
· "

VAX Architecture
Reference Manual

edited by Timothy E. Leonard

VAX Architecture
Reference Manual

VAX Architecture
Reference Manual

Edited by
Timothy E. Leonard

Contributing Authors

Dileep P. Bhandarkar
Peter F. Conklin
David N. Cutler
Thomas W. Eggers
Thomas N. Hastings
Richard I. Hustvedt
Judson S. Leonard
Peter Lipman
Thomas Rarich
David P. Rodgers
Stephen Rothman
William D. Strecker
Theodore B. Taylor

momoama
DEC books

Copyright © 1987 by Digital Equipment Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani­
cal, photocopying, recording, or otherwise, without prior written permission of the
publisher.

9 8 7 6 5 432 1

Printed in the United States of America.

Order number EY-3459E-DP

DEC, DEcnet, the Digital logo, MASSBUS, MicroVAX, PDP, RSX, SBI, UNIBUS, VAX, and VMS
are trademarks of Digital Equipment Corporation.

UNIX is a trademark of Bell Laboratories.

Library of Congress Cataloging-in-Publication Data

VAX architecture reference manual

Includes index.
1. VAX-11 (Computer) 2. Computer architecture.

I. Leonard, Timothy E. (Timothy Edwin), 1954-
II. Bhandarkar, Dileep P.
QA76.8.V37V38 1987 004.1'45 86-13559
ISBN 0-932376-86-X

Contents

Introduction

Design Goals
Terminology and Conventions

1 Basic Architecture

Addressing
Data Types
Processor State

1
2

5

5
5

18

2 Instruction Formats and Addressing Modes 25

Instruction Format
Opcode Formats
Operand Specifiers
Notation
General Mode Addressing Formats
Branch Mode Addressing Formats
Instruction Interpretation

3 Instructions

Instruction Set
Integer Arithmetic and Logical Instructions
Address Instructions
Variable-Length Bit Field Instructions
Control Instructions
Procedure Call Instructions
Miscellaneous Instructions

25
26
26
27
27
38
39

41

41
45
66
68
72
88
94

v

vi

Queue Instructions
Floating-Point Instructions
Character-String Instructions
Cyclic Redundancy Check Instructions
Decimal-String Instructions
Edit Instruction

4 Memory Management

Virtual Address Space
Memory Management Control
Address Translation
Memory Protection
System Space Address Translation
Process Space Address Translation
Translation Buffer
Faults and Parameters
Privileged Services and Argument Validation

5 Exceptions and Interr4pts

Processor Status
Interrupts
Exceptions
Serialization of Notification of Multiple Events
System Control Block
Stacks
Initiate Exception or Interrupt
Instructions Related to Exceptions and Interrupts

6 Process Structure

Process Definition
Process Context
Process Scheduling Interrupts
Process Structure Instructions

Contents

102
117
140
159
163
182

199

200
202
203
207
209
211
215
216
218

223

226
226
229
241
243
246
248
252

259

259
259
263
263

7 System Architecture
and Programming Implications

Data Sharing and Synchronization
Separation of Procedure and Data
Memory References
Cache
Restartability
Interrupts
Errors
1/0 Structure

8 Privileged Registers

Internal Processor Register Space
Per-Process Registers and Context Switching
Stack Pointer Images
MTPR and MFPR Instructions

9 PDP-11 Compatibility Mode

General Registers and Addressing Modes
The Stack
Processor Status Word
Instructions
Entering and Leaving Compatibility Mode
Native Mode and Compatibility Mode Registers
Compatibility Mode Memory Management
Compatibility Mode Exceptions and Interrupts
Tracing in Compatibility Mode
Unimplemented PDP-11 Traps
Compatibility Mode 1/0 References
Processor Registers
Program Synchronization

10 System Bootstrapping and Console

System Bootstrapping
System Restart
System Powerfail and Recovery

Contents

269

269
270
270
274
275
275
276
276

279

279
279
281
281

289

289
293
293
293
327
327
327
328
329
330
330
330
331

333

333
335
336

vii

viii

Major System State Transitions
System Halted (Console 1/0 Mode)
System Running (Program 1/0 Mode)

11 Architectrual Subsetting

Goals
Subsetting Rules
The Kernel Instruction Set
Instruction Emulation

A Opcode Assignments

Single Byte Opcodes
Two Byte Opcodes

B Implementation Dependencies

MicroVAX I
MicroVAX II
VAX-11/725
VAX-11/730
VAX-11/750
VAX-11/780
VAX-11/782
VAX-11/785
VAX 8200
VAX 8300
VAX 8500
VAX 8600
VAX 8650
VAX 8800

Index

Contents

338
339
356

359

359
360
361
362

367

367
370

373

378
378
378
378
378
379
379
379
379
379
379
380
380
380

407

Foreword

By any practical measure, the VAX family of computers is one of the
most successful series of computer systems ever developed. At the
time of this writing, over 100,000 machines have been installed,
ranging in size from the MicroVAX II to the VAX 880a--:-a number that
even surpasses that for the pioneering IBM SYSTEM 360/370
series. The VAX design has been implemented from scratch over
seven times in the past decade to capitalize on advances in technology
as well as the changing needs of our customers. These different
implementations have used a variety of technologies, organizational
techniques, and configurations to create the broad set of systems
shown in the chart printed as the endpapers of this book. And though
work on the first machine began in 1975, we expect VAX computers
to remain the backbone of Digital's product offerings for many
years into the future.

To a considerable extent, the success of the VAX family is due to this
book, the VAX Architecture Reference Manual. Not only does it
describe a computer architecture that is outstanding in its own right,
but it does so in a manner that is more unambiguous, precise, and
complete than for any other computer architecture. With this document,
diverse hardware groups throughout Digital have been able to create
compatible machines using different technologies, at different periods
of time, and in widely separated locations. The book has also served
as the control document for approved design modifications, and
over the years we have both extended and provided for subsets of its
content to improve performance and to pave the way for smaller, yet
compatible, implementations.1

Of course, the main reason for the success of the VAX family lies in
the design itself. The VAX architecture is a computer architecture
in the classic sense, a design for a hardware/software interface that is
meant to remain consistent, from the point of view of a machine

1. For discussions of two recent implementations-the VAX 8600 and the
MicroVAX II-and the special problems they posed, see Digital Technical Journal,
nos. 1 and 2 (September 1985 and March. 1986). Both issues are available from
Digital Press, 12 Crosby Drive, Bedford, MA 01730.

Ix

x

language program, across machines of varying price, performance,
and technology.

Such a well-defined interface was first used by IBM in its SYSTEM
360/370 family of computers; it was described in 1964 in a seminal
paper by G. A. Blauw and F. P. Brooks, Jr., two of its principal
designers. At that time, six models had been announced, and all,
according to the authors, were "logically identical ... Even though the
allowable (I/O) channels or storage capacity may vary from model to
model ... the logical structure can be discussed without reference
to specific models."2

This is precisely the goal we set for the VAX design. By defining an
architecture that would apply to all members of the VAX family,
hardware engineers would be free to build different hardware
instantiations or implementations "up" to the specification, while
application and system programmers could safely program "down" to
it, confident that any program conforming to the specification would
run on any present or future machine.

That goal has, in fact, been achieved. Today, any program that
conforms to the VAX architecture will run on any VAX with the
necessary resources. And hardware engineers, without getting
involved in the details of software, can build new generations of
VAXes, confident that the billions of dollars invested in existing VAX
applications will not be jeopardized.

As for the success of the VAX architecture itself, there are a number
of reasons for its widespread acceptance and longevity.

One major reason is the enormous size of the VAX virtual address
space. Lack of virtual address space has been the Achilles' heel
of most computer architectures. Not long after we announced the first
PDP-11 in 1969, we realized that customers were going to demand
minicomputers with more than 64 kilobytes of memory, the maximum
amount that can be addressed directly by a 16-bit address. We
could see that relentless progress in memory chip densities was going
to lead to a quadrupling of bits per chip every three to four years.
Increasing densities yield decreasing memory costs and computers at
minicomputer prices would be able to have more than 64 Kbytes.
So, over the years we first extended the PDP-11 's physical memory

2. G. A. Blauw and F. P. Brooks, Jr., "The Structure of SYSTEM/360: Part 1-
Outline of the Logical Structure," IBM Systems Journal, vol. 3, no. 2 (1964), pp.
119-135. This is the first published description of a commercial computer
architecture with multiple implementations. See also Andrew S. Tanenbaum,
Structured Computer Organization (Prentice-Hall, 1984), for an introduction to the
notion of computer architecture, including compariSons of several contemporary
designs.

Foreword

to 256 Kbytes and then to 2 megabytes. However, the virtual address
of the PDP-11 remains at 64 Kbytes and the programmer often
faces the tedious task of mapping, and then remapping, the PDP-11's
small virtual address into a much larger physical memory.

The VAX acronym itself (which originally stood for Virtual Address
eXtension) clearly indicated a major design goal of the project: to
dramatically increase the address space of the popular PDP-11
computer architecture. The desire to build a machine with enough
address space to satisfy customers for years to come led to the
decision to create a new 32-bit architecture. With 32-bit addresses,
4 billion bytes of address space were available. The first VAX-11/780
machines shipped in early 1978 with one quarter of a megabyte of
physical memory, built from 4K-bit memory chips. By contrast the
VAX 8650, one of our more recent large computers, can be configured
with 68 megabytes of physical memory, built this time from 256K-bit
memory chips.

Each time the physical memory of a machine quadruples, an additional
2 bits of address are required to reference it. To address 64 million
bytes on a VAX 8650, 26 bits are needed. If the density of memory
chips continues to quadruple every three to four years, then the 32-bit
address of the VAX architecture will be adequate for at least another
decade without requiring programmers to map virtual memory onto
a larger physical memory.

In addition to its expanded address space, the VAX architecture built
upon the elegant instruction set and addressing modes of the PDP-
11. Additional data formats and corresponding instructions were
added to support the needs of compiler writers, as well as scientific
and commercial application programmers. A standard calling interface
was designed to allow modules written in different languages to call
one another. And finally, most importantly, the architecture was
carefully designed to support the needs of a modern virtual-memory
operating system.3

The result of this design work has been gratifying to all of us who
have contributed. Customers can choose among three operating
systems: VMS, Digital's operating system designed to take full
advantage of the VAX architecture; UL TRIX, an implementation of the
industry-standard UNIX operating system; and ELN, a system

3. See H. M. Levy and Richard H. Eckhouse, Computer Programming and
Architecture: The VAX-11 (Digital Press, 1980), which gives special attention to the
manner in which architectural features support a virtual memory operating system
such as VMS. Lawrence Kenah and Simon F. Bate, VAX/VMS Internals and
Data Structures (Digital Press, 1984), provides a thorough discussion of the
algorithms and data structures of the VAXIVMS operating system, including their
interactions.

Foreword xi

xii

designed to support the development of dedicated, real-time applica­
tions. Programmers can choose from a large family of industry­
standard, compatible languages, all of which make use of the calling
standard and can access the supporting library routines and system
services. The architecture has also allowed development of DECnet,
Digital's network architecture, and an incredibly rich set of Digital,
third party, and customer applications.

An architectural specification can make for dry reading. Nevertheless,
this book should be of real interest to at least three audiences. For
the serious computer engineer who aspires to design a machine
as good as (or better than) a VAX, the VAX Architecture Reference
Manual is an outstanding example of a successful computer architec­
ture and how it should be documented. For the serious application
or systems programmer of VAX computers, this is also the book
of "last resort," providing the most precise, authoritative, and complete
description of the machine language interface with which he or she
will work. Finally, for serious students of either computer science
or engineering, the VAX Architectural Manual is an excellent
supplementary reference, to be consulted as a case study in design
or for additional detail regarding computer organization or assembly
language programming.

Computer design continues to be a dynamic field; I expect we will see
more rather than less change and innovation in the decades ahead.
No matter how computers evolve, however, it is clear that the VAX
architecture is a major contribution to progress in the field. It will
be as important to study and understand a generation from now as it
is today.

Samuel H. Fuller
Vice President, Research & Architecture
Digital Equipment Corporation
Maynard, Massachusetts
June 1986

Foreword

DESIGN
GOALS

Introduction

The VAX architecture represents a significant extension of the
PDP-11 family architecture. It shares byte addressing with the
PDP-11, similar 1/0 and interrupt structures, and identical data
formats. Although the instruction set is not strictly compatible with the
PDP-11, it is related and can be mastered easily by a PDP-11
programmer. Likewise, the similarity allows straightforward manual
conversion of existing PDP-11 programs to the VAX system. Existing
user-mode PDP-11 programs which do not need the extended
features of VAX can run unchanged in the PDP-11 compatibility mode
provided in VAX architecture.

As compared to the PDP-11, VAX offers a greatly extended virtual
address space, additional instructions and data types, and new
addressing modes. VAX architecture also provides a sophisticated
memory management and protection mechanism, and hardware­
assisted process scheduling and synchronization.

A number of specific goals are achieved in the VAX design:

• VAX architecture has maximal compatibility with the PDP-11
consistent with a significant extension of the virtual address space
and a significant functional enhancement.

• High bit efficiency is achieved by a wide range of data types and
new addressing modes.

• The systematic, elegant instruction set with orthogonality of
operators, data types, and addressing modes can be exploited
easily, particularly by high-level language processors.

• The VAX system is extensible. The instruction set is designed so
that new data types and operators can be included efficiently in
a manner consistent with the currently defined operators and data
types.

• The architecture is suitable in terms of price and performance over
a wide range of computer system implementations sold by Digital
Equipment Corporation.

VAX Architecture Reference Manual

TERMINOLOGY
AND
CONVENTIONS

Numbering

UNPREDICT­
ABLE and
UNDEFINED

Ranges and
Extents

MBZ

Reserved

2

The terminology and conventions used in this book include the
following:

All numbers unless otherwise indicated are decimal. Where there is
ambiguity, the radix is explicitly stated, as in 48 (hex), or 1001000
(binary).

Results specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to
instruction within implementations. Software can never depend on
results specified as UNPREDICTABLE. Operations specified as
UNDEFINED may vary from moment to moment, implementation to
implementation, and instruction to instruction within implementations.
The operation may vary in effect from nothing to stopping system
operation. UNDEFINED operations must not cause the processor to
hang (reach an unhalted state from which there is no transition to
a normal state in which the processor executes instructions). Note
the distinction between result and operation: non-privileged software
cannot invoke UNDEFINED operations.

Ranges are specified in English and are inclusive. For example, a
range of integers 0 through 4 includes the integers 0, 1, 2, 3, and 4.
Extents are specified by a pair of numbers separated by a colon
and are inclusive. For example, bits <7:3> specifies an extent of bits
including bits 7, 6, 5, 4, and 3.

Fields specified as MBZ (Must Be Zero) should never be filled by
software with a non-zero value. If the processor encounters a non­
zero value in a field specified as MBZ, a reserved operand fault
or abort occurs (see Chapter 5, Exceptions and Interrupts) if that field
is accessible to non-privileged software. MBZ fields that are accessible
only to privileged software (kernel mode) may not be checked for
non-zero value by some or all VAX implementations. Non-zero values
in MBZ fields accessible only to privileged software may produce
UNDEFINED operation.

Unassigned values of fields are reserved for future use. In many
cases, some values are indicated as reserved for the customer, that
is, the equipment owner. Only these values should be used for

VAX Architecture Reference Manual

Figure
Conventions

non-standard applications. The values indicated as reserved for
DIGITAL and all MBZ fields are to be used only to extend the
standard architecture in the future.

Figures depicting registers or memory follow the convention that
increasing addresses run right to left and top to bottom.

VAX Architecture Reference Manual 3

ADDRESSING

DATA TYPES

Byte

Word

Basic Architecture

The basic addressable unit in the VAX architecture is the 8-bit
byte. Virtual addresses are 32 bits long: hence the virtual address
space is 232 (approximately 4.3 billion) bytes. Virtual addresses

1

as seen by the program are translated into physical memory addresses
'by the memory management mechanism described in Chapter 4.

Following are descriptions of the VAX architecture data types.

A byte is 8 contiguous bits starting on an addressable byte boundary.
The bits are numbered from the right (0) through (7), as shown in
Figure 1.1. A byte is specified by its address A. When interpreted
arithmetically, a byte is a two's complement integer with bits of
increasing significance from (0) through (6) and bit (7), the sign bit.
The value of the integer is in the range - 128 through 127. For
the purposes of addition, subtraction, and comparison, VAX instructions
also provide direct support for the interpretation of a byte as an
unsigned integer with bits of increasing significance from (0) through
(7). The value of the unsigned integer is in the range 0 through 255.

A word is 2 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right (0) through (15). See Figure 1.1.
A word is specified by its address A, the address of the byte
containing bit (0). When interpreted arithmetically, a word is a two's
complement integer with bits of increasing significance from (0)
through (14) and bit (15), the sign bit. The value of the integer is in
the range-32,768 through 32,767. For the purposes of addition,
subtraction, and comparison, VAX instructions also provide direct
support for the interpretation of a word as an unsigned integer with
bits of increasing significance from (0) through (15). The value of the
unsigned integer is in the range 0 through 65,535.

Basic Architecture 5

Longword

6

7 0

I I:A
Byte

15 o
L....-_____ --I� :A

Word

31 o
'---____________ ~I :A

Longword

31 0

I 1::+4
63 32

Quadword

31 o

:A+4 I
:A

:===================================~;:::~2
~12-7------~--------------------------~96

Octaword

Figure 1.1
Data Types

A longword is 4 contiguous bytes starting on an arbitrary byte
boundary. The bits are numbered from the right (0) through (31), as
shown in Figure 1.1. A longword is specified by its address A, the
address of the byte containing bit (0). When interpreted arithmetically,
a longword is a two's complement integer with bits of increasing
significance from (0) through (30) and bit (31), the sign bit. The value
of the integer is in the range -2,147,483,648 through 2,147,483,647.
For the purposes of addition, subtraction, and comparison, VAX

VAX Architecture Reference Manual

Quadword

Octaword

instructions also provide direct support for the interpretation of a
longword as an unsigned integer with bits of increasing significance
from (0) through (31). The value of the unsigned integer is in the
range 0 through 4,294,967,295.

A quadword is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are numbered from the right (0) through (63), as
shown in Figure 1.1. A quadword is specified by its address A, the
address of the byte containing bit (0). When interpreted arithmetically,
a quadword is a two's complement integer with bits of increasing
significance from (0) through (62) and bit (63), the sign bit. The value
of the integer is in the range - 263 to 263 - 1. only a subset of the
full complement of operators is provided for quadword.

This data type need not be supported in a subset implementation. An
octaword is 16 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right (0) through (127), as shown in
Figure 1.1. An octaword is specified by its address A, the address of
the byte containing bit (0). When interpreted arithmetically, an
octaword is a two's complement integer with bits of increasing
significance from (0) through (126) and bit (127), the sign bit. The
value of the integer is in the range - 2127 to 2127 -1. Only a subset of
the full complement of operators is provided for octaword.

The F _floating data type need not be supported in a subset
implementation. An F _floating datum is 4 contiguous bytes starting
on an arbitrary byte boundary. The bits are labeled from the right (0)
through (31), as shown in Figure 1.2. An F _floating datum is
specified by its address A, the address of the byte containing bit (0).
The form of an F _floating datum is sign magnitude with bit (15),
the sign bit; bits (14:7), an excess 128 binary exponent; and bits (6:0)
and (31 :16/, a normalized 24-bit fraction with the redundant most­
significant fraction bit not represented. Within the fraction, bits of
increasing significance go from (16) through (31) and (0) through (6).
The 8-bit exponent field encodes the values 0 through 255. An
exponent value of 0 together with a sign bit of 0 is taken to indicate
that the F _floating datum has a value of O. Exponent values of 1
through 255 indicate true binary exponents of -127 through + 127.
An exponent value of 0 together with a sign bit of 1 is taken as
reserved. Floating-point instructions processing a reserved operand
take a reserved operand fault (see Chapters 3 and 5). The value
of an F _floating datum is in the approximate range .29*10- 38 through
1.7*1038. The precision of an F _floating datum is approximately one
part in 223 , typically 7 decimal digits.

Basic Architecture 7

8

31 161514 76 0

fraction lsi exponent fraction I:A
F _floating Data Type (Single Precision)

31 161514 76 o
fraction sl exponent I fraction

fraction fraction

63 32

D_floating Data Type (Double Precision)

31 161514 43 o
fraction sl exponent ~raction
fraction fraction

63 32

G_floating DataType (Extended-Range Double Precision)

31 161514 o
fraction sl exponent

fraction traction

fraction fraction

fraction fraction

127 96

H_floating Data Type (Extended-Range Quadruple Precision)

Figure 1.2
Floating Data Types

:A

:A+4

:A
:A+4

:A

:A+4

:A+B

:A+12

This data type need not be supported in a subset implementation. A
D_floating datum is 8 contiguous bytes starting on an arbitrary
byte boundary. The bits are labeled frOm the right (0) through (63), as
shown in Figure 1.2. A D_floating datum is specified by its address
A, the address of the byte containing bit (0). The form of aD_floating
datum is identical to a floating datum except for an additional 32 low­
significance fraction bits. Within the fraction, bits of increasing
significance are from (48) through (63), (32) through (47), (16) through
(31), and (0) through (6). The exponent conventions and approximate
range of values is the same for D_floating as for F _floating. The
precision of a D_floating datum is approximately one part in 255,

typically 16 decimal digits.

VAX Architecture Reference Manual

The G_floating data type need not be supported in a subset
implementation. A G_floating datum is 8 contiguous bytes starting on
an arbitrary byte boundary. The bits are labeled from the right (0)
through (63), as shown in Figure 1.2. A G_floating datum is specified
by its address A, the address of the byte containing bit (0). The form
of a G_floating datum is sign magnitude with bit (15), the sign bit;
bits (14:4), an excess 1024 binary exponent; and bits (3:0) and
(63:16), a normalized 53-bit fraction with the redundant most­
significant fraction bit not represented. Within the fraction, bits of
increasing significance are from (48) through (63), (32) through (47),
(16) through (31), and (0) through (3). The 11-bit exponent field
encodes the values 0 through 2047. An exponent value of 0 together
with a sign bit of 0 is taken to indicate that the G_floating datum
has a value of o. Exponent values of 1 through 2047 indicate true
binary exponents of - 1023 through + 1023. An exponent value of 0
together with a sign bit of 1 is taken as reserved. Floating-point
instructions processing a reserved operand take a reserved operand
fault (see Chapters 3 and 5). The value of a G_floating datum is
in the approximate range .56*10- 308 through .9*10308 . The precision
of a G_floating datum is approximately one part in 252 , typically
15 decimal digits.

The H_floating data type need not be supported by a subset
implementation. An H_floating datum is 16 contiguous bytes starting
on an arbitrary byte boundary. The bits are labeled from the right
(0) through (127), as shown in Figure 1.2. An H_floating datum is
specified by its address A which is the address of the byte containing
bit (0). The form of an H_floating datum is sign magnitude with bit
(15), the sign bit; bits (14:0), an excess 16384 binary exponent; and
bits (127:16), a normalized 113-bit fraction with the redundant
most-significant fraction bit not represented. Within the fraction, bits of
increasing significance are from (112) through (127), (96) through
(111), (80) through (95), (64) through (79), (48) through (63), (32)
through (47), and (16) through (31). The 15-bit exponent field encodes
the values 0 through 32767. An exponent value of 0 together with a
sign bit of 0 is taken to indicate that the H_floating datum has a
value of O. Exponent values of 1 through 32767 indicate true binary
exponents of - 16383 through + 16383. An exponent value of 0
together with a sign bit of 1 is taken as reserved. Floating-point
instructions processing a reserved operand take a reserved operand
fault (see Chapters 3 and 5). The value of an H_floating datum is
in the approximate range .84*10- 4932 through .59*104932 • The precision
of an H_floating datum is approximately one part in 2112, typically 33
decimal digits.

Basic Architecture 9

Variable-Length
Bit Field

10

A variable-length bit field is 0 to 32 contiguous bits located arbitrarily
with respect to byte boundaries. A variable bit field is specified by
three attributes: the address A of a byte, a bit position P which is the
starting location of the field with respect to bit (0) of the byte at A, and
a size 8 of the field, as shown in Figure 1.3.

For bit strings in memory, the position is in the range - 231 through
231 - 1 and is conveniently viewed as a signed 29-bit byte offset and a
3-bit bit-within-byte field, as shown in Figure 1.3. The sign extended
29-bit byte offset is added to the address A, and the resulting address
specifies the byte in which the field begins. The 3-bit bit-within-byte
field encodes the starting position (0 through 7) of the field within that
byte. The VAX field instructions provide direct support for the
interpretation of a field as a signed or unsigned integer. When
interpreted as a signed integer, it is two's complement with bits of
increasing significance from 0 through 8-2; bit 8-1 is the sign bit.
When interpreted as an unsigned integer, bits of increasing significance
are from 0 to 8-1. A field of size 0 has a value identically equal to o.
A variable bit field may be contained in 1 to 5 bytes. From a memory
management point of view, only the minimum number of aligned
longwords necessary to contain the field may be actually referenced.
(8ee Chapter 4.)

For bit fields in registers, the position is in the range 0 through 31.

P+s P+S-1 P P-1 0

~:A
S-1 o

Variable-Length Bit Field Data Type in Memory

31 32 0

byte offset

Bit Field Position

31 P P-1 0

CU1"._~_Rn _ R[n+1)
=~p+""'s~P-+~S--1-~

Variable-Length Bit Field Data Type across a Register Boundary

Figure 1.3
The Variable-Length Bit Field

VAX Architecture Reference Manual

Absolute
Queues

The position operand specifies the starting position (0 through 31) of
the field in the register. A variable bit field may be contained in two
registers if the sum of position and size exceeds 32, as shown in
Figure 1.3.

See Chapter 3 for further details on the specification of variable-length
bit fields.

A queue is a circular, doubly linked list. A queue entry is specified by
its address. Each queue entry is linked to the next via a pair of
longwords. A queue is classified by the type of link it uses. Absolute
queues use absolute addresses as links.

The first (lowest addressed) longword is the forward link; it specifies
the address of the succeeding queue entry. The second (highest
addressed) longword is the backward link; it specifies the address of
the preceding queue entry.

A queue is specified by a queue header which is identical to a pair of
queue linkage longwords. The forward link of the header is the
address of the entry termed the head of the queue. The backward link
of the header is the address of the entry termed the tail of the queue.
The forward link of the tail points to the header.

An empty queue is specified by its header at address H, as shown in
Figure 1.4. If an entry at address B is inserted into an empty queue (at
either the head or tail), the second queue shown in Figure 1.4 results.

~------------------:------------------~1::+4
An Empty Absolute Queue

t~------------------:------------------~I ~:+4

1~----------------:----------------~1::+4
An Absolute Queue with One Entry

Figure 1.4
Absolute Queues

Basic Architecture 11

12

I
A

1::+4 B

I
B

1::+4 H

I
H

1::+4 A

An Absolute Queue with Two Entries

1::+4
A

C

B

1::+4 H

C

1::+4 A

H

I ~~+4 B

An Absolute Queue with Three Entries

1::+4
A

C

c
1:::+4 H

H I :~+4 A.

An Absolute Queue with Three Entries After Removing the Second Entry

Figure 1.4
Absolute Queues (continued)

The last three queues in Figure 1.4 mustrate the results of
subsequent insertion of an entry at address A at the head, insertion
of an entry at address C at the tail, and removal of the entry at ad­
dress B.

VAX Architecture Reference Manual

Self-Relative
Queues

Self-relative queues use displacements from queue entries as links.
Queue entries are linked by a pair of longwords. The first longword
(lowest addressed) is the forward link; it is a displacement of the
succeeding queue entry from the present entry. The second longword
(highest addressed) is the backward link; it is the displacement of
the preceding queue entry from the present entry. A queue is specified
by a queue header, which also consists of two longword links.

An empty queue is specified by its header at address H. Since the
queue is empty, the self-relative links are zero, as shown in Figure
1.5. The remainder of the figure illustrates the results of subsequent
insertion of an entry at address B at the head, insertion of an entry at
address A at the tail, and insertion of an entry at address C at the tail.

~-------------------~------------------~I ::+4
An Empty Self-Relative Queue

B-H

B-H

:H

:H+4

~-----------------:--:-:----------------~I ::+4
A Self-Relative Queue with One Entry

~-----------------:--:-:----------------~I ::+4

~-----------------:--: -:----------------~I :::+4

H-B

A-B

A Self-Relative Queue with Two Entries

Figure 1.5
Self-Relative Queues

Basic Architecture

:B

:B+4

13

Character
String

14

~-----------------~--~-:----------~----~I ::+4

r------------------:--~A-A------------------;I ::+4

r------------------~--~-:------------------;I ::+4

~-----------------:--~-~----------------~I :~+4
A Self-Relative Queue with Three Entries

Figure 1.5
Self-Relative Queues (continued)

A character string is a contiguous sequence of bytes in memory. A
character string is specified by two attributes: the address A of
the first byte of the string, and the length L of the string in bytes. The
address of a string specifies the first character of a string. See
Figure 1.6.

The length L of a string is in the range 0 through 65,535.

ffi'X" :A

"Y" :A+1

"Z" :A+2

Character String "XYZ"

7 o

'----__ ---'I :A

I I :A+L-1
'::7--------~O

Character String Data Type (of Length L)

Figure 1.6
Two Attributes of the Character String

VAX Architecture Reference Manual

Trailing
Numeric String

The trailing numeric string data type need not be supported in a
subset implementation. A trailing numeric string is a contiguous
sequence of bytes in memory. The string is specified by two attributes:
the address A of the first byte (most significant digit) of the string,
and the length L of the string in bytes.

All bytes of a trailing numeric string, except the least significant digit
byte, must contain an ASCII decimal digit character (0 - 9). The
highest addressed byte of a trailing numeric string represents an
encoding of both the least significant digit and the sign of the numeric
string.

The VAX numeric string instructions support any encoding. There are,
however, three preferred encodings used by DIGITAL software:
(1) unsigned numeric in which there is no sign and the least significant
digit contains an ASCII decimal digit character, (2) zoned numeric,
and (3) overpunched numeric. Because the overpunch format has
been used by many compiler manufacturers over many years, and
because various card encodings are used, several variations in
overpunch format have evolved. Typically, these alternate forms are
accepted on input; the normal form is generated as the output for
all operations. The encoding of sign and digits in trailing numeric
strings is shown in Table 1.1.

The length L of a trailing numeric string must be in the range 0 to 31
(0 to 31 digits). The value of a 0 length string is identically O.

The address A of the string specifies the byte of the string containing
the most significant digit. Digits of decreasing significance are
assigned to increasing addresses. Figure 1.7 illustrates the represen­
tation of trailing numeric strings.

Table 1.1
Representation of Sign and Digits in Decimal String Data Types

Zoned Overpunch Leading
Trailing Trailing Separate Packed
Numeric Numeric Numeric Decimal

Hex ASCII Hex ASCII Hex ASCII Hex

Sign
positive 2B + A
positive* 20 (blank) CEF
negative 20 B
negative* 0

*These alternative representations of the sign are permitted. VAX
instructions always produce the preferred representation, which is shown
first.

Basic Architecture 15

Table 1.1
Representation of Sign and Digits in Decimal String Data Types (continued)

Zoned Overpunch Leading
Trailing Trailing Separate Packed
Numeric Numeric Numeric Decimal

Hex ASCII Hex ASCII Hex ASCII Hex

Digit

0 30 0 30 0 30 0 0

31 31 31 1

2 32 2 32 2 32 2 2

3 33 3 33 3 33 3 3

4 34 4 34 4 34 4 4

5 35 5 35 5 35 5 5
6 36 6 36 6 36 6 6
7 37 7 37 7 37 7 7

8 38 8 38 8 38 8 8

9 39 9 39 9 39 9 9

Combined Sign and Digit

+0 30 0 78

+1 31 1 41 A

+2 32 2 42 8

+3 33 3 43 C

+4 34 4 44 D

+5 35 5 45 E

+6 36 6 46 F

+7 37 7 47 G
+8 38 8 48 H

+9 39 9 49 I
-0 70 P 7D }

-1 71 g 4A J
-2 72 48 K
-3 73 s 4C L

-4 74 4D M

-5 75 u 4E N

-6 76 v 4F 0
-7 77 w 50 P

-8 78 x 51 Q

-9 79 Y 52 R

16 VAX Architecture Reference Manual

Leading
Separate
Numeric String

7 43 0 7 4 3 0

~1 :A

3 2 :A+1

3 3 :A+2

~:A
~:A+1

Representation of "+ 123" and "~12" in Zoned Format

7 4 3 0 7 43 0

~1:A
3 2 :A+1

3 3 :A+2

~:A
~:A+1

Representation of "+ 123" and "~12" in Overpunch Format

Figure 1.7
Representations of Trailing Numeric Strings

The leading separate numeric string data type need not be supported
in a subset implementation. A leading separate numeric string is a
contiguous sequence of bytes in memory. A leading separate numeric
string is specified by two attributes: the address A of the first byte
(containing the sign character); and a length L, which is the length of
the string in digits and not the length of the string in bytes. The
number of bytes in a leading separate numeric string is L + 1.

The sign of a separate leading numeric string is stored in a separate
byte. Each subsequent byte contains an ASCII digit character. The
signs and digits of separate leading numeric strings are shown in
Table 1.1.

The length L of a leading separate numeric string must be in the
range 0 to 31 (0 to 31 digits). The value of a 0 length string is
identically O.

The address A of the string specifies the byte of the string containing
the sign. Digits of decreasing significance are assigned to bytes of
increasing addresses. Figure 1.8 illustrates leading separate numeric
strings.

7 43 0 7 43 0 ms :A

3 1 :A+1

3 2 :A+2

3 3 :A+3

§±dD :A

3 1 :A+1

3 2 :A+2

Figure 1.8
Representation of "+ 123" and "~12" in Leading Separate Numeric String

Basic Architecture 17

Packed Decimal
String

PROCESSOR
STATE

18

7 43 0 7 43 0

~:A
~:A+1

~:A
~:A+1

Figure 1.9
Representation of "123" and" -12" in Packed Decimal String

The packed decimal string data type need not be supported in a
subset implementation. A packed decimal string is a contiguous
sequence of bytes in memory. A packed decimal string is specified by
two attributes: the address A of the first byte of the string; and a
length L, which is the number of digits in the string and not the length
of the string in bytes. The bytes of a packed decimal string are
divided into two, 4-bit fields that must contain decimal digits, with the
exception of the low nibble (bits (3:0») of the last (highest addressed)
byte that must contain a sign.

The preferred sign representation is 12 for positive and 13 for
negative, as shown in Table 1.1.

The length L is the number of digits in the packed decimal string (not
counting the sign) and must be in the range 0 through 31. When the
number of digits is odd, the digits and the sign fit in U2 (integer
part only) + 1 bytes. When the number of digits is even, it is required
that an extra 0 digit appear in the high nibble (bits (7:4») of the first
byte of the string. Again, the length in bytes of the string is U2 + 1.

The address A of the string specifies the byte of the string containing
the most significant digit in its high nibble. Digits of decreasing
significance are assigned to increasing byte addresses and from high
nibble to low nibble within a byte. Figure 1.9 illustrates packed
decimal strings.

The processor state consists of that portion of a process's state that,
while the process is executing, is stored in processor registers
rather than memory. The processor state includes

1. Sixteen 32-bit general-purpose registers denoted Rn or R[n], where
n is in the range 0 through 15

2. A 32-bit processor status longword (PSL)

3. Privileged internal processor registers (IPR).

VAX Architecture Reference Manual

General·
Purpose
Registers

The general-purpose registers are used for temporary storage,
accumulators, index registers, and base registers. A register containing
an address is termed a base register. A register containing an
address offset is termed an index register. (Regarding a register
containing an address offset in multiples of operand size, see Chapter
2.) The bits of a register are numbered from the right (0) through
(31), as shown in Figure 1.10.

Certain of the registers are assigned special meaning by the VAX
architecture:

• R15 is the program counter (PC). PC contains the address of the
next instruction byte of the program.

• R14 is the stack pointer (SP). SP contains the address of the top of
the processor-defined stack.

• R13 is the current frame pointer (FP). The VAX procedure call
convention builds a data structure on the stack called a stack frame.
FP contains the address of the base of this data structure. (For
more information about the VAX procedure call convention, see
VAX/VMS Run Time Library Reference Manual.)

31 o
~ ____________________________ ~I:Rn
General-Purpose Register

31 o
L--_______________ ---JI :IPR n

Internal Processor Register

'--------CM

Processor Status Longword

Figure 1.10
The Processor State

Basic Architecture 19

Processor
Status
Longword

20

• R12 is the argument pOinter (AP). The VAX procedure call convention
uses a data structure termed an argument list. AP contains the
address of the base of this data structure.

Note that these registers are all used as base registers. The
assignment of special meaning to these registers does not generally
preclude their use for other purposes. As will be seen in Chapter 2,
however, PC cannot be used as an accumulator, temporary, or index
register. When a datum of type byte, word, longword, or F_floating is
stored in a register, the bit numbering in the register corresponds to
the numbering in memory. Hence a byte is stored in register bits
(7:0), a word in register bits (15:0), and a longword or F _floating in
register bits (31 :0). A byte or word written to a register writes only bits
(7:0) and (15:0), respectively; the other bits are unaffected. A byte or
word read from a register reads only bits (7:0) and (15:0), respectively;
the other bits are ignored.

When a quadword, D_floating, or G_floating datum is stored in a
register R[nj, it is actually stored in two adjacent registers R[nj
and R[n + 1j. Because of restrictions on the specification of PC (see
Chapter 2), wraparound from PC to RO and from SP to PC is
UNPREDICTABLE. Bits (31 :0) of the datum are stored in bits (31 :0)
of register R[nj, and bits (63:32) of the datum are stored in bits (31 :0)
of register R[n + 1j.

When an octaword or H_floating datum is stored in register R[nj, it is
actually stored in adjacent registers R[nj, R[n + 1j, R[n + 2j, and
R[n+3j. Because of restrictions on the specification of PC (see
Chapter 2), wraparound from PCto RO and from AP, FP, and SP to
PC is UNPREDICTABLE. Bits (31 :0) of the datum are stored in
bits (31 :0) of register R[nj, bits (63:32) in bits (31 :0) of register
R[n + 1], bits (95:64) in bits (31 :0) of register R[n + 2j, and bits (127:96)
in bits (31 :0) of register R[n + 3j.

A variable-length bit field may be specified in the registers with the
restriction that the starting bit position P must be in the range 0
through 31. See Figure 1,3. As for quadword, D_floating, and
G_floating, a pair of registers R[nj and R[n + 1jis treated as a 64-bit
register with bits (31 :0) in register R[nj and bit (63:32) in register
R[n+1j.

None of the string data types stored in registers can be processed by
the VAX string instructions. Therefore, there is no architectural
specification of the representation of strings in registers.

The processor status longword (PSL) is a longword consisting of a
word of privileged processor status concatenated with the processor
status word (PSW), as shown in Figure 1.10. The processor status

VAX Architecture Reference Manual

Table 1.2

word (PSW) contains the condition codes that give information on the

results produced by previous instructions and the exception-enable
bits which control the processor action on certain exception conditions
(see Chapter 5). The condition codes are UNPREDICTABLE when
they are affected by UNPREDICTABLE results. The VAX procedure
call instructions conditionally set the IV and DV bits, clear the FU bit,
and leave the T bit unchanged at procedure entry (see Chapter 3).
See Table 1.2 for processor status longword descriptions.

Processor Status Longword Fields

Extent Name Mnemonic Meaning

(31)

(30)

(29:28)

(27)

Compatibility Mode CM

Trace Pending TP

Reserved

First Part Done FPD

When set, the processor in in PDP-11 compatibility
mode (see Chapter 9). When CM is clear, the
processor is in native mode. Compatibility mode
may be omitted from subset implementations
of the VAX architecture. In a processor that does
not implement compatibility mode, this bit is
always clear.

Forces a trace fault when set .at the beginning of
any instruction. Set by the processor if T is set
at the beginning of an instruction.

Reserved to DIGITAL; must be O.
When set, execution of the instruction addressed
by PC cannot simply be started at the beginning
and must be restarted at some other
implementation-dependent point in its operation. If
FPD is set and the exception or interrupt service
routine modifies FPD, the general registers, or the
saved PSL (except for T or TP), the results of
the restarted instruction's execution are
UNPREDICTABLE. If a routine sets FPD, the
results are also UNPREDICTABLE. However, if
software is simulating unimplemented instructions,
it may make free use of FPD in its simulation. If
the hardware encounters a reserved instruction
with FPD set, a reserved instruction fault is taken
with the saved PSL(FPD) set.

(26) Interrupt Stack IS When set, the processor is executing on the
interrupt stack. Any mechanism that sets IS also
clears current mode and raises IPL above O. If an
REI attempts to restore a PSL with IS = 1 and
non-zero current mode or zero IPL, a reserved
operand fault is taken. When clear, the processor
is executing on the stack specified by current
mode.

(25:24) Current Access
Mode

CUR_MOD The access mode of the currently executing

Basic Architecture

process.

o Kernel
1 Executive
2 Supervisor
3 User

21

Table 1.2
Processor Status Longword Fields (continued)

Extent Name Mnemonic Meaning

(22:23) Previous Access PRV_MOD Loaded from current mode by exceptions and
Mode CHMx instructions, cleared by interrupts, and

restored by REI (see Chapter 5).

(21) Reserved Reserved to DIGITAL; must be zero.

(20:16) Interrupt Priority IPL The current processor priority, in the range 0 to
Level 1 F (hex). The processor will accept interrupts only

on levels greater than the current level.

(15:8) Reserved Reserved to DIGITAL; must be O.
(7) Decimal Overflow DV When set, forces a decimal overflow trap after

enable execution of an instruction that produced an
overflowed decimal result (no room to store a
non-zero digit) or had a conversion error. When
DV is clear, no trap occurs. (However, the
condition code V bit is still set.)

(6) Floating Underflow FU When set, forces a floating underflow exception
enable after execution of an instruction that produced an

underflowed result. When FU is clear, no
exception occurs.

(5) Integer Overflow IV When set, forces an integer overflow trap after
enable execution of an instruction that produced an

integer result that overflowed or had a conversion
error. When IV is clear, no integer overflow trap
occurs. (However, the condition code V bit is still
set.)

(4) Trace enable T When set at the beginning of an instruction,
causes TP to be set. Most programs should treat
T as UNPREDICTABLE because it is set by
debuggers and trace programs for tracing and for
proceeding from a breakpoint. See Chapter 5
for how to use tracing.

(3) Negative N When set, indicates that the last instruction that
affected N produced a result that was negative.
When N is clear, the result was positive or O.

(2) Zero Z When set, indicates that the last instruction that
affected Z produced a result that was O. When Z
is clear, the result was non-zero.

(1) Overflow V When set, indicates that the last instruction that
affected V produced a result whose magnitude
was too large to be represented properly in
the operand that received the result or there was
a conversion error. When V is clear, there was no
overflow or conversion error.

(0) Carry C When set, indicates that the last instruction that
affected C had a carry out of the most significant
bit of the result or a borrow into the most
significant bit. When C is clear, there was no carry
or borrow.

22 VAX Architecture Reference Manual

Internal
Processor
Registers

The PSL is automatically saved on the stack when an exception or
interrupt occurs and is saved in the process control block on a
process context switch (see Chapter 6). The PSL can also be read by
the MOVPSL instruction (see Chapter 3).

Bits (31 :16) of the PSL can be changed explicitly only by executing a
return from exception or interrupt instruction (REI). Bits (20:16) can
also be changed by a move-to-processor-register instruction (MTPR)
to the IPL processor register. For more details, see Chapter 5.
Processor initialization sets the PSL to 041 FOOOO, hex.

The privileged internal processor register space provides access to
many types of CPU control and status registers such as the memory
management base registers, parts of the PSL, and the multiple
stack pointers. These registers are explicitly accessible only by the
Move to Processor Register (MTPR) and Move from Processor
Register (MFPR) instructions which require kernel mode privileges.
Internal processor registers are longword size, as shown in Figure
1.10. For details, see Chapter 8.

Basic Architecture 23

INSTRUCTION
FORMAT

Instruction Formats
and Addressing Modes 2

The VAX architecture has a variable-length instruction format. An
instruction specifies an operation and 0 to 6 operands. An operand
specifier determines how an operand is accessed. An operand
specifier consists of an addressing mode specifier and, if needed, a
specifier extension, immediate data, or an address, as shown in
Figure 2.1. The format of an instruction is:

opcode

adressing mode specifier 1

specifier extension, address, or immediate data 1 (if needed)

addressing mode specifier 2

addressing mode specifier n

specifier extension, address, or immediate data n (if needed)

specifier extension, if any

Operand Specifier

7 0

I opcode

Single-Byte Opcode

15 87 0

opcode Fe - FF I
Double-Byte Opcode

Figure 2_1
Opcodes and Operand Specifiers

Introduction Formats and Addressing Modes 25

OPCODE
FORMATS

OPERAND
SPECIFIERS

26

An instruction is specified by the byte address A of its opcode, as
shown in Figure 2.1. The opcode may extend over 2 bytes; the length
depends on the contents of the byte at address A. Only if the value
of the byte is Fe (hex) through FF (hex) is the opcode 2 bytes
long, as shown in the last diagram in Figure 2.1.

Each instruction takes a specific sequence of operand specifier types.
An operand specifier type conceptually has two attributes: the access
type and the data type.

The access types include:

• Read-the specified operand is read only.

• Write-the specified operand is written only.

• Modify-the specified operand is read, potentially modified, and
written. This is not done under a memory interlock.

• Address-the address of the specified operand in the form of a
longword is the actual instruction operand. The specified operand is
not accessed directly although the instruction may subsequently
use the address to access that operand.

• Variable-length bit field base address-this is the same as address
access type except for register mode. In register mode, the field
is contained in register n designated by the operand specifier
(or register n + 1 concatenated with register n). This access type is
a special variant of the address access type.

• Branch-no operand is accessed. The operand specifier itself is a
branch displacement.

The first five types are termed general mode addressing. The last
type is termed branch mode addressing.

The data types include:

Byte

Word

Longword

F _floating

Quadword

D_floating

G_floating

Octaword

H_floating

VAX Architecture Reference Manual

NOTATION

GENERAL
MODE
ADDRESSING
FORMATS

For the address and branch access types that do not directly reference
operands, the data type indicates:

• Address-the operand size to be used in the address calculation in
autoincrement, autodecrement, and index modes

• Branch-the size of the branch displacement.

To describe the addressing modes, the following notation is used:

+

*

Rn or R[n]

PC or SP

(x)

{ }
SEXT(x)

ZEXT(x)

OA

addition

subtraction

multiplication

is replaced by

is defined as

concatenation

The contents of register n

the contents of register 15 or 14 respectively

the contents of memory location x

arithmetic parentheses for indicating precedence

x is sign extended to size of operand needed

x is zero extended to size of operand needed

operand address

comment delimiter

Each general mode addressing description includes the definition of
the operand address and the specified operand. For operand specifiers
of address access type, the operand address is the actual instruction
operand; for other access types, the specified operand is the
instruction operand. The branch mode addressing description includes
the definition of the branch address.

Except for literal mode, an operand specifier in the general mode
addressing format consists of a register number in bits (3:0) and an
addressing mode specifier in bits (7:4). The operand specifier
could possibly be followed by a specifier extension, as shown in
Figure 2.1.

For a summary of general register addressing, see Table 2.1.

Introduction Formats and Addressing Modes 27

~

< Table 2.1 » x Summary of General Register Addressing » ...
Index· n

:J

;: Addressing Mode Assembler Notation Decimal Hexadecimal r m w a v PC SP AP& FP able
!l c General Register Addressing Mode
~
:D literal SA#literal 0-3 0-3 Y f f f
~
~ indexed base[Rx] 4 4 Y Y Y Y Y Y Y
:::I register Rn 5 5 Y Y Y f Y u uq uo n
II

s:: register deferred (Rn) 6 6 Y Y Y Y Y u Y Y Y
I»
:::I autodecrement -(Rn) 7 7 Y Y Y Y Y u Y Y ux c
!!!. autoincrement (Rn)+ 8 8 Y Y Y Y Y P Y Y ux

autoincrement deferred @(Rn)+ 9 9 Y Y Y Y Y P Y Y ux

byte displacement BAdisplacement(Rn) 10 A Y Y Y Y Y P Y Y Y
byte displacement deferred @BAdisplacement(Rn) 11 B Y Y Y Y Y P Y Y Y
word displacement WA displacement(Rn) 12 C Y Y Y Y Y P Y Y Y
word displacement deferred @WAdisplacement(Rn) 13 D Y Y Y Y Y P Y Y Y
longword displacement L Adisplacement (Rn) 14 E Y Y Y Y Y P Y Y Y
longword displacement deferred @LAdisplacement(Rn) 15 F Y Y Y Y Y P Y Y Y

Program Counter Addressing Mode

immediate r#constant 8 8 Y u u Y Y u

absolute @#address 9 9 Y Y Y Y Y Y
byte relative BAaddress 10 A Y Y Y Y Y Y

a
&
c
!l
6"
:::I
"11 o
3
!
III
:::I a.

~ a.

= UJ s-ea
i:
8.
m

N
CD

byte relative deferred @B"address

word relative W"address

word relative deferred @W"address

longword relative L"address

longword relative deferred @L"address

Key:
base any indexable addressing mode

f reserved addressing mode fault
p Program Counter addressing
u UNPREDICTABLE

11

12

13

14

15

B Y Y Y Y Y Y
C y Y Y Y Y Y
D Y Y Y Y Y Y
E Y Y Y Y Y Y
F Y Y Y Y Y Y

uq UNPREDICTABLE for quadword, octaword, D_floating, G_floating, and H_floating (and field if position + size greater than 32)
uo UNPREDICTABLE for octaword and H_floating
ux UNPREDICTABLE for index register same as base register
y yes, always vali.d addressing mode .
r read access

m modify access
w write access
a address access
v field access

Register Mode

30

The register mode operand specifier format is shown in Figure 2.2.
No specifier extension follows. In register mode addressing, the
operand is the contents of register n (or register n + 1 concatenated
with register n for quadword, D_floating, G_floating, and certain field
operands). The format is as follows:

operand = Rn ! if one register

or

R[n+ l]'Rn if two registers

or

R[n+3] 'R[n+2] 'R[n+ 1] 'Rn if four registers

7 43 0

I 5 I reg I
Register

7 43 0

I 6 I reg I
Register Deferred

7 43 0

I 7 I reg I
Autodecrement

7 43 0

8 reg I
Autoincrement

87 43 o
immediate data I 8 I F I

Immediate Address Mode Specifier and Extension

7 43 0

I 9 I reg I
Autoincrement Deferred

VAX Architecture Reference Manual

39 87 43 0

absolute address of data I 9 F I
Absolute Address Mode Specifier and Extension

15 87 43 0

I byte displ I A reg

Byte Displacement Address Mode Specifier and Extension

23 87 43 o
word displacement B reg

Word Displacement Address Mode Specifier and Extension

39 87 43 o
longword displacement c reg

Longword Displacement Address Mode Specifier and Extension

15 87 4 3 0

I byte displ I Dreg

Byte Displacement Deferred Address Mode Specifier and Extension

23 87 43 0

word displacement E reg

Word Displacement Deferred Address Mode Specifier and Extension

39 8 7 43 0

longword displacement F I reg

Longword Displacement Deferred Address Mode Specifier and Extension

Figure 2.2
Addressing Mode Specifiers

Introduction Formats and Addressing Modes 31

Register
Deferred Mode

Autoincrement
Mode

32

Because registers do not have memory addresses, the operand
address is not defined and register mode may not be used for
operand specifiers of address access type (except in the case of the
base address for variable bit field instructions, See Chapter 3). If
register mode is so used, an iilegal addressing mode fault results (see
Chapter 5). PC may not be used in register mode addressing. If PC
is read, the value read is UNPREDICTABLE. If PC is written, the next
instruction executed or the next operand specified is UNPREDICTA­
BLE. Likewise, SP may not be used in register mode addressing
for an operand that takes two adjacent registers. Again, if it is used,
the results are UNPREDICTABLE in the same fashion. If PC is used
in register mode for a write access type operand that takes two
adjacent registers, the contents of RO are UNPREDICTABLE. If R12,
R13, SP, or PC are used in register mode addressing for an operand
that takes four adjacent registers, the results are UNPREDICTABLE.
If PC is used in register mode for a write access type operand that
requires four adjacent registers, the contents of RO, R1, and R2 are
UNPREDICTABLE. Likewise, if R13.is used in register mode for a
write access type operand that takes four adjacent registers, the
contents of RO are UNPREDICTABLE; and, if SP is used in register
mode for a write access type operand which takes four adjacent
registers, the contents of RO and R1 are UNPREDICTABLE.

The assembler notation for register mode is Rn.

The register deferred mode operand specifier format is shown in
Figure 2.2. No specifier extension follows. I/i register deferred mode
addressing, the address of the operand is the contents of register n:

OA = Rn

operand = (OA)

PC should not be used in register deferred mode addressing. If PC is
used, the address-of the operand (and whether the operand is
written if it is of modify or write access type) is UNPREDICTABLE.'

The assembler notation for register deferred mode is (Rn).

The autoincrement mode operand specifier format is shown in Figure
2.2. No specifier extension follows. If Rn denotes PC, immediate
data follows, and the mode is termed immediate mode, as the figure
shows. In autoincrement mode addressing, the address of the
operand is the contents of register n. After the operand address is
determined, the size of the operand in bytes (1 for byte, 2 for word, 4
for longword and F _floating, 8 for quadword, G_floating and.
D_floating, and 16 for octaword and H_floating) is added to the

VAX Architecture Reference Manual

Autoincrement
Deferred Mode

Autodecrement
Mode

contents of register n. The contents of register n is then replaced by
the result:

OA = Rn

Rn +- Rn + size

operand = (OA)

Immediate mode may not be used for operands of modify or write
access type. If immediate mode is used for an operand of modify
access type, the value of the data read is UNPREDICTABLE. If
immediate mode is used for an operand of modify or write access
type, the address at which the operand is written (and whether it is
written) is UNPREDICTABLE.

The assembler notation for autoincrement mode is (Rn) +. For
immediate mode, the notation is V\#constant where constant is the
immediate data that follows.

The autoincrement deferred mode operand specifier format is shown
in Figure 2.2. No specifier extension follows. If Rn denotes PC, a
longword address follows, and the mode is termed absolute mode. In
autoincrement deferred mode addressing, the address of the operand
is the contents of a longword whose address is the contents of
register n. After the operand address is determined, 4 (the size in
bytes of a longword address) is added to the contents of register n
and the contents of register n is replaced by the result:

OA = (Rn)

Rn +- Rn + 4

operand = (OA)

The assembler notation autoincrement deferred mode is @(Rn) + .
The notation for absolute mode is @#address, where address is the
longword that follows.

The autodecrement mode operand specifier format is shown in Figure
2.2. No specifier extension follows. In autodecrement mode address­
ing, the size of the operand in bytes (1 for byte; 2 for word;
4 for longword or F _floating; 8 for quadword, G_floating, or
D_floating; and 16 for octaword or H_floating) is subtracted from the
contents of register n. The contents of register n are then replaced
by the result. The updated contents of register n is the address of the
operand:

Rn +- Rn - size

OA = Rn

operand = (OA)

Introduction Formats and Addressing Modes 33

Displacement
Mode

Displacement
Deferred Mode

34

PC should not be used in autodecrement mode. If it is used, the
address of the operand (and whether the operand is written if it is of
modify or write access type) is UNPREDICTABLE; the next instruction
executed or the next operand specified is UNPREDICTABLE.

The assembler notation for autodecrement mode is - (Rn).

There are three displacement mode operand specifier formats, all
illustrated in Figure 2.2. They are termed byte displacement mode,
word displacement mode, and longword displacement mode. In each,
the specifier extension is a signed displacement.

In displacement mode addressing, the displacement (after being sign
extended to 32 bits if it is byte or word) is added to the contents of
register n. The result is the operand address:

OA = Rn + SEXT(displ) if byte or word displaoement

or

Rn + displ if longword displaoement

operand = (OA)

If Rn denotes PC, the mode is termed PC relative addressing mode.
The updated contents of PC (the address of the first byte beyond
the specifier extension) is used as the base address.

The assembler notation for byte, word, and longword displacement
mode is B!\D(Rn), W!\D(Rn), and L !\D(Rn) respectively, where
D = displ.

The three displacement deferred mode operand specifier formats
are termed byte displacement deferred mode, word displacement
deferred mode, and longword displacement deferred mode. In each,
the specifier extension is a signed displacement. See Figure 2.2.

In displacement deferred mode addressing, the displacement (after
being sign extended to 32 bits if it is byte or word) is added to the
contents of register n. The result is the address of a longword whose
contents is the operand address:

OA = (Rn + SEXT(displ))

or

(Rn + displ)

operand = (OAj

if by~e or word displaoement

if longword displaoement

If Rn notes PC, the mode is termed PC relative deferred addressing
mode. The updated contents of PC (the address of the first byte
beyond the specifier extension) is used as the base address.

VAX Architecture Reference Manual

Literal Mode

The assembler notation for byte, word, and longword displacement
deferred mode is @B!\D(Rn), @W!\D(Rn), and @L!\D(Rn) respectively,
where D = displ.

The literal mode operand specifier format is shown in Figure 2.3. No
specifier extension follows. For operands of data type byte, word,
longword, quadword, and octaword, the operand is the zero extension
of the 6-bit literal field:

operand = ZEXT(literal)

Thus for these data types, literal mode may be used for values in the
range 0 through 63.

For operands of data type F _floating, D_floating, G_floating, and
H_floating, the 6-bit literal field is composed of two 3-bit fields as
shown in Figure 2.3. The exp and fra fields are used to form an
F _floating, D_floating, G_floating, or H_floating operand as shown
in Figure 2.4. The values that can be expressed by a floating-point
literal are shown in Table 2.2.

Because there is no operand address, literal mode addressing may
not be used for operand specifiers of address access type. Also,
literal mode addressing may not be used for operand specifiers of
write or modify access type. If literal mode is used for operand
specifiers of either address, modify, or write access type, an illegal
addressing mode fault results (see Chapter 5).

Literal mode addressing is a very efficient way of specifying integer
values in the range 0 to 63 or the floating-point values shown in Table
2.2. Literal values outside the indicated range may be obtained by
using immediate mode.

The assembler notation for literal mode is S!\#literal.

7 65 0

I 0 I literal I
literal Address Mode Specifier

5 32 0

I exp I Ira I
Representation 01 a Floating-Point Number as a Literal

Figure 2.3
Literal Address Mode Specifier and Representation 01 a
Floating-Point Number as a literal

Introduction Formats and Addressing Modes 35

31 161514 7 6 4 3 0

o 101128+exponentl fra I 0 I
As an F _floating Number

31 161514 76 43 o

o
10'128+exponen~' fra I o

63 32

As a D_floating Number

31 161514 43 1 a
o 101 1024+exp:nent I ~
o

63 33

As a G_floating Number

31 161514 a
0 01 16384 "±- exponent

0 0

0 0

0 0

127 96

As an H_floating Number

Figure 2.4
Interpretation of a Literal

Table 2.2
Floating-Point Values Representable as Literals

Fraction

Exponent 0 2 3 4 5 6 7

0 V2 9/16 % 1V16 % 1¥16 ?fa 10/16

1 1 1Vs 1V4 1% 1% 1% 1% F/s
2 2 2% 2V2 2% 3 3% 3% 3%
3 4 4% 5 5% 6 6% 7 7%
4 8 9 10 11 12 13 14 15
5 16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120

36 VAX Architecture Reference Manual

Index Mode The index mode operand specifier format is shown in Figure 2.5. Bits
(15:8) contain a second operand specifier (termed the base operand
specifier) for any of the addressing modes except register, literal,
or index. The specification of register indexed, literal indexed,
immediate indexed, or index indexed addressing mode results in an
illegal addressing mode fault (see Chapter 5). If the base operand
specifier requires a specifier extension, it immediately follows.
The base operand specifier is subject to the same restrictions as
would apply if it were used alone. If the use of some particular
specifier is illegal (causes a fault or UNPREDICTABLE behavior)
under some circumstances, then that specifier is similarly illegal as a
base operand specifier in index mode under the same circumstances.

The operand to be specified by index mode addressing is termed the
primary operand. The base operand specifier normally is used to
determine an operand address. This address is termed the base
operand address (BOA). The address of the primary operand specified
is determined by multiplying the contents of the index register x by
the size of the primary operand in bytes (1 for byte; 2 for word; 4 for
longword or F _floating; 8 for quadword, D_floating or G_floating;
and 16 for octaword and H_floating), adding BOA, and taking the
result:

OA = BOA + {size * (Rx)}

operand = (OA)

If the base operand specifier is for autoincrement or autodecrement
mode, the increment or decrement size is the size in bytes of the
primary operand.

Indexed mode addressing permits very general and efficient accessing
of arrays. The base address of the array is determined by the
operand address calculation of the base operand specifier. The
contents of the index register is taken as a logical index into the
array. The logical index is converted into a real (byte) offset by
multiplying the contents of the index register by the size of the primary
operand in bytes.

1615 12 11 87 43 0

4 I 2 'od" "9'"''

1 1 t base register
base addressing mode
extension. if any

Figure 2.5
Indexed Address Mode Specifier and Extension

Introduction Formats and Addressing Modes 37

BRANCH
MODE
ADDRESSING
FORMATS

38

Certain restrictions are placed on the index register x. PC cannot be
used as an index register. If PC is used, a reserved addressing mode
fault occurs (see Chapter 5). If the base operand specifier is for an
addressing mode that results in register modification (autoincrement
mode, autodecrement mode, or autoincrement deferred mode), the
same register cannot be the index register. If it is, the primary
operand address is UNPREDICTABLE.

The names of the addressing modes resulting from indexed mode
addressing are formed by appending the word "indexed" to the
addressing mode of the base operand specifier. Following are the
names and assembler notation. The index register is designated Rx to
distinguish it from the register Rn in the base operand specifier.

• Register deferred indexed, (Rn)[Rx]

• Autoincrement indexed, (Rn) + [Rx]

• Autoincrement deferred indexed, @(Rn) + [Rx] or absolute indexed,
@#address[Rx]

• Autodecrement indexed, - (Rn)[Rx]

• Byte, word, or longword displacement indexed, BAD(Rn)[Rx],
WAD(Rn)[Rx], or L AD(Rn)[Rx]

• Byte, word, or longword displacement deferred indexed,
@BAD(Rn)[Rx], @WAD(Rn)[Rx], or @LAD(Rn)[Rx]

The two operand specifier formats are shown in Figure 2.6. In branch
mode addressing, the byte or word displacement is sign extended to
32 bits and added to the updated contents of PC. The updated
contents of PC is the address of the first byte beyond the operand
specifier. The result is the branch address A:

A = PC + SEXT(displ)

7 0

displ I
Byte Displacement

15 o
displ

Word Displacement

Figure 2.6
Two Branch Mode Addressing Operand Specifier Formats

VAX Architecture Reference Manual

INSTRUCTION
INTERPRE­
TATION

The assembler notation for byte and word branch mode addressing is
A, where A is the branch address. Note that the branch address and
not the displacement is used.

The processor in interpreting an instruction performs the following
three steps:

1. Reads and evaluates each operand specifier in order of instruction
stream occurrence as follows:

a. If access type is read: evaluates the operand address, reads
the operand, and saves it.

b. If access type is write: evaluates the operand address and
saves it.

c. If access type is modify: evaluates the operand address and
saves it: reads the operand and saves it.

d. If access type is address: evaluates the address and saves it.

e. If access type is branch: saves the operand specifier.

2. Performs the operation indicated by the instruction.

3. Stores the result(s) using the saved addresses in the order
indicated by the occurrence of operand specifiers in the instruction
stream.

Note
The string instructions are an exception to this sequence performed
by each instruction. Partial results are stored before the instruction
operation is completed.

The variable-length bit field instructions treat the position, size, and
base address operand specifiers as the specification of an implied
field operand specifier.

If multiple exceptions occur, the order in which they are taken is
UNPREDICTABLE. This can occur, for example, in a floating-point
instruction whose destination operand specifier of write access type
uses a reserved addressing mode and the operation results in an
overflow fault.

The implications of this instruction interpretation process are:

1. Autoincrement and autodecrement operations occur as the
operand specifiers are processed, and subsequent operand
specifiers use the updated contents of registers modified by those
operations.

Introduction Formats and Addressing Modes 39

40

2. Other than as indicated above, all input operands are read, and all
addresses of output operands computed before any results of the
instruction are stored.

3. An operand of modify access type is not read, modified, and
written as an indivisible operation; therefore, modify access type
operands cannot be used for synchronization. (For synchronization
instructions, see Chapter 7.)

4. If an instruction references two operands of write or modify access
type at the same address, the first will be Overwritten by the
second.

VAX Architecture Reference Manual

INSTRUCTION
SET

Instruction
Descriptions

Instructions 3
This chapter describes the instructions generally used by all software,
across all implementations of the VAX architecture. Certain instructions
are specific to portions of the VAX architecture: memory management,
interrupts and exceptions, process dispatching, and processor regis­
ters. These instructions are generally used by privileged software and
are described in chapters devoted to those portions of the architecture.
A concise list of opcode assignments appears in Appendix A.

The instruction set is divided into 12 major sections:

Integer arithmetic and logical

Address

Variable-length bit field

Control

Procedure call

Miscellaneous

Queue

Floating point

Character string

Cyclic redundancy check

Decimal string

Edit

Within each major section, closely related instructions are grouped
and described together. The instruction group description is composed
of the following:

1. The group name.

2. The format of each instruction in the group. The format presents
the name and type of each instruction operand specifier and
the order in which it appears in memory. Operand specifiers from
left to right appear in increasing memory addresses.

3. The operation of the instruction.

4. The effect on condition codes.

Instructions 41

Operand
Specifier
Notation

42

5. Exceptions specific to the instruction. Exceptions generally possible
for all instructions are not listed (for example, illegal or reserved
addressing mode, trace, and memory management exceptions).

6. The opcodes, mnemonics, and names of each instruction in the
group. The opcodes are given in hex.

7. A description in English of the instruction.

8. In many cases, notes on the instruction and programming examples.

Operand specifiers are described in the following way:

(name). (access type)(data type)

The name is suggestive of the operand in the context of the instruction.
The name is often abbreviated.

The access type is represented by a letter denoting the operand
specifier access type. These are:

a Calculate the effective address of the specified operand.
Address is returned in a longword that is the actual instruction
operand. Context of address calculation (the size to be used in
autoincrement, autodecrement, and indexing) is given by
(data type).

b No operand reference. The operand specifier is a branch
displacement. The size of branch displacement is given by
(data type).

m Operand is read, potentially modified, and written. Note that
this is not an indivisible memory operation. Also note that if the
operand is not actually modified, it may not be written back.
However, modify type operands are always checked for both
read and write accessibility (see Chapter 4).

r Operand is read only.

v Calculate the effective address of the specified operand. If
the effective address is in memory, the address is returned in
a longword that is the actual instruction operand. The context
of the address calculation is given by (data type). If the
effective address is Rn, the operand is in Rn or R[n + 1 rRn.

w Operand is written only.

The data type in the operand specifier notation is a letter denoting the
data type of the operand:

b byte

d D_floating

f F _floating

g G_floating

VAX Architecture Reference Manual

Operation
Description
Notation

h H_floating

1 longword

o octaword

q quadword

w word

x first data type specified by instruction

y second data type specified by instruction

The operation of each instruction is given as a sequence of control
and assignment statements in an ALGOL-like syntax. No attempt
is made to define the syntax formally; it is assumed to be familiar to
the reader. The notation used is an extension of that introduced in
Chapter 2.

+

*
/

Rn or R[n]

PC, SP.
FP, or AP

PSW

addition

subtraction, unary minus

multiplication

division (quotient only)

concatenation

is replaced by

is defined as

contents of register Rn

the contents of register R15, R14, R13, or
R12 respectively

the contents of the processor status word

PSL

(x)

the contents of the processor status longword

contents of memory location whose address is
x

(x) +

-(x)

(x: y>

(xl, x2, ... ,xn>

{ }

AND

Instructions

contents of memory location whose address is
x; x incremented by the size of operand
referenced at x

x decremented by size of operand to be
referenced at x; contents of memory location
whose address is new value of x

a modifier that delimits an extent from bit
position x to bit position y inclusive

a modifier that enumerates bits x1 ,x2, ... ,xn

arithmetic parentheses used to indicate
precede

logical AND

43

44

OR

XOR

NOT

LSS

LSSU

LEQ

LEQU

EQL

EQLU

NEQ

NEQU

GEQ

GEQU

GTR

GTRU

SEXT(x)

ZEXT(x)

REM(x,y)

MINU(x,y)

MAXU(x,y)

logical OR

logical XOR

logical (one's) complement

less than signed

less than unsigned

less than or equal signed

less than or equal unsigned

equal signed

equal unsigned

not equal signed

not equal unsigned

greater than or equal signed

greater than or equal unsigned

greater thim signed

greater than unsigned

x is sign extended to size of operand needed

x is zero extended to size of operand needed

remainder of x divided by y, such that x/y and
REM(x,y) have the same sign

minimum unsigned of x and y

maximum unsigned of x and y

The following conventions are used:

1. Other than that caused by () +, or - (), and the advancement of
PC, only operands or portions of operands appearing on the left
side of assignment statements are affected.

2. No operator precedence is assumed, other than that replacement
(~) has the lowest precedence. Precedence is indicated explicitly
by { }.

3. All arithmetic, logical, and relational operators are defined in the
context 6f their operands. For example, "+" applied to floating
operands means a floating add; whereas" +" applied to byte
operands is an integer byte add. Similarly, "LSS" is a floating
comparison when applied to floating operands; wherea,s"LSS" is
an integer byte comparison when applied to byte operands.

4. Instruction operands are evaluated according to the operand
specifier conventions (see Chapter 2). The order in which operands·
appear in the instruction description has no effect on the order of
evaluation.

5. Condition codes are in general affected on the value of actual
stored results, not on "true" results (which might be generated

VAX Architecture Reference Manual

INTEGER
ARITHMETIC
AND LOGICAL
INSTRUCTIONS

ADAWI

internally to greater precision). Thus, for example, two positive
integers can be added together and the sum stored, because of
overflow, as a negative value. The condition codes will indicate a
negative value even though the "true" result is clearly positive.

Add Aligned Word Interlocked

Format:

opcode add.rw, sum.mw

Operation:

tmp - add;

{set interlock};

sum - sum + tmp;

{release interlock};

Condition Codes:

N - sum LSS 0;

Z - sum EQL 0;

V - {integer overflow};

C - {carry from most significant bit};

Exceptions:
reserved operand fault
integer overflow

Opcode:

58 ADAWI

Description:
The addend operand is added to the sum operand, and the sum
operand is replaced by the result. The operation is interlocked against
similar operations on other processors in a multiprocessor system.
The destination must be aligned on a word boundary (bit 0 of the
address of the sum operand must be zero). If it is not, a reserved
operand fault is taken.

Instructions 45

ADD

46

Notes:
1. Integer overflow occurs if the input operands to the add have the

same sign and the result has the opposite sign. On overflow,
the sum operand is replaced by the low order bits of the true result.

2. If the addend and the sum operands overlap, the result and the
condition codes are UNPREDICTABLE.

Add

Format:

opcode add.rx, sum.mx

opcode addl.rx, add2.rx, sum.wx

Operation:

sum ~ sum + add;

sum ~ addl + add2;

Condition Codes:

N ~ sum LSS 0;

Z ~ sum EQL 0;

V ~ {integer overflow};

!2 operand

!3 operand

2 operand

3 operand

C ~ {carry from most significant bit};

Exception:

integer overflow

Opcodes:

80 ADDB2 Add Byte 2 Operand

81 ADDB3 Add Byte 3 Operand

AO ADDW2 Add Word 2 Operand

Ai ADDW3 Add Word 3 Operand

CO ADDL2 Add Long 2 Operand

Cl ADDL3 Add Long 3 Operand

Description:
In 2 operand format, the addend operand is added to the sum
operand and the sum operand is replaced by the result. In 3 operand
format, the addend 1 operand is added to the addend 2 operand
and the sum operand is replaced by the result.

VAX Architecture Reference Manual

ADWC

ASH

Notes:
Integer overflow occurs if the input operands to the add have the
same sign and the result has the opposite sign. On overflow, the sum
operand is replaced by the low order bits of the true result.

Add With Carry

Format:

opcode add.rl, sum.ml

Operation:

sum <- sum + add + C;

Condition Codes:

N <- sum LSS 0;

Z <- sum EQL 0;

V <- {integer overflow};

C <- {carry from most significant bit};

Exceptions:

integer overflow

Opcodes:

D8 ADWC Add With Carry

Description:
The contents of the condition code C bit and the addend operand are
added to the sum operand, and the sum operand is replaced by the
result.

Notes:
1. On overflow, the sum operand is replaced by the low order bits of

the true result.

