [MOVEA imm16, reg1, reg2
rrrrr110010RRRRR | iiiidiiiiiiiiiiii |MOVHI imm16, reg1, reg2
rrrrr110011RRRRR | iiiiiiiiiiiiiiii |SATSUBI imm16, reg1, reg2
00000110001RRRRR Note MOV imm32, reg1
rrrrr110100RRRRR | iiiiiiiiiiiiiiii |ORI imm16, reg1, reg2
rrrrr110101RRRRR | iiiiiiiiiiiiiiii [XORI imm16, reg1, reg2
rrrrr110110RRRRR | iiiidiiiiiiiiiiii [ANDI imm16, reg1, reg2
rrrrr110111RRRRR | iidiiidiiidiiiiiiii [MULHI imm16, reg1, reg2

VI rrrrr111000RRRRR | dddddddddddddddd (LD.B disp16 [reg1], reg2
rrrrr111001RRRRR | dddddddddddddddo (LD.H disp16 [reg1], reg2
rrrrr111001RRRRR | dddddddddddddddl |LD.W disp16 [reg1], reg2
rrrrr111010RRRRR | dddddddddddddddd |(ST.B reg2, disp16 [reg1]
rrrrr111011RRRRR | dddddddddddddddo [STH reg2, disp16 [reg1]
rrrrr111011RRRRR | dddddddddddddddl |[ST.W reg2, disp16 [reg1]
rrrrr11110bRRRRR | dddddddddddddddl (LD.BU disp16 [reg1], reg2
rrrrr111111RRRRR | dddddddddddddddl |(LD.HU disp16 [reg1], reg2

Vil 00bbb111110RRRRR | dddddddddddddddd |SET1 bit#3, disp16 [reg1]
0lbbbl111110RRRRR | dddddddddddddddd |NOT1 bit#3, disp16 [reg1]
10bbb111110RRRRR | dddddddddddddddd |CLR1 bit#3, disp16 [reg1]
11bbb111110RRRRR | dddddddddddddddd |TST1 bit#3, disp16 [reg1]

Note 32-bitimmediate data. The higher 32 bits (bits 16 to 47) are as follows.

47

1111111111111111 ITTITITITIIITIITITIIT

User's Manual U15943EJ4VOUM

183

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction List (in Format Order) (3/3)

Format Opcode Mnemonic Operand
15 0| 31 16

IX rrrrr1111110cccc | 0000000000000000 |SETF ccece, reg2
rrrrr111111RRRRR [0000000000100000 |LDSR reg2, reglD
rrrrr111111RRRRR [0000000001000000 |STSR reglD, reg2
rrrrr111111RRRRR [0000000010000000 |SHR regl, reg2
rrrrr111111RRRRR | 0000000010100000 |SAR regl, reg2
rrrrr111111RRRRR [0000000011000000 |SHL regl, reg2
rrrrr111111RRRRR | 0000000011100000 |SET1 reg2, [regi]
rrrrr111111RRRRR | 0000000011100010 |NOT1 reg2, [regi]
rrrrr111111RRRRR | 0000000011100100 |CLR1 reg2, [regi]
rrrrr111111RRRRR [0000000011100110 |TST1 reg2, [regi]
rrrrrl1111110cccc | 0000001000000000 |SASF cccee, reg2

X 0000011111144iiii | 0000000100000000 [TRAP vector
0000011111100000 | 0000000100100000 |HALT -
0000011111100000 | 0000000101000000 [RETI -
0000011111100000 | 0000000101000100 [CTRET -
0000011111100000 | 0000000101000110 [DBRET -
0000011111100000 | 0000000101100000 (DI -
1000011111100000 | 0000000101100000 |[EI -

