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Foreword 

By any practical measure, the VAX family of computers is one of the 
most successful series of computer systems ever developed. At the 
time of this writing, over 100,000 machines have been installed, 
ranging in size from the MicroVAX II to the VAX 880a--:-a number that 
even surpasses that for the pioneering IBM SYSTEM 360/370 
series. The VAX design has been implemented from scratch over 
seven times in the past decade to capitalize on advances in technology 
as well as the changing needs of our customers. These different 
implementations have used a variety of technologies, organizational 
techniques, and configurations to create the broad set of systems 
shown in the chart printed as the endpapers of this book. And though 
work on the first machine began in 1975, we expect VAX computers 
to remain the backbone of Digital's product offerings for many 
years into the future. 

To a considerable extent, the success of the VAX family is due to this 
book, the VAX Architecture Reference Manual. Not only does it 
describe a computer architecture that is outstanding in its own right, 
but it does so in a manner that is more unambiguous, precise, and 
complete than for any other computer architecture. With this document, 
diverse hardware groups throughout Digital have been able to create 
compatible machines using different technologies, at different periods 
of time, and in widely separated locations. The book has also served 
as the control document for approved design modifications, and 
over the years we have both extended and provided for subsets of its 
content to improve performance and to pave the way for smaller, yet 
compatible, implementations.1 

Of course, the main reason for the success of the VAX family lies in 
the design itself. The VAX architecture is a computer architecture 
in the classic sense, a design for a hardware/software interface that is 
meant to remain consistent, from the point of view of a machine 

1. For discussions of two recent implementations-the VAX 8600 and the 
MicroVAX II-and the special problems they posed, see Digital Technical Journal, 
nos. 1 and 2 (September 1985 and March. 1986). Both issues are available from 
Digital Press, 12 Crosby Drive, Bedford, MA 01730. 
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language program, across machines of varying price, performance, 
and technology. 

Such a well-defined interface was first used by IBM in its SYSTEM 
360/370 family of computers; it was described in 1964 in a seminal 
paper by G. A. Blauw and F. P. Brooks, Jr., two of its principal 
designers. At that time, six models had been announced, and all, 
according to the authors, were "logically identical ... Even though the 
allowable (I/O) channels or storage capacity may vary from model to 
model ... the logical structure can be discussed without reference 
to specific models."2 

This is precisely the goal we set for the VAX design. By defining an 
architecture that would apply to all members of the VAX family, 
hardware engineers would be free to build different hardware 
instantiations or implementations "up" to the specification, while 
application and system programmers could safely program "down" to 
it, confident that any program conforming to the specification would 
run on any present or future machine. 

That goal has, in fact, been achieved. Today, any program that 
conforms to the VAX architecture will run on any VAX with the 
necessary resources. And hardware engineers, without getting 
involved in the details of software, can build new generations of 
VAXes, confident that the billions of dollars invested in existing VAX 
applications will not be jeopardized. 

As for the success of the VAX architecture itself, there are a number 
of reasons for its widespread acceptance and longevity. 

One major reason is the enormous size of the VAX virtual address 
space. Lack of virtual address space has been the Achilles' heel 
of most computer architectures. Not long after we announced the first 
PDP-11 in 1969, we realized that customers were going to demand 
minicomputers with more than 64 kilobytes of memory, the maximum 
amount that can be addressed directly by a 16-bit address. We 
could see that relentless progress in memory chip densities was going 
to lead to a quadrupling of bits per chip every three to four years. 
Increasing densities yield decreasing memory costs and computers at 
minicomputer prices would be able to have more than 64 Kbytes. 
So, over the years we first extended the PDP-11 's physical memory 

2. G. A. Blauw and F. P. Brooks, Jr., "The Structure of SYSTEM/360: Part 1-
Outline of the Logical Structure," IBM Systems Journal, vol. 3, no. 2 (1964), pp. 
119-135. This is the first published description of a commercial computer 
architecture with multiple implementations. See also Andrew S. Tanenbaum, 
Structured Computer Organization (Prentice-Hall, 1984), for an introduction to the 
notion of computer architecture, including compariSons of several contemporary 
designs. 
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to 256 Kbytes and then to 2 megabytes. However, the virtual address 
of the PDP-11 remains at 64 Kbytes and the programmer often 
faces the tedious task of mapping, and then remapping, the PDP-11's 
small virtual address into a much larger physical memory. 

The VAX acronym itself (which originally stood for Virtual Address 
eXtension) clearly indicated a major design goal of the project: to 
dramatically increase the address space of the popular PDP-11 
computer architecture. The desire to build a machine with enough 
address space to satisfy customers for years to come led to the 
decision to create a new 32-bit architecture. With 32-bit addresses, 
4 billion bytes of address space were available. The first VAX-11/780 
machines shipped in early 1978 with one quarter of a megabyte of 
physical memory, built from 4K-bit memory chips. By contrast the 
VAX 8650, one of our more recent large computers, can be configured 
with 68 megabytes of physical memory, built this time from 256K-bit 
memory chips. 

Each time the physical memory of a machine quadruples, an additional 
2 bits of address are required to reference it. To address 64 million 
bytes on a VAX 8650, 26 bits are needed. If the density of memory 
chips continues to quadruple every three to four years, then the 32-bit 
address of the VAX architecture will be adequate for at least another 
decade without requiring programmers to map virtual memory onto 
a larger physical memory. 

In addition to its expanded address space, the VAX architecture built 
upon the elegant instruction set and addressing modes of the PDP-
11. Additional data formats and corresponding instructions were 
added to support the needs of compiler writers, as well as scientific 
and commercial application programmers. A standard calling interface 
was designed to allow modules written in different languages to call 
one another. And finally, most importantly, the architecture was 
carefully designed to support the needs of a modern virtual-memory 
operating system.3 

The result of this design work has been gratifying to all of us who 
have contributed. Customers can choose among three operating 
systems: VMS, Digital's operating system designed to take full 
advantage of the VAX architecture; UL TRIX, an implementation of the 
industry-standard UNIX operating system; and ELN, a system 

3. See H. M. Levy and Richard H. Eckhouse, Computer Programming and 
Architecture: The VAX-11 (Digital Press, 1980), which gives special attention to the 
manner in which architectural features support a virtual memory operating system 
such as VMS. Lawrence Kenah and Simon F. Bate, VAX/VMS Internals and 
Data Structures (Digital Press, 1984), provides a thorough discussion of the 
algorithms and data structures of the VAXIVMS operating system, including their 
interactions. 
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designed to support the development of dedicated, real-time applica­
tions. Programmers can choose from a large family of industry­
standard, compatible languages, all of which make use of the calling 
standard and can access the supporting library routines and system 
services. The architecture has also allowed development of DECnet, 
Digital's network architecture, and an incredibly rich set of Digital, 
third party, and customer applications. 

An architectural specification can make for dry reading. Nevertheless, 
this book should be of real interest to at least three audiences. For 
the serious computer engineer who aspires to design a machine 
as good as (or better than) a VAX, the VAX Architecture Reference 
Manual is an outstanding example of a successful computer architec­
ture and how it should be documented. For the serious application 
or systems programmer of VAX computers, this is also the book 
of "last resort," providing the most precise, authoritative, and complete 
description of the machine language interface with which he or she 
will work. Finally, for serious students of either computer science 
or engineering, the VAX Architectural Manual is an excellent 
supplementary reference, to be consulted as a case study in design 
or for additional detail regarding computer organization or assembly 
language programming. 

Computer design continues to be a dynamic field; I expect we will see 
more rather than less change and innovation in the decades ahead. 
No matter how computers evolve, however, it is clear that the VAX 
architecture is a major contribution to progress in the field. It will 
be as important to study and understand a generation from now as it 
is today. 

Samuel H. Fuller 
Vice President, Research & Architecture 
Digital Equipment Corporation 
Maynard, Massachusetts 
June 1986 
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DESIGN 
GOALS 

Introduction 

The VAX architecture represents a significant extension of the 
PDP-11 family architecture. It shares byte addressing with the 
PDP-11, similar 1/0 and interrupt structures, and identical data 
formats. Although the instruction set is not strictly compatible with the 
PDP-11, it is related and can be mastered easily by a PDP-11 
programmer. Likewise, the similarity allows straightforward manual 
conversion of existing PDP-11 programs to the VAX system. Existing 
user-mode PDP-11 programs which do not need the extended 
features of VAX can run unchanged in the PDP-11 compatibility mode 
provided in VAX architecture. 

As compared to the PDP-11, VAX offers a greatly extended virtual 
address space, additional instructions and data types, and new 
addressing modes. VAX architecture also provides a sophisticated 
memory management and protection mechanism, and hardware­
assisted process scheduling and synchronization. 

A number of specific goals are achieved in the VAX design: 

• VAX architecture has maximal compatibility with the PDP-11 
consistent with a significant extension of the virtual address space 
and a significant functional enhancement. 

• High bit efficiency is achieved by a wide range of data types and 
new addressing modes. 

• The systematic, elegant instruction set with orthogonality of 
operators, data types, and addressing modes can be exploited 
easily, particularly by high-level language processors. 

• The VAX system is extensible. The instruction set is designed so 
that new data types and operators can be included efficiently in 
a manner consistent with the currently defined operators and data 
types. 

• The architecture is suitable in terms of price and performance over 
a wide range of computer system implementations sold by Digital 
Equipment Corporation. 

VAX Architecture Reference Manual 



TERMINOLOGY 
AND 
CONVENTIONS 

Numbering 

UNPREDICT­
ABLE and 
UNDEFINED 

Ranges and 
Extents 

MBZ 

Reserved 

2 

The terminology and conventions used in this book include the 
following: 

All numbers unless otherwise indicated are decimal. Where there is 
ambiguity, the radix is explicitly stated, as in 48 (hex), or 1001000 
(binary). 

Results specified as UNPREDICTABLE may vary from moment 
to moment, implementation to implementation, and instruction to 
instruction within implementations. Software can never depend on 
results specified as UNPREDICTABLE. Operations specified as 
UNDEFINED may vary from moment to moment, implementation to 
implementation, and instruction to instruction within implementations. 
The operation may vary in effect from nothing to stopping system 
operation. UNDEFINED operations must not cause the processor to 
hang (reach an unhalted state from which there is no transition to 
a normal state in which the processor executes instructions). Note 
the distinction between result and operation: non-privileged software 
cannot invoke UNDEFINED operations. 

Ranges are specified in English and are inclusive. For example, a 
range of integers 0 through 4 includes the integers 0, 1, 2, 3, and 4. 
Extents are specified by a pair of numbers separated by a colon 
and are inclusive. For example, bits <7:3> specifies an extent of bits 
including bits 7, 6, 5, 4, and 3. 

Fields specified as MBZ (Must Be Zero) should never be filled by 
software with a non-zero value. If the processor encounters a non­
zero value in a field specified as MBZ, a reserved operand fault 
or abort occurs (see Chapter 5, Exceptions and Interrupts) if that field 
is accessible to non-privileged software. MBZ fields that are accessible 
only to privileged software (kernel mode) may not be checked for 
non-zero value by some or all VAX implementations. Non-zero values 
in MBZ fields accessible only to privileged software may produce 
UNDEFINED operation. 

Unassigned values of fields are reserved for future use. In many 
cases, some values are indicated as reserved for the customer, that 
is, the equipment owner. Only these values should be used for 

VAX Architecture Reference Manual 



Figure 
Conventions 

non-standard applications. The values indicated as reserved for 
DIGITAL and all MBZ fields are to be used only to extend the 
standard architecture in the future. 

Figures depicting registers or memory follow the convention that 
increasing addresses run right to left and top to bottom. 

VAX Architecture Reference Manual 3 





ADDRESSING 

DATA TYPES 

Byte 

Word 

Basic Architecture 

The basic addressable unit in the VAX architecture is the 8-bit 
byte. Virtual addresses are 32 bits long: hence the virtual address 
space is 232 (approximately 4.3 billion) bytes. Virtual addresses 

1 

as seen by the program are translated into physical memory addresses 
'by the memory management mechanism described in Chapter 4. 

Following are descriptions of the VAX architecture data types. 

A byte is 8 contiguous bits starting on an addressable byte boundary. 
The bits are numbered from the right (0) through (7), as shown in 
Figure 1.1. A byte is specified by its address A. When interpreted 
arithmetically, a byte is a two's complement integer with bits of 
increasing significance from (0) through (6) and bit (7), the sign bit. 
The value of the integer is in the range - 128 through 127. For 
the purposes of addition, subtraction, and comparison, VAX instructions 
also provide direct support for the interpretation of a byte as an 
unsigned integer with bits of increasing significance from (0) through 
(7). The value of the unsigned integer is in the range 0 through 255. 

A word is 2 contiguous bytes starting on an arbitrary byte boundary. 
The bits are numbered from the right (0) through (15). See Figure 1.1. 
A word is specified by its address A, the address of the byte 
containing bit (0). When interpreted arithmetically, a word is a two's 
complement integer with bits of increasing significance from (0) 
through (14) and bit (15), the sign bit. The value of the integer is in 
the range-32,768 through 32,767. For the purposes of addition, 
subtraction, and comparison, VAX instructions also provide direct 
support for the interpretation of a word as an unsigned integer with 
bits of increasing significance from (0) through (15). The value of the 
unsigned integer is in the range 0 through 65,535. 
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Longword 

6 

7 0 

I I:A 
Byte 

15 o 
L....-_____ --I� :A 

Word 

31 o 
'---____________ ~I :A 

Longword 

31 0 

I 1::+4 
63 32 

Quadword 

31 o 

:A+4 I 
:A 

:===================================~;:::~2 
~12-7------~--------------------------~96 

Octaword 

Figure 1.1 
Data Types 

A longword is 4 contiguous bytes starting on an arbitrary byte 
boundary. The bits are numbered from the right (0) through (31), as 
shown in Figure 1.1. A longword is specified by its address A, the 
address of the byte containing bit (0). When interpreted arithmetically, 
a longword is a two's complement integer with bits of increasing 
significance from (0) through (30) and bit (31), the sign bit. The value 
of the integer is in the range -2,147,483,648 through 2,147,483,647. 
For the purposes of addition, subtraction, and comparison, VAX 
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Quadword 

Octaword 

instructions also provide direct support for the interpretation of a 
longword as an unsigned integer with bits of increasing significance 
from (0) through (31). The value of the unsigned integer is in the 
range 0 through 4,294,967,295. 

A quadword is 8 contiguous bytes starting on an arbitrary byte 
boundary. The bits are numbered from the right (0) through (63), as 
shown in Figure 1.1. A quadword is specified by its address A, the 
address of the byte containing bit (0). When interpreted arithmetically, 
a quadword is a two's complement integer with bits of increasing 
significance from (0) through (62) and bit (63), the sign bit. The value 
of the integer is in the range - 263 to 263 - 1. only a subset of the 
full complement of operators is provided for quadword. 

This data type need not be supported in a subset implementation. An 
octaword is 16 contiguous bytes starting on an arbitrary byte boundary. 
The bits are numbered from the right (0) through (127), as shown in 
Figure 1.1. An octaword is specified by its address A, the address of 
the byte containing bit (0). When interpreted arithmetically, an 
octaword is a two's complement integer with bits of increasing 
significance from (0) through (126) and bit (127), the sign bit. The 
value of the integer is in the range - 2127 to 2127 -1. Only a subset of 
the full complement of operators is provided for octaword. 

The F _floating data type need not be supported in a subset 
implementation. An F _floating datum is 4 contiguous bytes starting 
on an arbitrary byte boundary. The bits are labeled from the right (0) 
through (31), as shown in Figure 1.2. An F _floating datum is 
specified by its address A, the address of the byte containing bit (0). 
The form of an F _floating datum is sign magnitude with bit (15), 
the sign bit; bits (14:7), an excess 128 binary exponent; and bits (6:0) 
and (31 :16/, a normalized 24-bit fraction with the redundant most­
significant fraction bit not represented. Within the fraction, bits of 
increasing significance go from (16) through (31) and (0) through (6). 
The 8-bit exponent field encodes the values 0 through 255. An 
exponent value of 0 together with a sign bit of 0 is taken to indicate 
that the F _floating datum has a value of O. Exponent values of 1 
through 255 indicate true binary exponents of -127 through + 127. 
An exponent value of 0 together with a sign bit of 1 is taken as 
reserved. Floating-point instructions processing a reserved operand 
take a reserved operand fault (see Chapters 3 and 5). The value 
of an F _floating datum is in the approximate range .29*10- 38 through 
1.7*1038. The precision of an F _floating datum is approximately one 
part in 223 , typically 7 decimal digits. 
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31 161514 76 0 

fraction lsi exponent fraction I:A 
F _floating Data Type (Single Precision) 

31 161514 76 o 
fraction sl exponent I fraction 

fraction fraction 

63 32 

D_floating Data Type (Double Precision) 

31 161514 43 o 
fraction sl exponent ~raction 
fraction fraction 

63 32 

G_floating DataType (Extended-Range Double Precision) 

31 161514 o 
fraction sl exponent 

fraction traction 

fraction fraction 

fraction fraction 

127 96 

H_floating Data Type (Extended-Range Quadruple Precision) 

Figure 1.2 
Floating Data Types 

:A 

:A+4 

:A 
:A+4 

:A 

:A+4 

:A+B 

:A+12 

This data type need not be supported in a subset implementation. A 
D_floating datum is 8 contiguous bytes starting on an arbitrary 
byte boundary. The bits are labeled frOm the right (0) through (63), as 
shown in Figure 1.2. A D_floating datum is specified by its address 
A, the address of the byte containing bit (0). The form of aD_floating 
datum is identical to a floating datum except for an additional 32 low­
significance fraction bits. Within the fraction, bits of increasing 
significance are from (48) through (63), (32) through (47), (16) through 
(31), and (0) through (6). The exponent conventions and approximate 
range of values is the same for D_floating as for F _floating. The 
precision of a D_floating datum is approximately one part in 255, 

typically 16 decimal digits. 
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The G_floating data type need not be supported in a subset 
implementation. A G_floating datum is 8 contiguous bytes starting on 
an arbitrary byte boundary. The bits are labeled from the right (0) 
through (63), as shown in Figure 1.2. A G_floating datum is specified 
by its address A, the address of the byte containing bit (0). The form 
of a G_floating datum is sign magnitude with bit (15), the sign bit; 
bits (14:4), an excess 1024 binary exponent; and bits (3:0) and 
(63:16), a normalized 53-bit fraction with the redundant most­
significant fraction bit not represented. Within the fraction, bits of 
increasing significance are from (48) through (63), (32) through (47), 
(16) through (31), and (0) through (3). The 11-bit exponent field 
encodes the values 0 through 2047. An exponent value of 0 together 
with a sign bit of 0 is taken to indicate that the G_floating datum 
has a value of o. Exponent values of 1 through 2047 indicate true 
binary exponents of - 1023 through + 1023. An exponent value of 0 
together with a sign bit of 1 is taken as reserved. Floating-point 
instructions processing a reserved operand take a reserved operand 
fault (see Chapters 3 and 5). The value of a G_floating datum is 
in the approximate range .56*10- 308 through .9*10308 . The precision 
of a G_floating datum is approximately one part in 252 , typically 
15 decimal digits. 

The H_floating data type need not be supported by a subset 
implementation. An H_floating datum is 16 contiguous bytes starting 
on an arbitrary byte boundary. The bits are labeled from the right 
(0) through (127), as shown in Figure 1.2. An H_floating datum is 
specified by its address A which is the address of the byte containing 
bit (0). The form of an H_floating datum is sign magnitude with bit 
(15), the sign bit; bits (14:0), an excess 16384 binary exponent; and 
bits (127:16), a normalized 113-bit fraction with the redundant 
most-significant fraction bit not represented. Within the fraction, bits of 
increasing significance are from (112) through (127), (96) through 
(111), (80) through (95), (64) through (79), (48) through (63), (32) 
through (47), and (16) through (31). The 15-bit exponent field encodes 
the values 0 through 32767. An exponent value of 0 together with a 
sign bit of 0 is taken to indicate that the H_floating datum has a 
value of O. Exponent values of 1 through 32767 indicate true binary 
exponents of - 16383 through + 16383. An exponent value of 0 
together with a sign bit of 1 is taken as reserved. Floating-point 
instructions processing a reserved operand take a reserved operand 
fault (see Chapters 3 and 5). The value of an H_floating datum is 
in the approximate range .84*10- 4932 through .59*104932 • The precision 
of an H_floating datum is approximately one part in 2112, typically 33 
decimal digits. 
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Variable-Length 
Bit Field 

10 

A variable-length bit field is 0 to 32 contiguous bits located arbitrarily 
with respect to byte boundaries. A variable bit field is specified by 
three attributes: the address A of a byte, a bit position P which is the 
starting location of the field with respect to bit (0) of the byte at A, and 
a size 8 of the field, as shown in Figure 1.3. 

For bit strings in memory, the position is in the range - 231 through 
231 - 1 and is conveniently viewed as a signed 29-bit byte offset and a 
3-bit bit-within-byte field, as shown in Figure 1.3. The sign extended 
29-bit byte offset is added to the address A, and the resulting address 
specifies the byte in which the field begins. The 3-bit bit-within-byte 
field encodes the starting position (0 through 7) of the field within that 
byte. The VAX field instructions provide direct support for the 
interpretation of a field as a signed or unsigned integer. When 
interpreted as a signed integer, it is two's complement with bits of 
increasing significance from 0 through 8-2; bit 8-1 is the sign bit. 
When interpreted as an unsigned integer, bits of increasing significance 
are from 0 to 8-1. A field of size 0 has a value identically equal to o. 
A variable bit field may be contained in 1 to 5 bytes. From a memory 
management point of view, only the minimum number of aligned 
longwords necessary to contain the field may be actually referenced. 
(8ee Chapter 4.) 

For bit fields in registers, the position is in the range 0 through 31. 

P+s P+S-1 P P-1 0 

~:A 
S-1 o 

Variable-Length Bit Field Data Type in Memory 

31 32 0 

byte offset 

Bit Field Position 

31 P P-1 0 

CU1"._~_Rn _ R[n+1) 
=~p+""'s~P-+~S--1-~ 

Variable-Length Bit Field Data Type across a Register Boundary 

Figure 1.3 
The Variable-Length Bit Field 
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Absolute 
Queues 

The position operand specifies the starting position (0 through 31) of 
the field in the register. A variable bit field may be contained in two 
registers if the sum of position and size exceeds 32, as shown in 
Figure 1.3. 

See Chapter 3 for further details on the specification of variable-length 
bit fields. 

A queue is a circular, doubly linked list. A queue entry is specified by 
its address. Each queue entry is linked to the next via a pair of 
longwords. A queue is classified by the type of link it uses. Absolute 
queues use absolute addresses as links. 

The first (lowest addressed) longword is the forward link; it specifies 
the address of the succeeding queue entry. The second (highest 
addressed) longword is the backward link; it specifies the address of 
the preceding queue entry. 

A queue is specified by a queue header which is identical to a pair of 
queue linkage longwords. The forward link of the header is the 
address of the entry termed the head of the queue. The backward link 
of the header is the address of the entry termed the tail of the queue. 
The forward link of the tail points to the header. 

An empty queue is specified by its header at address H, as shown in 
Figure 1.4. If an entry at address B is inserted into an empty queue (at 
either the head or tail), the second queue shown in Figure 1.4 results. 

~------------------:------------------~1::+4 
An Empty Absolute Queue 

t~------------------:------------------~I ~:+4 

1~----------------:----------------~1::+4 
An Absolute Queue with One Entry 

Figure 1.4 
Absolute Queues 
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I 
A 

1::+4 B 

I 
B 

1::+4 H 

I 
H 

1::+4 A 

An Absolute Queue with Two Entries 

1::+4 
A 

C 

B 

1::+4 H 

C 

1::+4 A 

H 

I ~~+4 B 

An Absolute Queue with Three Entries 

1::+4 
A 

C 

c 
1:::+4 H 

H I :~+4 A. 

An Absolute Queue with Three Entries After Removing the Second Entry 

Figure 1.4 
Absolute Queues (continued) 

The last three queues in Figure 1.4 mustrate the results of 
subsequent insertion of an entry at address A at the head, insertion 
of an entry at address C at the tail, and removal of the entry at ad­
dress B. 
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Self-Relative 
Queues 

Self-relative queues use displacements from queue entries as links. 
Queue entries are linked by a pair of longwords. The first longword 
(lowest addressed) is the forward link; it is a displacement of the 
succeeding queue entry from the present entry. The second longword 
(highest addressed) is the backward link; it is the displacement of 
the preceding queue entry from the present entry. A queue is specified 
by a queue header, which also consists of two longword links. 

An empty queue is specified by its header at address H. Since the 
queue is empty, the self-relative links are zero, as shown in Figure 
1.5. The remainder of the figure illustrates the results of subsequent 
insertion of an entry at address B at the head, insertion of an entry at 
address A at the tail, and insertion of an entry at address C at the tail. 