2. The two additions in the operation are performed simultaneously.

Arithmetic Shift

Format:

opcode cnt.rb, src.rx, dst.wx

Instructions 47

BIC

48

Operation:

dst ~ src shifted cnt bits;

Condition Codes:

N ~ dst LSS 0;

Z .~ dst EQL 0;

V ~ {integer overflow};

C ~ 0;

Exception:

integer overflow

Opcodes:

78 ASHL Arithmetic Shift Long

79 ASHQ Arithmetic Shift Quad

Description:
The source operand is arithmetically shifted by the number of bits
specified by the count operand, and the destination operand is
replaced by the result. The source operand is unaffected. A positive
count operand shifts to the left bringing zeros into the least significant
bit. A negative count operand shifts to the right bringing copies of
the most significant (sign) bit into the most significant bit. A 0 count
operand replaces the destination operand with the unshifted source
operand.

Notes:
1. Integer overflow occurs on a left shift if any bit shifted into the sign

bit position differs from the sign bit of the source operand.

2. If cnt GTR 32 (ASHL) or cntGTR 64 (ASHO), the destination
operand is replaced by O.

3. If cnt LEO - 31 (ASHL) or cnt LEO - 63 (ASHQ), all the bits of the
destination operand are copies of the sign bit of the source
operand. .j

Bit Clear

Format:

opcode mask.rx, dst.mx

opcode mask.rx, src.rx, dst.wx

VAX Architecture Reference Manual

2 operand

3 operand

BIS

Operation:

dst <- dst AND

dst <- sre AND

Condition Codes:

N <- dst LSS 0;

Z <- dst EQL O'

V <- 0;

C <- C;

Exceptions:
none

Opcodes:

8A BICB2 Bit

8B BICB3 Bit

AA BICW2 Bit

AB BICW3 Bit

CA BICL2 Bit

CB BICL3 Bit

Description:

{NOT mask};

{NOT mask} ;

Clear Byte

Clear Byte

Clear Word

Clear Word

Clear Long

Clear Long

!2 operand

!3 operand

In 2 operand format, the destination operand is ANDed with the
one's complement of the mask operand, and the destination operand
is replaced by the result. In 3 operand format, the source operand
is ANDed with the one's complement of the mask operand and the
destination operand is replaced by the result.

Bit Set

Format:

ope ode mask.rx, dst.mx 2 operand

opeode mask.rx, sre.rx, dst.wx 3 operand

Operation:

dst <- dst OR mask; !2 operand

dst <- sre OR mask; !3 operand

Instructions 49

BIT

50

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ C;

Exceptions:
none

Opcodes:

88 BISB2 Bit Set Byte 2 Operand

89 BISB3 Bit Set Byte 3 Operand

A8 BISW2 Bit Set Word 2 Operand

A9 BISW3 Bit Set Word 3 Operand

C8 BISL2 Bit Set Long 2 Operand

C9 BISL3 Bit Set Long 3 Operand

Description:
In 2 operand format, the mask operand is ORed with the destination
operand and the destination operand is replaced by the res~lt. In 3
operand format, the mask operand is ORed with the source operand
and the destination operand is replaced by the result.

Bit Test

Format:

opcode mask.rx, src.rx

Operation:

tmp ~ src AND mask;

Condition Codes:

N ~ tmp LSS 0;

Z ~ tmp EQL 0;

V ~ 0;

C ~ C;

Exceptions:
none

VAX Architecture Reference Manual

CLR

Opcodes:

93 BITB Bit Test Byte

B3 BITW Bit Test Word

03 BITL Bit Test Long

Description:
The mask operand is ANDed with the source operand. Both operands
are unaffected. The only action is to affect condition codes.

Clear

Format:

opcode dst.wx

Operation:

dst ~ 0;

Condition Codes:

N ~ 0;

Z ~ 1·

V ~ 0;

C ~ C;

Exceptions:
none

Opcodes:

94 CLRB

B4 CLRW

04 CLRL

7C CLRQ

7CFO CLRO

Description:

Clear

Clear

Clear

Clear

Cl.ear

Byte

Word

Long

Quad

Octa

The destination operand is replaced by o.

Notes:
CLRx dst is equivalent to MOVx 8/\#0, dst, but is 1 byte shorter.

Instructions 51

CMP

CVT

52

Compare

Format:

opeode sre1.rx, sre2.rx

Operation:

sre1 - sre2;

Condition Codes:

N ~ sre1 LSS sre2;

Z ~ sre1 EQL sre2;

V ~ 0;

C ~ srei LSSU

Exceptions:
none

Opcodes:

sre2;

91 CMPB Compare Byte

B1 CMPW Compare Word

D1 CMPL Compare Long

Description:
The source 1 operand is compared with the source 2 operand. The
only action is to affect the condition codes.

Convert

Format:

opeode sre.rx, dst.wy

Operation:

dst ~ conversion of sre;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ {integer overflow};

C ~ 0;

VAX Architecture Reference Manual

DEC

Exception:

integer overflow

Opcodes:

99 CVTBW Convert Byte to Word

98 CVTBL Convert Byte to Long

33 CVTWB Convert Word to Byte

32 CVTWL Convert Word to Long

F6 CVTLB Convert Long to Byte

F7 CVTLW Convert Long to Word

Description:
The source operand is converted to the data type of the destination
operand, and the destination operand is replaced by the result.
Conversion of a shorter data type to a longer one is done by sign
extension; conversion from longer to shorter is done by truncation of
the higher numbered (most significant) bits.

Notes:
Integer overflow occurs if any truncated bits of the source operand
are not equal to the sign bit of the destination operand.

Decrement

Format:

opcode dif.mx

Operation:

dif ~ dif - 1;

Condition Codes:

N ~ dif LSS 0;

Z ~ dif EQL 0;

V ~ {integer overflow};

C ~ {borrow into most significant bit};

Exception:

integer overflow

Instructions 53

DIV

54

Opcodes:

97 DECB Decrement Byte

B7 DECW Decrement Word

D7 DECL Decrement Long

Description:
One is subtracted from the difference operand, and the difference
operand is replaced by the result.

Notes:
1. Integer overflow occurs if the largest negative integer is decre­

mented. On overflow, the difference operand is replaced by the
largest positive integer.

2. DECx dif is equivalent to 8UBx 8/\#1, dif, but is 1 byte shorter.

Divide

Format:

opcode divr.rx, quo.mx

opcode divr.rx, divd.rx, quo.wx

Operation:

quo ~ quo / divr;

quo ~ divd / divr;

Condition Codes:

N ~ quo LSS 0;

Z ~ quo EQL 0;

!2 operand

!3 operand

2 operand

3 operand

V ~ {integer over flow} OR {di vr EQL O};

C ~ 0;

Exceptions:

integer overflow

divide by zero

Opcodes:

86 DIVB2 Divide Byte 2 Operand

87 DIVB3 Divide Byte 3 Operand

A6 DIVW2 Divide Word 2 Operand

A7 DIVW3 Divide Word 3 Operand

VAX Architecture Reference Manual

EDIV

C6 DIVL2 Divide Long 2 Operand

C7 DIVL3 Divide Long 3 Operand

Description:
In 2 operand format, the quotient operand is divided by the divisor
operand and the quotient operand is replaced by the result. In 3
operand format, the dividend operand is divided by the divisor
operand and the quotient operand is replaced by the result.

Notes:
1. The remainder, if any, is lost.

2. Division is performed such that the remainder (unless it is 0) has
the same sign as the dividend; that is, the result is truncated
toward O.

3. Integer overflow occurs if and only if the largest negative integer is
divided by -1. On overflow, operands are affected as in item 3
below.

4. If the divisor operand is 0, then in 2 operand format the quotient
operand is not affected; in 3 operand format the quotient operand
is replaced by the dividend operand.

Extended Divide

Format:

ope ode divr.rl, divd.rq, quo.wl, rem.wl

Operation:

quo ~ divd / divr;

rem ~ REM(divd, divr);

Condition Codes:

N ~ quo LSS 0;

Z ~ quo EQL 0;

V ~ {integer overflow} OR {divr EQL O};

C ~ 0;

Exceptions:

integer overflow

divide by zero

Opcodes:

78 EDIV Extended Divide

Instructions 55

- ----------------

EMUL

INC

56

Description:
The dividend operand is divided by the divisor operand; the quotient
operand is replaced by the quotient; and the remainder operand is
replaced by the remainder.

Notes:
1. The division is performed such that the remainder operand (unless

it is 0) has the same sign as the dividend operand.

2. On overflow, the operands are affected as in item 3 below.

3. If the divisor operand is 0, then the quotient operand is replaced by
bits (31 :0) of the dividend operand; the remainder operand is
replaced by O.

Extended Multiply

Format;

opcode mulr.rl, muld.rl, add.rl, prod.wq

Operation:

prod ~ {muld * muIr} + SEXT(add);

Condition Codes:

N ~ prod LSS 0;

Z ~ prod EQL 0;

V ~ 0;

C ~ 0;

Exceptions:
none

Opcode:

7A EMUL Extended Multiply

Description:
The multiplicand operand is multiplied by the multiplier operand,
giving a double-length result. The addend operand is sign-extended to
double length and added to the result. The product operand is
replaced by the final result.

Increment

Format:

opcode sum.mx

VAX Architecture Reference Manual

MCOM

Operation:

sum ~ sum + 1;

Condition Codes:

N ~ sum LSS 0;

Z ~ sum EQL 0;

V ~ {integer overflow};

C ~ {carry from most significant bit};

Exception:

integer overflow

Opcodes:

96 INCB Increment Byte

B6 INCW Increment Word

06 INCL Increment Long

Description:
One is added to the sum operand, and the sum operand is replaced
by the result.

Notes:
1. Arithmetic overflow occurs if the largest positive integer is

incremented. On overflow, the sum operand is replaced by the
largest negative integer.

2. INCx sum is equivalent to ADDx 8/\#1, sum, but is 1 byte shorter.

Move Complemented

Format:

opcode src.rx, dst.wx

Operation:

dst ~ NOT src;

Condition Codes:

N ~ dst LSS 0;

z ~ dst EQL 0;

V ~ 0;

C ~ C·

Instructions 57

MNEG

58

Exceptions:
none

Opcodes:

92 MCOMB Move Complemented Byte

B2 MCOMW Move Complemented Word

D2 MCOML Move Complemented Long

Description:
The destination operand is replaced by the one's complement of the
source operand.

Move Negated

Format:

opcode src.rx, dst.wx

Operation:

dst ~ -src;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~. {integer overflow};

C ~ dst NEQ 0;

Exception:

integer overflow

Opcodes:

BE MNEGB Move Negated

AE MNEGW Move Negated

CE MNEGL Move Negated

Description:

Byte

Word

Long

The destination operand is replaced by the negative of the source
operand.

Notes:
Integer overflow occurs if the source operand is the largest negative
integer (which has no positive counterpart). On overflow, the destination
operand is replaced by the source operand.

VAX Architecture Reference Manual

MOV Move

Format:

opcode src.rx, dst.wx

Operation:

dst ~ src;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ C;

Exceptions:
none

Opcodes:

90 MOVB Move Byte

BO MOVW Move Word

DO MOVL Move Long

70 MOVQ Move Quad

7DFD MOVO Move Octa

Description:
The destination operand is replaced by the source operand.

MOVZ Move Zero-Extended

Format:

opcode src.rx, dst.wy

Operation:

dst ~ ZEXT(src);

Condition Codes:

N ~ 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ c;

Instructions 59

-----~~--- --------

MUL

60

.. Exceptions:
none "
Opcodes:

9B MOVZBW Move Zero-Extended Byte to Word

9A MOVZBL Move Zero-Extended Byte to Long

3C MOVZYVL Move Zero-Extended Word to Long

Description:
For MOVZBW, bits (7:0) of the destination operand are replaced by
the source operand; bits (15:8) are replaced by O. For MOVZBL, bits
(7:0) of the destination operand are replaced by the source operand;
bits (31 :8) are replaced by O. For MOVZWL, bits (15:0) of the
destination operand are replaced by the source operand; bits (31: 16)
are replaced by O.

Multiply

Format:

opeode mulr.rx, prod.mx

ope ode· mulr.rx, muld.rx, prod.wx

Operation:

prod ~ prod * muIr;

prod ~ muld * muIr;

Condition Codes:

N ~ prod LSS 0;

Z ~ prod EQL 0;

V ~ {integer overflow};

C ~ 0;

Exception:

integer overflow

Opcodes:

84 MULB2 Multiply Byte

85 MULB3 Multiply Byte

A4 MULW2 Multiply Word

A5 MULW3 Multiply Word

C4 MULL2 Multiply Long

2 Operand

3 Operand

2 Operand

3 Operand

2 Operand

C5 MULL3 Multiply Long 3 Operand

VAX Architecture Reference Manual

2 operand

3 operand

!2 operand

!;3 operand

PUSHL

ROTL

Description:
In 2 operand format, the product operand is multiplied by the multiplier
operand and the product operand is replaced by the low half of the
double-length result. In 3 operand format, the multiplicand operand is
multiplied by the multiplier operand and the product operand is
replaced by the low half of the double-length result.

Notes:
Integer overflow occurs if the high half of the double-length result is
not equal to the sign extension of the low half.

Push Long

Format:

opcode src.rl

Operation:

-(SP) ~ src;

Condition Codes:

N ~ src LSS
Z ~ src EQL

V ~ 0;

C ~ c;

Exceptions:
none

Opcode:

o·
o·

DD PUSHL Push Long

Description:
The longword source operand is pushed on the stack.

Notes:
PUSHL is equivalent to MOVL src, - (SP), but is 1 byte shorter.

Rotate Long

Format:

opcode cnt.rb, src.rl, dst.wl

Instructions 61

SBWC

62

Operation:

dst ~ src rotated cnt bits;

Condition Codes:

N ~ dst LSS

Z ~ dst EQL

V ~ 0;

C ~ C;

Exceptions:
none

Opcode:

0;

0;

9C ROTL Rotate Long

Description:
The source operand is rotated logically by the number of bits specified
by the count operand, and the destination operand is replaced by the
result. The source operand is unaffected. A positive count operand
rotates to the left. A negative count operand rotates to the right. A
zero count operand replaces the destination operand with the source
operand.

Subtract With Carry

Format:

opcode sub.rl, dif.ml

Operation:

dif ~ dif - sub - C;

Condition Codes:

N ~ dif LSS 0;

Z ~ dif EQL 0;

V ~ {integer overflow};

C ~ {borrow into most significant bit}.;

Exception:

integer overflow

VAX Architecture Reference Manual

SUB

Opcode:

D9 SBWC Subtract With Carry

Description:
The subtrahend operand and the contents of the condition code C bit
are subtracted from the difference operand, and the difference
operand is replaced by the result.

Notes:
1. On overflow, the difference operand is replaced by the low order

bits of the true result.

2. The 2 subtractions in the operation are performed simultaneously.

Subtract

Format:

opcode sub.rx. dif.mx

opcode sub.rx. min.rx. dif.wx

Operation:

dif ~ dif - sub;

dif ~ min - sub;

Condition Codes:

N ~ dif LSS 0;

Z ~ dif EQL 0;

!2 operand

!3 operand

V ~ {integer overflow};

2 operand

3 operand

C ~ {borrow into most significant bit};

Exceptions:

integer overflow

Opcodes:

82 SUBB2 Subtract Byte 2 Operand

83 SUBB3 Subtract Byte 3 Operand

A2 SUBW2 Subtract Word 2 Operand

A3 SUBW3 Subtract Word 3 Operand

C2 SUBL2 Subtract Long 2 Operand

C3 SUBL3 Subtract Long 3 Operand

Instructions 63

TST

64

Description:
In 2 operand format, the subtrahend operand is subtracted from the
difference operand and the difference operand is replaced by the
result. In 3 operand format, the subtrahend operand is subtracted from
the minuend operand and the difference operand is replaced by the
result.

Notes:
Integer overflow occurs if the input operands to the subtract are of
different signs and the sign of the result is the sign of the subtrahend.
On overflow, the difference operand is replaced by the low order bits
of the true result.

Test

Format:

opoode sro.rx

. Operation:

sro - 0;

Condition Codes:

N ~ sro LSS 0;

Z ~ sro EQL 0;

V ~ 0;

C ~ 0;

Exceptions:
none

Opcodes:

95 TSTB Test Byte
D5 TSTL Test Long

B5 TSTW Test Word

Description:
The condition codes are affected according to the value of the source
operand.

Notes:
T8Tx src is equivalent to CMPx src, 8/\#0, but is 1 byte shorter.

VAX Architecture Reference Manual

XOR Exclusive-OR

Format:

opcode mask.rx, dst.mx

opcode mask.rx, src.rx, dst.wx

2 operand

3 operand

Operation:

dst ~ dst XOR mask;

dst ~ src XOR mask;

!2 operand

!3 operand

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ C;

Exceptions:
none

Opcodes:

8C XORB2

80 XORB3

AC XORW2

AD XORW3

CC XORL2

CO XORL3

Description:

Exclusive-OR Byte 2 Operand

Exclusive-OR Byte 3 Operand

Exclusive-OR Word 2 Operand

Exclusive-OR Word 3 Operand

Exclusive-OR Long 2 Operand

Exclusive-OR Long 3 Operand

In 2 operand format, the mask operand is XORed with the destination
operand and the destination operand is replaced by the result. In 3
operand format, the mask operand is XORed with the source operand
and the destination operand is replaced by the result.

Instructions 65

ADDRESS
INSTRUCTIONS

MOVA

66

Move Address

Format:

opcode src.ax, dst.wl

Operation:

dst ~ src;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ c;

Exceptions:
none

Opcodes:

9E

3E

DE

7E

7EFD

MOVAB

MOVAW

MOVAL

MOVAF

MOVAQ

MOVAD

MOVAG

MOVAH

MOVAO

Description:

Move

Move

Move

Move

Move

Move

Move

Move

Move

Address

Address

Address

Address

Address

Address

Address

Address

Address

Byte

Word

Long,

F_floating

Quad,

D_floating,

G_floating

H_floating,

Octa

The destination operand is replaced by the source operand. The
context in which the source operand is evaluated is given by the data
type of the instruction. The operand whose address replaces the
destination operand is not referenced.

Notes:
The source operand is of address access type which causes the
address of the specified operand to be moved.

VAX Architecture Reference Manual

PUSHA Push Address

Format:

opcode src.ax

Operation:

-(SP) ~ src;

Condition Codes:

N ~ src LSS

Z ~ src EQL

V ~ 0;

C ~ c;

Exceptions:
none

Opcodes:

9F

3F

OF

7F

7FFO

PUSHAB

PUSHAW

PUSHAL

PUSHAF

PUSHAQ

PUSHAO

PUSHAG

PUSHAH

PUSHAO

Description:

0;

0;

Push

Push

Push

Push

Push

Push

Push

Push

Push

Address Byte

Address Word

Address Long,

Address F _floating

Address Quad,

Address O_floating,

Address G_floating

Address H_floating

Address Oct a

The source operand is pushed on the stack. The context in which the
source operand is evaluated is given by the data type of the instruction.
The operand whose address is pushed is not referenced.

Notes:
1. PUSHAx src is equivalent to MOVAx src, - (SP), but is 1 byte

shorter.

2. The source operand is of address access type which causes the
address of the specified operand to be pushed.

Instructions 67

VARIABLE­
LENGTH
BIT FIELD
INSTRUCTIONS

CMP

68

A variable-length bit field is specified by three operands:

1. A longword position operand.

2. A byte field size operand that must be in the range 0 through 32 or
a reserved operand fault occurs.

3. A base address (relative to which the position is used to locate the
bit field). The address is obtained from an operand of address
access type. Unlike other instances of operand specifiers of
address access type, however, register mode may be designated
in the operand specifier. In this case, the field is contained in
the register n designated by the operand specifier (or register n + 1
concatenated with register n; see Chapter 1). If the field is
contained in a register and size is not zero, the position operand
must have a value in the range. 0 through 31 or a reserved
operand fault occurs.

In order to simplify the description of the variable-length bit field
instructions, a macro FIELD(pos, size, address) is introduced with the
following expansion. (if size NEQ 0):

FIELD(pos, size, address)

== (address + SEXT(pos(31:3)))({size - I} + pos(2:0):pos(2:0))

!if address not specified by register mode

{R[n+l]'Rn}{{size - I} + pos:pos) 0 059

!if address specified by register mode and pos +
!size GTRU 32

Rn({size - I} + pos: pos)

! if address specified by register mode and pos +
!size LEQU 32

The number of bytes referenced by the contents () operator above
is:

I + {{{size - I} + pos(2: OJ} / 8}

Zero bytes are referenced if the field size is O.

Compare Field

Format:

opcode pos.rl, size.rb, base.vb, src.rl

Operation:

tmp +- if size NEQU 0 then SEXT(FIELD (pos, size, base))

else 0; !CMPV

VAX Architecture Reference Manual

EXT

tmp ~ if size NEQU 0 then ZEXT(FIELD (pas, size, base))

else 0;

tmp - src;

Condition Codes:

N +- tmp LSS src;

Z +- tmp EQL src;

V +- o·
C +- tmp LSSU src;

Exception:
reserved operand

Opcodes:

EC CMPV Compare Field

!CMPZV

ED CMPZV Compare Zero-Extended Field

Description:
The field specified by the position, size, and base operands is
compared with the source operand. For CMPV, the source operand is
compared with the sign-extended field. For CMPZV, the source
operand is compared with the zero-extended field. The only action is
to affect the condition codes.

Notes:
1. A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the
registers.

2. On a reserved operand fault, the condition codes are
UNPREDICTABLE.

Extract Field

Format:

opcode pos.rl, size.rb, base.vb, dst.wl

Operation:

dst +- if size NEQU 0 then SEXT(FIELD(pos, size, base))

else 0; I EXTV

Instructions 69

FF

70

dst ~ if size NEQU 0 then ZEXT(FIELD(pos, size, base))

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ c;

Exception:
reserved operand

Opcodes:

else 0;

EE EXT V Extract Field

I EXTZV

EF EXTZV Extract Zero-Extended Field

Description:
For EXTV, the destination operand is replaced by the sign-extended
field specified by the position, size, and base operands. For EXTZV,
the destination operand is replaced by the zero-extended field
specified by the position, size, and base operands. If the size operand
is 0, the only actions are to replace the destination operand with 0
and to affect the condition codes.

Notes:
1. A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the
registers.

2. On a reserVed operand fault, the destination operand is unaffected
and the condition codes are UNPREDICTABLE.

Find First

Format:

opcode startpos.rl, size.rb, base. vb, findpos.wl

Operation:

state = if {FFS} then 1 else 0;

if size NEQU 0 then

begin

VAX Architecture Reference Manual

else

tmpl ~ FIELD(startpos, size, base);

tmp2 ~ 0;

while {tmpl(tmp2) NEQ state} AND

{tmp2 LEQU {size - in do

tmp2 ~ tmp2 + 1;

findpos ~ startpos + tmp2;

end

findpos ~ startpos;

Condition Codes:

N ~ 0;

Z ~ {bit not found};

V ~ 0;

C ~ 0;

Exception:
reserved operand

Opcodes:

EB FFC Find First Clear

EA FFS Find First Set

Description:
A field specified by the start position, size, and base operands is
extracted, The field is tested for a bit in the state indicated by the
instruction, starting at bit 0 and extending to the highest bit in the field,
If a bit in the indicated state is found, the find position operand is
replaced by the position of the bit and the Z condition code bit
is cleared, If no bit in the indicated state is found, the find position
operand is replaced by the position (relative to the base) of a bit one
position to the left of the specified field and the Z condition code bit is
set If the size operand is 0, the find position operand is replaced by
the start position operand and the Z condition code bit is set

Notes:
1. A reserved operand fault occurs if:

• size GTRU 32

• startpos GTRU 31, size NEQ 0, and the field is contained in the
registers.

2. On a reserved operand fault, the find position operand is unaffected
and the condition codes are UNPREDICTABLE.

Instructions 71

INSV

CONTROL
INSTRUCTIONS

Ace

72

Insert Field

Format:

opcode src.rl, pos.rl, size.rb, base.vb

Operation:

if size NEQU 0 then FIELD(pos, size, base) <- src({size-l}:O);

Condition Codes:

N <- N'

Z <- Z·

v <- v;
C <- C·

Exception:
reserved operand

Opcode:

FO INSV Insert Field

Description:
The field specified by the position, size, and base operands is
replaced by bits (size -1 :0) of the source operand. If the size operand
is 0, the instruction has no effect.

Notes:
1. A reserved operand fault occurs if:

• size GTRU 32

• pos GTRU 31, size NEQ 0, and the field is contained in the
registers.

2. On a reserved operand fault, the field is unaffected and the
condition codes are UNPREDICTABLE.

Add Compare and Branch

Format:

opcode limit.rx, add.rx, index.mx, displ.bw

VAX Architecture Reference Manual

Operation:

index +- index + add;

if {{add GEQ O} AND {index LEQ limit}} OR

{{add LSS O} AND {index GEQ limit}} then

PC +- PC + SEXT (displ) ;

Condition Codes:

N +- index LSS 0;

Z +- index EQL 0;

V +- {integer overflow};

C +- C;

Exceptions:
integer overflow

floating overflow

floating underflow

reserved operand

Opcodes:

9D ACBB Add Compare

3D ACBW Add Compare

Fl ACBL Add Compare

4F ACBF Add Compare

6F ACBD Add Compare

4FFD ACBG Add Compare

6FFD ACBH Add Compare

Description:

and Branch Byte

and Branch Word

and Branch Long

and Branch F_floating

and Branch D_floating

and Branch G_floating

and Branch ~floating

The addend operand is added to the index operand, and the index
operand is replaced by the result. The index operand is compared
with the limit operand. If the addend operand is positive (or 0) and the
comparison is less than or equal, or if the addend is negative and
the comparison is greater than or equal, the sign-extended branch
displacement is added to PC. PC is then replaced by the result.

Notes:
1. ACB efficiently implements the general FOR or DO loops in high­

level languages since the sense of the comparison between index
and limit is dependent on the sign of the addend.

Instructions 73

AOBLEQ

74

2. On integer overflow, the index operand is replaced by the low
order bits of the true result. Comparison and branch determination
proceed normally on the updated index operand.

3. On floating underflow, if FU is clear, the index operand is replaced
by 0 and comparison and branch determination proceed normally.
A fault occurs if FU is set and the index operand is unaffected.

4. On floating overflow, the instruction takes a floating overflow fault
and the index operand is unaffected.

5. On a reserved operand fault, the index operand is unaffected and
the condition codes are UNPREDICTABLE.

Add One and Branch Less Than or Equal

Format:

opcode limit.rl, index.ml, displ.bb

Operation:

index ~ index + I;

if index LEQ limit then PC ~ PC + SEXT (displ) ;

Condition Codes:

N ~ index LSS 0;

Z ~ index EQL 0;

V ~ {integer overflow};

C ~ C;

Exception:
integer overflow

Opcode:

F3 AOBLEQ Add One and Branch Less Than or Equal

Description:
One is added to the index operand and the index operand is replaced
by the result. The index operand is compared with the limit operand.
If it is less than or equal, the sign-extended branch displacement is
added to PC. PC is then replaced by the result.

Notes:
1. Integer overflow occurs if the index operand before addition is the

largest positive integer. On overflow, the index operand is replaced
by the largest negative integer and the branch is taken.

2. The C-bit is unaffected.

VAX Architecture Reference Manual

AOBLSS

B

Add One and Branch Less Than

Format:

opcode limit.rl. index.ml. displ.bb

Operation:

index ~ index + I;

if index LSS limit then PC ~ PC + SEXT(displ);

Condition Codes:

N ~ index LSS 0;

Z ~ index EQL 0;

V ~ {integer overflow};

C ~ C;

Exception:
integer overflow

Opcode:

F2 AOBLSS Add One and Branch Less Than

Description:
One is added to the index operand, and the index operand is replaced
by the result. The index operand is compared with the limit operand.
If it is less than, the sign-extended branch displacement is added
to the PC ahd PC is replaced by the result.

Notes:
1. Integer overflow occurs if the index operand before addition is the

largest positive integer. On overflow, the index operand is replaced
by the largest negative integer; thus the branch is taken (unless
the limit operand is the largest negative integer).

2. The C-bit is unaffected.

Branch on (condition)

Format:

opcode displ.bb

Operation:

if condition then PC ~ PC + SEXT (displ) ;

Instructions 75

.. __ ---

76

Condition Codes:

N +- N;

Z +- z;
V +- v;
C +- c;

Exceptions:
none

Opcodes: Condition

14 {N OR Z} EQL 0 BGTR Branch on Greater Than
(signed)

15 {N OR Z} EQL 1 BLEQ Branch on Less Than or
Equal (signed)

12 Z EQL 0 BNEQ, Branch on Not Equal
(signed)

BNEQU Branch on Not Equal
Unsigned

13 Z EQL 1 BEQL Branch on Equal (signed)

BEQLU Branch on Equal Unsigned

18 N EQL 0 BGEQ Branch on Greater Than or
Equal (signed)

19 N EQL 1 BLSS Branch on Less Than
(signed)

lA {C OR Z} EQL 0 BGTRU Branch on Greater Than
Unsigned

IB {C OR Z} EQL 1 BLEQU Branch Less Than or Equal
Unsigned

lC V EQL 0 BVC Branch on Overflow Clear

ID V EQL 1 BVS Branch on Overflow Set

IE C EQL 0 BGEQU Branch on Greater Than or
Equal Unsigned

BCC Branch on Carry Clear

IF C EQL 1 BLSSU Branch on Less Than
Unsigned

BCS Branch on Carry Set

Description:
The condition codes are tested and, if the condition indicated by the
instruction is met, the sign-extended branch displacement is added to
the PC. PC is then replaced by the result.

VAX Architecture Reference Manual

BB

Notes:
The VAX conditional branch instructions permit considerable flexibility
in branching but require care in choosing the correct branch instruction.
The conditional branch instructions are best seen as three overlapping
groups:

1. Overflow and Carry Group

BVS V EQL 1

BVe V EQL 0

Bes e EQL I

Bee e EQL 0

These instructions are typically used to check for overflow (when
overflow traps are not enabled), for multiprecision arithmetic,
and for other special purposes.

2. Unsigned Group

BLSSU e EQL I

BLEQU {e OR Z} EQL I

BEQLU Z EQL 1

BNEQU Z EQL 0

BGEQU e EQL 0

BGTRU {e OR Z} EQL 0

These instructions typically follow integer and field instructions
where the operands are treated as unsigned integers, address
instructions, and character-string instructions.

3. Signed Group

BLSS N EQL 1

BLEQ {N OR Z} EQL I

BEQL Z EQL I

BNEQ Z EQL 0

BGEQ N EQL 0

BGTR {N OR Z} EQL 0

These instructions typically follow integer and field instructions
where the operands are being treated as signed integers, floating­
point instructions,and deCimal-string instructions.

Branch on Bit

Format:

opcode pos.rl, base. vb, displ.bb

Instructions 77

ss

78

Operation:

teststate = if {BBS} then 1 else 0;

if FIELD(pos, 1, base) EQL teststate then

PC ~ PC + SEXT(displ);

Condition Codes:

N ~ N'

Z ~ Z;

V ~ V;

C ~ C;

Exception:
reserved operand

Opcodes:

EO BBS Branch on Bit Set

El BBC Branch on Bit Clear

Description:
The single-bit field specified by the position and base operands is
tested. If it is in the test state indicated by the instruction, the sign­
extended branch displacement is added to PC and PC is replaced by
the result.

Notes:
1. See the section "Variable-Length Bit Field Instructions" earlier in

this chapter for a definition of FIELD.

2. A reserved operand fault occurs if pos GTRU 31 and the bit is
contained in a register.

3. On a reserved operand fault, the condition codes are
UNPREDICTABLE.

Branch on Bit (and modify without interlock)

Format:

opcode pos.rl, base.vb, displ.bb

Operation:

teststate = if {BBSS or BBSC} then 1 else 0;

news tate = if {BBSS or BBCS} then 1 else 0;

tmp ~ FIELD(pos, 1, base);

VAX Architecture Reference Manual

BB

FIELD(pos, 1, base) ~ newstate;

if tmp EQL teststate then

PC ~ PC + SEXT(displ) ;

Condition Codes:

N ~ N;

Z ~ Z;

v ~ v;
C ~ C;

Exception:
reserved operand

Opcodes:

E2 BBSS Branch

E3 BBCS Branch

E4 BBSC Branch

E5 BBCC Branch

Description:

on Bit Set and Set

on Bit Clear and Set

on Bit Set and Clear

on Bit Clear and Clear

The single-bit field specified by the position and base operands is
tested. If it is in the test state indicated by the instruction, the sign­
extended branch displacement is added to PC and PC is replaced by
the result. Regardless of whether the branch is taken or not, the
tested bit is put in the new state as indicated by the instruction.

Notes:
1. See the section "Variable-Length Bit Field Instructions" earlier in

this chapter for a definition of FIELD.

2. A reserved operand fault occurs if pos GTRU 31 and the bit is
contained in a register.

3. On a reserved operand fault, the field is unaffected and the
condition codes are UNPREDICTABLE.

4. The modification of the bit is not an interlocked operation. See
BBSSI and BBCCI for interlocking instructions.

Branch on Bit Interlocked

Format:

opcode pos.rl, base.vb, displ.bb

Instructions 79

80

Operation:

teststate = if {BBSSI} then 1 else 0;

newstate = teststate;

{set interlock};

tmp ~ FIELD(pos, 1, base);

FIELD(pos, 1, base) ~ newstate;

{release interlock};

if tmp EQL teststate then PC ~ PC + SEXT(displ);

Condition Codes:

N ~ N;

Z ~ Z·

V ~ V;

C ~ C;

Exception:
reserved operq,nd

Opcodes:

E6 BBSSI Branch on Bit Set and Set Interlocked

E7 BBCCI Branch on Bit Clear and Clear Interlocked

Description:
The single-bit field specified by the position and base operands is
tested, If it is in the test state indicated by the instruction, the sign­
extended branch displacement is added to the PC and PC is replaced
by the result. Regardless of whether the branch is taken or not, the
tested bit is put in the new state as indicated by the instruction. If the
bit is contained in memory, the reading of the state of the bit and
the setting of it to the new state is an interlocked operation, No other
processor or I/O device can do an interlocked access on the bit
during the interlocked operation.

Notes:
1. See the section "Variable-Length Bit Field Instructions" earlier in

this chapter for a definition of FIELD.

2. A reserved operand fault occurs if pos GTRU 31 and the bit is
contained in registers.

3. On a reserved operand fault, the field is unaffected and the
condition codes are UNPREDICTABLE.

4. Except for memory interlocking, BBSSI is equivalent to BBSS and
BBCCI is equivalent to BBCC.

VAX Architecture Reference Manual

BlB

BR

5. This instruction is designed to modify interlocks with other
processors or devices. For example, to implement "busy waiting":

1$: BBSSI bit,base,l$

Branch on Low Bit

Format:

opcode src.rl, displ.bb

Operation:

teststate = if {BLBS} then 1 else 0;

if src(O) EQL teststa te then PC <- PC + SEXT (displ) ;

Condition Codes:

N <- N'

Z <- Z·

v <- V;

C <- C;

Exceptions:
none

Opcodes:

E8 BLBS Branch on Low Bit Set

E9 BLBC Branch on Low Bit Clear

Description:
The low bit (bit 0) of the source operand is tested and, if it is equal to
the test state indicated by the instruction, the sign-extended branch
displacement is added to PC. PC is then replaced by the result.

Branch

Format:

opcode displ.bx

Operation:

PC <- PC + SEXT (displ) ;

Instructions 81

ese

82

Condition Codes:

N <E- N;

Z <E- Z;

V <E- V;

C <E- C;

Exceptions:
none

Opcodes:

11 BRB Branch With Byte Displacement

31 BRW Branch With Word Displacement

Description:
The sign-extended branch displacement is added to PC, and PC is
replaced by the result.

Branch to Subroutine

Format:

opcode displ.bx

Operation:

- (SP) <E- PC;

PC <E- PC + SEXT (displ) ;

Condition Codes:

N <E- N;

Z <E- Z·

V <E- V;

C <E- C;

Exceptions:
none

Opcodes:

10 BSBB Branch to Subroutine With Byte Displacement

30 BSBW Branch to Subroutine With Word Displacement

VAX Architecture Reference Manual

CASE

Description:
PC is pushed on the stack as a longword. The sign-extended branch
displacement is added to PC, and PC is replaced by the result.

Case

Format:

opcode selector.rx. base.rx. limit.rx.

displ[O).bw displ[limit).bw

Operation:

tmp ~ selector - base;

PC ~ PC + if tmp LEQU limit then

SEXT(displ[tmp)) else {2 + 2 * ZEXT(limit)};

Condition Codes:

N ~ tmp LSS limit;

Z ~ tmp EQL limit;

V ~ 0;

C ~ tmp LSSU limit;

Exceptions:
none

Opcodes:

SF CASEB Case Byte

AF CASEW Case Word

CF CASEL Case Long

Description:
The base operand is subtracted from the selector operand, and a
temporary is replaced by the result. The temporary is compared with
the limit operand; if it is less than or equal unsigned, a branch
displacement selected by the temporary value is added to PC. PC is
then replaced by the result. Otherwise, two times the sum of the
limit operand and 1 is added to PC, and PC is replaced by the result.
This causes PC to be moved past the array of branch displacements.
Regardless of the branch taken, the condition codes are affected by
the comparison of the temporary operand with the limit operand.

Instructions 83

JMP

84

Notes:
1. After operand evaluation, PC is pointing at displ[O), not at the next

instruction. The branch displacements are relat.ive to the address
of displ[O).

2. The selector and base operands can both be considered either as
signed or unsigned integers.

3. The Pascal statement:

case i of

32: x - sin(x) ;

33: x - cos(x) ;

34: x - exp(x) ;

35: x - In(x) ;

36, 37: x arctanh (x) ;

otherwise x reserved

end

is translated by the VAX Pascal compiler to:

easel

1$: .word

. word

. word

. word

.word

.word

otherwise:

i, #32, #(37-32}

sin - 1$

cos - 1$

exp - 1$

In - 1$

arc tanh - 1$

arc tanh - 1$

movl reserved, x

Jump

Format:

ope ode dst.ab

Operation:

PC ~ dst;

Condition Codes:

N ~ N;

Z ~ z;

VAX Architecture Reference Manual

Selector is 32.

Selector is 33 .

Selector is 34 .

Selector is 35 .

Selector is 36.

Selector is 37.

Selector is less than

32 or greater than 37.

I

JSB

v ~ v;
C ~ C;

Exceptions:
none

Opcode:

17 JMP Jump

Description:
PC is replaced by the destination operand.

Jump to Subroutine

Format:

ope ode dst.ab

Operation:

--.,. (SP) ~ PC;

PC ~ dst;

Condition Codes:

N ~ N;
Z ~ z;
v ~ v;
C ~ C;

Exceptions:
none

Opcodes:

16 JSB Jump to Subroutine

Description:
PC is pushed on the stack as a longword. PC is replaced by the
destination operand.

Notes:
Since the operand specifier conventions cause the evaluation of the
destination operand before saving PC, JSB can be used for coroutine
calls with the stack used for linkage. The form of such a call is
JSB @(SP)+.

Instructions 85

RSB

SOBGEQ

86

Return from Subroutine

Format:

ope ode

Operation:

PC ~ (SP) +;

Condition Codes:

N ~ N;

Z ~ Z;

V ~ v;
C ~ C;

Exceptions:
none

Opcodes:

05 RSB Return From Subroutine

Description:
PC is replaced by a longword popped from the stack.

Notes:
1. RSB is used to return from subroutines called by the BSBB, BSBW

and JSB instructions.

2. RSB is equivalent to JMP @(SP) +, but is 1 byte shorter.

Subtract One and Branch Greater Than or Equal

Format:

opeode index.mI, dispI.bb

Operation:

index ~ index - 1;

if index GEQ 0 then PC ~ PC + SEXT (dispI) ;

Condition Codes:

N ~ index LSS 0;

VAX Architecture Reference Manual

SOBGTR

z ~ index EQL 0;

V ~ {integer overflow};

C ~ C;

Exception:
integer overflow

Opcode:

F4 SOBGEQ Subtract One and Branch Greater Than or Equal

Description:
One is subtracted from the index operand, and the index operand is
replaced by the result. If the index operand is greater than or equal to
0, the sign-extended branch displacement is added to PC. PC is
then replaced by the result.

Notes:
1. Integer overflow occurs if the index operand before subtraction is

the largest negative integer. On overflow, the index operand is
replaced by the largest positive integer, and thus the branch
is taken.

2. The C-bit is unaffected.

Subtract One and Branch Greater Than

Format:

ope ode index.ml, displ.bb

Operation:

index ~ index - 1;

if index GTR 0 then PC ~ PC + SEXT (displ) ;

Condition Codes:

N ~ index LSS 0;

Z ~ index EQL 0;

V ~ {integer overflow};

C ~ C;

Exception:
integer overflow

Instructions 87

PROCEDURE
CALL
INSTRUCTIONS

88

Opcode:

F5 SOBGTR Subtract One and Branch Greater Than

Description:
One is subtracted from the index operand, and the index operand is
replaced by the result. If the index operand is greater than 0, the sign­
extended branch displacement is added to PC. PC is then replaced
by the result.

Notes:
1. Integer overflow occurs if the index operand before subtraction is

the largest negative integer. On overflow, the index operand is
replaced by the largest positive integer, and thus the branch
is taken.

2. The C-bit is unaffected.

Three instructions are used to implement a standard procedure­
calling interface: Two instructions implement the call to the procedure;
the third implements the matching return. The CALLG instruction
calls a procedure with the argument list in an arbitrary location, The
CALLS instruction calls a procedure with the argument list on the
stack. Upon return after a CALLS, this list is automatically removed
from the stack. Both call instructions specify the address of the entry
point of the procedure being called. The entry point is assumed to
consist of a word termed the entry mask followed by the procedure's
instructions. The procedure terminates by executing a RET instruction.

The entry mask specifies the subprocedure's register use and
overflow enables, as shown in Figure 3.1. On CALL, the stack is
aligned to a longword boundary and the trap enables in the PSW are
set to a known state to ensure consistent behavior of the called
procedure. Integer overflow-enable and decimal overflow-enable are
affected according to bits (14) and (15) of the entry mask respectively.
Floating underflow-enable is cleared. The registers R11 through RO
specified by bits (11) through (0), respectively, are saved on the stack
and are restored by the RET instruction. In addition, PC, SP, FP,
and AP are always preserved by the CALL instructions and restored
by the RET instruction.

All external procedure calls generated by standard DIGITAL language
processors and all intermodule calls to major VAX software subsys­
tems comply with the procedure-calling software standard. The
procedure-calling standard requires that all registers in the range R2
through R11 used in the procedure must appear in the mask. RO and

'Refer to VAX/VMS Introduction to System Routines for the procedure-calling
standard.

VAX Architecture Reference Manual

o
registers

Figure 3.1
Procedure Entry Mask

R1 are not preserved by any called procedure that complies with the
procedure-calling standard.

In order to preserve the state, the CALL instructions form a structure
on the stack termed a call frame or stack frame, shown in Figure 3.2.
This structure contains the saved registers, the saved PSW, the
register save mask, and several control bits. The frame also includes
a longword that the CALL instructions clear; this is used to implement
the VAXIVMS condition-handling facility. Refer to the VAX/VMS Run
Time Library Reference Manual. At the end of execution of the CALL
instruction, FP contains the address of the stack frame. The RET
instruction uses the contents of FP to find the stack frame and restore
state. The condition-handling facility assumes that FP always pOints
to the stack frame. Note that the saved condition codes and the
saved trace enable (PSW(T») are cleared.

The contents of the frame PSW(3:0) at the time RET is executed will
become the condition codes resulting from the execution of the
procedure. Similarly, the content of the frame PSW(4) at the time the
RET is executed will become the PSW(T) bit.

3130292827 161514 54

condition handler (initially 0)

spAjslol mask< 11:0> l~saved PSW<14:S>1 0

saved AP

saved FP

saved PC

saved RD (...)

saved R11 (...)

(0 to 3 bytes specified by SPA, Stack Pointer Alignment)

S = Set if CALLS; clear if CALLG.
Z = Always cleared by CALL. Can be set by software to

force a reserved operand fault on a RET.

Figure 3.2
Procedure Call Stack Frame

Instructions

o
:(FP)

89

CALLG

90

Call Procedure with General Argument List

Format:

opcode arglist.ab, dst.ab

Operation:

{align stack};

{create stack frame};

{set arithmetic exception enables};

{set new values of AP, FP, PC};

Condition Codes:

N ~ 0;

Z ~ 0;

v ~ 0;

C ~ 0;

Exception:
reserved operand

Opcodes:

FA CALLG Call Procedure with General Argument List

Description:
SP is saved in a temporary, and then bits (1 :0) are replaced by 0 so
that the stack is longword aligned. The procedure entry mask is
scanned from bits (11) to (0), and the contents of registers whose
number corresponds to set bits in the mask are pushed on the stack
as longwords. PC, FP, and AP are pushed on the stack as longwords.
The condition codes are cleared. A longword containing the following
is pushed on the stack: the saved two low bits of SP in bits (31 :30), a
o in bit (29) and bit (28), the low 12 bits of the procedure entry mask
in bits (27:16), a 0 in bit (15) and PSW(14:0) in bits (14:0) with T
cleared. A longword 0 is pushed on the stack. FP is replaced by SP.
AP is replaced by the arglist operand. The trap-enables in the PSW
are set to a known state. Integer overflow and decimal overflow
are affected according to bits (14) and (15), respectively, of the entry
mask; floating underflow is cleared. The T-bit is unaffected. PC is
replaced by the sum of destination operand plus 2, which transfers
control to the called procedure at the byte beyond the entry mask.

Notes:
1. If bits (13: 12) of the entry mask are not 0, a reserved operand fault

occurs.

VAX Architecture Reference Manual

CALLS

2. On a reserved operand fault, condition codes are
UNPREDICTABLE.

3. The procedure-calling standard and the condition-handling facility
require the following register-saving conventions. RO and R1 are
always available for function return values and are never saved in
the entry mask. All registers R2 through R11 that are modified in
the called procedure must be preserved in the mask.

4. The alignment bytes left on the stack are UNPREDICTABLE. They
may, for example, be written with zeros when the stack is aligned.

Call Procedure with Stack Argument List

Format:

opcode numarg.rl. dst.ab

Operation:

{push arg count};

{align stack};

{create stack frame};

{set arithmetic exception enables};

{set new values of AP,FP,PC};

Condition Codes:

N +- 0;

Z +- 0;

V +- 0;

C +- 0;

Exception:
reserved operand

Opcode:

FE CALLS Call Procedure with Stack Argument List

Description:
The numarg operand is pushed on the stack as a longword. (Byte 0
contains the number of arguments; high-order 24 bits are used by
DIGITAL software.) SP is saved in a temporary, and then bits (1 :0) of
SP are replaced by 0 so that the stack is longword aligned. The
procedure entry mask is scanned from bit (11) to bit (0), and the

Instructions 91

RET

92

contents of registers whose number corresponds to set bits in the
mask are pushed on the stack. PC, FP, and AP are pushed on the
stack as longwords. The condition codes are cleared. A longword
containing the following is pushed on the stack: saved two low bits of
SP in bits (31 :30), a 1 in bit (29), a 0 in bit (28), the low 12 bits of
the procedure entry mask in bits (27:16), a 0 in bit (15) and PSW(14:0)
in bits (14:0) with T cleared. A longword 0 is pushed on the stack. FP
is replaced by SP. AP is set to the value of the stack pointer after
the numarg operand was pushed on the stack. The trap-enables in
the PSW are set to a known state. Integer overflow and decimal
overflow are affected according to bits (14) and (15), respectively, of
the entry mask; floating underflow is cleared. T-bit is unaffected. PC is
replaced by the sum of destination operand plus 2, which transfers
control to the called procedure at the byte beyond the entry mask.
The appearance of the stack after CALLS is executed is shown
in Figure 3.2.

Notes:
1. If bits (13:12) of the entry mask are not 0, a reserved operand fault

occurs.

2. On a reserved operand fault, the condition codes are
UN PRED ICT ABLE.

3. Normal use is to push the arglist onto the stack in reverse order
prior to the CALLS. On return, the arglist is removed from the
stack automatically.

4. The procedure-calling standard and the condition-handling facility
require the following register-saving conventions. RO and R1 are
always available for function return values and are never saved in
the entry mask. All registers R2 through R11 that are modified in
the called procedure must be preserved in the entry mask.

5. The alignment bytes left on the stack are UNPREDICTABLE. They
may, for example, be written with zeros when the stack is aligned.

Return from Procedure

Format:

opcode

Operation:

{restore SP from FP};

{restore registers};

{drop stack alignment};

VAX Architecture Reference Manual

{if CALLS then remove arglist};

{restore PSW};

Condition Codes:

N <f- tmpl(3) ;

z <f- tmpl(2) ;

V <f- tmpl(l) ;

C <f- tmpl(O) ;

Exception:
reserved operand

Opcode:

04 RET Return from Procedure

Description:
SP is replaced by FP plus 4. A longword containing the following is
popped from the stack and saved in a temporary: stack alignment bits
in bits (31 :30), a flag distinguishing CALLS from CALLG in bit (29),
the low 12 bits of the procedure entry mask in bits (27:16), and a
saved PSW in bits (15:0). PC, FP, and AP are replaced by longwords
popped from the stack. A register restore mask is formed from bits
(27:16) of the temporary. Scanning from bit (0) to bit (11) of the
restore mask, the contents of registers whose number is indicated by
set bits in the mask are replaced by longwords popped from the
stack. SP is incremented by (31 :30) of the temporary. PSW is
replaced by bits (15:0) of the temporary. If bit (29) in the temporary is
1 (indicating that the procedure was called by CALLS), a longword
containing the number of arguments is popped from the stack. Four
times the unsigned value of the low byte of this longword is added to
SP, and SP is replaced by the result.

Notes:
1. A reserved operand fault occurs if tmp1 (15:8) NEQ O.

2. On a reserved operand fault, the condition codes are
UNPREDICTABLE.

3. The value of tmp1(28) is ignored.

4. The procedure-calling standard and condition-handling facility
assume that procedures returning a function value or a status code
do so in RO or RO and R1.

5. If FP(1 :0) is not zero, or if the stack frame is ill-formed, the results
are UNPREDICTABLE.

InstrUctions 93

MISCELLANEOUS
INSTRUCTIONS

BICPSW

BISPSW

94

Bit Clear PSW

Format:

ope ode mask.rw

Operation:

PSW ~ PSW AND {NOT mask};

Condition Codes:

N ~ NAND {NOT mask(3)} ;

Z ~ Z AND {NOT mask(2)};

V ~ V AND {NOT mask(l>};

C ~ C AND {NOT mask(O>};

Exception:
reserved operand

Opcode:

B9 BrcPSW Bit Clear PSW

Description:
PSW is ANDed with the one's complement of the mask operand, and
PSW is replaced by the result.

Notes:
A reserved operand fault occurs if mask (15:8> is not zero. On a
reserved operand fault, the PSW is not affected.

Bit Set PSW

Format:

opeode mask.rW

Operation:

PSW ~ PSW OR mask;

Condition Codes:

N ~ N OR mask(3);

VAX Architecture Reference Manual

BPT

z <- Z OR mask(2);

V <- V OR mask(l>;

C <- C OR mask(O>;

Exception:
reserved operand

Opcode:

B8 BISPSW Bit Set PSW

Description:
PSW is ORed with the mask operand, and PSW is replaced by the
result.

Notes:
A reserved operand fault occurs if mask(15:8) is not zero. On a
reserved operand fault, the PSW is not affected.

Breakpoint

Format:

opcode

Operation:

PSL(TP) <- 0;

{ini tiate breakpoint fault}; [push current PSL on stack

Condition Codes:

N <- 0; ! condi tian codes cleared after BPT faul t

Z <- 0;

V <- 0;

C <- 0;

Exception:
none

Opcode:

03 BPT Breakpoint

Description:
In order to understand the operation of this instruction, read Chapter
5, Exceptions and Interrupts. This instruction is used, together with
PSL(T), to implement debugging facilities.

Instructions 95

BUG

HALT

96

Bugcheck

Format:

opcode message.bx

Operation:

{fault to report error}

Condition Codes:

N ~ N;

Z ~ z;
v ~ v;
C ~ C;

Exception:
reserved instruction

Opcode:

FEFF BUGW Bugcheck with Word Message Identifier

FDFF BUGL Bugcheck with Longword Message Identifier

Description:
The hardware treats these opcodes as reserved to DIGITAL and
faults. The VAXIVMS operating system treats these as requests to
report software detected errors. The in-line message identifier is zero­
extended to a longword (BUGW) and interpreted as a condition
value. If the process is privileged to report bugs, a log entry is made.
If the process is not privileged, a reserved instruction is signaled.

Halt

Format:

opcode

Operation:

If PSL(CUR_MOD) NEQU kernel then

{privileged instruction fault}

else

{hal t the processor};

VAX Architecture Reference Manual

INDEX

Condition Codes:

N .;- 0; ! If privileged instruction fault

Z .;- 0; !condition codes are cleared after

V .;- 0; !the fault. PSL saved on

C .;- 0; !contains condition

N .;- N' IIf processor halt

Z .;- Z;

V .;- V;

C .;- C;

Exception:
privileged instruction

Opcode:

00 HALT Halt

Description:

codes

stack

prior to HALT.

In order to understand the operation of this instruction, read Chapter
5, Exceptions and Interrupts. If the process is running in kernel mode,
the processor is halted. Otherwise, a privileged instruction fault
occurs.

Notes:
This opcode is 0 to trap many branches to data.

Compute Index

Format:

opcode subscript.rl, low.rl, high.rl, size.rl,
indexin.rl, indexout.wl

Operation:

indexout .;- {indexin + subscript} *size;

if {subscript LSS lOw} or {subscript GTR high} then

{subscript range trap};

Condition Codes:

N <- indexout LSS 0;

Z .;- indexout EQL 0;

V .;- o·
c .;- 0;

Instructions 97

98

Exception:
subscript range

Opcode:

OA INDEX Compute Index

Description:
The indexin operand is added to the subscript operand, and the sum
multiplied by the size operand. The indexout operand is replaced by
the result. If the subscript operand is less than the low operand or
greater than the high operand, a subscript range trap is taken.

Notes:
1. No arithmetic exception other than subscript range can result from

this instruction. Thus no indication is given if overflow occurs in
either the add or multiply steps. If overflow occurs on the add step,
the sum is the low order 32 bits of the true result. If overflow
occurs on the multiply step, the indexout operand is replaced
by the low order 32 bits of the true product of the sum and the
subscript operand. In the normal use of this instruction, overflow
cannot occur without a subscript range trap occurring.

2. The index instruction is useful in index calculations for arrays of
the fixed-length data types (integer and floating) and for index
calculations for arrays of bit fields, character strings, and decimal
strings. The indexin operand permits cascading INDEX instructions
for multidimensional arrays. For one-dimensional bit field arrays, it
also permits introduction of the constant portion of an index
calculation which is not readily absorbed by address arithmetic.
The following notes show some of the uses of INDEX.

3. The COBOL statements:

01 A-ARRAY.

02 A PIC X(25) OCCURS 15 TIMES INDEXED BY I.

01 B PIC X(25).

MOVE A(I) TO B.

can be translated by a VAX COBOL compiler to:

INDEX I(Rll), #AXOl, #AXOF, #AXI9 , #AXOO, RO

MOVC3 #AXI9, A-25(R11)[RO], B(R11)

4. The FORTRAN statements:

INTEGER*4

A(I) = 1

A(11: 24), I

can be translated by a VAX FORTRAN compiler to:

I~DEX I(Rll), #11, #24, #1, #0, RO

VAX Architecture Reference Manual

MOVPSL

NOP

MOVL #1, A-44(Rll) [RO]

5. The Pascal statements:

var

i : integer;

a : array[11 .. 24] of integer;

ali] : = 1

can be translated by a VAX Pascal compiler to:

INDEX I,#11,#24,#1,#O,RO

MOVZBL #1, A-44 [RO 1

Move from PSL

Format:

opcode dst.w1

Operation:

dst ~ PSL;

Condition Codes:

N ~ N;

Z ~ Z;

v ~ v;
C ~ C;

Exceptions:
none

Opcode:

DC MOVPSL Move from PSL

Description:
The destination operand is replaced by PSL (see Chapter 5).

No Operation

Format:
opcode

Operation:
none

Ipstructions 99

POPR

100

Condition Codes:

N <f- N;

Z <f- Z;

V <f- v;
C <f- C;

Exceptions:
none

Opcode:

01 NOP No Operation

Description:
No operation is performed.

Pop Registers

Format:

ope ode mask.rw

Operation:

tmpl <f- mask

for tmp2 <f- 0 step 1 until 14 do

if tmpl(tmp2) EQL 1 then R [tmp2] <f- (SP) + ;

Condition Codes:

N <f- N;

Z <f- Z·

V <f- V·

C <f- C;

Exceptions:
none

Opcode:

6A POPR Pop Registers

Description:
The contents of registers whose number corresponds to set bits in the
mask operand are replaced by longwords popped from the stack.
R[n) is replaced if mask(n)is set. The mask is scanned from bit (0) to
bit (14). Bit (15) is ignored.

VAX Architecture Reference Manual

PUSHR

XFC

Push Registers

Format:

opcode mask.rw

Operation:

tmpl ~ mask;

for tmp2 ~ 14 step -1 until 0 do

if tmpl(tmp2) EQL 1 then - (SP) ~ R [tmp2 J ;

Condition Codes:

N ~ N;

Z ~ Z;

v ~ v;
C ~ C;

Exceptions:
none

Opcode:

BB PUSHR Push Registers

Description:
The contents of registers whose number corresponds to set bits in the
mask operand are pushed on the stack as longwords. R[n] is pushed
if mask(n) is set. The mask is scanned from bit (14) to bit (0). Bit
(15) is ignored.

Notes:
The order of pushing is specified so that the contents of higher
numbered registers are stored at higher memory addresses. This
results in, for example, a quadword datum stored in adjacent registers
being stored by PUSHR in memory in the correct order.

Extended Function Call

Format:
opcode

Operation:

{XFC faul t};

Instructions 101

QUEUE
INSTRUCTIONS

Absolute
Queues

102

Condition Codes:

N <- 0;

Z <- 0;

V <- 0;

C <- 0;

Exceptions:
none

Opcode:

FC XFC Extended Function Call

Description:
In order to understand the operation of this instruction, read Chapter
5. This instruction provides for user-defined extensions to the
instruction set.

A queue is a circular, doubly linked list. A queue entry is specified by
its address. The VAX architecture supports two distinct types of
links: absolute and self-relative. An absolute link contains the absolute
address of the entry to which it points. A self-relative link contains a
displacement from the present queue entry. A queue is classified
by the type of link it uses.

Because a queue contains redundant links, it is possible to create ill­
formed queues. The VAX instructions produce UNPREDICTABLE
results when used on ill-formed queues or on queues with overlapping
entries.

Absolute queues use absolute addresses as links. Queue entries are
linked by a pair of longwords.

The first (lowest addressed) longword is the forward link; it specifies
the address of the succeeding queue entry. The second (highest
addressed) longword is the backward link; it specifies the address of
the preceding queue entry. A queue is specified by a queue header
that is identical to a pair of queue linkage longwords. The forward link
of the header is the address of the entry termed the head of the
queue. The backward link of the header is the address of the entry
termed the tail of the queue. The forward link of the tail points to the
header.

VAX Architecture Reference Manual

Self-Relative
Queues

Two general operations can be performed on queues: insertion of
entries and removal of entries. Operations at the head or tail are
always valid because the queue header is always present. Operations
elsewhere in the queue depend on specific entries being present and
may become invalid if another process is simultaneously performing
operations on the queue. Therefore, if more than one process can
perform operations on a queue simultaneously, insertions and
removals should only be done at the head or tail of the queue. If only
one process (or one process at a time) can perform operations on a
queue, insertions and removals can be made at other than the
head or tail of the queue.

Two instructions are provided for manipulating absolute queues:
INSQUE and REMQUE. INSQUE inserts an entry specified by an
entry operand into the queue following the entry specified by the
predecessor operand. REMQUE removes the entry specified by the
entry operand. Queue entries can be on arbitrary byte boundaries.
Both INSQUE and REMQUE are implemented as non-interruptible
instructions.

Self-relative queues use displacements from queue entries as links.
Queue entries are linked by a pair of longwords. The first longword
(lowest addressed) is the forward link; it specifies displacement of the
succeeding queue entry from the present entry. The second
longword (highest addressed) is the backward link; it specifies the
displacement of the preceding queue entry from the present entry. A
queue is specified by a queue header, which also consists of two
longword links.

Four operations can be performed on self-relative queues: insert at
head, insert at tail, remove from head, and remove from tail.
Furthermore, these operations are interlocked to allow cooperating
processes in a multiprocessor system to access a shared list without
additional synchronization. Queue entries must be quadword aligned.
A hardware-supported, interlocked memory access mechanism is
used to read the queue header. Bit (0) of the queue header is used
as a secondary interlock and is set when the queue is being accessed.
If an interlocked queue instruction encounters the secondary interlock
set, it terminates after setting the condition codes to indicate failure
to gain access to the queue. If the secondary interlock bit is not set,
then the interlocked queue instruction sets it during its operation
and clears it at instruction completion. This prevents other interlocked
queue instructions from operating on the same queue.

Instructions 103

INSQHI

104

Insert Entry into Queue at Head, Interlocked

Format:

ope ode entry.ab, header.aq

Operation:

Must have write access to header.

Header must be quadword aligned.

Header cannot be equal to entry.

tmpl .- (header) {interlocked}; Acquire hardware interlock.

tmpl(2: I) must be zero.

if tmpl(O) EQLU 1 then

begin

(header){interlocked} .- tmpl;

! Release hardware lock.

{set condition codes and terminate instruction};

end;

(header){interlocked} .- tmpl vI;

Release hardware lock,

and set secondary interlock.

If {all memory accesses can be completed} then

else

begin

Check if following addresses can be written

without causing a memory management exception

entry

header + tmpl

Also, check for quadword alignment.

{insert entry into queue};

{release secondary interlock};

end;

begin

{release secondary interlock};

{backup instruction};

{initiate fault};

end;

Condition Codes:

if {secondary interlock was clear} then

begin

VAX Architecture Reference Manual

N <- 0;

Z +- (entry) EQL (entry+4);

V +- 0;

First entry in queue.

C +- 0;

end;

else

begin

N +- 0;

Z <- 0;

V <- 0;

C +- 1;

end;

Secondary interlock failed.

Exception:
reserved operand

Opcode:

5C INSQHI Insert Entry into Queue at Head, Interlocked

Description:
The entry specified by the entry operand is inserted into the queue
following the header. If the entry inserted was the first one in the
queue, the condition code Z-bit is set; otherwise, the Z-bit is cleared.
The insertion is a non-interruptible operation. The insertion is
interlocked to prevent concurrent interlocked insertions or removals at
the head or tail of the same queue by another process, even in a
multiprocessor environment. Before performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 4 and 5).
If the instruction fails to acquire the secondary interlock,the instruction
sets condition codes and terminates.

Notes:
1. Because the insertion is non-interruptible, processes running in

kernel mode can share queues with interrupt service routines (see
Chapters 4, 5, and 6).

2. The INSQHI, INSQTI, REMOHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared list without additional
synchronization.

3. To set a software Interlock realized with a queue, the following can
be used:

INSERT: INSQHI Attempt to insert entry.

Instructions 105

INSQTI

106

BEQL 1$ If queue was empty, branch.

BCS INSERT If queue was locked, try again.

CALL WAIT(...) If the entry was queued, wait.

1$:

4. During access validation, any access that cannot be completed
results in a memory management exception even though the
queue insertion is not started.

5. A reserved operand fault occurs if entry or header is an address
that is not quadword aligned (if its address bits(2:0) NEQU 0) or if
(header)(2:1) is not zero. A reserved operand fault also occurs if
header equals entry. In this case, the queue is not altered.

Insert Entry into Queue at Tail, Interlocked

Format:

opcode entry.ab, header.aq

Operation:

!must have write access to header.

!header must be quadword aligned.

!header cannot be equal to entry.

tmpl <- (header) {interlocked};

if tmpl(O) EQLU 1 then

begin

(header){interlocked} <- tmpl;

!acquire hardware interlock.

! tmpl(2: 1) must be zero.

!release hardware interlock

{set condition codes and terminate instruction};

end;

else

begin

(header){interlocked} <- tmpl v 1; !set secondary interlock

!release hardware interlock

If {all memory accesses can be completed} then

!check if the following addresses can be written

!without causing a memory management exception:

entry

header + (header + 4)

!Also, check for quadword alignment

begin

{insert entry into queue};

{release secondary interlock};

end;

VAX Architecture Reference Manual

else

end;

begin

{release secondary interlock};

{backup instruction};

{initiate fault};

end;

Condition Codes:

if {secondary interlock was clear} then

begin

else

N <- 0;

Z <- (entry) EQL (entry+4);

V <- 0;

C <- 0;

end;

Ifirst entry in queue

begin

N <- 0;

Z <- 0;

V <- 0;

C <- I;

end;

!secondary interlock failed

Exception:
reserved operand

Opcode:

50 INSQTI Insert Entry into Queue at Tail, Interlocked

Description:
The entry specified by the entry operand is inserted into the queue
preceding the header, If the entry inserted was the first one in the
queue, the condition code Z-bit is set; otherwise, the Z-bit is cleared.
The insertion is a non-interruptible operation. The insertion is
interlocked to prevent concurrent interlocked insertions or removals at
the head or tail of the same queue by another process, even in a
multiprocessor environment. Before performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 4 and 5).
If the instruction fails to acquire the secondary interlock, the instruction
sets condition codes and terminates.

Instructions 107

INSQUE

108

Notes:
1. Because the insertion is non-interruptible, processes running in

kernel mode can share queues with interrupt service routines (see
Chapters 4, 5, and 6).

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared list without additional
synchron ization.

3. To set a software interlock realized with a queue, the following can
be used:

INSERT: INSQHI Attempt to insert entry.

BEQL 1$ If queue was empty, branch.

BCS INSERT If queue was locked, try again.

CALL WAIT(...) If the entry was queued, wait.

1$:

4. During access validation, any access that cannot be completed
results in a memory management exception even though the
queue insertion is not started.

5. A reserved operand fault occurs if entry, header, or (header + 4) is
an address that is not quadword aligned (if its address bits(2:0>
NEQU 0) or if (header)(2:1 > is not zero. A reserved operand fault
also occurs if header equals entry. In this case, the queue is
not altered.

Insert Entry in Queue

Format:

opcode entry.ab, pred.ab

Operation:

If {all memory accesses can be completed} then

begin

else

(entry) <- (pred);

(entry + 4) <- pred;

((pred) + 4) <- entry;

(pred) <- entry;

end;

begin

{backup instruction};

{initiate fault};

end;

VAX Architecture Reference Manual

!forward link of entry

!backward link of entry

!backward link of successor

!forward link of predecessor

Condition Codes:

N <"- (entry) LSS (entry+4);

Z <"- (entry) EQL (entry+4) ; !first entry in queue

V <"- O'

C <"- (entry) LSSU (entry+4) ;

Exceptions:
none

Opcode:

OE INSQUE Insert Entry in Queue

Description:
The entry specified by the entry operand is inserted into the queue
following the entry specified by the predecessor operand. If the entry
inserted was the first one in the queue, the condition code Z-bit is set;
otherwise, the Z-bit is cleared. The insertion is a non-interruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures
that if a memory management exception occurs, the queue is left in a
consistent state (see Chapters 4 and 5).

Notes:
1. Three types of insertion can be performed by appropriate choice of

predecessor operand:

• Insert at head

INSQUE entry,h

• I nsert at tail

INSQUE
entry, @h+4

;h is queue head

;h is queue head

(Note "@" in this case only)

• Insert after arbitrary predecessor

INSQUE entry,p ;p is predecessor

2. Because the insertion is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines (see
Chapters 4, 5, and 6).

3. The INSQUE and REMQUE instructions are implemented such
that cooperating software processes in a single processor may
access a shared list without additional synchronization if the
insertions and removals are ohly at the head or tail of the queue.

4. To set a software interlock realized with a queue, the following can
be used:

Instructions 109

REMQHI

110

INSQUE ;was queue empty?

;yes BEQL 1$

CALL WAIT(...) ; no, wait

1$:

5. During access validation, any access that cannot be completed
results in a memory management exception, even though the
queue insertion is not started.

Remove Entry from Queue at Head, Interlocked

Format:

opcode header.aq, addr.w1

Operation:

!must have write access to header.

!header must be quadword aligned.

!header cannot equal address of addr.

tmpl <- (header){interlocked};

if tmpl(O} EQLU 1 then

begin

!acquire hardware interlock.

! tmpl(2: I} must be zero.

(header){interlocked} <- tmpl;
!release hardware interlock

{set condition codes and terminate instruction};

end;

(header){interlocked} <- tmpl v 1; !set secondary interlock

!release hardware interlock

If {all memory accesses can be completed} then

!check if the following can be done without

!causing a memory management exception:

!write addr operand

! read contents of header + tmpl {if tmpl NEQU O}

!write into header + tmpl + (header + tmpl)

! {if tmpl NEQU O}

!Also, check for quadword alignment

begin

{remove entry from queue};

{release secondary interlock};

end

VAX Architecture Reference Manual

else

begin

{release secondary interlock};

{backup instruction};

{ini tiate fault};

end;

Condition Codes:

if {secondary interlock was clear} then

begin

else

N <- 0;

Z <- (header) EQL 0; [queue empty after removal

v <- {queue empty before this instruction};

C <- 0;

end;

begin

N <- 0;

Z <- 0;

V <- 1;

C <- 1;

end;

[did not remove anything

[secondary interlock failed

Exception:
reserved operand

Opcode:

5E REMQHI Remove Entry from Queue at Head, Interlooked

Description:
If the secondary interlock is clear, the queue entry following the
header is removed from the queue and the address operand is
replaced by the address of the entry removed. If the queue was
empty prior to this instruction or if the secondary interlock failed, the
condition code V-bit is set; otherwise, it is cleared.

If the interlock succeeded and the queue is empty at the end of this
instruction, the condition code Z-bit is set; otherwise, the Z-bit is
cleared. The removal is interlocked to prevent concurrent interlocked
insertions or removals at the head or tail of the same queue by
another process, even in a multiprocessor environment. The removal
is a non-interruptible operation. Before performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception

Instructions 111

112

occurs, the queue is left in a consistent state (see Chapters 4 and 5).
If the instruction fails to acquire the secondary interlock, the instruction
sets condition codes and terminates without altering the queue.

Notes:
1. Because the rel1loval is non-interruptible, processes running in

kernel mode can share queues with interrupt service routines (see
Chapters 4, 5, and 6).

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared list without additional
synchronization.

3. To release a software interlock realized with a queue, the following
can be used:

1$:

BEQL

BCS

CALL

2$:

REMQHI

2$

1$

ACTIVATE(...)

;removed last?

;yes

;try removing again

;Activate other waiters

4. To remove entries until the queue is empty, the following can be
used:

1$: REMQHI

BVS 2$

process removed

BR 1$

2$: BCS 1$

queue empty

entry

;anything removed?

;no

;try removing again

5. During access validation, any access that cannot be completed
results in a memory management exception even though the
queue removal is not started.

6. A reserved operand fault occurs if header or (header + (header»
is an address that is not quadword aligned (if its address bits (2:0)
NEQU 0) or if (header)(2:1) is not zero. A reserved operand fault
also occurs if the header address operand equals the address
of the addr operand. In this case, the queue is not altered.

VAX Architecture Reference Manual

REMQTI Remove Entry from Queue at Tail, Interlocked

Format:

ope ode header.aq, addr.wl

Operation:

!must have write access to header.

!header must be quadword aligned.

'header cannot equal address of addr.

tmpl <- (header) {interlocked); ! acquire hardware interlock.

! tmpl(2: 1) must be zero.

if tmpl(O) EQLU 1 then

begin

(header){interlocked} <- tmpl;
!release hardware interlock

{set condition codes and terminate instruction};

end;

(header){interlocked} <- tmpl v 1; !set secondary interlock

'release hardware interlock

If {all memory accesses can be completed} then

!check if the following can be done without

!causing a memory management exception:

!write addr operand

else

tread contents of header + (header + 4)

{if tmpl NEQU O}

!write into header + (header + 4)

! + (header + 4 + (header + 4)) {if tmpl NEQU O}

!Also, check for quadword alignment

begin

{remove entry from queue};

{release secondary interlock};

end;

begin

{release secondary interlock};

{backup instruction);

{ini tia te faul t};

end;

Instructions 113

114

Condition Codes:

if {secondary interlock was clear} then

begin

N ~ 0;

Z ~ (header + 4) EQL 0; ! queue empty after removal

V ~ {queue empty before this instruction};

else

C ~ 0;

end;

begin

N ~ 0;

Z ~ 0;

V <- 1;

C ~ 1;

end;

Exception:
reserved operand

Opcode:

!did not remove anything

!secondary interlock failed

5F REMQTI Remove Entry from Queue at Tail, Interlocked

Description:
If the secondary interlock is clear, the queue entry preceding the
header is removed from the queue and the address operand is
replaced by the address of the entry removed. If the queue was
empty prior to this instruction or if the secondary interlock failed, the
condition code V-bit is set; otherwise, it is cleared.