Xl rrrrr111111RRRRR | wwwww01000100000 |MUL regi, reg2, reg3
rrrrrl111111RRRRR | wwwww01000100010 |[MULU regi, reg2, reg3
rrrrrl111111RRRRR | wwwww01010000000 |DIVH regi, reg2, reg3
rrrrrl111111RRRRR | wwwww01010000010 |DIVHU regi, reg2, reg3
rrrrrl111111RRRRR | wwwww01011000000 |DIV regi, reg2, reg3
rrrrrl111111RRRRR | wwwww01011000010 |DIVU regi, reg2, reg3
rrrrrl111111RRRRR | wwwww011001lccccO |CMOV cccee, regi, reg2, reg3

Xl rrrrr111111iiiii | wwwww01001IITIIOO |MUL imm9, reg2, reg3
rrrrr111111iiiii | wwwww01l001IIII10 |MULU imm9, reg2, reg3
rrrrr111111iiiii | wwwww011000ccccO [CMOV ccee, immb5, reg2, reg3
rrrrr11111100000 [wwwww01101000000 |BSW reg2, reg3
rrrrr11111100000 [wwwww01101000010 |BSH reg2, reg3
rrrrr11111100000 [wwwww01101000100 |HSW reg2, reg3

Xl 0000011001iiiiiL | LLLLLLLLLLLRRRRR |DISPOSE immb5, list12, [reg1]
0000011001iiiiiL | LLLLLLLLLLLOOOOO [DISPOSE immb5, list12
00000111104iiiiilL | LLLLLLLLLLLOOOO1 |[PREPARE list12, imm5
00000111104iiiiiL | LLLLLLLLLLLff011 |[PREPARE list12, imm5, sp/imm

184

User's Manual U15943EJ4VOUM

APPENDIX C INSTRUCTION OPCODE MAP

This chapter shows the opcode map for the instruction code shown below.

(1) 16-bit format instruction

15 11 10

T T T T L

Sub-opcode (see [b])

(2) 32-bit format instruction

15 14 13 12 11 10

5 4 0 31 27 26 21 20 19 18 17 16

I

T T I
Opcode Sub-opcode

[[[
| | \ (see [a]) (see [e]) | |

T T T T T 7 T 71

Sub-opcode (see [h])

Sub-opcode (see [d], [h])

L

Sub-opcode
(see [c])

Sub-opcode
(see [f], [g], [)

Remark Operand convention

Symbol Meaning

R reg1: General-purpose register (used as source register)

r reg2: General-purpose register (mainly used as destination register. Some are also used as
source registers.)

w reg3: General-purpose register (mainly used as remainder of division results or higher 32 bits
of multiply results)

bit#3 3-bit data for bit number specification

immx x-bit immediate data

dispx Xx-bit displacement data

ccece 4-bit data condition code specification

User's Manual U15943EJ4VOUM

185

APPENDIX C INSTRUCTION OPCODE MAP
[a] Opcode
Bit Bit Bit Bit Bits 6, 5 Format
10 9 8 7 0,0 0,1 1,0 1,1
0 0 0 0 MOV R, r NOT DIVH JMPree? I, IV
NOPNo(e1 SWITCHNOIEZ SLD.BUNoteS
DBTRAP SLD.HU"*"*®
Undefined"**®
0 0 0 1 SATSUBR SATSUB SATADD R, r MULH
ZXBNcle4 SXBNme4 ZXHNcle4 SXHNole4
0 0 1 0 OR XOR AND TST
0 0 1 1 SUBR SUB ADD R, r CMP R, r
0 1 0 0 MOV immb5, r SATADD immb5, r ADD imm5, r CMP imm5, r 1]
CALLT"™"*
0 1 0 1 SHR immb5, r SAR imm5, r SHL imm5, r MULH imm5, r
Undefined"™**
0 1 1 0 SLD.B vV
0 1 1 1 SST.B
1 0 0 0 SLD.H
1 0 0 1 SST.H
1 0 1 0 SLD.W"*”?
SST.WNole7
1 0 1 1 Bcond 1
1 1 0 0 ADDI MOVEA MOVHI ISATSUBI VI, Xl
. (L
MOV imm32, R DISPOSE™**
1 1 0 1 ORI XORI ANDI MULHI Vi
Undefined"™**
1 1 1 0 LD.B LD.H""*® ST.B ST.H"*® VI
LD.WNoleE ST.WNoteB
1 1 1 1 [JR Bit manipulation 1"*°°| LD.HU""" V, VII,
JARL Undefined"*" VI, X1
LD.BU""™ Expansion 1"*"
PREPARE"""
Notes 1. If R (reg1) =r0 and r (reg2) = r0 (instruction without reg1 and reg2)
2. If R (reg1) #r0 and r (reg2) = r0 (instruction with reg1 and without reg2)
3. If R (reg1) =r0 and r (reg2) # r0 (instruction without reg1 and with reg2)
4. |Ifr(reg2) = r0 (instruction without reg2)
5. Ifbit4 =0 andr (reg2) # r0 (instruction with reg2)
6. Ifbit4 =1 andr (reg2) = r0 (instruction with reg2)
7. See[b]
8. See|[c]
9. See[d]