~-------------------~------------------~I ::+4 
An Empty Self-Relative Queue 

B-H 

B-H 

:H 

:H+4 

~-----------------:--:-:----------------~I ::+4 
A Self-Relative Queue with One Entry 

~-----------------:--:-:----------------~I ::+4 

~-----------------:--: -:----------------~I :::+4 

H-B 

A-B 

A Self-Relative Queue with Two Entries 

Figure 1.5 
Self-Relative Queues 
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~-----------------~--~-:----------~----~I ::+4 

r------------------:--~A-A------------------;I ::+4 

r------------------~--~-:------------------;I ::+4 

~-----------------:--~-~----------------~I :~+4 
A Self-Relative Queue with Three Entries 

Figure 1.5 
Self-Relative Queues (continued) 

A character string is a contiguous sequence of bytes in memory. A 
character string is specified by two attributes: the address A of 
the first byte of the string, and the length L of the string in bytes. The 
address of a string specifies the first character of a string. See 
Figure 1.6. 

The length L of a string is in the range 0 through 65,535. 

ffi'X" :A 

"Y" :A+1 

"Z" :A+2 

Character String "XYZ" 

7 o 

'----__ ---'I :A 

I I :A+L-1 
'::7--------~O 

Character String Data Type (of Length L) 

Figure 1.6 
Two Attributes of the Character String 
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Trailing 
Numeric String 

The trailing numeric string data type need not be supported in a 
subset implementation. A trailing numeric string is a contiguous 
sequence of bytes in memory. The string is specified by two attributes: 
the address A of the first byte (most significant digit) of the string, 
and the length L of the string in bytes. 

All bytes of a trailing numeric string, except the least significant digit 
byte, must contain an ASCII decimal digit character (0 - 9). The 
highest addressed byte of a trailing numeric string represents an 
encoding of both the least significant digit and the sign of the numeric 
string. 

The VAX numeric string instructions support any encoding. There are, 
however, three preferred encodings used by DIGITAL software: 
(1) unsigned numeric in which there is no sign and the least significant 
digit contains an ASCII decimal digit character, (2) zoned numeric, 
and (3) overpunched numeric. Because the overpunch format has 
been used by many compiler manufacturers over many years, and 
because various card encodings are used, several variations in 
overpunch format have evolved. Typically, these alternate forms are 
accepted on input; the normal form is generated as the output for 
all operations. The encoding of sign and digits in trailing numeric 
strings is shown in Table 1.1. 

The length L of a trailing numeric string must be in the range 0 to 31 
(0 to 31 digits). The value of a 0 length string is identically O. 

The address A of the string specifies the byte of the string containing 
the most significant digit. Digits of decreasing significance are 
assigned to increasing addresses. Figure 1.7 illustrates the represen­
tation of trailing numeric strings. 

Table 1.1 
Representation of Sign and Digits in Decimal String Data Types 

Zoned Overpunch Leading 
Trailing Trailing Separate Packed 
Numeric Numeric Numeric Decimal 

Hex ASCII Hex ASCII Hex ASCII Hex 

Sign 
positive 2B + A 
positive* 20 (blank) CEF 
negative 20 B 
negative* 0 

*These alternative representations of the sign are permitted. VAX 
instructions always produce the preferred representation, which is shown 
first. 
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Table 1.1 
Representation of Sign and Digits in Decimal String Data Types (continued) 

Zoned Overpunch Leading 
Trailing Trailing Separate Packed 
Numeric Numeric Numeric Decimal 

Hex ASCII Hex ASCII Hex ASCII Hex 

Digit 

0 30 0 30 0 30 0 0 

31 31 31 1 

2 32 2 32 2 32 2 2 

3 33 3 33 3 33 3 3 

4 34 4 34 4 34 4 4 

5 35 5 35 5 35 5 5 
6 36 6 36 6 36 6 6 
7 37 7 37 7 37 7 7 

8 38 8 38 8 38 8 8 

9 39 9 39 9 39 9 9 

Combined Sign and Digit 

+0 30 0 78 

+1 31 1 41 A 

+2 32 2 42 8 

+3 33 3 43 C 

+4 34 4 44 D 

+5 35 5 45 E 

+6 36 6 46 F 

+7 37 7 47 G 
+8 38 8 48 H 

+9 39 9 49 I 
-0 70 P 7D } 

-1 71 g 4A J 
-2 72 48 K 
-3 73 s 4C L 

-4 74 4D M 

-5 75 u 4E N 

-6 76 v 4F 0 
-7 77 w 50 P 

-8 78 x 51 Q 

-9 79 Y 52 R 
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Leading 
Separate 
Numeric String 

7 43 0 7 4 3 0 

~1 :A 

3 2 :A+1 

3 3 :A+2 

~:A 
~:A+1 

Representation of "+ 123" and "~12" in Zoned Format 

7 4 3 0 7 43 0 

~1:A 
3 2 :A+1 

3 3 :A+2 

~:A 
~:A+1 

Representation of "+ 123" and "~12" in Overpunch Format 

Figure 1.7 
Representations of Trailing Numeric Strings 

The leading separate numeric string data type need not be supported 
in a subset implementation. A leading separate numeric string is a 
contiguous sequence of bytes in memory. A leading separate numeric 
string is specified by two attributes: the address A of the first byte 
(containing the sign character); and a length L, which is the length of 
the string in digits and not the length of the string in bytes. The 
number of bytes in a leading separate numeric string is L + 1. 

The sign of a separate leading numeric string is stored in a separate 
byte. Each subsequent byte contains an ASCII digit character. The 
signs and digits of separate leading numeric strings are shown in 
Table 1.1. 

The length L of a leading separate numeric string must be in the 
range 0 to 31 (0 to 31 digits). The value of a 0 length string is 
identically O. 

The address A of the string specifies the byte of the string containing 
the sign. Digits of decreasing significance are assigned to bytes of 
increasing addresses. Figure 1.8 illustrates leading separate numeric 
strings. 

7 43 0 7 43 0 ms :A 

3 1 :A+1 

3 2 :A+2 

3 3 :A+3 

§±dD :A 

3 1 :A+1 

3 2 :A+2 

Figure 1.8 
Representation of "+ 123" and "~12" in Leading Separate Numeric String 
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7 43 0 7 43 0 

~:A 
~:A+1 

~:A 
~:A+1 

Figure 1.9 
Representation of "123" and" -12" in Packed Decimal String 

The packed decimal string data type need not be supported in a 
subset implementation. A packed decimal string is a contiguous 
sequence of bytes in memory. A packed decimal string is specified by 
two attributes: the address A of the first byte of the string; and a 
length L, which is the number of digits in the string and not the length 
of the string in bytes. The bytes of a packed decimal string are 
divided into two, 4-bit fields that must contain decimal digits, with the 
exception of the low nibble (bits (3:0») of the last (highest addressed) 
byte that must contain a sign. 

The preferred sign representation is 12 for positive and 13 for 
negative, as shown in Table 1.1. 

The length L is the number of digits in the packed decimal string (not 
counting the sign) and must be in the range 0 through 31. When the 
number of digits is odd, the digits and the sign fit in U2 (integer 
part only) + 1 bytes. When the number of digits is even, it is required 
that an extra 0 digit appear in the high nibble (bits (7:4») of the first 
byte of the string. Again, the length in bytes of the string is U2 + 1. 

The address A of the string specifies the byte of the string containing 
the most significant digit in its high nibble. Digits of decreasing 
significance are assigned to increasing byte addresses and from high 
nibble to low nibble within a byte. Figure 1.9 illustrates packed 
decimal strings. 

The processor state consists of that portion of a process's state that, 
while the process is executing, is stored in processor registers 
rather than memory. The processor state includes 

1. Sixteen 32-bit general-purpose registers denoted Rn or R[n], where 
n is in the range 0 through 15 

2. A 32-bit processor status longword (PSL) 

3. Privileged internal processor registers (IPR). 
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General· 
Purpose 
Registers 

The general-purpose registers are used for temporary storage, 
accumulators, index registers, and base registers. A register containing 
an address is termed a base register. A register containing an 
address offset is termed an index register. (Regarding a register 
containing an address offset in multiples of operand size, see Chapter 
2.) The bits of a register are numbered from the right (0) through 
(31), as shown in Figure 1.10. 

Certain of the registers are assigned special meaning by the VAX 
architecture: 

• R15 is the program counter (PC). PC contains the address of the 
next instruction byte of the program. 

• R14 is the stack pointer (SP). SP contains the address of the top of 
the processor-defined stack. 

• R13 is the current frame pointer (FP). The VAX procedure call 
convention builds a data structure on the stack called a stack frame. 
FP contains the address of the base of this data structure. (For 
more information about the VAX procedure call convention, see 
VAX/VMS Run Time Library Reference Manual.) 

31 o 
~ ____________________________ ~I:Rn 
General-Purpose Register 

31 o 
L--_______________ ---JI :IPR n 

Internal Processor Register 

'--------CM 

Processor Status Longword 

Figure 1.10 
The Processor State 
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• R12 is the argument pOinter (AP). The VAX procedure call convention 
uses a data structure termed an argument list. AP contains the 
address of the base of this data structure. 

Note that these registers are all used as base registers. The 
assignment of special meaning to these registers does not generally 
preclude their use for other purposes. As will be seen in Chapter 2, 
however, PC cannot be used as an accumulator, temporary, or index 
register. When a datum of type byte, word, longword, or F_floating is 
stored in a register, the bit numbering in the register corresponds to 
the numbering in memory. Hence a byte is stored in register bits 
(7:0), a word in register bits (15:0), and a longword or F _floating in 
register bits (31 :0). A byte or word written to a register writes only bits 
(7:0) and (15:0), respectively; the other bits are unaffected. A byte or 
word read from a register reads only bits (7:0) and (15:0), respectively; 
the other bits are ignored. 

When a quadword, D_floating, or G_floating datum is stored in a 
register R[nj, it is actually stored in two adjacent registers R[nj 
and R[n + 1j. Because of restrictions on the specification of PC (see 
Chapter 2), wraparound from PC to RO and from SP to PC is 
UNPREDICTABLE. Bits (31 :0) of the datum are stored in bits (31 :0) 
of register R[nj, and bits (63:32) of the datum are stored in bits (31 :0) 
of register R[n + 1j. 

When an octaword or H_floating datum is stored in register R[nj, it is 
actually stored in adjacent registers R[nj, R[n + 1j, R[n + 2j, and 
R[n+3j. Because of restrictions on the specification of PC (see 
Chapter 2), wraparound from PCto RO and from AP, FP, and SP to 
PC is UNPREDICTABLE. Bits (31 :0) of the datum are stored in 
bits (31 :0) of register R[nj, bits (63:32) in bits (31 :0) of register 
R[n + 1], bits (95:64) in bits (31 :0) of register R[n + 2j, and bits (127:96) 
in bits (31 :0) of register R[n + 3j. 

A variable-length bit field may be specified in the registers with the 
restriction that the starting bit position P must be in the range 0 
through 31. See Figure 1,3. As for quadword, D_floating, and 
G_floating, a pair of registers R[nj and R[n + 1jis treated as a 64-bit 
register with bits (31 :0) in register R[nj and bit (63:32) in register 
R[n+1j. 

None of the string data types stored in registers can be processed by 
the VAX string instructions. Therefore, there is no architectural 
specification of the representation of strings in registers. 

The processor status longword (PSL) is a longword consisting of a 
word of privileged processor status concatenated with the processor 
status word (PSW), as shown in Figure 1.10. The processor status 
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Table 1.2 

word (PSW) contains the condition codes that give information on the 

results produced by previous instructions and the exception-enable 
bits which control the processor action on certain exception conditions 
(see Chapter 5). The condition codes are UNPREDICTABLE when 
they are affected by UNPREDICTABLE results. The VAX procedure 
call instructions conditionally set the IV and DV bits, clear the FU bit, 
and leave the T bit unchanged at procedure entry (see Chapter 3). 
See Table 1.2 for processor status longword descriptions. 

Processor Status Longword Fields 

Extent Name Mnemonic Meaning 

(31) 

(30) 

(29:28) 

(27) 

Compatibility Mode CM 

Trace Pending TP 

Reserved 

First Part Done FPD 

When set, the processor in in PDP-11 compatibility 
mode (see Chapter 9). When CM is clear, the 
processor is in native mode. Compatibility mode 
may be omitted from subset implementations 
of the VAX architecture. In a processor that does 
not implement compatibility mode, this bit is 
always clear. 

Forces a trace fault when set .at the beginning of 
any instruction. Set by the processor if T is set 
at the beginning of an instruction. 

Reserved to DIGITAL; must be O. 
When set, execution of the instruction addressed 
by PC cannot simply be started at the beginning 
and must be restarted at some other 
implementation-dependent point in its operation. If 
FPD is set and the exception or interrupt service 
routine modifies FPD, the general registers, or the 
saved PSL (except for T or TP), the results of 
the restarted instruction's execution are 
UNPREDICTABLE. If a routine sets FPD, the 
results are also UNPREDICTABLE. However, if 
software is simulating unimplemented instructions, 
it may make free use of FPD in its simulation. If 
the hardware encounters a reserved instruction 
with FPD set, a reserved instruction fault is taken 
with the saved PSL(FPD) set. 

(26) Interrupt Stack IS When set, the processor is executing on the 
interrupt stack. Any mechanism that sets IS also 
clears current mode and raises IPL above O. If an 
REI attempts to restore a PSL with IS = 1 and 
non-zero current mode or zero IPL, a reserved 
operand fault is taken. When clear, the processor 
is executing on the stack specified by current 
mode. 

(25:24) Current Access 
Mode 

CUR_MOD The access mode of the currently executing 
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process. 

o Kernel 
1 Executive 
2 Supervisor 
3 User 
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Table 1.2 
Processor Status Longword Fields (continued) 

Extent Name Mnemonic Meaning 

(22:23) Previous Access PRV_MOD Loaded from current mode by exceptions and 
Mode CHMx instructions, cleared by interrupts, and 

restored by REI (see Chapter 5). 

(21 ) Reserved Reserved to DIGITAL; must be zero. 

(20:16) Interrupt Priority IPL The current processor priority, in the range 0 to 
Level 1 F (hex). The processor will accept interrupts only 

on levels greater than the current level. 

(15:8) Reserved Reserved to DIGITAL; must be O. 
(7) Decimal Overflow DV When set, forces a decimal overflow trap after 

enable execution of an instruction that produced an 
overflowed decimal result (no room to store a 
non-zero digit) or had a conversion error. When 
DV is clear, no trap occurs. (However, the 
condition code V bit is still set.) 

(6) Floating Underflow FU When set, forces a floating underflow exception 
enable after execution of an instruction that produced an 

underflowed result. When FU is clear, no 
exception occurs. 

(5) Integer Overflow IV When set, forces an integer overflow trap after 
enable execution of an instruction that produced an 

integer result that overflowed or had a conversion 
error. When IV is clear, no integer overflow trap 
occurs. (However, the condition code V bit is still 
set.) 

(4) Trace enable T When set at the beginning of an instruction, 
causes TP to be set. Most programs should treat 
T as UNPREDICTABLE because it is set by 
debuggers and trace programs for tracing and for 
proceeding from a breakpoint. See Chapter 5 
for how to use tracing. 

(3) Negative N When set, indicates that the last instruction that 
affected N produced a result that was negative. 
When N is clear, the result was positive or O. 

(2) Zero Z When set, indicates that the last instruction that 
affected Z produced a result that was O. When Z 
is clear, the result was non-zero. 

(1 ) Overflow V When set, indicates that the last instruction that 
affected V produced a result whose magnitude 
was too large to be represented properly in 
the operand that received the result or there was 
a conversion error. When V is clear, there was no 
overflow or conversion error. 

(0) Carry C When set, indicates that the last instruction that 
affected C had a carry out of the most significant 
bit of the result or a borrow into the most 
significant bit. When C is clear, there was no carry 
or borrow. 
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Internal 
Processor 
Registers 

The PSL is automatically saved on the stack when an exception or 
interrupt occurs and is saved in the process control block on a 
process context switch (see Chapter 6). The PSL can also be read by 
the MOVPSL instruction (see Chapter 3). 

Bits (31 :16) of the PSL can be changed explicitly only by executing a 
return from exception or interrupt instruction (REI). Bits (20:16) can 
also be changed by a move-to-processor-register instruction (MTPR) 
to the IPL processor register. For more details, see Chapter 5. 
Processor initialization sets the PSL to 041 FOOOO, hex. 

The privileged internal processor register space provides access to 
many types of CPU control and status registers such as the memory 
management base registers, parts of the PSL, and the multiple 
stack pointers. These registers are explicitly accessible only by the 
Move to Processor Register (MTPR) and Move from Processor 
Register (MFPR) instructions which require kernel mode privileges. 
Internal processor registers are longword size, as shown in Figure 
1.10. For details, see Chapter 8. 
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INSTRUCTION 
FORMAT 

Instruction Formats 
and Addressing Modes 2 

The VAX architecture has a variable-length instruction format. An 
instruction specifies an operation and 0 to 6 operands. An operand 
specifier determines how an operand is accessed. An operand 
specifier consists of an addressing mode specifier and, if needed, a 
specifier extension, immediate data, or an address, as shown in 
Figure 2.1. The format of an instruction is: 

opcode 

adressing mode specifier 1 

specifier extension, address, or immediate data 1 (if needed) 

addressing mode specifier 2 

addressing mode specifier n 

specifier extension, address, or immediate data n (if needed) 

specifier extension, if any 

Operand Specifier 

7 0 

I opcode 

Single-Byte Opcode 

15 87 0 

opcode Fe - FF I 
Double-Byte Opcode 

Figure 2_1 
Opcodes and Operand Specifiers 
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An instruction is specified by the byte address A of its opcode, as 
shown in Figure 2.1. The opcode may extend over 2 bytes; the length 
depends on the contents of the byte at address A. Only if the value 
of the byte is Fe (hex) through FF (hex) is the opcode 2 bytes 
long, as shown in the last diagram in Figure 2.1. 

Each instruction takes a specific sequence of operand specifier types. 
An operand specifier type conceptually has two attributes: the access 
type and the data type. 

The access types include: 

• Read-the specified operand is read only. 

• Write-the specified operand is written only. 

• Modify-the specified operand is read, potentially modified, and 
written. This is not done under a memory interlock. 

• Address-the address of the specified operand in the form of a 
longword is the actual instruction operand. The specified operand is 
not accessed directly although the instruction may subsequently 
use the address to access that operand. 

• Variable-length bit field base address-this is the same as address 
access type except for register mode. In register mode, the field 
is contained in register n designated by the operand specifier 
(or register n + 1 concatenated with register n). This access type is 
a special variant of the address access type. 

• Branch-no operand is accessed. The operand specifier itself is a 
branch displacement. 

The first five types are termed general mode addressing. The last 
type is termed branch mode addressing. 

The data types include: 

Byte 

Word 

Longword 

F _floating 

Quadword 

D_floating 

G_floating 

Octaword 

H_floating 
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GENERAL 
MODE 
ADDRESSING 
FORMATS 

For the address and branch access types that do not directly reference 
operands, the data type indicates: 

• Address-the operand size to be used in the address calculation in 
autoincrement, autodecrement, and index modes 

• Branch-the size of the branch displacement. 

To describe the addressing modes, the following notation is used: 

+ 

* 

Rn or R[n] 

PC or SP 

(x) 

{ } 
SEXT(x) 

ZEXT(x) 

OA 

addition 

subtraction 

multiplication 

is replaced by 

is defined as 

concatenation 

The contents of register n 

the contents of register 15 or 14 respectively 

the contents of memory location x 

arithmetic parentheses for indicating precedence 

x is sign extended to size of operand needed 

x is zero extended to size of operand needed 

operand address 

comment delimiter 

Each general mode addressing description includes the definition of 
the operand address and the specified operand. For operand specifiers 
of address access type, the operand address is the actual instruction 
operand; for other access types, the specified operand is the 
instruction operand. The branch mode addressing description includes 
the definition of the branch address. 

Except for literal mode, an operand specifier in the general mode 
addressing format consists of a register number in bits (3:0) and an 
addressing mode specifier in bits (7:4). The operand specifier 
could possibly be followed by a specifier extension, as shown in 
Figure 2.1. 

For a summary of general register addressing, see Table 2.1. 
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< Table 2.1 » x Summary of General Register Addressing » ... 
Index· n 

:J 

;: Addressing Mode Assembler Notation Decimal Hexadecimal r m w a v PC SP AP& FP able 
!l c General Register Addressing Mode 
~ 
:D literal SA#literal 0-3 0-3 Y f f f 
~ 
~ indexed base[Rx] 4 4 Y Y Y Y Y Y Y 
:::I register Rn 5 5 Y Y Y f Y u uq uo n 
II 

s:: register deferred (Rn) 6 6 Y Y Y Y Y u Y Y Y 
I» 
:::I autodecrement -(Rn) 7 7 Y Y Y Y Y u Y Y ux c 
!!!. autoincrement (Rn)+ 8 8 Y Y Y Y Y P Y Y ux 

autoincrement deferred @(Rn)+ 9 9 Y Y Y Y Y P Y Y ux 

byte displacement BAdisplacement(Rn) 10 A Y Y Y Y Y P Y Y Y 
byte displacement deferred @BAdisplacement(Rn) 11 B Y Y Y Y Y P Y Y Y 
word displacement WA displacement( Rn) 12 C Y Y Y Y Y P Y Y Y 
word displacement deferred @WAdisplacement(Rn) 13 D Y Y Y Y Y P Y Y Y 
longword displacement L Adisplacement (Rn) 14 E Y Y Y Y Y P Y Y Y 
longword displacement deferred @LAdisplacement(Rn) 15 F Y Y Y Y Y P Y Y Y 

Program Counter Addressing Mode 

immediate r#constant 8 8 Y u u Y Y u 

absolute @#address 9 9 Y Y Y Y Y Y 
byte relative BAaddress 10 A Y Y Y Y Y Y 



a 
& 
c 
!l 
6" 
:::I 
"11 o 
3 
! 
III 
:::I a. 

~ a. 

= UJ s-ea 
i: 
8. 
m 

N 
CD 

byte relative deferred @B"address 

word relative W"address 

word relative deferred @W"address 

longword relative L"address 

longword relative deferred @L"address 

Key: 
base any indexable addressing mode 

f reserved addressing mode fault 
p Program Counter addressing 
u UNPREDICTABLE 

11 

12 

13 

14 

15 

B Y Y Y Y Y Y 
C y Y Y Y Y Y 
D Y Y Y Y Y Y 
E Y Y Y Y Y Y 
F Y Y Y Y Y Y 

uq UNPREDICTABLE for quadword, octaword, D_floating, G_floating, and H_floating (and field if position + size greater than 32) 
uo UNPREDICTABLE for octaword and H_floating 
ux UNPREDICTABLE for index register same as base register 
y yes, always vali.d addressing mode . 
r read access 

m modify access 
w write access 
a address access 
v field access 



Register Mode 

30 

The register mode operand specifier format is shown in Figure 2.2. 
No specifier extension follows. In register mode addressing, the 
operand is the contents of register n (or register n + 1 concatenated 
with register n for quadword, D_floating, G_floating, and certain field 
operands). The format is as follows: 

operand = Rn ! if one register 

or 

R[n+ l]'Rn if two registers 

or 

R[n+3] 'R[n+2] 'R[n+ 1] 'Rn if four registers 

7 43 0 

I 5 I reg I 
Register 

7 43 0 

I 6 I reg I 
Register Deferred 

7 43 0 

I 7 I reg I 
Autodecrement 

7 43 0 

8 reg I 
Autoincrement 

87 43 o 
immediate data I 8 I F I 

Immediate Address Mode Specifier and Extension 

7 43 0 

I 9 I reg I 
Autoincrement Deferred 
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39 87 43 0 

absolute address of data I 9 F I 
Absolute Address Mode Specifier and Extension 

15 87 43 0 

I byte displ I A reg 

Byte Displacement Address Mode Specifier and Extension 

23 87 43 o 
word displacement B reg 

Word Displacement Address Mode Specifier and Extension 

39 87 43 o 
longword displacement c reg 

Longword Displacement Address Mode Specifier and Extension 

15 87 4 3 0 

I byte displ I Dreg 

Byte Displacement Deferred Address Mode Specifier and Extension 

23 87 43 0 

word displacement E reg 

Word Displacement Deferred Address Mode Specifier and Extension 

39 8 7 43 0 

longword displacement F I reg 

Longword Displacement Deferred Address Mode Specifier and Extension 

Figure 2.2 
Addressing Mode Specifiers 
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Because registers do not have memory addresses, the operand 
address is not defined and register mode may not be used for 
operand specifiers of address access type (except in the case of the 
base address for variable bit field instructions, See Chapter 3). If 
register mode is so used, an iilegal addressing mode fault results (see 
Chapter 5). PC may not be used in register mode addressing. If PC 
is read, the value read is UNPREDICTABLE. If PC is written, the next 
instruction executed or the next operand specified is UNPREDICTA­
BLE. Likewise, SP may not be used in register mode addressing 
for an operand that takes two adjacent registers. Again, if it is used, 
the results are UNPREDICTABLE in the same fashion. If PC is used 
in register mode for a write access type operand that takes two 
adjacent registers, the contents of RO are UNPREDICTABLE. If R12, 
R13, SP, or PC are used in register mode addressing for an operand 
that takes four adjacent registers, the results are UNPREDICTABLE. 
If PC is used in register mode for a write access type operand that 
requires four adjacent registers, the contents of RO, R1, and R2 are 
UNPREDICTABLE. Likewise, if R13.is used in register mode for a 
write access type operand that takes four adjacent registers, the 
contents of RO are UNPREDICTABLE; and, if SP is used in register 
mode for a write access type operand which takes four adjacent 
registers, the contents of RO and R1 are UNPREDICTABLE. 