If the interlock succeeded and the queue is empty at the end of this
instruction, the condition code Z-bit is set; otherwise, the Z-bit is
cleared. The removal is interlocked to prevent concurrent interlocked
insertions or removals at the head or tail of the same queue by
another process, even in a multiprocessor environment. The removal
is a non-interruptible operation. Before performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception
occurs, the queue is left in a consistent state (see Chapters 4 and 5).
If the instruction fails to acquire the secondary interlock, the instruction
sets condition codes and terminates without altering the queue.

Notes:
1. Because the removal is non-interruptible, processes running in

kernel mode can share queues with interrupt service routines (see
Chapters 4, 5, and 6).

VAX Architecture Reference Manual

REMQUE

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared list without additional
synchronization.

3. To release a software interlock realized with a queue, the following
can be used:

1$: REMQTI ...

BEQL 2$

BCS 1$

CALL ACTIVATE(...)

2$:

;removed last?

;yes

;try removing again

;Activate other waiters

4. To remove entries until the queue is empty, the following can be
used:

1$:

BVS

REMQTI

2$

process removed entry

BR 1$

2$: BCS 1$

queue empty

;anything removed?

;no

;try removing again

5. During access validation, any access that cannot be completed
results in a memory management exception even though the
queue removal is not started.

6. A reserved operand fault occurs if header, (header + 4), or
(header + (header + 4) + 4) is an address that is not quadword
aligned (if its address bits(2:0) NEQU 0) or if (header)(2:1) is
not zero. A reserved operand fault also occurs if the header
address operand equals the address of the addr operand. In this
case, the queue is not altered.

Remove Entry from Queue

Format:

opcode entry.ab,addr.wl

Instructions 115

116

Operation:

if {all memory accesses can be completed} then

begin

((entry+4)) <- (entry); !forward link of predecessor

((entry) +4) <- (entry +4); !backward link of successor

addr ..- entry;

end;

else

begin

{backup instruction};

{initiate fault};

end;

Condition Codes:

N <- (entry) LSS (entry+4);

Z <- (entry) EQL (entry+4);

V <- entry EQL (entry +4) ;

C <- (entry)

Exceptions:
none

Opcode:

LSSU (entry+4);

!queue empty

!no entry to remove

OF REMQUE Remove Entry from Queue

Description:
The queue entry specified by the entry operand is removed from the
queue. The address operand is replaced by the address of the
entry removed. If there was no entry in the queue to be removed, the
condition code V-bit is set; otherwise, it is cleared. If the queue is
empty at the end of this instruction, the condition code Z-bit is set;
otherwise, the Z-bit is cleared. The removal is a non-interruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures
that if a memory management exception occurs, the queue is left in a
consistent state (see Chapters 4 and 5).

Notes:
1. Three types of removal can be performed by suitable choice of

entry operand:

• Remove at head

REMQUE @h, addr ;h is queue header

• Remove at tail

VAX Architecture Reference Manual

FLOATING­
POINT·
INSTRUCTIONS

Representation

REM QUE @h+4,addr

• Remove arbitrary entry

REMQUE entrY,addr

;h is queue header

2. Because the removal is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines (see
Chapters 4, 5, and 6).

3. The INSQUE and REMQUE instructions are implemented such
that cooperating software processes in a single processor may
access a shared list without additional synchronization if the
insertions and removals are only at the head or tail of the queue.

4. To release a software interlock realized with a queue, the following
can be used:

REMQUE ;queue empty?

BEQL 1$;yes

CALL ACTIVATE (...) ;Activate other waiters

1$:

5. To remove entries until the queue is empty, the following can be
used:

1$:

BVS

REMQUE

EMPTY

BR 1$

; any thing removed?

;no

6. During access validation, any access that cannot be completed
results in a memory management exception even though. the
queue removal is not started.

The floating-point instructions operate on four data types, termed
F _floating, D_floating, G_floating, and H_floating. Subset imple­
mentations of the VAX architecture may not include all four data
types. Operating system software may emulate omitted instructions
and may use user-mode stack space during emulation. For more
detail about subsetting and emulation, see Chapter 11.

Mathematically, a floating-point number may be defined as having
the form

(+ 0 r -) (2K) * f

Instructions 117

where K is an integer and f is a non-negative fraction. For a non­
vanishing number, K and f are uniquely determined by imposing the
condition

1/2 LEQ f LSS 1

The fractional factor, f, of the number is then said to be binary
normalized. For the number zero, f must be assigned the value 0, and
the value of K is indeterminate.

The VAX floating-point data formats are derived from this mathematical
representation for floating-point numbers. Four types of floating-point
data are provided: the two standard PDP-11 formats (F _floating
and D_floating), and two extended range formats (G_floating and
H_floating). Single-precision, or floating, data is 32 bits long. Double­
precision, or D_floating, data is 64 bits long. Extended range
double-precision, or G_floating, data is 64 bits long. Extended range
quadruple-precision, or H_floating, data is 128 bits long. Sign
magnitude notation is used.

The most significant bit of the floating-point data is the sign bit: 0 for
positive and 1 for negative.

The fractional factor f is assumed normalized, so that its most
significant bit must be 1. This 1 is the "hidden" bit: it is not stored in
the data word, but of course the hardware restores it before carrying
out arithmetic operations. The F _floating and D_floating data
types use 23 and 55 bits, respectively, for f, which with the hidden bit,
imply effective significance of 24 bits and 56 bits for arithmetic
operations. The extended range data types, G_floating and
H_floating, use 52 and 112 bits, respectively, for f, which with the
hidden bit, imply effective significance of 53 and 113 bits for arithmetic
operations.

In the F _floating and D_floating data types, 8 bits are reserved for
the stor.age of the exponent K in excess 128 notation. Thus exponents
from -128 to + 127 could be represented, in biased form, by 0 to
255. For reasons given below, a biased EXP of 0 (true exponent of
-128), is resenied for floating-point zero. Thus, for the F _floating
and D_f!oating data types, exponents are restricted to the range
-127 to + 127 inclusive, or in excess 128 notation, 1 to 255.

In the G_floating data type, 11 bits are reserved for the storage of
the exponent in excess 1024 notation. Thus, exponents are restricted
to -1023 to + 1023 inclusive (in excess notation, 1 to 2047). In the
H_floating data type 15 bits are reserved for the storage of the
exponent in excess 16384 notation. Thus, exponents are restricted to
-16383 to + 16383 inclusive (in excess notation, 1 to 32767). A
biased exponent of 0 is reserved for floating-point zero.

118 VAX Architecture Reference Manual

Overview of the
Instruction Set

Floating-Point Zero-Because of the hidden bit, the fractional factor is
not available to distinguish between zero and non-zero numbers
whose fractional factor is exactly 112. Therefore, VAX architecture
reserves a sign-exponent field of 0 for this purpose. Any positive,
floating-point number with biased exponent of 0 is treated as if it were
an exact 0 by the floating-point instruction set. In particular, a
floating-point operand, whose bits are all zeros, is treated as zero;
this is the format generated by all floating-point instructions for which
the result is zero.

Reserved Operands-A reserved operand is defined to be any bit
pattern with a sign bit of 1 and a biased exponent of O. In VAX
architecture, all floating-point instructions generate a fault if a reserved
operand is encountered. A reserved operand is never generated as a
result of a floating-point instruction.

VAX architecture has the standard arithmetic operations ADD, SUB,
MUL, and DIV implemented for all four floating data types. The results
of these operations are always rounded, as described in the following
section on accuracy. The architecture has, in addition, two composite
operations, EMOD and POLY, also implemented for all four floating­
point data types. EMOD generates a product of two operands and
then separates the product into its integer and fractional terms. POLY
evaluates a polynomial, given the degree, the argument, and pointer
to a table of coefficients. Details on the operation of EMOD and POLY
are given in their respective descriptions. All of these instructions are
subject to the rounding errors associated with floating-point operations
as well as to exponent overflow and underflow. Accuracy is discussed
in the next section, and exceptions are discussed in Chapter 6.

VAX architecture also has a complete set of instructions for conversion
from integer arithmetic types (byte, word, longword) to all floating
types (F _floating, D_floating, G_floating, H_floating), and also for
floating types to integer arithmetic types. VAX also has a set of
instructions for conversion between all of the floating types except
between D_floating and G_floating. Many of these instructions are
exact, in the sense defined in the section on accuracy to follow. A few
instructions, however, may generate rounding error, floating overflow,
or floating underflow, or may induce integer overflow. Details are
given in the description of the CVT instructions.

There is a class of move-type instructions that is always exact: MOV,
NEG, CLR, CMP, and TST. And, finally, there is the ACB ~add,
compare, and branch) instruction, that is subject to rounding errors,
overflow, and underflow.

All of the VAX floating-point instructions fault if a reserved operand is
encountered. Floating-point instructions also fault on the occurrence

Instructions 119

Accuracy

120

of floating overflow or divide by zero. The FU bit, in the PSW, is
available to enable or disable an exception on underflow. If the FU bit
is clear, no exception occurs on underflow and zero is returned as
the result. If the FU bit is set, a fault occurs on underflow. Further
details on the actions taken if any of these exceptions occurs are
included in the descriptions of the instructions and are completely
discussed in Chapter 5.

General comments on the accuracy of the VAX floating-point
instruction set are presented here. The descriptions of the individual
instructions may include additional details on the accuracy at which
they operate.

An instruction is defined to be exact if its result, extended on the right
by an infinite sequence of zeros, is identical to that of an infinite
precision calculation involving the same operands. The a priori
accuracy of the operands is thus ignored. For all arithmetic operations
except DIV, a zero operand implies that the instruction is exact. The
same statement holds for DIV if the zero operand is the dividend. But
if the zero operand is the divisor, division is undefined and the
instruction faults.

For non-zero, floating-point operands, the fractional factor is binary
normalized with 24 or 56 bits for single precision (F _floating) or
double precision (D_floating), respectively; and the fractional factor is
binary normalized with 53 or 113 bits for extended range double
precision (G_floating), and extended range quadruple precision
(H_ftoating), respectively.

Note that an arithmetic result is exact if no non-zero bits are lost in
chopping the infinite precision result to the data length to be stored.
Chopping means that the 24 (F _floating), 56 (D_floating), 53
(G_floating), or 113 (H_floating) high-order bits of the normalized
fractional factor of a result are stored; the rest of the bits are discarded.
The first bit lost in chopping is referred to as the "rounding" bit. The
value of a rounded result is related to the chopped result as follows:

1. If the rounding bit is 1, the rounded result is the chopped result
incremented by an LSB (least significant bit).

2. If the rounding bit is 0, the rounded and chopped results are
identical.

All VAX processors implement rounding so as to produce results
identical to the results produced by the following algorithm. Add a 1 to
the rounding bit and propagate the carry if it occurs. Note that a
renormalization may be required after rounding takes place. If this
happens, the new rounding bit will be o. Therefore, renormalization
can happen only once. The following statements summarize the

VAX Architecture Reference Manual

Programming
Considerations

ADD

relations among chopped, rounded, and true (infinite precision)
results:

1. If a stored result is exact

rounded value = chopped value = true value

2. If a stored result is not exact, its magnitude

• Is always less than that of the true result for chopping

• Is always less than that of the true result for rounding if the
rounding bit is zero

• Is greater than that of the true result for rounding if the rounding
bit is one.

In order to be consistent with the floating-point instruction set which
faults on reserved operands, software-implemented floating-point
functions (the absolute function, for example) should verify that the
input operand(s) is (are) not reserved. An easy way to do this is a
floating move or test of the input operand(s).

In order to facilitate high-speed implementations of the floating-point
instruction set, certain restrictions are placed on the addressing mode
combinations usable within a single floating-point instruction. These
combinations involve the logically inconsistent simultaneous use of a
value as both a floating-point operand and an address. Specifically,
if within the same instruction the content of register Rn is used as
both a part ofa floating-point input operand (operand type .rf, .rd, .rg,
.rh, .mf, .md, .mg, or .mh) and as an address in an addressing
mode that modifies Rn (autoincrement, autodecrement, or autoincre­
ment deferred), the value of the floating-point operand is
UNPREDICTABLE.

Add

Format:

opcode add.rx, sum.mx

opcode addl.rx, add2.rx, sum.wx

Operation:

sum ~ sum + add;

sum ~ addl + add2;

Instructions
'.

12 operand

!3 operand

2 operand

3 operand

121

CLR

122

Condition Codes:

N ~ sum LSS 0;

Z ~ sum EQL O·

V ~ 0;

C ~ O·

Exceptions:
floating overflow

floating underflow

reserved operand

Opcodes:

40 ADDF2 Add F_floating 2 Operand

41 ADDF3 Add F_floating 3 Operand

60 ADDD2 Add D_floating 2 Operand

61 ADDD3 Add D_floating 3 Operand

40FD ADDG2 ADD G_floating 2 Operand

41FD ADDG3 ADD G_floating 3 Operand

60FD ADDH2 ADD H_floating 2 Operand

61FD ADDH3 ADD H_floating 3 Operand

Description:
In 2 operand format, the addend operand is added to the sum
operand and the sum operand is replaced by the rounded result. In
3 operand format, the addend 1 operand is added to the addend
2 operand and the sum operand is replaced by the rounded result.

Notes:
1. On a reserved operand fault, the sum operand is unaffected and

the condition codes are UNPREDICTABLE.

2. On floating underflow, a fault occurs if FU is set. Zero is stored as
the result of floating underflow only if FU is clear. On a floating
underflow fault, the sum operand is unaffected. If FU is clear, the
sum operand is replaced by 0 and no exception occurs.

3. On floating overflow, the instruction faults. The sum operand is
unaffected, and the condition codes are UNPREDICTABLE.

Clear

Format:

ope ode dst.wx

VAX Architecture Reference Manual

CMP

Operation:

dst ~ 0;

Condition Codes:

N ~ 0;

Z ~ 1;

V ~ 0;

C ~ C'

Exceptions:
none

Opcodes:

04 CLRF Clear F_floating

7C CLRG Clear G_floating.

CLRO Clear O_floating

7CFO CLRH Clear H_floating

Description:
The destination operand is replaced by O.

Notes:
CLRx dst is equivalent to MOVx #0, dst, bu~ is 5 (F _floating), or 9
(D_floating or G_floating), or 17 (H_floating) bytes shorter.

Compare

Format:

ope ode srel.rx, sre2.rx

Operation:

srel-sre2;

Condition Codes:

N ~ srel LSS

Z ~ srel EQL

V ~ 0;

C ~ 0;

Exception:
reserved operand

Instructions

sre2;

sre2;

123

CVT

124

Opcodes:

51 CMPF Compare F_floating

71 CMPD Compare D_floating

51FD CMPG Compare G_floating

71FD CMPH Compare H_floating

Description:
The source 1 operand is compared with the source 2 operand. The
only action is to affect the condition codes.

Notes:
On a reserved operand fault, the condition codes are
UNPREDICTABLE.

Convert

Format:

opcode src.rx, dst.wy

Operation:

dst +- conversion of src;

Condition Codes:

N +- dst LSS 0;

Z +- dst EQL 0;

V +- {integer overflow};

C+-O ;

Exceptions:
integer overflow

floating overflow

floating underflow

reserved operand

Opcodes:

4C CVTBF

4D CVTWF

4E CVTLF

6C CVTBD

6D CVTWD

Convert Byte

Convert Word

Convert Long

Convert Byte

Convert Word

VAX Architecture Reference Manual

to F_floating

to F_floating

to F_floating

to D_floating

to D_floating

6E CVTLD Convert Long to D_floating

4CFD CVTBG Convert Byte to G_floating

4DFD CVTWG Convert Word to G_floating

4EFD CVTLG Convert Long to G_floating

6CFD CVTBH Convert Byte to H_floating

6DFD CVTWH Convert Word to H_floating

6EFD CVTLH Convert Long to H_floating

48 CVTFB Convert F_floating to Byte

49 CVTFW Convert F _floating to Word

4A CVTFL Convert F_floating to Long

4B CVTRFL Convert Rounded F_floating to Long

68 CVTDB Convert D_floating to Byte

69 CVTDW Convert D_floating to Word

6A CVTDL Convert D_floating to Long

6B CVTRDL Convert Rounded D_floating to Long

48FD CVTGB Convert G_floating to Byte

49FD CVTGW Convert G_floating to Word

4AFD CVTGL Convert G_floating to Long

4BFD CVTRGL Convert Rounded G~floating to Long

68FD CVTHB Convert H_floating to Byte

69FD CVTHW Convert H_floating to Word

6AFD CVTHL Convert H_floating to Long

6BFD CVTRHL Convert Rounded H_floating to Long

56 CVTFD Convert F_floating to D_floating

99FD CVTFG Convert F_floating to G_floating

98FD CVTFH Convert F _floating to H_floating

76 CVTDF Convert D_floating to F_floating

32FD CVTDH Convert D_floating to H_floating

33FD CVTGF Convert G_floating to F_floating

56FD CVTGH Convert G_floating to H_floating

F6FD CVTHF Convert H_floating to F_floating

F7FD CVTHD Convert H_floating to D_floating

76FD CVTHG Convert H_floating to G_floating

Description:
The source operand is converted to the data type of the destination
operand, and the destination operand is replaced by the result.
The form of the conversion is as follows:

Instructions 125

eVTBF exact

eVTBD exact

eVTBG exact

eVTBH exact

eVTWF exact

eVTWD exact

eVTWG exact

eVTWH exact

eVTLF rounded

eVTLD exact

eVTLG exact

eVTLH exact

eVTFB truncated

eVTDB truncated

eVTGB truncated

eVTHB truncated

eVTFW truncated

eVTDW truncated

eVTGW truncated

eVTHW truncated

eVTFL truncated

eVTRFL rounded

eVTDL truncated

eVTRDL rounded

eVTGL truncated

eVTRGL rounded

eVTHL truncated

eVTRHL rounded

eVTFD exact

eVTFG exact

eVTFH exact

eVTDF rounded

eVTDH exact

eVTGF rounded

eVTGH exact

eVTHF rounded

eVTHD rounded

eVTHG rounded

126 VAX Architecture Reference Manual

DIV

Notes:
1. Only CVTDF, CVTGF, CVTHF, CVTHD, and CVTHG can result in

floating overflow fault. The destination operand is unaffected, and
the condition codes are UNPREDICTABLE.

2. Only conversions with a floating-point source operand can result in
a reserved operand fault. On a reserved operand fault, the
destination operand is unaffected and the condition codes are
UNPREDICTABLE.

3. Only conversions with an integer destination operand can result in
integer overflow. On integer overflow, the destination operand is
replaced by the low-order bits of the true result.

4. Only CVTGF, CVTHF, CVTHD, and CVTHG can result in floating
underflow. If FU is set, a fault occurs. Zero is stored as the
result of floating underflow only if FU is clear. On a floating
underflow fault, the destination operand is unaffected. If FU is
clear, the destination operand is replaced by 0 and no exception
occurs.

5. When CVTRFL, CVTRDL, CVTRGL, and CVTRHL round, the
rounding is done in sign magnitude, before conversion to two's
complement.

Divide

Format:

opcode divr.rx, quo.mx 2 operand

opcode divr.rx, divd.rx, quo.wx 3 operand

Operation:

quo ~ quo / divr;

quo ~ divd / divr;

Condition Codes:

N ~ quo LSS 0;

Z ~ quo EQL 0;

V ~ 0;

C ~ 0;

Exceptions:
floating overflow

floating underflow

divide by zero

reserved operand

Instructions

!2 operand

!3 operand

127

EMOD

128

Opcodes:

46 DIVF2 Divide F_floating 2 Operand

47 DIVF3 Divide F_floating 3 Operand

66 DIVD2 Divide D_floating 2 Operand

67 DIVD3 Divide D_floating 3 Operand

46FD DIVG2 Divide G_floating 2 Operand

47FD DIVG3 Divide G_floating 3 Operand

66FD DIVH2 Divide H_floating 2 Operand

67FD DIVH3 Divide H_floating 3 Operand

Description:
In 2 operand format, the quotient operand is divided by the divisor
operand and the quotient operand is replaced by the rounded result.
In 3 operand format, the dividend operand is divided by the divisor
operand and the quotient operand is repla"ced by the rounded result.

Notes:
1. On a reserved operand fault, the quotient operand is unaffected

and the condition codes are UNPREDICTABLE.

2. On floating underflow, a fault occurs if FU is set. Zero is stored as
the result of floating underflow only if FU is clear. On a floating
,underflow fault, the quotient operand is unaffected. If FU is clear,
the quotient operand is replaced by 0 and no exception occurs.

3. On floating overflow, the instruction faults. The quotient opeiand is
unaffected, and the condition codes are UNPREDICTABLE.

4. On divide by zero, the quotient operand and condition codes are
affected as in item 3 above.

Extended Multiply and Integerize

Format:

opcode mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx

EMODG and EMODH:

opcode mulr.rx, mulrx.rw, muld.rx, int.wl, fract.wx

Operation:

int <- integer part of muld * {muIr' mulrx};

fract <- fractional part of muld * {mulr'mulrx};

VAX Architecture Reference Manual

Condition Codes:

N ~ fract LSS 0;

Z ~ fract EQL 0;

V ~ {integer over flow};

C ~ 0;

Exceptions:
integer overflow

floating underflow

reserved operand

Opcodes:

54 EMODF Extended Multiply

74 EMODD Extended Multiply

54FD EMODG Extended Multiply

74FD EMODH Extended Multiply

Description:

and Integerize F _floating

and Integerize D_floating

and Integerize G_floating

and Integerize H_floating

The multiplier extension operand is concatenated with the multiplier
operand to gain 8 (EMODD and EMODF), 11 (EMODG), or 15
(EMODH) additional low-order fraction bits. The low-order 5 or 1 bits
of the 16-bit multiplier extension operand are ignored by the EMODG
and EMODH instructions, respectively. The multiplicand operand is
multiplied by the extended multiplier operand. The multiplication is
such that the result is equivalent to the exact product truncated
(before normalization) to a fraction field of 32 bits in F _floating, 64
bits in D_floating and G_floating, and 128 in H_floating. Regarding
the result as the sum of an integer and fraction of the same sign,
the integer operand is replaced by the integer part of the result; the
fraction operand is replaced by the rounded fractional part of the
result.

Notes:
1. On a reserved operand fault, the integer operand and the fraction

operand are unaffected. The condition codes are UNPREDICTABLE.

2. On floating underflow, a fault occurs if FU is set. The integer and
fraction parts are replaced by 0 on the occurrence of floating
underflow only if FU is clear. On a floating underflow fault, the
integer and fraction parts are unaffected. If FU is clear, the integer
and fraction parts are replaced by 0 and no exception occurs.

3. On integer overflow, the integer operand is replaced by the low­
order bits of the true result.

4. Floating overflow is indicated by integer overflow. Integer overflow
is possible, however, in the absence of floating overflow.

Instructions 129

MNEG

MOV

130

5. The signs of the integer and fraction are the same unless integer
overflow results.

6. Because the fraction part is rounded after separation of the integer
part, it is possible that the value of the fraction operand is 1.

7. Rounding is performed before conversion to two's complement.

Move Negated

Format:

opcode src.rx, dst.wx

Operation:

dst - -:-src;

Condition Codes:

N -dst LSS 0;

Z -dst EQL 0;

V -0;

C -0;

Exception:
reserved operand

Opcodes:

52 MNEGF Move Negated F_floating

72 MNEGD Move Negated D_floating

52FD MNEGG Move Negated G_floating

72FD MNEGH Move Negated H_floating

Description:
The destination operand is replaced by the negative of the source
operand.

Notes:
On a reserved operand fault, the destination operand is unaffected
and the condition codes are UNPREDICTABLE.

Move

Format:

VAX Architecture Reference Manual

MUL

ope ode sre.rx, dst.wx

Operation:

dst +-- sre;

Condition Codes:

N +-- dst LSS 0;

Z +-- dst EQL 0;

V +-- 0;

C +-- c;

Exception:
reserved operand

Opcodes:

50 MOVF Move F_floating

70 MOVD Move D_floating

50FD MOVG Move G_floating

70FD MOVH Move H_floating

Description:
The destination operand is replaced by the source operand.

Notes:
On a reserved operand fault, the destination operand is unaffected
and the condition codes are UNPREDICTABLE.

Multiply

Format:

ope ode mulr.rx, prod.mx

opeode mulr.rx, muld.rx, prod.wx

2 operand

3 operand

Operation:

prod +-- prod * muIr;

prod +-- muld * muIr;

Condition Codes:

N +-- prod LSS 0;

Z +-- prod EQL 0;

Instructions

!2 operand

!3 operand

----~------_.

131

POLY

132

V <c- 0;

C <c- 0;

Exceptions:
floating overflow

floating underflow

reserved operand

Opcodes:

44 MULF2 Multiply

45 MULF3 Multiply

64 MULD2 Multiply

65 MULD3 Multiply

44FD MULG2 Multiply

45FD MULG3 Multiply

64FD MULH2 Multiply

F_floating

F_floating

D_floating

D_floating

G_floating

G_floating

H_floating

65FD MULH3 Multiply H_floating

Description:

2 Operand

3 Operand

2 Operand

3 Operand

2 Operand

3 Operand

2 Operand

3 Operand

In 2 operand format, the product operand is multiplied by the multiplier
operand and the product operand is replaced by the rounded result.
In 3 operand format, the multiplicand operand is multiplied by the
multiplier operand and the product operand is replaced by the
rounded result.

Notes:
1. On a reserved operand fault, the product operand is unaffected

and the condition codes are UNPREDICTABLE.

2. On floating underflow, a fault occurs if FU is set. Zero is stored as
the result of floating underflow only if FU is clear. On a floating
underflow fault, the product operand is unaffected. If FU is clear,
the product operand is replaced by 0 and no exception occurs.

3. On floating overflow, the instruction faults. The product operand is
unaffected, and the condition codes are UNPREDICTABLE.

Polynomial. Evaluation

Format:

opcode arg.rx, degree.rw, tbladdr.ab

VAX Architecture Reference Manual

Operation:

tmpl <- degree;

if tmpl GTRU 31 then {initiate reserved operand fault};

tmp2 <- tbladdr;

tmp3 <- {(tmp2) + }; !tmp3 accumulates the partial result
!tmp3 is of type x

if POLYH then - (SP) <- arg;

while tmpl GTRU 0 do

begin !computation loop

tmp4 <- {arg * tmp3}; !tmp4 accumulates new partial result.
!tmp3 has old partial result.

!Perform multiply, and retain the 31 (POLYF), '

!63 (POLYD, POLYG), or 127 (POLYH) most significant

!bits of the fraction by truncating the unnormalized

!product. (The most significant bit of the 31, 63,

lor 127 bits in the product magnitude will be zero

!if the product magnitude is LSS 1/2 and GEQ 1/4.

!Use the result in the following add operation.

tmp4 <- tmp4 + (tmp2);

!Align fractions, perform add, and retain the

!31 (POLYF), 63 (POLYD, POLYG), or 127 (POLYH)

!most significant bits of the fraction by truncating

!the unnormalized result.

!normalize, and round to type x.

!Check for overflow and underflow only after the
combined

!multiply, add, normalize, round sequence.

if OVERFLOW then FLOATING OVERFLOW FAULT

if UNDERFLOW then

tmpl <-

tmp2 <-

tmp3 <-

end;

begin

if FU EQL 1 then FLOATING UNDERFLOW FAULT;

tmp4 <- 0; ! force resul t to 0;

end;

tmpl - 1;

tmp2 + {size of data type};

tmp4;

!update partial result in tmp3

if POLYF then

begin

RO <- tmp3;

Instructions 133

134

Rl ~ 0;

R2 ~ 0;

R3 ~ tmp2;

end;

if POLYD or POLYG then

begin

Rl' RO <- tmp3;

R2 <- 0;

R3 <- tmp2;

R4 <- 0;

R5 <- 0;

end;

if POLYH then

begin

SP <- SP + 16;

R3'R2'Rl'RO <- tmp3;

R4 <- 0;

~5 <- tmp2;

end;

Condition Codes:

N <-- RO LSS 0;

Z <-- RO EQL 0;

v <-- 0;

C <-- 0;

Exceptions:
floating overflow

floating underflow

reserved operand

Opcodes:

55 POLYF Polynomial

75 POLYD Polynomial

55FD POLYG Polynomial

75FD POLYH Polynomial

Description:

Evaluation

Evaluation

Evaluation

Evaluation

F_floating

D~fioating

G_floating

~floating

The table address operand points to a table of polynomial coefficients.
The coefficient of the highest order term of the polynomial is pointed
to by the table address operand. The table is specified with lower
order coefficients stored at increasing addresses. The data type of the

VAX Architecture Reference Manual

coefficients is the same as the data type of the argument operand.
The evaluation is carried out by Horner's method, and the contents of
RO (R1 'RO for POLYD and POLYG, R3'R2'R1 'RO for POLYH) are
replaced by the result. The result computed is

result = C[O]*xo + x*(C[l] + x*(C[2] + ... x*C[d]))

where x is the argument and d is the degree. The unsigned-word
degree operand specifies the highest numbered coefficient to
participate in the evaluation.POLYH requires four longwords on the
stack to store arg in case the instruction is interrupted.

Notes:
1. After execution, the registers are as shown in Figure 3.3 through

3.6.

2. On a floating fault:

• If PSL(FPD) = 0, the instruction faults and all relevant side
effects are restored to their original state.

• If PSL(FPD) = 1, the instruction is suspended and state is saved
in the general registers as follows:

31 161514 76

fraction lSi exponent I
0

0

table address + degree'4 + 4

POLYF

Figure 3.3
POL YF Result Register

31 161514 7 6

fraction Sl exponent 1
fraction fraction

0

table address + degree'S + S

0

0

POLYO

Figure 3.4
POL YO Result Register

Instructions

a
fraction

a
fraction

:RO

:R1

:R2

:R3

:RO

:R1

:R2

:R3

:R4

:R5

135

POLYP

RO tmp3 !partial result after iter~\ion prior to the
lone causing the .overflow or underflow

Rl = arg

R2(7: 0) = tmpl ! number of iterations remaining

R2(3l: 8) = implement a tion dependent

R3 = tmp2

POLYD and POLYG

Rl'RO = tmp3

!points to table entry causing exception

!partial result after iteration prior to
lone causing the overflow or underflow

R2(7: 0) = tmpl ! number of iterations remaining

R2(3l: 8) = implementation dependent

R3 = tmp2 !points to table entry causing exception

R5'R4 arg

POLYH

R3'R2'Rl'RO = tmp3 !partial result after iteration prior to the
lone causing the overflow or underflow

R4(7: 0) = tmpl ! number 0 f i tera tions remaining

R4(3l:8) = implementation dependent

R5 = tmp2 !points to table entry causing exception

31 161514 43 o
traction sl exponent Itraction

traction fraction

0

table address + degree*8 + 8

0

0

POLYG

Figure 3.5
POL YG Result Register

31 161514 o

fraction sl exponent

fraction fraction
\

fraction fraction

fraction fraction

0

table address + degree*16 + 16

POLYH

Figure 3.6
POL YH Result Register

136 VAX Architecture Reference Manual

:RO

:R1

:R2

:R3

:R4

:R5

:RO

:R1

:R2

:R3

:R4

:R5

arg is saved on the stack in use during the faulting instruction.

Implementation dependent information is saved to allow the
instruction to continue after possible scaling of the coefficients and
partial result by a fault handler.

3. If the unsigned-word degree operand is 0 and the argument is not
a reserved operand, the result is C[O]. If the degree is 0 and
either the argument or C[O] is a reserved operand, a reserved
operand fault occurs.

4. If the unsigned-word degree operand is greater than 31, a reserved
operand fault occurs.

5. On a reserved operand fault:

• If PSL(FPD) = 0, the reserved operand is either the degree
operand (greater than 31), or the argument operand, or some
coefficient.

• If PSL(FPD) = 1, the reserved operand is a coefficient, and R3
(except for POL YH) or R5 (for POL YH) is pointing at the value
that caused the exception.

• The state of the saved condition codes and the other registers is
UNPREDICTABLE. If the reserved operand is changed and the
contents of the condition codes and all registers are preserved,
the fault is continuable.

6. On floating underflow after the rounding operation at any iteration
of the computation loop, a fault occurs if FU is set. If FU is clear,
the temporary result (tmp3) is replaced by 0 and the operation
continues. In this case, the final result may be non-zero if underflow
occurred before the last iteration.

7. On floating overflow after the rounding operation at any iteration of
the computation loop, the instruction terminates with a fault.

8. If the argument is zero, the result is C[O]. Additionally, if one of the
coefficients in the table (other than C[OD is a reserved operand,
whether a reserved operand fault occurs is UNPREDICTABLE.

9. For POL YH, some implementations may not save arg on the stack
until after an interrupt or fault occurs. However, arg will always be
on the stack if an interrupt or floating fault occurs after FPD is
set. If the four longwords on the stack overlap any of the source
operands, the results are UNPREDICTABLE.

Example:
To compute P(x) = CO + C1 *x + C2*X2
where CO = 1.0, C1 = .5, and C2 = .25

POLYF X, #2, PTABLE

Instructions 137

SUB

138

PTABLE: . FLOAT 0.25

.FLOAT 0.5

. FLOAT 1. 0

Subtract

Format:

opcode sub.rx, dif.mx

opcode sub.rx, min.rx, dif.wx

Operation:

dif ~ dif - sub;
dif ~ min - sub;

Condition Codes:

N ~ dif LSS 0;

Z ~ dif EQL 0;

V ~ 0;

c ~ 0;

Exceptions:
floating overflow

floating underflow

reserved operand

Opcodes:

42 SUBF2 Subtract

43 SUBF3 Subtract

62 SUBD2 Subtract

63 SUBD3 Subtract

42FD SUBG2 Subtract

43FD SUBG3 Subtract

62FD SUBH2 Subtract

63FD SUBH3 Subtract

!2 operand
!3 operand

F_floating

F_floating

D_floating

D_floating

G_floating

G_floating

H_floating

H_floating

VAX Architecture Reference Manual

;C2

;Cl

; CO

2

3

2

3

2

3

2

3

2 operand

3 operand

Operand

Operand

Operand

Operand

Operand

Operand

Operand

Operand

TST

Description:
In 2 operand format, the subtrahend operand is subtracted from the
difference operand and the difference is replaced by the rounded
result. In 3 operand format, the subtrahend operand is subtracted from
the minuend operand and the difference operand is replaced by the
rounded result.

Notes:
1. On a reserved operand fault, the difference operand is unaffected

and the condition codes are UNPREDICTABLE.

2. On floating underflow, a fault occurs if FU is set. Zero is stored as
the result of floating underflow only if FU is clear. On a floating
underflow fault, the difference operand is unaffected. If FU is clear,
the difference operand is replaced by 0 and no exception occurs.

3. On floating overflow, the instruction faults. The difference operand
is unaffected, and the condition codes are UNPREDICTABLE.

Test

Format:

opcode src.rx

Operation:

src - 0;

Condition Codes:

N ~ src LSS 0;

Z ~ src EQL 0;

V ~ 0;

C ~ 0;

Exception:
reserved operand

Opcodes:

53 TSTF Test F_floating

73 TSTD Test D_floating

53FD TSTG Test G_floating

73FD TSTH Test H_floating

Instructions 139

CHARACTER­
STRING
INSTRUCTIONS

140

Description:
The condition codes are affected according to the value of the source
operand.

Notes:
1. TSTx src is equivalent to CMPx src, #0, but is 5 (F _floating) or 9

(D_floating or G_floating) or 17 (H~floating) bytes shorter.

2. On a reserved operand fault, the. condition codes are
UNPREDICTABLE.

The character-string instructions, except for MOVC3 and MOVC5,
may be omitted from subset implementations of the VAX architecture.
Execution of an omitted instruction results in an emulated instruction
exception. Omitted instructions may be emulated by operating system
software and may use user-mode stack space during emulation. For
more detail, refer to Chapter 11.

A character string is specified by two operands:

• An unsigned word operand that specifies the length of the character
string in bytes

• The address of the lowest addressed byte of the character string.
This is specified by a byte operand of address access type.

Each of the character-string instructions uses general registers RO
through R1, HO through R3, or RO through R5 to contain a control
block that maintains updated addresses and state during the execution
of the instruction. When instruction execution is completed, these
registers are available to software to use as string specification
operands for a subsequent instruction on a contiguous character
string. During the execution of the instructions, pending interrupt
conditions are tested. If any is found, the control block is updated, a
first-part-done bit is set in the PSL, and the instruction interrupted
(see Chapter 5). After the interruption, the instruction resumes
transparently.

The format of the control block is shown in Figure 3.7. The fields
length 1, length 2 (if required), and length 3 (if required) contain the
number of bytes remaining to be processed in the first, second,
and third string operands respectively. The fields address 1, address
2 (if required), and address 3 (if required) contain the address of
the next byte to be processed in the first, second, and third string
operands respectively.

Memory access faults will not occur when a zero-length string is
specified because no memory reference occurs.

VAX Architecture Reference Manual

CMPC

31 1615

I length 1

address 1

I length 2

address 2

I length 3

address 3

Figure 3.7
Character-String Instruction Control Block

Compare Characters

Format:

opcode len.rw, srcladdr.ab, src2addr.ab

opcode srcllen.rw, srcladdr.ab, fill.rb,

src21en.rw, src2addr.ab

Operation:

o
:RO

:R1

:R2

:R3

:R4

:R5

3 operand

5 operand

tmpl ~ len; !3 operand

tmp2 +- srcladdr;

tmp3 +- src2addr;

if tmpl EQL 0 then; !Condition Codes affected on tmpl EQL 0

if tmpl GTRU 0 then

begin

while {tmpl NEQU O} do

if (tmp2) EQL (tmp3) then

!Condition Codes affected

Jon ((tmp2) EQL (tmp3))

begin

tmpl +- tmpl - 1;

tmp2 +- tmp2 + 1;

tmp3 tmp3 + 1 ;

end;

else exit while loop;

end;

RO tmpl;

Rl +- tmp2;

R2 RO;

R3 +- tmp3;

Instructions 141

142

tmpl <- srcllen;

tmp2 <- srcladdr;

tmp3 <- src21en;

tmp4 <- src2addr;

!5 operand

if {tmpl EQL O} AND {tmp3 EQL O} then; ! Condi tion codes affected on

! {tmpl EQL O} AND {tmp3 EQL O}

while {tmpl NEQU O} AND {tmp3 NEQU O} do

if (tmp2) EQL (tmp4) then !Condition Codes affected

ion ((tmp2) EQL (tmp4))

begin

tmpl <- tmpl - 1;

tmp2 <- tmp2 + 1;

tmp3 <- tmp3 - 1;

tmp4 <- tmp4 + 1;

end;

else exit while loop;

if NOT{tmpl NEQU O} AND {tmp3 NEQU O} then

begin

while {tmpl NEQU O} AND {(tmp2) EQL fill} do !Condition Codes

!affected on ((tmp2) EQL fill)

begin

tmpl <- tmpl - 1;

tmp2 <- tmp2 + 1;

end;

while {tmp3 NEQU O} AND {fill EQL (tmp4)} do !Condition Codes

!affected on (fill EQL (tmp4))

end;

RO <- tmpl;

Rl <- tmp2;

R2 <- tmp3;

R3 <--- tmp4;

begin

tmp3 <- tmp3 - 1;

tmp4 <- tmp4 + 1;

end;

Condition Codes:

IFinal Condition Codes reflect last affecting

lof Condition Codes in Operation above~

N <- {first byte} LSS {second byte};

Z <- {first byte} EQL {second byte};

VAX Architecture Reference Manual

v'"<c- 0;

C <c- {first byte} LSSU {second byte};

Exceptions:
none

Opcodes:

29 CMPC3 Compare Characters 3 Operand

20 CMPC5 Compare Characters 5 Operand

Description:
In 3 operand format, the bytes of string 1 specified by the length and
address 1 operands are compared with the bytes of string 2 specified
by the length and address 2 operands. Comparison proceeds until
inequality is detected or all the bytes of the strings have been
examined. Condition codes are affected by the result of the last byte
comparison. In 5 operand format, the bytes of the string 1 specified
by the length 1 and address 1 operands are compared with the bytes
of the string 2 specified by the length 2 and address 2 operands. If
one string is longer than the other, the shorter string is conceptually
extended to the length of the longer by appending (at higher
addresses) bytes equal to the fill operand. Comparison proceeds until
inequality is detected or all the bytes of the strings have been
examined. Condition codes are affected by the result of the last byte
comparison. For either CMPC3 or CMPC5, two zero-length strings
compare equal (Z is set and N, V, and C are cleared).

Notes:
1. After execution of CMPC3:

RO = number of bytes remaining in string 1 (including
byte that terminated comparison); RO is zero only if strings are
equal

R1 = address of the byte in string 1 that terminated
comparison; if strings are equal, address of one
byte beyond string 1

R2 = RO

R3 = address of the byte in string 2 that terminated
comparison; if strings are equal, address of
one byte beyond string 2.

2. After execution of CMPC5:

RO = number of bytes remaining in string 1 (including
byte that terminated comparison); RO is zero only
if string 1 and string 2 are of equal length and
equal or string 1 was exhausted before comparison
terminated

Instructions 143

LOCC

144

R1 = address of the byte in string 1 that terminated
comparison; if comparison did not terminate
before string 1 exhausted, address of one byte
beyond string 1

R2 = number of bytes remaining in string 2 (including
byte that terminated comparison); R2 is zero
only if string 2 and string 1 are of equal length
or string 2 was exhausted before comparison terminated

R3 = address of the byte in string 2 that terminated
comparison; if comparison did not terminate before
string 2 was exhausted, address of one byte beyond
string 2.

3. If both strings have zero length, condition code Z is set
and N, V, and C are cleared just as in the case of two
equal strings.

Locate Character

Format:

opcode char.rb, len.rw, addr.ab

Operation:

tmpl (- len:

tmp2 (- addr;

if tmpl GTRU 0

begin

while

end;

RO (- tmpl;

Rl (- tmp2;

then

{tmpl NEQ O} AND {(tmp2)

begin

tmpl (- tmpl - 1;

tmp2 (- tmp2 + 1;

end;

Condition Codes:

N (- 0;

Z (- RO EQL 0;

V (- 0;

C (- 0;

VAX Architecture Reference Manual

NEQ char} do

MATCHC

Exceptions:
none

Opcode:

3A LOCC Locate Character

Description:
The character operand is compared with the bytes of the string
specified by the length and address operands. Comparison continues
until equality is detected or all bytes of the string have been compared.
If equality is detected, the condition code Z-bit is cleared; otherwise,
the Z -bit is set.

Notes:
1. After execution:

RO = number of bytes remaining in the string (including
located one) if byte located; otherwise 0

R1 = address of the byte located if byte located; otherwise
address of one byte beyond the string.

2. If the string has zero length, condition code Z is set
just as though each byte of the entire string were unequal
to character.

Match Characters

Format:

opcode obj1en.rw, objaddr.ab, src1en.rw, srcaddr.ab

Operation:

tmp1 +- obj1en:

tmp2 +- obj addr;

tmp3 +- src1en;

tmp4 +- srcaddr;

tmp5 +- tmp1;

while {tmp1 NEQU a} AND {tmp3 GEQU tmp1} do

begin

if (tmp2) EQL (tmp4) then

begin

tmp1 +- tmp1 - 1;

tmp2 +- tmp2 + 1;

tmp3 +- tmp3 - 1;

Instructions 145

146

else

end;

if {tmp3 LSSU

begin

tmp4

tmp3

end;

RO ~ tmpl;

Rl ~ tmp2;

R2 ~ tmp3;

R3 ~ tmp4;

tmp4 ~ tmp4 + 1;

end

begin

tmp2 ~ tmp2 - ZEXT (tmp5-tmpl);

tmp3 ~ {tmp3 - I} + {tmp5-tmpl};

tmp4 ~ {tmp4 + I} - ZEXT (tmp5-tmpl);

tmpl ~ tmp5;

end;

tmpl} then

~ tmp4 + tmp3;

~ 0;

Condition Codes:

N ~ n· • u,

Z ~ RO EQL

V ~ 0;

C ~ 0;

Exceptions:
none

Opcode:

0; !match found

39 MATCHC Match Characters

Description:
The source string specified by the source length and source address
operands is searched for a substring that matches the object string
specified by the object length and object address operands. If the
substring is found, the condition code Z-bit is set; otherwise, it is
cleared.

VAX Architecture Reference Manual

Move

Notes:
1. After execution:

RO = if a match occurred 0; otherwise, the number of bytes in the
object string

R1 = if a match occurred, the address of one byte beyond the
object string (that is, objaddr + objlen); otherwise, the address of
the object string

R2 = if a match occurred, the number of bytes remaining in the
source string; otherwise 0

R3 = if a match occurred, the address of one byte beyond the last
byte matched; otherwise, the address of one byte beyond the
source string (that is, srcaddr + srclen).

For zero length source and object strings, R3 and R1 contain the
source and object addresses respectively.

2. If both strings have zero length or if the object string has zero
length, condition code Z is set and registers RO through R3 are left
just as though the substring were found.

3. If the source string has zero length and the object string has non­
zero length, condition code Z is cleared and registers RO through
R3 are left just as though the substring were not found.

Move Character

Format:

opeode len.rw, sreaddr.ab, dstaddr.ab

ope ode srelen.rw, sreaddr.ab, fill.rb,

dstlen.rw, dstaddr.ab

Operation:

tmpl ~ len;

tmp2 ~ sreaddr;

tmp3 ~ dstaddr;

if tmp2 GTRU tmp3 then

begin

while tmpl NEQU a do

begin

Instructions

(tmp3) ~ (tmp2);

tmpl ~ tmpl - 1;

tmp2 ~ tmp2 + 1;

3 operand

5 operand

!3 operand

147

148

else

RO <f-

R2 <f-

R4 <f-

R5 <f-

tmpl

tmp2

tmp3

0;

0;

0'

0'

tmp3 <f- tmp3 + 1;

end;

Rl <f- tmp2;

R3 <f- tmp3;

end

begin

tmp4 <f- tmpl;

tmp2 <f- tmp2 + ZEXT (tmpl) ;

tmp3 <f- tmp3 + ZEXT (tmpl) ;

while tmpl NEQU 0 do

Rl <f-

R3 <f-

end;

begin

tmpl <f- tmpl - l'

tmp2 <f- tmp2 - l'

tmp3 <f- tmp3 - 1;

(tmp3) <f- (tmp2);

end;

tmp2

tmp3

+ ZEXT(tmp4);

+ ZEXT(tmp4) ;

<f- srclen;

<f- srcaddr;

<f- dstlen;

tmp4 <f- dstaddr;

if tmp2 GTRU tmp4 then

begin

!5 operand

while {tmpl NEQU O} AND {tmp3 NEQU O} do

begin

(tmp4) <f- (tmp2);

tmpl <f- trnpl - 1;

tmp2 <f- tmp2 + 1;

tmp3 <f- tmp3 - l'

tmp4 <f- trnp4 + l'

end;

VAX Architecture Reference Manual

while tmp3 NEQU 0 do

begin

(tmp4) ~ fill;

tmp3 ~ tmp3 - 1-

tmp4 ~ tmp4 + l-

end;

R1 ~ tmp2;

R3 ~ tmp4;

end

else

begin

tmp5 ~ MINU(tmpl, tmp3);

tmp6 ~ tmp3;

tmp2 ~ tmp2 + ZEXT (tmp5) ;

tmp4 ~ tmp4 + ZEXT (tmp6) ;

while tmp3 GTRU tmpl do

begin

tmp3 ~ tmp3 - 1;

tmp4 ~ tmp4 - 1;

(tmp4) ~ fill;

end;

while tmp3 NEQU 0 do

begin

tmp1 ~ tmp1 - 1-

tmp2 ~ tmp2 - 1-

tmp3 ~ tmp3 - 1-

tmp4 ~ tmp4 - 1;

(tmp4) ~ (tmp2);

end;

R1 ~ tmp2 + ZEXT (tmp5);

R3 ~ tmp4 + ZEXT (tmp6);

end;

RO ~ tmp1;

R2 ~ 0;

R4 ~ 0;

R5 ~ 0;

Instructions 149

150

Condition Codes:

N ~ 0; !MOVC3

z ~ 1;

V ~.O;

C ~ 0;

N ~ src1en LSS dstlen; !MOVC5

Z ~ src1en EQL dstlen;

V ~ 0;

C ~ src1en LSSU dstlen;

Exceptions:
none

Opcodes:

28 MOVC3 Move Character 3 Operand

2C MOVC5 Move Character 5 Operand

Description:
In 3 operand format, the destination string specified by the length and
destination address operands is replaced by the source string
specified by the length and source address operands. In 5 operand
format, the destination string specified by the destination length
and destination address operands is replaced by the source string
specified by the source length and source address operands. if the
destination string is longer than the source string, the highest
addressed bytes of the destination are replaced by the fill operand. If
the destination string is shorter than the source string, the highest
addressed bytes of the source string are not moved. The operation of
the instruction is such that overlap of the source and destination
strings does not affect the result.

Notes:
1. After execution of MOVC3:

RO = 0

R1 = address of one byte beyond the source string

R2 = 0

R3 = address of one byte beyond the destination string.

R4 = 0

R5 = O.

2. After execution of MOVC5:
RO = number of unmoved bytes remaining in source string; RO is
non-zero only if source string is longer than destination string

VAX Architecture Reference Manual

•

MOVTC

R1 = address of one byte beyond the last byte in source string
that was moved

R2 = 0

R3 = address of one byte beyond the destination string

R4 = 0

R5 = O.

3. MOVC3 is the preferred way to copy one block of memory to
another.

4. MOVC5 with a zero source length operand is the preferred way to
fill a block of memory with the fill character.

Move Translated Characters

Format:

ope ode sre1en.rw, sreaddr.ab, fi11.rb, tb1addr.ab,

dstlen.rw, dstaddr.ab

Operation:

tmp1 ~ sre1en;

tmp2 ~ sreaddr;

tmp3 ~ dstlen;

tmp4 ~ dstaddr;

if tmp2 GTRU tmp4 then

begin

while {tmp1 NEQU O} AND {tmp3 NEQU O} do

begin

(tmp4) ~ (tb1addr + ZEXT((tmp2))) ;

tmp1 ~ tmpl - 1;

tmp2 ~ tmp2 + 1;

tmp3 ~ tmp3 - 1;

tmp4 ~ tmp4 + l'

end;

while {tmp3 NEQU O} do

begin

Instructions

(tmp4) ~ fill;

tmp3 ~ tmp3 - 1;

tmp4 ~ tmp4 + 1;

end;

151

152

else

Rl ~ tmp2;

R5 ~ tmp4;

end;

begin

tmp5 ~ MINU (tmpl, tmp3) ;

tmp6 ~ tmp3;

tmp2 ~ tmp2 + ZEXT (tmp5) ;

tmp4 ~ tmp4 + ZEXT (tmp6) ;

while tmp3 GTRU tmpl do

begin

tmp3 ~ tmp3 - 1;

tmp4 ~ tmp4 - 1;

(tmp4) ~ fill;

end;

while tmp3 NEQU 0 do

begin

tmpl ~ tmpl - 1;

tmp2 ~ tmp2 - 1;

tmp3 ~ tmp3 - 1;

tmp4 ~ tmp4 - 1;

(tmp4) ~ (tbladdr + ZEXT ((tmp2))) ;

end;

Rl .~ tmp2 + ZEXT(tmp5) ;

R5 ~ tmp4 + ZEXT (tmp6) ;

end;

RO ~ tmpl;

R2 ~ 0;

R3 ~ tbladdr;

R4 ~ 0;

Condition Codes:

N ~ srclen LSS

Z ~ srclen EQL

V ~ 0;

dstlen;

dstlen;

C ~ srclen LSSU dstlen;

Exceptions:
none

VAX Architecture Reference Manual

MOVTUC

Opcode:

2E MOVTC Move Translated Characters

Description:
The source string specified by the source length and source address
operands is translated and replaces the destination string specified by
the destination length and destination address operands. Translation
is accomplished by using each byte of the source string as an
index into a 256-byte table whose zeroth entry address is specified by
the table address operand. The byte selected replaces the byte of
the destination string. If the destination string is longer than the
source string, the highest addressed bytes of the destination string
are replaced by the fill operand. If the destination string is shorter
than the source string, the highest addressed bytes of the source
string are not translated and moved. The operation of the instruction
is such that overlap of the source and destination strings does not
affect the result. If the destination string overlaps the translation table,
the destination string is UNPREDICTABLE.

Notes:
After execution:

RD = number of untranslated bytes remaining in source string; RD is
non-zero only if source string is longer than destination string

R1 = address of one byte beyond the last byte in source string that
was translated

R2 = D

R3 = address of the translation table

R4 = D

R5 = address of one byte beyond the destination string.

Move Translated Until Character

Format:

ope ode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab, dstlen.rw,

dstaddr.ab

Operation:

tmpl ~ srclen;

tmp2 ~ srcaddr;

tmp3 ~ dstlen;

tmp4 ~ dstaddr;

if tmpl GTRU 0 and tmp3 GTRU 0 then

Instructions 153

154

begin

while {tmpl NEQU O} AND {tmp3 NEQU O} do

if{(tbladdr + ZEXT(tmp2)) NEQU esc} then

begin

(tmp4) ~ (tbladdr + ZEXT(tmp2)) ;

tmpl ~ tmpl - 1;

tmp2 ~ tmp2 + 1;

tmp3 ~ tmp3 - 1;

tmp4 ~ tmp4 + 1;

end;

else exit while loop;

end;

RO ~ tmpl;

Rl ~ tmp2;

R2 ~ 0;

R3 ~ tbladdr;

R4 ~ tmp3;

R5 ~ tmp4;

Condition Codes:

N ~ srclen LSS dstlen;

Z ~ srclen EQL dstlen;

V ~ {terminated by escape};

C ~ srclen LSSU dstlen;

Exceptions:
none

Opcode:

2F MOVTUC Move Translated Until Character

Description:
The source string specified by the source length and source address
operands is translated and replaces the destination string specified by
the destination length and destination address operands. Translation
is accomplished by using each byte of the source string as index into
a 256-byte table whose zeroth entry address is specified by the
table address operand. The byte selected replaces the byte of the
destination string. Translation continues until a translated byte is
equal to the escape byte or until the source string or destination string
is exhausted. If translation is terminated because of escape, the
condition code V-bit is set; otherwise, it is cleared. If the destination

VAX Architecture Reference Manual

SCANC

string overlaps the table, the destination string and registers RD
through R5 are UNPREDICTABLE. If the source and destination
strings overlap and their addresses are not identical, the destination
string and registers RD through R5 are UNPREDICTABLE. If the
source and destination string addresses are identical, the translation
is performed correctly.

Notes:
After execution:

RD = number of bytes remaining in source string (including the byte
that caused the escape); RD is zero only if the entire source string
was translated and moved without escape

R1 = address of the byte that resulted in destination string exhaustion
or escape; or if no exhaustion or escape, address of one byte beyond
the source string

R2 = D

R3 = address of the table

R4 = number of bytes remaining in the destination string

R5 = address of the byte in the destination string that would have
received the translated byte that caused the escape or would have
received a translated byte if the source string were not exhausted; or
if no exhaustion or escape, the address of one byte beyond the
destination string.

Scan Characters

Format:

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

Operation:

tmpl ~ len;

tmp2 ~ addr;

if tmpl GTRU 0 then

begin

while {tmpl NEQU O} AND {{(tbladdr + ZEXT((tmp2)))

AND mask} EQL O} do

begin

tmpl ~ tmpl - 1;

tmp2 ~ tmp2 + l'

end;

end;

Instructions 155

156

RO ~ tmpl;

Rl ~ tmp2;

R2 ~ 0;

R3 ~ tbladdr;

Condition Codes:

N ~ 0;

Z ~ RO EQL 0;

V ~ 0;

C ~ 0;

Exceptions:
none

Opcode:

2A SCANC Scan Characters

Description:
The bytes of the string specified by the length and address operands
are successively used to index into a 256-byte table whose zeroth
entry address is specified by the table address operand. The byte
selected from the table is ANDed with the mask operand. The
operation continues until the result of the AND is non-zero or all the
bytes of the string have been exhausted. If a non-zero AND result
is detected, the condition code Z-bit is cleared; otherwise, the Z-bit is
set.

Notes:
1. After execution:

RO = number of bytes remaining in the string (including the byte
that produced the non-zero AND result);

RO is zero only if there was no non-zero AND result

R1 = address of the byte that produced non-zero AND result; or, if
no non-zero result, address of one byte beyond the string

R2 = 0

R3 = address of the table.

2. If the string has zero length, condition code Z is set just as though
the entire string were scanned.

VAX Architecture Reference Manual

SKPC Skip Character

Format:

opcade char.rb, len.rw, addr.ab

Operation:

tmpl ~ len;

tmp2 ~ addr;

if tmpl GTRU 0 then

begin

while {tmpl NEQ rl AND {(tmp2) EQL char} do

begin

tmpl ~ tmpl - 1;

tmp2 ~

end;

end;

RO ~ tmpl;

Rl ~ tmp2;

Condition Codes:

N ~ 0;

Z ~ RO EQL

V ~ 0;

C ~ 0;

Exceptions:
none

Opcode:

0;

tmp2 + 1·

3B SKPC Skip Character

Description:
The character operand is compared with the bytes of the string
specified by the length and address operands. Comparison continues
until inequality is detected or all bytes of the string have been
compared. If inequality is detected; the condition code Z-bit is cleared;
otherwise the Z-bit is set.

Notes:
1. After execution:

RO = number of bytes remaining in the string (including the
unequal one) if unequal byte located; otherwise, 0

Instructions 157

SPANC

158

R1 = address of the byte located if byte located; otherwise
address of one byte beyond the string.

2. If the string has zero length, condition code Z is set just as though
each byte of the entire string were equal to character.

Span Characters

Format:

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

Operation:

tmpl ~ len;

tmp2 ~ addr;

if tmpl GTRU 0 then

begin

while {tmpl NEQU O} AND

end;

RO ~ tmpl;

Rl ~ tmp2;

R2 ~ 0;

R3 ~ tbladdr;

Condition Codes:

N ~ 0;

Z ~ RO EQL 0;

V ~ 0;

C ~ 0;

Exceptions:
none

Opcode:

{{ (tbladdr + ZEXT ((tmp2))) AND
mask} NEQ O} do
begin

tmpl ~ tmpl - 1;

tmp2 ~ tmp2 + 1;

end;

28 SPANC Span Characters

VAX Architecture Reference Manual

CYCLIC
REDUNDANCY
CHECK
INSTRUCTION

Description:
The bytes of the string specified by the length and address operands
are successively used to index into a 256-byte table whose zeroth
entry address is specified by the table address operand. The byte
selected from the table is ANDed with the mask operand. The
operation continues until the result of the AND is zero or all the bytes
of the string have been exhausted. If a zero AND result is detected,
the condition code l-bit is cleared; otherwise, the l-bit is set.

Notes:
1. After execution:

RO = number of bytes remaining in the string (including the byte
that produced the zero AND result); RO is zero only if there was no
zero AND result

R1 = address of the byte that produced a zero AND result; or, if
no non-zero result, address of one byte beyond the string

R2 = 0

R3 = address of the table.

2. If the string has zero length, the condition code l is set just as
though the entire string were spanned.

Note
The cyclic redundancy check instructions may be omitted from subset
implementations of the VAX architecture. Execution of an omitted
instruction results in an emulated instruction exception. For more
detail, refer to Chapter 11.

This instruction is designed to implement the calculation and checking
of a cyclic redundancy check (CRC) for any CRC polynomial up to
32 bits. Cyclic redundancy checking is an error-detection method
involving a division of the data stream by a CRC polynomial. The data
stream is represented as a standard VAX string in memory. Error
detection is accomplished by computing the CRC at the source and
again at the destination, comparing the CRC computed at each end.
The choice of the polynomial is such as to minimize the number of
undetected block errors of specific lengths. The choice of a CRC
polynomial is not given here.·

The operands to the CRC instruction are a string descriptor, a 16-
longword table, and an initial CRC. The string descriptor is a standard
VAX operand pair of the length of the string in bytes (up to 65,535)
and the starting address of the string. The contents of the table are a

·See the article "Cyclic Codes for Error Detection" by W. Peterson and D. Brown in
the Proceedings of the IRE (January 1961).

Instructions 159

CRC

160

function of the CRC polynomial to be used. It can be calculated
from the polynomial by the algorithm in the notes. Several common
CRC polynomials are also included in the notes. The initial CRC
is used to start the polynomial correctly. Typically, it has the value 0
or - 1, but would be different if the data stream were represented by
a sequence of non-contiguous strings.

The CRC instruction operates by scanning the string, and for each
byte of the data stream, including it in the CRC being calculated. The
byte is included by XORing it to the right 8 bits of the CRC. Then
the CRC is shifted right 1 bit, inserting zero on the left. The right-most
bit of the CRC (lost by the shift) is used to control the XORing of the
CRC polynomial with the resultant CRC. If the bit is set, the polynomial
is XORed with the CRC. Then the CRC is again shifted right, and the
polynomial is conditionally XORed with the result a total of eight
times. The actual algorithm used can shift by 1, 2, or 4 bits at a time
using the appropriate entries in a specially constructed table. The
instruction produces a 32-bit CRC. For shorter polynomials, the result
must be extracted from the 32-bit field. The data stream must be a
multiple of 8 bits in length. If it is not, the stream must be right­
adjusted in the string with leading 0 bits.

Calculate Cyclic Redundancy Check

Format:

opcode tbl.ab, inicrc.rl, strlen.rw, stream.ab

Operation:

tmpl <-- strlen;

tmp2 <-- stream;

tmp3 <-- inicrc;

tmp4 <-- tbl;

while tmpl NEQU 0 do

begin

tmp3(7: 0)<-- tmp3(7: 0) XOR (tmp2) + ;

for tmp5 <-- 1, limit do ! see notes for limit, s, i

tmp3 <-- ZEXT (tmp3(31 : s)) XOR

tmpl <-- tmpl -1;

end;

(tmp4 + {4*ZEXT (tmp3(s -1: O)*i)};

RO <-- tmp3;

Rl <-- 0;

VAX Architecture Reference Manual

R2 <- 0;

R3 <- tmp2;

Condition Codes:

N <c- RO LSS

Z <c- RO EQL

V <c- 0;

C <c- 0;

Exceptions:
none

Opcode:

0;

0;

OB CRC Calculate Cyclic Redundancy Check

Description:
The CRC of the data stream described by the string descriptor is
calculated. The initial CRC is given by inicrc and is normally 0 or -1
unless the CRC is calculated in several steps. The result is left in
RO. If the polynomial is less than order 32, the result must be
extracted from the result. The CRC polynomial is expressed by the
contents of the 16-longword table. See the notes for the calculation of
the table.

Notes:
1. If the data stream is not a multiple of 8-bits long, it must be right­

adjusted with leading 0 fill.

2. If the CRC polynomial is less than order 32, the result must be
extracted from the low-order bits of RO.

3. The following algorithm can be used to calculate the CRC table
given a polynomial expressed as follows:

polyn(n) <c- {coefficient of x'order -l-n}}

This routine is available as system library routine
LlB$CRC_ TABLE (poly.rl, table.ab). The bits of the poly operand,
taken right to left, represent the coefficients of the polynomial,
taken left to right and skipping the most significant bit. The table is
the location of a 64-byte (16-longword) table into which the result
will be written.

SUBROUTINE LIB$CRC-TABLE (POLY, TABLE)

INTEGER*4 POLY, TABLE(0:15), TMP, x
DO 190 INDEX = 0, 15

TMP = INDEX

DO 150 I = 1, 4

Instructions 161

Table 3.1
CRC-16

Initialize
Polynomial POLY Value Result

CRC-16 (used for DDCMP
and Bisync)
X'6+ X'5+ X2+ 1 0000A001 00000000 RO(15:0)

CCITT (used for ADCCP,
HDLC, SDLC)
X'6 +X'2 +X5+ 1 00008408 OOOOFFFF one's complement of RO(15:0)

AUTODIN-II

X32 + X26 + X23 + X22 + EDB88320 FFFFFFFF one's complement of RO(31 :0)
X'6+ X'2+ X" +x'o+
X8+ X7 +X5+ X4+X2+X+ 1

162

x = TMP . AND. 1

TMP = ISHFT(TMP, -1)
one bit

!logical shift right

IF (X .EQ. 1) TMP = TMP .XOR. POLY

150 CONTINUE

TABLE (INDEX) = TMP

190 CONTINUE

RETURN

END

4. Table 3.1 describes some commonly used CRC polynomials.

5. This instruction produces an UNPREDICTABLE result unless the
table is well formed, such as produced in item 3 above. Note
that for any well formed table, entry[O] is always 0 and entry[8] is
always the polynomial expressed as in item 3 above. The operation
can be implemented using shifts of 1, 2, or 4 bits at a time as
shown in Table 3.2.

6. If the stream has zero length, RO receives the initial eRe.

Table 3.2
CRC Shift Amounts

Shift
Amount(s)

1
2
4

Steps
Per Byte
(Limit)

8
4
2

Table Index

tmp3(0)
tmp3(1 :0)
tmp3(3:0)

VAX Architecture Reference Manual

Table Index
Multiplier (1)

8
4
1

Table Entries Used

[0] =0,[8]
[0] = 0,[4],[8],[12]
ali

DECIMAL­
STRING
INSTRUCTIONS

Decimal-string instructions may be omitted from subset implementa­
tions of the VAX architecture. Execution of an omitted instruction
results in an emulated instruction exception. Omitted instructions may
be emulated by operating system software, which may use user-mode
stack space during the emulation. For more detail, refer to Chapter 11.

Decimal-string instructions operate on packed decimal strings.
Convert instructions are provided between packed decimal and trailing
numeric string (overpunched and zoned) and leading separate
numeric string formats. Where necessary, a specific data type is
identified. Where the phrase decimal string is used, it means any of
the three data types.

A decimal string is specified by two operands:

• The first operand is the length; the number of digits in the string.
The number of bytes in the string is a function of the length and the
type of decimal string referenced (see Chapter 1) .

• The second operand is the address of the lowest addressed byte of
the string. This byte contains the most significant digit for trailing
numeric and packed decimal strings. This byte contains a sign for
left separate numeric strings. The address is specified by a byte
operand of address access type.

Each of the decimal-string instructions uses general registers RO
through R3 or RO through R5 to contain a control block that maintains
updated addresses and state during the execution of the instruction.
At completion, the registers containing addresses are available to the
software to use as string specification operands for a subsequent
instruction on the same decimal strings. During the execution of the
instructions, pending interrupt conditions are tested, and if any is
found, the control block is updated. First-part-done is set in the PSL,
and the instruction interrupted (see Chapter 5). After the interruption,
the instruction resumes transparently. The format of the control
block at completion is shown in Figure 3.8. The fields address 1,
address 2, and address 3 (if required) contain the address of the byte

31

0

address 1

0

address 2

0

address 3

Figure 3.8
Decimal-String Instruction Control Block

Instructions

o
:RO

:R1

:R2

:R3

:R4

:R5

163

Decimal
Overflow

Zero Numbers

Reserved
Operand
Exception

containing the most significant digit of the first, second, and third (if
required) string operands respectively.

The decimal-string instructions treat decimal strings as integers with
the decimal point assumed immediately beyond the least significant
digit of the string. If a string in which a result is to be stored is longer
than the result, its most significant digits are filled with zeros.

Decimal overflow occurs if the destination string is too short to contain
all the digits (excluding leading zeros) of the result. On overflow, the
destination string is replaced by the correctly signed least significant
digits of the true result (even if the stored result is - 0). Note that
neither the high nibble of an even-length packed decimal string, nor
the sign byte of a leading separate numeric string is used to store
result digits.

A zero result has a: positive sign for all operations that complete
without decimal overflow, except for CVTPT which does not fix a - 0
to a + O. When digits are lost because of overflow, however, a zero
result receives the sign (positive or negative) of the correct result.

A decimal string wi~h value - 0 is treated as identical to a decimal
string with value +0. For example, +0 compares equal to -0. When
condition codes are affected on a - 0 result they are affected as if
the result were + 0; that is, N is cleared and Z is set.

A reserved operand abort occurs if the length of a decimal-string
operand is outside the range 0 through 31, or if an invalid sign or digit
is encountered in CVTSP and CVTTP. The PC points to the opcode
of the instruction causing the exception.

UNPREDICTABLE The result of any operation is UNPREDICTABLE if any source
Results decimal-string operand contains invalid data. Except for CVTSP and

CVTTP, the decimal-string instructions do not verify the validity of
source operand data.

164

If the destination operands overlap any source operands, the result of
an operation will, in general, be UNPREDICTABLE. The destination
strings, registers used by the instruction and condition codes, will
in general, be UNPREDICTABLE when a reserved operand abort
occurs.

VAX Architecture Reference Manual

Packed Decimal Packed decimal strings generated by the decimal-string instructions
Operations always have the preferred sign representation: 12 for "+" and 13 for

"-". An even-length packed decimal string is always generated with

Zero-Length
Decimal
Strings

ADDP

a "0" digit in the high nibble of the first byte of the string.

A packed decimal string contains an invalid nibble if:

1. A digit occurs in the sign position

2. A sign occurs in a digit position

3. For an even-length string, a non-zero nibble occurs in the high
order nibble of the lowest addressed byte.

The length of a packed decimal string can be o. In this case, the
value is zero (plus or minus) and one byte of storage is occupied.
This byte must contain a "0" digit in the high nibble and the sign in
the low nibble.

The length of a trailing numeric string can be O. In this case, no
storage is occupied by the string. If a destination operand is a zero­
length trailing numeric string, the sign of the operation is lost. Memory
access faults will not occur when a zero-length trailing numeric
operand is specified because no memory reference occurs. The value
of a zero-length trailing numeric string is identically O.

The length of a leading separate numeric string can be O. In this
case, one byte of storage is occupied by the sign. Memory is accessed
when a zero-length operand is specified, and a reserved operand
abort occurs if an invalid sign is detected. The value of a zero-length
leading separate numeric string is identically O.

Add Packed

Format:

ope ode addlen.rw, addaddr.ab, sumlen.rw,

sumaddr.ab

ope ode addllen.rw, addladdr.ab, add21en.rw,

add2addr.ab, sumlen.rw, sumaddr.ab

Operation:

({sumaddr + ZEXT(sumlen/2)} : sumaddr) ~

({sumaddr + ZEXT (sumlen/2)) sumaddr) +
({addaddr + ZEXT (addlen/2)} : addaddr); ! 4

Instructions 165

166

operand

({sumaddr + ZEXT (sumlen/2)} : sumaddr) ~

({add2addr + ZEXT(add21en/2)} add2addr) +
({addladdr + ZEXT(addllen/2)} : addladdr); 16

operand

Condition Codes:

N ~ {sum string} LSS 0;

Z ~ {sum string} EQL 0;

V ~ {decimal overflow};

C ~ 0;

Exceptions:
reserved operand
decimal overflow

Opcodes:

20 ADDP4 Add Packed 4 Operand

21 ADDP6 Add Packed 6 Operand

Description:
In 4 operand format, the addend string specified by the addend length
and addend address operands is added to the sum string specified
by the sum length and sum address operands, and the sum string is
replaced by the result.

In 6 operand format, the addend 1 string specified by the addend 1
length and addend 1 address operands is added to the addend 2
string specified by the addend 2 length and addend 2 address
operands. The sum string specified by the sum length and sum
address operands is replaced by the result.

Notes:
1. After execution of ADDP4:

RO = 0

R1 = address of the byte containing the most significant digit of
the addend string

R2 = 0

R3 = address of the byte containing the most significant digit of
the sum string.

2. After execution of ADDP6:

RO = 0

R1 = address of the byte containing the most significant digit of
the addend 1 string

VAX Architecture Reference Manual

ASHP

R2 == 0

R3 == address of the byte containing the most Significant digit of
the addend 2 string

R4 == 0

R5 == address of the byte containing the most significant digit of
the sum string.

3. The sum string, RO through R3 (or RO through R5 for ADDP6), and
the condition codes are UNPREDICTABLE if the sum string
overlaps the addend, addend 1, or addend 2 strings; the addend,
addend 1, addend 2 or sum (4 operand only) strings contain an
invalid nibble; or a reserved operand abort occurs.

Arithmetic Shift and Round Packed

Format:

opcode cnt.rb, srclen.rw, srcaddr.ab, round.rb

dstlen.rw, dstaddr.ab

Operation:

({dstaddr + ZEXT (dstlen/2)) : dstaddr) <-

{({srcaddr + ZEXT (srclen/2)} : srcaddr)

+ {round (3: 0)*{10 ** {-cnt -I}}}}

* {10 ** cnt} ;

Condition Codes:

N <- {dst string} LSS 0;

Z <- {dst string} EQL 0;

V <- {decimal overflow};

C <- 0;

Exceptions:
reserved operand
decimal overflow

Opcode:

F8 ASHP Arithmetic Shift and Round Packed

Description:
The source string specified by the source length and source address
operands is scaled by a power of 10 specified by the count operand.
The destination string specified by the destination length and
destination address operands is replaced by the result.