186

10. If bit 16 = 1 and r (reg2) = r0 (instruction with reg2)

11. If bit 16 = 1 and r (reg2) = r0 (instruction without reg2)
12. See [€e]

User's Manual U15943EJ4VOUM

APPENDIX C INSTRUCTION OPCODE MAP

[b] Short format load/store instruction (displacement/sub-opcode)

Bit10 | Bit9 | Bit8 | Bit7 Bit 0
0 1
0 1 1 0 |SLD.B
0 1 1 1 SST.B
1 0 0 0 |[SLD.H
1 0 0 1 SST.H
1 0 1 0 |SLD.W SST.W

[c] Load/store instruction (displacement/sub-opcode)

Bit 6 Bit 5 Bit 16
0 1
0 0 LD.B
0 1 LD.H LD.W
1 0 ST.B
1 1 STH ST.W

[d] Bit manipulation instruction 1 (sub-opcode)

Bit 15 Bit 14
0 1
0 SET1 bit#3, disp16 [R] NOT1 bit#3, disp16 [R]
1 CLR1 bit#3, disp16 [R] TST1 bit#3, disp16 [R]

User's Manual U15943EJ4VOUM

187

APPENDIX C INSTRUCTION OPCODE MAP
[e] Expansion 1 (sub-opcode)
Bit 26 | Bit 25 | Bit 24 | Bit 23 Bits 22, 21 Format
0,0 0,1 1,0 1,1
0 0 0 0 |SETF LDSR STSR Undefined IX
0 0 0 1 |SHR SAR SHL Bit manipulation 2"
0 0 1 0 |TRAP HALT RETI""? EI"e® X
CTRETNme 2 DINcle 3
DBRET""? Undefined
Undefined
0 0 1 1 Undefined Undefined -
0 1 0 0 |[SASF MUL R,r,w MUL imm9, r, w IX, XI, XII
MULU R, r, w"** MULU imm9, r, w"**
0 1 0 1 DIVH DIV Xl
DIVHUNole4 DIVUNcle4
0 1 1 0 |CMOV CMOV BSW"**® Undefined Xl, Xl
ccce, imm5, r, w ccee, R, r,w BSH"**
HSWNo(eS
0 1 1 1 lllegal instruction -
1 X X X
Notes 1. See [f]
See [g]
3. See[h]
4. Ifbit17 =1
5. See[i]

[f] Bit manipulation instruction 2 (sub-opcode)

Bit 18 Bit 17
0 1
0 SET1 r,[R] NOT1 r, [R]
1 CLR1 r,[R] TST1 r,[R]
[g] Return instruction (sub-opcode)
Bit 18 Bit 17
0 1
0 RETI Undefined
1 CTRET DBRET

188

User's Manual U15943EJ4VOUM

APPENDIX C INSTRUCTION OPCODE MAP

[h] PSW operation instruction (sub-opcode)