The assembler notation for register mode is Rn. 

The register deferred mode operand specifier format is shown in 
Figure 2.2. No specifier extension follows. I/i register deferred mode 
addressing, the address of the operand is the contents of register n: 

OA = Rn 

operand = (OA) 

PC should not be used in register deferred mode addressing. If PC is 
used, the address-of the operand (and whether the operand is 
written if it is of modify or write access type) is UNPREDICTABLE.' 

The assembler notation for register deferred mode is (Rn). 

The autoincrement mode operand specifier format is shown in Figure 
2.2. No specifier extension follows. If Rn denotes PC, immediate 
data follows, and the mode is termed immediate mode, as the figure 
shows. In autoincrement mode addressing, the address of the 
operand is the contents of register n. After the operand address is 
determined, the size of the operand in bytes (1 for byte, 2 for word, 4 
for longword and F _floating, 8 for quadword, G_floating and. 
D_floating, and 16 for octaword and H_floating) is added to the 
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Deferred Mode 

Autodecrement 
Mode 

contents of register n. The contents of register n is then replaced by 
the result: 

OA = Rn 

Rn +- Rn + size 

operand = (OA) 

Immediate mode may not be used for operands of modify or write 
access type. If immediate mode is used for an operand of modify 
access type, the value of the data read is UNPREDICTABLE. If 
immediate mode is used for an operand of modify or write access 
type, the address at which the operand is written (and whether it is 
written) is UNPREDICTABLE. 

The assembler notation for autoincrement mode is (Rn) +. For 
immediate mode, the notation is V\#constant where constant is the 
immediate data that follows. 

The autoincrement deferred mode operand specifier format is shown 
in Figure 2.2. No specifier extension follows. If Rn denotes PC, a 
longword address follows, and the mode is termed absolute mode. In 
autoincrement deferred mode addressing, the address of the operand 
is the contents of a longword whose address is the contents of 
register n. After the operand address is determined, 4 (the size in 
bytes of a longword address) is added to the contents of register n 
and the contents of register n is replaced by the result: 

OA = (Rn) 

Rn +- Rn + 4 

operand = (OA) 

The assembler notation autoincrement deferred mode is @(Rn) + . 
The notation for absolute mode is @#address, where address is the 
longword that follows. 

The autodecrement mode operand specifier format is shown in Figure 
2.2. No specifier extension follows. In autodecrement mode address­
ing, the size of the operand in bytes (1 for byte; 2 for word; 
4 for longword or F _floating; 8 for quadword, G_floating, or 
D_floating; and 16 for octaword or H_floating) is subtracted from the 
contents of register n. The contents of register n are then replaced 
by the result. The updated contents of register n is the address of the 
operand: 

Rn +- Rn - size 

OA = Rn 

operand = (OA) 
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PC should not be used in autodecrement mode. If it is used, the 
address of the operand (and whether the operand is written if it is of 
modify or write access type) is UNPREDICTABLE; the next instruction 
executed or the next operand specified is UNPREDICTABLE. 

The assembler notation for autodecrement mode is - (Rn). 

There are three displacement mode operand specifier formats, all 
illustrated in Figure 2.2. They are termed byte displacement mode, 
word displacement mode, and longword displacement mode. In each, 
the specifier extension is a signed displacement. 

In displacement mode addressing, the displacement (after being sign 
extended to 32 bits if it is byte or word) is added to the contents of 
register n. The result is the operand address: 

OA = Rn + SEXT(displ) if byte or word displaoement 

or 

Rn + displ if longword displaoement 

operand = (OA) 

If Rn denotes PC, the mode is termed PC relative addressing mode. 
The updated contents of PC (the address of the first byte beyond 
the specifier extension) is used as the base address. 

The assembler notation for byte, word, and longword displacement 
mode is B!\D(Rn), W!\D(Rn), and L !\D(Rn) respectively, where 
D = displ. 

The three displacement deferred mode operand specifier formats 
are termed byte displacement deferred mode, word displacement 
deferred mode, and longword displacement deferred mode. In each, 
the specifier extension is a signed displacement. See Figure 2.2. 

In displacement deferred mode addressing, the displacement (after 
being sign extended to 32 bits if it is byte or word) is added to the 
contents of register n. The result is the address of a longword whose 
contents is the operand address: 

OA = (Rn + SEXT(displ)) 

or 

(Rn + displ) 

operand = (OAj 

if by~e or word displaoement 

if longword displaoement 

If Rn notes PC, the mode is termed PC relative deferred addressing 
mode. The updated contents of PC (the address of the first byte 
beyond the specifier extension) is used as the base address. 
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Literal Mode 

The assembler notation for byte, word, and longword displacement 
deferred mode is @B!\D(Rn), @W!\D(Rn), and @L!\D(Rn) respectively, 
where D = displ. 

The literal mode operand specifier format is shown in Figure 2.3. No 
specifier extension follows. For operands of data type byte, word, 
longword, quadword, and octaword, the operand is the zero extension 
of the 6-bit literal field: 

operand = ZEXT(literal) 

Thus for these data types, literal mode may be used for values in the 
range 0 through 63. 

For operands of data type F _floating, D_floating, G_floating, and 
H_floating, the 6-bit literal field is composed of two 3-bit fields as 
shown in Figure 2.3. The exp and fra fields are used to form an 
F _floating, D_floating, G_floating, or H_floating operand as shown 
in Figure 2.4. The values that can be expressed by a floating-point 
literal are shown in Table 2.2. 

Because there is no operand address, literal mode addressing may 
not be used for operand specifiers of address access type. Also, 
literal mode addressing may not be used for operand specifiers of 
write or modify access type. If literal mode is used for operand 
specifiers of either address, modify, or write access type, an illegal 
addressing mode fault results (see Chapter 5). 

Literal mode addressing is a very efficient way of specifying integer 
values in the range 0 to 63 or the floating-point values shown in Table 
2.2. Literal values outside the indicated range may be obtained by 
using immediate mode. 

The assembler notation for literal mode is S!\#literal. 

7 65 0 

I 0 I literal I 
literal Address Mode Specifier 

5 32 0 

I exp I Ira I 
Representation 01 a Floating-Point Number as a Literal 

Figure 2.3 
Literal Address Mode Specifier and Representation 01 a 
Floating-Point Number as a literal 
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31 161514 7 6 4 3 0 

o 101128+exponentl fra I 0 I 
As an F _floating Number 

31 161514 76 43 o 

o 
10'128+exponen~' fra I o 

63 32 

As a D_floating Number 

31 161514 43 1 a 
o 101 1024+exp:nent I ~ 
o 

63 33 

As a G_floating Number 

31 161514 a 
0 01 16384 "±- exponent 

0 0 

0 0 

0 0 

127 96 

As an H_floating Number 

Figure 2.4 
Interpretation of a Literal 

Table 2.2 
Floating-Point Values Representable as Literals 

Fraction 

Exponent 0 2 3 4 5 6 7 

0 V2 9/16 % 1V16 % 1¥16 ?fa 10/16 

1 1 1Vs 1V4 1% 1% 1% 1% F/s 
2 2 2% 2V2 2% 3 3% 3% 3% 
3 4 4% 5 5% 6 6% 7 7% 
4 8 9 10 11 12 13 14 15 
5 16 18 20 22 24 26 28 30 
6 32 36 40 44 48 52 56 60 
7 64 72 80 88 96 104 112 120 
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Index Mode The index mode operand specifier format is shown in Figure 2.5. Bits 
(15:8) contain a second operand specifier (termed the base operand 
specifier) for any of the addressing modes except register, literal, 
or index. The specification of register indexed, literal indexed, 
immediate indexed, or index indexed addressing mode results in an 
illegal addressing mode fault (see Chapter 5). If the base operand 
specifier requires a specifier extension, it immediately follows. 
The base operand specifier is subject to the same restrictions as 
would apply if it were used alone. If the use of some particular 
specifier is illegal (causes a fault or UNPREDICTABLE behavior) 
under some circumstances, then that specifier is similarly illegal as a 
base operand specifier in index mode under the same circumstances. 

The operand to be specified by index mode addressing is termed the 
primary operand. The base operand specifier normally is used to 
determine an operand address. This address is termed the base 
operand address (BOA). The address of the primary operand specified 
is determined by multiplying the contents of the index register x by 
the size of the primary operand in bytes (1 for byte; 2 for word; 4 for 
longword or F _floating; 8 for quadword, D_floating or G_floating; 
and 16 for octaword and H_floating), adding BOA, and taking the 
result: 

OA = BOA + {size * (Rx)} 

operand = (OA) 

If the base operand specifier is for autoincrement or autodecrement 
mode, the increment or decrement size is the size in bytes of the 
primary operand. 

Indexed mode addressing permits very general and efficient accessing 
of arrays. The base address of the array is determined by the 
operand address calculation of the base operand specifier. The 
contents of the index register is taken as a logical index into the 
array. The logical index is converted into a real (byte) offset by 
multiplying the contents of the index register by the size of the primary 
operand in bytes. 

1615 12 11 87 43 0 

4 I 2 'od" "9'"'' 

1 1 t base register 
base addressing mode 
extension. if any 

Figure 2.5 
Indexed Address Mode Specifier and Extension 
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Certain restrictions are placed on the index register x. PC cannot be 
used as an index register. If PC is used, a reserved addressing mode 
fault occurs (see Chapter 5). If the base operand specifier is for an 
addressing mode that results in register modification (autoincrement 
mode, autodecrement mode, or autoincrement deferred mode), the 
same register cannot be the index register. If it is, the primary 
operand address is UNPREDICTABLE. 

The names of the addressing modes resulting from indexed mode 
addressing are formed by appending the word "indexed" to the 
addressing mode of the base operand specifier. Following are the 
names and assembler notation. The index register is designated Rx to 
distinguish it from the register Rn in the base operand specifier. 

• Register deferred indexed, (Rn)[Rx] 

• Autoincrement indexed, (Rn) + [Rx] 

• Autoincrement deferred indexed, @(Rn) + [Rx] or absolute indexed, 
@#address[Rx] 

• Autodecrement indexed, - (Rn)[Rx] 

• Byte, word, or longword displacement indexed, BAD(Rn)[Rx], 
WAD(Rn)[Rx], or L AD(Rn)[Rx] 

• Byte, word, or longword displacement deferred indexed, 
@BAD(Rn)[Rx], @WAD(Rn)[Rx], or @LAD(Rn)[Rx] 

The two operand specifier formats are shown in Figure 2.6. In branch 
mode addressing, the byte or word displacement is sign extended to 
32 bits and added to the updated contents of PC. The updated 
contents of PC is the address of the first byte beyond the operand 
specifier. The result is the branch address A: 

A = PC + SEXT( displ) 

7 0 

displ I 
Byte Displacement 

15 o 
displ 

Word Displacement 

Figure 2.6 
Two Branch Mode Addressing Operand Specifier Formats 
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INSTRUCTION 
INTERPRE­
TATION 

The assembler notation for byte and word branch mode addressing is 
A, where A is the branch address. Note that the branch address and 
not the displacement is used. 

The processor in interpreting an instruction performs the following 
three steps: 

1. Reads and evaluates each operand specifier in order of instruction 
stream occurrence as follows: 

a. If access type is read: evaluates the operand address, reads 
the operand, and saves it. 

b. If access type is write: evaluates the operand address and 
saves it. 

c. If access type is modify: evaluates the operand address and 
saves it: reads the operand and saves it. 

d. If access type is address: evaluates the address and saves it. 

e. If access type is branch: saves the operand specifier. 

2. Performs the operation indicated by the instruction. 

3. Stores the result(s) using the saved addresses in the order 
indicated by the occurrence of operand specifiers in the instruction 
stream. 

Note 
The string instructions are an exception to this sequence performed 
by each instruction. Partial results are stored before the instruction 
operation is completed. 

The variable-length bit field instructions treat the position, size, and 
base address operand specifiers as the specification of an implied 
field operand specifier. 

If multiple exceptions occur, the order in which they are taken is 
UNPREDICTABLE. This can occur, for example, in a floating-point 
instruction whose destination operand specifier of write access type 
uses a reserved addressing mode and the operation results in an 
overflow fault. 

The implications of this instruction interpretation process are: 

1. Autoincrement and autodecrement operations occur as the 
operand specifiers are processed, and subsequent operand 
specifiers use the updated contents of registers modified by those 
operations. 
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2. Other than as indicated above, all input operands are read, and all 
addresses of output operands computed before any results of the 
instruction are stored. 

3. An operand of modify access type is not read, modified, and 
written as an indivisible operation; therefore, modify access type 
operands cannot be used for synchronization. (For synchronization 
instructions, see Chapter 7.) 

4. If an instruction references two operands of write or modify access 
type at the same address, the first will be Overwritten by the 
second. 
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SET 

Instruction 
Descriptions 

Instructions 3 
This chapter describes the instructions generally used by all software, 
across all implementations of the VAX architecture. Certain instructions 
are specific to portions of the VAX architecture: memory management, 
interrupts and exceptions, process dispatching, and processor regis­
ters. These instructions are generally used by privileged software and 
are described in chapters devoted to those portions of the architecture. 
A concise list of opcode assignments appears in Appendix A. 

The instruction set is divided into 12 major sections: 

Integer arithmetic and logical 

Address 

Variable-length bit field 

Control 

Procedure call 

Miscellaneous 

Queue 

Floating point 

Character string 

Cyclic redundancy check 

Decimal string 

Edit 

Within each major section, closely related instructions are grouped 
and described together. The instruction group description is composed 
of the following: 

1. The group name. 

2. The format of each instruction in the group. The format presents 
the name and type of each instruction operand specifier and 
the order in which it appears in memory. Operand specifiers from 
left to right appear in increasing memory addresses. 

3. The operation of the instruction. 

4. The effect on condition codes. 
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5. Exceptions specific to the instruction. Exceptions generally possible 
for all instructions are not listed (for example, illegal or reserved 
addressing mode, trace, and memory management exceptions). 

6. The opcodes, mnemonics, and names of each instruction in the 
group. The opcodes are given in hex. 

7. A description in English of the instruction. 

8. In many cases, notes on the instruction and programming examples. 

Operand specifiers are described in the following way: 

(name). (access type)(data type) 

The name is suggestive of the operand in the context of the instruction. 
The name is often abbreviated. 

The access type is represented by a letter denoting the operand 
specifier access type. These are: 

a Calculate the effective address of the specified operand. 
Address is returned in a longword that is the actual instruction 
operand. Context of address calculation (the size to be used in 
autoincrement, autodecrement, and indexing) is given by 
(data type). 

b No operand reference. The operand specifier is a branch 
displacement. The size of branch displacement is given by 
(data type). 

m Operand is read, potentially modified, and written. Note that 
this is not an indivisible memory operation. Also note that if the 
operand is not actually modified, it may not be written back. 
However, modify type operands are always checked for both 
read and write accessibility (see Chapter 4). 

r Operand is read only. 

v Calculate the effective address of the specified operand. If 
the effective address is in memory, the address is returned in 
a longword that is the actual instruction operand. The context 
of the address calculation is given by (data type). If the 
effective address is Rn, the operand is in Rn or R[n + 1 rRn. 

w Operand is written only. 

The data type in the operand specifier notation is a letter denoting the 
data type of the operand: 

b byte 

d D_floating 

f F _floating 

g G_floating 
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Notation 

h H_floating 

1 longword 

o octaword 

q quadword 

w word 

x first data type specified by instruction 

y second data type specified by instruction 

The operation of each instruction is given as a sequence of control 
and assignment statements in an ALGOL-like syntax. No attempt 
is made to define the syntax formally; it is assumed to be familiar to 
the reader. The notation used is an extension of that introduced in 
Chapter 2. 

+ 

* 
/ 

Rn or R[n] 

PC, SP. 
FP, or AP 

PSW 

addition 

subtraction, unary minus 

multiplication 

division (quotient only) 

concatenation 

is replaced by 

is defined as 

contents of register Rn 

the contents of register R15, R14, R13, or 
R12 respectively 

the contents of the processor status word 

PSL 

(x) 

the contents of the processor status longword 

contents of memory location whose address is 
x 

(x) + 

-(x) 

(x: y> 

(xl, x2, ... ,xn> 

{ } 

AND 

Instructions 

contents of memory location whose address is 
x; x incremented by the size of operand 
referenced at x 

x decremented by size of operand to be 
referenced at x; contents of memory location 
whose address is new value of x 

a modifier that delimits an extent from bit 
position x to bit position y inclusive 

a modifier that enumerates bits x1 ,x2, ... ,xn 

arithmetic parentheses used to indicate 
precede 

logical AND 
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OR 

XOR 

NOT 

LSS 

LSSU 

LEQ 

LEQU 

EQL 

EQLU 

NEQ 

NEQU 

GEQ 

GEQU 

GTR 

GTRU 

SEXT(x) 

ZEXT(x) 

REM(x,y) 

MINU(x,y) 

MAXU(x,y) 

logical OR 

logical XOR 

logical (one's) complement 

less than signed 

less than unsigned 

less than or equal signed 

less than or equal unsigned 

equal signed 

equal unsigned 

not equal signed 

not equal unsigned 

greater than or equal signed 

greater than or equal unsigned 

greater thim signed 

greater than unsigned 

x is sign extended to size of operand needed 

x is zero extended to size of operand needed 

remainder of x divided by y, such that x/y and 
REM(x,y) have the same sign 

minimum unsigned of x and y 

maximum unsigned of x and y 

The following conventions are used: 

1. Other than that caused by ( ) +, or - ( ), and the advancement of 
PC, only operands or portions of operands appearing on the left 
side of assignment statements are affected. 

2. No operator precedence is assumed, other than that replacement 
(~) has the lowest precedence. Precedence is indicated explicitly 
by { }. 

3. All arithmetic, logical, and relational operators are defined in the 
context 6f their operands. For example, "+" applied to floating 
operands means a floating add; whereas" +" applied to byte 
operands is an integer byte add. Similarly, "LSS" is a floating 
comparison when applied to floating operands; wherea,s"LSS" is 
an integer byte comparison when applied to byte operands. 

4. Instruction operands are evaluated according to the operand 
specifier conventions (see Chapter 2). The order in which operands· 
appear in the instruction description has no effect on the order of 
evaluation. 

5. Condition codes are in general affected on the value of actual 
stored results, not on "true" results (which might be generated 

VAX Architecture Reference Manual 



INTEGER 
ARITHMETIC 
AND LOGICAL 
INSTRUCTIONS 

ADAWI 

internally to greater precision). Thus, for example, two positive 
integers can be added together and the sum stored, because of 
overflow, as a negative value. The condition codes will indicate a 
negative value even though the "true" result is clearly positive. 

Add Aligned Word Interlocked 

Format: 

opcode add.rw, sum.mw 

Operation: 

tmp - add; 

{set interlock}; 

sum - sum + tmp; 

{release interlock}; 

Condition Codes: 

N - sum LSS 0; 

Z - sum EQL 0; 

V - {integer overflow}; 

C - {carry from most significant bit}; 

Exceptions: 
reserved operand fault 
integer overflow 

Opcode: 

58 ADAWI 

Description: 
The addend operand is added to the sum operand, and the sum 
operand is replaced by the result. The operation is interlocked against 
similar operations on other processors in a multiprocessor system. 
The destination must be aligned on a word boundary (bit 0 of the 
address of the sum operand must be zero). If it is not, a reserved 
operand fault is taken. 
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Notes: 
1. Integer overflow occurs if the input operands to the add have the 

same sign and the result has the opposite sign. On overflow, 
the sum operand is replaced by the low order bits of the true result. 

2. If the addend and the sum operands overlap, the result and the 
condition codes are UNPREDICTABLE. 

Add 

Format: 

opcode add.rx, sum.mx 

opcode addl.rx, add2.rx, sum.wx 

Operation: 

sum ~ sum + add; 

sum ~ addl + add2; 

Condition Codes: 

N ~ sum LSS 0; 

Z ~ sum EQL 0; 

V ~ {integer overflow}; 

!2 operand 

!3 operand 

2 operand 

3 operand 

C ~ {carry from most significant bit}; 

Exception: 

integer overflow 

Opcodes: 

80 ADDB2 Add Byte 2 Operand 

81 ADDB3 Add Byte 3 Operand 

AO ADDW2 Add Word 2 Operand 

Ai ADDW3 Add Word 3 Operand 

CO ADDL2 Add Long 2 Operand 

Cl ADDL3 Add Long 3 Operand 

Description: 
In 2 operand format, the addend operand is added to the sum 
operand and the sum operand is replaced by the result. In 3 operand 
format, the addend 1 operand is added to the addend 2 operand 
and the sum operand is replaced by the result. 
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ASH 

Notes: 
Integer overflow occurs if the input operands to the add have the 
same sign and the result has the opposite sign. On overflow, the sum 
operand is replaced by the low order bits of the true result. 

Add With Carry 

Format: 

opcode add.rl, sum.ml 

Operation: 

sum <- sum + add + C; 

Condition Codes: 

N <- sum LSS 0; 

Z <- sum EQL 0; 

V <- {integer overflow}; 

C <- {carry from most significant bit}; 

Exceptions: 

integer overflow 

Opcodes: 

D8 ADWC Add With Carry 

Description: 
The contents of the condition code C bit and the addend operand are 
added to the sum operand, and the sum operand is replaced by the 
result. 

Notes: 
1. On overflow, the sum operand is replaced by the low order bits of 

the true result. 

2. The two additions in the operation are performed simultaneously. 

Arithmetic Shift 

Format: 

opcode cnt.rb, src.rx, dst.wx 
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Operation: 

dst ~ src shifted cnt bits; 

Condition Codes: 

N ~ dst LSS 0; 

Z .~ dst EQL 0; 

V ~ {integer overflow}; 

C ~ 0; 

Exception: 

integer overflow 

Opcodes: 

78 ASHL Arithmetic Shift Long 

79 ASHQ Arithmetic Shift Quad 

Description: 
The source operand is arithmetically shifted by the number of bits 
specified by the count operand, and the destination operand is 
replaced by the result. The source operand is unaffected. A positive 
count operand shifts to the left bringing zeros into the least significant 
bit. A negative count operand shifts to the right bringing copies of 
the most significant (sign) bit into the most significant bit. A 0 count 
operand replaces the destination operand with the unshifted source 
operand. 

Notes: 
1. Integer overflow occurs on a left shift if any bit shifted into the sign 

bit position differs from the sign bit of the source operand. 

2. If cnt GTR 32 (ASHL) or cntGTR 64 (ASHO), the destination 
operand is replaced by O. 

3. If cnt LEO - 31 (ASHL) or cnt LEO - 63 (ASHQ), all the bits of the 
destination operand are copies of the sign bit of the source 
operand. .j 

Bit Clear 

Format: 

opcode mask.rx, dst.mx 

opcode mask.rx, src.rx, dst.wx 
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BIS 

Operation: 

dst <- dst AND 

dst <- sre AND 

Condition Codes: 

N <- dst LSS 0; 

Z <- dst EQL O' 

V <- 0; 

C <- C; 

Exceptions: 
none 

Opcodes: 

8A BICB2 Bit 

8B BICB3 Bit 

AA BICW2 Bit 

AB BICW3 Bit 

CA BICL2 Bit 

CB BICL3 Bit 

Description: 

{NOT mask}; 

{NOT mask} ; 

Clear Byte 

Clear Byte 

Clear Word 

Clear Word 

Clear Long 

Clear Long 

!2 operand 

!3 operand 

In 2 operand format, the destination operand is ANDed with the 
one's complement of the mask operand, and the destination operand 
is replaced by the result. In 3 operand format, the source operand 
is ANDed with the one's complement of the mask operand and the 
destination operand is replaced by the result. 

Bit Set 

Format: 

ope ode mask.rx, dst.mx 2 operand 

opeode mask.rx, sre.rx, dst.wx 3 operand 

Operation: 

dst <- dst OR mask; !2 operand 

dst <- sre OR mask; !3 operand 
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Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ C; 

Exceptions: 
none 

Opcodes: 

88 BISB2 Bit Set Byte 2 Operand 

89 BISB3 Bit Set Byte 3 Operand 

A8 BISW2 Bit Set Word 2 Operand 

A9 BISW3 Bit Set Word 3 Operand 

C8 BISL2 Bit Set Long 2 Operand 

C9 BISL3 Bit Set Long 3 Operand 

Description: 
In 2 operand format, the mask operand is ORed with the destination 
operand and the destination operand is replaced by the res~lt. In 3 
operand format, the mask operand is ORed with the source operand 
and the destination operand is replaced by the result. 

Bit Test 

Format: 

opcode mask.rx, src.rx 

Operation: 

tmp ~ src AND mask; 

Condition Codes: 

N ~ tmp LSS 0; 

Z ~ tmp EQL 0; 

V ~ 0; 

C ~ C; 

Exceptions: 
none 
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CLR 

Opcodes: 

93 BITB Bit Test Byte 

B3 BITW Bit Test Word 

03 BITL Bit Test Long 

Description: 
The mask operand is ANDed with the source operand. Both operands 
are unaffected. The only action is to affect condition codes. 

Clear 

Format: 

opcode dst.wx 

Operation: 

dst ~ 0; 

Condition Codes: 

N ~ 0; 

Z ~ 1· 

V ~ 0; 

C ~ C; 

Exceptions: 
none 

Opcodes: 

94 CLRB 

B4 CLRW 

04 CLRL 

7C CLRQ 

7CFO CLRO 

Description: 

Clear 

Clear 

Clear 

Clear 

Cl.ear 

Byte 

Word 

Long 

Quad 

Octa 

The destination operand is replaced by o. 