Instructions 167

- ---~---------

CMPP

168

A positive count operand effectively multiplies; a negative count
effectively divides; and a zero count just moves and affects condition
codes. When a negative count is specified, the result is rounded using
the round operand.

Notes:
1. After execution:

RO = 0

R1 = address of the byte containing the most significant digit of
the source string

R2 = 0

R3 = address of the byte containing the most significant digit of
the destination string.

2. The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source
string, the source string contains an invalid nibble, or a reserved
operand abort occurs.

3. When the count operand is negative, the result is rounded by
decimally adding bits (3:0) of the round operand to the most
significant low-order digit discarded and propagating the carry, if
any, to higher order digits. Both the source operand and the round
operand are considered to be quantities of the same sign for the
purpose of this addition.

4. If bits (7:4) of the round operand are non-zero, or if bits (3:0)of the
round operand contain an invalid packed decimal digit, the result
is UNPREDICTABLE.

5. When the count operand is zero or positive, the round operand has
no effect on the result except as specified in item 4 above.

6. The round operand is normally five. Truncation may be accomplished
by using a zero round operand.

Compare Packed

Format:

ope ode len.rw, sreladdr.ab, sre2addr.ab

ope ode srellen.rw, sreladdr.ab, sre21en.rw,

sre2addr.ab
operand

Operation:

({srcladdr + ZEXT(len/2)} : srcladdr) -

3 operand

4

({src2addr + ZEXT(len/2)} : src2addr); 13 operand

V AX Architecture Reference Manual

CVTLP

({srcladdr + ZEXT(srcllen/2)} : srcladdr) -

({src2addr + ZEXT(src21en/2)} : src2addr); !4 operand

Condition Codes:

N ~ {srcl string}

Z ~ {srcl string}

V ~ 0;

C ~ 0;

Exception:
reserved operand

Opcodes:

LSS {src2 string};

EQL {src2 string};

35 CMPP3 Compare Packed 3 Operand
37 CMPP4 Compare Packed 4 Operand

Description:
In 3 operand format, the source 1 string specified by the length and
source 1 address operands is compared to the source 2 string
specified by the length and source 2 address operands. The only
action is to affect the condition codes.

In 4 operand format, the source 1 string specified by the source 1
length and source 1 address operands is compared to the source 2
string specified by the source 2 length and source 2 address operands.
The only action is to affect the condition codes.

Notes:
1. After execution of CMPP3 or CMPP4:

RD = D

R1 = address of the byte containing the most significant digit of
string 1

R2 = D

R3 = address of the byte containing the most significant digit of
string 2.

2. RD through R3 and the condition codes are UNPREDICTABLE if
the source strings overlap, if either string contains an invalid
nibble, or if a reserved operand abort occurs.

Convert Long to Packed

Format:

opcode src.rl, dstlen.rw, dstaddr.ab

Instructions 169

CVTPL

170

Operation:

({dstaddr + ZEXT(dstlen/2)} dstaddr) <- conversion of src;

Condition Codes:

N --- {dst string} LSS 0;

Z --- {dst string} EQL 0;

V --- {decimal overflow};

C --- 0;

Exceptions:
reserved operand
decimal overflow

Opcode:

F9 CVTLP Convert Long to Packed

Description:
The source operand is converted to a packed decimal string and the
destination string operand specified by the destination length and
destination address operands is replaced by the result.

Notes:
1. After execution:

RO = 0

R1 = 0
R2 = 0

R3 = address of the byte containing the most significant digit of
the destination string.

2. The destination string, RO through R3, and the condition codes are
UNPREDICTABLE on a reserved operand abort.

3. Overlapping operands produce correct results.

Convert Packed to Long

Format:

opcode srclen.rw, srcaddr.ab, dst.wl

Operation:

dst <- conversion of ({srcaddr + ZEXT (srclen/2)} srcaddr) ;

VAX Architecture Reference Manual

CVTPS

Condition Codes:

N <- dst LSS 0;

Z <- dst EQL 0;

V <- {integer overflow};

C <- 0;

Exceptions:
reserved operand
integer overflow

Opcode:

36 CVTPL Convert Packed to Long

Description:
The source string specified by the source length and source address
operands is converted to a longword, and the destination operand
is replaced by the result.

Notes:
1. After execution:

RO = 0

R1 = address of the byte containing the most significant digit of
the source string

R2 = 0

R3 = O.

2. The destination operand, RO through R3, and the condition codes
are UNPREDICTABLE on a reserved operand abort or if the string
contains an invalid nibble.

3. The destination operand is stored after the registers are updated
as specified in item 1 above. Thus, RO through R3 may be used as
the destination operand.

4. If the source string has a value outside the range - 2,147,483,648
through 2,147,483,647, integer overflow occurs and the destination
operand is replaced by the low-order 32 bits of the correctly
signed infinite precision conversion. Thus, on overflow, the sign of
the destination may be different from the sign of the source.

5. Overlapping operands produce correct results.

Convert Packed to Leading Separate Numeric

Format:

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

Instructions 171

172

Operation:

{dst string} ~ conversion of {src string};

Condition Codes:

N ~ {src string} LSS 0;

Z ~ {src string} EQL 0;

V ~ {decimal overflow};

C ~ 0;

Exceptions:
reserved operand
decimal overflow

Opcode:

08 CVTPS Convert Packed to Leading Separate Numeric

Description:
The source packed decimal string specified by the source length and
source address operands is converted to a leading separate numeric
string. The destination string specified by the destination length
and destination address operands is replaced by the result.

Conversion is effected by replacing the lowest addressed byte of the
destination string with the ASCII character" + " or "":"", determined by
the sign of the source string. The remaining bytes of the destination
string are replaced by the ASCII representations of the values of
the corresponding packed decimal digits of the source string.

Notes:
1. After execution:

RO = 0

R1 = address of the byte containing the most significant digit of
the source string

R2 = 0

R3 = address of the sign byte of the destination string.

2. The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source
string, the source string contains an invalid nibble, or a reserved
operand abort occurs.

3. This instruction produces an ASCII" +" or "-" in the sign byte of
the destination string.

4. If decimal overflow occurs, the value stored in the destination may
be different from the value indicated by the condition codes
(Z and N bits).

VAX Architecture Reference Manual

CVTPT

5. If the conversion produces a - 0 without overflow, the destination
leading separate numeric string is changed to a + 0 representation.

Convert Packed to Trailing Numeric

Format:

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab

Operation:

{dst string} <-- conversion of {src string};

Condition Codes:

N <-- {src string} LSS 0;

Z <-- {src string} EQL 0;

V <-- {decimal overflow};

C <-- 0;

Exceptions:
reserved operand
decimal overflow

Opcode:

24 CVTPT Convert Packed to Trailing Numeric

Description:
The source packed decimal string specified by the source length and
source address operands is converted to a trailing numeric string. The
destination string specified by the destination length and destination
address operands is replaced by the result. The condition code Nand
Z bits are affected by the value of the source packed decimal string.

Conversion is effected by using the highest addressed byte (even if
the source string value is - 0) of the source string (the byte containing
the sign and the least significant digit) as an unSigned index into a
256-byte table whose zeroth entry address is specified by the table
address operand. The byte read out of the table replaces the least
significant byte of the destination string. The remaining bytes of the
destination string are replaced by the ASCII representations of the
values of the corresponding packed decimal digits of the source
string.

Instructions 173

CVTSP

174

Notes:
1. After execution:

RO = 0

R1 = address of the byte containing the most significant digit of
the source string

R2 = 0

R3 = address of the most significant digit of the destination string.

2. The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source
string or the table, the source string or the table contains an invalid
nibble, or a reserved operand abort occurs.

3. The condition codes are computed on the value of the source
string even if overflow results. In particular, condition code N is set
if and only if the source is non-zero and contains a minus sign.

4. By appropriate specification of the table, conversion to any form of
trailing numeric string may be realized. See Chapter 1 for the
preferred form of trailing overpunch, zoned and unsigned data. In
addition, the table may be set up for absolute value, negative
absolute value, or negated conversions. The translation table may
be referenced even if the length of the destination string is zero.

5. Decimal overflow occurs if the destination string is too short to
contain the converted result of a non-zero packed decimal source
string (not including leading zeros). Conversion of a source
string with zero value never results in overflow. Conversion of a
non-zero source string to a zero-length destination string results in
overflow.

6. If decimal overflow occurs, the value stored in the destination may
be different from the value indicated by the condition codes
(Z and N bits).

Convert Leading Separate Numeric to Packed

Format:

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

Operation:

{dst string} ~ conversion of {src string}

Condition Codes:

N ~ {dst string} LSS 0;

Z ~ {dst string} EQL 0;

VAX Architecture Reference Manual

CVTTP

v <- {decimal overflow};

C <- 0;

Exceptions:
reserved operand
decimal overflow

Opcode:

09 CVTSP Convert Leading Separate Numeric to Packed

Description:
The source numeric string specified by the source length and source
address operands is converted to a packed decimal string, and the
destination string specified by the destination address and destination
length operands is replaced by the result.

Notes:
1. A reserved operand abort occurs if:

• The length of the source leading separate numeric string is
outside the range 0 through 31.

• The length of the destination packed decimal string is outside the
range 0 through 31.

• The source string contains an invalid byte. An invalid byte is any
character other than an ASCII "0" through "9" in a digit byte or
an ASCII "+", "(space)", or "-" in the sign byte.

2. After execution:

RO = 0

R1 = address of the sign byte of the source string

R2 = 0

R3 = address of the byte containing the most significant digit of
the destination string.

3. The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source
string, or a reserved operand abort occurs.

Convert Trailing Numeric to Packed

Format:

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dstaddr.ab

Instructions 175

176

Operation:

{dst string} ~ conversion of {src string}

Condition Codes:

N ~ {dst string}LSS 0;

Z ~ {dst string} EQL 0;

V ~ {decimal overflow};

C ~ 0;

Exceptions:
reserved operand
decimal overflow

Opcode:

26 CVTTP Convert Trailing Numeric to Packed

Description:
The source trailing numeric string specified by the source length and
source address operands is converted to a packed decimal string,
and the destination packed decimal string specified by the destination
address and destination length operands is replaced by the result.

Conversion is effected by using the highest addressed (trailing) byte
of the source string as an unsigned index into a 256-byte table whose
zeroth entry is specified by the table address operand. The byte read
out of the table replaces the highest addressed byte of the destination
string (the byte containing the sign and the least significant digit).
The remaining packed digits of the destination string are replaced by
the low-order 4 bits of the corresponding bytes in the source string.

Notes:
1. A reserved operand abort occurs if:

• The length of the source trailing numeric string is outside the
range a through 31

• The length of the destination packed decimal string is outside the
range a through 31

• The source string contains an invalid byte; an invalid byte is any
value other than ASCII "0" through "9" in any high-order byte
(any byte except the least significant byte)

• The translation of the least significant digit produces an invalid
packed decimal digit or sign nibble.

2. After execution:

RO = a
R1 = address of the most significant digit of the source string

VAX Architecture Reference Manual

DIVP

R2 = 0

R3 = address of the byte containing the most significant digit of
the destination string.

3. The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source
string or the table, or a reserved operand abort occurs.

4. If the convert instruction produces a -0 without overflow, the
destination packed decimal string is changed to a + 0 representation,
condition code N is cleared, and Z is set.

5. If the length of the source string is 0, the destination packed
decimal string is set identically equal to 0, and the translation table
is not referenced.

6. By appropriate specification of the table, conversion from any form
of trailing numeric string may be realized. See Chapter 1 for the
preferred form of trailing overpunch, zoned, and unsigned data. In
addition, the table may be set up for absolute value, negative
absolute value, or negated conversions.

7. If the table translation produces a sign nibble containing any valid
sign, the preferred sign representation is stored in the destination
packed decimal string.

Divide Packed

Format:

opcode divrlen.rw, divraddr.ab, divdlen.rw,

divdaddr.ab, quolen.rw, quoaddr.ab,

Operation:

({quoaddr + ZEXT (quolen/2)} : quoaddr) ~

({di vdaddr + ZEXT (di vdlen/2)} di vdaddr) /

({divraddr + ZEXT(divrlen/2)} divraddr);

Condition Codes:

N ~ {quo string} LSS 0;

Z ~ {quo string} EQL 0;

V ~ {decimal overflow};

C ~ 0;

Exceptions:
reserved operand
decimal overflow
divide by zero

Instructions 177

178

Opcode:

27 DrVp Divide Packed

Description:
The dividend string specified by the dividend length and dividend
address operands is divided by the divisor string specified by the
divisor length and divisor address operands. The quotient string
specified by the quotient length and quotient address operands is
replaced by the result.

Notes:
1. This instruction allocates a 16-byte workspace on the stack. After

execution, SP is restored to its original contents and the contents of
((SP) - 16}:{(SP) -1} are UNPREDICTABLE.

2. The division is performed such that:

• The absolute value of the remainder (which is lost) is less that
the absolute value of the divisor

• The product of the absolute value of the quotient times the
absolute value of the divisor is less than or equal to the absolute
value of the dividend

• The sign of the quotient is determined by the rules of algebra
from the signs of the dividend and the divisor. If the value of the
quotient is zero, the sign is always positive.

3. After execution:

RO = 0

R1 = address of the byte containing the most significant digit of
the divisor string

R2 = 0

R3 = address of the byte containing the most significant digit of
the dividend string

R4 = 0

R5 = address of the byte containing the most significant digit of
the quotient string.

4. The quotient string, RO through R5, and the condition codes are
UNPREDICTABLE if the quotient string overlaps the divisor or
dividend strings, the divisor, dividend, or quotient strings overlap
the 16 bytes of temporary storage on the stack, the divisor or
dividend string contains an invalid nibble, the divisor is 0, or
a reserved operand abort occurs.

VAX Architecture Reference Manual

MOVP Move Packed

Format:

opcode len.rw, srcaddr.ab, dstaddr.ab

Operation:

({dstaddr + ZEXT(len/2)} : dstaddr) ~

({srcaddr + ZEXT (len/2)} : srcaddr);

Condition Codes:

N ~ {dst string}

Z ~ {dst string}

V ~ 0;

C ~ C;

Exception:
reserved operand

Opcode:

LSS 0;

EQL 0;

34 MOVP Move Packed

Description:
The destination string specified by the length and destination address
operands is replaced by the source string specified by the length
and source address operands.

Notes:
1. After execution:

RO = 0

R1 = address of the byte containing the most significant digit of
the source string

R2 = 0

R3 = address of the byte containing the most significant digit of
the destination string.

2. The destination string, RO through R3, and the condition codes are
UNPREDICTABLE if the destination string overlaps the source
string, the source string contains an invalid nibble, or a reserved
operand abort occurs.

3. If the source is - 0, the result is + 0, N is cleared, and Z is set.

Instructions 179

MULP

180

Multiply Packed

Format:

opcode mulrlen.rw, mulraddr.ab, muldlen.rw,

muldaddr.ab, prodlen.rw, prodaddr.ab

Operation:

({prodaddr + ZEXT(prodlen/2)} : prodaddr) <-

({muldaddr + ZEXT(muldlen/2)} muldaddr) *

({mulraddr + ZEXT(mulrlen/2)} mulraddr);

Condition Codes:

N <- {prod string} LSS 0;

Z <- {prod string} EQL 0;

V <- {decimal overflow};

C <- 0;

Exceptions:
reserved operand
decimal overflow

Opcode:

25 MULP Multiply Packed

Descri ption:
The multiplicand string specified by the multiplicand length and
multiplicand address operands is multiplied by the multiplier string
specified by the multiplier length and multiplier address operands. The
product string specified by the product length and product address
operands is replaced by the result.

Notes:
1. After execution:

RO = 0

R1 = address of the byte containing the most significant digit of
the multiplier string

R2 = 0

R3 = address of the byte containing the most significant digit of
the multiplicand string

R4 = 0

R5 = address of the byte containing the most significant digit of
the product string.

VAX Architecture Reference Manual

SUBP

2. The product string, RO through R5, and the condition codes are
UNPREDICTABLE if the product string overlaps the multiplier
or multiplicand strings, the multiplier or multiplicand strings contain
an invalid nibble, or a reserved operand abort occurs.

Subtract Packed

Format:

opcode sublen.rw, subaddr.ab, diflen.rw,

difaddr.ab

opcode sublen.rw, subaddr.ab, rninlen.rw,

rninaddr.ab, diflen.rw, difaddr.ab

Operation:

({difaddr + ZEXT (di flen/2)} : di faddr) <­

({difaddr + ZEXT (di flen/2)} : di faddr) -

4 operand

6 operand

({subaddr + ZEXT (sublen/2)} : subaddr); ! 4 operand

({di faddr + ZEXT (di flen/2)} : difaddr) <-

({rninaddr + ZEXT(rninlen/2)} rninaddr)-

({subaddr + ZEXT (sublen/2)} : subaddr); ! 6 operand

Condition Codes:

N <-- {dif string} LSS 0;

Z <-- {dif string} EQL 0;

V <-- {decimal overflow};

C <-- 0;

Exceptions:
reserved operand
decimal overflow

Opcodes:

22 SUBP4 Subtract Packed 4 Operand

23 SUBP6 Subtract Packed 6 Operand

Description:
In 4 operand format, the subtrahend string specified by subtrahend
length and subtrahend address operands is subtracted from the
difference string specified by the difference length and difference
address operands, and the difference string is replaced by the result.

instructions 181

EDIT
INSTRUCTION

182

In 6 operand format, the subtrahend string specified by the subtrahend
length and subtrahend address operands is subtracted from the
minuend string specified by the minuend length and minuend address
operands. The difference string specified by the difference length
and difference address operands is replaced by the result.

Notes:
1. After execution of SUBP4:

RO = 0

R1 = address of the byte containing the most significant digit of
the subtrahend string

R2 = 0

R3 = address of the byte containing the most significant digit of
the difference string.

2. After execution of SUBP6:

RO = 0

R1 = address of the byte containing the most significant digit of
the subtrahend string

R2 = 0

R3 = address of the byte containing the most significant digit of
the minuend string

R4 = 0

R5 = address of the byte containing the most significant digit of
the difference string.

3. The difference string, RO through R3 (RO through R5 for SUBP6),
and the condition codes are UNPREDICTABLE if the difference
string overlaps the subtrahend or minuend strings; if the subtrahend,
minuend, or difference (4 operand only) strings contain an invalid
nibble; or if a reserved operand abort occurs.

The edit instruction may be omitted from subset implementations of
the VAX architecture. Execution of an omitted instruction results in an
emulated instruction exception. Omitted instructions may be emulated
by operating system software, which may use user-mode stack
space during the emulation. For more detail, refer to Chapter 11.

The edit instruction is designed to implement the common editing
functions for handling fixed-format output. The instruction converts an
input packed decimal number to an output character string, generating
characters for the output. This operation is exemplified by a MOVE to
a numeric edited (PICTURE) item in COBOL or PLlI, but the instruction
can be used for other applications as well. When converting digits,
options include leading zero fill, leading zero protection, insertion of

VAX Architecture Reference Manual

EDITPC

floating sign, insertion of floating currency symbol, insertion of special
sign representations, and blanking an entire field when it is zero.

The operands to the EDITPC instruction are an input packed decimal
string descriptor, a pattern specification, and the starting address of
the output string. The packed decimal descriptor is a standard
VAX operand pair of the length of the decimal string in digits (up to
31) and the starting address of the string. The pattern specification is
the starting address of a pattern operation editing sequence that is
interpreted in much the same way as are the normal instructions. The
output string is described by only its starting address because the
pattern defines the length unambiguously.

While the EDITPC instruction is operating, it manipulates two character
registers and the four condition codes. One character register
contains the fill character. This is normally an ASCII blank but would
be changed to asterisk for check protection. The other character
register contains the sign character. Initially, this register contains
either an ASCII blank or a minus sign depending upon the sign of the
input. The value of the register can be changed to allow other sign
representations such as plus/minus or plus/blank and can be
manipulated in order to output special notations such as CR or DB.
The sign register can also be changed to the currency sign in order to
implement a floating currency sign. After execution, the condition
codes contain the sign of the input (N), the presence of a zero source
(Z), an overflow condition (V), and the presence of significant digits
(C). Condition code N is determined at the start of the instruction and
is not changed thereafter (except to correct a - 0 input). The other
condition codes are computed and updated as the instruction
proceeds. When the EDITPC instruction terminates, registers RO
through R5 contain the conventional values after a decimal instruction.

Edit Packed to Character String

Format:

ope ode srelen.rw, sreaddr.ab, pattern.ab, dstaddr.ab

Operation:

if src1en GTRU 31 then {reserved operand abort};

PSw(v, C) <- 0;

PSW(Z) <- 1;

PSW(N) <- {src has minus sign};

RO <- src1en;

tmp1 <-- RO;

Instructions 183

184

RI <-- srcaddr;

R2(15: 8) <-- {i f PSW(N) EQL 0 then else "_"} ! sign of src

! R2(7: 0) is used for the fill character

R3 <-- pattern;

R5 <-- dstaddr;

exit-flag <-- false;

while NOT exit-flag do

begin

{fetch pattern byte};

{if pattern 0:4 no operand};

{if pattern 40:47 increment R3 and

fetch one byte operand};

{if pattern 80:AF except 80, 90, AO

operand is rightmost nibble};

{else {reserved operand fault»;

{per form pattern opera tor};

if NOT exit-flag then {increment R3};

end;

if RO NEQ 0 then {reserved operand abort};

RO <-- tmpl;

RI <-- RI - {tmpl/2}

R2 <-- 0;

R4 <-- 0;

!length of source string

!point to start of source string

if PSW(Z) EQL 1 then PSW(N) <-- 0;

Condition Codes:

N <-- {src string} LSS 0;

Z <-- {src string} EQL 0;

V <-- {decimal overflow};

C <-- {significance};

Exceptions:
reserved operand
decimal overflow

Opcode:

'N <-- 0 if src is-O

!non-zero digits lost

38 EDITPC Edit Packed to Character String

Description:
The destination string specified by the pattern and destination address
operands is replaced by the edited version of the source string
specified by the source length and source address operands. The

VAX Architecture Reference Manual

31 1615 a

I source length

source address

0

address of EO$END pattern operator

0

address of one byte past the last byte of destination string

Figure 3.9
EDITPC Control Block

:RO

:R1

:R2

:R3

:R4

:R5

editing is performed according to the pattern string starting at the
address pattern and extending until a pattern end (EO$END) pattern
operator is encountered. The pattern string consists of one-byte
pattern operators. Some pattern operators take no operands. Some
take a repeat count which is contained in the right-most nibble of the
pattern operator itself. The rest take a one-byte operand which
immediately follows the pattern operator. This operand is either an
unsigned integer length or a byte character. The individual pattern
operators are described on the following pages.

Notes:
1. A reserved operand abort occurs if srclen GTRU 31.

2. The destination string is UNPREDICTABLE if the source string
contains an invalid nibble, if the EO$ADJUST _INPUT operand is
outside the range 1 through 31, if the source and destination
strings overlap, or if the pattern and destination strings overlap.

3. After execution, the registers are as shown in Figure 3.9. If the
destination string is UNPREDICTABLE, RO through R5 and
the condition codes are UNPREDICTABLE.

4. If V is set at the end and DV is enabled, numeric overflow trap
occurs unless the conditions in item 9 are satisfied.

5. The destination length is specified exactly by the pattern operators
in the pattern string. If the pattern is incorrectly formed or if it is
modified during the execution of the instruction, the length of the
destination string is UNPREDICTABLE.

6. If the source is - 0, the result may be - 0 unless a fixup pattern
operator is included (EO$BLANLZERO or EO$REPLACE_
SIGN).

7. The contents of the destination string and up to one page of
memory preceding it are UNPREDICTABLE if the length covered
by EO$BLANLZERO or EO$REPLACE_SIGN is 0 or is
outside the destination string.

Instructions 185

Summary of
EDIT Pattern
Operators

8. If more input digits are requested by the pattern than are specified,
then a reserved operand abort is taken with RO = - 1 and R3 =
location of pattern operator which requested the extra digit. The
condition codes and other registers are UNPREDICTABLE.

9. If fewer input digits are requested by the pattern than are
specified, then a reserved operand abort is taken with R3 =

location of EO$END pattern operator. The condition codes and
other registers are UNPREDICTABLE.

10. On an unimplemented or reserved pattern operator, a reserved
operand fault is taken with R3 = location of the faulting pattern
operator. This fault may be continued as long as the defined
register state is manipulated according to the pattern operator
description and the state specified as implementation dependent
is preserved. FPD is set and the condition codes and registers
are as follows:

N = {src has minus sign}

Z = all source digits 0 so far

V = non-zero digits lost

C = significance

RO(31 :16) = -{count of source zeros to supply}

RO(15:0) = remaining srclen(15:0)

R1 = current source location

R2(31 :16) = implementation dependent

R2(15:8) = current contents of sign character register

R2(7:0) = current contents of fill character register

R3 = location of edit pattern operator causing exception

R4 = implementation dependent

R5 = location of next destination byte

Name Operand Summary

insert

move:

186

EO$INSERT

EO$STORE_SIGN

EO$FILL

EO$MOVE

EO$FLOAT

EO$END_FLOAT

ch

VAX Architecture Reference Manual

insert character, fill if insignificant

insert sign

insert fill

move digits, filling insignificant

move digits, floating sign

end floating sign

fixup:

load:

control:

EDIT Pattern
Operator
Encoding

EO$BLANLZERO

EO$REPLACE_
SIGN

EO$LOAD_FILL

EO$LOAD_SIGN

EO$LOAD_PLUS

EO$LOAD_MINUS

EO$SET _SIGNIF

EO$CLEAFL-SIGNIF

EO$ADJUST _INPUT

EO$END

where:

len

len

ch

ch

ch

ch

len

ch = one character

fill backward when zero

replace with fill if -0

load fill character

load sign character

load sign character if positive

load sign character if negative

set significance flag

clear significance flag

adjust source length

end edit

r = repeat count in the range 1 through 15

len = length in the range 1 through 255

(hex)

00 EO$END

01 EO$END_FLOAT

02 EO$CLEAFL-SIGNIF

03 EO$SET _SIGNIF

04 EO$STORE_SIGN

05 .. 1 F Reserved to DIGITAL

20 .. 3F Reserved for all time

40 EO$LOAD_FILL

41 EO$LOAD_SIGN

42 EO$LOAD_PLUS -character is in next byte

43 EO$LOAD_MINUS

44 EO$INSERT

45 EO$BLANLZERO

46 EO$REPLACE_SIGN } -unsigned length is in next byte

47 EO$ADJUST _INPUT

48. ,5F Reserved to DIGITAL

60 .. 7F Reserved to DIGITAL's customers

Instructions 187

Reserved to DIGITAL 80,90,AO

81 .. 8F

91 .. 9F

A1 .. AF

BO .. FE

FF

EO$FILL }
EO$MOVE -repeat count is (3:0)

EO$FLOAT

Reserved to DIGITAL

Reserved for all time

On the following pages, each pattern operator is defined in a format
similar to that of instruction descriptions. In each case, if there is
an operand, it is either a repeat count (r) from 1 through 15, an
unsigned byte length (len), or a character byte (ch). In the formal
descriptions, the following two routines are invoked:

READ: !function value 0 through 9

if RO EQL 0 then {reserved operand};

if RO LSS 0 then

begin

READ <- 0;

RO"(31: 16) <- RO(31: 16) + 1; !see EO$ADJUST_INPUT

end;

else

begin

READ <- (Rl)(3+4*RO(0):4*RO(0)); !get next nibble

!alternating high then low

return;

STORE (char) :

RO<-RO-l;

if RO(O) EQL 1 then Rl <- Rl + l;

end;

(R5) <- char;

R5<-R5+l;

return;

Also the following definitions are used:

fill· R2(7: 0)

sign R2(15: 8)

EO$ADJUST_ Adjust Input Length
INPUT

Purpose:
Handle source strings with lengths different from the output

188 VAX Architecture Reference Manual

EO$BLANL
ZERO

Format:

pattern len

Operation:

if len EQLU 0 or len GTRU 31 then {UNPREDICTABLE};

if RO(15: 0) GTRU len

then

begin

RO(31: 16) ~ 0

repeat RO(15: 0) - len do

if READ NEQU 0 then

begin

PSW(Z) ~ 0;

PSW(C) ~ 1;

PSW(V) ~ 1;

end;

!set significance

end;

else RO(31:16) ~ RO(15:0) - len; !negative of number
! to fill

Pattern operators:

47 EO$ADJUST_INPUT Adjust Input Length

Description:
The pattern operator is followed by an unsigned byte integer length in
the range 1 through 31. If the source string has more digits than this
length, the excess leading digits are read and discarded. If any
discarded digits are non-zero, then overflow is set, significance is set,
and zero is cleared. If the source string has fewer digits than this
length, a counter is set of the number of leading zeros to supply. This
counter is stored as a negative number in RO(31 :16).

Note:
If length is not in the range 1 through 31, the destination string,
condition codes, and RO through RS are UNPREDICTABLE.

Blank Backwards When Zero

Purpose:
Fix the destination to be blank when the value is zero

Instructions 189

EO$END

190

Format:

pattern len

Operation:

if len EQLU 0 then {UNPREDICTABLE};

if PSW(Z) EQL 1 then

begin

R5 <---- R5 - len;

repeat len do STORE(fill);

end;

Pattern operators:

45 EO$BLANK-ZERO Blank Backwards When Zero

Description:
The pattern operator is followed by an unsigned byte integer length. If
the value of the source string is zero, then the contents of the fill
register are stored into the last length bytes of the destination string.

Notes:
1. The length must be non-zero and within the destination string

already produced. If it is not, the contents of the destination string
and up to one page of memory preceding it are UNPREDICTABLE.

2. This pattern operator is used to blank out any characters stored in
the destination under a forced significance, such as a sign or the
digits following the radix point.

End Edit

Purpose:
End the edit operation

Format:
pattern

Operation:

exit_flag <---- true;

Pattern operators:

00 EO$END End Edit

!terminate edit loop

lend processing is

!described under EDITPC instruction

VAX Architecture Reference Manual

EO$END_
FLOAT

EO$FILL

Description:
The edit operation is terminated.

Notes:
1. If there are still input digits, a reserved operand abort is taken.

2. If the source value is - 0, the N condition code is cleared.

End Floating Sign

Purpose:
End a floating sign operation

Format:
pattern

Operation:

if PSW(C) EQL 0 then

begin

STORE(sign) ;

PSW(C) (- 1;

end;

Pattern operators:

!set significance

01 EO$END_FLOAT End Floating Sign

Description:
If the floating sign has not yet been placed in the destination (that is,
if significance is not set), the contents of the sign register are stored
in the destination and significance is set.

Notes:
This pattern operator is used after a sequence of one or more
EO$FLOAT pattern operators which start with significance clear. The
EO$FLOAT sequence can include intermixed EO$INSERT and
EO$FILL pattern operators.

Store Fill

Purpose:
Insert the fill character

Instructions 191

EO$FLOAT

192

Format:

pattern r

Operation:

repeat r do STORE(fill);

Pattern operators:

8x EO$FILL Store Fill

Description:
The right nibble of the pattern operator is the repeat count. The
contents of the fill register is placed into the destination repeat times.

Note:
This pattern operator is used for fill (blank) insertion.

Float Sign

Purpose:
Move digits, floating the sign across insignificant digits

Format:

pattern r

Operation:

repeat r do

begin

tmp <- READ;

if tmp NEQU 0 then

begin

if PSW(C) EQL 0 then

begin

STORE(sign) ;

PSW(Z) .;- 0;

PSW(C) <- 1; ! set significance

end;

end;

if PSW(C) EQL 0 thenSTORE(fill)

else STORE("O" + tmp);

end;

VAX Architecture Reference Manual

EO$INSERT

Pattern operators:

Ax EO$FLOAT Float Sign

Description:
The right nibble of the pattern operator is the repeat count. For repeat
times, the following algorithm is executed. The next digit from the
source is examined. If it is non-zero and significance is not yet set,
then the contents of the sign register are stored in the destination,
significance is set, and zero is cleared. If the digit is significant, it is
stored in the destination; otherwise, the contents of the fill register is
stored in the destination.

Notes:
1. If r is greater than the number of digits remaining in the source

string, a reserved operand abort is taken.

2. This pattern operator is used to move digits with a floating
arithmetic sign. The sign must already be setup as for
EO$STORE_SIGN. A sequence of one or more EO$FLOATs can
include intermixed EO$INSERTs and EO$FILLs. Significance
must be clear before the first pattern operator of the sequence.
The sequence must be terminated by one EO$END_FLOAT.

3. This pattern operator is used to move digits with a floating currency
sign. The sign must already be setup with a EO$LOAD_SIGN. A
sequence of one or more EO$FLOATs can include intermixed
EO$INSERTs and EO$FILLs. Significance must be clear before
the first pattern operator of the sequence. The sequence must be
terminated by one EO$END_FLOAT.

Insert Character

Purpose:
Insert a fixed character, substituting the fill character if not significant

Format:

pattern ch

Operation:

if PSW(C) EQL 1 then STORE(ch) else STORE(fill);

Pattern operators:

44 EO$INSERT Insert Character

Instructions 193

EO$LOAD_

194

Description:
The pattern operator is followed by a character. If significance is set,
then the character is placed into the destination. If significance is
not set, then the contents of the fill register are placed into the
destination.

Notes:
This pattern operator is used for blankable inserts (comma, for
example) and fixed inserts (slash, for example). Fixed inserts require
that significance be set (by EO$SET_SIGNIF or EO$END_FLOAT).

Load Register

Purpose:
Change the contents of the fill or sign register

Format:

pattern ch

Operation: iselect one depending on pattern
operator
fill ~ ch; iEO$LOAD]ILL

sign ~ ch; iEO$LOAD_SIGN

if PSW(N) EQL 0 then sign ~ ch; iEO$LOAD_PLUS

if PSW(N) EQL 1 then sign ~ ch; i EO$LOADJHNUS

Pattern operators:

40 EO$LOAD_FILL Load Fill Register

41 EO$LOAD_SIGN Load Sign Register

42 EO$LOAD_PLUS Load Sign Register If Plus

43 EO$LOAD~HjUS Load Sign Register If Minus

Description:
The pattern operator is followed by a character. For EO$LOAD_FILL,
this character is placed into the fill register. For EO$LOAD_SIGN,
this character is placed into the sign register. For EO$LOAD_PLUS,
this character is placed into the sign register if the source string has a
positive sign. For EO$LOAD_MINUS, this character is placed into
the sign register if the Source string has a negative sign.

Notes:
1. EO$LOAD_FILL is used to setup check protection (asterisk

instead of space).

VAX Architecture Reference Manual

EO$MOVE

2. EO$LOAD_SIGN is used to setup a floating currency sign.

3. EO$LOAD_PLUS is used to setup a non-blank plus sign.

4. EO$LOAD_MINUS is used to setup a non-minus minus sign
(such as CR, DB, or the PLiI +).

Move Digits

Purpose:
Move digits, filling for insignificant digits (leading zeros)

Format:

pattern r

Operation:

repeat r do

begin

tmp +-- READ;

if tmp NEQU 0 then

begin

PSW(Z) +-- 0;

PSW(C) +-- 1; ! set significance

end;

if PSW(C) EQL 0 then STORE(fill)

else STORE(' '0" + tmp);

end;

Pattern operators:

9x EO$MOVE Move Digits

Description:
The right nibble of the pattern operator is the repeat count. For repeat
times, the following algorithm is executed. The next digit is moved
from the source to the destination. If the digit is non-zero, significance
is set and zero is cleared. If the digit is not significant (that is, if it is
a leading zero), it is replaced by the contents of the fill register in the
destination.

Notes:
1. If r is greater than the number of digits remaining in the source

string, a reserved operand abort is taken.

Instructions 195

2. This pattern operator is used to move digits without a floating sign.
If leading zero suppression is desired, significance must be clear.
If leading zeros should be explicit, significance must be set. A
string of EO$MOVEs intermixed with EO$INSERTs and EO$FILLs
will handle suppressioh correctly.

3. If check protection (*) is desired, EO$LOAD_FILL must precede
the EO$MOVE.

EO$REPLACL Replace Sign When Zero
SIGN

196

Purpose:
Fix the destination sign when the value is zero

Format:

pattern len

Operation:

if len EQLU 0 then {UNPREDICTABLE};

if PSW(Z) EQL 1 then (R5 - len) ~ fill;

Pattern operators:

46 EO$REPLACE_SIGN Replace Sign When Zero

Description:
The pattern operator is followed by an unsigned byte integer length. If
the value of the source string is zero (that is, if Z is set), then the
contents of the fill register is stored into the byte of the destination
string which is length bytes before the current position.

Notes:
1. The length must be non-zero and within the destination string

already produced. If it is not, the contents of the destination string
and up to one page of memory preceding it are UNPREDICTABLE.

2. This pattern operator can be used to correct a stored sign
(EO$END_FLOAT or EO$STORE_SIGN) if a minus was stored
and the source value turned out to be zero.

Significance

Purpose:
Control the significance (leading zero) indicator

VAX Architecture Reference Manual

EO$STORE_
SIGN

Format:
pattern

Operation:

Psw(C) <- 0;

PSW(C) <- 1;

Pattern operators:

!EO$CLEAR_SIGNIF

!EO$SELSIGNIF

02 EO$CLEAR_SIGNIF Clear Significance

03 EO$SET_SIGNIF Set Significance

Description:
The significance indicator is set or cleared. This controls the treatment
of leading zeros (leading zeros are zero digits for which the significance
indicator is clear).

Notes:
1. EO$CLEAR_SIGNIF is used to initialize leading zero suppression

(EO$MOVE) or floating sign (EO$FLOAT) following a fixed insert
(EO$INSERT with significance set).

2. EO$SET_SIGNIF is used to avoid leading zero suppression
(before EO$MOVE) or to force a fixed insert (before EO$INSERT).

Store Sign

Purpose:
Insert the sign character

Format:
pattern

Operation:

STORE (sign) ;

Pattern operators:

04 EO$STORE_SIGN Store Sign

Description:
The contents of the sign register are placed into the destination.

Notes:
This pattern operator is used for any non-floating arithmetic sign. It
should be preceded by a EO$LOAD_PLUS or EO$LOAD_MINUS if
the default sign convention is not desired.

Instructions 197

Memory Management 4
Memory management consists of the hardware and software that
control the allocation and use of physical memory. The effect of
memory management is exemplified in a multiprogramming system
where several processes may reside in physical memory at the same
time. To ensure that one process will not affect other processes or the
operating system, VAX architecture uses memory protection and
multiple address spaces.

Four hierarchical access modes provide the memory access control,
which further improves software reliability. These access modes
are, from most to least privileged, kernel, executive, supervisor, and
user. For each of the four access modes, protection is specified at the
individual page level, where a page may be inaccessible, read-only,
or read/write. Any location accessible to one mode is also accessible
to all more privileged modes. Furthermore, for each access mode,
any location that can be written can also be read.

Memory management provides the CPU with mapping information.
First, the CPU generates virtual addresses when an image is
executed. Before these addresses can be used to access instructions
and data, however, they must be translated into physical addresses.
Memory management software maintains tables of mapping information
(page tables) that keep track of where each 512-byte virtual page is
located in physical memory. The CPU uses this mapping information
when it translates virtual addresses to physical addresses.

Memory management, then, is the scheme that provides both the
memory protection and memory mapping mechanisms of VAX
architecture. Memory management accomplishes the following:

• Provides a large address space for instructions and data

• Allows data structures up to one gigabyte

• Provides convenient and efficient sharing of instructions and data

• Contributes to software reliability.

A virtual memory system provides a large address space, yet allows
programs to run on hardware with small memory configurations.

Memory Management 199

VIRTUAL
ADDRESS
SPACE

200

Programs execute in an environment termed a process. The virtual
memory system for VAX provides each process with a 4-billion-byte
address space.

The virtual address space is divided into two, equal-size spaces: the
system address space and the per-process address space. The
system address space is the same for all processes. It contains the
operating system which is written as callable procedures. Thus all
system code can be available to all other system and user code via a
simple CALL. Each process has its own separate process address
space. However, several processes may have access to the same
page, thus providing controlled sharing.

A virtual address is a 32-bit unsigned integer specifying a byte
location in the address space. The programmer sees a linear array of
4,294,967,296 bytes. The virtual address space is broken into 512-
byte units termed pages. The page is the unit of relocation, sharing,
and protection.

This virtual address space is too large to be contained in any presently
available main memory. Memory management provides the mecha­
nism to map the active part of the virtual address space to the

0000 0000:

3FFF FFFF:

4000 0000:

7FFF FFFF:

8000 0000:

BFFF FFFF:

COOO 0000:

FFFF FFFF:

Figure 4.1

PO (program) region

---- PO length ----
~ PO region growth direction

t P1 region growth direction

---- P1 length ----
P1 (control) region

system region

I- - - - system length - - --

~ system region growth direction

reserved region

Virtual Address Space

VAX Architecture Reference Manual

per-process
space

system
space

available physical address space. Memory management also provides
page protection between processes. The operating system controls
the virtual-to-physical address mapping tables, and saves the inactive
but used parts of the virtual address space on the external storage
media.

The virtual address space is divided into two parts, per-process space
and system space, discussed in the following sections. Virtual
address space is illustrated in Figure 4.1.

Process Space The half of the virtual address space with smaller addresses (addresses
00000000 through 7FFFFFFF, hex) is termed per-process space.
Per-process space is divided into two equal parts: the program region
(PO region) and the control region (P1 region). Each process has a
separate address translation map for per-process space, so the per­
process spaces of all processes are potentially completely disjoint.
The address map for per-process space is context switched (changed)
when the process running on the system is changed (see Chapter 6,
Process Structure).

System Space The half of virtual address space with larger addresses (addresses
80000000 through FFFFFFFF, hex) is termed system space. All
processes use the same address translation map for system space,
so system space is shared among all processes. The address
map for system space is not context switched.

Virtual Address The VAX processor generates a 32-bit virtual address for each
Format instruction and operand in memory. As the process executes, the

system translates each virtual address to a physical address. The
virtual address consists of a region field, a virtual page number (VPN)
field, and a byte within page field, as shown in Figure 4.2.

The VPN field, bits (31 :9) of a virtual address, specifies the virtual
page to be referenced. The virtual address space contains 8,388,608
(223) pages. The byte-with in-page field, bits (9:0) of a virtual address,
specifies the byte offset within the page. A page contains 512 bytes.

313029 9 8 o
reg virtual page number byte within page

Figure 4.2
Virtual Address Format

Memory Management 201

Virtual Address
Space Layout

MEMORY
MANAGEMENT
CONTROL

202

The region field (bits (31 :30) of a virtual address) is part of the virtual
page number and specifies which of four regions the virtual address
references. When bit (31) of a virtual address is 1, the address is
in the system space. When bit (31) is 0, the address is in the per­
process space.

Within system space, bit (3D) distinguishes between the system
region and a reserved region. When bits (31 :30) are 11 (binary), the
address refers to the reserved region. When bits (31 :30) are 10
(binary), the address refers to the system region.

Within per-process space, bit (3D) distinguishes between the program
and control regions. When bits (31 :30) are 01 (binary), the control
region is referenced; and when bits (31 :30) are the program region is
referenced.

The layout of virtual address space is illustrated in Figure 4.1. Note
that access to each of the three regions (PO, P1, system) is controlled
by a length register (POLR, P1 LR, SLR). Within the limits set by the
length registers, the access is further controlled by page tables
that specify the validity, access requirements, and physical location of
each page in the memory.

The action of translating a virtual address to a physical address is
governed by the setting of the memory-mapping-enable (MME) bit in
the MAPEN internal processor register. Figure 4.3 illustrates the
privileged map-enable register.

MAPEN(O) is the memory-mapping-enable bit. When MME is set to 1,
memory management is enabled. When MME is set to 0, memory
management is disabled. At processor initialization time, MAPEN is
initialized to O.

Setting MME to 0 turns off address translation and access control.
Virtual address bit n, VA(n), is copied directly to the corresponding
physical address bit, PA(n), for n = 0 to 29. VA(31 :30) are ignored;
PA(31 :30) do not exist. VA(n) is ignored if PA(n) does not exist. (The
number of PA bits is implementation dependent.)

31 1 0

MBZ ~I
Figure 4.3
Map Enable Register (MAP EN)

VAX Architecture Reference Manual

ADDRESS
TRANSLATION

Page Table
Entry

PA = VA(29:0) modulo (2**number of PA bits)

There is no page protection: all accesses are allowed in all modes.
No modify bit is maintained.

Note, however, that references to nonexistent memory may cause
unexpected results when memory management is disabled. The
accessibility of nonexistent memory is UNPREDICTABLE when
memory management is disabled (see the PROBE instructions). In
addition, a processor may have an instruction buffer that prefetches
instructions before execution. If the instruction stream comes within
512 bytes of nonexistent memory when memory management is
disabled, prefetcher references may cause UNDEFINED behavior.

When MME is a 1, address translation and access control are on. The
processor uses the following to determine whether an intended
access is allowed:

1. The virtual address, which is used to index a page table

2. The intended access type (read or write)

3. The current privilege level from the processor status longword, or
kernel level for page table mapping references.

If the access is allowed and the address can be mapped (the page
table entry is valid), the result is the physical address corresponding
to the specified virtual address.

The intended access is READ if the operation to be performed is a
read. The intended access is WRiTE if the operation to be performed
is a write. If the operation to be performed is a modify (that is, read
followed by write), the intended access is specified as a WRITE.

If an operand is an address operand, then no reference is made.
Hence the page need not be accessible and need not even exist.

The CPU uses a page table entry (PTE), shown in Figure 4.4, to
translate virtual addresses to physical addresses. The fields of the
PTE are described in Table 4.1.

31 30 27 25 23 21 20 o
PFN

Figure 4.4
Page Table Entry

Memory Management 203

Table 4.1
Fields of the PTE

Extent Name Mnemonic Meaning

(31) Valid V Indicates the validity of the M bit and PFN field.
When V = 1, the M and PFN fields are valid
for use by hardware; when V = 0, they are
reserved for DIGITAL software.

(30:27) Protection PROT Indicates at what access modes a process can
reference the page. This field is always valid
and is used by the CPU hardware even when
V=O.

(26) Modify M When V = 0, M is not used by CPU hardware
and is reserved for DIGITAL software and
1/0 devices. When V = 1, M shows whether the
page has been modified: if M is clear, the
page has not been modified; if M is set, the
page may have been modified.

M is cleared only by software. M is set by CPU
hardware on a successful write or modify to
the page. ,In addition, it may be set by the
probe·write instruction (PROBEW) or by an
implied probe-write. M is not set if the page is
inaccessible. Beyond ,that, it is
UNPREDICTABLE whether M is set if a fault
occurs in an instruction that would otherwise
have modified the page.

For example, if a write reference crosses a
page boundary where the first page is not
accessible and the second page is accessible,
the reference will fault. M is unchanged in
the PTE mapping the first page. It is
UNPREDICTABLE whether M is set in the PTE
mapping the second page.

It is UNPREDICTABLE whether the modification
of a process PTE(M) bit causes, modification of
the system PTE that maps that process page
table. Note that the update of the M-bit is
not interlocked in a multiprocessor system.

(25) Reserved Reserved to DIGITAL and must be O.

(24:23) Owner OWN Reserved for DIGITAL software.

(22:21) Software Reserved for DIGITAL software.

(20:0) Page Frame Number PFN The upper 21 bits of the physical address of the

204

base of the page. Used by CPU hardware only
if V=1.

The operating system software uses some combinations of the
software bits to implement its page management data structures and
functions. Among the functions implemented this way are initialize­
pages-with-zeros, copy-on-reference, page sharing, and transitions

VAX Architecture Reference Manual

Page Table
Entry for I/O
Devices

between active and paged-out states. VAXIVMS encodes these
functions in PTEs whose valid bit, PTE(31), is a 0 and processes
them whenever a page fault occurs.

Some I/O devices, such as the DR32, use VAX memory management
to translate addresses. These I/O devices use a page table entry
format that is an extension of that in Figure 4.4 used by the CPU. The
extended PTE implements for 1/0 hardware some functions that the
CPU does with software using software bits and page faults. In
particular, PTE bits (31), (26), and (22) are decoded into four
combinations, as shown in Table 4.2. Some of these are used in the
same way as in the CPU PTE format, and some are used in different
ways.

When PTE(31,26,22) = 1 xx or as shown in Figure 4.5, PTE(20:0)
is a valid PFN field. This is identical to the PFN field illustrated in
Figure 4.4 for the CPU PTE.

When PTE(31,26,22) = 001 as shown in Figure 4.5, PTE(21 :0) is a
global page table index (GPTX). The 1/0 device has a global page
table base register (GBR) that is loaded by software with a system
virtual address. The 1/0 device calculates GBR + GPTX * 4 to
get the system virtual address of a second PTE. The second PTE
must contain a valid PFN and must have PTE(31,26,22) equal to
either or 1 xx, binary. If either of these requirements is not met, the
result is UNDEFINED. For those devices that use it, the protection
field always comes from the first PTE.

When PTE(31,26,22) = 01x, as shown in Figure 4.5, the PTE
format is reserved to DIGITAL. 1/0 devices will abort in a device­
dependent manner.

1/0 devices may look at and check the protection field or modify the
M-bit; this check is device dependent. Those devices that do use PTE
fields use them the same way the CPU does.

Table 4.2
PTE Types

PTE(31,26,22)

1 x x
000
o 0

Memory Management

PTE Type

Valid PFN
Valid PFN
Global Page Table Entry

205

Changes to
Page Table
Entries

206

3130 272625 20 o
PFN

own

PTE with Valid Page Frame Number. PTE<31,26,22> = 1xx.

3130 272625 222120 o

101 PROT loll ~o sl PFN

own

PTE with Valid Page Frame Number. PTE<31,26,22> = 000.

3130 272625 2221 o

101 PROT 1011211 GPTX

own

Global Page Table Index. PTE < 31 ,26,22 > = 001.

31 30 272625 20 o

101 PROTj1/ 12 I reserved for software use

own

Invalid PTE, 110 Abort. PTE<31,26,22> = 01x.

Figure 4.5
PTE Bits Decoded into Four Combinations

liD devices that do memory mapping use the same system page
table as the CPU, but they have their own copies of the SBR and
SLR. Buffer addresses are described in terms of a system virtual ad­
dress of the PTE for the first buffer page and a byte offset within
that page. In addition, the liD devices use a global page table
in memory and an liD hardware global-page-table-base register that
must be loaded by software.

The operating system changes PTEs as part of its memory manage­
ment functions. For example, VMS sets and clears the valid bit and
changes the PFN field as pages are moved to and from external
storage devices.

The software must guarantee that each PTE is always consistent
within itself. Changing a PTE one field at a time may give incorrect

VAX Architecture Reference Manual

MEMORY
PROTECTION

Processor
Access Modes

Protection
Code

system operation. An example would be to set PTE (V) with one
instruction before establishing PTE(PFN) with another. An interrupt
routine between the two instructions could use an address that would
map using the inconsistent PTE. The software can solve this problem
by building a new PTE in a register and then moving the new PTE to
the page table with a single instruction such as MOVL.

Multiprocessing makes the problem more complicated. Another
processor, be it another CPU or an I/O processor, can reference the
same page tables that the first CPU is changing. The second
processor must always read consistent PTEs. In order to guarantee
this, two requirements must be met (note that PTEs are longwords,
longword-aligned) :

1. Whenever the software modifies a PTE in more than one byte, it
must use a longword, longword-aligned, and write-destination
instruction such as MOVL.

2. The hardware must guarantee that a longword, longword-aligned
write is an "atomic" operation. That is, a second processor cannot
read (or write over) any of the first processor's partial results.

Memory protection is the function of validating whether a particular
type of memory access is to be allowed to a particular page. Access
to each page is controlled by a protection code that specifies for each
access mode whether or not read or write references are allowed.
Additionally, each address is checked to make certain that it lies
within the PO, P1, or system region.

In the order of most privileged to least privileged, the four processor
modes are

Kernel Used by the kernel of the operating system for page
management, scheduling, and I/O drivers

Executive Used for many of the operating system service calls,
including the record management system

Supervisor

User

Used for such services as command interpretation

Used for user-level code, utilities, compilers,
debuggers, etc.

The access mode of a running process is the current processor
mode, stored in the current-mode field of the processor status
longword (PSL) (see Chapter 1, Basic Architecture).

Every page in the virtual address space is protected according to its
use. Even though all of the system space is shared, in the sense that
all processes see the same system space, a program may be

Memory Management 207

Table 4.3

prevented from modifying or even reading portions of it. A program
may also be prevented from reading or modifying portions of per­
process space.

In system space, for example, scheduling queues are highly protected,
whereas library routines may be executable by code of any privilege.
Similarly, per-process accounting information may be in per-process
space but highly protected; while normal user code in per-process
space is executable at low privilege.

Associated with each page is a protection code that describes the
accessibility of the page for each processor mode. The code allows a
choice of protection for each processor mode, within the following
limits:

• Each mode's access can be read-write, read-only, or no-access.

• If any level has read access, then all more privileged levels also
have read access.

• If any level has write access, then all more privileged levels also
have write access.

The protection codes for the 15 combinations of page protection are
encoded in a 4-bit field in the page table entry, as shown in Table 4.3.

PTE Protection Codes

Accessibility

Name Mnemonic Decimal Binary Kernel Exec Super User

no access NA 0 0000 none none none none

reserved 0001 UNPREDICTABLE

kernel write KW 2 0010 write none none none

kernel read KR 3 0011 read none none none

user write UW 4 0100 write write write write

exec write EW 5 0101 write write none none

exec read, kernel write ERKW 6 0110 write read none none

exec read ER 7 0111 read read none none

super write SW 8 1000 write write write none

super read, exec write SREW 9 1001 write write read none

super read, kernel write SRKW 10 1010 write read read none

super read SR 11 1011 read read read none

user read, super write URSW 12 1100 write write write read

user read, exec write UREW 13 1101 write write read read

user read, kernel write URKW 14 1110 write read read read

user read UR 15 1111 read read read read

208 VAX Architecture Reference Manual

Length
Violation

Access­
Control­
Violation Fault

Access Across
a Page
Boundary

SYSTEM
SPACE
ADDRESS
TRANSLATION

Every valid virtual address lies within bounds determined by the
addressing region (PO, P1, or system) and the contents of the length
register associated with that region (POLR, P1 LR, or SLR). Virtual
addresses outside these bounds cause a length-violation fault. The
addressing bounds algorithm is a simple limit check whose formal
notation is

case VAddr(31:30)
set

[0] :

[1] :

[2] :

! PO region

if ZEXT(VAddr(29:9)) GEQU POLR

then {length violation};

! Pl region

if ZEXT(VAddr(29:9)) LSSU P1LR

then {length violation};

! System region

if ZEXT(VAddr(29:9)) GEQU SLR

then {length violation};

[3] : reserved region

{length violation};

tes;

An access-control-violation fault occurs if an illegal access is attempted,
as determined by the current PSL mode and the page's protection
field, or if the address causes a length violation.

If an access is made across a page boundary, the order in which the
pages are accessed is UNPREDICTABLE. For a single reference to a
page, however, access-control-violation fault always takes precedence
over translation-not-valid fault.

A virtual address with (31 :30) = 2 is an address in the system
virtual address space. A system space address is shown in Figure
4.6.

The system virtual address space is defined by the system page
table, which is a vector of page table entries. The system page table
is located in physical address space. Its base address is a physical
address and is contained in the system base register (SBR), shown in
Figure 4.6. The size of the system page table in longwords (that is,
the number of PTEs) is contained in the system length register (SLR).

Memory Management 209

210

313029 98 o
virtual page number Ibyte within pagel

System Virtual Address Format

31,3029 2 1 0

physical longword address

System Base Register (SBR)

31 2221 o
MBZ length of system page table in longwords

System Length Register (SLR)

Figure 4.6
System Virtual Address Space Registers

The SBR points to the first PTE in the system page table. In turn,
this PTE maps the first page of system space, virtual addresses
80000000 through 800001 FF (hex).

The PTEs in the system page table contain the mapping information
or point to the mapping information in the global page table if the PTE
is in GPTX format. (See the section "Page Table Entry for I/O
Devices" in this chapter for a description of the GPTXformat.)

Processor initialization leaves the contents of both registers UNPRE­
DieT ABLE. If part or all of the system page table resides in I/O space
or in nonexistent memory while memory mapping is enabled, the
operation of the processor is UNDEFINED.

Bits (31 :9) of the virtual address contain the virtual page number.
However, system virtual addresses have VAddr(31 :30) = 2. Thus,
there could be as many as 221 pages in the system region. The length
field in the SLR requires 22 bits to express the values 0 through 221
inclusive.

The algorithm to generate a physical address from a system region
virtual address is

SYS_PA = (SBR+4*SVA(29:9»)(20:0)'SVA(8:0) ! System Region

Figure 4.7 illustrates the translation of a system virtual address to a
physical address.

VAX Architecture Reference Manual

PROCESS
SPACE
ADDRESS
TRANSLATION

313029 9 8 0
system virtual

11 01 I address: virtual page number byte

23122

extract and check length Jo 31

a virtual page number 1001

add

SBR: physical base address of SPT

yields

physical address of SPTE

fetch
3130 2120 0

PTE: H page frame number I
check access

129 J8 0

physical address of data: I page frame number I byte

Figure 4.7
System Virtual Address to Physical Translation

The process virtual address space is divided into two, equal size,
separately mapped regions. If virtual address bit (3D) is 0, the address
is in region PO. If virtual address bit (3~) is 1, the address is in region
P1. Figure 4.8 illustrates a process virtual address.

The PO region maps a virtually contiguous area that begins at the
smallest address (0) in the process virtual space and grows in
the direction of larger addresses. PO is typically used for program
images and can grow dynamically.

The P1 region maps a virtually contiguous area that begins at the
largest address (231 - 1) in the process virtual space and grows in
the direction of smaller addresses. P1 is typically used for system­
maintained, per-process context. It may grow dynamically for the user
stack.

313029 98 o
Ox virtual page number byte within page

Figure 4.8
Process Space Virtual Address Format

Memory Management 211

212

Each region is described by a virtually contiguous vector of page table
entries. Unlike the system page table, which is addressed with a
physical address, these two page tables are addressed with virtual
addresses in the system region of the virtual address space. Thus, for
process space, the address of the PTE is a virtual address in system
space, and the fetch of the PTE is simply a longword fetch using a
system virtual address.

There is a significant reason to address process page tables in virtual
rather than physical space. A physically addressed process page
table that required more than a page of PTEs (that is, that mapped
more than 64Kbytes of process virtual space) would require physically
contiguous pages. Such a requirement would make dynamic allocation
Of process page table space very awkward Since a running system
tends to fragment storage into page-size areas.

A process space address translation that causes a translation buffer
miss will cause one memory reference for the process PTE. If the
virtual address of the page containing the proces., PTE is also
missing from the translation buffer, a second memory reference is
required.

When a process page table entry is fetched by the processor, a
reference is made to system space. The system space page containing
the process PTE may be marked valid or invalid. If it is marked valid,
the processor can read the process space PTE. If the system space
page is invalid, a translation-not-valid fault results, and the "PTE
reference" bit is set in the fault parameter. This allows the process
page tables to be paged.

The operating system must make process page tables accessible to
kernel mode, at least. The operation of the processor is UNDEFINED
if process space page tables are read-only or no-access. Thus the
processor mayor may not perform access checking (in kernel mode)
when reading a process PTE or updating PTE(M) in a process PTE.

When a process PTE is read, a check is made against the system­
page-table-length register (SLR). Thus, the fetch of an entry from
a process page table can result in translation-not-valid or length­
violation faults. (See the section "Faults and Parameters" later in this
chapter).

If part or all of either process page table is mapped into I/O space or
nonexistent memory while memory mapping is enabled, the operation
of the processor is UNDEFINED.

VAX Architecture Reference Manual

PO Region The PO region of the address space is mapped by the PO page table
(POPT) which is defined by the PO base register (POBR) and the PO
length register (POLR). The POBR contains a virtual address in the
system region that is the base address of the POPT. Figure 4.9a
illustrates the POBR. The POLR contains the size of the POPT
in longwords, that is, the number of page table entries. Figure 4.9b
illustrates the POLR. The page table entry addressed by the POBR
maps the first page of the PO region of the virtual address space, that
is, virtual byte address O.

The PTEs in the POPT contain the mapping information, or point to
the mapping information in the global page table if the PTE is in
GPTX format. (See the section "Page Table Entry for I/O Devices" in
this chapter for a description of the GPTX format.)

Writing POLR bits (26:24) has no effect. POLR bits (26:24) read as
zero. At processor initialization time, the contents of both registers are
UNPREDICTABLE.

The virtual page number is contained in bits (29:9) of the virtual
address. A 22-bit length field is required to express the values
o through 221 inclusive. There could be as many as 221 pages in the
PO region. An attempt to load POBR with a value less than 231 or
greater than 231 + 230 - 4 results in a reserved-operand fault
in some implementations.

The algorithm to generate a physical address from a PO region virtual
address is as follows:

PYA_PTE

PTE_PA

PROC_PA

POBR+4*PVA(29:9) ! PO Region

(SBR + 4 *PV lLPTE(29 : 9)) (20 : 0) , PVA_PTE(S : 0)

(PTE_PA) (20: 0)' PVA(S: 0)

313029

system virtual longword address

PO Base Register (POBR)
a

31 2726 24 21

I MBZ IIGN 1001
PO Length Register (POLR)
b

Figure 4.9
PO Region Registers

Memory Management

length of POPT in longwords

21 0

o

I

213

P1 Region

214

313029 98
process vi rtual ~ virtual page number I byte
address

23122

extract and check length
211 0 31

0 I virtual page number
1001

add

PxBR: system virtual address of PxPT

yields

system virtual address of PxPTE

fetch by system space translation algorithm, including
length and validity checks

3130 2120 0

PxTE: El page frame number
1

check access I this access check in current mode

313029 J8
physical address I 0 I page frame number I byte
of data:

Figure 4.10
Process Virtual Address to Physical Address Translation

Figure 4.10 illustrates the process virtual address to physical address
translation.

The P1 region of the address space is mapped by the P1 page table
(P1 PT). P1 PT is defined by the P1 base register (P1 BR) and the
P1 length register (P1 LR). Because P1 space grows toward smaller
addresses, and because a consistent hardware interpretation of
the base and length registers is desirable, P1 BR and P1 LR describe
the portion of P1 space that is not accessible. Figure 4.11 illustrates
the P1 base register and P1 length register. Note that P1 LR contains
the number of nonexistent PTEs. P1 BR contains a virtual address
of what would be the PTE for the first page of P1, that is, virtual byte
address 40000000 hex).

The address in P1 BR is not necessarily an address in system space,
but all the addresses of PTEs must be in system space.

The PTEs in the P1 PT contain the mapping information, or point to
the mapping information in the GPT if the PTE is in GPTX format.

VAX Architecture Reference Manual

0

0

TRANSLATION
BUFFER

31 2 1 0

virtual longword address ~I
P1BR

31 30 2221 0

H 00 2**21 - length of P1 PT in longwords

P1LR

Figure 4.11
P1 Base and Length Registers

(See the section "Page Table Entries for 1/0 Devices" in this chapter
for a description of the GPTX format.)

At processor initialization time, the contents of both registers are
UNPREDICTABLE. Writing P1 LR bit (31) has no effect. The bit
always reads as O. An attempt to load P1 BR with a value less than
231 - 223 (7F80 0000, hex) or greater than 231 + 230 - 223 - 4
results in a reserved-operand fault in some implementations.

The algorithm to generate a physical address from a P1 region virtual
address is as follows:

PVLPTE

PTE_PA

PRO CPA

PiBR+4*PVA(29:9) ! Pi Region

(SBR +4*PVLPTE(29: 9») (20: 0) I PVLPTE(S: 0)

(PT~PA) (20: 0) I PVA(S: 0)

Figure 4.10 illustrates the process virtual address to physical address
translation.

In order to save actual memory references when repeatedly referencing
the same pages, a hardware implementation may include a mechanism
to remember successful virtual address translations and page states.
Such a mechanism is termed a translation buffer.

When the process context is loaded with LDPCTX, the translation
buffer is automatically updated (that is, the process virtual address
translations are invalidated). However, when the software changes any
part of a valid PTE for the system or a current process region, it must
also move a virtual address within the corresponding page to the
translation-buffer-invalidate-single (TBIS) register with the MTPR
instruction.

Memory Management 215

FAULTS AND
PARAMETERS

216

Additionally, when the software changes a System Page Table Entry
which maps any part of the current process page table, all process
pages so mapped must be invalidated in the translation buffer. They
may be invalidated by moving an address within each such page into
the TBIS register. They may also be invalidated by clearing the
entire translation buffer. This is done by moving 0 to the translation­
buffer-invalidate-all (TBIA) register with the MTPR instruction.

The translation buffer must not store invalid PTEs. Therefore, the
software is not required to invalidate translation buffer entries when
making changes for PTEs that are already invalid.

When the location or size of the system map is changed (SBR, SLR)
the entire translation buffer must be cleared by moving 0 to the
TBIA register with the MTPR instruction.

Whenever MME is a 0, the contents of the translation buffer are
UNPREDICTABLE. Therefore, before enabling memory management
at processor initialization time, or any other time, the entire translation
buffer must be cleared by software.

An internal processor register is available for interrogating the
presence of a valid translation in the translation buffer. When a virtual
address is written to the TBCHK register with a MTPR instruction,
the condition code V-bit is set if the translation buffer holds a valid
translation for that virtual page.

The specification of the TBCHK register is based on VAXIVMS usage.
Its specification is subject to change without prior notice.

The TBIS, TBIA, and TBCHK processor registers are write only. The
operation of MFPR from any of these registers is UNDEFINED.

Two types of faults are associated with memory mapping and
protection. A translation-not-valid fault is taken when a read or write
reference is attempted through an invalid PTE (PTE(31)=0). An
access-control~violation fault is taken when the protection field of the
PTE indicates that the intended page reference in the specified
access mode would be i"egal. Note that these two faults have distinct
vectors in the system control block. If both faults could occur, then
the access-control-violation fault takes precedence. An access­
control-violation fault is also taken if the virtual address referenced is
beyond the end of the associated page table. Such a "length violation"
is essentially the same as referencing a PTE that specifies "No
Access" in its protection field. The fault software does not have to

VAX Architecture Reference Manual

31 210

0 IMlplL :(SP)

some virtual address in the faulting page

PC of faulting instruction

PSL at time of fault

Figure 4.12
Memory Management Fault Stack Frame

compute the length check becauses a "length violation" indication is
stored in the memory management fault stack frame, illustrated in
Figure 4.12. See Chapter 5, Exceptions and Interrupts, for a description
of faults.
The same parameters are stored for both types of fault. The first
parameter pushed on the stack after the PSL and PC is some virtual
address in the same page with the virtual address that caused the
fault. A process-space reference can result in a system-space virtual
reference for the PTE. If the PTE reference faults, the virtual address
that is saved is the process virtual address. In addition, a 1 is stored
in bit (1) of the fault parameter word if the fault occurred in the per­
process PTE reference. The fields of the second parameter are
described in Table 4.4.

Table 4.4
Fields of the Memory Management Fault Parameter

Name Extent

modify or write intent (2)

PTE reference (1)

length violation (0)

Memory Management

Meaning

Set to 1 to indicate that the
instruction's intended access was
write or modify. This bit is 0 if
the instruction's intended access
was read.
Set to 1 to indicate that the fault
occurred during the reference to the
process page table associated with
the virtual address. This can be
set on either length-violation
or translation-not-valid faults.

Set to 1 to indicate that an access­
control-violation fault was the
result of a length violation rather
than a protection violation. This bit
is always 0 for a translation-not-valid
fault.

217

PRIVILEGED
SERVICES AND
ARGUMENT
VALIDATION

Changing
Access Modes

Validating
Address
Arguments

PROBEx

218

This section lists the instructions allowing access mode change, and
describes two instructions that allow privileged services to check
addresses passed as parameters.

Four instructions allow a program to change its access mode to a
more privileged mode and transfer control to a service dispatcher for
the new mode.

CHMK change mode to kernel

CHME

CHMS

CHMU

change mode to executive

change mode to supervisor

change mode to user

These instructions provide the normal mechanism for less privileged
code to call more privileged code; the instructions are described in
detail in Chapter 5, Exceptions and Interrupts. When the mode
transition takes place, the previous mode is saved in the previous­
mode field of the PSL, thus allowing the more privileged code to
determine the privilege of its caller.

Two instructions, PROBER and PROBEW, allow privileged services to
check addresses passed as parameters. To avoid protection holes in
the system, a service routine must always verify that its less privileged
caller could have directly referenced the addresses passed as
parameters. The PROBE instructions do this verification.

Probe Accessibility

Purpose: verify that arguments can be accessed

Format:

ope ode mode.rb, len.rw, base.ab

Operation:

probe_mode ~ MAXU (mode(l: 0), PSL(PRV_MOD))

condi tion codes ~ {accessibili ty of base} and

{accessibility of {base+ZEXT(len) -l}}

using probe_mode

VAX Architecture Reference Manual

Condition Codes:

N <- 0;

Z <- if {both accessible} then 0 else 1;

V <- 0;

C <- C;

Exception:
translation not valid

Opcodes:

OC PROBER Probe Read Accessibility

OD PROBEW Probe Write Accessibility

Description:
The PROBE instruction checks the read or write accessibility of the
first and last byte specified by the base address and the zero
extended length. Note that the bytes in between are not checked.
System software must check all pages between the two end bytes if
they will be accessed.

The protection is checked against the larger (and therefore less
privileged) of the modes specified in bits (1 :0) of the mode operand
and the previous-mode field of the PSL. Note that probing with a
mode operand of 0 is equivalent to probing the mode specified
in PSL(previous-mode).

Notes:
1. If the valid bit of the examined PTE is set, and write access is

allowed, it is UNPREDICTABLE whether the modify bit of the
examined PTE is set by a PROBEW. If the valid bit is clear or if
write access is not allowed, the modify bit is not changed.

2. Except for item 1 above, the processor ignores the valid bit of the
PTE mapping the probed address.

3. A length violation gives a status of "not-accessible."

4. On the probe of a process virtual address, if the valid bit of the
system PTE is 0, then a translation-not-valid fault occurs. This
allows for the demand paging of the process page tables.

5. An object one byte long is the smallest that can be probed. With a
length of zero, the PROBE instructions test the accessibility of
two bytes-base and base - 1 .

6. If memory management is disabled, all memory is accessible, and
probing nonexistent memory gives UNPREDICTABLE results.

Memory Management 219

220

Example:

MOVL 4(AP) ,RO

PROBER #O,#4,(RO)

BEQL violation

MOVQ 8(AP), RO

PROBEW #O,RO, (Rl)

BEQL violation

Flows:

Copy the address of first argument

so that it can't be changed.

Verify that the longword pointed to

by the first arg could be read by

the previous access mode. (Note

that the arg list itself must already

already have been probed.)

Branch if either byte gives an access

violation.

Copy length and address of buffer args

so that they can't change.

Verify that the buffer described by

the second and third args could be

written by the previous access mode.

(Note that the arg list must already

have been probed and that the second

arg must be less than 512.)

Branch if either byte gives an access

violation.

The following describes the operational flow of PROBE on each of the
virtual addresses it is checking. Note that probing an address returns
only the accessibility of the page(s) and has no effect on its residency,
However, probing a process address may cause a page fault in the
system address space on the per-process page tables,

1. Look up the virtual address in the translation buffer. If found, use
the associated protection field to determine the accessibility and
EXIT.

2. Check for length violation for system or per-process address as
appropriate. See elsewhere in this chapter for the length-violation
check flows. If length violation, then return No Access and EXIT.

3. If system virtual address, form physical address of PTE, fetch the
PTE, use the protection field to determine the accessibility, and
EXIT.

4. For per-process virtual address, must do a virtual memory reference
for the PTE.

a. Look up the virtual address of the PTE in the translation buffer,
form the physical address of the PTE if found, fetch the PTE,
use the protection field to determine the accessibility, and
EXIT.

VAX Architecture Reference Manual

b. If the virtual address of the PTE is not in the translation buffer,
check the system virtual address of the PTE for length violation.
If length violation, then return No Access and EXIT.

c. Read the SPTE for the system-space page containing the per­
process PTE.

d. If the valid bit in the SPTE is 0, then take a translation-not-valid
fault and EXIT. This case allows for the demand paging of
per-process page tables.

e. Finally, calculate the physical address of the per-process PTE
from the PFN field of the SPTE (see the section "System
Space Address Translation" in this chapter), fetch the per­
process PTE, use the protection field to determine the
accessibility, and EXIT.

Memory Management 221

Processor
Interrupt
Priority Levels

Exceptions and Interrupts 5
At certain times during the operation of a system, events within
the system require the execution of particular pieces of software
outside the explicit flow of control. The processor transfers control by
forcing a change in the flow of control from that explicitly indicated
in the currently executing process.

Some of the events are relevant primarily to the currently executing
process and normally invoke software in the context of the current
process. The notification of such an event is termed an exception.

Other events are primarily relevant to other processes, or to the
system as a whole, and are therefore serviced in a system-wide
context. The notification process for these events is termed an
interrupt, and the system-wide context is described as "executing on
the interrupt stack." Further, some interrupts are of such urgency that
they require high-priority service, while others must be synchronized
with independent events. To meet these needs, the processor has
priority logic that grants interrupt service to the highest priority event
at any point in time. The priority associated with an interrupt is termed
its interrupt priority level (IPL).