Bit 15 Bit 14 Bits 13, 12, 11
0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1
0 0 DI Undefined
0 1 Undefined
1 0 El Undefined
1 1 Undefined

[i] Endian conversion instruction (sub-opcode)

Bit 18 Bit 17
0 1
0 BSW BSH
1 HSW Undefined

User’s Manual U15943EJ4VOUM 189

APPENDIX D DIFFERENCES IN ARCHITECTURE OF v850 CPU AND V850E1 CPU
(1/3)
Item V850ES CPU V850E1 CPU V850 CPU

Instructions BSH reg2, reg3 Provided Not provided
(including operand) BSW reg2, reg3

CALLT imm6

CLR1 reg2, [reg1]

CMOQV cccc, immb5, reg2, reg3

CMOV cccc, regl, reg2, reg3

CTRET

DBRET Provided Provided"®

DBTRAP

DISPOSE immb5, list12 Provided

DISPOSE immb, list12 [reg1]

DIV reg1, reg2, reg3

DIVH reg1, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU regl, reg2, reg3

HSW reg2, reg3

LD.BU disp16 [reg1], reg2

LD.HU disp16 [regl], reg2

MOV imm32, reg1

MUL imm9, reg2, reg3

MUL reg1, reg2, reg3

MULU reg1, reg2, reg3

MULU imm9, reg2, reg3

NOT1 reg2, [regl]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SASF cccc, reg2

SET1 reg2, [regl]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

SWITCH reg1

SXB regi

SXH reg1

TST1 reg2, [reg1]

ZXB reg1

ZXH regi

Note Not supported in the NB85E and NB85ET

190

User's Manual U15943EJ4VOUM

APPENDIX D DIFFERENCES IN ARCHITECTURE OF V850 CPU AND V850E1 CPU

(2/3)
Item V850ES CPU V850E1 CPU V850 CPU
Instruction format Format IV Format of some instructions differs between the V850ES
and V850E1 CPUs and the V850 CPU.
Format Xl Provided Not provided
Format XII
Format XIlI

Number of instruction clocks executed (except MUL, MULU

Number of clocks differs partially between the V850ES

instructions) and V850E1 CPUs and the V850 CPU
MUL, MULU instructions 1/4/5 clocks 1/2/2 clocks Not provided
Program space 64 MB linear 64 MB linear 16 MB linear
(usable area: 16
MB + 60 KB)
Valid bits of program counter (PC) Lower 26 bits Lower 24 bits
System register CALLT execution status saving registers | Provided Not provided
(CTPC, CTPSW)
Exception/debug trap status saving
registers (DBPC, DBPSW)
CALLT base pointer (CTBP)
Debug interface register (DIR) Provided"*"

Breakpoint control registers 0 and 1
(BPCO, BPCH1)

Program ID register (ASID)

Breakpoint address setting registers 0 and

1 (BPAVO, BPAV1)

Breakpoint address mask registers 0 and
1 (BPAMO, BPAM1)

Breakpoint data setting registers 0 and 1
(BPDVO, BPDV1)

Breakpoint data mask registers 0 and 1
(BPDMO, BPDM1)

Not provided

Exception trap status saving registers

DBPC, DBPSW

EIPC, EIPSW

lllegal instruction code

Instruction code areas differ.

Misaligned access enable/disable setting Fixed to enable Can be set Cannot be set.
depending on (misaligned
product access disabled)

Non-maskable interrupt | Input ghoe? 1

(NMI) Exception code 0010H, 0020H""** 0030H""** 0010H

Handler address 00000010H, 00000020H""?, 00000010H
00000030H""**

Debug trap Provided Provided""** Not provided

Notes 1. Used only for the NU85E and NUS5SET

2. Some products do not have this function.
3. Not supported in the NB85E and NB85ET

User's Manual U15943EJ4VOUM

191

APPENDIX D DIFFERENCES IN ARCHITECTURE OF V850 CPU AND V850E1 CPU

(3/3)
ltem V850ES CPU V850E1 CPU V850 CPU
Pipeline » Word data multiply instruction Note 1 Note 1 No instructions

o Arithmetic operation instruction other Note 2 Note 2
than word data multiply instruction

e Branch instruction

 Bit manipulation instruction

® Special instruction (TRAP, RETI)