Notes: 
CLRx dst is equivalent to MOVx 8/\#0, dst, but is 1 byte shorter. 
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Compare 

Format: 

opeode sre1.rx, sre2.rx 

Operation: 

sre1 - sre2; 

Condition Codes: 

N ~ sre1 LSS sre2; 

Z ~ sre1 EQL sre2; 

V ~ 0; 

C ~ srei LSSU 

Exceptions: 
none 

Opcodes: 

sre2; 

91 CMPB Compare Byte 

B1 CMPW Compare Word 

D1 CMPL Compare Long 

Description: 
The source 1 operand is compared with the source 2 operand. The 
only action is to affect the condition codes. 

Convert 

Format: 

opeode sre.rx, dst.wy 

Operation: 

dst ~ conversion of sre; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ {integer overflow}; 

C ~ 0; 
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DEC 

Exception: 

integer overflow 

Opcodes: 

99 CVTBW Convert Byte to Word 

98 CVTBL Convert Byte to Long 

33 CVTWB Convert Word to Byte 

32 CVTWL Convert Word to Long 

F6 CVTLB Convert Long to Byte 

F7 CVTLW Convert Long to Word 

Description: 
The source operand is converted to the data type of the destination 
operand, and the destination operand is replaced by the result. 
Conversion of a shorter data type to a longer one is done by sign 
extension; conversion from longer to shorter is done by truncation of 
the higher numbered (most significant) bits. 

Notes: 
Integer overflow occurs if any truncated bits of the source operand 
are not equal to the sign bit of the destination operand. 

Decrement 

Format: 

opcode dif.mx 

Operation: 

dif ~ dif - 1; 

Condition Codes: 

N ~ dif LSS 0; 

Z ~ dif EQL 0; 

V ~ {integer overflow}; 

C ~ {borrow into most significant bit}; 

Exception: 

integer overflow 
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Opcodes: 

97 DECB Decrement Byte 

B7 DECW Decrement Word 

D7 DECL Decrement Long 

Description: 
One is subtracted from the difference operand, and the difference 
operand is replaced by the result. 

Notes: 
1. Integer overflow occurs if the largest negative integer is decre­

mented. On overflow, the difference operand is replaced by the 
largest positive integer. 

2. DECx dif is equivalent to 8UBx 8/\#1, dif, but is 1 byte shorter. 

Divide 

Format: 

opcode divr.rx, quo.mx 

opcode divr.rx, divd.rx, quo.wx 

Operation: 

quo ~ quo / divr; 

quo ~ divd / divr; 

Condition Codes: 

N ~ quo LSS 0; 

Z ~ quo EQL 0; 

!2 operand 

!3 operand 

2 operand 

3 operand 

V ~ {integer over flow} OR {di vr EQL O}; 

C ~ 0; 

Exceptions: 

integer overflow 

divide by zero 

Opcodes: 

86 DIVB2 Divide Byte 2 Operand 

87 DIVB3 Divide Byte 3 Operand 

A6 DIVW2 Divide Word 2 Operand 

A7 DIVW3 Divide Word 3 Operand 
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EDIV 

C6 DIVL2 Divide Long 2 Operand 

C7 DIVL3 Divide Long 3 Operand 

Description: 
In 2 operand format, the quotient operand is divided by the divisor 
operand and the quotient operand is replaced by the result. In 3 
operand format, the dividend operand is divided by the divisor 
operand and the quotient operand is replaced by the result. 

Notes: 
1. The remainder, if any, is lost. 

2. Division is performed such that the remainder (unless it is 0) has 
the same sign as the dividend; that is, the result is truncated 
toward O. 

3. Integer overflow occurs if and only if the largest negative integer is 
divided by -1. On overflow, operands are affected as in item 3 
below. 

4. If the divisor operand is 0, then in 2 operand format the quotient 
operand is not affected; in 3 operand format the quotient operand 
is replaced by the dividend operand. 

Extended Divide 

Format: 

ope ode divr.rl, divd.rq, quo.wl, rem.wl 

Operation: 

quo ~ divd / divr; 

rem ~ REM(divd, divr); 

Condition Codes: 

N ~ quo LSS 0; 

Z ~ quo EQL 0; 

V ~ {integer overflow} OR {divr EQL O}; 

C ~ 0; 

Exceptions: 

integer overflow 

divide by zero 

Opcodes: 

78 EDIV Extended Divide 
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Description: 
The dividend operand is divided by the divisor operand; the quotient 
operand is replaced by the quotient; and the remainder operand is 
replaced by the remainder. 

Notes: 
1. The division is performed such that the remainder operand (unless 

it is 0) has the same sign as the dividend operand. 

2. On overflow, the operands are affected as in item 3 below. 

3. If the divisor operand is 0, then the quotient operand is replaced by 
bits (31 :0) of the dividend operand; the remainder operand is 
replaced by O. 

Extended Multiply 

Format; 

opcode mulr.rl, muld.rl, add.rl, prod.wq 

Operation: 

prod ~ {muld * muIr} + SEXT(add); 

Condition Codes: 

N ~ prod LSS 0; 

Z ~ prod EQL 0; 

V ~ 0; 

C ~ 0; 

Exceptions: 
none 

Opcode: 

7A EMUL Extended Multiply 

Description: 
The multiplicand operand is multiplied by the multiplier operand, 
giving a double-length result. The addend operand is sign-extended to 
double length and added to the result. The product operand is 
replaced by the final result. 

Increment 

Format: 

opcode sum.mx 

VAX Architecture Reference Manual 



MCOM 

Operation: 

sum ~ sum + 1; 

Condition Codes: 

N ~ sum LSS 0; 

Z ~ sum EQL 0; 

V ~ {integer overflow}; 

C ~ {carry from most significant bit}; 

Exception: 

integer overflow 

Opcodes: 

96 INCB Increment Byte 

B6 INCW Increment Word 

06 INCL Increment Long 

Description: 
One is added to the sum operand, and the sum operand is replaced 
by the result. 

Notes: 
1. Arithmetic overflow occurs if the largest positive integer is 

incremented. On overflow, the sum operand is replaced by the 
largest negative integer. 

2. INCx sum is equivalent to ADDx 8/\#1, sum, but is 1 byte shorter. 

Move Complemented 

Format: 

opcode src.rx, dst.wx 

Operation: 

dst ~ NOT src; 

Condition Codes: 

N ~ dst LSS 0; 

z ~ dst EQL 0; 

V ~ 0; 

C ~ C· 
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Exceptions: 
none 

Opcodes: 

92 MCOMB Move Complemented Byte 

B2 MCOMW Move Complemented Word 

D2 MCOML Move Complemented Long 

Description: 
The destination operand is replaced by the one's complement of the 
source operand. 

Move Negated 

Format: 

opcode src.rx, dst.wx 

Operation: 

dst ~ -src; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~. {integer overflow}; 

C ~ dst NEQ 0; 

Exception: 

integer overflow 

Opcodes: 

BE MNEGB Move Negated 

AE MNEGW Move Negated 

CE MNEGL Move Negated 

Description: 

Byte 

Word 

Long 

The destination operand is replaced by the negative of the source 
operand. 

Notes: 
Integer overflow occurs if the source operand is the largest negative 
integer (which has no positive counterpart). On overflow, the destination 
operand is replaced by the source operand. 
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MOV Move 

Format: 

opcode src.rx, dst.wx 

Operation: 

dst ~ src; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ C; 

Exceptions: 
none 

Opcodes: 

90 MOVB Move Byte 

BO MOVW Move Word 

DO MOVL Move Long 

70 MOVQ Move Quad 

7DFD MOVO Move Octa 

Description: 
The destination operand is replaced by the source operand. 

MOVZ Move Zero-Extended 

Format: 

opcode src.rx, dst.wy 

Operation: 

dst ~ ZEXT(src); 

Condition Codes: 

N ~ 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ c; 
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.. Exceptions: 
none " 
Opcodes: 

9B MOVZBW Move Zero-Extended Byte to Word 

9A MOVZBL Move Zero-Extended Byte to Long 

3C MOVZYVL Move Zero-Extended Word to Long 

Description: 
For MOVZBW, bits (7:0) of the destination operand are replaced by 
the source operand; bits (15:8) are replaced by O. For MOVZBL, bits 
(7:0) of the destination operand are replaced by the source operand; 
bits (31 :8) are replaced by O. For MOVZWL, bits (15:0) of the 
destination operand are replaced by the source operand; bits (31: 16) 
are replaced by O. 

Multiply 

Format: 

opeode mulr.rx, prod.mx 

ope ode· mulr.rx, muld.rx, prod.wx 

Operation: 

prod ~ prod * muIr; 

prod ~ muld * muIr; 

Condition Codes: 

N ~ prod LSS 0; 

Z ~ prod EQL 0; 

V ~ {integer overflow}; 

C ~ 0; 

Exception: 

integer overflow 

Opcodes: 

84 MULB2 Multiply Byte 

85 MULB3 Multiply Byte 

A4 MULW2 Multiply Word 

A5 MULW3 Multiply Word 

C4 MULL2 Multiply Long 

2 Operand 

3 Operand 

2 Operand 

3 Operand 

2 Operand 

C5 MULL3 Multiply Long 3 Operand 
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PUSHL 

ROTL 

Description: 
In 2 operand format, the product operand is multiplied by the multiplier 
operand and the product operand is replaced by the low half of the 
double-length result. In 3 operand format, the multiplicand operand is 
multiplied by the multiplier operand and the product operand is 
replaced by the low half of the double-length result. 

Notes: 
Integer overflow occurs if the high half of the double-length result is 
not equal to the sign extension of the low half. 

Push Long 

Format: 

opcode src.rl 

Operation: 

-(SP) ~ src; 

Condition Codes: 

N ~ src LSS 
Z ~ src EQL 

V ~ 0; 

C ~ c; 

Exceptions: 
none 

Opcode: 

o· 
o· 

DD PUSHL Push Long 

Description: 
The longword source operand is pushed on the stack. 

Notes: 
PUSHL is equivalent to MOVL src, - (SP), but is 1 byte shorter. 

Rotate Long 

Format: 

opcode cnt.rb, src.rl, dst.wl 

Instructions 61 



SBWC 

62 

Operation: 

dst ~ src rotated cnt bits; 

Condition Codes: 

N ~ dst LSS 

Z ~ dst EQL 

V ~ 0; 

C ~ C; 

Exceptions: 
none 

Opcode: 

0; 

0; 

9C ROTL Rotate Long 

Description: 
The source operand is rotated logically by the number of bits specified 
by the count operand, and the destination operand is replaced by the 
result. The source operand is unaffected. A positive count operand 
rotates to the left. A negative count operand rotates to the right. A 
zero count operand replaces the destination operand with the source 
operand. 

Subtract With Carry 

Format: 

opcode sub.rl, dif.ml 

Operation: 

dif ~ dif - sub - C; 

Condition Codes: 

N ~ dif LSS 0; 

Z ~ dif EQL 0; 

V ~ {integer overflow}; 

C ~ {borrow into most significant bit}.; 

Exception: 

integer overflow 
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SUB 

Opcode: 

D9 SBWC Subtract With Carry 

Description: 
The subtrahend operand and the contents of the condition code C bit 
are subtracted from the difference operand, and the difference 
operand is replaced by the result. 

Notes: 
1. On overflow, the difference operand is replaced by the low order 

bits of the true result. 

2. The 2 subtractions in the operation are performed simultaneously. 

Subtract 

Format: 

opcode sub.rx. dif.mx 

opcode sub.rx. min.rx. dif.wx 

Operation: 

dif ~ dif - sub; 

dif ~ min - sub; 

Condition Codes: 

N ~ dif LSS 0; 

Z ~ dif EQL 0; 

!2 operand 

!3 operand 

V ~ {integer overflow}; 

2 operand 

3 operand 

C ~ {borrow into most significant bit}; 

Exceptions: 

integer overflow 

Opcodes: 

82 SUBB2 Subtract Byte 2 Operand 

83 SUBB3 Subtract Byte 3 Operand 

A2 SUBW2 Subtract Word 2 Operand 

A3 SUBW3 Subtract Word 3 Operand 

C2 SUBL2 Subtract Long 2 Operand 

C3 SUBL3 Subtract Long 3 Operand 
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Description: 
In 2 operand format, the subtrahend operand is subtracted from the 
difference operand and the difference operand is replaced by the 
result. In 3 operand format, the subtrahend operand is subtracted from 
the minuend operand and the difference operand is replaced by the 
result. 

Notes: 
Integer overflow occurs if the input operands to the subtract are of 
different signs and the sign of the result is the sign of the subtrahend. 
On overflow, the difference operand is replaced by the low order bits 
of the true result. 

Test 

Format: 

opoode sro.rx 

. Operation: 

sro - 0; 

Condition Codes: 

N ~ sro LSS 0; 

Z ~ sro EQL 0; 

V ~ 0; 

C ~ 0; 

Exceptions: 
none 

Opcodes: 

95 TSTB Test Byte 
D5 TSTL Test Long 

B5 TSTW Test Word 

Description: 
The condition codes are affected according to the value of the source 
operand. 

Notes: 
T8Tx src is equivalent to CMPx src, 8/\#0, but is 1 byte shorter. 
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XOR Exclusive-OR 

Format: 

opcode mask.rx, dst.mx 

opcode mask.rx, src.rx, dst.wx 

2 operand 

3 operand 

Operation: 

dst ~ dst XOR mask; 

dst ~ src XOR mask; 

!2 operand 

!3 operand 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ C; 

Exceptions: 
none 

Opcodes: 

8C XORB2 

80 XORB3 

AC XORW2 

AD XORW3 

CC XORL2 

CO XORL3 

Description: 

Exclusive-OR Byte 2 Operand 

Exclusive-OR Byte 3 Operand 

Exclusive-OR Word 2 Operand 

Exclusive-OR Word 3 Operand 

Exclusive-OR Long 2 Operand 

Exclusive-OR Long 3 Operand 

In 2 operand format, the mask operand is XORed with the destination 
operand and the destination operand is replaced by the result. In 3 
operand format, the mask operand is XORed with the source operand 
and the destination operand is replaced by the result. 
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Move Address 

Format: 

opcode src.ax, dst.wl 

Operation: 

dst ~ src; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ c; 

Exceptions: 
none 

Opcodes: 

9E 

3E 

DE 

7E 

7EFD 

MOVAB 

MOVAW 

MOVAL 

MOVAF 

MOVAQ 

MOVAD 

MOVAG 

MOVAH 

MOVAO 

Description: 

Move 

Move 

Move 

Move 

Move 

Move 

Move 

Move 

Move 

Address 

Address 

Address 

Address 

Address 

Address 

Address 

Address 

Address 

Byte 

Word 

Long, 

F_floating 

Quad, 

D_floating, 

G_floating 

H_floating, 

Octa 

The destination operand is replaced by the source operand. The 
context in which the source operand is evaluated is given by the data 
type of the instruction. The operand whose address replaces the 
destination operand is not referenced. 

Notes: 
The source operand is of address access type which causes the 
address of the specified operand to be moved. 
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PUSHA Push Address 

Format: 

opcode src.ax 

Operation: 

-(SP) ~ src; 

Condition Codes: 

N ~ src LSS 

Z ~ src EQL 

V ~ 0; 

C ~ c; 

Exceptions: 
none 

Opcodes: 

9F 

3F 

OF 

7F 

7FFO 

PUSHAB 

PUSHAW 

PUSHAL 

PUSHAF 

PUSHAQ 

PUSHAO 

PUSHAG 

PUSHAH 

PUSHAO 

Description: 

0; 

0; 

Push 

Push 

Push 

Push 

Push 

Push 

Push 

Push 

Push 

Address Byte 

Address Word 

Address Long, 

Address F _floating 

Address Quad, 

Address O_floating, 

Address G_floating 

Address H_floating 

Address Oct a 

The source operand is pushed on the stack. The context in which the 
source operand is evaluated is given by the data type of the instruction. 
The operand whose address is pushed is not referenced. 

Notes: 
1. PUSHAx src is equivalent to MOVAx src, - (SP), but is 1 byte 

shorter. 

2. The source operand is of address access type which causes the 
address of the specified operand to be pushed. 
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BIT FIELD 
INSTRUCTIONS 
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68 

A variable-length bit field is specified by three operands: 

1. A longword position operand. 

2. A byte field size operand that must be in the range 0 through 32 or 
a reserved operand fault occurs. 

3. A base address (relative to which the position is used to locate the 
bit field). The address is obtained from an operand of address 
access type. Unlike other instances of operand specifiers of 
address access type, however, register mode may be designated 
in the operand specifier. In this case, the field is contained in 
the register n designated by the operand specifier (or register n + 1 
concatenated with register n; see Chapter 1). If the field is 
contained in a register and size is not zero, the position operand 
must have a value in the range. 0 through 31 or a reserved 
operand fault occurs. 

In order to simplify the description of the variable-length bit field 
instructions, a macro FIELD(pos, size, address) is introduced with the 
following expansion. (if size NEQ 0): 

FIELD(pos, size, address) 

== (address + SEXT(pos(31:3)) )({size - I} + pos(2:0):pos(2:0)) 

!if address not specified by register mode 

{R[n+l]'Rn}{{size - I} + pos:pos) 0 059 

!if address specified by register mode and pos + 
!size GTRU 32 

Rn({size - I} + pos: pos) 

! if address specified by register mode and pos + 
!size LEQU 32 

The number of bytes referenced by the contents ( ) operator above 
is: 

I + {{{size - I} + pos(2: OJ} / 8} 

Zero bytes are referenced if the field size is O. 

Compare Field 

Format: 

opcode pos.rl, size.rb, base.vb, src.rl 

Operation: 

tmp +- if size NEQU 0 then SEXT(FIELD (pos, size, base)) 

else 0; !CMPV 
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EXT 

tmp ~ if size NEQU 0 then ZEXT(FIELD (pas, size, base)) 

else 0; 

tmp - src; 

Condition Codes: 

N +- tmp LSS src; 

Z +- tmp EQL src; 

V +- o· 
C +- tmp LSSU src; 

Exception: 
reserved operand 

Opcodes: 

EC CMPV Compare Field 

!CMPZV 

ED CMPZV Compare Zero-Extended Field 

Description: 
The field specified by the position, size, and base operands is 
compared with the source operand. For CMPV, the source operand is 
compared with the sign-extended field. For CMPZV, the source 
operand is compared with the zero-extended field. The only action is 
to affect the condition codes. 

Notes: 
1. A reserved operand fault occurs if: 

• size GTRU 32 

• pos GTRU 31, size NEQ 0, and the field is contained in the 
registers. 

2. On a reserved operand fault, the condition codes are 
UNPREDICTABLE. 

Extract Field 

Format: 

opcode pos.rl, size.rb, base.vb, dst.wl 

Operation: 

dst +- if size NEQU 0 then SEXT(FIELD(pos, size, base)) 

else 0; I EXTV 
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dst ~ if size NEQU 0 then ZEXT(FIELD(pos, size, base)) 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ c; 

Exception: 
reserved operand 

Opcodes: 

else 0; 

EE EXT V Extract Field 

I EXTZV 

EF EXTZV Extract Zero-Extended Field 

Description: 
For EXTV, the destination operand is replaced by the sign-extended 
field specified by the position, size, and base operands. For EXTZV, 
the destination operand is replaced by the zero-extended field 
specified by the position, size, and base operands. If the size operand 
is 0, the only actions are to replace the destination operand with 0 
and to affect the condition codes. 

Notes: 
1. A reserved operand fault occurs if: 

• size GTRU 32 

• pos GTRU 31, size NEQ 0, and the field is contained in the 
registers. 

2. On a reserVed operand fault, the destination operand is unaffected 
and the condition codes are UNPREDICTABLE. 

Find First 

Format: 

opcode startpos.rl, size.rb, base. vb, findpos.wl 

Operation: 

state = if {FFS} then 1 else 0; 

if size NEQU 0 then 

begin 
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else 

tmpl ~ FIELD(startpos, size, base); 

tmp2 ~ 0; 

while {tmpl(tmp2) NEQ state} AND 

{tmp2 LEQU {size - in do 

tmp2 ~ tmp2 + 1; 

findpos ~ startpos + tmp2; 

end 

findpos ~ startpos; 

Condition Codes: 

N ~ 0; 

Z ~ {bit not found}; 

V ~ 0; 

C ~ 0; 

Exception: 
reserved operand 

Opcodes: 

EB FFC Find First Clear 

EA FFS Find First Set 

Description: 
A field specified by the start position, size, and base operands is 
extracted, The field is tested for a bit in the state indicated by the 
instruction, starting at bit 0 and extending to the highest bit in the field, 
If a bit in the indicated state is found, the find position operand is 
replaced by the position of the bit and the Z condition code bit 
is cleared, If no bit in the indicated state is found, the find position 
operand is replaced by the position (relative to the base) of a bit one 
position to the left of the specified field and the Z condition code bit is 
set If the size operand is 0, the find position operand is replaced by 
the start position operand and the Z condition code bit is set 

Notes: 
1. A reserved operand fault occurs if: 

• size GTRU 32 

• startpos GTRU 31, size NEQ 0, and the field is contained in the 
registers. 

2. On a reserved operand fault, the find position operand is unaffected 
and the condition codes are UNPREDICTABLE. 

Instructions 71 



INSV 

CONTROL 
INSTRUCTIONS 
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Insert Field 

Format: 

opcode src.rl, pos.rl, size.rb, base.vb 

Operation: 

if size NEQU 0 then FIELD(pos, size, base) <- src({size-l}:O); 

Condition Codes: 

N <- N' 

Z <- Z· 

v <- v; 
C <- C· 

Exception: 
reserved operand 

Opcode: 

FO INSV Insert Field 

Description: 
The field specified by the position, size, and base operands is 
replaced by bits (size -1 :0) of the source operand. If the size operand 
is 0, the instruction has no effect. 

Notes: 
1. A reserved operand fault occurs if: 

• size GTRU 32 

• pos GTRU 31, size NEQ 0, and the field is contained in the 
registers. 

2. On a reserved operand fault, the field is unaffected and the 
condition codes are UNPREDICTABLE. 

Add Compare and Branch 

Format: 

opcode limit.rx, add.rx, index.mx, displ.bw 
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Operation: 

index +- index + add; 

if {{add GEQ O} AND {index LEQ limit}} OR 

{{add LSS O} AND {index GEQ limit}} then 

PC +- PC + SEXT (displ ) ; 

Condition Codes: 

N +- index LSS 0; 

Z +- index EQL 0; 

V +- {integer overflow}; 

C +- C; 

Exceptions: 
integer overflow 

floating overflow 

floating underflow 

reserved operand 

Opcodes: 

9D ACBB Add Compare 

3D ACBW Add Compare 

Fl ACBL Add Compare 

4F ACBF Add Compare 

6F ACBD Add Compare 

4FFD ACBG Add Compare 

6FFD ACBH Add Compare 

Description: 

and Branch Byte 

and Branch Word 

and Branch Long 

and Branch F_floating 

and Branch D_floating 

and Branch G_floating 

and Branch ~floating 

The addend operand is added to the index operand, and the index 
operand is replaced by the result. The index operand is compared 
with the limit operand. If the addend operand is positive (or 0) and the 
comparison is less than or equal, or if the addend is negative and 
the comparison is greater than or equal, the sign-extended branch 
displacement is added to PC. PC is then replaced by the result. 

Notes: 
1. ACB efficiently implements the general FOR or DO loops in high­

level languages since the sense of the comparison between index 
and limit is dependent on the sign of the addend. 
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2. On integer overflow, the index operand is replaced by the low 
order bits of the true result. Comparison and branch determination 
proceed normally on the updated index operand. 

3. On floating underflow, if FU is clear, the index operand is replaced 
by 0 and comparison and branch determination proceed normally. 
A fault occurs if FU is set and the index operand is unaffected. 

4. On floating overflow, the instruction takes a floating overflow fault 
and the index operand is unaffected. 

5. On a reserved operand fault, the index operand is unaffected and 
the condition codes are UNPREDICTABLE. 

Add One and Branch Less Than or Equal 

Format: 

opcode limit.rl, index.ml, displ.bb 

Operation: 

index ~ index + I; 

if index LEQ limit then PC ~ PC + SEXT (displ) ; 

Condition Codes: 

N ~ index LSS 0; 

Z ~ index EQL 0; 

V ~ {integer overflow}; 

C ~ C; 

Exception: 
integer overflow 

Opcode: 

F3 AOBLEQ Add One and Branch Less Than or Equal 

Description: 
One is added to the index operand and the index operand is replaced 
by the result. The index operand is compared with the limit operand. 
If it is less than or equal, the sign-extended branch displacement is 
added to PC. PC is then replaced by the result. 

Notes: 
1. Integer overflow occurs if the index operand before addition is the 

largest positive integer. On overflow, the index operand is replaced 
by the largest negative integer and the branch is taken. 

2. The C-bit is unaffected. 
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Add One and Branch Less Than 

Format: 

opcode limit.rl. index.ml. displ.bb 

Operation: 

index ~ index + I; 

if index LSS limit then PC ~ PC + SEXT(displ); 

Condition Codes: 

N ~ index LSS 0; 

Z ~ index EQL 0; 

V ~ {integer overflow}; 

C ~ C; 

Exception: 
integer overflow 

Opcode: 

F2 AOBLSS Add One and Branch Less Than 

Description: 
One is added to the index operand, and the index operand is replaced 
by the result. The index operand is compared with the limit operand. 
If it is less than, the sign-extended branch displacement is added 
to the PC ahd PC is replaced by the result. 