The processor has 31 interrupt priority levels: 15 software levels
(numbered, in hex, 01 to OF) and 16 hardware levels (10 to 1 F, hex).
User applications, system calls, and system services all run at
process level, which may be thought of as IPL o. Higher numbered
interrupt levels have higher priority; that is to say, any requests at an
interrupt level higher than the processor's current IPL will interrupt
immediately, but requests at a lower or equal level ale deferred.

Interrupt levels 01 through OF (hex) exist entirely for use by software.
No device can request interrupts on those levels, but software can
force an interrupt by executing MTPR src, #PR$_SIRR. (See
Chapter 8, and the section "Software Interrupts" later in this chapter.)
Once a software interrupt request is made, it will be cleared by the
hardware when the interrupt is taken.

Exceptions and Interrupts 223

Interrupts

Exceptions

224

Interrupt levels 10 to 17 (hex) are for use by devices and controllers,
including UNIBUS devices; UNIBUS levels BR4 to BR7 correspond to
VAX interrupt levels 14 to 17 (hex).

Interrupt levels 18 to 1 F (hex) are for use by urgent conditions,
serious errors, and powerfail.

The processor arbitrates interrupt requests according to priority. Only
when the priority of an interrupt request is higher than the processor's
current IPL (stored in PSL(20:16)) will the processor raise its IPL
and service the interrupt request. The interrupt service routine
is entered at the IPL of the interrupt request and will not usually
change the IPL set by the processor. Note that this is different from
the PDP -11 where the interrupt vector specifies the IPL for the
interrupt service routine.
Interrupt requests can come from devices, controllers, other processors,
or the processor itself. Software executing in kernel mode can raise
and lower the priority of the processor by executing MTPR src,
#PR$_IPL where src contains the new priority desired. However, a
processor cannot disable interrupts on other processors. Furthermore,
the priority level of one processor does not affect the priority level of
the other processors. Thus in multiprocessor systems, interrupt
priority levels cannot be used to synchronize access to shared
resources. Even the various urgent interrupts including those exceptions
that run at IPL 1 F (hex) do so on only one processor. Consequently,
special software action is required to stop other processors in a
multiprocessor system.

Most exception service routines execute at IPL 0 in response to
exception conditions caused by the software. A variation from this is
serious system failures, which raise IPL to the highest level (1 F, hex)
to minimize processor interruption until the problem is corrected.
Exception service routines are usually coded to avoid exceptions;
however, nested exceptions can occur.

A trap is an exception that occurs at the end of the instruction that
caused the exception. Therefore the PC saved on the stack is
the address of the next instruction that would normally have been
executed. Any software can enable and disable some trap conditions
by using the BISPSW and BICPSW instructions described in
Chapter 3.

A fault is an exception that occurs during an instruction and that
leaves the registers and memory in a consistent state such that
elimination of the fault condition and restarting the instruction will give
correct results. After an instruction faults, the PC saved on the stack

VAX Architecture Reference Manual

Contrast
between
Exceptions and
Interrupts

points to the instruction that faulted. Note that faults do not always
leave everything as it was prior to the faulted instruction; they
only restore enough to allow restarting. Thus, the state of a process
that faults may not be the same as that of a process that was
interrupted at the same point.

An abort is an exception that occurs during an instruction. An abort
leaves the value of registers and memory UNPREDICTABLE such
that the instruction cannot necessarily be correctly restarted, completed,
simulated, or undone. After an instruction aborts, the PC saved on
the stack points to the opcode of the aborted instruction. The following
are UNPREDICTABLE:

• Destination operands (including implied operands, such as the top
of the stack in an JSB instruction)

• Registers modified by operand specifier evaluation (including
specifiers for implied operands)

• The PTE(M) bit in PTEs that map destination operands, if the
operands could have been written but were not written, and PTE(M)
was clear before the instruction

• Condition codes

• PSL(FPD)

• PSL(TP), if PSL(T) was set at the beginning of the instruction

Except where otherwise noted in the description of the abort, the rest
of the PSL, other registers, and memory are unaffected.

Generally, exceptions and interrupts are very similar. When either is
initiated, both the processor status longword and the program counter
are pushed onto the stack. There are, however, seven important
differences:

• An exception condition is caused by the execution of the current
instruction, whereas an interrupt is caused by some activity in the
computing system that may be independent of the current instruction.

• An exception condition is usually serviced in the context of the
process that produced the exception condition, whereas an interrupt
is serviced independently from the currently running process.

• The IPL of the processor is usually not changed when the processor
initiates an exception, whereas the IPL is always raised when an
interrupt is initiated.

• Exception service routines usually execute on a per-process stack,
whereas interrupt service routines normally execute on a per-
CPU stack.

• Enabled exceptions are always initiated immediately, no matter what
the processor IPL is; whereas interrupts are held off until the
processor IPL drops below the IPL of the requesting interrupt.

Exceptions and Interrupts 225

PROCESSOR
STATUS

INTERRUPTS

226

• Most exceptions cannot be disabled. However, if an exception­
causing event occurs while that exception is disabled, no exception
is initiated for that event even when enabled subsequently. This
includes overflow, the only exception condition whose occurrence is
indicated by a condition code (V). If an interrupt condition occurs
while it is disabled, or the processor is at the same or higher IPL,
the condition will eventually initiate an interrupt when the proper
enabling conditions are met if the condition is still present.

• The previous mode field in the PSL is always set to kernel on an
interrupt; but on an exception, it indicates the mode of the exception.

When an exception or an interrupt is serviced, the processor status
must be preserved so that the interrupted process may continue
normally. Basically, this is done by automatically saving the PC and
the PSL on the stack. (Refer to Chapter 1 for a description of the PC
and PSL.) The PC and PSL are later restored with the Return from
Exception or Interrupt instruction (REI). Any other status required
to correctly resume an interruptible instruction is stored in the general
registers. The terms current PSL and saved PSL are used to
distinguish between this status information when it is in the processor
and when copies of it are materialized in memory, as on the stack.

Process context such as the mapping information is not saved or
restored on each interrupt or exception. Instead, it is saved and
restored only when process context switching is performed. Refer to
the LDPCTX and SVPCTX instructions in Chapter 6. Other processor
status is changed even less frequently; refer to the privileged register
descriptions in Chapter 8.

The processor services interrupt requests between instructions.
The processor also services interrupt requests at well-defined points
during the execution of long, iterative instructions such as the string
instructions. For these instructions, interrupts are initiated when
the instruction state can be completely contained in the registers, PSL
and PC; saving additional instruction state in memory is thus avoided.
The following events cause interrupts:

• Device completion (IPL 10 -17 hex)

• Device error (IPL 10- 17 hex)

• Device alert (IPL 10 -17 hex)

• Device memory error (lPL 10 -17 hex)

• Console terminal transmit and receive (IPL 14 hex)

• Interval timer (implementation dependent, IPL 16 or 18 hex)

VAX Architecture Reference Manual

Urgent
Interrupts

Device
Interrupts

Software
Interrupts

• Recovered memory or bus or processor errors (implementation
dependent, IPL 18 to 10 hex)

• Bus errors, processor errors, or uncorrectable memory errors
(implementation dependent, IPL 18 to 10 hex)

• Powerfail (IPL 1 E hex)

• Software interrupt invoked by MTPR src, #PR$_SIRR (IPL 01 to
OF hex)

• AST delivery when REI restores a PSL with mode greater than or
equal to ASTL VL (see Chapter 6) (IPL 02)

Each device controller has a separate set of interrupt vector locations
in the system control block (SCB). Thus interrupt service routines do
not need to poll controllers in order to determine which controller
interrupted.

In order to reduce interrupt overhead, no memory mapping information
is changed when an interrupt occurs. Thus the instructions, data, and
contents of the interrupt vector for an interrupt service routine must be
in the system address space or present in every process at the same
address.

The processor provides eight priority levels (18 through 1 F, hex) for
use by urgent conditions including serious errors and powerfail. Some
implementations may not use all eight priority levels. Interrupts on
these levels are initiated by the processor upon detection of certain
conditions. Some of these conditions are not interrupts. For example,
machine-check is usually an exception, but it runs at a high priority
level on the interrupt stack.

Interrupt level 1E (hex) is reserved for powerfail. Interrupt level 1 F
(hex) is reserved for those exceptions that must lock out all processing
until the condition has been handled. This includes the hardware and
software "disasters" (machine-check and kernel-stack-not-valid
aborts). It mightalso be used to allow a kernel-mode debugger to
gain control on any exception.

The processor provides eight priority levels (10 through 17, hex) for
use by peripheral devices. Some implementations may not implement
all eight levels of interrupts. The minimal implementation is levels 14
through 17 (hex) that correspond to the UNIBUS levels BR4 to BR7 if
the system has a UNIBUS.

The processor provides 15 interrupt levels (1 through OF, hex) for use
by software. Pending software interrupts are recorded in the software-

Exceptions and Interrupts 227

228

31 1615 1 0

MBZ I pending software interrupts 101

Figure 5.1
Software Interrupt Summary Register

interrupt-summary register (SISR), as shown in Figure 5.1. The
SISR contains ones in the bit positions corresponding to levels at
which software interrupts are pending. When the processor initiates a
software interrupt, the corresponding bit in SISR is cleared. At no time
can SISR bits corresponding to levels higher than the current
processor IPL contain ones, since the processor would already have
taken the requested interrupts.
At processor initialization, SISR is cleared. The mechanism for
accessing it follows:

MFPR #PR$_SISR, dst

MTPR src, #PR$_SISR

Reads the software interrupt summary
register.

Loads it, but this is not the normal way
of making software interrupt requests.
It is useful, for example, for clearing
the software interrupt system and for
reloading its state during powerfail
recovery.

Software Interrupt Request Register-The software-interrupt-request
register (SIRR) is a write-only, 4-bit, privileged register used for
creating software interrupt requests. SIRR is shown in Figure 5.2.

Executing MTPR src, #PR$_SIRR requests an interrupt at the level
specified by src(3:0). Once a software interrupt request is made, it will
be cleared by the hardware when the interrupt is taken. If src(3:0) is
greater than the current IPL, the interrupt occurs before execution
of the following instruction. If src(3:0) is less than or equal to the
current IPL, the interrupt will be deferred until IPL is lowered to less
than src(3:0) and there is no higher interrupt level pending. This
lowering of IPL is by either REI or by MTPR src, #PR$_IPL. If
src(3:0) is 0, no interrupt will occur.

31 4 3 0

ignored Irequestl

Figure 5.2
Software Interrupt Request Register

VAX Architecture Reference Manual

Interrupt
Priority Level
Register

EXCEPTIONS

Note that no indication is given if there is already a request at the
selected level. The service routine, therefore, must not assume that
there is a one-to-one correspondence of interrupts generated and
requests made. A valid protocol for generating such a correspondence
is:

1. The requester uses INSQUE to place a control block describing
the request onto a queue for the service routine.

2. The requester uses MTPR src, #PR$_SIRR to request an
interrupt at the appropriate level.

3. The service routine uses REMQUE to remove a control block from
the queue of service requests. If REMQUE returns failure (nothing
in the queue), the service routine exits with REI.

4. If REMQUE returns success (an item was removed from the
queue), the service routine performs the service and returns to
step 3 to look for other requests.

Writing to the IPL register with the MTPR instruction will load the
processor priority field in the PSL; that is, PSL(20:16) is loaded from
IPL(4:0). Reading from the IPL register with the MFPR instruction will
read the processor priority field from the PSL. On writing the IPL
register, bits (31 :5) are ignored; on reading the IPL register, bits
(31 :5) are returned O. The IPL register is shown in Figure 5.3. At
processor initialization, IPL is set to 31 (1 F, hex).

Interrupt service routines must follow the discipline of not lowering IPL
below their initial level. If they were to do so, an interrupt at an
intermediate level could cause the stack nesting to be improper. This
would result in REI faulting. If IPL is lowered to zero when the
processor is running on the interrupt stack, the operation of the
processor is UNDEFINED. Figure 5.4 is an example of interrupt
processing.

Exceptions can be grouped into six classes:

• Arithmetic traps and faults

• Memory management exceptions

• Exceptions detected during operand reference

31 54 0

ignored; returns 0 I I
PSL < 20: 16 > :::oJ

Figure 5.3
Interrupt Priority Level Register

Exceptions and Interrupts 229

Arithmetic
Traps and
Faults

230

State After Event

IPL SISR Stacked
Event (hex) (hex) PSL<IPL>

Initial state: 5 00 0
Execute MTPR #8, #PR$_IPL: 8 00 0
Execute MTPR #3, #PR$_SIRR: 8 08 0
Execute MTPR #7, #PR$_SIRR: 8 88 0
Execute MTPR #9, #PR$_SIRR (interrupts at once): 9 88 8,0
Device interrupt at IPL 20 (decimal): 14 88 9,8,0
Device interrupt service routine executes REI: 9 88 8,0
IPL 9 service routine executes REI: 8 88 0
Execute MTPR #5, #PR$_IPL: " 7 08 5,0
IPL 7 service routine executes REI: 5 08 0
Initial IPL 5 service routine executes REI: " 3 00 0
IPL 3 service routine executes REI: 0 00

"This operation lowers IPL below that of an outstanding software interrupt request.
The software interrupt occurs at once.

Figure 5.4
An Example of Interrupt Processing

• Exceptions occurring as a consequence of an instruction

• Tracing

• Serious system failures

This section contains the descriptions of the exceptions that occur as
the result of an arithmetic or conversion operation. These exceptions
are mutually exclusive and all are assigned the same vector in the
SCB, and hence the same signal "reason" code. Each of them
indicates that an exception had occurred during the last instruction
and that the instruction has been completed (trap) or backed up
(fault). An appropriate distinguishing code is pushed on the stack as a
longword, as shown in Figure 5.5. Table 5.1 lists the arithmetic
exception type codes.

Integer Overflow Trap-An integer overflow trap is an exception that
indicates that the last instruction executed had an integer overflow
setting PSL(V) and that integer overflow was enabled (IV set).
The result stored is the low-order part of the correct result. Nand Z

type code :(SP)
~----------------------------------~ PC of next instruction to execute

PSL

Figure 5.5
Arithmetic Exception Stack Frame

VAX Architecture Reference Manual

Table 5.1
Arithmetic Exception Type Codes

Exception Type Mnemonic Decimal Hex

Traps

integer overflow SS$_INTOVF
integer divide-by-zero SS$_INTDIV 2

floating overflow SS$_FLTOVF 3
floating or decimal divide-by-zero SS$_FLTDIV 4

floating underflow SS$_FLTUND 5
decimal overflow SS$_DECOVF 6
subscript range SS$_SUBRNG 7

Faults

floating overflow SS$-FL TOVF _F 8
floating divide-by-zero SS$-FL TDIV_F 9

floating underflow SS$_FL TUND_F 10

are set according to the stored result. The type code pushed on
the stack is 1 (SS$_INTOVF).

1

2

3

4

5
6
7

8

9

A

Integer Divide-By-Zero Trap-An integer divide-by-zero trap is an
exception that indicates that the last instruction executed had an
integer zero divisor. The result stored is equal to the dividend, and
condition code V is set. The type code pushed on the stack is 2
(SS$_INTDIV).

Floating Overflow Trap-A floating overflow trap is an exception that
indicates that the last instruction executed resulted in an exponent
greater than the largest representable exponent for the data type after
normalization and rounding. The result stored contains a one in the
sign and zeros in the exponent and fraction fields. This is a reserved
operand and will cause a reserved operand fault if used in a
subsequent floating-point instruction. The N and V condition code bits
are set, and Z and C are cleared. The type code pushed on the
stack is 3 (SS$_FL TOVF).

Divide-By-Zero Trap-A floating divide-by-zero trap is an exception
that indicates that the last instruction executed had a floating zero
divisor. The result stored is the reserved operand, as described above
for floating overflow trap, and the condition codes are set as in
floating overflow.

A decimal string divide-by-zero trap is an exception that indicates that
the last instruction executed had a decimal-string zero divisor. The
destination, RO through R5, and condition codes are
UNPREDICTABLE. The zero divisor can be either +0 or -0.

Exceptions and Interrupts 231

232

The type code pushed on the stack for both types of divide-by-zero is
4 (SS$_FL TDIV).

Floating Underflow Trap-A floating underflow trap is an exception
that indicates that the last instruction executed resulted in an exponent
less than the smallest representable exponent for the data type after
normalization and rounding, and that floating underflow was enabled
(FU set). The result stored is zero. Except for POLYx, the N, V, and C
condition codes are cleared, and Z is set. In POL Yx, the trap occurs
on completion of the instruction, which may be many operations after
the underflow. The condition codes are set on the final result in
POLYx. The type code pushed on the stack is 5 (SS$_FL TUND).

Decimal-String Overflow Trap-A decimal-string overflow trap is an
exception that indicates that the last instruction executed had a
decimal-string result too large for the destination string provided and
that decimal overflow was enabled (DV set). The V condition code
is always set. Refer to the individual instruction descriptions in
Chapter 3 for the value of the result and of the condition codes. The
type code pushed on the stack is 6 (SS$_DECOVF).

Subscript-Range Trap-A subscript-range trap is an exception that
indicates that the last instruction was an INDEX instruction with a
subscript operand that failed the range check. The value of the
subscript operand is lower than the low operand or greater than the
high operand. The result is stored in indexout, and the condition
codes are set as if the subscript were within range. The type code
pushed on the stack is 7 (SS$_SUBRNG).

Floating Overflow Fault-A floating overflow fault is an exception that
indicates that the last instruction executed resulted in an exponent
greater than the largest representable exponent for the data type after
normalization and rounding. The destination was unaffected, and the
saved condition codes are UNPREDICTABLE. The saved PC points
to the instruction causing the fault. In the case of a POLY instruction,
the instruction is suspended with FPD set. The type code pushed
on the stack is 8 (SS$_FLTOVF _F).

Floating Divide-By-Zero Fault-A floating divide-by-zero fault is an
exception that indicates that the last instruction executed had a
floating zero divisor. The quotient operand was unaffected, and the
saved condition codes are UNPREDICTABLE. The saved PC points
to the instruction causing the fault. The type code pushed on the
stack is 9 (SS$_FLTDIV_F).

Floating Underflow Fault-A floating underflow fault is an exception
that indicates that the last instruction executed resulted in an exponent
less than the smallest representable exponent for the data type after

VAX Architecture Reference Manual

Memory
Management
Exceptions

Exceptions
Detected
During Operand
Reference

normalization and rounding, and that floating underflow was enabled
(FU set). The destination operand is unaffected. The saved condition
codes are UNPREDICTABLE. The saved PC points to the instruction
causing the fault. In the case of a POLY instruction, the instruction is
suspended with FPD set. The type code pushed on the stack is 10
(SS$_FL TUND_F).

A memory management exception can be either an access-control­
violation fault or a translation-not-valid fault.

Access-Control-Violation Fault-An access-control-violation fault is an
exception indicating that the process attempted a reference not
allowed at the current access mode. See Chapter 4, Memory
Management, for a description of the information pushed on the stack
as parameters. Software may restart the process after changing the
address translation information.

Translation-Not-Valid Fault-A translation-not-valid fault is an exception
indicating that the process attempted a reference to a page for which
the valid bit in the page table was not set. See Chapter 4, Memory
Management, for a description of the information pushed on the stack
as parameters.

Note that if a process attempts to reference a page for which the
page table entry specifies both not-valid and access-control violation,
an access-control-violation fault occurs.

Reserved-Addressing-Mode Fault-A reserved-addressing-mode fault
is an exception indicating that an operand specifier attempted to use
an addressing mode that is not allowed in the situation in which it
occurred. No parameters are pushed.

See Chapter 2 for details of reserved addressing modes and for
combinations of addressing modes and registers that cause UNPRE­
DICT ABLE results.

Reserved-Operand Exception-A reserved-operand exception is an
exception indicating that an operand accessed has a format reserved
for future use by DIGITAL. No parameters are pushed. This exception
always backs up the saved PC to pOint to the opcode. The exception
service routine may determine the type of operand by examining the
opcode using the saved PC.

Note that only the changes made by instruction fetch and because of
operand specifier evaluation may be restored. Therefore, some
instructions are not restartable. These exceptions are labeled as

Exceptions and Interrupts 233

Exceptions
Occurring
as the
Consequence
of an
Instruction

234

aborts rather than faults. The saved PC is always restored properly
unless the instruction attempted to modify it in a manner that results
in UNPREDICTABLE results.

The reserved-operand exceptions are caused by:

1. Bit field too wide (fault)

2. Invalid combination of bits in PSL restored by REI (fault)

3. Invalid combination of bits in PSW mask longword during RET
(fault)

4. Invalid combination of bits in BISPSW or BICPSW (fault)

5. Invalid CALLS or CALLG entry mask (fault)

6. Invalid register number in MFPR or MTPR (fault)

7. Invalid PCB contents in LDPCTX for some implementations
(abort)

8. Unaligned operand in ADAWI (fault)

9. Invalid register contents in MTPR for some implementations (fault)

10. Invalid operand addresses in INSQHI, INSQTI, REMQHI, or
REMQTI (fault)

11. A floating-point number that has the sign bit set and the exponent
zero except in the POLY table (fault)

12. A floating-point number that has the sign bit set and the exponent
zero in the POLY table (fault) (see Chapter 3 for restartability)

13. POLY degree too large (fault)

14. Decimal string too long (abort)

15. Invalid digit in CVTTP or CVTSP (abort)

16. Reserved pattern operator in EDITPC (fault) (see Chapter 3 for
restartability)

17. Incorrect source-string length at completion of EDITPC (abort)

Reserved- or Privileged-Instruction Fault-A reserved- or privileged­
instruction fault occurs when the processor encounters an opcode that
is not specifically defined, or that requires higher privileges than the
current mode. No parameters are pushed. Opcode FFFF (hex) will
always fault.

An Opcode-Reserved-To-Customers Fault-An opcode-reserved-to­
customers fault is an exception that occurs when an opcode reserved
to customers or to DIGITAL is executed. The operation is identical to·
the reserved-or-privileged-instruction fault except that the event is
caused by a different set of opcodes, and faults through a different'
vector. All opcodes reserved to customers start with FC (hex), which
is the XFC instruction. If the special instruction needs to generate a
unique exception, one of the reserved-to-customer vectors should be

VAX Architecture Reference Manual

used. An example might be an unrecognized second byte of the
instruction.

The XFC fault is intended primarily for use with writable control store
to implement installation-dependent instructions. The method used
to enable and disable the handling of an XFC fault in user-written
microcode is implementation-dependent. Some implementations may
transfer control to microcode without checking bits (1 :0) of the
exception vector.

Instruction-Emulation Exceptions-When a subset processor executes
a string instruction that is omitted from its instruction set, an emulation
exception results. An emulation exception can occur through either
of two SCB vectors, depending on whether or not PSL(FPD) was set
at the beginning of the instruction. If PSL(FPD) is clear, a subset­
emulation trap occurs through the SCB vector at offset C8 (hex), and
a subset-emulation trap frame is pushed onto the current stack. If
PSL(FPD) is set, a suspended-emulation fault occurs through the SCB
vector at offset CC (hex); and PC and PSL are pushed onto the
current stack.

The emulation exception handler runs in the mode of the emulated
instruction, on the same stack, and at the same IPL. The exception
parameters are pushed onto the current stack. See Chapter 11 for
details of instruction emulation and the emulation exceptions.

Compatibility-Mode Exceptions-A compatibility-mode exception is an
exception that occurs when the processor is in compatibility mode. A
longword of information is pushed on the stack, which contains a
code indicating the exception type. The stack frame is the same as
that for arithmetic exceptions, shown in Table 5.1. The compatibility
mode exception type codes are shown in Table 5.2.

Table 5.2
Compatibility Mode Exception Type
Codes

Exception Type Decimal

Faults

reserved opcode 0
BPT instruction 1

lOT instruction 2

EMT instruction 3
TRAP instruction 4

illegal instruction 5

Aborts

odd address 6

Exceptions and Interrupts 235

Trace Fault

236

sign extended code :(SP) r------------------------------------4
PC of next instruction

old PSL

Figure 5.6
CHMx Instruction Stack Frame

All other exceptions in compatibility mode occur to the regular native­
mode vector; for example, access-control-violation fault, translation­
not-valid fault, and machine-check abort. See Chapter 9, PDP - 11
Compatibility Mode.

Change-Mode Trap-A change-mode trap is an exception that occurs
when one of the change-mode instructions (CHMK, CHME, CHMS,
CHMU) is executed. The instruction operand is pushed on the
exception stack, as shown in Figure 5.6. See the description of the
change-mode instructions for details.

Breakpoint Fault-A breakpoint fault is an exception that occurs when
the breakpoint instruction (BPT) is executed. No parameters are
pushed.

To proceed from a breakpoint, a debugger or tracing program typically
restores the original contents of the location containing the BPT, sets
T in the PSL saved by the BPT fault, and resumes. When the
instruction completes, a trace exception will occur (see section on
tracing). At this point, the tracing program. can again re-insert the BPT
instruction, restore T to its original state (usually clear), and resume.
Note that if both tracing and breakpointing are in progress (if PSL(T)
was set at the time of the BPT), then on the trace exception both
the BPT restoration and a normal trace exception should be processed
by the trace handler.

A trace is an exception that occurs between instructions when trace is
enabled. Tracing is used for tracing programs, for performance
evaluation, or for debugging purposes. It is designed so that one and
only one trace exception occurs before the execution of each traced
instruction. The saved PC on a trace is the address of the next
instruction that would normally be executed. If a trace fault and a
memory management fault (or an odd address abort during a
compatibility mode instruction fetch) occur simultaneously, the order in
which the exceptions are taken is UNPREDICTABLE. The trace fault
for an instruction takes precedence over all other exceptions.
In order to ensure that exactly one trace occurs per instruction despite
other traps and faults, the PSL contains two bits: trace enable (T)

VAX Architecture Reference Manual

and trace pending (TP). If only one bit were used, then the occurrence
of an interrupt at the end of an instruction would either produce zero
or two traces, depending on the design. Instead of the PSL(T) bit
being defined to produce a trap after any other traps or aborts at the
end of an instruction, the trap effect is implemented by copying
PSL(T) to a second bit (PSL(TP)} that is actually used to generate the
exception. PSL(TP) generates a fault before any other processing at
the start of the next instruction.

The rules of operation for trace are as follows:

1. At the beginning of an instruction, if TP is set, then a trace fault is
taken after clearing TP.

2. TP is loaded with the value of T.

3. If the instruction faults or an interrupt is serviced, PSL(TP) is
cleared before the PSL is saved on the stack. The saved PC is set
to the start of the faulting or interrupted instruction. Instruction
execution is resumed at step 1.

4. If the instruction aborts or takes an arithmetic trap, PSL(TP) is not
changed before the PSL is saved on the stack.

5. If an interrupt is serviced after instruction completion and arithmetic
traps but before tracing is checked for at the start of the next
instruction, then PSL(TP) is not changed before the PSL is saved
on the stack.

The routine entered by a CHMx is not traced because CHMx clears
T and TP in the new PSL. However, if T was set at the beginning
of CHMx, the saved PSL will have both T and TP set. Trace faults
resume with the instruction following the REI in the routine entered by
the CHMx. An instruction following an REI will fault either if Twas
set when the REI was executed or if TP in the saved PSL is set; in
both cases, TP is set after the REI. Note that a trace fault that occurs
for an instruction following an REI that sets TP will be taken with the
new PSL. Thus, special care must be taken if exception or interrupt
routines are traced. If the T-bit is set by a BISPSW instruction, trace
faults begin with the second instruction after the BISPSW.

In addition, the CALLS and CALLG instructions save a clear T,
although T in the PSL is unchanged. This is done so that a debugger
or trace program proceeding from a BPT fault does not get a spurious
trace from the RET that matches the CALL.

The detection of reserved-instruction faults occurs after the trace fault.
The detection of interrupts and other exceptions can occur during
instruction execution. In this case, TP is cleared before the exception
or interrupt is initiated. The entire PSL (including T and TP) is
automatically saved on interrupt or exception initiation and is restored
at the end with an REI. This makes interrupts and benign exceptions
totally transparent to the executing pro9ram.

Exceptions and Interrupts 237

Table 5.3 shows the operation of tracing during execution of ordinary
instructions, instructions that have special effects on tracing, and
other system events that effect tracing.

Table 5.3
Tracing

Before the Event After the Event

Current Stacked Current Stacked
Event T TP T TP T TP T TP Exception

ordinary instruction execution 0 0 0 0

0 1 1

x 1 0 0 0 trace fault

BISPSW that sets T 0 0 1 0

0 0 0 0 0 trace fault

0 1

1 1 0 0 0 trace fault

BICPSW that clears T 0 0 0 0

0 1 0 0 0 0 trace fault

0 0 1

1 0 0 1 0 trace fault

CALLS or CALLG 0 0 0 0 0

0 1 0 0 0 0 trace fault

0 0

0 0 0 trace fault
RET 0 0 0 0 0

0 0 1 0

0 0 0 0 0,0 0 trace fault"

0 0 0 0,1 0 trace fault"

0 0 0 0

0 1 1

0 0 0 1,0 0 trace fau It"

1 1 0 0 1,1 0 trace fault"
CHMx ... REI 0 0 0 0

0 1

x 0 0 0 trace fault
interrupt or exception ... REI 0 0 0 0

0 1

x 1 0 0 1 0 trace fault

CHMx 0 0 0 0 0 0 CHMx

0 0 0 CHMx

x 0 0 0 trace fault

238 VAX Architecture Reference Manual

-~-.-
~----- ---~~---- ------

Table 5.3
Tracing (continued)

Before the Event After the Event

Current Stacked Current Stacked
Event T TP T TP T TP T TP Exception

REI 0 0 0 0 0 0

0 0 0 1 0

0 0 0 0
0 0 1 1 1 1

0 0 0 0 0 0,0 0,0 trace fault"

0 0 1 0 0 0,0 0,1 trace fault"

0 1 1 0 0 0 0,1 0,0 trace fault"

0 1 1 1 0 0 0,1 0,1 trace fault"

0 0 0 0
0 0 1 0
0 0
0

0 0 0 0 1,0 0,0 trace fault"

0 1 0 0 1,0 0,1 trace fau It"

0 0 0 1,1 0,0 trace fau It"

1 1 0 0 1,1 0,1 trace fau It"

interrupt or exception 0 0 0 0 0 0
1 0 0 0 1 0

0 0 0 0
0 0

"Where two entries are shown stacked, the first shown is on the kernel or interrupt stack for
the trace fault handler. The second shown is on the original stack, unchanged by the trace
fault.

Routines using the trace facility are termed trace handlers. They
should observe the following conventions and restrictions:

1. When the trace handler performs its REI back to the traced
program, it should always force the T-bit on in the PSL that will be
restored. This defends against programs clearing T via RET, REI,
or BICPSW.

2. The trace handler should never examine or alter the TP bit when
continuing tracing. The hardware flows ensure that this bit is
maintained correctly to continue tracing.

3. When tracing is to be ended, both T and TP should be cleared.
This ensures that no further traces will occur.

4. Tracing a service routine that completes with an REI will give a
trace in the restored mode after the REI. If the program being
restored to was also being traced, only one trace exception
is generated.

Exceptions and Interrupts 239

Serious System
Failures

240

5. If a routine entered by a CALLS or CALLG instruction is executed
at full speed by turning off T, then trace control can be regained by
setting T in the PSW in its call frame. Tracing will resume after
the instruction following the RET.

6. Tracing is disabled for routines entered by a CHMx instruction or
any exception. Thus, if a CHMx or exception service routine is
to be traced, a breakpoint instruction must be placed at its entry
point. If such a routine is recursive, breakpointing will catch each
recursion only if the breakpoint is not on the CHMx or instruction
with the exception.

7. If it is desired to allow multiple trace handlers, all handlers should
preserve T when turning on and off trace. They also would have to
simulate traced code that alters or reads T.

Kernel-stack-not-valid abort is an exception that indicates that the
kernel stack was not valid while the processor was pushing information
onto the kernel stack during the initiation of an exception or interrupt.
Usually this is an indication of a stack overflow or other operating
system error. The attempted exception is transformed into an abort
that uses the interrupt stack. No extra information is pushed on
the interrupt stack in addition to PSL and PC of the original exception.
IPL is raised to 1 F (hex). If the exception vector (1 :0) is not 1, the
operation of the processor is UNDEFINED.

Software may abort the process without aborting the system. Because
of the lost information, however, the process cannot be continued. If
the kernel stack is not valid during the normal execution of an
instruction (including CHMx or REI), the normal memory management
fault is initiated.

An interrupt-stack-not-valid halt results when the interrupt stack was
not valid, or a memory error occurred, while the processor was
pushing information onto the interrupt stack during the initiation of an
exception or interrupt. No further interrupt requests are acknowledged
on the processor. The processor leaves the PC, the PSL, and the
reason for the halt in registers so that they are available to a debugger,
to the normal bootstrap routine, or to an optional watch-dog bootstrap
routine. A watch-dog bootstrap can cause the processor to leave the
halted state.

A machine-check exception indicates that the processor detected an
internal error in itself. As is usual for exceptions, machine-check is
taken regardless of current IPL. The machine-check exception vector
bits(1 :0) must specify 1 or the operation of the processor is UNDE­
FINED. The exception is taken on the interrupt stack, and IPL is
raised to 1 F (hex).

VAX Architecture Reference Manual

SERIALIZATION
OF
NOTIFICATION
OF MULTIPLE
EVENTS

00000010 (hex) :(SP)

1 st longword of error report

2nd longword of error report

3rd longword of error report

4th longword of error report

PC

PSL

Figure 5.7
An Example Machine·Check Stack Frame

The processor pushes a machine-check stack frame onto the interrupt
stack, consisting of a count longword, an implementation-dependent
number of error report longwords, and a PC and PSL. The count
longword reports the number of bytes of error report pushed. For
example, if 4 longwords of error report are pushed, the count longword
will contain 16 (decimal). An example machine-check stack frame is
shown in Figure 5.7.

Software can decide, on the basis of the information presented,
whether to abort the current process if the machine-check came from
the process. Machine-check includes uncorrected bus and memory
errors anywhere, and any other processor-detected errors. Some
processor errors cannot ensure the state of the machine at all. For
such errors, the state will be preserved on a "best effort" basis.

The interaction between arithmetic traps, tracing, other exceptions,
and multiple interrupts is complex. In order to ensure consistent and
useful implementations, it is necessary to understand this interaction
at a detailed level. As an example, if an instruction is started with
PSL(T) = 1 and PSL(TP) = 0, and it gets an arithmetic trap, and an
interrupt request is recognized, the following sequence occurs:

1. The instruction finishes, storing all its results. PSL(TP) is set at the
end of this instruction since PSL(T) was set at the beginning.

2. The overflow trap sequence is initiated, saving PC and PSL (with
TP = 1), loading a new PC from the overflow trap vector, and
creating a new PSL.

3. The interrupt sequence is initiated, saving the PC and PSL
appropriate to the overflow-trap service routine, loading a new PC
from the interrupt vector, and creating a new PSL.

4. If a higher priority interrupt is noticed, the first instruction of the
interrupt service routine is not executed. Instead, the PC and PSL
appropriate to that routine are saved as part of initiating the new

Exceptions and Interrupts 241

242

interrupt. The original interrupt service routine will then be executed
when the higher priority routine terminates via REI.

5. The interrupt service routine runs and then exits with REI.

6. The overflow-trap service routine runs and then exits with REI,
which sets PSL(TP) since the saved PSL(TP) was set.

7. The trace fault occurs, again pushing PC and PSL but this time
with PSL(TP) = o.

8. Trace service routine runs and then exits with REI.

9. The next instruction is executed.

This sequence is accomplished by the following operation between
instructions:

! Here at completion of instruction. including

at end of REI from an exception or interrupt routine.

1$: {possibly take interrupts or console halt};

! If so, PSL(TP) is not modified before PSL is saved.

if PSL(TP) EQLU 1 then

begin

PSL(TP) <- 0;

! If trace pending, then fault.

! Trace fault take~ precedence

over other exceptions.

{initiate trace fault};

end;

{possibly take interrupts or console halt};

! If so, PSL(TP) is not modified before PSL is saved.

PSL(TP) <- PSL(T); !if trace enable, set trace pending.

{go start instruction execution};

! Reserved instruction faults are taken here.

! FPD is tested here, thus TP takes

precedence over FPD if both are set.

if {instruction faults} OR {an interrupt or console hal t

is taken before end of instruction} then

begin

{back up PC to start of opcode};

lei ther set PSL(FPD) or back up all general

register side effects};

PSL(TP) <- 0;

{ini tiate exception or interrupt};

end;

if {arithmetic trap needed and no other abort or trap}

then {initiate arithmetic trap};

! Note: All instructions end by flowing

! through 1$, thus the REI from a service

! routine will return to 1$.

VAX Architecture Reference Manual

SYSTEM
CONTROL
BLOCK

The system control block is a page containing the vectors by which
exceptions and interrupts are dispatched to the appropriate service
routines. Table 5.4 shows the interrupt and exception vectors in the
SCB.

Table 5.4
System Control Block Vectors

Offset Name Type Parameters Notes

00 passive release interrupt IPL is that of the request.

04 machine check abort, fault, Number of parameters is
or trap implementation-

dependent.

08 kernel stack not valid abort 0
OC power fail interrupt IPL is 1E.

10 reserved or privileged fault 0 Opcodes reserved to
instruction DIGITAL and privileged

instruction.
14 customer reserved fault 0 XFC instruction.

instruction

18 reserved operand fault or abort 0
1C reserved addressing fault 0

mode

20 access-control violation fault 2 Virtual address and fault
parameter are pushed.

24 translation not valid fault 2 Virtual address and fault
parameter are pushed.

28 trace pending fault 0
2C breakpoint instruction fault 0
30 compatibility fault or abort A type code is pushed.
34 arithmetic trap or fau It A type code is pushed.

38 unused Reserved to DIGITAL.

3C unused Reserved to DIGITAL.

40 CHMK trap The operand word is sign-
extended and pushed.

44 CHME trap The operand word is sign-
extended and pushed.

48 CHMS trap The operand word is sign-
extended and pushed.

4C CHMU trap The operand word is sign-
extended and pushed.

50-60 reserved for bus or interrupt IPL is implementation
memory error dependent.

64-80 unused Reserved to DIGITAL.

84 software level 1 interrupt IPL is 1.
88 software level 2 interrupt IPL is 2. Ordinarily used

for AST delivery.

ExceptIons and Interrupts 243

Table 5.4
System Control Block Vectors (continued)

Offset Name Type Parameters Notes

BC software level 3 interrupt IPL is 3. Ordinarily used
for process scheduling.

90-BC software levels 4·F interrupt Vector corresponds to IPL.

CO interval timer interrupt IPL is 16 or 1B (hex),
implementation-
dependent.

C4 unused Reserved to DIGITAL.
CB subset emulation trap 10 FPD clear. Emulation

frame is pushed.

CC suspended emulation fault 0 FPD set.
DO-DC unused Reserved to DIGITAL.
EO-EC unused Reserved to owners.

FO console storage receive interrupt 11/750 and 11/730. IPL is
implementation-
dependent.

F4 console storage transmit interrupt 11/7.::a and 11/730. IPL is
implementation-
dependent.

FB console terminal receive interrupt IPL is 14 (hex).
FC console terminal transmit interrupt IPL is 14 (hex).

100-13C adapter vectors interrupt IPL is 14 (hex).
Implementation-
dependent.

140-17C adapter vectors interrupt IPL is 15 (hex).
Implementation-
dependent.

1BO-1BC adapter vectors interrupt IPL is 16 (hex).
Implementation-
dependent.

1CO-IFC adapter vectors interrupt IPL is 17 (hex).
Implementation-
dependent.

200-3FC device vectors interrupt Implementation-
dependent.

400-5FC device vectors interrupt Implementation-
dependent.

System Control
Block Base

The system control block base (SCBB) is a privileged register
containing the physical address of the system control block, which
must be page-aligned. Figure 5.8 shows the SCBB.

244

The actual length is implementation dependent because it represents
a physical address. Processor initialization leaves the contents of
SCBB UNPREDICTABLE.

VAX Architecture Reference Manual

k
~
~
~

~ ,
~

:!:

Interrupt and
Exception
Vectors

313029 98 o
1001 physical page address of SCB MBZ

Figure 5.8
System Control Block Base

If the SCBB pOints to I/O space or nonexistent memory when an
exception or interrupt occurs, the operation of the processor is
UNDEFINED.

A vector is a longword in the SCB. The processor examines the
vector when an exception or interrupt occurs in order to determine
how to service the event.

Separate vectors are defined for each interrupting device controller
and each class of exceptions. Each vector is interpreted as follows by
the hardware. Bits (1 :0) contain a code interpreted:

o Service this event on the kernel stack unless already running on the
interrupt stack, in which case service on the interrupt stack.

1 Service this event on the interrupt stack. If this event is an exception,
the IPL is raised to 1 F (hex).

2 Service this event in writable control store, passing bits (15:2) to the
installation-dependent microcode there. If writable control store does
not exist or is not loaded, the operation is UNDEFINED.

3 Operation UNDEFINED. Reserved to DIGITAL.

For codes 0 and 1, bits (31 :2) contain the virtual address of the
service routine, which must begin on a longword boundary and will
ordinarily be in the system space. CHMx is serviced on the stack
selected by the new mode. Bits (1 :0) in the CHMx vectors must be
zero or the operation of the processor is UNDEFINED. Emulation
exceptions are serviced on the current stack. Bits (1 :0) in the
emulation exception vectors must be zero or the operation of the
processor is UNDEFINED.

The assignment of SCB offsets and priority levels for controllers,
adapters, and other devices connecting to the system bus is
implementation dependent. Typically, interrupt priority levels 14
through 17 (hex) are used to signal 110 device, controller, and adapter
events. Typically, one interrupt vector is assigned to each priority
level for each adapter.

The use of second or third SCB pages (offsets 200-3FC and 400-
SFC) is implementation dependent. In some processors (VAX-11/7S0
and VAX-11/730, for example) UNIBUS devicesinterrupt the processor

Exceptions and Interrupts 245

STACKS

Stack
Residency

246

directly, and the second SGB page contains the UNIBUS device
vectors. When a UNIBUS device connected to such a system
requests an interrupt, the vector is determined by adding 2 hex) to the
vector supplied by the device. If a second UNIBUS adapter is
installed, the third SGB page contains its device vectors, and 400
(hex) is added to the vector supplied by the device attached to the
second UNIBUS. Only device vectors in the range 0 to 1 FG (hex) are
allowed. Interrupt priority levels 14 through 17 (hex) correspond to
UNIBUS levels BR4 through BR7.

At any time, the processor is either in a process context (and PSL(IS)
= 0) in one of four modes (kernel, executive, supervisor, user), or is
in the system-wide interrupt service context (and PSL(IS) = 1) that
operates with kernel privileges. There is a stack pointer associated
with each of these five states; any time the processor changes from
one of these states to another, the stack pointer (SP or R14) is stored
in the process context stack pointer for the old state and is loaded
from that for the new state. The five stack pointers are accessible as
internal processor registers.

KSP Kernel-mode stack pointer

ESP Executive-mode stack pointer

SSP Supervisor-mode stack pointer

USP User-mode stack pointer

ISP Interrupt stack pointer

Operating system design must choose a priority level that is the
boundary between kernel and interrupt stack use. The SGB interrupt
vectors must be set such that interrupts to levels above this boundary
run on the interrupt stack (vector(1 :0) = 1) and interrupts below this
boundary run on the kernel stack (vector(1 :0) = 0). Typically, AST
delivery (IPL 2) is on the kernel stack, and all higher levels are on the
interrupt stack.

The user, supervisor, and executive mode stacks do not need to be
resident. Kernel-mode code can bring in or allocate process stack
pages as translation-not-valid faults occur. The kernel stack for the
current process and the interrupt stack (which is process-independent),
however, must be resident and accessible. Translation-not-valid and
access-control-violation faults occurring on references to either of
these stacks are regarded as serious system failures.

If either of these faults occurs on a reference to the kernel stack, the
processor aborts the current sequence and initiates kernel-stack­
not-valid abort on hardware level 1 F (hex). If either of these faults
occurs on a reference to the interrupt stack, the processor halts. Note

VAX Architecture Reference Manual

Stack
Alignment

Stack Status
Bits

that this does not mean that every possible reference is checked,
but rather that the processor will not loop on these conditions.

It is not necessary that the kernel stack for a process other than the
current one be resident, but it must be resident before that process is
selected to run by the software's process dispatcher. Further, any
mechanism that uses translation-not-valid or access-control-violation
faults to gather process statistics, for instance, must exercise care not
to invalidate kernel-stack pages.

Except on CALLS and CALLG instructions, the hardware makes no
attempt to align the stacks. For best performance on all processors,
the software should align the stack on a longword boundary and
allocate the stack in longword increments. The convert-byte-to-Iong
(CVTBL and MOVZBL), convert-word-to-Iong (CVTWL and MOVZWL),
convert-Iong-to-byte (CVTLB), and convert-Iong-to-word (CVTLW)
instructions are recommended for pushing bytes and words on the
stack and popping them off in order to keep it longword aligned.

The interrupt stack bit (IS) and current mode bits in the privileged
processor status longword specify which of the five stack pointers is
currently in use, as shown in Table 5.5.

The processor does not allow current mode to be non-zero when
IS = 1. This is achieved by clearing the mode bits when taking
an interrupt or exception, and by causing reserved operand fault if
REI attempts to load a PSL in which both IS and mode are non-zero.

The stack to be used for an interrupt or exception is selected by the
current PSL(IS) and bits(1 :0) of the vector. If the current PSL(IS) is 1
or if the low bits of the vector are 01 (binary), then the interrupt
stack is used. If the current PSL(IS) is 0 and the low bits of the vector
are then the kernel stack is used. Values 10 (binary) and 11 (binary)
of the vector(1 :0) are used for other purposes. Refer to the section
"System Control Block" earlier in this chapter for details.

Table 5.5
Indication of Current Stack Pointer

Stack Pointer Mnemonic PSL(IS) PSL(CUFLMOD)

Interrupt stack painter ISP 1 0
Kernel stack pointer KSP 0 0
Executive painter ESP 0
Supervisor stack pointer SSP 0 2

User stack pointer USP 0 3

Exceptions and Interrupts 247

Accessing
Stack Registers

Reference to SP (the stack pointer) in the general registers will
access one of five possible architecturally defined stack pointers-the
user, supervisor, executive, kernel, or interrupt-depending on the
values of the current mode and IS bits in the PSL. Some processors
may implement these five stack pointers as five internal processor
registers. Other processors may store the four per-process stack
pointers in memory in the PCB and store only the interrupt stack
pointer in an internal register (see Chapter 8). In either case, software
can access any of the five stack pointers with the MTPR and MFPR
instructions. Results are correct even if the stack pointer specified by
the current mode and IS bits in the PSL is referenced in the internal
processor register space by an MTPR or MFPR instruction.

If the four process stack pOinters are implemented as registers, then
these instructions are the only method for accessing the stack
pointers of the curreht process. See Chapter 8 for conventions to be
followed when referencing other per-process registers in the internal
processor register space.

The internal processor register numbers were chosen to be the same
as PSL(26:24). The previous stack pointer is the same as PSL(23:22)
unless PSL(IS) is set. If PSL(IS) is set, the previous mode cannot be
determined from the PSL since interrupts always clear PSL(23:22).
Processor initialization leaves the contents of all stack pOinters
UNPREDICTABLE.

INITIATE Initiate Exception or Interrupt
EXCEPTION
OR INTERRUPT Operation:

248

! Read the vector into a temporary register, and check it for validity.

! The vector number is determined by the exception or interrupt type.

vector <- SCB[vector_number];

case vector(l: 0) of

0: if {machine check OR kernel-stack-not-valid}

then {UNDEFINED}:

1: if {CHMx OR subset emulation exception}

then {UNDEFINED):

2: if {writable control store exists and is loaded}

then {enter writable control store}

else {UNDEFINED):

3: {UNDEFINED):

end:

VAX Architecture Reference Manual

! Save the current PSL in a temporary register.

saved_PSL +- PSL;

! Create and load a new PSL.

case {exception or interrupt type} of

{interrupt}:

{CHMx}:

begin

PSL(CM.TP.FPD.DV.FU.IV.T.N.Z.V.C) +- 0;

PSL(CUR_MOD. PRY _MOD) +- 0;

if vector(l: 0) EQLU 1

then PSL(IS) <- 1

else PSL(IS) saved]SL(IS);

PSL(IPL) <- new_IPL;

end;

begin

PSL(CM.TP.FPD.DV.FU.IV.T.N.Z.V.C) +- 0;

PSL(CUR_MOD) <-- new_mode;

PSL(PRV _MOD) <-- saved_PSL(CUR_MOD);

PSL(IS) <-- saved_PSL(IS);

PSL(IPL) +- saved_PSL(IPL);

end;

{subset emulation exception}:

begin

PSL(CM. TP. FPD. DV. FU .IV. T) +- 0;

PSL(CUR_MOD) +- saved_PSL(CUR_MOD);

PSL(PRV_MOD) +- saved_PSL(PRV_MOD);

PSL(IS) <-- saved]SL(IS);

PSL(IPL) <-- saved_PSL(IPL);

PSL(N. Z. V • C) +- saved_PSL(N. Z. V. C);

end;

otherwise

begin

(Other exceptions.)

end;

PSL(CM. TP. FPD. DV • FU. IV. T. N. Z. V • C) <- 0;

PSL(CUR_MOD) <-- 0;

PSL(PRV_MOD) <-- saved_PSL(CUR_MOD);

if vector(l: 0) EQLU 1

then PSL(IS) ...c

else PSL(IS) <-- saved_PSL(IS);

if vector(l: 0) EQLU 1

then PSL(IPL) +- 31

else PSL(IPL) ...c saved_PSL(IPL);

end;

Exceptions and Interrupts 249

250

! If necessary, save the current stack pointer and load a new one.

if saved_PSL(IS) EQLU 0 then

begin

IPR[saved_PSL(CUR_MOD)] <- SP;

SP <- IPR [PSL(IS)' PSL(CUR_MOD)];

end;

I Push PC, the saved PSL, and any parameters onto the new stack,

! in the new mode.

-(SPi <- saved_PSL;

- (SPi <- PC;

{push parameters if any);

I Load PC with the address of the exception or interrupt handler.

PC <- vector(3l:2) , 0(1:0);

! Software interrupts clear the software-interrupt-pending bit.

if {software interrupt} then SISR(PSL(IPL)) <- 0;

Condition Codes:

N ~ 0;

Z ~ 0;
V ~ 0;

C ~ 0;

Exceptions:
kernel-stack not valid
interrupt-stack not valid

Description:
The vector associated with the exception or interrupt is read from the
system control block. The current PSL is saved and a new PSL is
created and loaded. If this is an interrupt, the new PSL has all fields
cleared except (IS) and (IPL). IPL is raised to the priority level of
the interrupt request. IS is set to 1 if the low bits of the vector contain
01 (binary); otherwise, it is unchanged from the old PSL. If this is a
CHMx exception, current mode is loaded with the new mode, previous
mode is loaded with the old value of current mode, (IS) and (IPL) are
retained from the old PSL, and all other fields are cleared. If this is an
emulation exception, current mode, previous mode, (IS), (lPL), and
the condition codes are all retained from'the old PSL, and all other
fields are cleared. If this is any other kind of exception, previous mode
is loaded with the old value of current mode, (IS) and (IPL) are
loaded according to the low bits of the vector, and all other fields are
cleared. If the low bits of the vector are 01 (binary), then (IS) is
loaded with 1 and (IPL) is raised to 31; otherwise, (IS) and (IPL) are
retained from the old PSL. Unless the processor is already running on
the interrupt stack, the old stack pointer is saved and a new one is

VAX Architecture Reference Manual

loaded. The saved PSL and the PC are pushed onto the stack, along
with any exception parameters. PC is loaded with the address of the
interrupt or exception service routine indicated by bits (31 :2) of the
vector.

Notes:
1. Interrupts are disabled during this sequence.

2. On a fault or interrupt, the saved condition codes are UNPRE­
DICTABLE; they are only saved to the extent necessary to ensure
correct completion of the instruction when resumed.

3. After an abort, all the explicit and implicit operands of the aborted
instruction are UNPREDICTABLE (see Appendix B). The PC
pushed on the stack points to the opcode of the aborted instruction,
unless the instruction modified PC in a way that produces
UNPREDICTABLE results.

4. After an abort or fault or interrupt that pushes a PSL with FPD set,
the general registers except PC, SP, and FP are UNPREDICTABLE
unless the instruction description specifies a setting. If FP is the
destination in this case, then it is also UNPREDICTABLE. On
a kernel-stack-not-valid abort, both SP and FP are UNPREDICT­
ABLE. This implies that processes stopped with FPD set cannot be
resumed on processors of a different type or engineering-change
level.

5. If the processor gets an access-control-violation or translation-not­
valid condition while attempting to push information on the kernel
stack, a kernel-stack-not-valid abort is initiated instead, and IPL is
raised to 31. The PSL and PC saved on the interrupt stack are
those that would have been pushed on the kernel stack by
the original exception. Additional information, if any, associated
with the original exception is lost. If vector(1 :0) for kernel-stack-not­
valid abort is 0, the operation of the processor is UNDEFINED.
(Kernel stack not valid will not occur with CHMx or subset emulation
exceptions, since they explicitly probe the destination stack and
fault if it is invalid or inaccessible.)

6. If the processor gets an access-control-violation or translation-not­
valid condition while attempting to push information on the interrupt
stack, the processor is halted and only the state of ISP, PC, and
PSL is ensured to be correct for subsequent analysis. The PSL
and PC have the values that would have been pushed on the
interrupt stack.

7. The value of PSL(TP) that is saved on the stack is as follows:

fault

trace

interrupt

clear

clear

clear (if FPD set)
from PSL(TP) (if after traps, before trace)

Exceptions and Interrupts 251

INSTRUCTIONS
RELATED TO
EXCEPTIONS
AND
INTERRUPTS

REI

252

abort

trap

CHMx

BPT,XFC

UNPREDICTABLE

from PSL(TP>

from PSL(TP>

clear

reserved instr. clear

8. The value of PC that is saved on the stack points to the following:

fault instruction faulting

trace

interrupt

abort

trap

CHMx

BPT,XFC

reserved instr.

next instruction to execute
(instruction at the beginning of which
the trace fault was taken)

instruction interrupted or
next instruction to execute

instruction aborting or
detecting kernel-stack-not-valid
(not ensured on machine-check)

next instruction to execute

next instruction to execute

BPT, XFC instruction

reserved instruction

Return from Exception or Interrupt

Format:
Opcode

Operation:

tmpl <- (SP) +; ! Pick up saved PC

tmp2 <- (SP) +; ! and PSL

if {tmp2(IS) EQLU 1 AND tmp2(IPL) EQLU O} OR

{tmp2(IPL) GTRU 0 AND tmp2(CUR-MOD) NEQU O} OR

{tmp2(PRV-MOD) LSSU tmp2(CUR-MOD)} OR

{tmp2(PSL-MBZ) NEQU O} OR

VAX ArChitecture Reference Manual

{tmp2(CUR-MOD) LSSU PSL(CUR-MOD)} OR

{tmp2(IS) EQLU 1 AND PSL(IS) EQLU O} OR

{tmp2(IPL) GTRU PSL(IPL)} then {reserved operand fault};

if {compatibility mode implemented} then

begin
if {tmp2(CM) EQLU l} AND

{{tmp2(FPD, IS, DV, FU, IV) NEQU a} OR

{tmp2(CUR-MOD) NEQU 3}} then
{reserved operand fault};

end

else if {tmp2(CM) EQLU l} then {reserved operand fault};

if PSL(IS) EQLU 1 then ISP <- SP ! save old stack pointer

else PSL(CUR-MOD)-SP <- SP;

if PSL(TP) EQLU 1 then tmp2(TP) <- 1; !TP <- TP or stack TP

PC <- tmpl;

PSL <- tmp2;

if PSL(IS) EQLU 0 then

begin

SP <- PSL(CUR-MOD)-SP; !switch stack

if PSL(CUR-MOD) GEQU ASTLVL !check for AST delivery

then {request interrupt at IPL 2};

end;

{check for so ftware interrupts};

{clear instruction look-ahead}

Condition Codes:

N <- saved PSL(3) ;

Z <- saved PSL(2) ;

V <- saved PSL(l) ;

C <- saved PSL(O) ;

Exception:
reserved operand

Opcode:

02 REI Return from Exception or Interrupt

Description:
A longword is popped from the current stack and held in a temporary
PC. A second longword is popped from the current stack and held

Exceptions and Interrupts 253

CHM

254

in a temporary PSL. The popped PSL is checked for internal
consistency. The popped PSL is compared with the current PSL to
make sure that the transition from current PSL to popped PSL is
allowed. The current stack pOinter is saved, and a new stack pointer
is selected according to the new PSL(CUR-MOD) and (IS) fields
(see section "Stack Status Bits" earlier in this chapter). The level of
the highest privileged AST is checked against the current mode to
see whether a pending AST can be delivered (see Chapter 6).
Execution resumes with the instruction being executed at the time of
the exception or interrupt. Any instruction lookahead in the processor
is reinitialized.

Notes:
1. The exception or interrupt service routine is responsible for

restoring any registers saved and removing any parameters from
the stack.

2. As usual for faults, if access-control-violation or translation-not­
valid occurs while popping PC or PSL from the stack, the stack
pointer is restored as part of the initiation of the fault.

3. REI to compatibility mode results in a reserved operand fault if
compatibility mode is not implemented.

Change Mode

Purpose:
request services of more privileged software

Format:
opcode code.rw

Operation:

tmpl <- {mode selected by opcode (K=O, E=l, S=2, U=3));

tmp2 <- MINU (tmpl, PSL(CUR-MOD));

tmp3 <- SEXT (code) ;

'maximize privilege

if {PSL(IS) EQLU I} then HALT;

PSL(CUR-MOD)-SP <- SP;

tmp4 <- tmp2-SP;

!illegal from I stack

!save old stack pointer

'get new stack pointer

PROBEW (from tmp4 -1 through tmp4 -12 wi th mode = tmp2) ;

I new stack access

if {access-control violation} then

{initiate access-control-violation fault};

if {translation not valid} then

{ini tiate translation-not-valid faul tJ;

VAX Architecture Reference Manual

!check

{initiate CHMx exception with new-mode=tmp2

and parameter = tmp3

using 40+tmpl*4 (hex) as SCB offset

using tmp4 as the new SP

and not storing SP again};

Condition Codes:

N ~ 0;

Z ~ 0;

V ~ 0;

C ~ 0;

Exception:
halt

Opcodes:

BC CHMK Change Mode to Kernel

BO CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor
BF CHMU Change Mode to User

Description:
Change-mode instructions allow processes to change their access
mode in a controlled manner. The instruction only increases privilege
(decreases the access mode) or leaves it unchanged.

A change in mode also results in a change of stack pointers: the old
pOinter is saved, the new pointer is loaded. The PSL, PC, and
code passed by the instruction are pushed onto the stack of the new
mode. The saved PC addresses the instruction following the CHMx
instruction. The code is sign extended. Figure 5.6 illustrates ~the new
stack's appearance after execution.

The destination mode selected by the opcode is used to obtain a
location from the system control block. This location addresses the
CHMx dispatcher for the specified mode. If the vector(1 :0) code
NEQU is 0, then the operation is UNDEFINED.

Notes:
1. As usual for faults, any access-control-violation or translation-not­

valid fault saves PC and PSL and leaves SP as it was at the
beginning of the instruction except for any pushes onto the kernel
stack.

2. By software convention, negative codes are reserved to DIGITAL
and DIGITAL's customers.

Exceptions and Interrupts 255

~
(II

~
~ :::r ;
c
;

I
:::I

i
iii:
III
:::I
C
!!.

Table 5.6
Processor State Transitions

Final State

User
Initial State Mode Super Mode

User Mode REI or CHMS
CHMU

Super Mode REI REI, CHMU,
or CHME

Exec Mode REI REI

Kernel Stack, REI REI
IPL = 0

Kernel Stack, REI REI
IPL) 0

Interrupt Stack REI REI

e(O) means exception with vector(1 :0) = 0
e(1) means exception with vector(1 :0) = 1
i(O) me.ans interrupt with vector(1 :0) = 0
i(1) means interrupt with vector(1 :0) = 1

Exec Mode Kernel, Stack, IPL = 0 Kernel Stack, IPL) 0 Interrupt Stack

CHME CHMK or e(O) i(O) e(1)ori(1)

CHME CHMK or e(O) i(O) e(1)ori(1)

REI, CHMU, CHMK or e(O) i(O) e(1)ori(1)
CHMS, or
CHME

REI REI, CHMx, LDPCTX, MTPR IPL or i(O) e(1), i(1), or SVPCTX
e(O), or MTPR IPL

REI REI or MTPR IPL REI, CHMx, LDPCTX, e(1), i(1), or SVPCTX
e(O), or i(O)

REI REI REI or LDPCTX REI, SVPCTX, MTPR
IPL, exception or
interrupt

Examples:

CHMK #7

CHME #4

CHMS #-2

Exceptions and Interrupts

Request the kernel-mode service

specified by code 7.

Request the executive-mode service

specified by code 4.

Request the supervisor-mode service

specified by customer code -2.

257

PROCESS
DEFINITION

PROCESS
CONTEXT

Process Structure 6

A process is a single thread of execution. It is the basic, scheduling.
bar entity that is executed by the processor. A process consists of an
address space and both hardware and software context. The hardware
context of a process is defined by a process control block (PCB) that
contains images of the 14 general-purpose registers, the processor
status longword, the program counter, the four per-process stack
pointers, the process virtual memory defined by the base and length
registers POBR, POLR, P1 BR, and P1 LR, and several minor control
fields. In order for a process to execute, the majority of the PCB must
be moved into the internal registers. While a process is executing,
some of. its hardware context is being updated in the internal registers.
When a process is not being executed, its hardware context is stored
in a data structure termed the process control block. Saving the
contents of the privileged registers in the PCB of the currently
executing process and then loading a new context from another PCB
is termed context switching. Context switching occurs as one process
after another is scheduled for execution.

Shown in Figure 6.1 is the process control block for the currently
executing process. The PCB is pointed to by the process control block
base (PCBB) register, an internal privileged register. Figure 6.2
shows the PCBB. When the processor is initialized, the contents of
PCBB are UNPREDICTABLE.

The PCB contains all of the switch able process context collected into
a compact form for ease of movement to and from the privileged
internal registers. Although in any normal operating system there is
additional software context for each process, the following description
is limited to that portion of the PCB known to the hardware. The
PCB's contents are described in Table 6.1.

Process Structure 259

31

KSP

ESP

SSP

USP

RO

R1

R2

R3

R4

RS

R6

R7

R8

R9

R10

R11

AP (R12)

FP (R13)

PC

PSL

POBR

MBZ lAST jMBz\ POLR

P1BR

I MBZ I P1LR

L PME

Figure 6.1
Process Control Block (PCB)

313029

physical address of PCB

Figure 6.2
Process Control Block Base Register (PCBB)

260 VAX Architecture Reference Manual

o

2 1 0

:PCB

+4

+8

+12

+16

+20

+24

+28

+32

+36

+40

+44

+48

+52

+56

+60

-\-64

+68

+72

+76

+80

+84

+88

+92

Performance
Monitor Enable
Register

Table 6.1
Contents of the Process Control Block

Name Mnemonic Offset (hex) Extent

kernel stack pointer KSP 0 (31 :0)
executive stack pointer ESP 4 (31 :0)
supervisor stack pointer SSP 8 (31 :0)

user stack pointer USP C (31 :0)

general registers RO-R13 10-44 (31 :0)
program counter PC 48 (31 :0)

processor status longword PSL 4C (31 :0)
PO base register POBR 50 (31 :0)

PO length register POLR 54 (21 :0)

AST level ASTLVL 54 (26:24)

P1 base register P1BR 58 (31 :0)
P1 length register P1LR 5C (21 :0)

performance monitor enable PME 5C (31)

To alter its POBR, P1 BR, POLR, P1 LR, ASTLVL or PME, a process
must be executing in kernel mode. The process must first store
the desired new value in the memory image of the PCB, then move
the value to the appropriate privileged register. This protocol results
from the fact that these are read-only fields (for the context switch
instructions) in the PCB.

The ASTL VL and PME fields of the PCB may be contained in internal
processor registers when the process is running.

The performance-monitor-enable (PME) register controls a signal
visible to an external hardware performance monitor. PME allows the
system to identify those processes for which monitoring is desired and
so permits their behavior to be observed without interference caused
by the activity of other processes. Figure 6.3 shows PME. Processor
initialization sets PME to zero.

31 1 0

MBZ ~I
Figure 6.3
Performance Monitor Enable Register (PME)

Process Structure 261

Asynchronous
System Traps

262

Asynchronous system traps (AST) are a technique for notifying a
process of events that are not synchronized with its execution and for
initiating processing of asynchronous events with the least possible
delay. This delay in delivery of the AST may be due to either process
non-residence or to an access mode mismatch. The efficient
handling of ASTs in the VAX system requires some hardware
assistance to detect changes in access mode (current mode in PSL).
A process in any of the four access modes (kernel, executive,
supervisor, and user) may receive ASTs; however, an AST for a less
privileged access mode must not be permitted to interrupt execution
in a more protected access mode. Since outward access mode
transitions occur only in the REI instruction, comparison of the current
access mode field is made with a privileged register, ASTLVL,
shown in Figure 6.4. ASTL VL contains the most privileged access
mode number for which an AST is pending. If the new access mode
is greater than or equal to the pending ASTLVL, an IPL 2 interrupt
is posted to cause delivery of the pending AST.

The software flow for AST processing follows:

1. An event associated with an AST causes software enqueuing of an
AST control block to the software PCB, and the software sets the
ASTL VL field in the hardware PCB to the most privileged access
mode for which an AST is pending. If the target process is currently
executing, the ASTLVL privileged register also has to be set.

2. When an REI instruction detects a transition to an access mode
that can be interrupted by a pending AST, an IPL 2 interrupt is
triggered to cause delivery of the AST. Note that the REI instruction
does not make pending AST checks while returning to a routine
executing on the interrupt stack.

3. The (IPL 2) interrupt service routine should compute the correct
new value for ASTLVL that prevents additional AST delivery
interrupts while in kernel mode and move that value to the PCB
and the ASTLVL register before lowering IPL and actually
dispatching the AST. This interrupt service routine normally
executes on the kernel stack in the context of the process receiving
the AST.

31 3 2 a
ignored; returns 0

Figure 6.4
AST Level Register (ASTL VL)

VAX Architecture Reference Manual

(.

PROCESS
SCHEDULING
INTERRUPTS

PROCESS
STRUCTURE
INSTRUCTIONS

4. At the conclusion of processing for an AST, the ASTLVL is again
computed and moved to the PCB and ASTLVL register by software.

If ASTLVL contains 4, no AST is pending for the current process. If
ASTLVL is less than 4, an AST is pending for the mode corresponding
to the value of ASTLVL.

Values of ASTLVL greater than 4 are reserved. Execution of MTPR
src, #PR$----ASTLVL with src(2:O) GEQU 5 results in UNDEFINED
behavior. The preferred implementation is to cause reserved-operand
fault. Processor initialization sets ASTLVL to 4. Note that loading
ASTLVL with MTPR does not affect SISR or request a software
interrupt. Those affects of ASTLVL occur only during REI.

Two of the software interrupt priorities are reserved for process
scheduling software.

They are:

(IPL 2)

(IPL 3)

AST delivery interrupt. This interrupt is triggered by an
REI that detects PSL(CUR_MOD) GEQU ASTL VL and
indicates that a pending AST may now be delivered for
the currently executing process.

Process scheduling interrupt. This interrupt is triggered
by software. It indicates that a process has changed
software priority and that the process scheduler should
reschedule to find the highest priority executable process
to run.

Process scheduling software must execute on the interrupt stack
(PSL(IS) set) in order to have a non-context-switched stack available
for use. If the scheduler were running on a process's kernel stack,
then any state information it had there would disappear when a new
process is selected. Running on the interrupt stack can occur as
the result of the interrupt origin of scheduling events. However, some
synchronous scheduling requests such as a WAIT service may want
to cause rescheduling without any interrupt occurrence. For this
reason, the save-process-context (SVPCTX) instruction can be
executed while on either the kernel or the interrupt stack, and forces a
transition to execution on the interrupt stack.

All of the process structure instructions are privileged and require
kernel mode.

Process Structure 263

LDPCTX

264

Load Process Context

Purpose:
restore register and memory management context

Format:
opcode

Operation:

if PSL(CUR_MOD) NEQU 0

then {privileged instruction faul tj;

if PSL(IS) NEQU 1 then {UNDEFINED};

{invalidate per-process translation buffer entries};

! The PCB is located by the physical address in PCBB,

if {internal registers for stack pointers} then

begin

KSP (PCB) ;

ESP (PCB+4) ;

SSP (PCB+8) ;

USP <- (PCB+12) ;

end;

RO <- (PCB+16) ;

RI (PCB+20);

R2 <- (PCB+24) ;

R3 <- (PCB+28) ;

R4 (PCB+32) ;

R5 (PCB+36) ;

R6 (PCB+40) ;

R7 (PCB +44);

R8 <- (PCB +48);

R9 (PCB+52);

RIO <- (PCB+56);

Rll <- (PCB+60);

AP (PCB+64);

FP (PCB+68);

tmpl <- (PCB +80) ;

if {tmpl(3I' 30) NEQU 2} OR {tmpl(l' 0) NEQU O} then

{UNDEFINED} ;

POBH <- tmpl;

if (PCB +84) (31: 27) NEQU 0 then {UNDEFINED);

if (PCB + 84) (23 22) NEQU 0 then {UNDEFINED};

POLR <- (PCB +84) (21: 0);

if (PCB + 84) (26: 24) GEQU 5 then {UNDEFINED};

VAX Architecture Reference Manual

ASTLVL <- (PCB+84)(26:24);

tmpl <- (PCB+88);

tmp2 <- tmpl + 2**23;

if (tmp2(31:30) NEQU 2} OR (tmp2(l:O) NEQU O} then

{UNDEFINED} ;

P1BR <- tmpl;

if (PCB + 92) (30: 22) NEQU 0 then {UNDEFINED};

P1LR <- (PCB+92)(2l:0);

PME <- (PCB+92)(31);

ISP <- SP;

{i'nterrupts off};

PSL(IS) <- 0;

SP <- (PCB);
{interrupts on};

- (SP) (PCB+76) ;

- (SP) <- (PCB + 72) ;

Condition Codes:

N ~ N;

Z ~ z·
v ~ v;
C ~ C;

Exceptions:
reserved operand
privileged instruction

Opcode:

Save the interrupt stack pOinter.

Change from the interrupt stack

to the new kernel stack.

Push PSL onto kernel stack.

Push PC onto kernel stack.

(If kernel stack is inaccessible

or invalid, then UNDEFINED.)

06 LDPCTX Load Process Context

Description:
The process control block is specified by the privileged PCBB register.
The general registers are loaded from the PCB. The memory
management registers describing the' process address space are also
loaded,and the process entries in the translation buffer are cleared.
Execution is switched to the kernel stack. The PC and PSL are
moved from the PCB to the stack, suitable for use by a subsequent
REI instruction.

Note:
1. Some processors keep a copy of each of the per-process stack

pointers in internal registers. In those processors, LDPCTX loads

Process Structure 265

SVPCTX

266

the internal registers from the PCB. Other processors do not keep
a copy of all four per-process stack pointers in internal registers.
Rather such processors keep only the stack pointer for the current
access mode in an internal register and switch this with the PCB
contents whenever the current access mode changes.

2. The preferred implementation of UNDEFINED operation is reserved
operand abort.

3. To guarantee correct operation, a LDPCTX must be followed by an
REI instruction.

Save Process Context

Purpose:
save register context

Format:
opcode

Operation:

i f PSL(CUR~MOD> NEQU 0 then

{privileged instruction fault};

!PCB is located by physical address in PCBB

if {internal registers for stack pointers} then

begin

(PCB) <- KSP;

(PCB+4) <- ESP;

(PCB+8) <- SSP;

(PCB + 12) <- USP;

end;

(PCB+16) <- RO;

(PCB +20) <- Rl;

(PCB+24) <- R2;

(PCB +28) <- R3;

(PCB+32) <- R4;

(PCB+36) <- R5;

(PCB+40) <- R6;

(PCB+44) <- R7;

(PCB +48) <- R8;

(PCB+52) <- R9;

(PCB +56) <- RIO;

VAX Architecture Reference Manual

(PCB+60) ~ Rll;

(PCB+64) ~ AP;

(PCB+68) ~ FP;

(PCB+72) ~ (SP) +;

(PCB+76) ~ (SP) +;

If PSL(IS) EQLU 0 then

begin

!pop PC

!pop PSL

PSL(IPL) ~ MAXU (1, PSL(IPL));

(PCB) ~ SP; !save KSP

KSP ~ SP;

{interrupts off};

PSL(IS) ~ 1;

SP ~ ISP;

{in terrupts on};

end;

Condition Codes:

N ~ N;

Z ~ Z;

V ~ v;
C ~ C;

Exception:
privileged instruction

Opcode:

07 SVPCTX Save Process Context

Description:
The process control block is specified by the privileged PCBB register.
The general registers are saved into the PCB. The PC and PSL
currently on the top of the current stack are popped and stored in the
PCB. If a SVPCTX instruction is executed when IS is clear, then IS
is set, the interrupt stack pointer activated, and IPL is maximized with
1 because of the switch to the interrupt stack.