Notes 1. The pipeline flow differs between the V850ES CPU core and the V850E1 CPU core. For details, refer
to CHAPTER 8 PIPELINE and V850E1 Architecture User’s Manual (U14559E).
2. The pipeline flow differs between the V850ES and V850E1 CPU cores and the V850 CPU core. For
details, refer to CHAPTER 8 PIPELINE, V850E1 Architecture User’s Manual (U14559E), and V850
Series Architecture User’s Manual (U10243E).

192 User's Manual U15943EJ4VOUM

APPENDIX E

INSTRUCTIONS ADDED FOR V850ES CPU COMPARED WITH V850 CPU

Compared with the instruction codes of the V850 CPU, the instruction codes of the V850ES CPU are upwardly
compatible at the object code level. In the case of the VB50ES CPU, instructions that even if executed have no

meaning in the case of the V850 CPU (mainly instructions performing write to the rO register) are extended as

additional instructions.

The following table shows the V850 CPU instructions corresponding to the instruction codes added in the V850ES
CPU. See the table when switching from products that incorporate the V850 CPU to products that incorporate the

V850ES CPU.

Since the V850ES CPU is compatible with all the instruction codes of the V850E1 CPU, these products are

replaced easily.

Table E-1. Instructions Added to V850ES CPU and V850 CPU Instructions with Same Instruction Code (1/2)

Instructions Added in V850ES CPU

V850 CPU Instructions with Same Instruction
Code as V850ES CPU

CALLT imm6

MOV immb5, r0 or SATADD immb5, rO

DISPOSE immb5, list12

MOVHIimm186, reg1, r0 or SATSUBI imm16, reg1, r0

DISPOSE imm5, list12 [reg1]

MOVHIimm186, reg1, r0 or SATSUBI imm16, reg1, r0

MOV imm32, reg1

MOVEA imm16, reg1, r0

SWITCH regt DIVH regt, rO

SXB reg1 SATSUB regi, r0

SXH reg1 MULH regf, r0

ZXB reg1 SATSUBR regft, r0
ZXH reg1 SATADD regi, r0
(RFU) MULH immb5, r0

(RFU) MULHI imm186, reg1, r0

BSH reg2, reg3

lllegal instruction

BSW reg2, reg3

CMOV cccc, immb5, reg2, reg3

CMOV cccc, regi, reg2, reg3

CTRET

DIV reg1, reg2, reg3

DIVH reg1, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU reg1, reg2, reg3

HSW reg2, reg3

MUL imm9, reg2, reg3

MUL reg1, reg2, reg3

MULU reg1, reg2, reg3

MULU imm?9, reg2, reg3

SASF cccc, reg2

User's Manual

U15943EJ4VOUM

193

APPENDIX E INSTRUCTIONS ADDED FOR V850ES CPU COMPARED WITH V850 CPU

Table E-1. Instructions Added to V850ES CPU and V850 CPU Instructions with Same Instruction Code (2/2)

Instructions Added in V850ES CPU V850 CPU Instructions with Same Instruction
Code as V850ES CPU
CLR1 reg2, [regl] Undefined
DBRET
DBTRAP

LD.BU disp16 [reg1], reg2

LD.HU disp16 [reg1], reg2

NOT1 reg2, [reg1]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SET1 reg2, [reg1]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

TST1 reg2, [regi]