Notes: 
1. Integer overflow occurs if the index operand before addition is the 

largest positive integer. On overflow, the index operand is replaced 
by the largest negative integer; thus the branch is taken (unless 
the limit operand is the largest negative integer). 

2. The C-bit is unaffected. 

Branch on (condition) 

Format: 

opcode displ.bb 

Operation: 

if condition then PC ~ PC + SEXT (displ ) ; 
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Condition Codes: 

N +- N; 

Z +- z; 
V +- v; 
C +- c; 

Exceptions: 
none 

Opcodes: Condition 

14 {N OR Z} EQL 0 BGTR Branch on Greater Than 
(signed) 

15 {N OR Z} EQL 1 BLEQ Branch on Less Than or 
Equal (signed) 

12 Z EQL 0 BNEQ, Branch on Not Equal 
(signed) 

BNEQU Branch on Not Equal 
Unsigned 

13 Z EQL 1 BEQL Branch on Equal (signed) 

BEQLU Branch on Equal Unsigned 

18 N EQL 0 BGEQ Branch on Greater Than or 
Equal (signed) 

19 N EQL 1 BLSS Branch on Less Than 
(signed) 

lA {C OR Z} EQL 0 BGTRU Branch on Greater Than 
Unsigned 

IB {C OR Z} EQL 1 BLEQU Branch Less Than or Equal 
Unsigned 

lC V EQL 0 BVC Branch on Overflow Clear 

ID V EQL 1 BVS Branch on Overflow Set 

IE C EQL 0 BGEQU Branch on Greater Than or 
Equal Unsigned 

BCC Branch on Carry Clear 

IF C EQL 1 BLSSU Branch on Less Than 
Unsigned 

BCS Branch on Carry Set 

Description: 
The condition codes are tested and, if the condition indicated by the 
instruction is met, the sign-extended branch displacement is added to 
the PC. PC is then replaced by the result. 

VAX Architecture Reference Manual 



BB 

Notes: 
The VAX conditional branch instructions permit considerable flexibility 
in branching but require care in choosing the correct branch instruction. 
The conditional branch instructions are best seen as three overlapping 
groups: 

1. Overflow and Carry Group 

BVS V EQL 1 

BVe V EQL 0 

Bes e EQL I 

Bee e EQL 0 

These instructions are typically used to check for overflow (when 
overflow traps are not enabled), for multiprecision arithmetic, 
and for other special purposes. 

2. Unsigned Group 

BLSSU e EQL I 

BLEQU {e OR Z} EQL I 

BEQLU Z EQL 1 

BNEQU Z EQL 0 

BGEQU e EQL 0 

BGTRU {e OR Z} EQL 0 

These instructions typically follow integer and field instructions 
where the operands are treated as unsigned integers, address 
instructions, and character-string instructions. 

3. Signed Group 

BLSS N EQL 1 

BLEQ {N OR Z} EQL I 

BEQL Z EQL I 

BNEQ Z EQL 0 

BGEQ N EQL 0 

BGTR {N OR Z} EQL 0 

These instructions typically follow integer and field instructions 
where the operands are being treated as signed integers, floating­
point instructions,and deCimal-string instructions. 

Branch on Bit 

Format: 

opcode pos.rl, base. vb, displ.bb 
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Operation: 

teststate = if {BBS} then 1 else 0; 

if FIELD(pos, 1, base) EQL teststate then 

PC ~ PC + SEXT(displ); 

Condition Codes: 

N ~ N' 

Z ~ Z; 

V ~ V; 

C ~ C; 

Exception: 
reserved operand 

Opcodes: 

EO BBS Branch on Bit Set 

El BBC Branch on Bit Clear 

Description: 
The single-bit field specified by the position and base operands is 
tested. If it is in the test state indicated by the instruction, the sign­
extended branch displacement is added to PC and PC is replaced by 
the result. 

Notes: 
1. See the section "Variable-Length Bit Field Instructions" earlier in 

this chapter for a definition of FIELD. 

2. A reserved operand fault occurs if pos GTRU 31 and the bit is 
contained in a register. 

3. On a reserved operand fault, the condition codes are 
UNPREDICTABLE. 

Branch on Bit (and modify without interlock) 

Format: 

opcode pos.rl, base.vb, displ.bb 

Operation: 

teststate = if {BBSS or BBSC} then 1 else 0; 

news tate = if {BBSS or BBCS} then 1 else 0; 

tmp ~ FIELD(pos, 1, base); 
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FIELD(pos, 1, base) ~ newstate; 

if tmp EQL teststate then 

PC ~ PC + SEXT( displ) ; 

Condition Codes: 

N ~ N; 

Z ~ Z; 

v ~ v; 
C ~ C; 

Exception: 
reserved operand 

Opcodes: 

E2 BBSS Branch 

E3 BBCS Branch 

E4 BBSC Branch 

E5 BBCC Branch 

Description: 

on Bit Set and Set 

on Bit Clear and Set 

on Bit Set and Clear 

on Bit Clear and Clear 

The single-bit field specified by the position and base operands is 
tested. If it is in the test state indicated by the instruction, the sign­
extended branch displacement is added to PC and PC is replaced by 
the result. Regardless of whether the branch is taken or not, the 
tested bit is put in the new state as indicated by the instruction. 

Notes: 
1. See the section "Variable-Length Bit Field Instructions" earlier in 

this chapter for a definition of FIELD. 

2. A reserved operand fault occurs if pos GTRU 31 and the bit is 
contained in a register. 

3. On a reserved operand fault, the field is unaffected and the 
condition codes are UNPREDICTABLE. 

4. The modification of the bit is not an interlocked operation. See 
BBSSI and BBCCI for interlocking instructions. 

Branch on Bit Interlocked 

Format: 

opcode pos.rl, base.vb, displ.bb 
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Operation: 

teststate = if {BBSSI} then 1 else 0; 

newstate = teststate; 

{set interlock}; 

tmp ~ FIELD(pos, 1, base); 

FIELD(pos, 1, base) ~ newstate; 

{release interlock}; 

if tmp EQL teststate then PC ~ PC + SEXT(displ); 

Condition Codes: 

N ~ N; 

Z ~ Z· 

V ~ V; 

C ~ C; 

Exception: 
reserved operq,nd 

Opcodes: 

E6 BBSSI Branch on Bit Set and Set Interlocked 

E7 BBCCI Branch on Bit Clear and Clear Interlocked 

Description: 
The single-bit field specified by the position and base operands is 
tested, If it is in the test state indicated by the instruction, the sign­
extended branch displacement is added to the PC and PC is replaced 
by the result. Regardless of whether the branch is taken or not, the 
tested bit is put in the new state as indicated by the instruction. If the 
bit is contained in memory, the reading of the state of the bit and 
the setting of it to the new state is an interlocked operation, No other 
processor or I/O device can do an interlocked access on the bit 
during the interlocked operation. 

Notes: 
1. See the section "Variable-Length Bit Field Instructions" earlier in 

this chapter for a definition of FIELD. 

2. A reserved operand fault occurs if pos GTRU 31 and the bit is 
contained in registers. 

3. On a reserved operand fault, the field is unaffected and the 
condition codes are UNPREDICTABLE. 

4. Except for memory interlocking, BBSSI is equivalent to BBSS and 
BBCCI is equivalent to BBCC. 
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5. This instruction is designed to modify interlocks with other 
processors or devices. For example, to implement "busy waiting": 

1$: BBSSI bit,base,l$ 

Branch on Low Bit 

Format: 

opcode src.rl, displ.bb 

Operation: 

teststate = if {BLBS} then 1 else 0; 

if src(O) EQL teststa te then PC <- PC + SEXT (displ ) ; 

Condition Codes: 

N <- N' 

Z <- Z· 

v <- V; 

C <- C; 

Exceptions: 
none 

Opcodes: 

E8 BLBS Branch on Low Bit Set 

E9 BLBC Branch on Low Bit Clear 

Description: 
The low bit (bit 0) of the source operand is tested and, if it is equal to 
the test state indicated by the instruction, the sign-extended branch 
displacement is added to PC. PC is then replaced by the result. 

Branch 

Format: 

opcode displ.bx 

Operation: 

PC <- PC + SEXT (displ ) ; 
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Condition Codes: 

N <E- N; 

Z <E- Z; 

V <E- V; 

C <E- C; 

Exceptions: 
none 

Opcodes: 

11 BRB Branch With Byte Displacement 

31 BRW Branch With Word Displacement 

Description: 
The sign-extended branch displacement is added to PC, and PC is 
replaced by the result. 

Branch to Subroutine 

Format: 

opcode displ.bx 

Operation: 

- (SP) <E- PC; 

PC <E- PC + SEXT (displ ) ; 

Condition Codes: 

N <E- N; 

Z <E- Z· 

V <E- V; 

C <E- C; 

Exceptions: 
none 

Opcodes: 

10 BSBB Branch to Subroutine With Byte Displacement 

30 BSBW Branch to Subroutine With Word Displacement 

VAX Architecture Reference Manual 



CASE 

Description: 
PC is pushed on the stack as a longword. The sign-extended branch 
displacement is added to PC, and PC is replaced by the result. 

Case 

Format: 

opcode selector.rx. base.rx. limit.rx. 

displ[O).bw ..... displ[limit).bw 

Operation: 

tmp ~ selector - base; 

PC ~ PC + if tmp LEQU limit then 

SEXT(displ[tmp)) else {2 + 2 * ZEXT(limit)}; 

Condition Codes: 

N ~ tmp LSS limit; 

Z ~ tmp EQL limit; 

V ~ 0; 

C ~ tmp LSSU limit; 

Exceptions: 
none 

Opcodes: 

SF CASEB Case Byte 

AF CASEW Case Word 

CF CASEL Case Long 

Description: 
The base operand is subtracted from the selector operand, and a 
temporary is replaced by the result. The temporary is compared with 
the limit operand; if it is less than or equal unsigned, a branch 
displacement selected by the temporary value is added to PC. PC is 
then replaced by the result. Otherwise, two times the sum of the 
limit operand and 1 is added to PC, and PC is replaced by the result. 
This causes PC to be moved past the array of branch displacements. 
Regardless of the branch taken, the condition codes are affected by 
the comparison of the temporary operand with the limit operand. 
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Notes: 
1. After operand evaluation, PC is pointing at displ[O), not at the next 

instruction. The branch displacements are relat.ive to the address 
of displ[O). 

2. The selector and base operands can both be considered either as 
signed or unsigned integers. 

3. The Pascal statement: 

case i of 

32: x - sin(x) ; 

33: x - cos(x) ; 

34: x - exp(x) ; 

35: x - In(x) ; 

36, 37: x arctanh (x) ; 

otherwise x reserved 

end 

is translated by the VAX Pascal compiler to: 

easel 

1$: .word 

. word 

. word 

. word 

.word 

.word 

otherwise: 

i, #32, #(37-32} 

sin - 1$ 

cos - 1$ 

exp - 1$ 

In - 1$ 

arc tanh - 1$ 

arc tanh - 1$ 

movl reserved, x 

Jump 

Format: 

ope ode dst.ab 

Operation: 

PC ~ dst; 

Condition Codes: 

N ~ N; 

Z ~ z; 
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v ~ v; 
C ~ C; 

Exceptions: 
none 

Opcode: 

17 JMP Jump 

Description: 
PC is replaced by the destination operand. 

Jump to Subroutine 

Format: 

ope ode dst.ab 

Operation: 

--.,. (SP) ~ PC; 

PC ~ dst; 

Condition Codes: 

N ~ N; 
Z ~ z; 
v ~ v; 
C ~ C; 

Exceptions: 
none 

Opcodes: 

16 JSB Jump to Subroutine 

Description: 
PC is pushed on the stack as a longword. PC is replaced by the 
destination operand. 

Notes: 
Since the operand specifier conventions cause the evaluation of the 
destination operand before saving PC, JSB can be used for coroutine 
calls with the stack used for linkage. The form of such a call is 
JSB @(SP)+. 
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Return from Subroutine 

Format: 

ope ode 

Operation: 

PC ~ (SP) +; 

Condition Codes: 

N ~ N; 

Z ~ Z; 

V ~ v; 
C ~ C; 

Exceptions: 
none 

Opcodes: 

05 RSB Return From Subroutine 

Description: 
PC is replaced by a longword popped from the stack. 

Notes: 
1. RSB is used to return from subroutines called by the BSBB, BSBW 

and JSB instructions. 

2. RSB is equivalent to JMP @(SP) +, but is 1 byte shorter. 

Subtract One and Branch Greater Than or Equal 

Format: 

opeode index.mI, dispI.bb 

Operation: 

index ~ index - 1; 

if index GEQ 0 then PC ~ PC + SEXT (dispI) ; 

Condition Codes: 

N ~ index LSS 0; 
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z ~ index EQL 0; 

V ~ {integer overflow}; 

C ~ C; 

Exception: 
integer overflow 

Opcode: 

F4 SOBGEQ Subtract One and Branch Greater Than or Equal 

Description: 
One is subtracted from the index operand, and the index operand is 
replaced by the result. If the index operand is greater than or equal to 
0, the sign-extended branch displacement is added to PC. PC is 
then replaced by the result. 

Notes: 
1. Integer overflow occurs if the index operand before subtraction is 

the largest negative integer. On overflow, the index operand is 
replaced by the largest positive integer, and thus the branch 
is taken. 

2. The C-bit is unaffected. 

Subtract One and Branch Greater Than 

Format: 

ope ode index.ml, displ.bb 

Operation: 

index ~ index - 1; 

if index GTR 0 then PC ~ PC + SEXT (displ ) ; 

Condition Codes: 

N ~ index LSS 0; 

Z ~ index EQL 0; 

V ~ {integer overflow}; 

C ~ C; 

Exception: 
integer overflow 
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Opcode: 

F5 SOBGTR Subtract One and Branch Greater Than 

Description: 
One is subtracted from the index operand, and the index operand is 
replaced by the result. If the index operand is greater than 0, the sign­
extended branch displacement is added to PC. PC is then replaced 
by the result. 

Notes: 
1. Integer overflow occurs if the index operand before subtraction is 

the largest negative integer. On overflow, the index operand is 
replaced by the largest positive integer, and thus the branch 
is taken. 

2. The C-bit is unaffected. 

Three instructions are used to implement a standard procedure­
calling interface: Two instructions implement the call to the procedure; 
the third implements the matching return. The CALLG instruction 
calls a procedure with the argument list in an arbitrary location, The 
CALLS instruction calls a procedure with the argument list on the 
stack. Upon return after a CALLS, this list is automatically removed 
from the stack. Both call instructions specify the address of the entry 
point of the procedure being called. The entry point is assumed to 
consist of a word termed the entry mask followed by the procedure's 
instructions. The procedure terminates by executing a RET instruction. 

The entry mask specifies the subprocedure's register use and 
overflow enables, as shown in Figure 3.1. On CALL, the stack is 
aligned to a longword boundary and the trap enables in the PSW are 
set to a known state to ensure consistent behavior of the called 
procedure. Integer overflow-enable and decimal overflow-enable are 
affected according to bits (14) and (15) of the entry mask respectively. 
Floating underflow-enable is cleared. The registers R11 through RO 
specified by bits (11) through (0), respectively, are saved on the stack 
and are restored by the RET instruction. In addition, PC, SP, FP, 
and AP are always preserved by the CALL instructions and restored 
by the RET instruction. 

All external procedure calls generated by standard DIGITAL language 
processors and all intermodule calls to major VAX software subsys­
tems comply with the procedure-calling software standard. The 
procedure-calling standard requires that all registers in the range R2 
through R11 used in the procedure must appear in the mask. RO and 

'Refer to VAX/VMS Introduction to System Routines for the procedure-calling 
standard. 
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registers 

Figure 3.1 
Procedure Entry Mask 

R1 are not preserved by any called procedure that complies with the 
procedure-calling standard. 

In order to preserve the state, the CALL instructions form a structure 
on the stack termed a call frame or stack frame, shown in Figure 3.2. 
This structure contains the saved registers, the saved PSW, the 
register save mask, and several control bits. The frame also includes 
a longword that the CALL instructions clear; this is used to implement 
the VAXIVMS condition-handling facility. Refer to the VAX/VMS Run 
Time Library Reference Manual. At the end of execution of the CALL 
instruction, FP contains the address of the stack frame. The RET 
instruction uses the contents of FP to find the stack frame and restore 
state. The condition-handling facility assumes that FP always pOints 
to the stack frame. Note that the saved condition codes and the 
saved trace enable (PSW(T») are cleared. 

The contents of the frame PSW(3:0) at the time RET is executed will 
become the condition codes resulting from the execution of the 
procedure. Similarly, the content of the frame PSW(4) at the time the 
RET is executed will become the PSW(T) bit. 

3130292827 161514 54 

condition handler (initially 0) 

spAjslol mask< 11:0> l~saved PSW<14:S>1 0 

saved AP 

saved FP 

saved PC 

saved RD ( ... ) 

saved R11 ( ... ) 

(0 to 3 bytes specified by SPA, Stack Pointer Alignment) 

S = Set if CALLS; clear if CALLG. 
Z = Always cleared by CALL. Can be set by software to 

force a reserved operand fault on a RET. 

Figure 3.2 
Procedure Call Stack Frame 
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Call Procedure with General Argument List 

Format: 

opcode arglist.ab, dst.ab 

Operation: 

{align stack}; 

{create stack frame}; 

{set arithmetic exception enables}; 

{set new values of AP, FP, PC}; 

Condition Codes: 

N ~ 0; 

Z ~ 0; 

v ~ 0; 

C ~ 0; 

Exception: 
reserved operand 

Opcodes: 

FA CALLG Call Procedure with General Argument List 

Description: 
SP is saved in a temporary, and then bits (1 :0) are replaced by 0 so 
that the stack is longword aligned. The procedure entry mask is 
scanned from bits (11) to (0), and the contents of registers whose 
number corresponds to set bits in the mask are pushed on the stack 
as longwords. PC, FP, and AP are pushed on the stack as longwords. 
The condition codes are cleared. A longword containing the following 
is pushed on the stack: the saved two low bits of SP in bits (31 :30), a 
o in bit (29) and bit (28), the low 12 bits of the procedure entry mask 
in bits (27:16), a 0 in bit (15) and PSW(14:0) in bits (14:0) with T 
cleared. A longword 0 is pushed on the stack. FP is replaced by SP. 
AP is replaced by the arglist operand. The trap-enables in the PSW 
are set to a known state. Integer overflow and decimal overflow 
are affected according to bits (14) and (15), respectively, of the entry 
mask; floating underflow is cleared. The T-bit is unaffected. PC is 
replaced by the sum of destination operand plus 2, which transfers 
control to the called procedure at the byte beyond the entry mask. 

Notes: 
1. If bits (13: 12) of the entry mask are not 0, a reserved operand fault 

occurs. 
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2. On a reserved operand fault, condition codes are 
UNPREDICTABLE. 

3. The procedure-calling standard and the condition-handling facility 
require the following register-saving conventions. RO and R1 are 
always available for function return values and are never saved in 
the entry mask. All registers R2 through R11 that are modified in 
the called procedure must be preserved in the mask. 

4. The alignment bytes left on the stack are UNPREDICTABLE. They 
may, for example, be written with zeros when the stack is aligned. 

Call Procedure with Stack Argument List 

Format: 

opcode numarg.rl. dst.ab 

Operation: 

{push arg count}; 

{align stack}; 

{create stack frame}; 

{set arithmetic exception enables}; 

{set new values of AP,FP,PC}; 

Condition Codes: 

N +- 0; 

Z +- 0; 

V +- 0; 

C +- 0; 

Exception: 
reserved operand 

Opcode: 

FE CALLS Call Procedure with Stack Argument List 

Description: 
The numarg operand is pushed on the stack as a longword. (Byte 0 
contains the number of arguments; high-order 24 bits are used by 
DIGITAL software.) SP is saved in a temporary, and then bits (1 :0) of 
SP are replaced by 0 so that the stack is longword aligned. The 
procedure entry mask is scanned from bit (11) to bit (0), and the 
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contents of registers whose number corresponds to set bits in the 
mask are pushed on the stack. PC, FP, and AP are pushed on the 
stack as longwords. The condition codes are cleared. A longword 
containing the following is pushed on the stack: saved two low bits of 
SP in bits (31 :30), a 1 in bit (29), a 0 in bit (28), the low 12 bits of 
the procedure entry mask in bits (27:16), a 0 in bit (15) and PSW(14:0) 
in bits (14:0) with T cleared. A longword 0 is pushed on the stack. FP 
is replaced by SP. AP is set to the value of the stack pointer after 
the numarg operand was pushed on the stack. The trap-enables in 
the PSW are set to a known state. Integer overflow and decimal 
overflow are affected according to bits (14) and (15), respectively, of 
the entry mask; floating underflow is cleared. T-bit is unaffected. PC is 
replaced by the sum of destination operand plus 2, which transfers 
control to the called procedure at the byte beyond the entry mask. 
The appearance of the stack after CALLS is executed is shown 
in Figure 3.2. 

Notes: 
1. If bits (13:12) of the entry mask are not 0, a reserved operand fault 

occurs. 

2. On a reserved operand fault, the condition codes are 
UN PRED ICT ABLE. 

3. Normal use is to push the arglist onto the stack in reverse order 
prior to the CALLS. On return, the arglist is removed from the 
stack automatically. 

4. The procedure-calling standard and the condition-handling facility 
require the following register-saving conventions. RO and R1 are 
always available for function return values and are never saved in 
the entry mask. All registers R2 through R11 that are modified in 
the called procedure must be preserved in the entry mask. 

5. The alignment bytes left on the stack are UNPREDICTABLE. They 
may, for example, be written with zeros when the stack is aligned. 

Return from Procedure 

Format: 

opcode 

Operation: 

{restore SP from FP}; 

{restore registers}; 

{drop stack alignment}; 
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{if CALLS then remove arglist}; 

{restore PSW}; 

Condition Codes: 

N <f- tmpl(3) ; 

z <f- tmpl(2) ; 

V <f- tmpl(l) ; 

C <f- tmpl(O) ; 

Exception: 
reserved operand 

Opcode: 

04 RET Return from Procedure 

Description: 
SP is replaced by FP plus 4. A longword containing the following is 
popped from the stack and saved in a temporary: stack alignment bits 
in bits (31 :30), a flag distinguishing CALLS from CALLG in bit (29), 
the low 12 bits of the procedure entry mask in bits (27:16), and a 
saved PSW in bits (15:0). PC, FP, and AP are replaced by longwords 
popped from the stack. A register restore mask is formed from bits 
(27:16) of the temporary. Scanning from bit (0) to bit (11) of the 
restore mask, the contents of registers whose number is indicated by 
set bits in the mask are replaced by longwords popped from the 
stack. SP is incremented by (31 :30) of the temporary. PSW is 
replaced by bits (15:0) of the temporary. If bit (29) in the temporary is 
1 (indicating that the procedure was called by CALLS), a longword 
containing the number of arguments is popped from the stack. Four 
times the unsigned value of the low byte of this longword is added to 
SP, and SP is replaced by the result. 

Notes: 
1. A reserved operand fault occurs if tmp1 (15:8) NEQ O. 

2. On a reserved operand fault, the condition codes are 
UNPREDICTABLE. 

3. The value of tmp1(28) is ignored. 

4. The procedure-calling standard and condition-handling facility 
assume that procedures returning a function value or a status code 
do so in RO or RO and R1. 

5. If FP(1 :0) is not zero, or if the stack frame is ill-formed, the results 
are UNPREDICTABLE. 
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Bit Clear PSW 

Format: 

ope ode mask.rw 

Operation: 

PSW ~ PSW AND {NOT mask}; 

Condition Codes: 

N ~ NAND {NOT mask(3)} ; 

Z ~ Z AND {NOT mask(2)}; 

V ~ V AND {NOT mask(l>}; 

C ~ C AND {NOT mask(O>}; 

Exception: 
reserved operand 

Opcode: 

B9 BrcPSW Bit Clear PSW 

Description: 
PSW is ANDed with the one's complement of the mask operand, and 
PSW is replaced by the result. 

Notes: 
A reserved operand fault occurs if mask (15:8> is not zero. On a 
reserved operand fault, the PSW is not affected. 

Bit Set PSW 

Format: 

opeode mask.rW 

Operation: 

PSW ~ PSW OR mask; 

Condition Codes: 

N ~ N OR mask(3); 
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z <- Z OR mask(2); 

V <- V OR mask(l>; 

C <- C OR mask(O>; 

Exception: 
reserved operand 

Opcode: 

B8 BISPSW Bit Set PSW 

Description: 
PSW is ORed with the mask operand, and PSW is replaced by the 
result. 

Notes: 
A reserved operand fault occurs if mask(15:8) is not zero. On a 
reserved operand fault, the PSW is not affected. 