Notes:
1. The map, ASTLVL, and PME from the PCB are not saved because

they are rarely changed. Thus, not writing them saves overhead.

2. Some processors keep a copy of each of the per-process stack
pointers in internal registers. In those processors, SVPCTX stores

Process Structure 267

268

the internal registers into the PCB. Other processors do not keep a
copy of all four per-process stack pOinters in internal registers.
Rather these processors keep only the stack pointer for the current
access mode in an internal register and switch this with the PCB
contents whenever the current access mode changes.

3. Between the SVPCTX instruction that saves state for one process
and the LDPCTX that loads the state of another, the internal
stack pointers may not be referenced by MFPR or MTPR
instructions. This implies that interrupt service routines invoked at a
priority higher than the lowest one used for context switching must
not reference the process stack pointers.

The following example illustrates how the process structure
instructions can be used to implement process dispatching software. It
is assumed that this simple dispatch routine is always entered via an
interrupt.

RESCHED:

ENTERED VIA INTERRUPT

IPL=3

SVPCTX

(set state to runnable)

(and place current PCB)

(on proper RUN queue)

(Remove head of highest)

(priority, non-empty,)

(RUN queue.)

Save context in PCB

MTPR @#PHYSPCB, #PR$_PCBB ; Set physical PCB address

inPCBB

LDPCTX Load context from PCB

For new process

REI Place process in execution

VAX Architecture Reference Manual

DATA SHAR­
ING AND
SYNCHRONI­
ZATION

System Architecture and
Programming Implications 7

Certain portions of the VAX architecture have implications for the
system structure of implementations and programming considerations.
The broad categories of interaction are data sharing and synchroniza­
tion, memory reference behavior, restartability, I/O structure, interrupts,
and errors. Of these, data sharing is most visible to the programmer.

The memory system must be implemented such that the granularity of
access for independent modification is the byte. Note that this does
not imply a maximum reference size of one byte but only that
independent modifying accesses to adjacent bytes produce the same
results regardless of the order of execution. For example, suppose
locations 0 and 1 contain the values 5 and 6. Suppose one processor
executes INCB 0 and another executes INCB 1. Then, regardless of
the order of execution, including effectively simultaneous execution,
the final contents must be 6 and 7.

Access to explicitly shared data that may be written must be
synchronized by the programmer or hardware designer. Before
accessing shared writable data, the programmer must acquire control
of the data structure. Seven instructions (BBSSI, BBCCI, ADAWI,
INSQHI, INSQTI, REMQHI, REMQTI) are provided to allow the
programmer to control, or interlock, access to a control variable.
These interlocked instructions are implemented in such a way that
once an interlocked read has occurred, other processors and I/O
devices are locked out of performing interlocked operations on the
same control variable until the interlock is released. This is termed an
interlocked sequence. The interlocked instructions operate on a
control variable within an interlocked sequence. Only interlocked
accesses are locked out by the interlock. On the VAX-11/780 system,
the SBI primitive operations are interlock-read and interlock-write.
The interlocked read operation sets the interlock, and the interlocked
write releases it.

System Architecture and Programming Implications 269

SEPARATION
OF
PROCEDURE
AND DATA

MEMORY
REFERENCES

270

BBSSI and BBCCI instructions use hardware-provided primitive
operations to read a single byte, test and modify a bit within that byte,
and then write the byte, in an interlocked sequence. The ADAWI
instruction uses a hardware-provided primitive operation to make a
read and then a write operation to a single aligned word in an
interlocked sequence to allow counters to be maintained without other
interlocks. The ADAWI instruction takes the hardware lock on the
read of the .mw operand (the second operand which is the one being
modified).

The INSQUE and REMQUE instructions provide a series of longword
reads and writes in an un interruptible sequence to allow queues to
be maintained without other interlocks in a uniprocessor system. The
INSQHI, INSQTI, REMQHI, and REMQTI instructions use an interlock
on the queue header to allow queues to be maintained consistently
in a multiprocessor system.

In order to provide a function upon which some UNIBUS peripheral
devices rely, processors must ensure that all instructions making byte­
or word-sized modifying references (.mb and .mw) use the DATIP -
DATO(B) functions when the operand physical address selects a
UNIBUS device. This constraint does not apply to longword, quadword,
field, all floating, or string operations if implemented using byte- or
word-modifying references. This constraint also does not apply to
instructions precluded from 1/0 space references.

In a multiprocessor system, any software clearing PTE(V) or changing
the protection code of a page table entry for system space such that
it issues a MTPR src, #PR$-TBIS must arrange for all other
processors to issue a similar TBIS. The original processor must wait
until all the other processors have completed their TBIS before it
allows access to the system page.

The VAX architecture encourages (and provides the mechanisms to
facilitate) separation of procedure (instructions) and writable data.
Native mode procedures may not write data that is to be subsequently
executed as an instruction without an intervening REI instruction
being executed (see Chapter 5). If no REI occurs between a procedure
writing data as instructions to be executed and those instructions
being executed, the instructions executed are UNPREDICTABLE. A
compatibility mode procedure can write data and subsequently
execute it as an instruction without any additional synchronization.

The memory references made by each instruction (and therefore
the possible memory exceptions) are specified as part of the VAX
architecture. Any required or permitted memory reference (read,

VAX Architecture Reference Manual

modify, or write) may be made more than once, except for references
to 1/0 space which are made once and only once. Operands
requiring interlocked access are always referenced. In general, for
operands not requiring interlocked access, it is UNPREDICTABLE
whether an operand is referenced if it does not affect the result
(including condition codes). Further clarifications and exceptions to
this simplified rule are listed below. Software must not rely on the
occurrence of memory management exceptions on operands that do
not affect the result of an instruction. The probe instructions should be
used to determine the accessibility of a memory location. Note that
no results are written unless the instruction can be completed or can
be suspended with FPD set.

1. It is UNPREDICTABLE whether longwords containing indirect
addresses are read. For example, MULL3 #0, @16(R5), A mayor
may not access the longword containing the address of the
second operand.

2. If a branch is not taken, it is UNPREDICTABLE whether the
branch displacement is read.

3. It is UNPREDICTABLE whether all bytes for .r operands are read.
For example, TSTF may only read the word containing the sign
and exponent. BLBC and BLBS may only read the low byte of the
source operand.

4. All bytes for .w operands are always written.

5. It is UNPREDICTABLE whether all bytes for .m operands are
either read (with modify intent) or written. However, a modify
operand requiring interlocked read and write is always accessed.
For example, ADDL2 #0, A may only read A (without modify
intent). INCL A may only write the bytes of A that changed. The
sum operand of ADAWI #0, A is always read and written back
interlocked.

6. For.a operands (and for .v operands when .v is not a register), the
memory reference behavior is peculiar to each instruction or
instruction group. Overriding the rules given below, it is UNPRE­
DICTABLE whether an otherwise unreadable operand is read
or not if it appears as an immediate mode operand. For example,
PUSHAB (RO) cannot read the byte at (RO), but PUSHAB #512
can read the value 512.

a. POLY{F,D,G,H}. If the argument is not zero, each entry in the
coefficient table is read unless an arithmetic exception occurs
before the instruction completes. If the argument is zero, it
is UNPREDICTABLE whether the entire table or only the last
coefficient is read.

b. MOVA{B,W,L,Q,O} and PUSHA{B,W,L,Q,O}. The address
operand is not referenced.

c. Field Instructions (EXTV, EXTZV, INSV, CMPV, CMPZV, FFS,

System Architecture and Programming Implications 271

272

FFC). The aligned longword(s) containing the field specified
by FIELD (pos, size, base) can be read. For INSV, only
this aligned longword(s) can be written. It is UNPREDICTABLE
whether all or some of the bytes in these longwords are
accessed.

d. BB{S,C}, BB{S,C}{S,C}. Only the single byte containing the test
bit specified by the base and position operands is read. If the
test bit does not need to change state, it is UNPREDICTABLE
whether the byte is written back.

e. BB{SS,CC}1. Only the single byte containing the test bit
specified by the base and position operands is referenced
using the interlocked forms of read and write. The test bit is
written even if its state is unchanged.

f. JMP and JSB. The address is not referenced by the JMP or
JSB (but will be read as instruction stream data for the
next instruction).

g. CALL{S,G}. The two bytes (containing the entry mask) at the
destination address are read. The argument list for CALLG
is not referenced.

h. Interlocked Queue. It is UNPREDICTABLE whether the
backward pointer of the queue header is accessed for INSQHI,
REMQHI.

7. Some of the character string instructions (MOVTUC, CMPC3,
CMPC5, SCANC, SPANC, LOCC, SKPC, and MATCHC) can stop
before the whole source string is processed. Three definitions
help define the required memory references for these instructions.
The stop byte is the byte that ends the instruction execution
without using the string length end condition. It is the last byte on
which the answer of the instruction depends. (The stop byte
may have any position in the string, including first or last, or it may
not exist at all. For string matches, it is the last byte of the matched
string.)

A source string consists of a body concatenated with a tail.

The body of a source string is the substring from the first byte up
to and including the stop byte, if one exists, or up to and including
the last byte (as determined by the source string's length) if no
stop byte exists. (The body may be null only if the source string
has a zero length.)

The tail of a source string is the substring from the first byte after
the body up to and including the last byte in the source string
as determined by the source string's length. (The tail will be null if
there is no stop byte or if the STOP byte is the last byte.)

Character strings are defined by length and starting address. Some
strings (ASCIZ strings) are delimited by a specific character. The
"real" length of the string is not known, and 64K is used as the

VAX Architecture Reference Manual

length. Only some of the VAX character string instructions can be
reasonably used on character delimited strings. These instructions
are MOVTUC, SPANC, SCANC, LOCC, and SKPC. For these
five instructions, it is necessary to guarantee that no memory
management exceptions will occur beyond the page containing the
delimiting character. The absence of such a requirement could
cause a program that works on one processor to fail on another
because of access violations on data that is not necessary to
produce the correct result.

For string operands specified by length and starting address, one
of the following rules applies:

a. For MOVC3, MOVTC, and CRC, all bytes are referenced.
These instructions have no end condition other than string
length.

b. For MOVCS, the stop byte is defined as the last byte moved
from the source string. MOVCS references all bytes except
when the source string is longer than the destination string; in
the latter case, no bytes in the source string's tail beyond
the page containing the stop byte are referenced.

c. For CMPC3, CMPCS, and MATCHC, all bytes in a string's
body are referenced. It is UNPREDICTABLE whether any
bytes in a string's tail are referenced.

d. For MOVTUC, SCANC, SPANC, LOCC, and SKPC, all bytes in
the source string's body are referenced, and no bytes in the
source string's tail beyond the page containing the stop
byte are referenced. For MOVTUC, the destination address
which would receive the translated escape character is not
written into, nor is any larger address written into.

For table operands, one of the following rules applies:

a. In the table for MOVTC, MOVTUC, SCANC, and SPANC,
entries are accessed for the corresponding source characters
or values. It is UNPREDICTABLE whether the other table
entries are accessed.

b. For the CRC table operand, it is UNPREDICTABLE whether all
or only part of the table is accessed.

8. If a packed decimal source string contains invalid digits, it is
UNPREDICTABLE whether the entire source string is read and
whether any or all of the destination is written.

If there are no invalid digits in a packed decimal source string, one
of the following rules applies:

a. EDITPC, MOVP, ADDP6, SUBP6, MULP, DIVP, CVTPT,
CVTTP, CVTPS, CVTSP, and ASHP. All bytes of the source
strings are read, and all bytes of the result are written, unless
an exception condition is detected and the instruction can be
completed without reading all the bytes in the source strings.

System Architecture and Programming Implications 273

CACHE

274

b. CMPP3 and CMPP4. It is UNPREDICTABLE whether all bytes
of the two source strings are read.

c. ADDP4 and SUBP4. All bytes of the addend (or subtrahend)
string are read. It is UNPREDICTABLE whether all bytes of the
result are written.

d. CVTLP. All bytes of the destination string are written.

e. CVTPL. All bytes of the source string are read.

f. EDITPC, CVTPT, CVTIP. The table entries are accessed for
the corresponding source bytes. It is UNPREDICTABLE
whether the other table entries are accessed.

9. PROBER and PROBEW. The first and last bytes specified by the
base and length operand are not accessed.

A hardware implementation may include a mechanism to reduce
access time by making local copies of recently used memory contents.
Such a mechanism is termed a cache. A cache must be implemented
in such a way that its existence is transparent to :::oftware (except for
timing and error reporting, control, and recovery). In particular, the
following must be true:

1. An 1/0 transfer from memory to a peripheral, started after a
program write to the same memory, must output the updated
memory value.

2.A program memory read, executed after the completion of an 1/0
transfer from a peripheral to the same memory, must read the
updated memory value. On the VAX-11/780 system, this is
achieved by a cache that writes through to memory and that
watches the memory bus for all external writes to memory.

3. If one processor writes or modifies memory and then executes
HALTs, a read or modify of the same memory by another processor
must read the updated value.

4. If a processor writes or modifies memory and then halts as a result
of power failure, a read or modify of the same memory must read
the updated value (provided that the duration of the power failure
does not exceed the maximum non-volatile period of the main
memory).

5. In multiprocessor systems, access to variables shared between
processors must be interlocked by software executing one of the
interlocked instructions (BBSSI, BBCCI, ADAWI, INSOHI, INSOTI,
REMOHI, REMOTI).

6. Valid accesses to 1/0 registers must not be cached.

7. A cache may prefetch instructions or data. In a virtual cache,
memory management exception conditions could occur during

VAX Architecture Reference Manual

RESTART­
ABILITY

INTERRUPTS

prefetch. Such exceptions should not be taken until the prefetched
data is referenced by an instruction.

Processor initialization must leave the cache either empty or valid.

The VAX architecture requires that all instructions be restartable after
a fault or interrupt that terminated execution before the instruction was
completed. Generally, this means that modified registers are restored
to the value they had at the start of execution. For some complex or
iterative instructions, described in Chapter 3, intermediate results
are stored in the general registers. In the latter case, memory contents
may have been altered; but the former case requires that no operand
be written unless the instruction can be completed. For most
instructions with only a single modified or written operand, this implies
special processing only when a multiple-byte operand spans a
protection boundary making it necessary to test accessibility of both
parts of the operand.

Instructions that store intermediate results in the general registers
must not compromise system integrity. Therefore they must ensure
that any addresses stored or used are virtual addresses, subject
to protection checking. In addition, any state information stored or
used cannot result in a non-interruptible or non-terminating sequence.

Instruction operands that are peripheral-device registers having
access side effects may produce UNPREDICTABLE results due to
instruction restarting after faults or interrupts. In order that software
may dependably access peripheral-device registers, instructions used
to access them must not permit a fault or interrupt after the first I/O
space access.

Memory modifications produced as a side effect of instruction
execution (memory access statistics, for example) are specifically
excluded from the constraint that memory not be altered until the
instruction can be completed.

Instructions that abort are constrained only by memory protection.

Underlying the VAX architectural concept of an interrupt is the notion
that an interrupt request is a static condition, not a transient event,
which can be sampled by a processor at appropriate times. Further, if
the need for an interrupt disappears before a processor has honored
an interrupt request, the interrupt request can be removed (subject
to implementation-dependent timing constraints) without consequence.

System Architecture and Programming Implications 275

ERRORS

1/0
STRUCTURE

276

In order for software to operate deterministically, any instruction
changing the processor priority (IPL) such that a pending interrupt is
enabled must allow the interrupt to occur before executing the next
instruction that would have been executed had the interrupt not been
pending.

Similarly, instructions that generate requests at the software interrupt
levels must allow the interrupt to occur, if processor priority permits,
before executing the apparently subsequent instruction.

Processor errors, if not inconsistent with instruction completion, should
create high priority interrupt requests. Otherwise, they must terminate
instruction execution with an exception (fault, trap or abort), in which
case there may also be an associated interrupt request.

Error notification interrupts may be delayed from the apparent
completion of the instruction in execution at the time of the error. But
if enabled, the interrupt must be requested before processor context
is switched, priority permitting.

An example of a case where both an interrupt and an exception are
associated with the same event occurs when the VAX-11 1780
instruction buffer gets a read data substitution (that is, an uncorrectable
memory read error). In this case, the interrupt request associated
with error will not be taken if the priority of the running program
is high; but an abort will occur when an attempt is made to execute
the instruction. The interrupt is still pending, however, and will be
taken when the priority is lowered.

The VAX liD architecture is very similar to the PDP-11 structure. The
principal difference is the method by which internal processor registers
(such as the memory management registers) are accessed. Peripheral
device control and status registers and data registers appear at
locations in the physical address space and can therefore be
manipulated by most memory reference instructions. Use of general
instructions permits all the virtual address mapping and protection
mechanisms described in Chapter 4 to be used when referencing liD
registers. Note: Implementations that include a cache feature must
suppress caching for references in the liD space.

For any member of the VAX series implementing the UNIBUS, there
will be one or more areas of the I/O physical address space, each 218

bytes in length, that "map through" to UNIBUS addresses. The
collection of these areas is referred to as the UNIBUS space.

VAX Architecture Reference Manual

Restrictions on
1/0 Registers

Instructions
Usable to
Reference 1/0
Space

The following is a list of both hardware and programming constraints
on liD registers. These items affect both hardware register design and
programming considerations.

1. The physical address of an liD register must be an integral
multiple of the register size in bytes (which must be a power of
two); that is, all registers must be aligned on natural boundaries.

2. References using a length attribute other than the length of the
register, or to unaligned addresses, may produce UNPREDICTABLE
results. For example, a byte reference to a word-length register
will not necessarily respond by supplying or modifying the byte
addressed.

3. In all peripheral devices, error and status bits that may be
asynchronously set by the device must be cleared by software
writing a 1 to that bit position and are not affected by writing a o.
This is to prevent clearing bits that may be asynchronously set
between reading and writing a register.

4. Only byte and word references of read-modify-write type (.mb or
.mw access type) in UNIBUS liD spaces are guaranteed to
interlock correctly. References in the liD space other than in
UNIBUS spaces are UNDEFINED with respect to interlocking. This
includes the BBSSI and BBCCI instructions.

5. String, quadword, octaword, F _floating, D_floating, G_floating,
H_floating, and field references in the liD space result in
UNDEFINED behavior.

6. Page tables must not be located in liD space. References to page
table entries located in liD space result in UNDEFINED behavior.

7. The PCB and SCB must not be located in liD space. References
to the PCB or to SCB entries located in I/O space result in
UNDEFINED behavior.

Some of the instructions are not usable for referencing liD space. The
reasons for this are as follows:

1. String instructions are restartablevia PSL(FPD).

2. The instruction is not in the kernel set.

3. The PC, SP, or PCBB cannot point to liD space.

4. liD space does not support operand types of quad, floating, field,
or queue; nor can the position, size, length, or base of them be
from liD space.

5. The instruction may be interruptible because it is potentially a slow
instruction in some implementations.

6. Only instructions ~ith a maximum of one modify or write destination
can be used. The destination must be the last operand.

System Architecture and Programming Implications 277

278

For any memory reference to I/O space, the programmer must use an
instruction from the following lists and must ensure that no interrupts
or exceptions will occur, including page fault and overflow trap,
after the first I/O space reference. To ensure no interrupts, the
programmer must avoid operand specifier modes 9, 11, 13, and 15,
and these modes indexed. (Symbolically, these are @(Rn)+,
@BAD(Rn), @WAD(Rn), and @LAD(Rn), and these indexed.) The
hardware may allow interrupts for these modes in order to minimize
interrupt latency. For the instructions in the following lists, the
hardware ensures that no other interrupts will occur after the first I/O
space access.

Since these instructions are not interruptible after I/O space accesses
(except for the addressing modes above), their execution will extend
the interrupt latency. The programmer should make some effort to
keep them short by minimizing the number of memory references. Use
RO through R13 instead, for example.

Instructions for which any explicit operand can be in I/O space:

ADAWI CHM{K,E,S,U} MOVZ{BW,BL,WL}

ADD{B,W,L}2 CMP{B,W,L} MTPR

ADD{B,W,L}3

ADWC

BIC{B,W,L}2

BIC{B,W,L}3

BICPSW

BIS{B,W,L}2

BIS{B,W,L}3

BISPSW

BIT{B,w,L}

CASE{B,W,L}

CLR{B,W,L}

CVT{BW,BL,WB,WL,LB,LW}

DEC{B,W,L}

INC{B,w,L}

MCOM{B,w,L}

MFPR

MNEG{B,W,L}

MOV{B,W,L}

MOVA{B,W,L}

MOVAQ

MOVPSL

PROBE{R,W}

PUSHA{B,W,L}

PUSHAQ

PUSHL

SBWC

SUB{B,W,L}2

SUB{B,W,L}3

TST{B,W,L}

XOR{B,W,L}2

XOR{B,W,L}3

Instructions for which some operand can be in 1/0 space are as
follows:

BLB{S,C}

XFC

REMQUE

REMQHI

REMQTI

(any operands but branch displacement)

(depending on implementation)

addr (destination)

addr (destination)

addr (destination)

Notwithstanding the above rules, it is possible for a specific hardware
implementation to execute macro code from the 1/0 space or to
allow the stack or PCB to be in 1/0 space. This might, for example, be
used as part of the bootstrap process. If this is done, then it is valid
for software to transfer to this code.

VAX Architecture Reference Manual

INTERNAL
PROCESSOR
REGISTER
SPACE

PER-PROCESS
REGISTERS
AND CONTEXT
SWITCHING

Privileged Registers 8

The internal processor register (IPR) space provides access to many
types of CPU control and status registers such as the memory
management base registers, parts of the PSL, and the multiple stack
pointers. These registers are explicitly accessible only by the move-to­
processor-register (MTPR) and move-from-processor-register (MFPR)
instructions which require kernel-mode privileges.

All the internal processor registers are summarized in Table 8.1.
Those internal processor registers that r':)quire further explanation are
described below. Reference to general registers means RO through
R13, the SP, and the PC (see Chapter 1). Registers referenced
by the MTPR and MFPR instructions are designated processor
registers and appear in the processor register space.

Several per-process registers are loaded from the PCB during a
context load operation and, with the exception of the memory mapping
registers, PME, and AST level, are written back to the PCB during a
context save operation (see Chapter 6). Some implementations
may copy some or all of these registers from the PCB into scratch pad
registers and write them back into the PCB during a context save
operation. Other implementations may retain the registers in main
memory in the PCB.

An implementation may retain some or all per-process stack pointers
only in the PCB. In this case., MTPR and MFPR for these registers
must access the corresponding PCB location. However, implementa­
tions that have per-process stack pointers in hardware scratch pads
are not required to access the corresponding PCB locations for MTPR
and MFPR. The PCB locations get updated when a SVPCTX
instruction is executed.

Privileged Registers 279

Table 8.1
Architecturally Defined Internal Processor Registers

Name Mnemonic Decimal Hex Type Scope

kernel stack pointer KSP 0 0 RIW process

executive stack pointer ESP 1 1 R/W process

supervisor stack pointer SSP 2 2 RIW process

user stack pointer USP 3 3 R/W process

interrupt stack pOinter ISP 4 4 R/W CPU

PO base register POBR 8 8 R/W process

PO length register POLR 9 9 R/W process

P1 base register P1BR 10 A R/W process

P1 length register P1LR 11 B R/W process

system base register SBR 12 C R/W CPU

system limit register SLR 13 D R/W CPU

process control block base PCBB 16 10 RIW CPU

system control· block base SCBB 17 11 RIW CPU

interrupt priority level IPL 18 12 RIW CPU

AST level ASTLVL 19 13 RIW process

software interrupt request SIRR 20 14 W CPU

software interrupt summary SISR 21 15 RIW CPU

interval clock control" ICCS 24 18 R/W CPU

next interval count" NICR 25 19 W CPU

interval count" ICR 26 1A R CPU

time of year" TODR 27 1B RIW CPU

console receiver status" RXCS 32 20 R/W CPU

console receiver data buffer" RXDB 33 21 R CPU

console transmit status" TXCS 34 22 R/W CPU

console transmit data buffer" TXDB 35 23 W CPU

memory management enable MAPEN 56 38 RIW CPU

translation buffer invalidate all TBIA 57 39 W CPU

translation buffer invalidate single TBIS 58 3A W CPU

performance monitor enable" PME 61 3D R/W process

system identification SID 62 3E R CPU

translation buffer check TBCHK 63 3F W CPU

Key: process one copy per process, loaded by LDPCTX
CPU one copy per processor, not affected by LDPCTX
R register can be read but cannot be written
W register can be written but cannot be read
R/W register can be both read and written

"Subset implementations are not required to include NICR, ICR, TODR, RXCS, RXDB, TXCS,
TXDB, and PME. Only a subset of ICCS is required.

280 VAX Architecture Reference Manual

STACK
POINTER
IMAGES

MTPR AND
MFPR
INSTRUCTIONS

MTPR

It is possible that some implementations will retain some or all of the
memory mapping registers (POBR, POLR, P1BR, P1LR), ASTLVL,
and PME only in the PCB. These processors will implement MTPR
and MFPR for those registers as a no-op, at least in the sense
that the destination or register is not written. Other implementations
may copy some or all of these registers from the PCB into scratch pad
registers. The SVPCTX instruction does not write these registers
back into the PCB. To ensure that the PCB is always correctly
updated, software must use the following convention when referencing
any of the memory mapping registers (POBR, POLR, P1 BR, P1 LR),
or ASTLVL, or PME.

1. Write. Software must first write the value directly into the proper
location in the current PCB by using a MOVL (for example), then
execute an MTPR with the same source as the MOVL. Implemen­
tations that do not retain internal copies of these registers will
effectively no-op the MTPR instruction. They will not take a
reserved operand fault which would normally occur for a non­
existent register.

2. Read. Software can read the value directly from the proper location
in the current PCB by using a EXTZV (for example). It is not
necessary to execute a MFPR from the corresponding internal
register, since the PCB location always contains an updated value
due to the software convention for writing these registers.

Reference to SP (the stack pointer) in the general registers will
access one of five possible stack pointers---user, supervisor, executive,
kernel, or interrupt---depending on the values of the current mode
and IS bits in the PSL (see Chapter 5). Additionally, software can
access any of the five stack pointers (including the one currently
selected by the current mode and IS bits in the PSL) via the MTPR
and MFPR instructions (even on processors that implement the KSP,
SSP, ESP, or USP only in the PCB). Results are correct even if the
stack pointer specified by the current mode and IS bits in the PSL
is referenced in the internal processor register address space by an
MTPR or MFPR instruction. This means that a MFPR or MTPR to the
KSP (if IS = 0) or the ISP (if IS = 1) is equivalent to a MOVL from or
to the SP.

Move To Processor Register

Privileged Registers 281

282

Format:

opcode src.rl, procreg.rl

Operation:

if PSL (CUR[cb3]-[cbO]MODl NEQ 0 then {reserved

instruction fault};

IPR[procreg] ~ src;

Condition Codes:

N ~ src LSS 0; !if register is replaced

Z ~ src EQL 0;

V ~ 0: !except TBCHK register (see Chapter

C ~ C;

N ~ N; !if register is not replaced

Z ~ Z;

V ~ V;

C ~ C;

Exception:
reserved instruction fault

Opcode:

DA MTPR Move To Processor Register

Description:

4)

MTPR loads the source operand specified by source into the processor
register specified by procreg. The procreg operand is a longword that
contains the processor register number. Execution may have register­
dependent side effects.

Notes:
1. A reserved instruction fault occurs if instruction execution is

attempted in other than kernel mode.

2. If a register is implemented only as a PCB location, MTPR to that
register has no effect.

3. The operation of the processor is UNDEFINED after execution of
MTPR to a read-only register, MTPR to a nonexistent register,
MTPR of a non-zero value to an MBZ field, or MTPR of a reserved
value to a register. The preferred implementation is to cause
reserved-operand fault.

VAX Architecture Reference Manual

MFPR Move From Processor Register

Format:

opcode procreg.rl, dst.wl

Operation:

if PSL (CUR[cb3]-[cbO]MOD) NEQ 0 then {reserved

instruction fault};

dst ~ IPR[procreg];

Condition Codes:

N ~ dst LSS 0; !if destination is replaced

Z ~ dst EQL 0;

V ~ 0;

C ~ C;

N ~ N; !if destination is not replaced

Z ~ z;
v ~ v;
C ~ C;

Exception:
reserved instruction fault

Opcode:

DB MFPR Move From Processor Register

Description:
The destination operand is replaced by the contents of the processor
register specified by procreg. The procreg operand is a longword
which contains the processor register number. Execution may have
register-dependent side effects.

Notes:
1. A reserved instruction fault occurs if instruction execution is

attempted in other than kernel mode.

2. If a register is implemented only as a PCB location, MFPR from
that register has no effect.

3. The operation of the processor is UNDEFINED after execution of
MFPR from a register that does not exist,or after execution of
MFPR from a write-only register. The preferred implementation is
to cause reserved-operand fault.

Privileged Registers 283

System
Identification
Register

284

31 2423 o
TYPE type dependent

Figure 8.1
System Identification Register (SID)

The system identification register (SID) specifies the processor type
and includes an inplementation-dependent field. The processor
type field is used by software in handling implementation-dependent
processor features. The implementation-dependent field typically
specifies additional information,such as hardware revision level and
microcode revision level, and is included in the error log to more finely
distinguish processor types. The SID is shown.in Figure 8.1. Table
8.2 shows the processor type codes. See Appendix B for details on
particular implementations.

For systems based on the MicroVAX chip, the different system
implementations can be distinguished by the contents of the MicroVAX
system type register (SYS_ TYPE), at physical address 20040004
(hex). SYS_TYPE is shown in Figure 8.2, and the system type codes
are shown in Table 8.3.

Table 8.2
Processor Type Codes

Code Processor

0 Reserved to DIGITAL
VAX-11/780 or VAX-11/785

2 VAX-11/750

3 VAX-11/730

4 VAX 8600

5 Reserved to DIGITAL
6 Reserved to DIGITAL

7 MicroVAX I
8 MicroVAX II chip
9-255 Reserved to DIGITAL

31 2423 1615 o
I SYS_ TYPE I . rev level type dependent

Figure 8.2
MicroVAX System Type Register (SYS-TYPE)

VAX Architecture Reference Manual

Time-of-Year
Clock Register

Table 8.3
MicroVAX System Type Codes

Code System

o Reserved to DIGITAL
1

2-127
28-255

MicroVAX II
Reserved to DIGITAL
Reserved to owners

The time-of-year clock is used to measure the duration of power
failures and is required for unattended restart after a power failure.

The time-of-year clock consists of one longword register, shown in
Figure 8.3. The register forms an unsigned 32-bit binary counter that
is driven by a precision clock source with at least .0025% accuracy
(approximately 65 seconds per month). The least significant bit of the
counter represents a resolution of 10 milliseconds. Thus, the counter
cycles to 0 after approximately 497 days.

The counter has an optional battery back-up power supply sufficient
for at least 1 ours of operation, and the clock does not gain or lose
any ticks during transition to or from stand-by power. The battery
is recharged automatically. If the battery has failed, so that time is not
accurate, then the register is cleared upon power-up. One of two
things then happens:

1. The register starts counting from o. Thus, if software initializes this
clock to a value corresponding to a large time (say, a month), it
can check for loss of time after a power restore by checking
the clock value. This is the VAX-11/780 implementation.

2. The register stays at 0 until the software writes a non-zero value
into it. It counts only when it contains a non-zero value. This is the
VAX-11/750 implementation.

31 o
time of year since setting

Figure 8.3
Time of Year (TOOR)

Privileged Registers 285

Interval Clock
Registers

286

The interval clock is used for accounting, for time-dependent events,
and to maintain the software date and time. It provides an interrupt at
IPL 22 or 24 at programmed intervals. IPL 24 is used on the VAX-
111780, VAX-11/750, and VAX-11/730 systems. The preferred
implementation is at IPL 22. The counter is incremented at
1-microsecond intervals, with at least .01 % accuracy (8.64 seconds
per day). The clock interface consists of three internal processor
registers, shown in Figure 8.4 and are described as follows:

• Interval Count Register (lCR)-The interval count register is a read­
only register incremented once every microsecond. Upon a carry
out (overflow) from bit (31), it is automatically loaded from NICR; an
interrupt is generated if the interrupt is enabled. That is, the value
of ICR on successive microseconds will be FFFFFFFD (hex),
FFFFFFFE, FFFFFFFF, (value of NICR).

• Next Interval Count Register (NICR)-This reload register is a write­
only register that holds the value to be loaded into ICR when ICR
overflows. The value is retained when ICR is loaded.

• Interval Clock Control Status Register (ICCS)-The ICCS register
contains control and status information for the interval clock.

31 o
interval count

Interval Count (ICR)

31 o
next interval count

Next Interval Count (NICR)

3130 876543 10

MBZ

error run~
transfer

single step
interrupt enable -----'

interrupt -------'

Interval Clock Control and Status (ICCS)

Figure 8.4
Clock Interface Internal Processor Registers

VAX Architecture Reference Manual

Table 8.4
Fields of the Interval Clock Control and Status Register

Name Extent Description

Error (31) When ICR overflows, if interrupt is already
set, then error is set. Thus, error indicates a
missed clock tick. Writing 1 to clear.

Interrupt (7) Set by hardware every time ICR overflows. If
interrupt-enable is set, then an interrupt is
also generated. Writing a 1 to this bit
with MTPR clears it, thereby re-enabling the
clock tick interrupt.

Interrupt enable (6) When set, an interrupt request is generated
every time ICR overflows (every time interrupt
is set). When clear, no interrupt is requested.
Similarly, if interrupt is already set and the
software sets interrupt enable, an interrupt is
generated. That is, an interrupt is generated
whenever the function (interrupt enable
and interrupt) changes from 0 to 1. Processor
initialization clears interrupt enable.

Single step (5) If run is clear, each time this bit is set, ICR is
incremented by one. Write only.

Transfer (4) When a 1 is written to this bit, NICR is
transferred to ICR. Write only.

Run (0) When set, ICR increments each microsecond.
When clear, ICR does not increment
automatically. Processor initialization clears
run.

The fields of the interval clock control and status register are described
in Table 8.4.

Note
Subset processors may omit NICR and ICR, and are required only to
implement ICCS(IE). If this bit is set, an interrupt request at IPL 22
is generated once every 10 milliseconds.

Thus, to use the interval clock, load the negative of the desired
interval into NICR. Then a MTPR #X51 ,#PR$_ICCS will enable
interrupts, reload ICR with the NICR interval, and set run. Every
"interval count" microseconds will cause interrupt to be set and an
interrupt to be requested. The interrupt routine should execute a
MTPR #XC1 ,#PR$_ICCS to clear the interrupt. If interrupt has not
been cleared (the interrupt has not been handled) by the time of the
next ICR overflow, error will be set.

Privileged Registers 287

288

Note
If NICR is written while the clock is running, the clock may lose or add
a few ticks. If the interval clock interrupt is enabled, this may cause
the loss of an interrupt.

Processor initialization leaves ICR and NICR UNPREDICTABLE,
clears ICCS (6) and (0), and leaves the rest of ICCS UNPREDICTABLE.

VAX Architecture Reference Manual

GENERAL
REGISTERS
AND
ADDRESSING
MODES

PDP-11 Compatibility Mode 9
Implementation of PDP-11 compatibility mode is optional. Processors
that do implement compatibility mode do so as specified in this
chapter. Operating system software may emulate compatibility mode
on processors that omit this mode.

VAX compatibility mode hardware, in conjunction with a compatibility
mode software executive (which runs in VAX mode), can emulate the
environment provided to user programs on a PDP-11 system. This
environment does not include the following features of normal PDP-11
system operation:

• Privileged instructions such as HALT and RESET

• Special instructions such as traps and WAIT

• Access to internal processor registers such as the PSW and the
console switch register

• Direct access to trap and interrupt vectors

• Direct access to I/O devices

• Interrupt servicing

• Stack overflow protection

• Alternate general register sets

• Any processor mode other than user (that is, kernel and supervisor
modes are not supported) and separate I and D spaces

• Floating-point instructions

This speCification is based on the behavior of all PDP-11 implementa­
tions. Compatibility mode behavior is defined as UNPREDICTABLE
where there is a difference between any two PDP-11 implementations.

All of the PDP-11 general registers and addressing modes are
provided in compatibility mode. Side effects caused by a destination
address calculation have no effect on source values (except in JSR),
and autoincrement modes in JMP and JSR do not affect the new
PC. Side effects caused by a source address calculation, however,
affect the value of a register used for destination address calculation.

PDP-11 Compatibility Mode 289

290

All PDP-11 addresses are 16-bits wide. In compatibility mode, a 16-bit
PDP-11 address is zero-extended to 32 bits.

The operands of some PDP-11 instructions are implied by the
instruction type, whereas others are specified as part of the instruction.
The different kinds of operand specifiers appearing in PDP-11
instructions are shown in Figure 9.1. Address mode operand specifiers
include a 3-bit mode field, specifying one of eight modes: register,
register deferred, autoincrement, autoincrement deferred, autodecre­
ment, autodecrement deferred, index, or index deferred mode. These
modes are discussed in the following sections.

5 32 0

Imodel reg I
Address Mode Operand Specifier

2 0

~
Register Operand Specifier

7 o
displ.bb

Eight-Bit Displacement Branch Destination Specifier

5 0

I displ.b6

Six-Bit Displacement Branch Destination Specifier

4 0

I mask

Five·Bit Literal Specifier

Figure 9.1
PDP-11 Instruction Operand Specifiers

VAX Architecture Reference Manual

Register Mode

Register
Deferred Mode

Autoincrement
Mode

Autoincrement
Deferred Mode

In register mode addressing, the operand is the contents of register n:

operand = Rn

Byte operations, except for MOVB to a register, access the low order
byte, that is, bits (7:0). The low byte is sign-extended if a register is
used as the destination of a MOVB instruction. If the PC is used
as the destination of a byte instruction, the result is UNPREDICTABLE.

The assembler notation for register mode is Rn.

In register deferred mode addressing, the address of the operand is
the contents of register n:

OA = Rn

operand = (OA)

The assembler notation for register deferred mode is (Rn) or @Rn.

In autoincrement mode addressing, the address of the operand is the
contents of register n. After the operand address is determined, the
size of the operand in bytes (1 for byte, 2 for word) is added to
the contents of register n (except in the case of SP and PC); the
register is then replaced by the result. If Rn denotes SP or PC, the
register is incremented by 2 and the register is replaced by the result.

OA = Rn

if n LEQ 5 then Rn ~ Rn + size else Rn ~ Rn + 2

operand = (OA)

If Rn denotes PC, immediate data follows the instruction. The mode is
termed immediate mode.

The assembler notation for autoincrement mode is (Rn) +. For
immediate mode, the notation is #constant where constant is the data
immediately following the instruction.

In autoincrement deferred mode addressing, the address of the
operand is the contents of a word whose address is the contents of
register n. After the operand address is determined, 2 is added to the
contents of register n, and the register is replaced by the result.

OA = (Rn)

Rn ~ Rn + 2

operand = (OA)

PDP-11 Compatibility Mode 291

Autodecrement
Mode

Autodecrement
Deferred Mode

Index Mode

Index Deferred
Mode

292

If Rn denotes PC, a 16-bit address follows the instruction. The mode
is termed absolute mode.

The assembler notation for autoincrement deferred mode is @(Rr:l)+.
For absolute mode, the notation is @#address where address is the
word that follows the instruction.

In autodecrement mode addressing, the size of the operand in bytes
(1 for byte, 2 for word) is subtracted from the contents of register n
(except in the case of SP and PC); the register is then replaced
by the result. If Rn denotes SP or PC, the register is decremented by
2 and the register is replaced by the result. The updated contents of
register n is the address of the operand:

if n LEQ 5 then Rn ~ Rn - size else Rn ~ Rn - 2

OA = Rn

operand = (OA)

The assembler notation for autodecrement mode is - (Rn).

In autodecrement deferred mode addressing, 2 is subtracted from
the contents of register n; the register is replaced by the result. The
updated contents of register n is the address of the word whose
contents is the address of the operand:

Rn ~ Rn - 2

Ok = (Rn)

operand = (OA)

The assembler notation for autodecrement deferred mode is @- (Rn).

In index mode. the index (contents of the word following the instruction)
is added to the contents of register n. The result is the address of the
operand: .

OA = Rn + index

operand = (OA)

If Rn denotes PC, the updated contents of the PC is used. The mode
is termed relative mode.

The assembler notation for index mode is index(Rn), where the index
value is the word following the instruction.

In index deferred mode, the index (contents of the word following the
instruction) is added to the contents of register n. The result is the

VAX Architecture Reference Manual

THE STACK

PROCESSOR
STATUS WORD

INSTRUCTIONS

address of a word whose contents are the address of the operand:

OA = (Rn + index)

operand = (OA)

If Rn denotes PC, the updated contents of the PC are used. The
mode is termed relative deferred mode.

The assembler notation for index deferred mode is @index(Rn),
where the index value is the word following the instruction.

General register R6 is used as the stack pointer by certain instructions,
as in the PDP-11 system. It is not, however, used by the hardware
for any exceptions or interrupts. There is also no stack overflow
protection in compatibility mode.

PDP-11 compatibility mode uses a subset of the full PDP-11 processor
status word. Only bits (4:0) are used; bits (15:5) are zero. When an
RTI or RTT instruction is executed, bits (15:5) in the saved PSW
on the stack are ignored. Compatibility mode PSW bits (4:0) have the
same meaning as do VAX PSL bits (4:0). They are, respectively,
PSL(T,N,Z,V,C). See Chapter 1 for a description of the PSL.

Table 9.1 lists the instructions provided in compatibility mode.

Table 9.1
Compatibility Mode Instructions

Opcode (Octal) Mnemonic

000002 RTI
000006 RTT
000100 JMP
00020R RTS
000240-000277 Condition codes
000300 SWAB
000400-003777 Branches
100000-103777 Branches
004ROO JSR
.05000 CLR(B)
.05100 COM(B)
.05200 INC(B)
.05300 OEC(B)
.05400 NEG(B)

PDP-11 Compatibility Mode 293

294

Table 9.1
Compatibility Mode Instructions (continued)

Opcode (Octal) Mnemonic

.05500 AOC(B)

.05600 SBC(B)

.057SS TST(B)

.060dd ROR(B)

.061 DO ROL(B)

.06200 ASR(B)

.06300 ASL(B)
0065SS MFPI*

006600

1065SS
106600
006700

070RSS
071RSS

072RSS
073RSS

074ROO
077RNN

.1SS00

.2SSSS

.3SSSS

.4SS00

.5SS00
06SS00
16SS00

Key: R
SS
DO

MTPI*
MFPO*
MTPO*

SXT

MUL
OIV

ASH
ASHC

XOR
SOB
MOV(B)
CMP(B)

BIT(B)
BIC(B)

BIS(B)
ADD
SUB

Register specifier
Source operand specifier
Destination operand specifier
o for word operations and 1 for byte operations

*These instructions execute exactly as they would on a POP-11 in user
mode with Instruction and Data space overmapped. More specifically, they
ignore the previous access level and act like PUSH and POP instructions
referencing the current stack.

Table 9.2 lists the trap instructions that cause the processor to fault to
VAX mode, where either the complete trap may be serviced or
where the instruction may be simulated.

VAX Architecture Reference Manual

Table 9.2
Compatibility Mode Trap Instructions

Opcode (Octal) Mnemonic

000003 BPT

000004

104000-104377

104400-104777

lOT

EMT

TRAP

The instructions listed in Table 9.3 and ali other opcodes not listed in
Tables 9.1 or 9.2 are considered reserved instructions in compatibility
mode. These instructions fault to VAX mode.

Table 9.3
Compatibility Mode Reserved Instructions

Opcode (Octal) Mnemonic

000000 HALT

000001 WAIT

000005 RESET

000007 MFPT

00023N SPL
0064NN MARK

0070DD CSM
07500R FADD-FIS

07501R FSUB-FIS
07502R FMUL-FIS

07503R FDIV-FIS

076XXX Extended Instructions

1064SS MTPS

1067DD MFPS

17XXXX FP11 Floating Point

Key: R Register specifier
SS Source operand specifier
DD Destination operand specifier

PDP-11 Compatibility Mode 295

296

Note that no floating-point instructions are included in compatibility
mode.

Figure 9.2 shows seven compatibility mode instruction formats.

151211 65 a

Fpcodel src.rx I dst.wx

Double Operand Format with Two Address Mode Specifiers

15 9 8 6 5 a
opcode I reg I src.rw I

Double Operand Format with Register and Address Mode Specifiers

15 98 65 a
opcode I reg I displ.b6 I

Loop Format with Register and 6-Bit Branch Displacement Specifiers

15 8 7 a
opcode displ.bb

Branch Format 8-Bit Branch Displacement Specifier

15 6 5 a
opcode I dst.wx

Single Operand Format with Address Mode Specifier

15 32 a
opcode

Single Operand Format with Register Specifier

15 a
opcode

Zero Operand Format

Figure 9.2
Seven Compatibility Mode Instruction Formats

VAX Architecture Reference Manual

Single Operand
Instructions

CLR

The following single operand instructions are described in this section.
The instructions are grouped according to type: arithmetic, logical,
shifts, multiprecision, and rotates.

Arithmetic:
CLR(B) dst.wx

DEC(B) dst.mx

INC(B) dst.mx

NEG(B) dst.mx

TST(B) src.rx

Logical:
COM (B) dst.mx

Shifts:
ASR(B) dst.mx

ASL(B) dst.mx

Multiprecision:
ADC(B) dst.mx

SBC(B) dst.mx

SXT dst.ww

Rotates:
ROL(B) dst.mx

ROR(B) dst.mx

SWAB dst.mw

Clear

Format:

ope ode dst.wx

Operation:

dst ~ 0;

Condition Codes:

N ~ 0;

Z ~ 1;

V ~ 0;

C ~ 0;

PDp·11 Compatibility Mode 297

~--------------~

DEC

298

Exceptions:
none

Opcodes (octal):

0050 CLR Clear Word

1050 CLRB Clear Byte

Description:
The destination operand is replaced by zero. The instruction is single
operand format with address mode specifier. See Figure 9.2.

Decrement

Format:

opcode dst.mx

Operation:

dst ~ dst - 1;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ {integer

C ~ C;

Exceptions:
none

overflow};

Opcodes (octal):

0053 DEC Decrement Word

1053 DECB Decrement Byte

Description:
One is subtracted from the destination operand, and the destination
operand is replaced by the result. The instruction is single operand
format with address mode specifier. See Figure 9.2.

Note:
Integer overflow occurs if the largest negative integer is decremented.
On overflow, the destination operand is replaced by the largest
positive integer.

VAX Architecture Reference Manual

INC

NEG

Increment

Format:

opcode dst.mx

Operation:

dst +- dst + 1;

Condition Codes:

N +- ds t LSS 0;

Z +- ds t EQL 0;

v +- {integer overflow};

C +- C;

Exceptions:
none

Opcodes (octal):

0052 INC Increment Word

1052 INCB Increment Byte

Description:
One is added to the destination operand, and the destination operand
is replaced by the result. The instruction is single operand format
with address mode specifier. See Figure 9.2.

Note:
Integer overflow occurs if the largest positive integer is incremented.
On overflow, the destination operand is replaced by the largest
negative integer.

Negate

Format:

opcode dst.mx

Operation:

dst +- -dst;

PDP-11 Compatibility Mode 299

TST

300

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ dst EQL most

C ~ dst NEQ O·

Exceptions:
none

Opcodes (octal):

negative integer;

0054 NEG Negate Word

1054 NEGB Negate Byte

Description:
The destination operand is negated (two's complement), and the
destination operand is replaced by the result. The instruction is single
operand format with address mode specifier. See Figure 9.2.

Note:
Integer overflow occurs if the operand is the most negative integer
(which has no positive counterpart). On overflow, the destination
operand is replaced by itself.

Test

Format:

opcode src.rx

Operation:

src - 0;

Condition Codes:

N ~ src LSS 0;

Z ~ src EQL 0;

V ~ 0;

C ~ 0;

Exceptions:
none

VAX Architecture Reference Manual

COM

ASR

Opcodes (octal):

0057 TST Test Word

1057 TSTB Test Byte

Description:
The condition codes are affected according to the value of the source
operand. The instruction is single operand format with address mode
specifier. See Figure 9.2.

Complement

Format:

opeode dst.mx

Operation:

dst ~ NOT dst;

Condition Codes:

N ~ dst LSS

Z ~ dst EQL

V ~ 0;

C ~ 1;

Exceptions:
none

0;

0;

Opcodes (octal):

0051 COM Complement Word

1051 COMB Complement Byte

Description:
The destination operand is complemented (one's complement), and
the destination operand is replaced by the result. The instruction is
single operand format with address mode specifier. See Figure 9.2.

Arithmetic Shift Right

Format:

ope ode dst.mx

PDP-11 Compatibility Mode 301

ASL

302

Operation:

dst ~ dst shifted one place to the right;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ {bit shifted out} XOR {dst LSS O};

C ~ bit shifted out;

Exceptions:
none

Opcodes (octal):

0062 ASR Arithmetic Shift Right Word

1062 ASRB Arithmetic Shift Right Byte

Description:
The destination operand is arithmetically shifted right by one bit and
the destination operand is replaced by the result. The instruction is
single operand format with address mode specifier. See Figure 9.2.

Notes:
1. The sign bit of the destination operand is replicated in shifts to the

right. The condition code C-bit stores the bit shifted out.

2. If the PC is used as the destination operand, the result and the
next instruction executed are UNPREDICTABLE.

Arithmetic Shift Left

Format:

opcode dst.mx

Operation:

dst ~ dst shifted one place to the left;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ {integer overflow};

C ~ bit shifted out;

VAX Architecture Reference Manual

ADC

Exceptions:
none

Opcodes (octal):

0063 ASL Arithmetic Shift Left Word

1063 ASLB Arithmetic Shift Left Byte

Description:
The destination operand is arithmetically shifted left by one bit, and
the destination operand is replaced by the result.The instruction is
single operand format with address mode specifier. See Figure 9.2.

Notes:
1. The least significant bit is filled with zero in shifts to the left. The

condition code C-bit stores the bit shifted out.

2. Integer overflow occurs if the destination changes sign due to the
shift.

Add Carry

Format:

opcode dst.mx

Operation:

dst (- dst + C;

Condition Codes:

N (- dst LSS 0;

Z (- dst EQL 0;

V (- {integer overflow};

C (- {carry from most significant bit};

Exceptions:
none

Opcodes (octal):

0055 ADC Add Carry to Word

1055 ADCB Add Carry to Byte

Description:
The contents of the condition code C-bit are added to the destination
operand, and the destination operand is replaced by the result. The

PDP-11 Compatibility Mode 303

SBC

SXT

304

instruction is single operand format with address mode specifier. See
Figure 9.2.

Note:
Integer overflow occurs if the most positive integer is incremented. On
overflow, the result is the most negative integer.

Subtract Carry

Format:

opcode dst.mx

Operation:

dst ~ dst - C;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

v ~ {integer overflow};

C ~ {borrow into most significant bit};

Exceptions:
none

Opcodes (octal):

0056 SBC Subtract Carry from Word

1056 SBCB Subtract Carry from Byte

Description:
The contents of the condition code C-bit are subtracted from the
destination operand, and the destination operand is replaced by the
result. The instruction is single operand format with address mode
specifier. See Figure 9.2.

Note:
Integer overflow occurs if the most negative integer is decremented.
On overflow, the result is the most positive integer.

Sign Extend Word

Format:

opcode dst.ww

VAX Architecture Reference Manual

ROL

Operation:

if N EQL 1 then dst <- -1 else dst <- 0;

Condition Codes:

N <- dst LSS

Z <- dst EQL

V <- 0;

C <- C;

Exceptions:
none

Opcode (octal):

0;

0;

!N <- N

0067 SXT Sign Extend

Description:
If the condition code N-bit is set, then the destination operand is
replaced by - 1 ; otherwise, the destination operand is cleared. The
instruction is single operand format with address mode specifier. See
Figure 9.2.

Note:
If the PC is used as the destination operand, the results and the next
instruction executed are UNPREDICTABLE.

Rotate Left

Format:

ope ode dst.mx

Operation:

dst'C <- dst'C rotated left;

Condition Codes:

N <- dst LSS 0;

Z <- dst EQL 0;

V <- {integer overflow};

C <- {bit rotated

Exceptions:
none

out of

PDP-11 Compatibility Mode

dst};

305

ROR

306

Opcodes (octal):

0061 ROL Rotate Left Word

1061 ROLB Rotate Left Byte

Description:
The condition code C-bit and the destination operand are rotated left
by one bit position; that is, the C-bit gets the most significant bit of the
destination operand, and the destination is replaced by the destination
shifted left by one bit with the initial C-bit filling the least significant bit.
The instruction is single operand format with address mode specifier.
See Figure 9.2.

Notes:
1. The rotate instructions operate on the destination operand and the

condition code C-bit taken as a circular datum.

2. Integer overflow occurs if the destination changes sign because of
the rotate.

Rotate Right

Format:

opcode dst.mx

Operation:

dst'C +- dst'C rotated right;

Condition Codes:

N +- dst LSS 0;

Z +- ds t EQL 0;

v +- {C bit changed due to rotate};

C +- {bit rotated out of dst};

Exceptions:
none

Opcodes (octal):

0060 ROR Rotate Right Word

1060 RORB Rotate Right Byte

Description:
The condition code C-bit and the destination operand are rotated right
by one bit position; that is, the C-bit gets the least significant bit of

VAX Architecture Reference Manual

SWAB

Double
Operand
Instructions

the destination operand, and the destination is replaced by the
destination shifted right by one bit with the initial C-bit filling the most
significant bit. The instruction is single operand format with address
mode specifier. See Figure 9.2.

Note:
The rotate instructions operate on the destination operand and the
condition code C-bit taken as a circular datum.

Swap Bytes

Format:

opcode dst.rnw

Operation:

dst <- dst<7: 0)' dst<15: 8);

Condition Codes:

N <- dst(7: 0) LSS

Z <- dst<7:0)

V <- 0;

C <- 0;

Exceptions:
none

Opcode (octal):

EQL

0;

0;

0003 SWAB Swap Bytes

Description:
The high and low bytes of the destination word operand are swapped.
The instruction is single operand format with address mode specifier.
See Figure 9.2.

Note:
If the PC is used as the destination operand, the result and the next
instruction executed are UNPREDICTABLE.

The following PDP-11 compatibility mode double operand instructions
are described in this section. The instructions are grouped according
to type: arithmetic and logical, and shift.

PDP-11 Compatibility Mode 307

MOV

308

Arithmetic and logical:
MOV(B) src.rx, dst.mx·

ADD src.rw, dst.mw

SUB src.rw, dst.mw

CMP(B) src1.rx, src2.rx

MUL reg, src.rw

DIV reg, src.rw

XOR reg, dst.mw

BIS(B) src.rx, dst.mx

BIC(B) src.rx, dst.mx

BIT(B) src1.rx, src2.rx

Shift:
ASH reg, src.rw

ASHC reg, src.rw

If a register that is used in the source operand specifier in autoincrement
or autodecrement modes is also used in the destination (or source 2)
operand specifier, the updated value of the register is used to
evaluate the destination specifier. Side effects caused by a destination
address calculation have no effect on source values.

Move

Format:

opcode src.rx, dst.wx

Operation:

dst ~ src;

Condition Codes:

N ~ dst LSS

Z ~ dst EQL

V ~ 0;

C ~ C;

Exceptions:
none

0;

0;

VAX Architecture Reference Manual

ADD

Opcodes (octal):

01 MOV Move Word

11 MOVB Move Byte

Description:
The destination operand is replaced by the source operand. The
instruction is double operand format with two address mode specifiers.
See Figure 9.2.

Note:
The low byte is sign-extended on a MOVB to a register; that is, bits
(15:8) of the destination register are replaced by bit (7) of the source
operand.

Add

Format:

opcode src.rw, dst.mw

Operation:

dst ~ dst + src;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ {integer overflow};

C ~ {carry from most significant digit};

Exceptions:
none

Opcode (octal):

06 ADD Add Word

Description:
The source operand is added to the destination operand, and the
destination operand is replaced by the result. The instruction is double
operand format with two address mode specifiers. See Figure 9.2.

Note:
Integer overflow occurs if the input operands have the same sign and
the result has the opposite sign. On overflow, the destination
operand is replaced by the low-order bits of the true result.

PDP-11 Compatibility Mode 309

SUB

CMP

310

Subtract

Format:

opcode src.rw, dst.mw

Operation:

dst ~ dst - src;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ {integer

C ~ {borrow

Exceptions:
none

overflow};

into most significant

Opcode (octal):

16 SUB Subtract Word

Description:

digit};

The source operand is subtracted from the destination operand, and
the destination operand is replaced by the result. The instruction is
double operand format with two address mode specifiers. See Figure
9.2.

Note:
Integer overflow occurs if the input operands are of different signs and
the result has the sign of the source. On overflow, the destination
operand is replaced by the low-order bits of the true result.

Compare

Format:

opcode src1.rx, src2.rx

Operation:

tmp ~ src1 - src2;

Condition Codes:

N ~ tmp LSS 0;

VAX Architecture Reference Manual

MUL

z ~ tmp EQL 0;

V ~ {integer overflow};

C ~ {borrow into most significant digit};

Exceptions:
none

Opcodes (octal):

02 CMP Compare Word

12 CMPB Compare Byte

Description:
The source 1 operand is compared with the source 2 operand. The
only action is to set the condition codes. The instruction is double
operand format with two address mode specifiers. See Figure 9.2.

Note:
Integer overflow occurs if the operands are of different sign and the
result of the subtraction (src1 - src2) has the same sign as the source
2 operand.

Multiply

Format:

opcode reg, src.rw

Operation:

tmp(31 : 0) ~ Rn * src;

~n ~ tmp(3l: 16);

R[n OR 1] ~ tmp(15:0);

Condition Codes:

N ~ tmp LSS

Z ~ tmp EQL

V ~ 0;

C ~ {resul t

Exceptions:
none

0;

O'

cannot

Opcode (octal):

be represented

070 MUL Multiply Word

PDP-11 Compatibility Mode

in 16 bits};

311

----------- ~----

DIV

312

Description:
The destination register is multiplied by the source operand. The most
significant 16 bits of the 32-bit product are stored in register Rn.
Then the least significant 16 bits are stored in R[n OR 1]. The
condition codes are set based on the 32-bit result. The instruction is
double operand format with register and address mode specifiers.
See Figure 9.2.

Note:
1. The C-bit is set if the result of the multiplication cannot be

represented in 16 bits; that is, if the 32-bit product is less than
_215 or greater than or equal to 215.

2. If an odd-numbered register is used as the destination, the low­
order 16 bits are stored as the result.

3. If R6 or PC is used as the destination, the next instruction executed
and the result are UNPREDICTABLE.

Divide

Format:

opcode reg, src.rw

Operation:

tmp ~ Rn'R[n OR 1]

Rn ~ tmp / src;

R[n OR 1] ~ REM(tmp , src);

Condition Codes:

N ~ Rn LSS 0; ! UNPREDICTABLE if V is set

Z ~ Rn EQL 0; !UNPREDICTABLE if V is set

V ~ {src EQL O} OR {integer overflow};

C ~ {src EQL O};

Exceptions:
none

Opcode (octal):

071 DIV Divide

Description:
If the source operand is not zero, the 32-bit integer in Rn'R[n OR 1] is
divided by the source operand. The quotient is stored in Rn, and the
remainder is stored in R[n OR 1]. The remainder has the same

VAX Architecture Reference Manual

XOR

BIS

sign as the dividend. If the source operand is zero, the instruction
terminates without modifying the destination registers.

Notes:
1. Integer overflow occurs if the quotient is less than - 215 or greater

than or equal to 215. On integer overflow, the contents of the
destination registers are UNPREDICTABLE.

2. If an odd register or R6 is used as the destination, the results are
UNPREDICTABLE. Furthermore, if R6 or PC is used as the
destination, the next instruction executed is UNPREDICTABLE.

Exclusive-OR

Format:

opcode reg, dst.mw

Operation:

dst ~ Rn XOR dst;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ c;

Exceptions:
none

Opcode (octal):

074 XOR Exclusive-OR Word

Description:
The source register is XORed with the destination operand, and the
destination operand is replaced by the result. The instruction is double
operand format with register and address mode specifiers. See
Figure 9.2.

Bit Set

Format:

opcode src.rx, dst.mx

PDP-11 Compatibility Mode 313

BIC

314

Operation:

dst ~ dst OR sro;

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ C;

Exceptions:
none

Opcodes (octal):

05 BIS Bit Set Word

15 BISB Bit Set Byte

Description:
The source operand is ORed with the destination operand, and the
destination operand is replaced by the result. The instruction is double
operand format with two address mode specifiers. See Figure 9.2.

Bit Clear

Format:

opoode src.rx, dst.mx

Operation:

dst ~ dst AND {NOT sro};

Condition Codes:

N ~ dst LSS 0;

Z ~ dst EQL 0;

V ~ 0;

C ~ c;

Exceptions:
none

Opcodes (octal):

04 BIC Bit Clear Word

14 BICB Bit Clear Byte

VAX Architecture Reference Manual

BIT

ASH

Description:
The destination operand is ANDed with the one's complement of the
source operand, and the destination operand is replaced by the result.
The instruction is double operand format with two address mode
specifiers. See Figure 9.2.

Bit Test

Format:

opcode src1.rx, src2.rx

Operation:

tmp ~ src1 AND src2;

Condition Codes:

N ~ tmp LSS 0;

Z ~ tmp EQL 0;

V ~ 0;

C ~ c;

Exceptions:
none

Opcodes (octal):

03 BIT Bit Test Word

13 BITB Bit Test Byte

Description:
The source 1 operand is ANDed with the source 2 operand. The only
action is to set the condition codes. The instruction is double operand
format with two address mode specifiers. See Figure 9.2.

Arithmetic Shift

Format:

opcode reg, src.rw

Operation:

Rn ~ Rn shifted src(5: 0) bits;

PDp·11 Compatibility Mode 315

ASHC

316

Condition Codes:

N <- Rn LSS 0;

Z <- Rn EQL 0;

v <- if src(5: 0) EQL 0 then 0 else {integer over flow};

C <- if src(5: 0) EQL 0 then 0 else {last bi t shifted out};

Exceptions:
none

Opcode (octal):

072 ASH Arithmetic Shift

Description:
The specified register is arithmetically shifted by the number of bits
specified by the count operand (bits (5:0) of the source operand), and
the register is replaced by the result. The count ranges from - 32 to
+ 31. A negative count signifies a right shift. A positive count signifies
a left shift. A zero count implies no shift, but condition codes are
affected. The instruction is double operand format with register and
address mode specifiers. See Figure 9.2.

Notes:
1. The sign bit of Rn is replicated in shifts to the right. The least

significant bit is filled with zero in shifts to the left. The C-bit stores
the last bit shifted out.

2. Integer overflow occurs on a left shift if any bit shifted into the sign
position differs from the initial sign bit of the register.

3. If the PC is used as the destination operand, the result and the
next instruction executed are UNPREDICTABLE.

Arithmetic Shift Combined

Format:

opcode reg, src.rw

Operation:

tmp <- Rn'R[n OR 1];

tmp <- tmp shifted src(5: 0) bits;

Rn <- tmp(31: 16);

R[n OR 1] <- tmp(15:0);

VAX Architecture Reference Manual

Branch
Instructions

Condition Codes:

N <- tmp LSS 0;

Z <- tmp EQL 0;

V <- if src(5: 0) EQL 0 then 0 else {integer overflow};

C <- if src(5: 0) EQL 0 then 0 else {last bit shifted out};

Exceptions:
none

Opcode (octal):

073 ASHC Arithmetic Shift Combined

Description:
The contents of the specified register, Rn, and the register R[n OR 1]
are treated as a single 32-bit operand and are shifted by the number
of bits specified by the count operand (bits (5:0) of the source
operand); the registers are replaced by the result. First, bits (31 :16) of
the result are stored in register Rn. Then, bits (15:0) of the result are
stored in register R[n OR 1]. The count ranges from - 32 to + 31.
A negative count signifies a right shift. A positive count signifies a left
shift. A zero count implies no shift, but condition codes are affected.
Condition codes are always set on the 32-bit result. The instruction is
double operand format with register and address mode specifiers.
See Figure 9.2.

Notes:
1. The sign bit of Rn is replicated in shifts to the right. The least

significant bit is filled with zero in shifts to the left. The C-bit stores
the last bit shifted out.

2. Integer overflow occurs on a left shift if any bit shifted into the sign
position differs from the initial sign bit of the 32-bit operand.

3. If the SP or PC is used as the destination operand, the result and
the next instruction executed are UNPREDICTABLE.

The following PDP-11 compatibility mode branch instructions are
described in this section.

BCC dispLbb

BCS dispLbb

BEQ dispLbb

BGE dispLbb

BGT dispLbb

BHI dispLbb

BHIS dispLbb

PDP-11 Compatibility Mode 317

BR

B

318

BLE dispLbb

BLO dispLbb

BLOS dispLbb

BLT dispLbb

BMI dispLbb

BNE dispLbb

BPL displ.bb

BR dispLbb

BVC dispLbb

BVS dispLbb

SOB reg, dispLb6

Branch

Format:

opcode displ.bb

Operation:

PC ~ PC + SEXT (2*displ) ;

Condition Codes:

N ~ N;

Z ~ Z;

v ~ v;
C ~ C;

Exceptions:
none

Opcode (octal):

0004 BR Branch

Description:
Twice the sign-extended displacement is added to the PC, and the
PC is replaced by the result. The instruction is branch format with
8-bit displacement. See Figure 9.2.

Branch on (condition)

VAX Architecture Reference Manual

Format:

opcode displ.bb

Operation:

if condition then PC ~ PC + SEXT(2*displ) ;

Condition Codes:

N ~ N;

Z ~ z;
V ~ v;
C ~ C;

Exceptions:
none

Opcodes (octal):
Condition

0014 BEQ Z EQL 1

0010 BNE Z EQL 0

1004 BMI N EQL 1

1000 BPL N EQL 0

1034 BCS, C EQL 1

BLO

1030 BCC, C EQL 0

BHIS

1024 BVS V EQL 1

1020 BVC V EQL 0

0024 BLT {N XOR V} EQL

Branch on Equal

Branch Not Equal

Branch on Minus

Branch on Plus

Branch on Carry Set,

Branch on Lower

Branch on Carry Clear,

Branch on Higher or Same

Branch on Overflow Set

Branch on Overflow Clear

1 Branch on Less Than

0020 BGE {N XOR V} EQL 0 Branch on Greater Than or Equal

0034 BLE {Z OR {N XOR V}}

EQL 1 Branch on Less Than or Equal

0030 BGT {Z OR {N XOR V}}

EQL 0 Branch on Greater Than

1010 BHI {C OR Z} EQL 0 Branch on Higher

1014 BLOS {C OR Z} EQL 1 Branch on Lower or Same

Description:
The condition codes are tested and, if the condition indicated by the
instruction is met, twice the sign-extended displacement is added
to the PC; the PC is replaced by the result. These instructions are
branch format with 8-bit displacement. See Figure 9.2.

PDP-11 Compatibility Mode 319

SOB

Jump and
Subroutine
Instructions

320

Subtract One and Branch

Format:

opcode reg, displ.b6

Operation:

Rn <- Rn - 1;

if Rn NEQ 0 then PC <- PC - ZEXT(2*displ);

Condition Codes:

N <- N;

Z <- z·
v <- v;
C <- C;

Exceptions:
none

Opcode (octal):

077 SOB Subtract One and Branch

Description:
One is subtracted from the specified register, and the register is
replaced by the result. If the register is not equal to zero, twice the
zero-extended displacement is subtracted from the PC; the PC is
replaced by the result. The instruction is loop format. See Figure 9.2.

Notes:
1. If the PC is specified as the register, the results and the next

instruction executed are UNPREDICTABLE.

2. The 6-bit displacement operand is contained in bits (5:0) of the
instruction.

The following PDP-11 compatibility mode jump and subroutine
instructions are described in this section.

JMP dst.aw

JSR reg, dst.aw

RTS reg

VAX Architecture Reference Manual

JMP

JSR

Jump

Format:

opcode dst.aw

Operation:

PC ~ dst;

Condition Codes:

N ~ N;

Z ~ Z;

v ~ v;
C ~ C;

Exceptions:
compatibility mode illegal instruction

Opcode (octal):

0001 JMP Jump

Description:
The PC is replaced by the destination operand. The instruction is
single operand format with address mode specifier. See Figure 9.2.

Note:
A compatibility mode illegal instruction fault occurs if destination mode
o is used.

Jump to Subroutine

Format:

opcode reg. dst.aw

Operation:

tmp ~ dst;

- (SP) ~ Rn;

Rn ~ PC;

PC ~ tmp;

Value of Rn is affected by

dst specifier evaluation.

PDP-11 Compatibility Mode 321

RTS

322

Condition Codes:

N ~ N'

Z ~ Z·

v ~ v;
C ~ C;

Exceptions:
compatibility mode illegal instruction

Opcode (octal):

004 JJSR Jump to Subroutine

Description:
The source register is pushed on the stack, and the source register is
replaced by the PC. The PC is replaced by the destination operand.
The instruction is double operand format with register and address
mode specifier. See Figure 9.2.

Notes:
1. A compatibility mode illegal instruction fault occurs if destination

mode 0 is used.

2. If the destination uses the same register as the source in the
autoincrement or autodecrement addressing modes, the updated
contents of the register are pushed on the stack.

Return from Subroutine

Format:

opcode reg

Operation:

PC ~ Rn;

Rn ~ (SP) +;

Condition Codes:

N ~ N;

Z ~ z;

v ~ v;
C ~ c;

Exceptions:
none

VAX Architecture Reference Manual

Return from
Interrupts and
Traps

RTI

RTT

Opcode (octal):

00020 RTS Return from Subroutine

Description:
The PC is replaced by the destination register. The destination
register is replaced by a word popped from the stack. The instruction
is single operand format with register specifier. See Figure 9.2.

The following PDP-11 compatibility mode return-from-interrupts and
return-from-trap instructions are described in this section.

RTI

RTT

Return from Interrupt

Return from Trap

Format:

ope ode

Operation:

PC ~ (SP) +;

PSW(4:0) ~ {(SP) +}(4:0);

Condition Codes:

N ~ saved

Z ~ saved

V ~ saved

C ~ saved

Exceptions:
none

PSW(3) ;

PSW(2);

PSW(l) ;

PSW(O) ;

Opcodes (octal):

000002 RTI Return from Interrupt

000006 RTT Return from Trap

PDP-11 Compatibility Mode 323

Miscellaneous
Instructions

MTP

324

Description:
The PC is replaced by the first word popped from the stack. The low
five bits of the PSW are replaced by the corresponding bits of the
second word popped from the stack. The instruction is zero operand
format. See Figure 9.2.

Notes:
1. In compatibility mode, the RTI and RTT instructions ignore the high

11 bits of the PSW popped from the stack.

2. In compatibility mode, the RTI and RTT instructions are identical.

The following miscellaneous PDP-11 compatibility mode instructions
are described in this section.

MTP{I,D} dst.ww

MFP{I,D} src.rw

NOP

ClC

ClV

Move To Previous Space

Format:

opcode dst.ww

Operation:

tmp <E--- (SP) +;

dst <E--- tmp;

Condition Codes:

N <E--- dst LSS 0;

Z <E--- dst EQL 0;

V <E--- 0;

c <E--- C;

Exceptions:

none

Opcodes (octal):

ClZ SEV

ClN SEZ

CCC SEN

SEC SCC

!Pop source from stack (updating SP)

!Write source to destination

0066 MTPI Move To Previous Instruction Space

1066 MTPD Move To Previous Data Space

VAX Architecture Reference Manual

MFP

CC

Description:
In compatibility mode, this PDP-11 instruction works like a POP
instruction. The destination operand is replaced by a word popped
from the stack. The instruction is single operand format with address
mode specifier. See Figure 9.2.

Note:
The implied source operand specifier is evaluated before the
destination specifier.

Move From Previous Space

Format:

opcode src.rw

Operation:

- (SP) ~ src;

Condition Codes:

N ~ src LSS 0;

Z ~ src EQL 0;

V ~ 0;

C ~ c;

Exceptions:
none

Opcodes (octal):

0065 MFPI Move From Previous Instruction Space

1065 MFPD Move From Previous Data Space

Description:
In compatibility mode, this PDP-11 instruction works like a PUSH
instruction. The source operand is pushed onto the stack. The
instruction is single operand format with address mode specifier. See
Figure 9.2.