194 User's Manual U15943EJ4V0OUM

APPENDIX F REVISION HISTORY

F.1 Major Revisions in This Edition

Page Description
p.5 Modification of Product Types in PREFACE
p. 82 Addition of Caution (2) to 5.3 Instruction Set MUL
p. 86 Addition of Caution (2) to 5.3 Instruction Set MULU
p. 132 Modification of Table 5-6. List of Number of Instruction Execution Clock Cycles
p. 140 Modification of 6.2.2 Exception trap
p. 140 Modification of Figure 6-5. Exception Trap Processing Format
p. 155 Modification of 8.2.7 (3) JMP instruction
p. 157 Modification of 8.2.9 (2) CTRET instruction
p. 158 Modification of 8.2.9 (4) DISPOSE instruction
p. 170 Addition of A.2 Restrictions on using the mul/mulu instruction

User's Manual U15943EJ4VOUM

195

APPENDIX F REVISION HISTORY

F.2 History of Revisions up to This Edition

A history of the revisions up to this edition is shown below.

revision was applied.

“Applied to:” indicates the chapters to which the

Modification of description in 2.1 (1) General-purpose registers (r0 to r31)

Modification of Table 2-2 System Register Numbers

Addition of 2.2.8 Debug interface register (DIR)

Edition Major Revisions from Previous Edition Applied to:
2nd Modification of description of VB50ES CPU core in Figure 1-1 V850 Series CPU | CHAPTER 1 GENERAL
Development
Addition of description of Caution in 5.3 Instruction Set MUL CHAPTER 5 INSTRUCTION
Addition of description of Caution in 5.3 Instruction Set MULU
Modification of description of pipeline in APPENDIX C DIFFERENCES IN APPENDIX C DIFFERENCES
ARCHITECTURE OF V850 CPU AND V850E1 CPU IN ARCHITECTURE OF V850
CPU AND V850E1 CPU
Addition of APPENDIX F REVISION HISTORY APPENDIX F REVISION
HISTORY
3rd Modification of Figure 2-1 Registers CHAPTER 2 REGISTER

SET

Modification of Caution in 5.3 Instruction Set MUL

Modification of Caution in 5.3 Instruction Set MULU

Addition of Caution (2) to 5.3 Instruction Set SLD.B

Addition of Caution (2) to 5.3 Instruction Set SLD.BU

Addition of Caution (2) to 5.3 Instruction Set SLD.H

Addition of Caution (2) to 5.3 Instruction Set SLD.HU

Addition of Caution (2) to 5.3 Instruction Set SLD.W

Addition of Note 4 to Table 5-6 List of Number of Instruction Execution Cock
Cycles

CHAPTER 5 INSTRUCTION

Addition of description to 6.2.3 Debug trap

Deletion of Note from 6.3.1 Restoring from interrupt and software exception

Addition of (3) to 6.3.2 Restoring from exception trap and debug trap

CHAPTER 6 INTERRUPTS
AND EXCEPTIONS

Addition of description to Table 7-1 Register Status After Reset

CHAPTER 7 RESET

Addition of Remark to 8.1.2 2-clock branch

CHAPTER 8 PIPELINE

Addition of APPENDIX A NOTES

APPENDIX A NOTES

Modification of APPENDIX D DIFFERENCES IN ARCHITECTURE OF V850
CPU AND V850E1 CPU

APPENDIX D DIFFERENCES
IN ARCHITECTURE OF V850
CPU AND V850E1 CPU

Modification of APPENDIX F REVISION HISTORY

APPENDIX F REVISION
HISTORY

196

User's Manual U15943EJ4VOUM

Published by: NEC Electronics Corporation (http://www.necel.com/)
Contact: http://www.necel.com/support/

	COVER
	PREFACE
	CHAPTER 1 GENERAL
	1.1 Features
	1.2 Internal Configuration

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.2 System Registers
	2.2.1 Interrupt status saving registers (EIPC, EIPSW)
	2.2.2 NMI status saving registers (FEPC, FEPSW)
	2.2.3 Exception cause register (ECR)
	2.2.4 Program status word (PSW)
	2.2.5 CALLT caller status saving registers (CTPC, CTPSW)
	2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)
	2.2.7 CALLT base pointer (CTBP)
	2.2.8 Debug interface register (DIR)