Breakpoint 

Format: 

opcode 

Operation: 

PSL(TP) <- 0; 

{ini tiate breakpoint fault}; [push current PSL on stack 

Condition Codes: 

N <- 0; ! condi tian codes cleared after BPT faul t 

Z <- 0; 

V <- 0; 

C <- 0; 

Exception: 
none 

Opcode: 

03 BPT Breakpoint 

Description: 
In order to understand the operation of this instruction, read Chapter 
5, Exceptions and Interrupts. This instruction is used, together with 
PSL(T), to implement debugging facilities. 
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Bugcheck 

Format: 

opcode message.bx 

Operation: 

{fault to report error} 

Condition Codes: 

N ~ N; 

Z ~ z; 
v ~ v; 
C ~ C; 

Exception: 
reserved instruction 

Opcode: 

FEFF BUGW Bugcheck with Word Message Identifier 

FDFF BUGL Bugcheck with Longword Message Identifier 

Description: 
The hardware treats these opcodes as reserved to DIGITAL and 
faults. The VAXIVMS operating system treats these as requests to 
report software detected errors. The in-line message identifier is zero­
extended to a longword (BUGW) and interpreted as a condition 
value. If the process is privileged to report bugs, a log entry is made. 
If the process is not privileged, a reserved instruction is signaled. 

Halt 

Format: 

opcode 

Operation: 

If PSL(CUR_MOD) NEQU kernel then 

{privileged instruction fault} 

else 

{hal t the processor}; 

VAX Architecture Reference Manual 



INDEX 

Condition Codes: 

N .;- 0; ! If privileged instruction fault 

Z .;- 0; !condition codes are cleared after 

V .;- 0; !the fault. PSL saved on 

C .;- 0; !contains condition 

N .;- N' IIf processor halt 

Z .;- Z; 

V .;- V; 

C .;- C; 

Exception: 
privileged instruction 

Opcode: 

00 HALT Halt 

Description: 

codes 

stack 

prior to HALT. 

In order to understand the operation of this instruction, read Chapter 
5, Exceptions and Interrupts. If the process is running in kernel mode, 
the processor is halted. Otherwise, a privileged instruction fault 
occurs. 

Notes: 
This opcode is 0 to trap many branches to data. 

Compute Index 

Format: 

opcode subscript.rl, low.rl, high.rl, size.rl, 
indexin.rl, indexout.wl 

Operation: 

indexout .;- {indexin + subscript} *size; 

if {subscript LSS lOw} or {subscript GTR high} then 

{subscript range trap}; 

Condition Codes: 

N <- indexout LSS 0; 

Z .;- indexout EQL 0; 

V .;- o· 
c .;- 0; 
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Exception: 
subscript range 

Opcode: 

OA INDEX Compute Index 

Description: 
The indexin operand is added to the subscript operand, and the sum 
multiplied by the size operand. The indexout operand is replaced by 
the result. If the subscript operand is less than the low operand or 
greater than the high operand, a subscript range trap is taken. 

Notes: 
1. No arithmetic exception other than subscript range can result from 

this instruction. Thus no indication is given if overflow occurs in 
either the add or multiply steps. If overflow occurs on the add step, 
the sum is the low order 32 bits of the true result. If overflow 
occurs on the multiply step, the indexout operand is replaced 
by the low order 32 bits of the true product of the sum and the 
subscript operand. In the normal use of this instruction, overflow 
cannot occur without a subscript range trap occurring. 

2. The index instruction is useful in index calculations for arrays of 
the fixed-length data types (integer and floating) and for index 
calculations for arrays of bit fields, character strings, and decimal 
strings. The indexin operand permits cascading INDEX instructions 
for multidimensional arrays. For one-dimensional bit field arrays, it 
also permits introduction of the constant portion of an index 
calculation which is not readily absorbed by address arithmetic. 
The following notes show some of the uses of INDEX. 

3. The COBOL statements: 

01 A-ARRAY. 

02 A PIC X(25) OCCURS 15 TIMES INDEXED BY I. 

01 B PIC X(25). 

MOVE A(I) TO B. 

can be translated by a VAX COBOL compiler to: 

INDEX I(Rll), #AXOl, #AXOF, #AXI9 , #AXOO, RO 

MOVC3 #AXI9, A-25(R11)[RO], B(R11) 

4. The FORTRAN statements: 

INTEGER*4 

A(I) = 1 

A( 11: 24), I 

can be translated by a VAX FORTRAN compiler to: 

I~DEX I(Rll), #11, #24, #1, #0, RO 
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MOVPSL 

NOP 

MOVL #1, A-44(Rll) [RO] 

5. The Pascal statements: 

var 

i : integer; 

a : array[11 .. 24] of integer; 

ali] : = 1 

can be translated by a VAX Pascal compiler to: 

INDEX I,#11,#24,#1,#O,RO 

MOVZBL #1, A-44 [RO 1 

Move from PSL 

Format: 

opcode dst.w1 

Operation: 

dst ~ PSL; 

Condition Codes: 

N ~ N; 

Z ~ Z; 

v ~ v; 
C ~ C; 

Exceptions: 
none 

Opcode: 

DC MOVPSL Move from PSL 

Description: 
The destination operand is replaced by PSL (see Chapter 5). 

No Operation 

Format: 
opcode 

Operation: 
none 

Ipstructions 99 



POPR 

100 

Condition Codes: 

N <f- N; 

Z <f- Z; 

V <f- v; 
C <f- C; 

Exceptions: 
none 

Opcode: 

01 NOP No Operation 

Description: 
No operation is performed. 

Pop Registers 

Format: 

ope ode mask.rw 

Operation: 

tmpl <f- mask 

for tmp2 <f- 0 step 1 until 14 do 

if tmpl(tmp2) EQL 1 then R [tmp2] <f- (SP) + ; 

Condition Codes: 

N <f- N; 

Z <f- Z· 

V <f- V· 

C <f- C; 

Exceptions: 
none 

Opcode: 

6A POPR Pop Registers 

Description: 
The contents of registers whose number corresponds to set bits in the 
mask operand are replaced by longwords popped from the stack. 
R[n) is replaced if mask(n)is set. The mask is scanned from bit (0) to 
bit (14). Bit (15) is ignored. 
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XFC 

Push Registers 

Format: 

opcode mask.rw 

Operation: 

tmpl ~ mask; 

for tmp2 ~ 14 step -1 until 0 do 

if tmpl(tmp2) EQL 1 then - (SP) ~ R [tmp2 J ; 

Condition Codes: 

N ~ N; 

Z ~ Z; 

v ~ v; 
C ~ C; 

Exceptions: 
none 

Opcode: 

BB PUSHR Push Registers 

Description: 
The contents of registers whose number corresponds to set bits in the 
mask operand are pushed on the stack as longwords. R[n] is pushed 
if mask(n) is set. The mask is scanned from bit (14) to bit (0). Bit 
(15) is ignored. 

Notes: 
The order of pushing is specified so that the contents of higher 
numbered registers are stored at higher memory addresses. This 
results in, for example, a quadword datum stored in adjacent registers 
being stored by PUSHR in memory in the correct order. 

Extended Function Call 

Format: 
opcode 

Operation: 

{XFC faul t}; 
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Condition Codes: 

N <- 0; 

Z <- 0; 

V <- 0; 

C <- 0; 

Exceptions: 
none 

Opcode: 

FC XFC Extended Function Call 

Description: 
In order to understand the operation of this instruction, read Chapter 
5. This instruction provides for user-defined extensions to the 
instruction set. 

A queue is a circular, doubly linked list. A queue entry is specified by 
its address. The VAX architecture supports two distinct types of 
links: absolute and self-relative. An absolute link contains the absolute 
address of the entry to which it points. A self-relative link contains a 
displacement from the present queue entry. A queue is classified 
by the type of link it uses. 

Because a queue contains redundant links, it is possible to create ill­
formed queues. The VAX instructions produce UNPREDICTABLE 
results when used on ill-formed queues or on queues with overlapping 
entries. 

Absolute queues use absolute addresses as links. Queue entries are 
linked by a pair of longwords. 

The first (lowest addressed) longword is the forward link; it specifies 
the address of the succeeding queue entry. The second (highest 
addressed) longword is the backward link; it specifies the address of 
the preceding queue entry. A queue is specified by a queue header 
that is identical to a pair of queue linkage longwords. The forward link 
of the header is the address of the entry termed the head of the 
queue. The backward link of the header is the address of the entry 
termed the tail of the queue. The forward link of the tail points to the 
header. 
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Self-Relative 
Queues 

Two general operations can be performed on queues: insertion of 
entries and removal of entries. Operations at the head or tail are 
always valid because the queue header is always present. Operations 
elsewhere in the queue depend on specific entries being present and 
may become invalid if another process is simultaneously performing 
operations on the queue. Therefore, if more than one process can 
perform operations on a queue simultaneously, insertions and 
removals should only be done at the head or tail of the queue. If only 
one process (or one process at a time) can perform operations on a 
queue, insertions and removals can be made at other than the 
head or tail of the queue. 

Two instructions are provided for manipulating absolute queues: 
INSQUE and REMQUE. INSQUE inserts an entry specified by an 
entry operand into the queue following the entry specified by the 
predecessor operand. REMQUE removes the entry specified by the 
entry operand. Queue entries can be on arbitrary byte boundaries. 
Both INSQUE and REMQUE are implemented as non-interruptible 
instructions. 

Self-relative queues use displacements from queue entries as links. 
Queue entries are linked by a pair of longwords. The first longword 
(lowest addressed) is the forward link; it specifies displacement of the 
succeeding queue entry from the present entry. The second 
longword (highest addressed) is the backward link; it specifies the 
displacement of the preceding queue entry from the present entry. A 
queue is specified by a queue header, which also consists of two 
longword links. 

Four operations can be performed on self-relative queues: insert at 
head, insert at tail, remove from head, and remove from tail. 
Furthermore, these operations are interlocked to allow cooperating 
processes in a multiprocessor system to access a shared list without 
additional synchronization. Queue entries must be quadword aligned. 
A hardware-supported, interlocked memory access mechanism is 
used to read the queue header. Bit (0) of the queue header is used 
as a secondary interlock and is set when the queue is being accessed. 
If an interlocked queue instruction encounters the secondary interlock 
set, it terminates after setting the condition codes to indicate failure 
to gain access to the queue. If the secondary interlock bit is not set, 
then the interlocked queue instruction sets it during its operation 
and clears it at instruction completion. This prevents other interlocked 
queue instructions from operating on the same queue. 
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Insert Entry into Queue at Head, Interlocked 

Format: 

ope ode entry.ab, header.aq 

Operation: 

Must have write access to header. 

Header must be quadword aligned. 

Header cannot be equal to entry. 

tmpl .- (header) {interlocked}; Acquire hardware interlock. 

tmpl(2: I) must be zero. 

if tmpl(O) EQLU 1 then 

begin 

(header ){interlocked} .- tmpl; 

! Release hardware lock. 

{set condition codes and terminate instruction}; 

end; 

(header ){interlocked} .- tmpl vI; 

Release hardware lock, 

and set secondary interlock. 

If {all memory accesses can be completed} then 

else 

begin 

Check if following addresses can be written 

without causing a memory management exception 

entry 

header + tmpl 

Also, check for quadword alignment. 

{insert entry into queue}; 

{release secondary interlock}; 

end; 

begin 

{release secondary interlock}; 

{backup instruction}; 

{initiate fault}; 

end; 

Condition Codes: 

if {secondary interlock was clear} then 

begin 
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N <- 0; 

Z +- (entry) EQL (entry+4); 

V +- 0; 

First entry in queue. 

C +- 0; 

end; 

else 

begin 

N +- 0; 

Z <- 0; 

V <- 0; 

C +- 1; 

end; 

Secondary interlock failed. 

Exception: 
reserved operand 

Opcode: 

5C INSQHI Insert Entry into Queue at Head, Interlocked 

Description: 
The entry specified by the entry operand is inserted into the queue 
following the header. If the entry inserted was the first one in the 
queue, the condition code Z-bit is set; otherwise, the Z-bit is cleared. 
The insertion is a non-interruptible operation. The insertion is 
interlocked to prevent concurrent interlocked insertions or removals at 
the head or tail of the same queue by another process, even in a 
multiprocessor environment. Before performing any part of the 
operation, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception 
occurs, the queue is left in a consistent state (see Chapters 4 and 5). 
If the instruction fails to acquire the secondary interlock,the instruction 
sets condition codes and terminates. 

Notes: 
1. Because the insertion is non-interruptible, processes running in 

kernel mode can share queues with interrupt service routines (see 
Chapters 4, 5, and 6). 

2. The INSQHI, INSQTI, REMOHI, and REMQTI instructions are 
implemented such that cooperating software processes in a 
multiprocessor may access a shared list without additional 
synchronization. 

3. To set a software Interlock realized with a queue, the following can 
be used: 

INSERT: INSQHI Attempt to insert entry. 
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BEQL 1$ If queue was empty, branch. 

BCS INSERT If queue was locked, try again. 

CALL WAIT( ... ) If the entry was queued, wait. 

1$: 

4. During access validation, any access that cannot be completed 
results in a memory management exception even though the 
queue insertion is not started. 

5. A reserved operand fault occurs if entry or header is an address 
that is not quadword aligned (if its address bits(2:0) NEQU 0) or if 
(header)(2:1) is not zero. A reserved operand fault also occurs if 
header equals entry. In this case, the queue is not altered. 

Insert Entry into Queue at Tail, Interlocked 

Format: 

opcode entry.ab, header.aq 

Operation: 

!must have write access to header. 

!header must be quadword aligned. 

!header cannot be equal to entry. 

tmpl <- (header) {interlocked}; 

if tmpl(O) EQLU 1 then 

begin 

(header ){interlocked} <- tmpl; 

!acquire hardware interlock. 

! tmpl(2: 1) must be zero. 

!release hardware interlock 

{set condition codes and terminate instruction}; 

end; 

else 

begin 

(header){interlocked} <- tmpl v 1; !set secondary interlock 

!release hardware interlock 

If {all memory accesses can be completed} then 

!check if the following addresses can be written 

!without causing a memory management exception: 

entry 

header + (header + 4) 

!Also, check for quadword alignment 

begin 

{insert entry into queue}; 

{release secondary interlock}; 

end; 
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else 

end; 

begin 

{release secondary interlock}; 

{backup instruction}; 

{initiate fault}; 

end; 

Condition Codes: 

if {secondary interlock was clear} then 

begin 

else 

N <- 0; 

Z <- (entry) EQL (entry+4); 

V <- 0; 

C <- 0; 

end; 

Ifirst entry in queue 

begin 

N <- 0; 

Z <- 0; 

V <- 0; 

C <- I; 

end; 

!secondary interlock failed 

Exception: 
reserved operand 

Opcode: 

50 INSQTI Insert Entry into Queue at Tail, Interlocked 

Description: 
The entry specified by the entry operand is inserted into the queue 
preceding the header, If the entry inserted was the first one in the 
queue, the condition code Z-bit is set; otherwise, the Z-bit is cleared. 
The insertion is a non-interruptible operation. The insertion is 
interlocked to prevent concurrent interlocked insertions or removals at 
the head or tail of the same queue by another process, even in a 
multiprocessor environment. Before performing any part of the 
operation, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception 
occurs, the queue is left in a consistent state (see Chapters 4 and 5). 
If the instruction fails to acquire the secondary interlock, the instruction 
sets condition codes and terminates. 
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Notes: 
1. Because the insertion is non-interruptible, processes running in 

kernel mode can share queues with interrupt service routines (see 
Chapters 4, 5, and 6). 

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are 
implemented such that cooperating software processes in a 
multiprocessor may access a shared list without additional 
synchron ization. 

3. To set a software interlock realized with a queue, the following can 
be used: 

INSERT: INSQHI Attempt to insert entry. 

BEQL 1$ If queue was empty, branch. 

BCS INSERT If queue was locked, try again. 

CALL WAIT( ... ) If the entry was queued, wait. 

1$: 

4. During access validation, any access that cannot be completed 
results in a memory management exception even though the 
queue insertion is not started. 

5. A reserved operand fault occurs if entry, header, or (header + 4) is 
an address that is not quadword aligned (if its address bits(2:0> 
NEQU 0) or if (header)(2:1 > is not zero. A reserved operand fault 
also occurs if header equals entry. In this case, the queue is 
not altered. 

Insert Entry in Queue 

Format: 

opcode entry.ab, pred.ab 

Operation: 

If {all memory accesses can be completed} then 

begin 

else 

(entry) <- (pred); 

(entry + 4) <- pred; 

((pred) + 4) <- entry; 

(pred) <- entry; 

end; 

begin 

{backup instruction}; 

{initiate fault}; 

end; 
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!backward link of successor 

!forward link of predecessor 



Condition Codes: 

N <"- (entry) LSS (entry+4); 

Z <"- (entry) EQL (entry+4) ; !first entry in queue 

V <"- O' 

C <"- (entry) LSSU (entry+4) ; 

Exceptions: 
none 

Opcode: 

OE INSQUE Insert Entry in Queue 

Description: 
The entry specified by the entry operand is inserted into the queue 
following the entry specified by the predecessor operand. If the entry 
inserted was the first one in the queue, the condition code Z-bit is set; 
otherwise, the Z-bit is cleared. The insertion is a non-interruptible 
operation. Before performing any part of the operation, the processor 
validates that the entire operation can be completed. This ensures 
that if a memory management exception occurs, the queue is left in a 
consistent state (see Chapters 4 and 5). 

Notes: 
1. Three types of insertion can be performed by appropriate choice of 

predecessor operand: 

• Insert at head 

INSQUE entry,h 

• I nsert at tail 

INSQUE 
entry, @h+4 

;h is queue head 

;h is queue head 

(Note "@" in this case only) 

• Insert after arbitrary predecessor 

INSQUE entry,p ;p is predecessor 

2. Because the insertion is non-interruptible, processes running in 
kernel mode can share queues with interrupt service routines (see 
Chapters 4, 5, and 6). 

3. The INSQUE and REMQUE instructions are implemented such 
that cooperating software processes in a single processor may 
access a shared list without additional synchronization if the 
insertions and removals are ohly at the head or tail of the queue. 

4. To set a software interlock realized with a queue, the following can 
be used: 
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INSQUE ;was queue empty? 

;yes BEQL 1$ 

CALL WAIT( ... ) ; no, wait 

1$: 

5. During access validation, any access that cannot be completed 
results in a memory management exception, even though the 
queue insertion is not started. 

Remove Entry from Queue at Head, Interlocked 

Format: 

opcode header.aq, addr.w1 

Operation: 

!must have write access to header. 

!header must be quadword aligned. 

!header cannot equal address of addr. 

tmpl <- (header ){interlocked}; 

if tmpl(O} EQLU 1 then 

begin 

!acquire hardware interlock. 

! tmpl(2: I} must be zero. 

(header){interlocked} <- tmpl; 
!release hardware interlock 

{set condition codes and terminate instruction}; 

end; 

(header){interlocked} <- tmpl v 1; !set secondary interlock 

!release hardware interlock 

If {all memory accesses can be completed} then 

!check if the following can be done without 

!causing a memory management exception: 

!write addr operand 

! read contents of header + tmpl {if tmpl NEQU O} 

!write into header + tmpl + (header + tmpl) 

! {if tmpl NEQU O} 

!Also, check for quadword alignment 

begin 

{remove entry from queue}; 

{release secondary interlock}; 

end 
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else 

begin 

{release secondary interlock}; 

{backup instruction}; 

{ini tiate fault}; 

end; 

Condition Codes: 

if {secondary interlock was clear} then 

begin 

else 

N <- 0; 

Z <- (header) EQL 0; [queue empty after removal 

v <- {queue empty before this instruction}; 

C <- 0; 

end; 

begin 

N <- 0; 

Z <- 0; 

V <- 1; 

C <- 1; 

end; 

[did not remove anything 

[secondary interlock failed 

Exception: 
reserved operand 

Opcode: 

5E REMQHI Remove Entry from Queue at Head, Interlooked 

Description: 
If the secondary interlock is clear, the queue entry following the 
header is removed from the queue and the address operand is 
replaced by the address of the entry removed. If the queue was 
empty prior to this instruction or if the secondary interlock failed, the 
condition code V-bit is set; otherwise, it is cleared. 

If the interlock succeeded and the queue is empty at the end of this 
instruction, the condition code Z-bit is set; otherwise, the Z-bit is 
cleared. The removal is interlocked to prevent concurrent interlocked 
insertions or removals at the head or tail of the same queue by 
another process, even in a multiprocessor environment. The removal 
is a non-interruptible operation. Before performing any part of the 
operation, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception 
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occurs, the queue is left in a consistent state (see Chapters 4 and 5). 
If the instruction fails to acquire the secondary interlock, the instruction 
sets condition codes and terminates without altering the queue. 

Notes: 
1. Because the rel1loval is non-interruptible, processes running in 

kernel mode can share queues with interrupt service routines (see 
Chapters 4, 5, and 6). 

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are 
implemented such that cooperating software processes in a 
multiprocessor may access a shared list without additional 
synchronization. 

3. To release a software interlock realized with a queue, the following 
can be used: 

1$: 

BEQL 

BCS 

CALL 

2$: 

REMQHI 

2$ 

1$ 

ACTIVATE( ... ) 

;removed last? 

;yes 

;try removing again 

;Activate other waiters 

4. To remove entries until the queue is empty, the following can be 
used: 

1$: REMQHI 

BVS 2$ 

process removed 

BR 1$ 

2$: BCS 1$ 

queue empty 

entry 

;anything removed? 

;no 

;try removing again 

5. During access validation, any access that cannot be completed 
results in a memory management exception even though the 
queue removal is not started. 

6. A reserved operand fault occurs if header or (header + (header» 
is an address that is not quadword aligned (if its address bits (2:0) 
NEQU 0) or if (header)(2:1) is not zero. A reserved operand fault 
also occurs if the header address operand equals the address 
of the addr operand. In this case, the queue is not altered. 
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REMQTI Remove Entry from Queue at Tail, Interlocked 

Format: 

ope ode header.aq, addr.wl 

Operation: 

!must have write access to header. 

!header must be quadword aligned. 

'header cannot equal address of addr. 

tmpl <- (header) {interlocked); ! acquire hardware interlock. 

! tmpl(2: 1) must be zero. 

if tmpl(O) EQLU 1 then 

begin 

(header ){interlocked} <- tmpl; 
!release hardware interlock 

{set condition codes and terminate instruction}; 

end; 

(header){interlocked} <- tmpl v 1; !set secondary interlock 

'release hardware interlock 

If {all memory accesses can be completed} then 

!check if the following can be done without 

!causing a memory management exception: 

!write addr operand 

else 

tread contents of header + (header + 4) 

{if tmpl NEQU O} 

!write into header + (header + 4) 

! + (header + 4 + (header + 4)) {if tmpl NEQU O} 

!Also, check for quadword alignment 

begin 

{remove entry from queue}; 

{release secondary interlock}; 

end; 

begin 

{release secondary interlock}; 

{backup instruction); 

{ini tia te faul t}; 

end; 
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Condition Codes: 

if {secondary interlock was clear} then 

begin 

N ~ 0; 

Z ~ (header + 4) EQL 0; ! queue empty after removal 

V ~ {queue empty before this instruction}; 

else 

C ~ 0; 

end; 

begin 

N ~ 0; 

Z ~ 0; 

V <- 1; 

C ~ 1; 

end; 

Exception: 
reserved operand 

Opcode: 

!did not remove anything 

!secondary interlock failed 

5F REMQTI Remove Entry from Queue at Tail, Interlocked 

Description: 
If the secondary interlock is clear, the queue entry preceding the 
header is removed from the queue and the address operand is 
replaced by the address of the entry removed. If the queue was 
empty prior to this instruction or if the secondary interlock failed, the 
condition code V-bit is set; otherwise, it is cleared. 

If the interlock succeeded and the queue is empty at the end of this 
instruction, the condition code Z-bit is set; otherwise, the Z-bit is 
cleared. The removal is interlocked to prevent concurrent interlocked 
insertions or removals at the head or tail of the same queue by 
another process, even in a multiprocessor environment. The removal 
is a non-interruptible operation. Before performing any part of the 
operation, the processor validates that the entire operation can be 
completed. This ensures that if a memory management exception 
occurs, the queue is left in a consistent state (see Chapters 4 and 5). 
If the instruction fails to acquire the secondary interlock, the instruction 
sets condition codes and terminates without altering the queue. 

Notes: 
1. Because the removal is non-interruptible, processes running in 

kernel mode can share queues with interrupt service routines (see 
Chapters 4, 5, and 6). 
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2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are 
implemented such that cooperating software processes in a 
multiprocessor may access a shared list without additional 
synchronization. 

3. To release a software interlock realized with a queue, the following 
can be used: 

1$: REMQTI ... 

BEQL 2$ 

BCS 1$ 

CALL ACTIVATE( ... ) 

2$: 

;removed last? 

;yes 

;try removing again 

;Activate other waiters 

4. To remove entries until the queue is empty, the following can be 
used: 

1$: 

BVS 

REMQTI 

2$ 

process removed entry 

BR 1$ 

2$: BCS 1$ 

queue empty 

;anything removed? 

;no 

;try removing again 

5. During access validation, any access that cannot be completed 
results in a memory management exception even though the 
queue removal is not started. 

6. A reserved operand fault occurs if header, (header + 4), or 
(header + (header + 4) + 4) is an address that is not quadword 
aligned (if its address bits(2:0) NEQU 0) or if (header)(2:1) is 
not zero. A reserved operand fault also occurs if the header 
address operand equals the address of the addr operand. In this 
case, the queue is not altered. 