Condition Code Operators

Format:

opcode mask

PDP-11 Compatibility Mode 325

326

Operation:

if mask(4) EQL 1 then PSW(3: 0) ~ PSW(3: 0) OR mask(3: 0)

else PSW(3:0) ~ PSW(3:0) AND {NOT mask(3:0)};

Condition Codes:

if mask(4) EQL 1 then

begin

N ~N OR mask(3);

Z ~Z OR mask(2) ;

V ~V OR mask(l) ;

C ~ C OR mask(O);

end

else

begin

N ~N AND {NOT mask(3)};

Z ~Z AND {NOT mask(2)};

V ~V AND {NOT mask(l)};

C ~ C AND {NOT mask(O)};

end

Exceptions:
none

Opcodes (octal):

000240 NOP No operation

000241 CLC Clear C

000242 CLV Clear V

000244 CLZ Clear Z

000250 CLN Clear N

000257 CCC Clear all Condition Codes

000261 SEC Set C

000262 SEV Set V

000264 SEZ Set Z

000270 SEN Set N

000277 SCC Set all Condi tion Codes

Combinations of the above set or clear operations may be ORed
together to form combined instructions.

VAX Architecture Reference Manual

ENTERING
AND LEAVING
COMPATIBILITY
MODE

NATIVE MODE
AND
COMPATIBILITY
MODE
REGISTERS

COMPATIBILITY
MODE MEMORY
MANAGEMENT

Description:
If the mask(4) bit is set, the PSW condition code bits are ORed with
mask(3:0) and the condition codes are replaced by the result. If
the mask(4) bit is clear, the PSW condition code bits are ANDed with
the one's complement of mask(3:0) and the condition codes are
replaced by the result. The instruction is zero operand format. See
Figure 9.2. Bits (4:0) of the opcode are used as the mask operand.

Compatibility mode is entered by executing an REI instruction with the
compatibility mode bit set in the PSL on the stack. Other bits in the
PSL either have the effects they have in native mode or are required
to have specific values in compatibility mode. PSL(TP), (T), (N), (Z),
N), and (C) have the same effects and meanings as they have in
native mode. PSL(FPD), (IS), (IPL), (IV), (FU), (DV) must be 0, and
(CUR-MOD) and (PRV-MOD) must be 3.

VAX native mode is returned to from compatibility mode by the
compatibility mode program causing an exception, or by an interrupt.

Note that when an RTI or RTT instruction is executed in compatibility
mode, the 11 high bits of the PSW are ignored. But when the PSW
is restored as part of the PSL when going from VAX native mode
to compatibility mode, those bits must be 0, or a reserved operand
fault occurs.

Compatibility mode registers RO through R6 are bits (15:0) of VAX
general registers RO through R6, respectively. Compatibility mode
register R7 (PC) is bits (15:0) of VAX general register R15 (PC). VAX
registers R8 through R14 (SP) are not affected by compatibility
mode. When entering compatibility mode, VAX register R7 and the
upper halves of registers RO through R6 and R15 are ignored. When
an exception or interrupt occurs from compatibility mode, VAX register
R7 is UNPREDICTABLE and the upper halves of RO through R6 are
either cleared or left unchanged; the upper half of the stacked R15
(PC) is zero. Since there are no FP11 floating-point instructions in
compatibility mode, there are no floating accumulators.

PDP-11 addresses are 16-bit byte addresses. Hence, compatibility
mode programs are confined to execute in the first 64K bytes of the
per-process part of the virtual address space. A one-to-one corre­
spondence exists between a compatibility mode virtual address and
its VAX counterpart. (Virtual address 0, for example, references
the same location in both modes.) A compatibility mode address is
interpreted in the following paragraphs as a native mode address by
appending zero in bits (31 :16) to the compatibility mode address in
bits (15:0).

PDP-11 Compatibility Mode 327

COMPATI­
BILITY MODE
EXCEPTIONS
AND
INTERRUPTS

Odd Address
Error Abort

Faults

328

PDP-11 segments can consist of 1 to 128 blocks of 64 bytes. VAX
pages are 512 bytes long. The PDP-11 capability of providing different
access protection to different segments is provided in 8-block chunks
since protection is specified at the page level in the VAX architecture.

The memory management system protects and relocates compatibility
mode addresses in the normal native mode manner. Thus, all of the
memory management mechanisms available in VAX mode are
available to the compatibility mode executive for managing both the
virtual and physical memory of compatibility mode programs. All of the
exception conditions that can be caused by memory management in
VAX mode can also occur when relocating a compatibility mode
address. See Chapter 4.

All interrupts and exception conditions that occur while the processor
is in compatibility mode cause the processor to enter VAX mode.
These conditions are serviced as indicated in Chapter 5 (note that this
includes backing up instruction side effects if necessary). The
exception conditions discussed in this section are specific to compati­
bility mode. All these exceptions create a three-Iongword frame on the
kernel stack containing PSL and PC,and one longword of exception­
dependent information. Bits (15) through (0) of this longword contain a
code indicating the specific type of exception, and bits (31) through
(16) are zero. There are no compatibility mode exception conditions
that result in traps. (See Chapter 5 for definitions of trap, fault, and
abort.)

An odd address error abort is caused in compatibility mode whenever
a word reference is attempted on a byte boundary. The code for odd
address errors is 6.

The following paragraphs give the compatibility mode instruction faults
and their corresponding code numbers.

Reserved Instruction Fault-A reserved instruction fault occurs for
opcodes that are defined as reserved in compatibility mode (see the
section "Instructions" earlier in this chapter). The code for the
reserved instruction fault is O.

BPT Instruction Fault-The code for the BPT instruction fault is 1.

lOT Instruction Fault-The code for the lOT instruction fault is 2.

EMT Instruction Fault-The fault code for the group of EMT instructions
is 3.

VAX Architecture Reference Manual

TRACING IN
COMPATIBILITY
MODE

TRAP Instruction Fault-The fault code for the group of TRAP
instructions is 4.

Illegal Instruction Fault-In compatibility mode, JMP and JSR
instructions with a register destination are illegal. The fault code for
illegal instructions is 5.

In compatibility mode, a trace fault occurs at the beginning of an
instruction when the T-bit is set in the PSW at the beginning of the
prior instruction. This effect is achieved by using the TP bit in the PSL
(see Chapter 5). On trace faults, a two-Iongword kernel stack frame
is created, containing PSL and PC. IPL and IS are 0 and CM is 1
in the stacked PSL. Compatibility mode trace fault uses the same
vector as VAX mode trace fault (see Chapter 5). The rules for trace
fault generation in compatibility mode are identical to those for native
mode. However, an odd address abort for an instruction fetch may
precede the trace fault for that instruction.

There are two ways to get the T-bit set at the beginning of a
compatibility mode instruction:

• An RTT or RTI instruction is executed in compatibility mode with the
T-bit set in the PSW image on the stack. In this case, the next
instruction is executed (the 1 pointed to by the PC on the stack),
and a trace fault is taken before the following instruction .

• An REI instruction is executed in VAX mode which has both the
T-bit and CM bit set (and TP clear) in the saved PSL image on the
stack. Again, one instruction is executed, and the trace fault is
taken. (See Chapter 5 for a complete description of the interaction
of REI, T-bit, and TP bit. The operations that occur as a function of
these conditions are the same whether or not compatibility mode
is being entered from the REI.)

The T-bit interacts with other compatibility mode operations as
follows. For interaction with other than compatibility mode, see
Chapter 5.

1. T-bit is set (but TP is clear) at the beginning of any compatibility
mode instruction that does not cause a compatibility mode fault.

In this case, the instruction sets TP and executes. A trace fault is
taken before the next instruction. The saved PSL has the T-bit set
and TP clear. The compatibility mode executive can take one of
the following courses of action:

a. If it services the exception directly, it can clear the T-bit in the
saved PSL on the kernel stack if it no longer wants to trace the
program; or it can leave it set if it wants to continue tracing
the program. It exits with an REI.

PDP-11 Compatibility Mode 329

UNIMPLE­
MENTED
PDP-11 TRAPS

COMPATI­
BILITY
MODE I/O
REFERENCES

PROCESSOR
REGISTERS

330

b. If it returns the trace exception to compatibility mode, it pushes
a (16-bit) PC and (16-bit) PSW with the T-bit set on the
compatibility mode user stack to simulate the effect of the
PDP-11 trace trap. It then clears the T-bit in the saved PSL
image on the kernel stack, changes the saved PC to point to
the compatibility mode service routine, and does an REI.
The compatibility mode service routine can then clear the T-bit
in the PSW image on its stack if it does not want to continue
tracing. The compatibility mode routine'returns with RTT or
RTI.

2. T-bit is set (but TP is clear) at the beginning of an RTI or RTT.

The RTT or RTI instruction executes, and TP is set. A trace fault
occurs before the next instruction is executed. Two different cases
exist depending on whether or not the T-bit was set in the image of
the PSW which was popped from the stack by the RTT or RTI
instruction:

a. T-bit is not set. Neither TP nor T will be set in the saved PSL
on the kernel stack.

b. T-bit is set. TP will not be set, and T will be set, as is the case
for other compatibility mode instructions.

3. T-bit is set (but TP is clear) at the beginning of any instruction
which causes a compatibility mode fault.

The fault condition is serviced first. TP is clear and T is set in the
saved PSL pushed on the kernel stack.

Several traps that occur in PDP-11 systems are not implemented in
compatibility mode:

• There is no stack overflow trap. This is equivalent to the user mode
of the KT11 where there is also no overflow protection. Stack
overflow can be provided by the compatibility mode executive using
the memory management mechanisms.

• There is no concept of a double error trap in compatibility mode,
since the first error always puts the processor in VAX mode.

• All other exception conditions such as power failure, memory parity,
and memory management exceptions cause the processor to
enter VAX mode.

Neither instruction stream references nor data reads or writes can
be to I/O space. The results are UNPREDICTABLE if I/O space
is referenced from compatibility mode.

The only processor register available in compatibility mode is part of
the PSW, and it maybe explicitly referenced only with the condition

VAX Architecture Reference Manual

PROGRAM
SYNCHRONI­
ZATION

code instructions, RTI, and RTT. Access to all other registers must be
done in VAX mode.

All PDP-11 systems guarantee that read-modify-write operations to
1/0 device registers are interlocked; that is, the device can determine
at the time of the read that the same register will be written as the
next bus cycle. This synchronization also works in memory on most
PDP-11 systems. In compatibility mode, instructions that have modify
destinations will perform this synchronization for UNIBUS 1/0 device
registers and never for memory.

Compatibility mode procedures can write data that is to be subsequently
executed as an instruction without requiring any additional
synchronization.

PDP-11 Compatibility Mode 331

SYSTEM
BOOT­
STRAPPING

System Bootstrapping
and Console 10

A VAX processor can be in one of five major states: attempting to
load and start (bootstrap) the operating system, attempting to restart
the operating system, powered off, halted, or running. This chapter
describes the processor when it is not running and describes the
transitions between major states.

The four major states described in this chapter are differentiated from
the running state. When the processor is running, it interprets
instructions, services interrupts and exceptions, and initiates 1/0
operations. The console acts like a normaloperating system terminal
(the console is in program 1/0 mode).

When the processor is halted, it does not interpret instructions,
service interrupts or exceptions, or initiate 1/0 operations. The console
interprets a command language that provides control over the system
(the console is in console 1/0 mode).

When system power supplies are unable to provide power to the
processor, the processor halts, and is powered off.

The console can restart a halted operating system and can also load
and start (bootstrap) an operating system. How the console handles
these states is described in the following sections.

System bootstrap can occur as the result of a powerfail recovery, a
processor halt, or the operator entering a BOOT command at the
console. See the section "Major System State Transitions" in this
chapter for a complete description of these state transitions.

To prevent repeated attempts and failures to bootstrap or restart the
operating system, the consolemaintains two flags called the bootstrap­
in-progress flag and the restart-in-progress flag. If a system bootstrap
or restart would occur automatically but the corresponding flag is

System Bootstrapping and Console 333

334

already set, the console assumes that an attempt has already been
made and has failed. The console therefore does not try again.

To load and start (bootstrap) the operating system, the console
searches for a section of correctly functioning system memory large
enough to hold a primary bootstrap program (called VMB). If a section
of memory is found, the console loads and starts VMB. VMB loads
and starts the operating system.

The console uses this algorithm to bootstrap the operating system:

1. If this bootstrap is the result of a console BOOT command, skip to
step 4.

2. Print the message "Attempting system bootstrap" on the console
terminal.

3. Check to see if the bootstrap-in-progress flag is set. If so, boot
fails.

4. Set the bootstrap-in-progress flag.

5. Locate a page-aligned 64-kilobyte block of g~od memory. Testing
memory leaves the contents of memory UNPREDICTABLE. If such
a block cannot be found, boot fails.

6. Load a bootstrap program into that good memory, starting 512
bytes from the beginning. The name of the bootstrap program is
VMB.EXE. If VMB cannot be found on the load device, or if there
is an error during loading, boot fails.

7. Load the general registers:

RO

R1 Together, RO through R3 specify a boot device.

R2 They are interpreted by VMB.

R3

R4 Reserved for future use.

R5 Boot control parameter. Contains the value specifiedby
the BOOT command, if any; otherwise, zero.

R6 Reserved for future use.

R7 Reserved for future use.

R8 Reserved for future use.

R9 Reserved for future use.

R10 The halt PC.

R11 The halt PSL.

AP The halt code.

FP Reserved for future use.

SP The address of 512 bytes past the start of good memory.

VAX Architecture Reference Manual

SYSTEM
RESTART

8. Start VMB at the address in SP. VMB loads and starts the
operating system.

If bootstrap fails, the console prints a message reporting the failure.
The message may explain the cause of the failure, or it may just
report "System bootstrap failed."

If the bootstrap is successful, the operating system sends a message
to the console, causing the console to clear the bootstrap-in-progress
flag. See the section on "System Running" for a description of the
messages the operating system can pass to the console.

The console can restart a halted operating system. To do so, the
console searches system memory for the Restart Parameter Block
(RPB), a data structure constructed for this purpose by the operating
system. If a valid RPB is found, the console restarts the operating
system at an address specified in the RPB.

The console keeps an internal flag called restart-in-progress, which it
uses to avoid repeated attempts to restart a failing operating system.
An additional restart-in-progress flag may be maintained by software in
the RPB.

A system restart can occur as the result of a powerfail restart, or as
the result of a processor halt. See the section "Major System State
Transitions" for a complete description.

The console uses this algorithm to restart the operating system:

1. Print the message "Attempting system restart" on the console
terminal.

2. Check to see if the internal restart-in-progress flag is set. If so,
restart fails.

3. Set the internal restart-in-progress flag.

4. Check to see if memory has been preserved by battery backup. If
not, restart fails.

5. Look for an RPB left in memory by the operating system. If none is
found, restart fails.

6. Read the software restart-in-progress flag from bit (0) of the fourth
longword of the RPB. If it is set, restart fails.

7. Load SP with the address of the RPB plus 512.

Boad AP with the halt code.

9. Start the processor at the restart address, which is read from the
second longword in the RPB.

System Bootstrapping and Console 335

--- --------

SYSTEM
POWERFAIL
AND
RECOVERY

336

physical address of the RPB

physical address of the restart routine

checksum of the first 31 longwords of the restart routine

software restart in progress flag (bit 0)

Figure 10.1
Restart Parameter Block (RPB)

:RPB

If restart fails, the console prints a message reporting the failure. The
message may explain the cause of the failure, or it may just report
"System restart failed."

If the restart is successful, the operating system sends a message to
the console, causing the console to clear its internal restart-in­
progress flag. See the section "System Running" later in this chapter
for a description of the messages the operating system can pass to
the console.

The RPB is a page-aligned control block created by the operating
system. Its format is this shown in Figure 10.1.

The console uses this algorithm to find an RPB:

1. Search for a page of memory that contains its address in the first
longword. If none is found, the search for an RPB has failed.

2. Read the second longword in the page (the physical address of the
restart routine). If it is nota valid physical address, or if it is 0,
return to step 1. The check for 0 is necessary to ensure that
a page of zeros does not pass the test for a valid RPB.

3. Calculate the 32-bit two's complement sum (ignoring overflows) of
the first 31 longwords of the restart routine. If the sum does not
match the third longword of the RPB, return to step 1.

4. A valid RPB has been found.

The system requires power to operate. The system power supply
conditions external power and transforms it for use by the processor.
When external power fails, the power supply requests a powerfail
interrupt of the processor. The power supply continues to provide
power to the processor for at least 2 milliseconds after the interrupt is
requested in order to allow the operating system to save state.
When the power supply can no longer provide power to the processor,
the processor is halted and powered off. Battery backup options are
available on some processors to supply power after external power
fails, to maintain the contents of main memory, and to keep system
time with the time-of-day clock.

VAX Architecture Reference Manual

When power is restored, the console initializes itself, initializes the
processor, and examines the front panel console-lock and auto restart
switches. If the console is locked, it attempts a system restart; if that
fails, it attempts a system bootstrap. If the console is not locked, its
action is determined by the setting of the auto restart switch.

Note that when the processor loses power, its state is lost. For
example, if a processor is halted when power fails, the action on
power-up is still determined by the front panel switches. So the
system does not necessarily stay halted.

When power is restored, the processor initializes itself. There are
three kinds of hardware initialization called processor initialization,
system bus initialization, and power-up initialization. Processor
initialization is the result of a console INITIALIZE and involves the
initialization of registers internal to the processor and the console.
System bus initialization is the result of a console UNJAM command
and is implementation-dependent. Power-up initialization affects the
system as a whole. It is the result of the restoration of power, and
includes a processor initialization.

The processor must be initialized after an error halt. If the processor
starts running after an error halt, without an intervening processor
initialization, the operation of the processor is UNDEFINED.

The following processor registers are affected by a processor
initialization. Registers not listed here are UNPREDICTABLE after a
processor initialization.

PSL

IPL

ASTLVL

SISR

ICCS

RXCS

TXCS

MAPEN

PME

ACCS

cache, instruction buffer, write
buffer, etc.

System Bootstrapping and Console

041 FOOOO (hex)

1 F (hex)

4

o
(6) and (0) clear, the rest is
UNPREDICTABLE

o
80 (hex)

o
o
o if no accelerator; 8001 (hex) if
a floating-point accelerator is
installed

empty or valid

337

MAJOR
SYSTEM
STATE
TRANSITIONS

console previous reference

KSP, ESP, SSP, USP, ISP

POBR, POLR, P1BR,P1LR

SBR,SLR

PCBB

SCBB

translation buffer

NICR,ICR

TODR

main memory

registers RO through PC

halt code

bootstrap-in-progress flag

restart-in-progress flag

physical address, longword
size, address 0

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

unaffected

unaffected

unaffected

unaffected

unaffected

unaffected

In addition to what processor initialization does, power-up initializes
the following:

bootstrap-in-progress flag

internal restart-in-progress flag

halt code

general registers

system memory

TODR

cleared

cleared

03 (power-up)

UNPREDICTABLE

unaffected if preserved by
battery backup; otherwise,
UNPREDICTABLE

unaffected if preserved by
batterybackup; otherwise, 0

The transitions between major system states are determined by the
current state and by a number of variables and events, including:

• Whether power is available to the system

• The console front panel autorestart switch

• The console lock switch

• The bootstrap-in-progress flag

• The restart-in-progress flag

• Processor error halts

• The HALT instruction

• Console commands.

Table 10.1 shows the actions that cause major system state transitions.
The processor follows these rules:

338 VAX Architecture Reference Manual

Table 10.1
Major System State Transitions

Initial
State

Powered
Off

Halted

Booting

Restart

Running

Key: A
B
C

D

Final State

Powered
Off Halted Booting Restarting Running

A and power B and power C and power
restored restored restored

powerfail BOOT START or
command and CONTINUE and
unlocked unlocked

powerfail boot fails, or D boot succeeds

powerfail D restart fails restart succeeds

powerfail A and processor B and processor C and processor
halts, or D halts halts

The console is unlocked and the halt action switch is set to Halt.
The console is unlocked and the halt action switch is set to Boot.
The console is unlocked and the halt action switch is set to Restart, or the console
is locked.
The console is unlocked, and the operator types CTRLlP and HALT.

• If the console is not locked when power is restored or when the
processor halts, enter the state selected by the console front panel
auto restart switch.

• If the console is locked when power is restored or when the
processor halts, attempt a system restart.

• When system restart fails, attempt a system bootstrap.

• When system bootstrap fails, halt.

• When system bootstrap or system restart succeed, the processor
starts running.

• When the processor is halted and the console is not locked, the
console BOOT command causes a system bootstrap.

• When the processor is halted and the console is not locked, the
console START and CONTINUE commands cause the processor to
start running.

• If the console is not locked and is running or booting or restarting,
typing CTRLlP followed by a HALT command at the console
halts the processor.

SYSTEM
HALTED
(CONSOLE I/O
MODE)

Included in this section about the system-halted state are descriptions
of the console; command syntax, keywords, language subsets;
errors and error messages; and halt and halt messages.

Console Traditionally, computers have had a panel of lights and switches on
the front for pro~essor diagnosis and for operation of standalone

System Bootstrapping and Console 339

Special
Characters

340

programs. On VAX, this function is provided by an ASCII console
through which the operator controls the processor. The ASCII console
may be envisioned as a virtual console processor attached to the
main processor, to a console terminal, and to a console file-storage
device. Note that the console processor need not be physically
separate from the main processor. It may be implemented in main
processor microcode, as in the VAX-11/750 computer system.
The console processor interprets commands typed on the console
terminal and controls the operation of the main processor.

Through the console terminal, an operator can boot the operating
system, a field service engineer can maintain the system, and a
system user can communicate with running programs. Sophisticated
users may also use the console for developing software.

The processor can halt as the result of an operator command, a
serious system error, a HALT instruction, or a powerfail recovery.
(See the section "Major System State Transitions" earlier in this
chapter for a complete description.) When the processor is halted, the
operator controls the system through the console command language.
The console is in console 1/0 mode. The console prompts the
operator for input with the string of right angle brackets 0»).

It may be possible for the operator to put the system in an inconsistent
state through the use of the console commands. For example, it may
be possible to use the console to set bits in MBZ fields or to set
conflicting control bits. The operation of the processor in such a state
is UNDEFINED.

In console 1/0 mode, several characters have special meanings.
Some of these characters are produced by pressing a single key,
while others, like the control characters, are produced by pressing the
character while simultaneously pressing the control key (CTRL) .

• Carriage return-Typing a carriage return ends a command line. No
action is taken on a command until after it is terminated by a
carriage return. A null line terminated by a carriage return is treated
as a valid, null command. No action is taken, and the console
again prompts for input. Carriage return is echoed as carriage return,
line feed.

• Rubout-When the operator types rubout, the console deletes the
character that the operator previously typed. The console echoes
with a backslash (I), followed by the character being deleted. If the
operator types additional rubouts, the additional characters deleted
are echoed. When the operator types a non-rubout character, the
console echoes another backslash, followed by the character typed.

VAX Architecture Reference Manual

The result is to echo the characters deleted, surrounding them with
backslashes. For example:

The operator types: EXAMI;E(rubout)(rubout)NE(CR)

The console echoes: EXAMI;E\E;\NE(CR)

The console sees the command line: EXAMINE(CR)

The console does not delete characters past the beginning of a
command line. If the operator types more rubouts than there are
characters on the line, the extra rubouts are ignored. If a rubout is
typed on a blank line, it is ignored.

o CTRUU-The console echoes /\U and deletes the entire line. If
CTRUU is typed on an empty line, it is echoed; otherwise, it is
ignored. The console prompts for another command.

o CTRUS-Typing CTRUS stops console transmissions to the
console terminal until CTRUQ is typed. Additional input between
CTRUS and CTRUQ is buffered as input but not echoed until
CTRUQ is typed. CTRUS typed again before the CTRUQ is
ignored. CTRUS and CTRUQ are not echoed.

o CTRUo-Typing CTRUQ resumes console transmissions stopped
by CTRUS. Additional typing of CTRUQ is ignored. CTRUS and
CTRUQ are not echoed.

o CTRUO- Typing CTRUO causes the console to throwaway
transmissions to the console terminal until the next CTRUO is
entered. CTRUO is echoed as /\O(CR) when it disables output; it is
not echoed when it reenables output. Output is reenabled if the
console prints an error message or if it promptsfor a command from
the terminal. Reading a command from a command file and
displaying a REPEAT command do not reenable output. When
output is reenabled for reading a command, the console prompt is
displayed. Output is also enabled by entering program 1/0 mode by
CTRUP and by CTRUC.

o CTRUC-Typing CTRUC causes the console to echo /\C and to
abort processing of a command. CTRUC has no effect as part of a
binary load data stream. CTRLlC reenables output stopped by
CTRUO. When CTRUC is typed as part of a command line, the
console deletes the line as it does with CTRUU.

o CTRUP-If the console is in console 1/0 mode, CTRUP is equivalent
to CTRUC and is echoed as /\p. If the console is in program 1/0
mode and is locked, CTRUP is not echoed but is passed to the
operating system like any other character. If the console is in
program 1/0 mode and is not locked, CTRUP is not echoed but
causes the processor to enter console 1/0 mode. It is UNPREDICT­
ABLE whether CTRUP also causes the processor to halt. HALT
must subsequently be typed to halt the processor.

System Bootstrapping and Console 341

Command
Syntax

Command
Keywords

342

If an unrecognized control character is typed (a control character here
means a character with an ASCII code less than 32 decimal), it is
echoed as caret followed by the character with ASCII code 64
greater. For example, BEL (ASCII code 7) is echoed as G, since
capital G is ASCII code 7 + 64 = 71. When a control character is
deleted with rubout, it is echoed the same way. After echoing the
control character, the console processes it as a normal character.
Unless the control character is part of a comment, the command will
be invalid and the console will respond with an error message.

The response of the console to characters with codes greater than
127 (decimal) is UNPREDICTABLE.

The console accepts commands of lengths up to 80 characters.
Longer commands are responded to with an error message.

Commands may be abbreviated. Abbreviations are formed by
dropping characters from the end of a keyword. All commands but
SET may be unambiguously abbreviated to one character. SET
cannot be abbreviated to less than two characters, since it then
conflicts with START. The console verifies all characters typed in a
command, even when they are not needed to uniquely identify the
command.

Multiple adjacent spaces and tabs are treated as a single space by
the console. Leading and trailing spaces and tabs are ignored.

Command qualifiers can appear after the command keyword, or after
any symbol or number in the command.

All numbers (addresses, data, counts) are in hexadecimal. (Note,
though, that symbolic register names include decimal digits.) Hex digits
are 0 through 9, and A through F. The console does not distinguish
between upper- and lowercase either in numbers or in commands.
Both are accepted.

Following is a list of processor control, data transfer, and console
control command keywords. These commands are described in the
next section of this chapter.

Processor Control Commands

INITIALIZE

ST ART(address)

CONTINUE

VAX Architecture Reference Manual

Commands

HALT

BOOT (device)

NEXT (count)

MICROSTEP (count)

UNJAM

Data Transfer Commands

EXAMINE (address)

DEPOSIT (address) (data)

LOAD (file)

X (address) (count)

Console Control Commands

FIND

REPEAT (command)

SET (parameter) (value)

TEST

@ (file)

! (comment)

BOOT

The device specification is of the format "ddan," where "dd" is a two­
letter device mnemonic, "a" is an optional alphabetic adapter identifier,
and "n" is a one-digit unit number

The console initializes the processor and starts VMB running. (See
the section "System Bootstrapping" earlier in this chapter.) VMB
boots the operating system from the specified device. The default
device is implementation dependent.

Format:

BOOT [(qualifier list)] [(device)]

Qualifier:

/
R5: (data)

After initializing the processor and before starting
VMB, RS is loaded with the specified data. This
allows a command file containing a BOOT command
or a console user to pass a parameter to VMB.

CONTINUE

The processor begins instruction execution at the address currently
contained in the program counter. Processor initialization is not
performed. The console enters program I/O mode.

System Bootstrapping and Console 343

344

DEPOSIT

The command deposits the data into the address specified. If no
address space or data size qualifiers are specified, the defaults are
the last address space and data size used in a DEPOSIT or EXAMINE
command. After processor initialization, the default address space is
physical memory, the default data size is long, and the default
address is zero.

If the specified data is too large to fit in the data size to be deposited,
the console ignores the command and issues an error response. If
the specified data is smaller that the data size to be deposited, it
is extended on the left with zeros.

Format:

DEPOSIT [(qualifier list) 1 (address) (data)

Qualifiers:
18
IW
IL
Iv

IP
II

IG

1M

Ie
IU

IN:(count)

The data size is byte.

The data size is word.

The data size is longword.

The address space is virtual memory. All access
and protection checking occur. If the access would
not be allowed to a program running with the
current PSL, the console issues an error message.
This includes refusing odd address references if
PSL(CM) is set. Virtual space DEPOSITs cause the
PTE(M) bit to be set. If memory mapping is not
enabled, virtual addresses are equal to physical
addresses.

The address space is physical memory.

The address space is internal processor registers.
These are the registers addressed by the MTPR
and MFPR instructions.

The address space is the general register set, RO
through PC.

(Optional.) The address space is machine­
dependent.

The address space is microcode memory.

(Optional.) The address space is console micro­
processor memory.

The address is the first of a range. The console
deposits to the first address, then to the specified
number of succeeding addresses. Even if the
address is the symbolic address" -", the succeed-

VAX Architecture Reference Manual

For example:

ing addresses are at larger addresses. The
symbolic address specifies only the starting
address, not the direction of succession. For
repeated references to preceding addresses, use
"REPEAT DEPOSIT - (data)."

D/P/B/N:1FF 0 0 Clears the first 512 bytes of physical
memory.

D/V/L/N:3 1234 5

D/N:8 RO FFFFFFFF

D/N:200 - 0

Deposits "5" into four longwords in virtual
memory.

Loads general registers RO through R8.

Clears the previous address, then the next
512.

If conflicting address space or data sizes are specified, the console
ignores the command and issues an error response.

The address may also be one of the following symbolic addresses:

PSL The processor status longword. No address space qualifier
is legal. When PSL is examined, the address space is
identified as M (machine dependent).

PC program counter (general register 15). The address space
is set to IG.

SP The stack pointer (general register 14). The address space
is IG.

Rn General register n. The register number is in decimal. The
address space is IG. For example:

D R5 1234 is equivalent to DIG 5 1234

D R10 6FFOO is equivalent to DIG A 6FFOO

Plus sign (+)-The location immediately following the last location
referenced in an examine or deposit. For references to physical
or virtual memory spaces, the location referenced is the last address,
plus the size of the last reference (1 for byte, 2 for word, 4 for long).
For other address spaces, the address is the last addressed
referenced, plus one.

Minus sign (-)-the location immediately preceding the last location
referenced in an EXAMINE or DEPOSIT. For references to physical
or virtual memory spaces, the location referenced is the last address
minus the size of this reference (1 for byte, 2 for word, 4 for long). For
other address spaces, the address is the last addressed referenced
minus one.

Asterisk (*)-the location last referenced in an examine or deposit.

System Bootstrapping and Console 345

346

At sign (@)-the location addressed by the last location referenced in
an examine or deposit.

EXAMINE

This command examines the contents of the specified address. If no
address is specified, The plus sign (+) is assumed. The same
qualifiers may be used on EXAMINE as may be used on DEPOSIT.
The address may also be one of the symbolic addresses described
under DEPOSIT.

Format:

EXAMINE [(qualifier list>] [(address)]

Response:

(tab)(address space identifier) (address) (data)

The address space identifier can be:

P Physical memory. Note that when virtual memory is
examined, the address space and address in the
response are the translated physical address.

G

I

M

c
u

FIND

General register.

Internal processor register.

Machine-dependent address space. When the PSL
is examined, the address space identified is machine
dependent.

Microcode memory.

(Optional.) Console microprocessor memory.

The console searches main memory starting at address zero for a
page-aligned 64-kilobyte block of good memory, or a restart parameter
block (RPB). If the block is found, its address plus 512 is left in SP. If
the block is not found, an error message is issued, and the contents
of SP are UNPREDICTABLE. If no qualifier is specified, IRPB is
assumed.

Format:

FIND [(qualifier list)]

Qualifiers:

MEMORY Search memory for a page-aligned block of good
memory, 64 kilobytes in length. Since the search may
include a read and write test of memory, the search
leaves the contents of memory UNPREDICTABLE.

VAX Architecture Reference Manual

IRPB Search memory for a restart parameter block. See the
section "System Restart" earlier in this chapter for
the search algorithm. The search leaves the contents
of memory unchanged.

HALT

The processor stops execution of macroinstructions after completing
the current macroinstruction. Neither processor initialization nor 1/0
initialization occurs, so 1/0 operations already in progress are
unaffected. If the processor is already halted, the HALT command has
no affect.

On the VAX-11/7S0 and VAX-11/730 systems, the processor is halted
whenever the console is in console 1/0 mode; the HALT command
does not affect the processor. On the VAX-111780 system, it is
possible for the console to be in console 1/0 mode when the processor
is running. The HALT command causes the VAX-11/780 console to
halt the VAX-11 1780 processor.

Response:

PC = (PC)

If the processor is already halted, the response is preceded by a halt
message.

Message:
Already halted

INITIALIZE

A processor initialization is performed. See the section "System
Powerfail and Recovery" for initial register contents.

LOAD

The console loads data from the specified file into memory. If no
qualifiers are specified, data is loaded into physical memory starting
at address O. If an unrecoverable device or memory error occurs
during the load, the command is aborted and the console issues an
error message.

Format:

LOAD [(qualifier list) 1 (file)

Qualifiers:

IS: (address) The data is loaded starting at the specified
address.

IC The data is to be loaded into microcode memory.

System Bootstrapping and Console 347

348

IU

MICROSTEP

(Optional.) The data is to be loaded into console
microprocessor memory.

The console causes the processor to execute the specified number of
microinstructions. If no count is specified, 1 is assumed. After the
last microinstruction is executed, the console enters space-bar-step
mode.

In space-bar-step mode, the console executes one microinstreuction
each time the operator presses the space bar. If the operator presses
any other key, the console exits space-bar-step mode, then
processes the character typed. Typing carriage return is the suggested
means of exiting from space-bar-step mode.

The operator can use the NEXT command to cause the console to
finish the macroinstruction executing.

Format:

MICROSTEP [(count)]

Response:

uPC = (uPC)

NEXT

The console causes the processor to execute the specified number of
macroinstructions. If no count is specified, 1 is assumed. After the
last macroinstruction is executed, the console enters space-bar-step
mode.

In space-bar-step mode, the console executes one macroinstruction
each time the operator presses the space bar. If the operator presses
any other key, the console exits space-bar-step mode, then
processes the character typed. Typing carriage return is the suggested
means of exiting from space-bar-step mode.

The NEXT command can be used to finish a macroinstruction partially
executed by MICROSTEP. This partial execution is counted by
NEXT as though it were the execution of a full instruction.

Format:

NEXT [(count)]

Response:

PC = (PC)

VAX Architecture Reference Manual

REPEAT

The console repeatedly displays and executes the specified command.
The repeating is stopped when the operator types CTRLlC. Any valid
console command may be specified for this command with the
exceptions of the REPEAT command and the @ command. If the
command is REPEAT or @, the results are UNPREDICTABLE.

Format:

REPEAT (command)

Response:
(dependent upon command specified)

SET

Sets the console parameter to the indicated value. The console
parameters and their meanings are all implementation-dependent.

Format:

SET (parameter) (data)

START

The console starts instruction execution at the specified address. The
default address is implementation-dependent. If no qualifier is present,
macroinstruction execution is started. If memory mapping is enabled,
macroinstructions are executed from virtual memory. The START
command is equivalent to a DEPOSIT to PC followed by a CONTINUE.
No INITIALIZE is performed.

Format:

START [(qualifier list)] [(address)]

Qualifiers:

Ie

IU

TEST

Microinstruction (rather than macro) execution is
started.

(Optional.) Console microprocessor instruction
execution is started.

The console executes a self-test. All qualifiers are optional.

Format:

TEST [(qualifier list)]

System Bootstrapping and Console 349

Binary Load
and Unload
Command

350

UNJAM

A system bus initialization is performed. The effects of a system bus
initialization are implementation-dependent.

The X command is for use by automatic systems communicating with
the console. It is not intended for use by operators. The console loads
or unloads (that is, writes to memory or reads from memory) the
specified number of data bytes, starting at the specified address. If no
qualifiers specify otherwise, data is transferred to or from physical
memory.

If bit (31) of the count is clear, data is to be received by the console
and deposited into memory. If bit (31) of the count is set, data is to be
read from memory and sent by the console. The remaining bits in the
count are a positive number indicating the number of bytes to load
or unload.

The console accepts the command upon receiving the carriage return.
The next byte the console receives is the command checksum,
which is not echoed. The command checksum is verified by adding all
command characters, including the checksum (but not including the
terminating carriage return or rubouts or characters deleted by
rubout), into an 8-bit register initially set to zero. If no errors occur, the
result is zero. If the command checksum is correct, the console
responds with the input prompt and either sends data to the requester
or prepares to receive data. If the command checksum is in error,
the console responds with an error message. The intent is to prevent
inadvertent operator entry into a mode where the console is accepting
characters from the keyboard as data with no escape sequence
possible.

If the command is a load (bit (31) of the count is clear), the console
responds with the input prompt, then accepts the specified number of
bytes of data for depositing to memory and an additional byte of
received data checksum. The data is verified by adding all data
characters and the checksum character into an 8-bit register initially
set to zero. If the final contents of the register is non-zero, the data or
checksum are in error, and the console responds with an error
message.

If the command is a binary unload (bit (31) of the count is set), the
console responds with the input prompt followed by the specified
number of bytes of binary data. As each byte is sent, it is added to a
checksum register initially set to zero. At the end of the transmission,
the two's complement of the low byte of the register is sent.

VAX Architecture Reference Manual

The Indirect
Command

If the data checksum is incorrect on a load, or if memory errors or line
errors occur during the transmission of data, the entire transmission
is completed and then the console issues an error message. If an
error occurs during loading, the contents of the memory being loaded
are UNPREDICTABLE.

If the console implements SET TERMINAL ECHO and SET TERMINAL
NOECHO commands, the state of the echo flag is unaffected by the
X command. Regardless of the flag, echo is suppressed while data
string and checksums are being received.

It is possible to control the console through the use of the console
control characters (CTRUC, CTRUS, CTRUO, etc.) during a binary
unload. It is not possible during a binary load because all received
characters are valid binary data.

Data being loaded with a binary load command must be received by
the console at a rate of at least one byte per second. If the console
does not receive a data byte for more than one second, the console
aborts the transmission by issuing an error message and prompting
for input.

The entire command, including the checksum, may be sent to the
console as a single burst of characters at the console's specified
character rate. To make this command useful in automated systems,
the console is able to receive at least 4K bytes of data in a single X
command.

Format:

x [(qualifier list) 1 (address) (count) (CR) (checksum)

Qualifiers:
IP

IC

IU

Data is to be read from or written to physical
memory.

Data is to be read from or written to microcode
memory.

(Optional.) Data is to be read from or written to
console microprocessor memory.

The console reads and executes commands from the specified file.
The commands are displayed on the console terminal as they are
read. When a BOOT, START, or CONTINUE command is executed,
putting the console into program 1/0 mode, command file processing
is suspended. If a "software done" message is received by the
console (see the section "System Running" later in this chapter) and

System Bootstrapping and Console 351

Command
Language
Subsets

352

the processor halts, command file processing is continued. If the
processor halts before a "software done" message is received by the
console, the remainder of the command file is ignored.

Command files can be chained by using another @ command as the
last command in a file. If an @ command is encountered in the
middle of a command file, the console executes it but may ignore the
remainder of the original command file. It is an implementation
option whether or not the console resumes execution of the original
command file on completion of the secondary.

Format:

@ (file)

The comment

The comment is ignored.

Format:

! (comme~t)

To reduce cost, some implementations may not implement the full
console command set. A subset implementation is defined.

The commands supported by a subset console are as follows:

• BOOT (device)

• CONTINUE

• DEPOSIT (address) (data)

• EXAMINE [(address)]

• INITIALIZE

• HALT

• START (address)

• TEST

• X (address) (count)

• ! (comment)

EXAMINE and DEPOSIT support the qualifiers IB IW IL IP N II IG
and the symbolic address PSL.

The control characters supported are carriage return, CTRUP, CTRUS,
CTRUQ, CTRUU, and rubout.

VAX Architecture Reference Manual

The subset console may perform range checking on addresses and
data. If it does not, it truncates values that are too large and uses the
lower digits.

The subset console may accept only abbreviated commands. It may
also limit the command length to less than 80 characters. It may
accept only uppercase commands. Automatic systems communicating
with a console must limit themselves to the commands in the subset,
must abbreviate all commands, and must use only uppercase if
they are to communicate with any console implementation.

Options Some features are optional, such as the diagnosis mode and the 1M
and IU qualifiers. These may be implemented by any console,
even by a subset.

Errors and The console can issue error messages in response to commands.
Error Messages The case (uppercase or lowercase) is implementation dependent.

The console responds to all commands within 1 second. If the
processor does not respond to a console request, the console issues
an error message within 1 second.

The following three messages indicate failure of the requested
operation. Some implementations may abbreviate some or all of these
messages to "Can't."

Can't power up

File not found

Reference not
allowed

The console microprocessor cannot
complete its own power-up initialization.
The state of the console and that of
the processor is UNDEFINED.

The file specified in a BOOT, LOAD, or @
command cannot be found.

The requested reference would violate
virtual memory protection, or the address
is not mapped, or the reference is
invalid in the specified address space, or
the value is invalid in the specified
destination.

The messages below are responses to ill-formed commands. Some
implementations may abbreviate some or all of these messages to
"Illegal command."

Illegal command

Invalid digit

The command string cannot be parsed.

A number has an invalid digit.

System Bootstrapping and Console 353

Halts and Halt
Messages

354

Line too long

Illegal address

Value too big

Conflicting
switches

Unknown switch

Unknown symbol

The command was too large for the
console to buffer. The message is issued
only after receipt of the terminating
carriage return.

The address specified falls outside the
limits of the address space.

The value specified does not fit in the
destination.

For example, two different data sizes are
specified with an EXAMINE command.

The switch is unrecognized.

The symbolic address in an EXAMINE or
DEPOSIT is unrecognized.

The following message is produced when a binary transfer command
is improperly specified.

Incorrect checksum The command or data checksum of an X
command is incorrect. If the data
checksum is incorrect, this message is
issued and is not abbreviated to "Illegal
command."

The following message is produced when a HALT command is given
to the console and the processor is already halted.

Already halted The operator entered a HALT command
and the processor was already halted.

Some console commands may result in errors. For example, if a
memory error occurs as the result of a console command, the console
will respond with an error message. Such errors do not affect the
halted program. Specifically, the processor stays halted, and if it is
started later, no exception or interrupt occurs as the result of the
console error.

Whenever the processor halts, the console prints the response
"PC = "(PC). Except when the halt was requested by a console
HALT command or by a NEXT command, the response is preceded
by a halt message. For example:

?06 HALT executed

PC = 80005003

The number preceding the halt message is the halt code, and is
passed to the operating system on a restart. Halt code 03 does not
have a corresponding message. It is passed by the console during
powerfail restart.

VAX Architecture Reference Manual

The halt messages are:

700 CPU halted

701 Microverify
complete

702 CPU halted

03

704 I-stack not
valid

705 CPU double
error

706 HALT executed

707 Invalid SCB
vector

708 No user WCS

709 Error pending
on halt

70A CHM from
I-stack

70B CHM to inter­
rupt stack

70C SCB read
error

The operator entered a HALT command
while the processor was running, so
the console halted the processor.

The console quick-verify completed
successfu Ily.

The operator typed CTRLlP while the
console was in program liD mode. The
console was not locked, and the console
halted the processor.

Halt code 03 does not appear in a halt
message but is passed by the console on
powerfail restart.

In attempting to push state onto the
interrupt stack during an interrupt or
exception, the processor discovered that
the interrupt stack was mapped NO
ACCESS or NOT VALID.

The processor attempted to report a
machine-check to the operating system,
and a second machine-check occurred.

The processor executed a HALT instruc­
tion in kernel mode.

The vector had bits (1 :0) set.

An SCB vector had bits (1 :0) equal to 2,
and no user writable control store was
installed.

The processor was halted (by CTRLlP)
before it could perform an error halt.

A change mode instruction was executed
when PSL(IS) was set.

The exception vector for a change mode
had bit (0) set.

A hard memory error occurred while the
processor was trying to read an exception
or interrupt vector.

System Bootstrapping and Console 355

SYSTEM
RUNNING
(PROGRAM 1/0
MODE)

Console
Terminal
Registers

356

When the processor is running, the console is in program 1/0 mode.
In this mode, all terminal interaction is handled by the operating
system. The console terminal becomes like any other operating
system terminal and passes through all characters (except for
CTRUP). If the console is locked, even CTRLlP is passed through. If
the console is not locked, CTRUP causes the processor to halt and
the consoleto enter console I/O mode.

The console is accessed by the operating system through four
internal processor registers. Two are associated with passing informa­
tion from the console to the processor (receive registers) and two
with passing information from the processor to the console (transmit
registers). In each direction, there is a control and status register and
a data buffer register. The registers are shown in Figure 10.2. The
fields of the registers are described in Table 10.2.

31 8765 0

MBZ FH MBZ

Console Receive Control and Status Register (RXCS)

31 1211 8 7 0

reserved I 10 I data I
Console Receive Data Buffer Register (RXDB)

31 8765 0

MBZ

Console Transmit Data Buffer Register (TXDB)

31 12 11 8 7 o
reserved I 10 I data

Console Transmit Control and Status Register (TXCS)

Figure 10.2
Four Console Terminal Registers

VAX Architecture Reference Manual

Table 10.2
Fields of the Console Terminal Registers

Name Extent Description

RXCS Register Fields
ready (7)

interrupt enable (6)

RXDB Register Fields

error (15)

Cleared by processor initialization and by
reading RXDB. When Ready is clear, RXDB
is UNPREDICTABLE. When Ready is set,
RXDB contains valid data to be read.

Read/write .. Cleared by processor initialization
and by being written zero. If interrupt enable
is set by software while RXDB Ready is
already set, or if ready is set by the console
while Interrupt enable is already set, then
an interrupt is requested at IPL 14 (hex). That
is, an interrupt is requested whenever the
function [interrupt enable AND ready] changes
from 0 to 1.

An error occurred while receiving data, such
as data overrun or loss of carrier. Cleared by
processor initialization and by reading from
RXDB.

identification (11 :8) If zero, then data is from the console terminal.
If nonzero, then the rest of the register is
implementation dependent. Cleared by
processor initialization and by reading from
RXDB.

data (7:0) Data from the console terminal (if ID is zero).

TXCS Register Fields

ready (7)

interrupt enable (6)

TXDB Register Fields

identification (11 :8)

UNPREDICTABLE unless RXCS ready is set.

Read only. Set by processor initialization.
Ready is clear when the console terminal is
busy writing a character written to TXDB.
Ready is set when the console terminal
is ready to receive another character.

Read/write. Cleared by processor initialization
and by being written clear. If interrupt-enable
is set when ready becomes set, or if interrupt­
enable is set by software when ready is
already set, an interrupt is requested at IPL
14 (hex). That is, an interrupt is requested
whenever the function [interrupt enable AND
ready] changes from 0 to 1.

If ID is written zero when TXDB is written, the
data goes to the console terminal. If ID is
written with OF (hex), the data is a message
to be sent to the console. If ID is neither zero
nor Of (hex), the meaning is implementation­
dependent.

System Bootstrapping and Console 357

358

Table 10.2
Fields of the Console Terminal Registers (continued)

Name

data

Extent Description

(7:0) If 10 is zero, the data is a character sent to
the console terminal to type. If 10 is Of (hex),
the data is a message to be sent to the
console, with the following meaning:

1. Software done-A program started by a
console indirect command file is signaling
successful completion. When the processor
halts, the console should resume processing
the indirect command file.

2. Boot processor-The console should
initiate a system bootstrap.

3. Clear "restart in progress" flag-A system
restart has successfully completed. If a
system restart would occur automatically, the
attempt should be allowed.

4. Clear "bootstrap in progress" flag-A
system bootstrap has successfully completed.
If a system bootstrap would occur
automatically, the attempt should be allowed.

VAX Architecture Reference Manual

GOALS

Architectural Subsetting 11
This chapter describes those parts of the VAX architecture that may
be included as standard features of a processor, provided as options
to the processor, or omitted completely from the processor.

A processor implementing a subset of the VAX instructions, data
types, or registers, as described in this chapter, is known as a subset
VAX. Of the many subsets possible, the following are important
enough to name:

• Full VAX-includes all VAX data types, instructions, and registers

• Kernel subset-the minimum allowed subset

• MicroVAX I subset-as implemented by the MicroVAX I

• MicroVAX chip subset-as implemented by the MicroVAX chip

For a description of the MicroVAX I and MicroVAX chip subsets, see
Appendix B.

The subsetting of the architecture reflects the need to be able to
trade-off manufacturing cost, software development cost, and
performance of VAX processors. The following conflicting hardware
and software goals influenced the design of the subsetting rules:

• Hardware goal-Permit an implementor of a low-end processor to
omit instructions and other features in order to reduce manufacturing
cost without losing the ability to run all of the system software. The
decision to implement a subset will have some impact on the
performance of various classes of software products.

• Software goal-Provide as small a number of classes of processor
instruction sets as possible to reduce software development
costs. In particular, a single version of each compiler or other
layered software product should run on all processors in the VAX
family. Also the combination of hardware and instruction emulation
routines in operating systems must (as required) give the appearance
of a complete architecture on all processors.

Architectural Subsetting 359

SUBSETTING
RULES

360

The features of the architecture that may be omitted can be divided
into several groups, with different rules for subsetting.

The first group consists of the F _floating, D_floating, G_floating,
and H_floating data types, and the associated instructions. Each of
these data types may only be subset as an entity. This means that
if one of these data types is included, all the instructions that operate
on that data type must be included.
Twenty-two F _floating instructions: MOVF, MNEGF, CVTF{B,W,L},
CVT{B,W,L}F, CMPF, TSTF, ADDF2, ADDF3, SUBF2, SUBF3,
MULF2, MULF3, DIVF2, DIVF3, CVTRFL, EMODF, POL YF, ACBF

Twenty-four D_floating instructions: MOVD, MNEGD, CVTD{B,W,L,F},
CVT{B,W,L,F}D, CMPD, TSTD, ADDD2, ADDD3, SUBD2, SUBD3,
MULD2, MULD3, DIVD2, DIVD3, CVTRDL, EMODD, POL YO, ACBD

Twenty-four G_floating instructions: MOVG, MNEGG, CVTG{B,W,L,F},
CVT{B,W,L,F}G, CMPG, TSTG, ADDG2, ADDG3, SUBG2, SUBG3,
MULG2, MULG3, DIVG2, DIVG3, CVTRGL, EMODG, POL YG, ACBG

Thirty-two H_floating instructions: MOVH, MNEGH,
CVTH{B,W,L,F,D,G}, CVT{B,W,L,F,D,G}H, CMPH, TSTH, ADDH2,
ADDH3, SUBH2, SUBH3, MULH2, MULH3, DIVH2, DIVH3, CVTRHL,
EMODH, POLYH, ACBH, MOVO, CLRH (CLRO), MOVAH (MOVAO),
PUSHAH (PUSHAO)

If an instruction in this group is omitted by a processor, execution of
the instruction results in a reserved-instruction fault.

The second group, listed below, consists of the string instructions and
their associated data types, including the decimal string, EDITPC,
CRC, and character-string instructions, but not including MOVC3 or
MOVC5. (That is, MOVC3 and MOVC5 are part of the kernel
instruction set, and may not be omitted.) Instructions in this second
class may be subset individually.

Nine character string instructions: MOVTC, MOVTUC, CMPC3,
CMPC5,SCANC, SPANC, LOCC,SKPC, MATCHC

Sixteen decimal string instructions: MOVP, CMPP3, CMPP4, ADDP4,
ADDP6,SUBP4,SUBP6,CVTLP, CVTPL,CVTPT,CVTTP, CVTPS,
CVTSP, ASHP, MULP, DIVP

One other decimal string instruction: EDITPC

One other string instruction: CRC

VAX Architecture Reference Manual

THE KERNEL
INSTRUCTION
SET

If an instruction in this group is omitted by a processor, execution of
the instruction results in a sUbset-emulation exception.

The third group consists of the compatibility mode instruction set. If
compatibility mode is omitted by a processor, the execution of an REI
instruction attempting to enter compatibility mode results in a reserved­
operand fault.

The fourth group consists of internal processor registers. The registers
described below may be omitted from subset processors. If any of
the registers named on one of the following lines is included, all the
registers on that line must be included.

• Interval timer registers: NICR, ICR, ICCS except for <IE). (That is,
ICCS<IE) is part of the kernel subset and may not be omitted.)

• Time-of-Year clock register: TODR

• Console registers: RXCS, RXDB, TXCS, TXDB

• Performance Monitor Enable register: PME

The kernel instruction set is defined by exception; it is those instructions
that may not be omitted. For convenience, the kernel set is listed
here. There are 304 native mode instructions in the full VAX instruction
set. Of these, 129 may be omitted, leaving 175 instructions in the
kernel instruction set. They are:

Eighty-nine integer arithmetic and logical instructions: ADAWI,
ADD{B,W,L}{2,3}, ADWC, ASH{L,Q}, BIC{B,W,L}{2,3}, BIS{B,W,L}{2,3},
BIT{B,W,L}, CLR{B,W,L,Q}, CMP{B,W,L}, CVTB{W,L}, CVTW{B,L},
CVTL{B,w}, DEC{B,W,L}, DIV{B,W,L}{2,3}, EDIV, EMUL, INC{B,W,L},
MCOM{B,W,L}, MNEG{B,W,L}, MOV{B,W,L,Q}, MOVZ{BW,BL,WL},
MUL{B,W,L}{2,3}, PUSHL, ROTL, SBWC, SUB{B,W,L}{2,3},
TST{B,W,L}, XOR{B,W,L}{2,3}
Eight address instructions: MOVA{B,W,L,Q}, PUSHA{B,W,L,Q}.

Seven variable-length bit field instructions: CMPV, CMPZV, EXTV,
EXTZV, FF{S,C}, INSV.

Thirty-nine branch and control instructions: ACB{B,W,L}, AOBLEQ,
AOBLSS, BLSS,BLEQ, BEQL, BNEQ,BGEQ,BGTR,BLSSU,
BLEQU, BGEQU, BGTRU, BVS, BVC, BB{S,C}, BB{S,C}{S,C},
BB{SS,CC}I, BLB{S,C}, BR{B,W}, BSB{B,W}, CASE{B,W,L}, JMP,
JSB, RSB, SOBGEQ, SOBGTR.

Three procedure call instructions: CALLG, CALLS, RET.

Six queue instructions: INSQHI, INSQTI, INSQUE, REMQHI, REMQTI,
REMQUE.

Architectural Subsetting 361

INSTRUCTION
EMULATION

362

Two character string instructions: MOVC3, MOVC5.

Twelve instructions for use by operating systems: PROBE{R,w},
CHM{K,E,S,U}, HALT, REI, LDPCTX, SVPCTX, MTPR, MFPR.

Nine miscellaneous instructions: BI{C,S}PSW, BPT, INDEX, MOVPSL,
NOP, POPR, PUSHR, XFC.

Byte, word, longword, and quadword operand sizes have been
included in the kernel instruction set. The octaword operand size has
not been included.

Subset VAX processors and their operating systems cooperate to
support emulation of those instructions that are omitted from the
processor's instruction set. Programs running under the operating
system can make use of these instructions as though they were
supported directly by the processor. The process of emulating an
omitted instruction depends on the instruction type. Emulation of
string instructions is assisted by the processor through the instruction­
emulation exception. Emulation of compatibility mode instructions
and floating-point instructions is done entirely by software.

The process of emulating an omitted string instruction consists of the
following steps:

1. The processor reads the instruction opcode and finds that this is
an omitted instruction. The processor saves the opcode.

2. The processor evaluates the operand specifiers in order of
instruction stream occurrence. The processor saves the operand
address for each operand of write-access type or address type,
and it reads and saves the operand itself for operands of read­
access type.

3. The processor initiates a subset-emulation trap, pushing an
emulation trap frame onto the stack. The opcode and operands (or
their addresses) are part of the trap frame. Unlike many exceptions,
subset emulation trap does not cause the processor to enter kernel
mode. The exception handler runs in the same mode as the
trapped instruction, and the trap frame is pushed onto the current
stack.

4. The emulation-exception handler in the operating system examines
the opcode of the trapped instruction and dispatches to the
appropriate emulation routine.

5. The instruction-emulation routine reads and writes the instruction
operands, as appropriate to the instruction being emulated. The
operands need not be probed, since the emulation handler is
running in the same mode as the emulated instruction.

VAX Architecture Reference Manual

Instruction­
Emulation
Exceptions

6. The instruction-emulation routine sets the condition codes in the
PSL on the stack, pops the emulation trap frame (except for
the new PC and PSL) from the stack, and returns with REI.

7. Emulation is now complete, and the instruction following the
emulated instruction begins execution.

If, during the emulation of an instruction, an exception such as access
violation occurs, the emulation code must gain control, save state in
the registers just as the emulated instruction would, set FPD in the
saved PSL, and reflect the exception to the user's current exception
handler. If the conditions causing the exception are corrected and the
exception was a fault, the instruction can be restarted. In this case,
PSL(FPD) will be set when instruction execution begins. Emulation
consists of the following steps:

1. The processor reads the opcode and finds that this is an omitted
instruction and that PSL(FPD) is set.

2. The processor initiates a suspended-emulation fault, pushing PC
and PSL onto the stack.

3. The emUlation-exception handler rebuilds the intermediate state of
the instruction, using the information saved in the general
registers at the time the emulated instruction was faulted.

4. The emulation handler resumes emUlation of the instruction, as in
steps 5 through 7 in the previous list above.

Emulation software runs in the mode of the emulated instruction and
uses the same stack. Emulation software may allocate and use up
to five pages of stack space for temporary storage. The contents of
this area are UNPREDICTABLE after execution of an emulated
instruction. If an emulated instruction addresses part of this area as
an operand without first allocating it, or if an emulated instruction uses
SP as an operand, the results of the instruction are UNPREDICTABLE.
That is, the instructions DIVF3 R1, R2, - 50(SP) and DIVF3 R1, R2,
SP produce UNPREDICTABLE results. The instruction DIVF3 R1, R2,
- (SP) allocates the area on top of the stack before using it and is
legal.

When a subset processor executes a string instruction that is omitted
from its instruction set, an emulation exception results. An emulation
exception occurs through one of two SCB vectors, depending on
whether or not PSL(FPD) is set at the beginning of the instruction. If
PSL(FPD) is clear, a subs3t-emulation trap occurs through the
SCB vector at offset C8 (hex), and a SUbset-emulation trap frame is
pushed onto the stack. The PC pushed points to the instruction
following the omitted instruction. If PSL(FPD) is set, a suspended­
emulation fault occurs through the SCB vector at offset CC (hex), and

Architectural SubseHing 363

364

PC and PSL are pushed onto the stack. The PC pushed points to
the faulted instruction.

In either case, if PSL(T) is set at the time of the trap, PSL(TP) is set
in the PSL pushed onto the stack. All other bits in the pushed PSL
are unchanged. If PSL(FPD) was set, it is set in the saved PSL.

The new PSL has (TP,FPD,IV,DV,FU,T) clear. All other fields are
unchanged, including PSL(CUR_MOD,PRV_MOD,IS,IPL). That is,
the emulation-exception handler runs in the mode of the emulated
instruction, on the same stack, and at the same IPL. The exception
parameters are pushed onto the current stack. (Ifthe current stack
cannot be written, the processor takes a memory management fault
rather than an emulation exception.)

If either emUlation-exception vector has bits (1 :0) set to 1 (indicating
that the exception is to be taken on the interrupt stack), the operation
of the processor is UNDEFINED.

The emUlation-exception stack frame is shown in Figure 11.1 and
includes the following:

• Opcode-contains the opcode of the trapped instruction.

• Old PC-contains the address of the trapped instruction.

• Specifiers 1 through 8-contain the addresses of corresponding
instruction operands or contain the operands themselves. For each
operand of the trapped instruction, if the operand is of read access
type (.rx), the parameter contains the operand value; if the operand

opcode :(SP)

old PC

specifier #1

specifier #2

specifier #3

specifier #4

specifier #5

specifier #6

specifier #7

specifier #8

new PC

saved PSL

Figure 11.1
Subset-Emulation Trap Frame

VAX Architecture Reference Manual

is writeaccess type (.wx) or address type (.ax), the parameter
contains the operand address. For read-type operands of byte size,
bits (31 :8) of the longword are UNPREDICTABLE. For read-type
operands of word size, bits (31:16) are UNPREDICTABLE. When
an operand is in a register, the register is denoted by a reserved
system space address corresponding to the one's complement
of the register number. The parameter corresponding to an
instruction operand that does not exist is UNPREDICTABLE. For
example, if the trapped instruction has four operands, the parameters
for specifiers 5 through 8 are UNPREDICTABLE .

• New PC-contains the address of the instruction following the
trapped instruction .

• Saved PSL-contains the PSL at the time of the trap. If PSL(T) was
set at the beginning of the instruction, saved PSL(TP) is set.

Architectural Subsetting 365

Opcode Assignments A

SINGLE BYTE Binary Hex Mnemonic Binary Hex Mnemonic
OPCODES 00000000 00 HALT 00100000 20 ADDP4

00000001 01 NOP 00100001 21 ADDP6
00000010 02 REI 00100010 22 SUBP4
00000011 03 BPT 00100011 23 SUBP6
00000100 04 RET 00100100 24 CVTPT
00000101 05 RSB 00100101 25 MULP
00000110 06 LDPCTX 00100110 26 CVTTP
00000111 07 SVPCTX 00100111 27 DIVP
00001000 08 CVTPS 00101000 28 MOVC3
00001001 09 CVTSP 00101001 29 CMPC3
00001010 OA INDEX 00101010 2A SCANC
00001011 OB CRC 00101011 2B SPANC
00001100 OC PROBER 00101100 2C MOVC5
00001101 OD PROBEW 00101101 2D CMPC5
00001110 OE INSQUE 00101110 2E MOVTC
00001111 OF REMQUE 00101111 2F MOVTUC
00010000 10 BSBB 00110000 30 BSBW
00010001 11 BRB 00110001 31 BRW
00010010 12 BNEQ,BNEQU 00110010 32 CVTWL
00010011 13 BEQL, BEQLU 00110011 33 CVTWB
00010100 14 BGTR 00110100 34 MOVP
00010101 15 BLEQ 00110101 35 CMPP3
00010110 16 JSB 00110110 36 CVTPL
00010111 17 JMP 00110111 37 CMPP4
00011000 18 BGEQ 00111000 38 EDITPC
00011001 19 BLSS 00111001 39 MATCHC
00011010 1A BGTRU 00111010 3A LOCC
00011011 1B BLEQU 00111011 3B SKPC
00011100 1C BVC 00111100 3C MOVZWL
00011101 10 BVS 00111101 3D ACBW
00011110 1E BGEQU, BCC 00111110 3E MOVAW
00011111 1F BLSSU, BCS 00111111 3F PUSHAW

367

Binary Hex Mnemonic Binary Hex Mnemonic

01000000 40 ADDF2 01110000 70 MOVD
01000001 41 ADDF3 01110001 71 CMPD
01000010 42 SUBF2 01110010 72 MNEGD
01000011 43 SUBF3 01110011 73 TSTD
01000100 44 MULF2 01110100 74 EMODD
01000101 45 MULF3 01110101 75 POLYD
01000110 46 DIVF2 01110110 76 CVTDF
01000111 47 DIVF3 01110111 77 Reserved to DIGITAL

01001000 48 CVTFB 01111000 78 ASHL
01001001 49 CVTFW 01111001 79 ASHQ
01001010 4A CVTFL 01111010 7A EMUL
01001011 4B CVTRFL 01111011 7B EDIV
01001100 4C CVTBF 01111100 7C CLRQ,CLRD,CLRG
01001101 4D CVTWF 01111101 7D MOVQ
01001110 4E CVTLF 01111110 7E MOVA {Q, D, G}
01001111 4F ACBF 01111111 7F PUSHA{Q,D,G}

01010000 50 MOVF 10000000 80 ADDB2
01010001 51 CMPF 10000001 81 ADDB3
01010010 52 MNEGF 10000010 82 SUBB2
01010011 53 TSTF 10000011 83 SUBB3
01010100 54 EMODF 10000100 84 MULB2
01010101 55 POLYF 10000101 85 MULB3
01010110 56 CVTFD 10000110 86 DIVB2
01010111 57 Reserved to DIGITAL 10000111 87 DIVB3
01011000 58 ADAWI 10001000 88 BISB2
01011001 59 Reserved to DIGITAL 10001001 89 BISB3
01011010 5A Reserved to DIGITAL 10001010 8A BIC82
01011011 5B Reserved to DIGITAL 10001011 8B BICB3
01011100 5C INSQHI 10001100 8C XORB2
01011101 5D INSQTI 10001101 8D XORB3
01011110 5E REMQHI 10001110 8E MNEGB
01011111 5F REMQTI 10001111 8F CASEB
01100000 60 ADDD2 10010000 90 MOVB
01100001 61 ADDD3 10010001 91 CMPB
01100010 62 SUBD2 10010010 92 MCOMB
01100011 63 SUBD3 10010011 93 BITB
01100100 64 MULD2 10010100 94 CLRB
01100101 65 MULD3 10010101 95 TSTB
01100110 66 DIVD2 10010110 96 INCB
01100111 67 DIVD3 10010111 97 DECB
01101000 68 CVTDB 10011000 98 CVTBL
01101001 69 CVTDW 10011001 99 CVTBW
01101010 6A CVTDL 10011010 9A MOVZBL
01101011 6B CVTRDL 10011011 98 MOVZBW
01101100 6C CVTBD 10011100 9C ROTL
01101101 6D CVTWD 10011101 9D ACBB
01101110 6E CVTLD 10011110 9E MOVAB
01101111 6F ACBD 10011111 9F PUSHAB

368 Appendix A

Binary Hex Mnemonic Binary Hex Mnemonic

10100000 AO AOOW2 11010000 DO MOVL
10100001 A1 AOOW3 11010001 01 CMPL
10100010 A2 SUBW2 11010010 02 MCOML
10100011 A3 SUBW3 11010011 03 BITL
10100100 A4 MULW2 11010100 04 CLRL, CLRF
10100101 A5 MULW3 11010101 05 TSTL
10100110 A6 0lVW2 11010110 06 INCL
10100111 A7 0lVW3 11010111 07 OECL

10101000 A8 BISW2 11011000 08 AOWC
10101001 A9 BISW3 11011001 09 SBWC
10101010 AA BICW2 11011010 OA MTPR
10101011 AB BICW3 11011011 DB MFPR
10101100 AC XORW2 11011100 DC MOVPSL
10101101 AD XORW3 11011101 DO PUSHL
10101110 AE MNEGW 11011110 DE MOVAL, MOVAF
10101111 AF CASEW 11011111 OF PUSHAL, PUSHAF

10110000 BO MOVW 11100000 EO BBS
10110001 B1 CMPW 11100001 E1 BBC
10110010 B2 MCOMW 11100010 E2 BBSS
10110011 B3 BITW 11100011 E3 BBCS
10110100 B4 CLRW 11100100 E4 BBSC
10110101 B5 TSTW 11100101 E5 BBCC
10110110 B6 INCW 11100110 E6 BBSSI
10110111 B7 OECW 11100111 E7 BBCCI

10111000 B8 BISPSW 11101000 E8 BLBS
10111001 B9 BICPSW 11101001 E9 BLBC
10111010 BA POPR 11101010 EA FFS
10111011 BB PUSHR 11101011 EB FFC
10111100 BC CHMK 11101100 EC CMPV
10111101 BO CHME 11101101 ED CMPZV
10111110 BE CHMS 11101110 EE EXTV
10111111 BF CHMU 11101111 EF EXTZV

11000000 CO AOOL2 11110000 FO INSV
11000001 C1 AOOL3 11110001 F1 ACBL
11000010 C2 SUBL2 11110010 F2 AOBLSS
11000011 C3 SUBL3 11110011 F3 AOBLEO
11000100 C4 MULL2 11110100 F4 SOBGEO
11000101 C5 MULL3 11110101 F5 SOBGTR
11000110 C6 0lVL2 11110110 F6 CVTLB
11000111 C7 0lVL3 11110111 F7 CVTLW

11001000 C8 BISL2 11111000 F8 ASHP
11001001 C9 BISL3 11111001 F9 CVTLP
11001010 CA BICL2 11111010 FA CALLG
11001011 CB BICL3 11111011 FB CALLS
11001100 CC XORL2 11111100 FC XFC
11001101 CD XORL3 11111101 FO Two-byte opcode
11001110 CE MNEGL 11111110 FE Two-byte opcode
11001111 CF CASEL 11111111 FF Two-byte opcode

Opcode Assignments 369

TWO BYTE Hex Mnemonic Hex Mnemonic
OPCODES

OOFD
to

31FD Reserved to DIGITAL

32FD CVTDH 33FD CVTGF

34FD
to

3FFD Reserved to DIGITAL

40FD ADDG2 60FD ADDH2
41FD ADDG3 61FD ADDH3
42FD 8UBG2 62FD 8UBH2
43FD 8UBG3 63FD 8UBH3
44FD MULG2 64FD MULH2
45FD MULG3 65FD MULH3
46FD DIVG2 66FD DIVH2
47FD ·DIVG3 67FD DIVH3

48FD CVTGB 68FD CVTHB
49FD CVTGW 69FD CVTHW
4AFD CVTGL 6AFD CVTHL
4BFD CVTRGL 6BFD CVTRHL
4CFD CVTBG 6CFD CVTBH
4DFD CVTWG 6DFD CVTWH
4EFD CVTLG 6EFD CVTLH
4FFD ACBG 6FFD ACBH

50FD MOVG 70FD MOVH
51FD CMPG 71FD CMPH
52FD MNEGG 72FD MNEGH
53FD T8TG 73FD T8TH
54FD EMODG 74FD EMODH
55FD POLYG 75FD POLYH
56FD CVTGH 76FD CVTHG
57FD Reserved to DIGITAL 77FD Reserved to DIGITAL

58FD Reserved to DIGITAL 78FD Reserved to DIGITAL
59FD Reserved to DIGITAL 79FD Reserved to DIGITAL
5AFD Reserved to DIGITAL 7AFD Reserved to DIGITAL
5BFD Reserved to DIGITAL 7BFD Reserved to DIGITAL
5CFD Reserved to DIGITAL 7CFD CLRH;CLRO
5DFD Reserved to DIGITAL 7DFD MOVO
5EFD Reserved to DIGITAL 7EFD MOVAH, MOVAO
5FFD Reserved to DIGITAL 7FFD PU8HAH,PU8HAO

80FD
to

97FD Reserved to DIGITAL

98FD CVTFH 99FD CVTFG

9AFD
to

F5FD Reserved to DIGITAL

F6FD CVTHF F7FD CVTHD

370 Appendix A

Hex Mnemonic Hex Mnemonic

F8FD OOFE Reserved to DIGITAL
to to

FFFD Reserved to DIGITAL FFFE

OOFF
to

FCFF Reserved to DIGITAL

FDFF BUGL (used by VMS for BUGCHECK) FEFF BUGW

FFFF Reserved for all time

Opcode Assignments 371

Instruction
Subsetting

The Physical
Address Space

Implementation
Dependencies B

The VAX family of processors shares a common architecture,
including data types, instructions and addressing modes, and registers.
Software written to depend only on these features will run on any
VAX processor. Some software, however, typically operating system
software, by necessity depends on features that vary from implemen­
tation to implementation.

This appendix describes individual VAX processors, in particular those
features that are typically of interest to operating systems program­
mers. Such features include:

• Instruction subset

• Layout of physical memory

• System control block

• Codes for the halt conditions

• Internal processor registers

• Contents of the machine-check stack frame

• Operations that are specified UNDEFINED or UNPREDICTABLE.

Some instructions, data types, and processor registers described in
this book may be omitted from VAX processors. Chapter 11 describes
the subsetting rules and the allowed subsets.

VAX virtual addresses are 32 bits in length. When memory mapping
is enablea, virtual addresses are translated to physical addresses
as described in Chapter 4, Memory Management.

VAX physical addresses are at most 30 bits in length, so as to fit in a
PTE. Implementations may recognize fewer address bits, in which
case the additional bits are ignored. When memory mapping is
disabled, virtual addresses are translated to physical addresses by
ignoring virtual address bits (31 :30).

373

The System
Control Block

Halt Codes

Internal
Processor
Registers

374

The phy~ical address space consists of two parts: memory space and
1/0 space. Memory space starts at address zero and continues to an
implementation-dependent limit. 1/0 space begins at that limit and
continues to the end of the physical address space. Neither memory
space nor I/O space are necessarily filled and typically will be sparsely
filled.

Both memory space and I/O space are addressed by bytes. Aligned
and unaligned references to memory of byte, word, and longword size
are supported. Only aligned longword references are necessarily
supported to I/O space. References of other sizes may be supported
on some implementations.