	CHAPTER 3 DATA TYPE
	3.1 Data Format
	3.2 Data Representation
	3.2.1 Integer
	3.2.2 Unsigned integer
	3.2.3 Bit

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	 4.1 Memory Map
	 4.2 Addressing Mode
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTION
	5.1 Instruction Format
	5.2 Outline of Instructions
	5.3 Instruction Set
	ADD
	ADDI
	AND
	ANDI
	Bcond
	BSH
	BSW
	CALLT
	CLR1
	CMOV
	CMP
	CTRET
	DBRET
	DBTRAP
	DI
	DISPOSE
	DIV
	DIVH
	DIVHU
	DIVU
	EI
	HALT
	HSW
	JARL
	JMP
	JR
	LD.B
	LD.BU
	LD.H
	LD.HU
	LD.W
	LDSR
	MOV
	MOVEA
	MOVHI
	MUL
	MULH
	MULHI
	MULU
	NOP
	NOT
	NOT1
	OR
	ORI
	PREPARE
	RETI
	SAR
	SASF
	SATADD
	SATSUB
	SATSUBI
	SATSUBR
	SET1
	SETF
	SHL
	SHR
	SLD.B
	SLD.BU
	SLD.H
	SLD.HU
	SLD.W
	SST.B
	SST.H
	SST.W
	ST.B
	ST.H
	ST.W
	STSR
	SUB
	SUBR
	SWITCH
	SXB
	SXH
	TRAP
	TST
	TST1
	XOR
	XORI
	ZXB
	ZXH

	5.4 Number of Instruction Execution Clock Cycles

	CHAPTER 6 INTERRUPTS AND EXCEPTIONS
	6.1 Interrupt Servicing
	6.1.1 Maskable interrupt
	6.1.2 Non-maskable interrupt

	6.2 Exception Processing
	6.2.1 Software exception
	6.2.2 Exception trap
	6.2.3 Debug trap

	6.3 Restoring from Interrupt/Exception Processing
	6.3.1 Restoring from interrupt and software exception
	6.3.2 Restoring from exception trap and debug trap

	CHAPTER 7 RESET
	7.1 Register Status After Reset
	7.2 Starting Up

	CHAPTER 8 PIPELINE
	8.1 Features
	8.1.1 Non-blocking load/store
	8.1.2 2-clock branch
	8.1.3 Efficient pipeline processing

	8.2 Pipeline Flow During Execution of Instructions
	8.2.1 Load instructions
	8.2.2 Store instructions
	8.2.3 Multiply instructions
	8.2.4 Arithmetic operation instructions
	8.2.5 Saturated operation instructions
	8.2.6 Logical operation instructions
	8.2.7 Branch instructions
	8.2.8 Bit manipulation instructions
	8.2.9 Special instructions
	8.2.10 Debug function instructions

	8.3 Pipeline Disorder
	8.3.1 Alignment hazard
	8.3.2 Referencing execution result of load instruction
	8.3.3 Referencing execution result of multiply instruction
	8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC
	8.3.5 Cautions when creating programs

	8.4 Additional Items Related to Pipeline
	8.4.1 Harvard architecture
	8.4.2 Short path

	APPENDIX A NOTES
	A.1 Restriction on Conflict Between sld Instruction and Interrupt Request
	A.1.1 Description
	A.1.2 Countermeasure

	A.2 Restrictions on using the mul/mulu instruction
	A.2.1 Description
	A.2.2 Countermeasure

	APPENDIX B INSTRUCTION LIST
	APPENDIX C INSTRUCTION OPCODE MAP
	APPENDIX D DIFFERENCES IN ARCHITECTURE OF V850 CPU AND V850E1 CPU
	APPENDIX E INSTRUCTIONS ADDED FOR V850ES CPU COMPARED WITH V850 CPU
	APPENDIX F REVISION HISTORY
	F.1 Major Revisions in This Edition
	F.2 History of Revisions up to This Edition