Remove Entry from Queue 

Format: 

opcode entry.ab,addr.wl 
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Operation: 

if {all memory accesses can be completed} then 

begin 

((entry+4)) <- (entry); !forward link of predecessor 

((entry) +4) <- (entry +4); !backward link of successor 

addr ..- entry; 

end; 

else 

begin 

{backup instruction}; 

{initiate fault}; 

end; 

Condition Codes: 

N <- (entry) LSS (entry+4); 

Z <- (entry) EQL (entry+4); 

V <- entry EQL (entry +4) ; 

C <- (entry) 

Exceptions: 
none 

Opcode: 

LSSU (entry+4); 

!queue empty 

!no entry to remove 

OF REMQUE Remove Entry from Queue 

Description: 
The queue entry specified by the entry operand is removed from the 
queue. The address operand is replaced by the address of the 
entry removed. If there was no entry in the queue to be removed, the 
condition code V-bit is set; otherwise, it is cleared. If the queue is 
empty at the end of this instruction, the condition code Z-bit is set; 
otherwise, the Z-bit is cleared. The removal is a non-interruptible 
operation. Before performing any part of the operation, the processor 
validates that the entire operation can be completed. This ensures 
that if a memory management exception occurs, the queue is left in a 
consistent state (see Chapters 4 and 5). 

Notes: 
1. Three types of removal can be performed by suitable choice of 

entry operand: 

• Remove at head 

REMQUE @h, addr ;h is queue header 

• Remove at tail 
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Representation 

REM QUE @h+4,addr 

• Remove arbitrary entry 

REMQUE entrY,addr 

;h is queue header 

2. Because the removal is non-interruptible, processes running in 
kernel mode can share queues with interrupt service routines (see 
Chapters 4, 5, and 6). 

3. The INSQUE and REMQUE instructions are implemented such 
that cooperating software processes in a single processor may 
access a shared list without additional synchronization if the 
insertions and removals are only at the head or tail of the queue. 

4. To release a software interlock realized with a queue, the following 
can be used: 

REMQUE ;queue empty? 

BEQL 1$ ;yes 

CALL ACTIVATE ( ... ) ;Activate other waiters 

1$: 

5. To remove entries until the queue is empty, the following can be 
used: 

1$: 

BVS 

REMQUE 

EMPTY 

BR 1$ 

; any thing removed? 

;no 

6. During access validation, any access that cannot be completed 
results in a memory management exception even though. the 
queue removal is not started. 

The floating-point instructions operate on four data types, termed 
F _floating, D_floating, G_floating, and H_floating. Subset imple­
mentations of the VAX architecture may not include all four data 
types. Operating system software may emulate omitted instructions 
and may use user-mode stack space during emulation. For more 
detail about subsetting and emulation, see Chapter 11. 

Mathematically, a floating-point number may be defined as having 
the form 

(+ 0 r -) (2K) * f 
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where K is an integer and f is a non-negative fraction. For a non­
vanishing number, K and f are uniquely determined by imposing the 
condition 

1/2 LEQ f LSS 1 

The fractional factor, f, of the number is then said to be binary 
normalized. For the number zero, f must be assigned the value 0, and 
the value of K is indeterminate. 

The VAX floating-point data formats are derived from this mathematical 
representation for floating-point numbers. Four types of floating-point 
data are provided: the two standard PDP-11 formats (F _floating 
and D_floating), and two extended range formats (G_floating and 
H_floating). Single-precision, or floating, data is 32 bits long. Double­
precision, or D_floating, data is 64 bits long. Extended range 
double-precision, or G_floating, data is 64 bits long. Extended range 
quadruple-precision, or H_floating, data is 128 bits long. Sign 
magnitude notation is used. 

The most significant bit of the floating-point data is the sign bit: 0 for 
positive and 1 for negative. 

The fractional factor f is assumed normalized, so that its most 
significant bit must be 1. This 1 is the "hidden" bit: it is not stored in 
the data word, but of course the hardware restores it before carrying 
out arithmetic operations. The F _floating and D_floating data 
types use 23 and 55 bits, respectively, for f, which with the hidden bit, 
imply effective significance of 24 bits and 56 bits for arithmetic 
operations. The extended range data types, G_floating and 
H_floating, use 52 and 112 bits, respectively, for f, which with the 
hidden bit, imply effective significance of 53 and 113 bits for arithmetic 
operations. 

In the F _floating and D_floating data types, 8 bits are reserved for 
the stor.age of the exponent K in excess 128 notation. Thus exponents 
from -128 to + 127 could be represented, in biased form, by 0 to 
255. For reasons given below, a biased EXP of 0 (true exponent of 
-128), is resenied for floating-point zero. Thus, for the F _floating 
and D_f!oating data types, exponents are restricted to the range 
-127 to + 127 inclusive, or in excess 128 notation, 1 to 255. 

In the G_floating data type, 11 bits are reserved for the storage of 
the exponent in excess 1024 notation. Thus, exponents are restricted 
to -1023 to + 1023 inclusive (in excess notation, 1 to 2047). In the 
H_floating data type 15 bits are reserved for the storage of the 
exponent in excess 16384 notation. Thus, exponents are restricted to 
-16383 to + 16383 inclusive (in excess notation, 1 to 32767). A 
biased exponent of 0 is reserved for floating-point zero. 
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Instruction Set 

Floating-Point Zero-Because of the hidden bit, the fractional factor is 
not available to distinguish between zero and non-zero numbers 
whose fractional factor is exactly 112. Therefore, VAX architecture 
reserves a sign-exponent field of 0 for this purpose. Any positive, 
floating-point number with biased exponent of 0 is treated as if it were 
an exact 0 by the floating-point instruction set. In particular, a 
floating-point operand, whose bits are all zeros, is treated as zero; 
this is the format generated by all floating-point instructions for which 
the result is zero. 

Reserved Operands-A reserved operand is defined to be any bit 
pattern with a sign bit of 1 and a biased exponent of O. In VAX 
architecture, all floating-point instructions generate a fault if a reserved 
operand is encountered. A reserved operand is never generated as a 
result of a floating-point instruction. 

VAX architecture has the standard arithmetic operations ADD, SUB, 
MUL, and DIV implemented for all four floating data types. The results 
of these operations are always rounded, as described in the following 
section on accuracy. The architecture has, in addition, two composite 
operations, EMOD and POLY, also implemented for all four floating­
point data types. EMOD generates a product of two operands and 
then separates the product into its integer and fractional terms. POLY 
evaluates a polynomial, given the degree, the argument, and pointer 
to a table of coefficients. Details on the operation of EMOD and POLY 
are given in their respective descriptions. All of these instructions are 
subject to the rounding errors associated with floating-point operations 
as well as to exponent overflow and underflow. Accuracy is discussed 
in the next section, and exceptions are discussed in Chapter 6. 

VAX architecture also has a complete set of instructions for conversion 
from integer arithmetic types (byte, word, longword) to all floating 
types (F _floating, D_floating, G_floating, H_floating), and also for 
floating types to integer arithmetic types. VAX also has a set of 
instructions for conversion between all of the floating types except 
between D_floating and G_floating. Many of these instructions are 
exact, in the sense defined in the section on accuracy to follow. A few 
instructions, however, may generate rounding error, floating overflow, 
or floating underflow, or may induce integer overflow. Details are 
given in the description of the CVT instructions. 

There is a class of move-type instructions that is always exact: MOV, 
NEG, CLR, CMP, and TST. And, finally, there is the ACB ~add, 
compare, and branch) instruction, that is subject to rounding errors, 
overflow, and underflow. 

All of the VAX floating-point instructions fault if a reserved operand is 
encountered. Floating-point instructions also fault on the occurrence 
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of floating overflow or divide by zero. The FU bit, in the PSW, is 
available to enable or disable an exception on underflow. If the FU bit 
is clear, no exception occurs on underflow and zero is returned as 
the result. If the FU bit is set, a fault occurs on underflow. Further 
details on the actions taken if any of these exceptions occurs are 
included in the descriptions of the instructions and are completely 
discussed in Chapter 5. 

General comments on the accuracy of the VAX floating-point 
instruction set are presented here. The descriptions of the individual 
instructions may include additional details on the accuracy at which 
they operate. 

An instruction is defined to be exact if its result, extended on the right 
by an infinite sequence of zeros, is identical to that of an infinite 
precision calculation involving the same operands. The a priori 
accuracy of the operands is thus ignored. For all arithmetic operations 
except DIV, a zero operand implies that the instruction is exact. The 
same statement holds for DIV if the zero operand is the dividend. But 
if the zero operand is the divisor, division is undefined and the 
instruction faults. 

For non-zero, floating-point operands, the fractional factor is binary 
normalized with 24 or 56 bits for single precision (F _floating) or 
double precision (D_floating), respectively; and the fractional factor is 
binary normalized with 53 or 113 bits for extended range double 
precision (G_floating), and extended range quadruple precision 
(H_ftoating), respectively. 

Note that an arithmetic result is exact if no non-zero bits are lost in 
chopping the infinite precision result to the data length to be stored. 
Chopping means that the 24 (F _floating), 56 (D_floating), 53 
(G_floating), or 113 (H_floating) high-order bits of the normalized 
fractional factor of a result are stored; the rest of the bits are discarded. 
The first bit lost in chopping is referred to as the "rounding" bit. The 
value of a rounded result is related to the chopped result as follows: 

1. If the rounding bit is 1, the rounded result is the chopped result 
incremented by an LSB (least significant bit). 

2. If the rounding bit is 0, the rounded and chopped results are 
identical. 

All VAX processors implement rounding so as to produce results 
identical to the results produced by the following algorithm. Add a 1 to 
the rounding bit and propagate the carry if it occurs. Note that a 
renormalization may be required after rounding takes place. If this 
happens, the new rounding bit will be o. Therefore, renormalization 
can happen only once. The following statements summarize the 
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ADD 

relations among chopped, rounded, and true (infinite precision) 
results: 

1. If a stored result is exact 

rounded value = chopped value = true value 

2. If a stored result is not exact, its magnitude 

• Is always less than that of the true result for chopping 

• Is always less than that of the true result for rounding if the 
rounding bit is zero 

• Is greater than that of the true result for rounding if the rounding 
bit is one. 

In order to be consistent with the floating-point instruction set which 
faults on reserved operands, software-implemented floating-point 
functions (the absolute function, for example) should verify that the 
input operand(s) is (are) not reserved. An easy way to do this is a 
floating move or test of the input operand(s). 

In order to facilitate high-speed implementations of the floating-point 
instruction set, certain restrictions are placed on the addressing mode 
combinations usable within a single floating-point instruction. These 
combinations involve the logically inconsistent simultaneous use of a 
value as both a floating-point operand and an address. Specifically, 
if within the same instruction the content of register Rn is used as 
both a part ofa floating-point input operand (operand type .rf, .rd, .rg, 
.rh, .mf, .md, .mg, or .mh) and as an address in an addressing 
mode that modifies Rn (autoincrement, autodecrement, or autoincre­
ment deferred), the value of the floating-point operand is 
UNPREDICTABLE. 

Add 

Format: 

opcode add.rx, sum.mx 

opcode addl.rx, add2.rx, sum.wx 

Operation: 

sum ~ sum + add; 

sum ~ addl + add2; 

Instructions 
'. 

12 operand 

!3 operand 

2 operand 

3 operand 
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Condition Codes: 

N ~ sum LSS 0; 

Z ~ sum EQL O· 

V ~ 0; 

C ~ O· 

Exceptions: 
floating overflow 

floating underflow 

reserved operand 

Opcodes: 

40 ADDF2 Add F_floating 2 Operand 

41 ADDF3 Add F_floating 3 Operand 

60 ADDD2 Add D_floating 2 Operand 

61 ADDD3 Add D_floating 3 Operand 

40FD ADDG2 ADD G_floating 2 Operand 

41FD ADDG3 ADD G_floating 3 Operand 

60FD ADDH2 ADD H_floating 2 Operand 

61FD ADDH3 ADD H_floating 3 Operand 

Description: 
In 2 operand format, the addend operand is added to the sum 
operand and the sum operand is replaced by the rounded result. In 
3 operand format, the addend 1 operand is added to the addend 
2 operand and the sum operand is replaced by the rounded result. 

Notes: 
1. On a reserved operand fault, the sum operand is unaffected and 

the condition codes are UNPREDICTABLE. 

2. On floating underflow, a fault occurs if FU is set. Zero is stored as 
the result of floating underflow only if FU is clear. On a floating 
underflow fault, the sum operand is unaffected. If FU is clear, the 
sum operand is replaced by 0 and no exception occurs. 

3. On floating overflow, the instruction faults. The sum operand is 
unaffected, and the condition codes are UNPREDICTABLE. 

Clear 

Format: 

ope ode dst.wx 
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Operation: 

dst ~ 0; 

Condition Codes: 

N ~ 0; 

Z ~ 1; 

V ~ 0; 

C ~ C' 

Exceptions: 
none 

Opcodes: 

04 CLRF Clear F_floating 

7C CLRG Clear G_floating. 

CLRO Clear O_floating 

7CFO CLRH Clear H_floating 

Description: 
The destination operand is replaced by O. 

Notes: 
CLRx dst is equivalent to MOVx #0, dst, bu~ is 5 (F _floating), or 9 
(D_floating or G_floating), or 17 (H_floating) bytes shorter. 

Compare 

Format: 

ope ode srel.rx, sre2.rx 

Operation: 

srel-sre2; 

Condition Codes: 

N ~ srel LSS 

Z ~ srel EQL 

V ~ 0; 

C ~ 0; 

Exception: 
reserved operand 

Instructions 

sre2; 

sre2; 

123 



CVT 

124 

Opcodes: 

51 CMPF Compare F_floating 

71 CMPD Compare D_floating 

51FD CMPG Compare G_floating 

71FD CMPH Compare H_floating 

Description: 
The source 1 operand is compared with the source 2 operand. The 
only action is to affect the condition codes. 

Notes: 
On a reserved operand fault, the condition codes are 
UNPREDICTABLE. 

Convert 

Format: 

opcode src.rx, dst.wy 

Operation: 

dst +- conversion of src; 

Condition Codes: 

N +- dst LSS 0; 

Z +- dst EQL 0; 

V +- {integer overflow}; 

C+-O ; 

Exceptions: 
integer overflow 

floating overflow 

floating underflow 

reserved operand 

Opcodes: 

4C CVTBF 

4D CVTWF 

4E CVTLF 

6C CVTBD 

6D CVTWD 

Convert Byte 

Convert Word 

Convert Long 

Convert Byte 

Convert Word 
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6E CVTLD Convert Long to D_floating 

4CFD CVTBG Convert Byte to G_floating 

4DFD CVTWG Convert Word to G_floating 

4EFD CVTLG Convert Long to G_floating 

6CFD CVTBH Convert Byte to H_floating 

6DFD CVTWH Convert Word to H_floating 

6EFD CVTLH Convert Long to H_floating 

48 CVTFB Convert F_floating to Byte 

49 CVTFW Convert F _floating to Word 

4A CVTFL Convert F_floating to Long 

4B CVTRFL Convert Rounded F_floating to Long 

68 CVTDB Convert D_floating to Byte 

69 CVTDW Convert D_floating to Word 

6A CVTDL Convert D_floating to Long 

6B CVTRDL Convert Rounded D_floating to Long 

48FD CVTGB Convert G_floating to Byte 

49FD CVTGW Convert G_floating to Word 

4AFD CVTGL Convert G_floating to Long 

4BFD CVTRGL Convert Rounded G~floating to Long 

68FD CVTHB Convert H_floating to Byte 

69FD CVTHW Convert H_floating to Word 

6AFD CVTHL Convert H_floating to Long 

6BFD CVTRHL Convert Rounded H_floating to Long 

56 CVTFD Convert F_floating to D_floating 

99FD CVTFG Convert F_floating to G_floating 

98FD CVTFH Convert F _floating to H_floating 

76 CVTDF Convert D_floating to F_floating 

32FD CVTDH Convert D_floating to H_floating 

33FD CVTGF Convert G_floating to F_floating 

56FD CVTGH Convert G_floating to H_floating 

F6FD CVTHF Convert H_floating to F_floating 

F7FD CVTHD Convert H_floating to D_floating 

76FD CVTHG Convert H_floating to G_floating 

Description: 
The source operand is converted to the data type of the destination 
operand, and the destination operand is replaced by the result. 
The form of the conversion is as follows: 
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eVTBF exact 

eVTBD exact 

eVTBG exact 

eVTBH exact 

eVTWF exact 

eVTWD exact 

eVTWG exact 

eVTWH exact 

eVTLF rounded 

eVTLD exact 

eVTLG exact 

eVTLH exact 

eVTFB truncated 

eVTDB truncated 

eVTGB truncated 

eVTHB truncated 

eVTFW truncated 

eVTDW truncated 

eVTGW truncated 

eVTHW truncated 

eVTFL truncated 

eVTRFL rounded 

eVTDL truncated 

eVTRDL rounded 

eVTGL truncated 

eVTRGL rounded 

eVTHL truncated 

eVTRHL rounded 

eVTFD exact 

eVTFG exact 

eVTFH exact 

eVTDF rounded 

eVTDH exact 

eVTGF rounded 

eVTGH exact 

eVTHF rounded 

eVTHD rounded 

eVTHG rounded 
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Notes: 
1. Only CVTDF, CVTGF, CVTHF, CVTHD, and CVTHG can result in 

floating overflow fault. The destination operand is unaffected, and 
the condition codes are UNPREDICTABLE. 

2. Only conversions with a floating-point source operand can result in 
a reserved operand fault. On a reserved operand fault, the 
destination operand is unaffected and the condition codes are 
UNPREDICTABLE. 

3. Only conversions with an integer destination operand can result in 
integer overflow. On integer overflow, the destination operand is 
replaced by the low-order bits of the true result. 

4. Only CVTGF, CVTHF, CVTHD, and CVTHG can result in floating 
underflow. If FU is set, a fault occurs. Zero is stored as the 
result of floating underflow only if FU is clear. On a floating 
underflow fault, the destination operand is unaffected. If FU is 
clear, the destination operand is replaced by 0 and no exception 
occurs. 

5. When CVTRFL, CVTRDL, CVTRGL, and CVTRHL round, the 
rounding is done in sign magnitude, before conversion to two's 
complement. 

Divide 

Format: 

opcode divr.rx, quo.mx 2 operand 

opcode divr.rx, divd.rx, quo.wx 3 operand 

Operation: 

quo ~ quo / divr; 

quo ~ divd / divr; 

Condition Codes: 

N ~ quo LSS 0; 

Z ~ quo EQL 0; 

V ~ 0; 

C ~ 0; 

Exceptions: 
floating overflow 

floating underflow 

divide by zero 

reserved operand 

Instructions 

!2 operand 

!3 operand 
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Opcodes: 

46 DIVF2 Divide F_floating 2 Operand 

47 DIVF3 Divide F_floating 3 Operand 

66 DIVD2 Divide D_floating 2 Operand 

67 DIVD3 Divide D_floating 3 Operand 

46FD DIVG2 Divide G_floating 2 Operand 

47FD DIVG3 Divide G_floating 3 Operand 

66FD DIVH2 Divide H_floating 2 Operand 

67FD DIVH3 Divide H_floating 3 Operand 

Description: 
In 2 operand format, the quotient operand is divided by the divisor 
operand and the quotient operand is replaced by the rounded result. 
In 3 operand format, the dividend operand is divided by the divisor 
operand and the quotient operand is repla"ced by the rounded result. 

Notes: 
1. On a reserved operand fault, the quotient operand is unaffected 

and the condition codes are UNPREDICTABLE. 

2. On floating underflow, a fault occurs if FU is set. Zero is stored as 
the result of floating underflow only if FU is clear. On a floating 
,underflow fault, the quotient operand is unaffected. If FU is clear, 
the quotient operand is replaced by 0 and no exception occurs. 

3. On floating overflow, the instruction faults. The quotient opeiand is 
unaffected, and the condition codes are UNPREDICTABLE. 

4. On divide by zero, the quotient operand and condition codes are 
affected as in item 3 above. 

Extended Multiply and Integerize 

Format: 

opcode mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx 

EMODG and EMODH: 

opcode mulr.rx, mulrx.rw, muld.rx, int.wl, fract.wx 

Operation: 

int <- integer part of muld * {muIr' mulrx}; 

fract <- fractional part of muld * {mulr'mulrx}; 
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Condition Codes: 

N ~ fract LSS 0; 

Z ~ fract EQL 0; 

V ~ {integer over flow}; 

C ~ 0; 

Exceptions: 
integer overflow 

floating underflow 

reserved operand 

Opcodes: 

54 EMODF Extended Multiply 

74 EMODD Extended Multiply 

54FD EMODG Extended Multiply 

74FD EMODH Extended Multiply 

Description: 

and Integerize F _floating 

and Integerize D_floating 

and Integerize G_floating 

and Integerize H_floating 

The multiplier extension operand is concatenated with the multiplier 
operand to gain 8 (EMODD and EMODF), 11 (EMODG), or 15 
(EMODH) additional low-order fraction bits. The low-order 5 or 1 bits 
of the 16-bit multiplier extension operand are ignored by the EMODG 
and EMODH instructions, respectively. The multiplicand operand is 
multiplied by the extended multiplier operand. The multiplication is 
such that the result is equivalent to the exact product truncated 
(before normalization) to a fraction field of 32 bits in F _floating, 64 
bits in D_floating and G_floating, and 128 in H_floating. Regarding 
the result as the sum of an integer and fraction of the same sign, 
the integer operand is replaced by the integer part of the result; the 
fraction operand is replaced by the rounded fractional part of the 
result. 

Notes: 
1. On a reserved operand fault, the integer operand and the fraction 

operand are unaffected. The condition codes are UNPREDICTABLE. 

2. On floating underflow, a fault occurs if FU is set. The integer and 
fraction parts are replaced by 0 on the occurrence of floating 
underflow only if FU is clear. On a floating underflow fault, the 
integer and fraction parts are unaffected. If FU is clear, the integer 
and fraction parts are replaced by 0 and no exception occurs. 

3. On integer overflow, the integer operand is replaced by the low­
order bits of the true result. 

4. Floating overflow is indicated by integer overflow. Integer overflow 
is possible, however, in the absence of floating overflow. 
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5. The signs of the integer and fraction are the same unless integer 
overflow results. 

6. Because the fraction part is rounded after separation of the integer 
part, it is possible that the value of the fraction operand is 1. 

7. Rounding is performed before conversion to two's complement. 

Move Negated 

Format: 

opcode src.rx, dst.wx 

Operation: 

dst - -:-src; 

Condition Codes: 

N -dst LSS 0; 

Z -dst EQL 0; 

V -0; 

C -0; 

Exception: 
reserved operand 

Opcodes: 

52 MNEGF Move Negated F_floating 

72 MNEGD Move Negated D_floating 

52FD MNEGG Move Negated G_floating 

72FD MNEGH Move Negated H_floating 

Description: 
The destination operand is replaced by the negative of the source 
operand. 

Notes: 
On a reserved operand fault, the destination operand is unaffected 
and the condition codes are UNPREDICTABLE. 

Move 

Format: 
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ope ode sre.rx, dst.wx 

Operation: 

dst +-- sre; 

Condition Codes: 

N +-- dst LSS 0; 

Z +-- dst EQL 0; 

V +-- 0; 

C +-- c; 

Exception: 
reserved operand 

Opcodes: 

50 MOVF Move F_floating 

70 MOVD Move D_floating 

50FD MOVG Move G_floating 

70FD MOVH Move H_floating 

Description: 
The destination operand is replaced by the source operand. 

Notes: 
On a reserved operand fault, the destination operand is unaffected 
and the condition codes are UNPREDICTABLE. 

Multiply 

Format: 

ope ode mulr.rx, prod.mx 

opeode mulr.rx, muld.rx, prod.wx 

2 operand 

3 operand 

Operation: 

prod +-- prod * muIr; 

prod +-- muld * muIr; 

Condition Codes: 

N +-- prod LSS 0; 

Z +-- prod EQL 0; 

Instructions 

!2 operand 

!3 operand 

----~------_. 
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V <c- 0; 

C <c- 0; 

Exceptions: 
floating overflow 

floating underflow 

reserved operand 

Opcodes: 

44 MULF2 Multiply 

45 MULF3 Multiply 

64 MULD2 Multiply 

65 MULD3 Multiply 

44FD MULG2 Multiply 

45FD MULG3 Multiply 

64FD MULH2 Multiply 

F_floating 

F_floating 

D_floating 

D_floating 

G_floating 

G_floating 

H_floating 

65FD MULH3 Multiply H_floating 

Description: 

2 Operand 

3 Operand 

2 Operand 

3 Operand 

2 Operand 

3 Operand 

2 Operand 

3 Operand 

In 2 operand format, the product operand is multiplied by the multiplier 
operand and the product operand is replaced by the rounded result. 
In 3 operand format, the multiplicand operand is multiplied by the 
multiplier operand and the product operand is replaced by the 
rounded result. 

Notes: 
1. On a reserved operand fault, the product operand is unaffected 

and the condition codes are UNPREDICTABLE. 

2. On floating underflow, a fault occurs if FU is set. Zero is stored as 
the result of floating underflow only if FU is clear. On a floating 
underflow fault, the product operand is unaffected. If FU is clear, 
the product operand is replaced by 0 and no exception occurs. 