Typically, 1/0 space consists of several "adapter spaces" and one or
more address spaces. The adapter spaces are sections of the
address space set aside for the registers of various bus adapters and
memory controllers. Many adapter spaces begin with an "adapter
configuration register" which contains an adapter type code. This is
for use by the operating system during power-up initialization to help it
determine the system hardware configuration.

UNIBUS address spaces are sections of the 1/0 address space which
directly map to a UNIBUS address space. UNIBUS addresses are
18 bits in length, so a UNIBUS address space is 256 kilobytes in
length. Within the UNIBUS address space, the low 248 Kbytes
is UNIBUS memory space. Typically, UNIBUS references to UNIBUS
memory space are translated by a set of UNIBUS map registers to
references in the VAX physical address space. This allows UNIBUS
devices to directly access VAX physical memory.

The system control block is a block of physical memory that contains
vectors for exceptions and interrupts. Chapter 5 describes its format
and interpretation. VAX processors may include exception and
interrupt vectors in addition to those described in Chapter 5.

Chapter 10 describes halting. When a VAX processor halts, the
reason for the halt is saved in a halt code. A processor may report
halt codes in addition to those described in Chapter 10.

Chapter 8, Privileged Registers, describes the internal processor
register address space and the registers found there on every
machine. Processors may include internal processor registers in
addition to those described in Chapter 8.

Appendix B

Machine­
Checks

UNPREDICT A­
BLE and
UNDEFINED

Chapter 5 describes the overall format of the machine-check stack
frame. Included in the stack frame is space for implementation­
dependent error report information. The circumstances that cause
machine-check are different for each processor, and the information
reported is different as well.

As used in this book, the terms UNPREDICTABLE and UNDEFINED
have particular meanings. Results specified as UNPREDICTABLE
may vary from one execution to the next. Software must not depend
on any UNPREDICTABLE results. The results of an instruction
include:

• Explicit destination operands (those with operand specifiers)

• Implicit destination operands

• Registers modified by operand specifier evaluation, including
specifiers for implied operands

• PSL condition codes

• PSL(FPD>

• PSL(TP>, if PSL(T> was set at the beginning of the instruction

• PTE(M> for pages mapping write or modify type operands (PTE(M>
will be set if the instruction modified the page, or if PTE(M> was
set before the instruction started.)

PC and unlisted fields of the PSL are specifically excluded from this
list. They are UNPREDICTABLE only when they appear as explicit or
implicit operands.

UNPREDICTABLE results are constrained by memory mapping and
access protection. That is, if correctly operating instructions cannot
affect a memory location or privileged register, then an instruction with
UNPREDICTABLE results cannot either.

UNPREDICTABLE results include:

• Any instruction whose operands wrap around from PC to RD

• Any native mode VAX instruction that is modified by writing into the
instruction stream, until the instruction stream is resynchronized
by REI

• Any instruction mapped by a PTE that has been modified in
memory, until the translation buffer is updated. See Chapter 5,
Memory Management

• Any instruction that uses PC in register mode, register deferred
mode, or autodecrement mode

• Any instruction that writes or modifies an immediate mode operand

Implementation DependenCies 375

376

• Any instruction that uses the same register twice in autoincrement
indexed mode, autodecrement indexed mode, or autoincrement
deferred indexed mode

• Any instruction that uses the same register as a floating-point
number and as an address in autoincrement mode, autodecrement
mode, or autoincrement deferred mode

• Any instruction that uses immediate indexed mode

• Any instruction whose operands, general registers, or PSL is
modified while PSL(FPD) is set

• Any instruction that is started with PSL(FPD) set if PSL(FPD) was
not set as a result of the instruction's previous execution

• The condition codes after a fault or interrupt. The condition codes
are preserved only to the extent necessary to ensure correct
completion of the instruction when it is resumed.

• ADA WI when the operands overlap

• Five pages above the top of the current stack, after the execution of
an omitted instruction that is emulated by software

• Any emulated instruction that references the five pages above the
top of the stack without allocating it first

• Any emulated instruction that references SP as an operand

• MOVTC and MOVTUC when the destination operand overlaps the
table operand or the escape operand

• CRC when the table operand is not well formed

• Any packed decimal-string instruction that encounters an invalid
packed decimal digit in a source operand

• Any decimal-string instruction that encounters a reserved operand

• Any decimal-string instruction whose operands overlap, except
as noted in CVTPL and CVTLP

• ASHP when the round operand is greater than 9

• EDITPC when used incorrectly; see the description of EDITPC,
Chapter 3

• DIVP when the divisor is 0

• Any compatibility mode byte instruction that writes or modifies PC

• Compatibility mode ASR, SXT, SWAB, ASH, and SOB, when
the operand is PC

• Compatibility mode MUL, DIV, and ASHC, when the operand is SP
or PC

• Compatibility mode DIV when integer overflow occurs

• The order of multiple exceptions within a single instruction

• Saved condition codes and general registers when PSL(FPD) is set

• Memory from -1 (SP) through -16(SP) after DIVP; see the
description of DIVP in Chapter 3

Appendix B

• The order of access of pages in operands that cross page boundaries

• The contents of many privileged registers after processor initialization

• PTE(M) after PROBEW, if it was zero at the start of the instruction,
and access is allowed

• PTE(M) in PTEs that map destination operands in instructions that
fault, when the operands could have been written but were not
written, and PTE(M) was clear at the beginning of the instruction

• Clearing PSL(TP) without clearing PSL(T)

• PSL(T) viewed by software.

• The order of trace fault and page fault on an instruction opcode

• VAX native mode R7 after executing in compatibility mode

• Whether the top half of RO through R6 are zeroed or left unchanged
by executing in compatibility mode

• Whether an instruction reads any operand it does not need to
complete correctly. Completing correctly includes having the
specified values in all explicit and implicit operands, including PSL
and registers modified by operand specifier evaluation; completing
correctly does not include page faults or reserved operand exceptions
resulting from reading operands not needed to otherwise complete
the instruction.

UNDEFINED operations result from privileged software performing
proscribed actions. The effects may be widespread and are not
necessarily constrained by memory mapping or access control.
UNDEFINED operations may affect the contents of memory, the
operation of peripherals, and the operation of the processor. UNDE­
FINED operations are constrained only to not hang the processor and
console. Control of the machine can be regained by reinitializing the
processor from the console.

The complete list of UNDEFINED operations is implementation­
dependent but includes:

• Writing non-zero values into fields specified as MBZ

• Writing values specified as reserved into privileged registers

• An exception or interrupt whose SCB vector has bits (1 :0) both set

• Restarting an instruction that references an I/O register with side
effects

• Unaligned references to I/O space

• References to I/O space registers in which the reference size is not
the register size

• Console START or CONTINUE after an error halt and before a
processor initialization

• Page tables, the PCB, or the SCB in I/O space

• LDPCTX when the new kernel stack is invalid or inaccessible.

Implementation Dependencies 377

MicroVAX I

MicroVAX II

VAX-11/725

VAX-11/730

VAX-11/750

378

The MicroVAX I computer system is the first subset VAX. Announced
in 1984, it is packaged in a box about 6 inches by 28 inches by 22
inches.

The MicroVAX I comes in two versions; one includes F _floating and
G_floating instructions, the other includes F _floating and D_floating
instructions. Neither version includes H_floating instructions. The
MicroVAX I processor includes some of the optional string instructions
(CMPC3, LOCC, SCANC, SKPC, SPAN C) but does not include any
of the optional processor registers or compatibility mode.

Implementation-dependent features of the MicroVAX I are described
in Figures B.1-B.3 and Tables B.1-B.4.

The MicroVAX II computer system is the first VAX with the processor
on a single chip. F _floating, D_floating, and G_floating instructions
are provided by a floating-point unit (another chip). The MicroVAX II
is a subset VAX, and includes none of the optional string instructions,
optional processor registers, H-floating instructions, or compatibility
mode.

Implementation-dependent features of the MicroVAX II are described
in Figures B.4-B.6 and Tables B.5-B.8.

The VAX-11 1725 computer system, announced in 1984, is a repackaged
version of the VAX-11/730 processor. The cabinet is 25 inches high
and 18 inches wide, and includes memory, two TU58 tape cartridge
drives, and an RC25 disk.

The VAX-11/730 computer system, announced in 1982, was the third
processor in the VAX family, and the first to include G_floating and
H_floating as standard. It is packaged with two disks in a cabinet 42
inches tall and 22 inches wide.

The VAX-11/730 includes all the instructions, all the architecturally
defined processor registers, and compatibility mode.

Implementation-dependent features of the VAX-11/730 are described
in Figures B.7-B.9 and Tables B.9-B.12.

The VAX-11/750, announced in 1980, was the second processor in
the VAX family. It is packaged in a cabinet 42 inches tall and 29
inches wide.

The VAX-11/750 includes all the instructions (G_floating and
H_floating are available as an option), all architecturally defined
processor registers, and compatibility mode.

Appendix B

VAX-11/780

VAX-11/782

VAX-11/785

VAX 8200

VAX 8300

VAX 8500

Implementation-dependent features of the VAX-11 1750 are described
in Figures B.10 through B.12 and Tables B.13 through B.16.

The VAX-11 1780 computer, announced in 1978, was the first processor
of the VAX family. It is packaged in a cabinet 60 inches tall and 47
inches wide.

The VAX-11/780 includes all the instructions (G_floating and
H_floating instructions are available as an option), all the architecturally
defined processor registers, and compatibility mode.

Implementation-dependent features of the VAX-11/780 are described
in Figures B.13 through B.15 and Tables B.17 through B.20.

The VAX-11/782 computer system, announced in 1982, is a dual
processor VAX-11/780 with shared memory. The cabinets containing
the processor, 1/0 adapters, and shared memory are 60 inches tall
and 190 inches wide.

The VAX-11 1785 computer system, announced in 1984, is available
as a field upgrade of the VAX-11/780. It is packaged in a cabinet 60
inches tall and 80 inches wide, including processor, memory, and 1/0
adapters. The VAX-11 1785 is identical to the VAX-11 1780 from the
point of view of software, except that the VAX-11/785 has increased
performance and has a bit set in the SID internal processor register,
by which software can differentiate between the two processor types.

The VAX 8200, announced in 1986, is packaged with two disks in a
cabinet 42 inches tall and 22 inches wide.

The 8200 includes all the instructions and architecturally defined
processor registers, but does not include compatibility mode.

Implementation-dependent features of the VAX 8200 are described in
Figures B.16-B.18 and Tables B.21-B.22.

The VAX 8300, announced in 1986, is a dual-processor version of the
VAX 8200, packaged in the same cabinet.

The VAX 8500, announced in 1986, is a single-processor version of
the VAX 8800. It is packaged in a cabinet 60 inches tall and about 27
inches wide.

Implementation Dependencies 379

VAX 8600

VAX 8650

VAX 8800

380

The 8600, announced in 1984, is packaged in a cabinet 60 inches tall
and about 80 inches wide.

The 8600 includes all the instructions, architecturally defined processor
registers, and compatibility mode.

Implementation-dependent features of the VAX 8600 are described in
Figures 8.19-8.21 and Tables 8.23-8.26.

The 8650, announced in 1985, is available as a field upgrade of the
8600. The 8650 is packaged in the same cabinet as the 8600 and
offers higher performance.

The dual-processor 8800, announced in 1986, is the highest
performance member of the VAX family. It is packaged in a cabinet
60 inches tall and about 80 inches wide.

The 8800 includes all the instructions and architecturally defined
processor registers. The 8800 does not include PDP-11 compatibility
mode.

Implementation-dependent features of the VAX 8800 are described in
Figures 8.22-8.24 and Tables 8.27-8.29.

0000 0000:

003F FFFF:

0040 0000:

IFFF FFFF:
2000 0000:

2000 IFFF:

2000 2000:

3FFF FFFF:

Figure B.1

installed memory

1---------------
memory address space

beyond installed memory

reserved

Q22-bus 1/0 space

reserved

MicroVAX I Physical Address Space

Appendix B

Table B.1
MicroVAX I Implementation-Dependent System Control Block Vectors

Offset Vector Name IPL Notes

60 write-bus timeout
CO interval timer

10
16

20Q-3FC 022 bus interrupts 14-17 IPL corresponds to bus
request levels 4 through 7.

Table B.2
MicroVAX I Halt Codes

Code Meaning

1 microverify succeeded

2 processor halted by HALT button or console break
3 powerup
4 interrupt stack not valid
5 double machine-check

6 HALT instruction executed

A change mode from the interrupt stack
C SCB vector read error

FF microverify failed

Table B.3
MicroVAX I Implementation-Dependent Internal Processor Registers

IPR Mnemonic Name

18 ICCS Interval-clock control and status (1)

19 NICR Next interval count (2)

1A ICR Interval count (2)
1B TODR Time-of-year clock (2)
24 TBDR Translation-buffer disable (2)
25 CDR Cache disable
26 MCESR Machine-check error summary
27 CAER Cache error (2)

30 SBIFS SBI fault status (2)
31 SBIS SBI silo (2)

32 SBISC SBI silo comparator (2)
33 SBIMT SBI maintenance (2)
34 SBIER SBI error (2)

35 SBITA SBI timeout address (2)

36 SBIOC SBI quadword clear (2)

37 10HESET I/O reset
3B TBDATA Translation-buffer data

3C MBRK Microprogram breakpoint
3D PME Performance-monitor enable
3E SID System identification
3F TBCHK Translation-buffer check (3)

(1) Subset implel"(1entation. (3) Always returns "TB miss."
(2) Reads as zero, ignores writes.

382

31 2423 171615 87 o

Figure B.2
MicroVAX I System Identification Register (SID)

byte count (OOOOOOOC hex) :SP

machine·check type code

first parameter

second parameter

PC

PSL

Figure B.3
MicroVAX I Machine-Check Stack Frame

Table B.4
MicroVAX I Machine-Check Type Codes

Code Meaning

0 memory controller bug check'
1 unrecoverable memory read error'

2 nonexistent memory'

3 illegal I/O space operation'

4 unrecoverable PTE read error'

5 unrecoverable PTE write error'

6 control store parity errort

7 micromachine bug checkt

8 022 bus vector read errort

9 write parameter error:t:

'Bits(29,21 :0) of the first parameter contain the corresponding bits of
the physical address of the last memory reference, and the second
parameter contains the address presented to the memory controller.
tBoth parameters are zero.
:t:The first parameter contains the virtual address that was being
written, and the second parameter is zero.

Appendix B

0000 0000:
installed memory

ooFF FFFF:

0100 0000:

lFFF FFFF:

2000 0000:

2000 lFFF:

2000 2000:

2003 FFFF:

2004 0000;

2007 FFFF:

2008 0000:

200B FFFF:

200C 0000:

2FFF FFFF:

3000 0000:

303F FFFF:

3040 0000:

3FFF FFFF:

Figure B.4

memory address space
beyond installed memory

reserved

022-bus 110 space

reserved

ROM space

local register 110 space

reserved

022-bus memory space

reserved

MicroVAX II Physical Address Space

Table 8.5
MicroVAX II Implementation-Dependent System Control Block Vectors

Offset Vector Name IPL Notes

CO interval timer 16
200-3FC Q22 bus interrupts 14-17

Implementation Dependencies

IPL corresponds to bus
request levels 4 through 7.

383

Table 8.6
MicroVAX II Implementation-Dependent Internal Processor Registers

IPR Mnemonic Name

18 ICCS Interval-clock control and status (1)

19 NICR Next interval count (2)

1A ICR Interval count (2)

1B TODR Time-of-year clock (2)

1C CSRS Console storage receiver status (2)

10 CSRD Console storage receiver data (2)

1E CSTS Console storage transmitter status (2)

1F CSTD Console storage transmitter data (2)

20 RXCS Console receiver status (2)

21 RXDB Console receiver data (2)

22 TXCS Console transmitter status (2)

23 TXDB Console transmitter data (2)

24 TBDR Translation-buffer disable (2)

25 CADR Cache disable (2)

26 MCESR Machine-check error summary (2)

27 CAER Cache error (2)

20 SAVISP Console saved interrupt stack pointer

2A SAVPC Console saved PC

2B SAVPSL Console saved PSL

30 SBIFS SBI fault status (2)

31 SBIS SBI silo (2)

32 SBISC SBI silo comparator (2)

33 SBIMT SBI maintenance (2)

34 SBIER SBI error (2)

35 SBITA SBI timeout address (2)

36 SBIQC SBI quadword clear (2)

37 10RESET 1/0 reset (2)

3B TBDATA Translation-buffer data (2)

3C MBRK Microprogram breakpoint (2)

3D PME Performance-monitor enable (2)

3E SID System identification

3F TBCHK Translation-buffer check

(1) Subset implementation.
(2) Reads as zero, ignores writes.

31 2423 o

8 o

Figure B.5
MicroVAX II System Identification Register (SID)

384 Appendix B

byte count (OOOOOOOC hex) :SP

machine-check code

most recent virtual address

internal state information

PC

PSL

Figure B.6
MicroVAX II Machine-Check Stack Frame

Table B.7
MicroVAX II Machine-Check Type Codes

Code Meaning

impossible microcode state (FSO)

2 impossible microcode state (SSO)

3 undefined FPU error code 0

4 undefined FPU error code 7
5 undefined memory management status (TB miss)

6 undefined memory management status (M = 0)
7 process PTE in PO space

8 process PTE in P1 space
9 undefined interrupt 10 code

80 read bus error, address parameter is virtual

81 read bus error, address parameter is physical

82 write bus error, address parameter is virtual

83 write bus error, address parameter is physical

Table B.8
MicroVAX II Halt Codes

Code Meaning

2 HALT L asserted
3 Initial power on

4 Interrupt stack not valid during exception
5 Machine-check during machine-check or kernel-stack-not-valid

exception
6 HALT instruction executed in kernel mode

7 SCB vector bits (1 :0) = 11

8 SCB vector bits (1 :0) = 10
A CHMx executed while on interrupt stack

10 Access-control-violation or translation-not-valid during machine­
check exception

11 Access-control-violation or translation-not-valid during kernel­
stack-not-valid exception

Implementation Dependencies 385

386

0000 0000:

OOEF FFFF:

OOFO 0000:

OOFl FFFF:

00F2 0000:

00F2 2000:

00F2 4000:

00F2 6000:

00F2 8000:

00F2 FFFF:

00F3 0000:

OOFE FFFF:

OOFe 0000:

OOFF FFFF:

Figure B.7

installed memory

r---------------
memory address space

beyond installed memory

reserved

memory adapter space

reserved adapter space

reserved adapter space

Unibus adapter space

reserved adapter space · · · reserved adapter space

reserved

Unibus address space

VAX-11/730 Physical Address Space

Table B.9
VAX-11/730 Implementation-Dependent System Control Block Vectors

Offset Vector Name IPL Notes

54 Corrected Read Data 1A Corrected memory error.

FO Console Storage Device 14 Console load device
(TU58) Receive signalling read complete.

F4 Console Storage Device 14 Console load device
(TU58) Transmit signalling write complete.

20Q-3FC Unibus interrupts 14 IPL corresponds to
bus request levels 4
through 7.

Appendix B

Table B.10
VAX·11/730 Halt Codes

Code Meaning

02 CTRLlP was typed at the console.

03 Does not appear in a halt message, but is passed by the
console during powerfail restart.

04 The interrupt stack was not valid when the processor tried to
push PC and PSL from an exception or an interrupt.

05 While the processor was trying to process a machine-check, a
second machine-check occurred.

06 A HALT instruction was executed, while the processor was in
kernel mode.

07 An exception or interrupt occurred and the SCB vector had
bit(1) set.

OA A CHMx instruction was executed when the processor was
executing on the interrupt stack.

OB A CHMx instruction was executed and the SCB vector had bit(O>
set.

OC A hard memory error occurred while the processor was trying
to read an SCB vector.

Table B.11
VAX-11/730 Implementation-Dependent Internal Processor Registers

IPR Mnemonic Name

1C CSRS Console storage receive status

10 CSRD Console storage receive data

1E CSTS Console storage transmit status

1F CSTD Console storage transmit data
24 TBDR Translation-buffer disable (1)

25 CDR Cache disable (1)

26 MCESR Machine-check error summary (2)

27 CAER Cache error (1)

28 ACCS Accelerator control and status
30 SBIFS SBI fault status (1)

31 SBIS SBI silo (3)

32 SBISC SBI silo comparator (1)

33 SBIMT SBI maintenance (1)
34 SBIER SBI error (1)

35 SBITA SBI timeout address (3)

36 SBIQC SBI quadword clear (4)

37 10RESET I/O reset

3D PME Performance-monitor enable

3E SID System identification

3F TBCHK Translation-buffer check

(1) Reads as zero, ignores writes.
(2) Reads as zero, any write clears the "machine-check in progress" flag.
(3) Reads as zero, writes cause reserved-operand fault.
(4) Ignores writes, reads cause reserved-operand fault.

Implementation Dependencies 387

388

31 2423 1615 87

3 I reserved I microcode rev I reserved

Figure B.8
VAX-11/730 System Identification Register (SID)

byte count (OOOOOOOC hex)

machine-check type code

first parameter

second parameter

PC

PSL

Figure B.9
VAX-11/730 Machine-Check Stack Frame

0000 0000:

· · ·
ooEF FFFF:

OOFO 0000:

00F2 0000:

00F2 2000:

ooF2 4000:

00F2 6000:

00F2 8000:

ooF2 AooO:

00F2 COOO:

OOF2 EooO:

00F3 0000:

00F3 2000:

00F3 4000:

00F3 EOOO:

00F4 0000:

ooF7 FFFF:

00F8 0000:

ooFB FFFF:

OOFC 0000:

OOFF FFFF:

Figure B.10

____ install~ ~~r~ __ ---J
memory address space

beyond installed memory

reserved for loading WCS

memory adapter space

reserved adapter space

reserved adapter space

reserved adapter space

MASSBUS 0 adapter space

MASSBUS 1 adapter space

MASSBUS 2 adapter space

MASSBUS 3 adapter space

UNIBUS 0 adapter space

UNIBUS 1 adapter space

reserved adapter spaces

reserved

UNIBUS 1 address space

UNIBUS 0 address space

VAX-11/750 Physical Address Space

Appendix B

o

:SP

Modify access type, 42
MOV (move instructions):

compatibility mode, 308-309
floating point, 130-131
integer and logical, 59
MCOM (move complemented),

56-57
MFP (move from previous

space), 325
MFPR (move from processor

register), 283
MNEG (move negated), 58, 130
MOVA (move address), 66
MOVC (move character),

147-151
move character string, 147-155
move IPR,229, 282,283
MOVP (move packed), 179
MOVPSL (move PSL), 99
MOVTC (move translated char-

acters),151-153
MOVTUC (move translated until

character), 153-155
MOVZ (move zero-extended),

59-60
MTP (move to previous space),

324-325
MTPR (move to processor

register), 229, 282
packed decimal, 179

MTP (move to previous space),
324-325

MTPR (move to previous register
instruction), 229, 282

MUL (multiply instructions):
compatibility mode, 311-312
EMOD (extended multiply and

integerize), 128-130
EMUL (extended multiply), 56
floating point; 131-132
integer, 60-61
MULP (multiply packed),

180-181
packed decimal, 180-181

Multiprocessors:
PTE,204,205
restrictions on caches, 274-275
synchronization, 224

NEG (negate instruction),
299-300

Negative condition code (N), 22

Index

NEXT console command, 348
Next interval count register (NICR),

286, 288
No-access. See Access type
NOP (no operation instruction),

98-99
Numeric decimal string. See

Decimal string

OA (operand address notation), 27
Octaword:

data type, 6, 7
notation for, 43
in registers, 20

Odd address error abort, 328
Opcode formats, 25, 26
Opcode reserved to customers

fault, 234-235
Operand specifier, 25, 26-27
Operand specifier notation, 42-43
Operand description notation,

43-45
Overflow, 22
Overflow exceptions, 230-232

PO and P1 registers:
in PCB, 261
POBR (PO base register), 213
POLR (PO length register), 213
P1 BR (P1 base register),

214-215
P1 LR (P1 length register),

214-215
restrictions when changing,

215-216
Packed decimal string, 18, 165

See also Decimal string
Page, 200
Page boundaries, 209
Page frame number field of PTE

(PFN),204
Page table(s):

paging of, 212, 220-221
process page tables, 212, 214
restrictions when changing, 216
system page table, 209

Page table entry (PTE), 203-207
changes to, 206-207
global page table index, 205
for 1/0 devices, 205-206

PC. See Program counter

413

414

PCB (process control block),
259-263

PCBB (process control block base
register), 259

PDP-11 :
comparison with VAX, 1
differences in interrupts, 224
See also Compatibility mode

Performance monitor enable
register (PME), 261

Per-process. See Process
PME (performance monitor enable

register), 261
POLY (polynomial evaluation

instructions), 132-138
POPR (pop registers instruction),

100
Powerfail, 335, 336-338
Precedence:

of memory management faults,
216

of multiple events, 241-242
of trace fault, 236

Previous mode (PRV MOD), 22
use of, 218, 219

Priority level. See Interrupt priority
level

Privileged-instruction fault, 234
PROBE (probe instructions),

218-221
Procedure call instructions; 88-93
Process, 259-267

address space, 201, 211-216
address translation, 211-215
context, 259
context switching, 226
definition of, 201, 259
regions, 213-215
scheduling interrupts, 263
structure instructions, 263-267

Process control block (PCB),
259-261

Process control block base register
(PCBB),259

Process page tables, 212, 214
paging of, 212, 220-221
restrictions when changing, 216

Processor access mode. See
Access mode

Processor state, 18-21
Processor status longword (PSL),

19,20-23

Index

access modes, 207
definition of, 20
in PCB, 261

Processor status word (PSW) ,
20-21,293,330-331

Processor type, 284
Program counter (PC):

definition of, 19
in PCB, 261

Program region of process space,
201

Protection, of memory. See
Memory

Protection codes, 208
PRV_MOD. See Previous mode
PSL (processor status longword),

19,20-23,207,261
PSW (processor status word),

20-21,293,330-331
PTE. See Page table entry
PUSH (push instructions):

PUSHA (push address), 67
PUSHL (push long), 61
PUSHR (push registers), 100

Quadword:
data type, 6, 7
notation for, 43
in registers, 20

Queue instructions, 102-117

Read access, 208
Read access type, 42

See also Access type
Read-only access, 208
Read-write access, 208
Register(s), 279-288

base register, 19, 20, 244-246
in compatibility mode, 289-293
general-purpose, 19-20,

289-293
index, 19
in PCB, 261
values during bootstrap, 334
See also Internal processor

register
Register deferred mode addressing,

291
Register deferred mode operand

specifier format, 30, 32
Register mode addressing, 291

Register mode operand specifier
format, 30-32

REI (return from exception or
interrupt instruction),
252-254,270

Relocation, of memory. See
Memory

REM (remainder notation), 44
REM (remove queue instructions):

REMQHI (remove from head
interlocked), 110-112

REMQTI (remove from tail
interlocked), 113-115, 270

REMQUE (remove), 115-117,
229,270

REPEAT console command, 349
Reserved, definition of, 2-3
Reserved-addressing mode fault,

233
Reserved-operand exception, 164,

234-235
Reserved- or privileged instruction

fault, 234
Reserved to customers fault, 234
Restart of system. See Bootstrap
Restart parameter block (RPB),

335-336, 347
Restartability of instructions,

224-225, 233, 275
RET (return from procedure

instruction), 92- 93
ROL (rotate left instruction),

305-306
ROR (rotate right instruction),

306-307
ROTL (rotate long instruction),

61-62
RPB (restart parameter blOCk),

335-336, 347
RSB (return from subroutine

instruction), 86
RTI (return from interrupt instruc­

tion),323
RTS (return from subroutine

instruction), 322-323
RTT (return from trap instruction),

323-324
RXCS (console terminal receive

control and status register),
357

RXDB (console terminal receive
data buffer register), 357

Index

SBC (subtract carry instruction),
304

SBR (system base register),
209-211

SBWC (subtract with carry
instruction), 62-63

SCANC (scan characters instruc­
tion),155-156

SCB. See System control block
SCBB (system control block base

register), 244-246
Scheduling, of a process, 263
Self-relative queue, 103
Self-relative queue, data type,

13-14
Self test console command, 349
SET console command, 349
SEXT (sign extend notation), 27,

44
Sharing, of memory. See Memory
SID (system identification register),

284-285
Single precision floating point. See

F_floating
SIRR (software interrupt request

register), 228, 229
SISR (software interrupt summary

register), 228
SKPC (skip character instruction),

157-158
SLR (system length register), 209,

210
SOB (subtract one and branch),

320
SOBGEQ (subtract one and branch

greater than or equal
instruction), 86-87

SOBGTR (subtract one and branch
greater than instruction),
87-88

Software interrupt, 227-229
Software interrupt request register

(SIRR), 228, 229
Software interrupt summary

register (SISR), 228
Source string, 272
SP. See Stack pointer
SPANC (span characters instruc­

tion),158-159
SSP (supervisor-mode stack

pointer), 246
Stack, 246-248, 293

415

416

Stack (continued)
accessing stack registers, 248
alignment, 247
not-valid, 246
residency, 246-247
running on the interrupt, 223,

246,263
status bits, 247
switching between, 246, 250,

254
See also Stack pointer

Stack frame:
CALL instructions, 88-92
CHM instructions, 255
emulation trap, 364
machine-check exception, 240
memory management fault, 217

Stack pointer, 246, 281, 293
definition of, 19
indication of, 247
IPRs, 248
in PCB, 261
referencing, 248
switching between, 246, 250,

254
See also Stack

START console command, 349
State transitions of the system, 256
Stop byte, 272
String:

character string, 14
character string instructions,

140-159
CRC instruction, 160-162
decimal string instructions,

163-182
EDITPC instruction, 183-186
leading separate string, 17
packed decimal string, 18
in registers, 20
trailing numeric string, 15-17

SUB (subtract instructions):
compatibility mode, 310
floating point, 138-139
integer, 63- 64
packed decimal, 181-182
SBC (subtract carry), 304
SBWC (subtract with carry),

62-63
SOB (subtract one and branch),

320

Index

SUBP (subtract packed),
181-182

Subscript-range trap, 232
Subsetting, 359-365

compatibility mode, 361
floating point instructions, 360
full VAX, 359
instruction emulation, 362-365
IPRs, 361
kernel subset, 361-362
MicroVAX chip subset, 359
MicroVAX I subset, 359
rules, 360-361
string instructions, 360-361

Supervisor access mode, 207
Supervisor-mode stack pOinter

(SSP),246
Suspended emulation fault, 235
SVPCTX (save process context

instruction), 263, 266- 267
SWAB (swap bytes instruction),

307
SXT (sign extended word instruc­

tion),304-305
Synchronization, 269-270

in compatibility mode, 331
with I/O device registers, 277
restrictions on caches,

274-275
using IPL, 224
writing to the instruction,

269-270
System address space, 201

address translation, 209-211
System-base register (SBR),

209-211
System control block (SCB),

243-244
vectors, 243-244

System control block base register
(SCBB), 244-246

System failures, 240-241
System identification register (SID),

284-285
System length register (SLR), 209,

210
System page table, 209, 216
System states, major transitions,

256,338-339
SYS_TYPE(MicroVAX system

type register), 284-285

Table B.12
VAX-11/730 Machine-Check Error Type Codes

Code Meaning

o Microcode shouldn't be here. If the first parameter is zero, no
other information is available. If the first parameter is two,
the problem was inability to write back a PTE(M> bit. If the
parameter is three, the problem was a bad 8085 interrupt. The
second parameter is always zero.

Translation buffer parity error. The first parameter is the bad
value from the TB. PFN is in bits (23:0>. PTE(V), the protection
code, and PTE(M> are in bits (31 :26>. TB valid bit is in bit
(25). The second parameter is the virtual address referenced.

3 Impossible value in memory CSA. The first parameter is the
virtual address referenced. The second parameter is the
bad value of the CSR.

4

5

6

7

8

9

A

B

Fast interrupt without support. A fast interrupt was requested
and no microcode was loaded to handle it. Both parameters are
zero.

FPA parity error. The FPA control store had a parity error. The
first parameter has parity error summary in bit(O>, group 0 parity
in bit (1 >, group 1 parity in bit (2), and in unpredictable in
bits(31 :3>. The second parameter is zero.

Error on SPTE read. The first parameter is the physical
address of the SPTE. The second parameter contains the error
syndrome bits.

Uncorrectable ECC error. The first parameter is the physical
address of the reference. The second parameter contains the
error syndrome bits.

Nonexistent memory. The first parameter is the physical
address referenced. The second parameter is zero.

Unaligned or non-Iongword reference to I/O space. The first
parameter is the physical address referenced. The second
parameter is zero.

Illegal I/O space address. The first parameter is the physical
address referenced. The second parameter is zero.

Illegal UNIBUS reference. The first parameter is the physical
address referenced. The second parameter is zero.

Implementation Dependencies 389

390

Table 8.13
VAX-11/750 Implementation-Dependent System Control Block Vectors

Offset Vector Name IPL Notes

54 corrected read data, or 1A Corrected memory error
read data substitute and uncorrected memory

error.

60 write bus error 10 Taken regardless of
current IPL if error occurs
during exception or
interrupt.

FO console storage device 17 Console load device
(TU58) receive signalling read complete.

F4 console storage device 17 Console load device
(TU58) transmit signalling write complete.

10D-13C adapter interrupts, 14 Adapter interrupt.
adapters 0 through 15

14D-17C adapter interrupts, 15 Adapter interrupt.
adapters 0 through 15

180-1BC adapter interrupts, 16 Adapter interrupt.
adapters 0 through 15

1CO-1 FC adapter interrupts, 17 Adapter interrupt.
adapters 0 through 15

200-3FC Unibus interrupts 14-17 IPL corresponds to
bus request levels 4
through 7.

Table 8.14
VAX-11/750 Halt Codes

Code Meaning

1 successful completion of console TEST command

2 processor halted by flP or single step
3 powerup

4 interrupt stack not valid, or SCB read failure
5 double bus write error
6 HALT instruction executed

7 illegal interrupt or exception vector (bits(1 :0) = 3)

8 jump to nonexistent user writable control store (SCB vector
bits(1 :0) = 2, and no user WCS installed)

A change mode from the interrupt stack
B change mode to the interrupt stack

11 can't find a valid Restart Parameter Block during powerup
restart, and powerup action switch set to RESTART/HALT

12 "system restart in progress" flag already set during powerup
restart, and powerup action switch set to RESTART/HALT

13 can't find 64K bytes of good memory during system bootstrap
14 bad boot ROM or no boot ROM during powerup bootstrap

15 "system bootstrap in progress" flag already set during boot
16
FF

powerup and powerup action switch set to HALT

self-test failure

Table 8.15
VAX-11/750 Implementation-Dependent Internal Processor Registers

IPR Mnemonic Name

17 CMIERR CMI error
1C CSRS Console storage receive status

10 CSRD Console storage receive data

1E CSTS Console storage transmit status

1F CSTD Console storage transmit data

24 TBDR Translation-buffer disable

25 CADR Cache disable

26 MCESR Machine-check error summary

27 CAER Cache error

28 ACCS Accelerator control and status
27 IORESET Initialize UNIBUS

3B TB Translation-buffer test

3D PME Performance-monitor enable

3E SID System identification
3F TBCHK Translation-buffer check

31 2423 1615 87 a

2 reserved I microcode rev I hardware rev I
Figure B.11
VAX-11/750 System Identification Register (SID)

count of bytes pushed, excluding PC, PSL and count. 28 hex. :SP

error code

VA register

PC at the time of the error

MDR

saved mode register

read lock timeout

TB group parity error register

cache error register

bus error register

machine-check error summary register

PC

PSL

Figure B.12
VAX-11/750 Machine-Check Stack Frame

Implementation Dependencies 391

392

Table B.16
VAX-11/750 Machine-Check Error Summary Register

Code Meaning

2

6

7

0000 0000:

1FFF FFFF:

2000 0000:

2000 2000:

2001 EOOO:

2002 0000:

200F FFFF:

2010 0000:

2014 0000:

2018 0000:

2018 0000:

2020 0000:

3FFF FFFF:

Figure B.13

control store parity error

translation buffer parity error, bus error, or cache parity error

"microcode shouldn't be here" error

"unused IRD ROM slot" error

installed memory

f--------------
memory address space

beyond installed memory

TRO adapter space

TR1 adapter space

· · ·
TR15 adapter space

reserved

UNIBUS 0 address space

UNIBUS 1 address space

UNIBUS 2 address space

UNIBUS 3 address space

reserved

VAX-11/7BO Physical Address Space

Appendix B

Table B.17
VAX-11/780 Implementation-Dependent System Control Block Vectors

Offset Vector Name IPL Notes

50 SBI silo compare 19 System bus error.

54 corrected read data, or 1A Corrected memory error,
read data substitute or uncorrected memory

error.

58 SBI alert 1B System bus error.

5C SBI fault 1C System bus error.

60 memory write timeout 10 Memory error.

100-13C nexus interrupts, nexuses 14 Device or adapter
o through 15 interrupt.

140-17C nexus interrupts, nexuses 15 Device or adapter
o through 15 interrupt.

180-1BC nexus interrupts, nexuses 16 Device or adapter
o through 15 interrupt.

1 CO-1FC nexus interrupts, nexuses 17 Device or adapter
o through 15

Table B.18
VAX-11/780 Halt Codes

Code Message

3
4

5

7

8

OA

none

?lNT-STK lNVLD

?CPU DBLE-ERR HLT

?lLL liE VEC

?NO USR WCS

?CHM ERR

Implementation Dependencies

interrupt.

Meaning

Powerup.

The interrupt stack was not valid when
the processor attempted to take an
exception or interrupt.

A second processor error occurred
during the processing of a previous
error.

Illegal interrupt or exception vector.
(Vector bits(1 :0) were 3.)

Jump to nonexistent user writable
control store.

Change mode from the interrupt stack.

393

394

Table 8.19
VAX-11/780 Implementation-Dependent Internal Processor Registers

IPR Mnemonic Name

20

21

22

23

28

29

2C

2D

30

31

32

33

34

35

36

3C

3D

3E

3F

31

Figure B.14

RXCS Console terminal receive control and status

RXDB Console terminal receive data buffer

TXCS Console terminal transmit control and status

TXDB Console terminal transmit data buffer

ACCS Accelerator control and status

ACCR Accelerator maintenance

WCSA Writable-control-store address

WCSD Writable-control-store data

SBIFS SBI fault status

SBIS SBI silo

SBISC SBI silo comparator

SBIMT SBI maintenance

SBIER SBI error

SBITA SBI timeout address

SBIQC SBI quadword clear

MBRK Microprogram breakpoint

PME Performance-monitor enable

SID System identification

TBCHK Translation-buffer check

242322 1514 1211 o Igeo level I plant I
o = VAX-11 1780
1 = VAX -11 1785

serial number

VAX·11/780 System Identification Register (SID)

Appendix B

count of bytes pushed, excluding PC, PSL and count. 28 hex. :SP

summary parameter

CPU error status register

trapped microPC

VA or VIBA

D register

TB ERR 0 register

TB ERR 1 register

timeout address

parity register

SBI error register

PC

PSL

Figure B.15
VAX-11/780 Machine-Check Stack Frame

Table B.20
VAX-11/780 Machine-Check Error Summary Parameter

Code

00

02
03
05
OA
OC
OD
OF
F1

F2

F3

F4

F5

F6

Meaning

central processor read timeout or error confirmation fault

central processor translation buffer parity error fault

central processor cache parity error fault

central processor read data substitute fault

instruction buffer translation buffer parity error fault

instruction buffer read data substitute fault

instruction buffer read timeout or error confirmation fault

instruction buffer cache parity error fault

control store parity error abort

central processor translation buffer parity error abort

central processor cache parity error abort

central processor read timeout or error confirmation abort

central processor read data substitute abort

"microcode not supposed to get here" abort

Implementation Dependencies 395

396

0000 0000:

1FFF FFFF:

2000 0000:

2000 2000:

2001 FFFF:

2002 0000:

2003 FFFF:

2004 0000:

203F FFFF:

2040 0000:

2044 0000:

207F FFFF:

2080 0000:

3FFF FFFF:

Figure B.16

installed memory f---------------
memory address space

beyond installed memory

node 0 nodes pace

node 1 nodespace

· · ·
node 15 nodes pace

reserved

node private space

node 0
window space

node 1 window space

· · ·
node 15 window space

reserved

VAX 8200 Physical Address Space

Table B.21
VAX 8200 Implementation-Dependent SCB Vectors

Offset Vector Name

50 BI bus-error interrupt

54 Corrected read data

58 RXCD (receive data register)

80 Interprocessor interrupt

CO Interval timer interrupt

C8 Serial line #1 RX interrupt

CC Serial line #1 TX interrupt

DO Serial line #2 RX interrupt

D4 Serial line #2 TX interrupt

D8 Serial line #3 RX interrupt

DC Serial line #3 TX interrupt

FO Console storage device

F8 Console terminal RX interrupt

FC Console terminal TX interrupt

100-3FFC BI defined, loaded by software

IPL

14

1A

14

14

16

14

14

14

14

14

14

14

14

14

14-17

Table 8.22
VAX 8200 Implementation· Dependent Internal Processor Registers

IPR Mnemonic Name

16 IPIR Interprocessor interrupt request

20 RXCS Console terminal receive control and status

21 RXDB Console terminal receive data buffer

22 TXCS Console terminal transmit control and status

23 TXDB Console terminal transmit data buffer

24 TBDR Translation-buffer disable

25 CADR Cache disable

26 MCESR Machine-check error summary

28 ACCS Accelerator control and status

2C WCSA Writable-control-store address

2D WCSD Writable-control-store data

2E WCSL Writable-control-store load

3E SID System identification

50 RXCS1 Serial line 1 receive control and status

51 RXDB1 Serial line 1 receive data buffer

52 TXCS1 Serial line 1 transmit control and status

53 TXDB1 Serial line 1 transmit data buffer

54 RXCS2 Serial line 2 receive control and status

55 RXD~2 Serial line 2 receive data buffer

56 TXCS2 Serial line 2 transmit control and status

57 TXDB2 Serial line 2 transmit data buffer

58 RXCS2 Serial line 3 receive control and status

59 RXDB3 Serial line 3 receive data buffer

5A TXCS3 Serial line 3 transmit control and status

5B TXDB3 Serial line 3 transmit data buffer

5C RXCD Receive console data

5D CACHEX Cache invalidate

5E BINID 81 node identification
5F BISTOP BI stop

31 2423 1918 987 o
5 I patch rev

L CPU revision

H ucode rev

Figure B.17
VAX 8200 System Identification Register (SID)

Implementation Dependencies 397

398

count of bytes pushed, excluding PC, PSL, and count. 20 hex.

machine-check type code

parameter 1

VA

VA prime

MAR

status word

PC at failure

micro-PC at failure

PC

PSL

Figure B.18 VAX 8200 Machine-Check Stack Frame

0000 0000:
installed memory

~-------------
1FFF FFFF:

2000 0000:

2000 2000:

2001 FFFF:

2002 0000:

2008 0000:

2008 0000:

2010 0000:

2014 0000:

201F FFFF:

2020 0000:

2200 0000:

2200 2000:

2201 FFFF:

2202 0000:

2208 0000:

2208 ooeo:

2210 0000:

2214 0000:

221F FFFF:

2220 0000:

2400 0000:

2600 0000:

2800 0000:

noneXistent-memory space

SBIO.TRO adapter space

SBI0.TR1 adapter space

· · · SBI0.TR15 adapter space

reserved

SBIA #0 registers

reserved

UNIBUS 0 address space

UNIBUS 1 address space · · · UNIBUS 3 address space

reserved

SBI1.TRO adapter space

SBI1.TR1 adapter space

· · · SBI1. TR 15 adapter space

reserved

SBIA #1 registers

reserved

UNIBUS 4 address space

UNIBUS 5 address space · · · UNIBUS 7 address space

reserved

SBIA #2 address space

SBIA #3 address space

reserved

Figure B.19 VAX 8600 Physical Address Space

:SP

Table B.23 VAX 8600 Implementation· Dependent SCB Vectors

Offset Vector Name IPL Notes

04 machine checks 10 or 1 F At IPL 1 D only if the error is
unrelated to the current
instruction

50 SBIO silo compare 19 System-bus memory error

54 Corrected read data 10 Corrected memory error

58 SBIO alert 1B System-bus error

5C SBIO fault 1C System-bus error

60 SBIAO internal fail 10 Abus-to-SBI-adapter error

64 SBIO power fail 1E

100-13C SBIAO nexus interrupts at 14 Device or adapter interrupt
BR4, nexus 0 thru 15

140-17C SBIAO nexus interrupts at 15 Device or adapter interrupt
BR5, nexus 0 thru 15

180-1 BC SBIAO nexus interrupts at 16 Device or adapter interrupt
BR6, nexus 0 thru 15

1CO-1FC SBIAO nexus interrupts at 17 Device or adapter interrupt
BR7, nexus 0 thru 15

250 SBI1 silo compare 19 System-bus error

258 SBI1 alert 1B System-bus error

25C SBI1 fault 1C System-bus error

260 SBIA 1 internal error 10 Abus-to-SBI-adapter error

264 SBI1 power fail 1E

300-33C SBIA 1 nexus interrupts at 14 Device or adapter interrupt
BR4, nexus 0 thru 15

340-37C SBIA1 nexus interrupts at 15 Device or adapter interrupt
BR5, nexus 0 thru 15

380-3BC SBIA 1 nexus interrupts at 16 Device or adapter interrupt
BR6, nexus 0 thru 15

3CO-3FC SBIA 1 nexus interrupts at 17 Device or adapter interrupt
BR7, nexus 0 thru 15

400-5FC lOA #2 vectors Correspond to 200-3FC

600-7FC lOA # 3 vectors Correspond to 200-3FC

Table B.24 VAX 8600 Implementation-Dependent Halt Codes

Code Message Meaning

0 UNRECOVERABLE MACHINE HANG Console-support microcode is not running

4 INTERRUPT STACK INVALID Interrupt stack not valid during the initiation
of an exception or interrupt.

5 NON-EBOX DOUBLE ERROR While initiating a machine check, a second
machine check occurred.

6 KERNEL MODE HALT HALT instruction in kernel mode.

7 SCB VECTOR<1:0>=3, INVALID Illegal SCB vector (bits<1 :0> = 3).

8 SCB VECTOR< 1 :0> = 2, NO USER Illegal SCB vector (bits<1 :0> = 2, no WCS
WCS microcode).

9 ERROR PENDING ON HALT Pending error on HALT.

A CHM WITH IS = 1 CHMx from the interrupt stack.

B CHM WITH VECTOR<1 :0> NOT 0 CHMx to the interrupt stack.

11 INVOKED BY CONSOLE Operator typed HALT at console.

400

Table B.25
VAX 8600 Implementation-Dependent Internal Processor Registers

IPR Mnemonic Name

20

21

22

23

28

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4C

40

4E

4F

31

4

Figure 8.20

RXCS Console terminal receive control and status

RXDB Console terminal receive data buffer

TXCS Console terminal transmit control and status

TXDB Console terminal transmit data buffer

ACCS Accelerator control and status

PME Performance-monitor enable

SID System identification

TBCHK Translation-buffer check

PAMACC Physical address memory map access

PAMLOC Physical address memory map location

CSWP Cache sweep

MDECC M-box data ECC

MENA M-box error enable

MDCTL M-box data control

MCCTL M-box MCC control

MERG M-box error generator

CRBT Console reboot

DFI Diagnostic fault insertion

EHSR Error handling status
STXCS Console block storage control and status

STXDB Console block storage data buffer

ESPA E-box scratch pad address

ESPD E-box scratch pad data

242322 1615 1211 o

I geo level I plant I
0= VAX 8600
1 = VAX 8650

serial number

VAX 8600 System Identification Register (SID)

Appendix 8

count of bytes pushed, excluding PC, PSL, and count. 58 hex.

EHM.STS

EVMQSAV

EBCS

EDPSR

CSLlNT

IBESR

EBXWD1

EBXWD2

IVASAV

VIBASAV

ESASAV

ISASAV

CPC

MSTAT1

MSTAT2

MDECC

MERG

CSHCTL

MEAR

MEDR

FBXERR

CSES

PC

PSL

Figure 8.21
VAX 8600 Machine-Check Stack Frame

Implementation Dependencies 401

Table B.26
VAX 8600 Machine-Check Stack Frame Contents

Field Offset Extent Meaning

COUNT 00 <31 :0> Bytes pushed, excluding PC, PSL, and count

EHM.STS 04 <31 :24> Error-handling status

<23:19> Control-store correction request

<15:8> Trap vector

<7:0> Status code

EVMQSAV 08 <31:0> E-box virtual address

EBCS OC <31 :27> E-box control-store parity error

<15:8> E-box, I-box, M-box error

<4:0> Abort flags

EDPSR 10 <31 :28> A-mux byte in error

<27:24> B-mux byte in error

<15:12> VMQ byte in error

<11 :0> E~box datapatherror flags

CSLlNT 14 <29:23> Interrupt request flags

<22:21> lOA number

<20:16> Interrupt priority requests

<15:8> C-bus data

<7:6> C-bus control

<5:0> C-bus addresss

IBESR 18 <31 :21> I-box error flags

<15:8> Diagnostic and maintenance flags

EBXWD1 1C <31 :0> Top of scratch-pad stack

EBXWD2 20 <31 :0> Next on scratch-pad stack

IVASAV 24 <31:0> Virtual address for operand fetch

VIBASAV 28 <31 :0> Virtual address of next IB port request to fill IB

ESASAV 2C <31 :0> PC being evaluated by E-box

402 Appendix B

Table 8.26
VAX 8600 Machine-Check Stack Frame Contents (continued)

Field Offset Extent Meaning

ISASAV 30 <31:0> PC being evaluated by operand fetch unit

CPC 34 <31 :0> PC being evaluated by I-buffer

MSTAT1 38 <31 :26> M-box cycle in error

<25:24> Word count

<23:16> M-box error conditions

<15:12> Cache hit/miss history

<11 :8> TB errors

<7:0> M-box datapath error summary

MSTAT2 3C <20:16> PAMM data

<15:8> SBIA diagnostic status

<7:0> M-box error information

MDECC 40 <22:16> Data ECC error flags

<14:9> Data ECC syndrome

<7:1> Data ECC check bit invert

<0> Longword parity invert

MERG 44 <12:9> Diagnostic bits

<8> Memory management enable

<5:0> M-box diagnostic error-insertion bits

CSHCTL 48 <3:0> Cache control

MEAR 4C <29:2> Physical address latched

MEDR 50 <31 :00> Data word latched

FBXERR 54 <25:9> Accelerator status

CSES 58 <28:16> Control-store address

<15:8> Control-store syndrome

<2:0> Control-store code

PC 5C <31 :0> PC

PSL 60 <31 :0> PSL

Implementation Dependencies 403

404

0000 0000:

1F'FF FFFF:

2000 0000:

2000 2000:

2001 FFFF:

2002 0000:

2004 0000:

2006 0000:

2008 0000:

2010 0000:

2040 0000:

207F FFFF:

2044 0000:

2080 0000:

2200 0000:

2400 0000:

2600 0000:

2800 0000:

3FFF FFFF:

Figure B.22

installed memory 1----------:------
memory address space

beyond installed memory

BI#O node 0 nodespace

BI#O node 1 nodespace

· .. · BI#O node 15 nodespace

multicast space

boot ROM

reserved

node private space

reserved

node 0 window space

node 1 window space · · · node 15 window space

reserved

BI #1 space

BI #2 space

BI'#3 space

reserved

VAX 8800 Physical Address Space

Appendix B

Table B.27
VAX 8800 Implementation-Dependent SCB Vectors

Offset Vector Name IPL Notes

5C NMI fault 1C System-bus error
80 interprocessor interrupt 14 Not included in 8500

148 memory error 15 Corrected or uncorrected
error, interlock timeout,
or controller error.

100-13C SBIAO nexus interrupts at BR4, 14 Device or adapter interrupr
nexus 0 thru 15

140-17C SBIAO nexus interrupts at BR5, 15 Device or adapter interrupt
nexus 0 thru 15

180-1BC SBIAO nexus interrupts at BR6, 16 Device or adapter interrupt
nexus 0 thru 15

1CO-1FC SBIAO nexus interrupts at BR7, 17 Device or adapter interrupt
nexus 0 thru 15

200-3FC UNIBUS device interrupts 14-17 Devices on UNIBUS 0
400-5FC UNIBUS device interrupts 14-17 Devices on UNIBUS 1

600-38FC Unused
3900-393C BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt
3940-397C BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt

3980-39BC BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt

39CO-39FC BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt
3AOO-3BFC BI#1 interrupt vectors 14-17 Device or adapter interrupt
3COO-3DFC BI#2 interrupt vectors 14-17 Device or adapter interrupt

3EOO-3FFC BI#3 interrupt vectors 14-17 Device or adapter interrupt

Table 8.28
VAX 8800 Implementation-Dependent Internal Processor Registers

IPR Mnemonic Name

26 MCSTS Machine check status

80 NICTRL NMI interrupt control

81 INOP Interrupt other processor

82 NMIFSR NMI fault/status

83 NMISILO NMI bus silo

84 NMIEAR NMI error address

85 COR Cache on

86 REVR1 Revision register #1

87 REVR2 Revision register #2

88 CLRTOSTS Clear timeout status

Implementation Dependencies 405

406

31 242322 1615

6 I ~PU reVisionl serial number

Figure B.23

L 0 = Right processor
1 = Left processor

VAX 8800 System Identification Register (SID)

count of bytes pushed, excluding PC, PSL, and count.

MCSTS

PC

VAIVIBA

IBER

CBER

EBER

NMIFSR

NMIEAR

PC

PSL

Figure B.24
VAX 8800 Machine-Check Stack Frame

Table B.29
VAX 8800 Machine-Check Stack Frame Contents

Mnemonic Offset Contents

o

1C hex. :SP

COUNT 00 Count of bytes pushed, excluding PC, PSL, and
count

MCSTS 04 Machine-check status

PC 08 Current PC

VAIVIBA OC Virtual addresslvirtual instruction-buffer address

IBER 10 IBOX error

CBER 14 CBOX error

EBER 18 EBOX error

NMIFSR 1C NMI fault summary

MNIEAR 20 NMI error address

PC 24 PC of faulted opcode

PSL 28 Processor status longword

Appendix B

Index

Abort, 225
See also Exceptions

Absolute queue, 102-103
data type, 11-12

ACB (add compare and branch
instructions), 72-74

Access control. See Memory,
protection of

Access-control-violation fault
(ACCVIO), 209, 216, 217,
233

Access mode, 21, 207
changing of, 218
use of, in protection of memory,

207
Access type:

indication of, 217
modify, 203, 217
notation for, 42-43
use of, in protection of memory,

204, 208
write, 217

ADAWI (add aligned word inter­
locked instruction), 45, 270

ADD (add instructions):
ADAWI (add aligned word

interlocked), 45
ADC (add carry), 303-304
ADD, 46-47, 309
ADDP (add packed), 165-167
ADWC (add with carry), 47
compatibility mode, 309
floating point, 121-122
integer, 45~47
packed decimal, 165-167

Address, 5
Address access type. See Access

type
Address instructions, 66-67

Address modes, 27-40,
289-293

base operand specifier, 37
branch mode addressing,

38-39
general mode addressing,

27-38
Address translation, 203-206

process space, 201, 211-216
system space, 201, 209-211
translation buffer, 215-216
when mapping is disabled, 202

ADWC (add with carry instructions),
47

Alignment:
of 1/0 registers, 277
of stacks, 247

AOBLEQ (add one and branch less
than or equal instruction), 74

AOBLSS (add one and branch
less than instruction), 74

Argument pointer (AP), 20
Argument validation, 218-221
ASH (arithmetic shift instructions):

ASHC (arithmetic shift combined),
316

ASHP (arithmetic shift and round
packed), 167-168

ASL (arithmetic shift left),
302-303

ASR (arithmetic shift right),
301-302

compatibility mode, 315-317
integer, 47-48
packed decimal, 167-168

AST (asynchronous system trap),
262-263

ASTLVL (AST level register), 262
software interupt, 263

407

408

At console command (@ console
command), 352

Atomic operations:
changing page table entries, 207
modify operands, 39

Autodecrement deferred mode
addressing, 292

Autodecrement mode addressing,
292

Autodecrement mode operand
specifier format, 30, 33-34

Autoincrement deferred mode
addressing, 291-292

Autoincrement deferred mode
operand specifier format, 30,
33

Autoincrement mode addressing,
291

Autoicrement mode operand
specifier format, 30, 32-33

Autorestart, 337

B (conditional branch instructions),
75-77,318-319

Base operand specifier, 37
Base register, 19,20
BB (branch on bit instructions):

and modify interlocked, 79-81,
270

and modify without interlock,
78-79

noninterlocked, 77-78
BIC (bit clear instructions):

BICPSW (bit clear PSW), 94
compatibility mode, 314-315
logical, 48-49

Binary load and unload console
command, 350- 351

BIS (bit set instructions):
BISPSW (bit set PSW), 94-95
compatibility mode, 313-314
logical, 49-50

BIT (bit test instructions), 50-51,
315

Bit field:
access type, 42-43
data type, 10-11
FIELD addressing notation, 68
instructions, 68-88
in registers, 20

Index

BLB (branch on low bit instructions),
81

BOOT console command, 343
Bootstrap, 333

bootstrap algorithm, 333-335
console BOOT command, 343
powerfail and recovery,

336-338
restart algorithm, 335-336

BPT (breakpoint instruction), 95
instruction fault, 328

BR (branch instructions), 81-82,
317-320

Branch displacement access type.
See Access type

Branch mode addressing, 38-39
Breakpoint fault, 236
Breakpoint instruction (BPT), 95
BSB (branch to subroutine

instructions), 82
BUG (bugcheck instructions), 96
Byte:

notation for, 42
in registers, 20

Byte data type, 5, 6
Byte displacement deferred mode,

31,34-35
Byte-within-page, 201

Caches, restrictions on, 274-275
CALL (call instructions), 88-92
Call frame, 89
CALLG, 90-91, 237
CALLS, 91-92,237
Carry condition code (C), 22
CASE (case instructions), 82-83
CC (condition code operator

instructions), 325-327
Change mode instructions (CHM),

254-257
Change-mode trap, 236
Character string:

data type, 14
instructions, 140-159,

272-273
in registers, 20

CHM (change mode instructions),
254-257

Clock:
interval timer, 286-288
time-of-year, 285

Field. See Bit field
FIND console command, 346-347
First part done (FPD), 21
Floating point:

data types, 7-9, 20
divide-by-zero exception, 232
instructions, 117-140
in literal addressing mode, 35
overflow fault, 232
overflow trap, 231
underflow fault, 232-233
underflow trap, 232

Frame pointer (FP), 19

General mode addressing, 27-38
General purpose register (GPR).

See Register G floating:
data type, 8, 9
notation for, 42
in registers, 20

Global page, 205

Halt:
console command, 342-355
halt messages, 354-355
instruction, 96-97
interrupt-stack-not-valid, 240

HALT instruction, 96-97
console command, 347

ICCS (interval clock control and
status register), 286-287

ICR (interval count register), 286,
288

Illegal instruction fault, 329
INC (increment instructions),

56-57, 299
INDEX (compute index instruction),

97-99
Index deferred mode, 292-293
Index mode, 292
Index mode operand specifier

format, 37-38
Index register, 19
Intialization effects of, 337
INITIALIZE console command, 347
Initiate exception or interrupt,

248-252
INS (insert queue instructions):

INSQHI (insert at head inter­
locked), 104, 270

Index

INSQTI (insert at tail interlocked),
106-108,270

INSQUE (insert), 108-110, 229,
270

Instruction buffer, flushing by REI,
254

Instruction-emulation exception,
235

Instruction format, 25-26
Instruction interpretation:

by hardware, 39-40
by software, 234-235

INSV (insert field instruction), 72
Integer:

data types, 5-7
divide-by-zero exception, 231
instructions, 45-65
overflow exception, 22,

230-231
Interlocking, 269

changing page table entries, 207
in 1/0 space, 277
restrictions on caches, 274

Internal processor register (IPR),
19,279-288

address space, 279
definition of, 23
in PCB, 261
subsetting of, 361

Interrupt(s), 224, 226-257
AST delivery, 262-263
compatibility mode, 328
definition of, 223
device, 227
exceptions vs., 225-226
initiation of, 248-252
instructions, 252-257, 323
precedence of, 241-242
process scheduling, 263
restrictions to allow restarting

instructions, 275-276
software interrupts, 227-229
urgent, 227
vectors, 245-246

Interrupt priority level (I PL):
definition of, 223
as IPR, 224, 229
in PSL, 22, 229

Interrupt stack, 21
bit in PSL, 21
not valid, 240, 246, 251

Interrupt stack pOinter (ISP), 246

411

412

Interval clock, 286-288
Interval clock control and status

register (ICCS), 286-287
Interval counter register (lCR), 286,

288
1/0,276-278

instructions usable to reference
1/0 space, 277-278

PTEs for 1/0 devices, 205-206
restrictions on caches, 274
restrictions on 1/0 registers, 277

lOT instruction fault, 328
IPL. See Interrupt priority level
IPR. See Internal processor

register
ISP (interrupt stack pointer), 246

JMP (jump instruction),
84-85, 321

JSB (jump to subroutine instruction),
85

JSR (jump to subroutine instruction),
321-322

Kernel processor mode, 207
Kernel stack, 246

not-valid, 240, 246, 251
See also Stack; Stack pointer

KSP (kernel-stack pointer), 246
in PCB, 261

LDPCTX {load process context
instruction), 264-266

Leading separate decimal string,
17

See also Decimal string
Length violation, 209, 216-217
Literal mode operand specifier

format, 35-36
LOAD console command,

347-348
LOCC (locate character instruction),

144-145
Logical instructions, 45-65
Longword:

data type, 6-7
notation for, 43
in registers, 20-23

Longword displacement deferred
mode, 31,34-35

Machine-check exception, 240

Index

MAPEN (memory mapping enable
register), 202-203

MATCHC (match characters
instruction), 145-147

MBZ, definition of, 2
MCOM (move complemented

instructions), 56-57
Memory:

address translation, 203-206
enabling memory mapping,

202-203
faults and parameters, 216-217
1/0 address space, 276
management, 199-221,

327-328
PO and P1 regions, 213-216
page, 200
page boundaries, 209
physical address, 202
physical address space, 277
privileged services and argument

validation, 218-221
protection of, 207-209
process space, 201, 211-216
required references, 270-274
sharing of, 269
system space, 201, 209-211
translation buffer, 215-216
virtual address, 200-202
when mapping is disabled, 202

Memory management exceptions.
See Exceptions

Memory mapping enable bit
(MME), 202-203

Memory maping enable register
(MAPEN), 202-203

MFP (more from previous space),
325

MFPR (move from processor
register instruction), 283

MICROSTEP console command,
348

MicroVAX I, 359
MINU (minimum unsigned notation),

44
MME (memory mapping enable

bit), 202-203
MNEG (move negated instructions):

floating point, 130
integer, 58

Mode, CHM, 254-257
Modify access. See Access type

CLR (clear instructions):
compatibility mode, 297-298
floating point, 122-123
integer and logical, 51

CMP (compare instructions):
character string, 141-144
CMPC (compare characters),

141-144
CMPP (compare packed),

168-169
compatibility mode, 310-311
floating point, 123-124
integer and logical, 52
packed decimal, 168-169
variable length bit field, 68-69

COM (complement instruction), 301
Command files (@ console

command), 352
Compatibility mode (CM):

addresses, 327
address modes, 289-293
bit in PSL, 21
entering, 327
exceptions, 235-236,

328-330
instructions, 293-327
interrupts, 328-330
1/0,330
leaving, 327
memory management, 327-328
omission of, 327, 361
processor registers, 330-331
PSW, 293
register mapping, 327
registers, 289-293
stack,293
synchronization, 331
tracing, 329-330
unimplemented traps, 330

Condition code(s), 21
UMPREDICT ABLE after fault or

interrupt, 251
Condition code operators instruction

(CC), 325-327
Console, 339-340

commands, 342-355
console 1/0 mode, 340
registers, 356-358

@ console command, 352
Context, of a process, 259
Context switching, 226, 279-281

Index

CONTINUE console command, 343
Control characters, as console

commands, 340-342
Control region, of process space,

201
CRC (calculate cyclic redundancy

check instruction), 160-162
CTRLlC console command, 341
CTRLlO console command, 341
CTRLlP console command, 341
CTRLlQ console command, 341
CTRLlS console command, 341
CTRLlU console command, 341
Current access mode (CUR MOD),

21
CVT (convert instructions):

decimal, 169-177
floating pOint, 124-126
integer, 52-53

Cyclic redundancy check instruc­
tion, 159-162

Data, separation of procedure and,
270

Data sharing, 269-270
Data types:

definitions of, 5-18
notation for, 42-43
in registers, 20

DEC (integer decrement instruc­
tions), 53-54, 298

Decimal overflow (DV), 22, 164
Decimal string:

data types, 15-18
divide-by-zero exception, 231
instructions, 163-182
overflow exception, 232
packed, 18, 165
in registers, 20
zero-length, 165

DEPOSIT console command,
344-346

Device interrupts, 227
D_floating:

data type, 8
notation for, 42
in registers, 20

Displacement deferred mode
operand specifier formats,
31,34-35

409

410

Displacement mode operand
specifier format, 31, 34

DIV (divide instructions):
compatibility mode, 312-313
DIVP (divide packed), 177-178
EDIV (extended divide), 55-56
floating point, 127-128
integer, 54-55
packed decimal, 177-178

Divide-by-zero exception, 231, 232
Double precision floating point. See

D_floating; G_floating

Edit instructions, 182-197
EDIT pattern operators. See EO$
EDITPC (edit packed to character

string instruction), 183-186
ED IV (extended divide instruction),

55-56
EMOD (extended multiply and

integerize instructions)
128-130

EMT instruction fault, 328
EMUL (extended multiply instruc­

tion), 56
Emulation exceptions, 235,

363-365
Entry mask, 88
EO$ (EDITPC pattern operators):

encoding, 187-188
EO$ADJUST_INPUT (adjust

input length), 188-189
EO$BLANK---ZERO (blank

backwards when zero),
189-190

EO$END (end floating sign), 191
EO$END (end edit), 190-191
EO$END_FLOAT (end floating

sign), 191
EO$FILL (store fill), 191-192
EO$FLOAT (float sign),

192-193
EO$INSERT (insert character),

193-194
EO$LOAD (load register),

194-195
EO$MOVE (move digits),

195-196
EO$REPLACE_SIGN (replace

sign when zero), 196-197
EO$SET _SIGNIF (set signifi­

cance),196-197

Index

EO$STORE_SIGN (store sign),
197

summary of, 186-187
Errors, 276

console, 353- 354
serious system failures,

240-241
EXAMINE console command, 346
Exceptions, 224-225, 229-241

arithmetic, 230-233
compatibility mode, 235-236,

328-330
definition of, 223
detected during operand

reference, 233-234
emulation, 235
initiation of, 248-252
instructions, 252-257
interrupts vs., 225-226
memory management, 233
occurring as consequence of

instruction, 234-236
precedence of, 236, 241-242
restrictions to allow restarting

instructions, 275-276
serious system failures,

240-241
trace fault, 236-240
vectors, 245-246

Executive-mode stack pointer
(ESP), 246

in PCB, 261
Executive processor mode, 207
Executive stack, 246
EXT (extract field instructions),

69-70

Fault:
compatibility mode instruction,

328-329
definition of, 224
in memory mapping and

protection, 216-217
parameters (see Exceptions;

Stack frame)
precedence of, 209, 216

FF (find first bit instructions),
70-71

F _floating:
data type, 7, 8
notation for, 42
in registers, 20

TB. See Translation buffer
TEST console command, 349
Time-of-year clock register (TODR),

285
Trace enable (T), 22, 236-240
Trace pending (TP), 21, 237-239
Tracing:

breakpoint fault, 236
in compatibility mode, 329-330
trace fault, 236-240

Trailing numeric decimal string.
See Decimal string

Trailing numeric string, 15-17
Transitions, between major system

states, 256, 338-339
Translation buffer (TB), 215-216

TBCHK (check register), 216
TBIA (invalidate all register), 216
TBIS (invalidate single register),

215,216
Translation-not-valid fault, 216,

217,233
Translation of virtual addresses.

See Address translation
Trap:

definition of, 224
unimplemented PDP-11, 330
See a/so Exceptions

TRAP instruction fault, 329
TST (test instructions):

compatibility mode, 300-301
floating pOint, 139-140
integer and logical, 64

TXCS (console terminal transmit
control and status register),
357

TXDB (console terminal transmit
data buffer register), 357

Type:
of processor, 284
of system (SYS_ TYPE),

284-285

UNDEFINED, 2
Underflow exceptions, 232-233
UNIBUS:

DATIP-DATO,270

Index

interrupt priority levels, 227
interrupt vectors, 246
space, 276

UNJAM console command, 350
UNPREDICTABLE, 2, 270-271

definition of, 164
Urgent interrupts, 227
User access mode, 207
User-mode stack pOinter (USP),

246
in PCB, 261

Validation, of arguments,
218-221

Variable-length bit field. See Bit
field

Vector:
interrupt and exception,

245-246
system control block, 243-244

Virtual address, 5, 200-202
Virtual memory. See Memory
Virtual page number (VPN), 201

Word:
notation for, 43
in registers, 20

Word data type, definition of, 5, 6
Word displacement deferred mode,

31,34-35
Write access type, 42

X console command, 350-351
XFC (customer reserved instruc­

tion), 234-235
XFC (extended function cali

instruction), 101-102
XOR (exclusive-OR instructions),

65, 313

Zero condition code (Z), 22
Zero extend notation (ZEXT), 27,

44
Zero numbers, 164

417

ORDERING INFORMATION

To order additional copies of this book and related titles, fill in and mail this form or call the toll-free telephone
number below. Orders under $50 must be prepaid by check or credit card; postage and handling are free
on prepaid orders. There is a 10 percent discount on orders of two or more copies of each title.

Digital Press/Order Processing
Digital Equipment Corporation
12A Esquire Road
Billerica, MA 01862

QTY. AUTHOR/TITLE ORDER NO. PRICE' TOTAL

Leonard: VAX Architecture EY-3459E-DP $36.00

Kenah/Bate: VAXIVMS Internals EY-00014-DP 55.00
-- ---

Levy/Eckhouse: VAX-11 EY-AX008-DP 28.00
-- - -.---.~ ._--- ----_.-

Digital Journal: VAX 8600 EY-3435E-DP 15.00
--_._" --

Digital Journal: MicroVAX II EY-3474E-DP 15.00
-- ---~---------

Total

Discount

Add state sales tax ---

Total remitted ----

METHOD OF PAYMENT

__ Check included (Make checks __ MasterCardlVisa

payable to Digital Equipment Charge Card Acc't No. _. ________

Corporation) Expiration Date. ---------

__ Purchase order (Please attach) Authorized Signature __ ._. _____

Name . ___________ ._ Phone ____ . _______

Address . ----------_.

City State. Zip _______

TOLL-FREE ORDER NUMBER

To order books by MasterCard or VISA, call 1-800-343-8321. In Massachusetts, call 1-800-462-8006.
Phone lines are open from 8:00 A.M. to 4:00 P.M., Eastern time.

'Price and terms quoted are U.S. only and are subject to change without notice. For prices outside the U.S., contact the
nearest office of Educational Services, Digital Equipment Corporation.

From the Foreword to the VAX Architecture Reference Manual:

"To a considerable extent, the success of the VAX family is due to this
book, the VAX Architecture Reference Manual. Not only does it describe a
computer architecture that is outstanding in its own right, but it does so in
a manner that is more unambiguous, precise, and complete than for any
other computer architecture. With this document, diverse hardware groups
throughout Digital have been able to create compatible machines using
different technologies, at different periods of time, and in widely separated
locations .. . For the serious computer engineer who aspires to design a
machine as good as (or better than) a VAX, the VAX Architecture Reference
Manual is an outstanding example of a successful computer architecture and
how it should be documented. For the serious application or systems pro­
grammer of VAX computers, this is also the book of 'last resort ,' providing the
most precise, authoritative, and complete description of the machine lan­
guage interface with which he or she will work. Finally, for serious students
of either computer science or engineering, the VAX Architecture Reference
Manual is an excellent supplementary reference, to be consulted as a case
study in design or for additional detail regarding computer organization or
assembly language programming."'

Samuel H. Fuller
Vice President, Research & Architecture
Digital Equipment Corporation

Other Titles from Digital Press

The Digital Technical Review

Number 1: VAX 8600. Seven papers by the engineers who designed
the 8600.

Number 2: Micro-VAX II system. Papers on the smallest member of the
VAX family.

VAX/VMS Internals and Data Structures. Lawrence J. Kenah and Simon
F. Bate. A complete explanation of how the VAXNMS executive works.

Computer Programming and Architecture: The VAX-11. Henry M. Levy and
" Richard H. Eckhouse, Jr. Discusses all aspects of VAX programming and

organization.

DEC books are published by
Digital Press
Digital Equipment Corporation
12 Crosby Drive
Bedford, Massachusetts 01730

Order Number: EY-3459E-DP

ISBN 0-932376- 3-X