3. On floating overflow, the instruction faults. The product operand is 
unaffected, and the condition codes are UNPREDICTABLE. 

Polynomial. Evaluation 

Format: 

opcode arg.rx, degree.rw, tbladdr.ab 
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Operation: 

tmpl <- degree; 

if tmpl GTRU 31 then {initiate reserved operand fault}; 

tmp2 <- tbladdr; 

tmp3 <- {( tmp2 ) + }; !tmp3 accumulates the partial result 
!tmp3 is of type x 

if POLYH then - (SP) <- arg; 

while tmpl GTRU 0 do 

begin !computation loop 

tmp4 <- {arg * tmp3}; !tmp4 accumulates new partial result. 
!tmp3 has old partial result. 

!Perform multiply, and retain the 31 (POLYF), ' 

!63 (POLYD, POLYG), or 127 (POLYH) most significant 

!bits of the fraction by truncating the unnormalized 

!product. (The most significant bit of the 31, 63, 

lor 127 bits in the product magnitude will be zero 

!if the product magnitude is LSS 1/2 and GEQ 1/4. 

!Use the result in the following add operation. 

tmp4 <- tmp4 + (tmp2); 

!Align fractions, perform add, and retain the 

!31 (POLYF), 63 (POLYD, POLYG), or 127 (POLYH) 

!most significant bits of the fraction by truncating 

!the unnormalized result. 

!normalize, and round to type x. 

!Check for overflow and underflow only after the 
combined 

!multiply, add, normalize, round sequence. 

if OVERFLOW then FLOATING OVERFLOW FAULT 

if UNDERFLOW then 

tmpl <-

tmp2 <-

tmp3 <-

end; 

begin 

if FU EQL 1 then FLOATING UNDERFLOW FAULT; 

tmp4 <- 0; ! force resul t to 0; 

end; 

tmpl - 1; 

tmp2 + {size of data type}; 

tmp4; 

!update partial result in tmp3 

if POLYF then 

begin 

RO <- tmp3; 
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Rl ~ 0; 

R2 ~ 0; 

R3 ~ tmp2; 

end; 

if POLYD or POLYG then 

begin 

Rl' RO <- tmp3; 

R2 <- 0; 

R3 <- tmp2; 

R4 <- 0; 

R5 <- 0; 

end; 

if POLYH then 

begin 

SP <- SP + 16; 

R3'R2'Rl'RO <- tmp3; 

R4 <- 0; 

~5 <- tmp2; 

end; 

Condition Codes: 

N <-- RO LSS 0; 

Z <-- RO EQL 0; 

v <-- 0; 

C <-- 0; 

Exceptions: 
floating overflow 

floating underflow 

reserved operand 

Opcodes: 

55 POLYF Polynomial 

75 POLYD Polynomial 

55FD POLYG Polynomial 

75FD POLYH Polynomial 

Description: 

Evaluation 

Evaluation 

Evaluation 

Evaluation 

F_floating 

D~fioating 

G_floating 

~floating 

The table address operand points to a table of polynomial coefficients. 
The coefficient of the highest order term of the polynomial is pointed 
to by the table address operand. The table is specified with lower 
order coefficients stored at increasing addresses. The data type of the 
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coefficients is the same as the data type of the argument operand. 
The evaluation is carried out by Horner's method, and the contents of 
RO (R1 'RO for POLYD and POLYG, R3'R2'R1 'RO for POLYH) are 
replaced by the result. The result computed is 

result = C[O]*xo + x*(C[l] + x*(C[2] + ... x*C[d])) 

where x is the argument and d is the degree. The unsigned-word 
degree operand specifies the highest numbered coefficient to 
participate in the evaluation.POLYH requires four longwords on the 
stack to store arg in case the instruction is interrupted. 

Notes: 
1. After execution, the registers are as shown in Figure 3.3 through 

3.6. 

2. On a floating fault: 

• If PSL(FPD) = 0, the instruction faults and all relevant side 
effects are restored to their original state. 

• If PSL(FPD) = 1, the instruction is suspended and state is saved 
in the general registers as follows: 

31 161514 76 

fraction lSi exponent I 
0 

0 

table address + degree'4 + 4 

POLYF 

Figure 3.3 
POL YF Result Register 

31 161514 7 6 

fraction Sl exponent 1 
fraction fraction 

0 

table address + degree'S + S 

0 

0 

POLYO 

Figure 3.4 
POL YO Result Register 

Instructions 

a 
fraction 

a 
fraction 

:RO 

:R1 

:R2 

:R3 

:RO 

:R1 

:R2 

:R3 

:R4 

:R5 
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POLYP 

RO tmp3 !partial result after iter~\ion prior to the 
lone causing the .overflow or underflow 

Rl = arg 

R2(7: 0) = tmpl ! number of iterations remaining 

R2(3l: 8) = implement a tion dependent 

R3 = tmp2 

POLYD and POLYG 

Rl'RO = tmp3 

!points to table entry causing exception 

!partial result after iteration prior to 
lone causing the overflow or underflow 

R2(7: 0) = tmpl ! number of iterations remaining 

R2(3l: 8) = implementation dependent 

R3 = tmp2 !points to table entry causing exception 

R5'R4 arg 

POLYH 

R3'R2'Rl'RO = tmp3 !partial result after iteration prior to the 
lone causing the overflow or underflow 

R4(7: 0) = tmpl ! number 0 f i tera tions remaining 

R4(3l:8) = implementation dependent 

R5 = tmp2 !points to table entry causing exception 

31 161514 43 o 
traction sl exponent Itraction 

traction fraction 

0 

table address + degree*8 + 8 

0 

0 

POLYG 

Figure 3.5 
POL YG Result Register 

31 161514 o 

fraction sl exponent 

fraction fraction 
\ 

fraction fraction 

fraction fraction 

0 

table address + degree*16 + 16 

POLYH 

Figure 3.6 
POL YH Result Register 
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:RO 

:R1 

:R2 

:R3 

:R4 

:R5 

:RO 

:R1 

:R2 

:R3 

:R4 

:R5 



arg is saved on the stack in use during the faulting instruction. 

Implementation dependent information is saved to allow the 
instruction to continue after possible scaling of the coefficients and 
partial result by a fault handler. 

3. If the unsigned-word degree operand is 0 and the argument is not 
a reserved operand, the result is C[O]. If the degree is 0 and 
either the argument or C[O] is a reserved operand, a reserved 
operand fault occurs. 

4. If the unsigned-word degree operand is greater than 31, a reserved 
operand fault occurs. 

5. On a reserved operand fault: 

• If PSL(FPD) = 0, the reserved operand is either the degree 
operand (greater than 31), or the argument operand, or some 
coefficient. 

• If PSL(FPD) = 1, the reserved operand is a coefficient, and R3 
(except for POL YH) or R5 (for POL YH) is pointing at the value 
that caused the exception. 

• The state of the saved condition codes and the other registers is 
UNPREDICTABLE. If the reserved operand is changed and the 
contents of the condition codes and all registers are preserved, 
the fault is continuable. 

6. On floating underflow after the rounding operation at any iteration 
of the computation loop, a fault occurs if FU is set. If FU is clear, 
the temporary result (tmp3) is replaced by 0 and the operation 
continues. In this case, the final result may be non-zero if underflow 
occurred before the last iteration. 

7. On floating overflow after the rounding operation at any iteration of 
the computation loop, the instruction terminates with a fault. 

8. If the argument is zero, the result is C[O]. Additionally, if one of the 
coefficients in the table (other than C[OD is a reserved operand, 
whether a reserved operand fault occurs is UNPREDICTABLE. 

9. For POL YH, some implementations may not save arg on the stack 
until after an interrupt or fault occurs. However, arg will always be 
on the stack if an interrupt or floating fault occurs after FPD is 
set. If the four longwords on the stack overlap any of the source 
operands, the results are UNPREDICTABLE. 

Example: 
To compute P(x) = CO + C1 *x + C2*X2 
where CO = 1.0, C1 = .5, and C2 = .25 

POLYF X, #2, PTABLE 
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PTABLE: . FLOAT 0.25 

.FLOAT 0.5 

. FLOAT 1. 0 

Subtract 

Format: 

opcode sub.rx, dif.mx 

opcode sub.rx, min.rx, dif.wx 

Operation: 

dif ~ dif - sub; 
dif ~ min - sub; 

Condition Codes: 

N ~ dif LSS 0; 

Z ~ dif EQL 0; 

V ~ 0; 

c ~ 0; 

Exceptions: 
floating overflow 

floating underflow 

reserved operand 

Opcodes: 

42 SUBF2 Subtract 

43 SUBF3 Subtract 

62 SUBD2 Subtract 

63 SUBD3 Subtract 

42FD SUBG2 Subtract 

43FD SUBG3 Subtract 

62FD SUBH2 Subtract 

63FD SUBH3 Subtract 

!2 operand 
!3 operand 

F_floating 

F_floating 

D_floating 

D_floating 

G_floating 

G_floating 

H_floating 

H_floating 
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;C2 

;Cl 

; CO 

2 

3 

2 

3 

2 

3 

2 

3 

2 operand 

3 operand 

Operand 

Operand 

Operand 

Operand 

Operand 

Operand 

Operand 

Operand 



TST 

Description: 
In 2 operand format, the subtrahend operand is subtracted from the 
difference operand and the difference is replaced by the rounded 
result. In 3 operand format, the subtrahend operand is subtracted from 
the minuend operand and the difference operand is replaced by the 
rounded result. 

Notes: 
1. On a reserved operand fault, the difference operand is unaffected 

and the condition codes are UNPREDICTABLE. 

2. On floating underflow, a fault occurs if FU is set. Zero is stored as 
the result of floating underflow only if FU is clear. On a floating 
underflow fault, the difference operand is unaffected. If FU is clear, 
the difference operand is replaced by 0 and no exception occurs. 

3. On floating overflow, the instruction faults. The difference operand 
is unaffected, and the condition codes are UNPREDICTABLE. 

Test 

Format: 

opcode src.rx 

Operation: 

src - 0; 

Condition Codes: 

N ~ src LSS 0; 

Z ~ src EQL 0; 

V ~ 0; 

C ~ 0; 

Exception: 
reserved operand 

Opcodes: 

53 TSTF Test F_floating 

73 TSTD Test D_floating 

53FD TSTG Test G_floating 

73FD TSTH Test H_floating 
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Description: 
The condition codes are affected according to the value of the source 
operand. 

Notes: 
1. TSTx src is equivalent to CMPx src, #0, but is 5 (F _floating) or 9 

(D_floating or G_floating) or 17 (H~floating) bytes shorter. 

2. On a reserved operand fault, the. condition codes are 
UNPREDICTABLE. 

The character-string instructions, except for MOVC3 and MOVC5, 
may be omitted from subset implementations of the VAX architecture. 
Execution of an omitted instruction results in an emulated instruction 
exception. Omitted instructions may be emulated by operating system 
software and may use user-mode stack space during emulation. For 
more detail, refer to Chapter 11. 

A character string is specified by two operands: 

• An unsigned word operand that specifies the length of the character 
string in bytes 

• The address of the lowest addressed byte of the character string. 
This is specified by a byte operand of address access type. 

Each of the character-string instructions uses general registers RO 
through R1, HO through R3, or RO through R5 to contain a control 
block that maintains updated addresses and state during the execution 
of the instruction. When instruction execution is completed, these 
registers are available to software to use as string specification 
operands for a subsequent instruction on a contiguous character 
string. During the execution of the instructions, pending interrupt 
conditions are tested. If any is found, the control block is updated, a 
first-part-done bit is set in the PSL, and the instruction interrupted 
(see Chapter 5). After the interruption, the instruction resumes 
transparently. 

The format of the control block is shown in Figure 3.7. The fields 
length 1, length 2 (if required), and length 3 (if required) contain the 
number of bytes remaining to be processed in the first, second, 
and third string operands respectively. The fields address 1, address 
2 (if required), and address 3 (if required) contain the address of 
the next byte to be processed in the first, second, and third string 
operands respectively. 

Memory access faults will not occur when a zero-length string is 
specified because no memory reference occurs. 
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CMPC 

31 1615 

I length 1 

address 1 

I length 2 

address 2 

I length 3 

address 3 

Figure 3.7 
Character-String Instruction Control Block 

Compare Characters 

Format: 

opcode len.rw, srcladdr.ab, src2addr.ab 

opcode srcllen.rw, srcladdr.ab, fill.rb, 

src21en.rw, src2addr.ab 

Operation: 

o 
:RO 

:R1 

:R2 

:R3 

:R4 

:R5 

3 operand 

5 operand 

tmpl ~ len; !3 operand 

tmp2 +- srcladdr; 

tmp3 +- src2addr; 

if tmpl EQL 0 then; !Condition Codes affected on tmpl EQL 0 

if tmpl GTRU 0 then 

begin 

while {tmpl NEQU O} do 

if (tmp2) EQL (tmp3) then 

!Condition Codes affected 

Jon (( tmp2) EQL (tmp3) ) 

begin 

tmpl +- tmpl - 1; 

tmp2 +- tmp2 + 1; 

tmp3 ..... tmp3 + 1 ; 

end; 

else exit while loop; 

end; 

RO ..... tmpl; 

Rl +- tmp2; 

R2 ..... RO; 

R3 +- tmp3; 
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tmpl <- srcllen; 

tmp2 <- srcladdr; 

tmp3 <- src21en; 

tmp4 <- src2addr; 

!5 operand 

if {tmpl EQL O} AND {tmp3 EQL O} then; ! Condi tion codes affected on 

! {tmpl EQL O} AND {tmp3 EQL O} 

while {tmpl NEQU O} AND {tmp3 NEQU O} do 

if (tmp2) EQL (tmp4) then !Condition Codes affected 

ion ((tmp2) EQL (tmp4)) 

begin 

tmpl <- tmpl - 1; 

tmp2 <- tmp2 + 1; 

tmp3 <- tmp3 - 1; 

tmp4 <- tmp4 + 1; 

end; 

else exit while loop; 

if NOT{tmpl NEQU O} AND {tmp3 NEQU O} then 

begin 

while {tmpl NEQU O} AND {(tmp2) EQL fill} do !Condition Codes 

!affected on ((tmp2) EQL fill) 

begin 

tmpl <- tmpl - 1; 

tmp2 <- tmp2 + 1; 

end; 

while {tmp3 NEQU O} AND {fill EQL (tmp4)} do !Condition Codes 

!affected on (fill EQL (tmp4)) 

end; 

RO <- tmpl; 

Rl <- tmp2; 

R2 <- tmp3; 

R3 <--- tmp4; 

begin 

tmp3 <- tmp3 - 1; 

tmp4 <- tmp4 + 1; 

end; 

Condition Codes: 

IFinal Condition Codes reflect last affecting 

lof Condition Codes in Operation above~ 

N <- {first byte} LSS {second byte}; 

Z <- {first byte} EQL {second byte}; 

VAX Architecture Reference Manual 



v'"<c- 0; 

C <c- {first byte} LSSU {second byte}; 

Exceptions: 
none 

Opcodes: 

29 CMPC3 Compare Characters 3 Operand 

20 CMPC5 Compare Characters 5 Operand 

Description: 
In 3 operand format, the bytes of string 1 specified by the length and 
address 1 operands are compared with the bytes of string 2 specified 
by the length and address 2 operands. Comparison proceeds until 
inequality is detected or all the bytes of the strings have been 
examined. Condition codes are affected by the result of the last byte 
comparison. In 5 operand format, the bytes of the string 1 specified 
by the length 1 and address 1 operands are compared with the bytes 
of the string 2 specified by the length 2 and address 2 operands. If 
one string is longer than the other, the shorter string is conceptually 
extended to the length of the longer by appending (at higher 
addresses) bytes equal to the fill operand. Comparison proceeds until 
inequality is detected or all the bytes of the strings have been 
examined. Condition codes are affected by the result of the last byte 
comparison. For either CMPC3 or CMPC5, two zero-length strings 
compare equal (Z is set and N, V, and C are cleared). 

Notes: 
1. After execution of CMPC3: 

RO = number of bytes remaining in string 1 (including 
byte that terminated comparison); RO is zero only if strings are 
equal 

R1 = address of the byte in string 1 that terminated 
comparison; if strings are equal, address of one 
byte beyond string 1 

R2 = RO 

R3 = address of the byte in string 2 that terminated 
comparison; if strings are equal, address of 
one byte beyond string 2. 

2. After execution of CMPC5: 

RO = number of bytes remaining in string 1 (including 
byte that terminated comparison); RO is zero only 
if string 1 and string 2 are of equal length and 
equal or string 1 was exhausted before comparison 
terminated 
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R1 = address of the byte in string 1 that terminated 
comparison; if comparison did not terminate 
before string 1 exhausted, address of one byte 
beyond string 1 

R2 = number of bytes remaining in string 2 (including 
byte that terminated comparison); R2 is zero 
only if string 2 and string 1 are of equal length 
or string 2 was exhausted before comparison terminated 

R3 = address of the byte in string 2 that terminated 
comparison; if comparison did not terminate before 
string 2 was exhausted, address of one byte beyond 
string 2. 

3. If both strings have zero length, condition code Z is set 
and N, V, and C are cleared just as in the case of two 
equal strings. 

Locate Character 

Format: 

opcode char.rb, len.rw, addr.ab 

Operation: 

tmpl (- len: 

tmp2 (- addr; 

if tmpl GTRU 0 

begin 

while 

end; 

RO (- tmpl; 

Rl (- tmp2; 

then 

{tmpl NEQ O} AND {( tmp2) 

begin 

tmpl (- tmpl - 1; 

tmp2 (- tmp2 + 1; 

end; 

Condition Codes: 

N (- 0; 

Z (- RO EQL 0; 

V (- 0; 

C (- 0; 
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MATCHC 

Exceptions: 
none 

Opcode: 

3A LOCC Locate Character 

Description: 
The character operand is compared with the bytes of the string 
specified by the length and address operands. Comparison continues 
until equality is detected or all bytes of the string have been compared. 
If equality is detected, the condition code Z-bit is cleared; otherwise, 
the Z -bit is set. 

Notes: 
1. After execution: 

RO = number of bytes remaining in the string (including 
located one) if byte located; otherwise 0 

R1 = address of the byte located if byte located; otherwise 
address of one byte beyond the string. 

2. If the string has zero length, condition code Z is set 
just as though each byte of the entire string were unequal 
to character. 

Match Characters 

Format: 

opcode obj1en.rw, objaddr.ab, src1en.rw, srcaddr.ab 

Operation: 

tmp1 +- obj1en: 

tmp2 +- obj addr; 

tmp3 +- src1en; 

tmp4 +- srcaddr; 

tmp5 +- tmp1; 

while {tmp1 NEQU a} AND {tmp3 GEQU tmp1} do 

begin 

if (tmp2) EQL (tmp4) then 

begin 

tmp1 +- tmp1 - 1; 

tmp2 +- tmp2 + 1; 

tmp3 +- tmp3 - 1; 
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else 

end; 

if {tmp3 LSSU 

begin 

tmp4 

tmp3 

end; 

RO ~ tmpl; 

Rl ~ tmp2; 

R2 ~ tmp3; 

R3 ~ tmp4; 

tmp4 ~ tmp4 + 1; 

end 

begin 

tmp2 ~ tmp2 - ZEXT (tmp5-tmpl); 

tmp3 ~ {tmp3 - I} + {tmp5-tmpl}; 

tmp4 ~ {tmp4 + I} - ZEXT (tmp5-tmpl); 

tmpl ~ tmp5; 

end; 

tmpl} then 

~ tmp4 + tmp3; 

~ 0; 

Condition Codes: 

N ~ n· • u, 

Z ~ RO EQL 

V ~ 0; 

C ~ 0; 

Exceptions: 
none 

Opcode: 

0; !match found 

39 MATCHC Match Characters 

Description: 
The source string specified by the source length and source address 
operands is searched for a substring that matches the object string 
specified by the object length and object address operands. If the 
substring is found, the condition code Z-bit is set; otherwise, it is 
cleared. 
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Move 

Notes: 
1. After execution: 

RO = if a match occurred 0; otherwise, the number of bytes in the 
object string 

R1 = if a match occurred, the address of one byte beyond the 
object string (that is, objaddr + objlen); otherwise, the address of 
the object string 

R2 = if a match occurred, the number of bytes remaining in the 
source string; otherwise 0 

R3 = if a match occurred, the address of one byte beyond the last 
byte matched; otherwise, the address of one byte beyond the 
source string (that is, srcaddr + srclen). 

For zero length source and object strings, R3 and R1 contain the 
source and object addresses respectively. 

2. If both strings have zero length or if the object string has zero 
length, condition code Z is set and registers RO through R3 are left 
just as though the substring were found. 

3. If the source string has zero length and the object string has non­
zero length, condition code Z is cleared and registers RO through 
R3 are left just as though the substring were not found. 

Move Character 

Format: 

opeode len.rw, sreaddr.ab, dstaddr.ab 

ope ode srelen.rw, sreaddr.ab, fill.rb, 

dstlen.rw, dstaddr.ab 

Operation: 

tmpl ~ len; 

tmp2 ~ sreaddr; 

tmp3 ~ dstaddr; 

if tmp2 GTRU tmp3 then 

begin 

while tmpl NEQU a do 

begin 

Instructions 

(tmp3) ~ (tmp2); 

tmpl ~ tmpl - 1; 

tmp2 ~ tmp2 + 1; 

3 operand 

5 operand 

!3 operand 
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else 

RO <f-

R2 <f-

R4 <f-

R5 <f-

tmpl 

tmp2 

tmp3 

0; 

0; 

0' 

0' 

tmp3 <f- tmp3 + 1; 

end; 

Rl <f- tmp2; 

R3 <f- tmp3; 

end 

begin 

tmp4 <f- tmpl; 

tmp2 <f- tmp2 + ZEXT ( tmpl ) ; 

tmp3 <f- tmp3 + ZEXT ( tmpl) ; 

while tmpl NEQU 0 do 

Rl <f-

R3 <f-

end; 

begin 

tmpl <f- tmpl - l' 

tmp2 <f- tmp2 - l' 

tmp3 <f- tmp3 - 1; 

(tmp3) <f- (tmp2); 

end; 

tmp2 

tmp3 

+ ZEXT(tmp4); 

+ ZEXT( tmp4) ; 

<f- srclen; 

<f- srcaddr; 

<f- dstlen; 

tmp4 <f- dstaddr; 

if tmp2 GTRU tmp4 then 

begin 

!5 operand 

while {tmpl NEQU O} AND {tmp3 NEQU O} do 

begin 

( tmp4) <f- (tmp2); 

tmpl <f- trnpl - 1; 

tmp2 <f- tmp2 + 1; 

tmp3 <f- tmp3 - l' 

tmp4 <f- trnp4 + l' 

end; 

VAX Architecture Reference Manual 



while tmp3 NEQU 0 do 

begin 

(tmp4) ~ fill; 

tmp3 ~ tmp3 - 1-

tmp4 ~ tmp4 + l-

end; 

R1 ~ tmp2; 

R3 ~ tmp4; 

end 

else 

begin 

tmp5 ~ MINU(tmpl, tmp3); 

tmp6 ~ tmp3; 

tmp2 ~ tmp2 + ZEXT ( tmp5 ) ; 

tmp4 ~ tmp4 + ZEXT ( tmp6 ) ; 

while tmp3 GTRU tmpl do 

begin 

tmp3 ~ tmp3 - 1; 

tmp4 ~ tmp4 - 1; 

(tmp4) ~ fill; 

end; 

while tmp3 NEQU 0 do 

begin 

tmp1 ~ tmp1 - 1-

tmp2 ~ tmp2 - 1-

tmp3 ~ tmp3 - 1-

tmp4 ~ tmp4 - 1; 

( tmp4) ~ (tmp2); 

end; 

R1 ~ tmp2 + ZEXT (tmp5); 

R3 ~ tmp4 + ZEXT (tmp6); 

end; 

RO ~ tmp1; 

R2 ~ 0; 

R4 ~ 0; 

R5 ~ 0; 
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Condition Codes: 

N ~ 0; !MOVC3 

z ~ 1; 

V ~.O; 

C ~ 0; 

N ~ src1en LSS dstlen; !MOVC5 

Z ~ src1en EQL dstlen; 

V ~ 0; 

C ~ src1en LSSU dstlen; 

Exceptions: 
none 

Opcodes: 

28 MOVC3 Move Character 3 Operand 

2C MOVC5 Move Character 5 Operand 

Description: 
In 3 operand format, the destination string specified by the length and 
destination address operands is replaced by the source string 
specified by the length and source address operands. In 5 operand 
format, the destination string specified by the destination length 
and destination address operands is replaced by the source string 
specified by the source length and source address operands. if the 
destination string is longer than the source string, the highest 
addressed bytes of the destination are replaced by the fill operand. If 
the destination string is shorter than the source string, the highest 
addressed bytes of the source string are not moved. The operation of 
the instruction is such that overlap of the source and destination 
strings does not affect the result. 

Notes: 
1. After execution of MOVC3: 

RO = 0 

R1 = address of one byte beyond the source string 

R2 = 0 

R3 = address of one byte beyond the destination string. 

R4 = 0 

R5 = O. 

2. After execution of MOVC5: 
RO = number of unmoved bytes remaining in source string; RO is 
non-zero only if source string is longer than destination string 
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MOVTC 

R1 = address of one byte beyond the last byte in source string 
that was moved 

R2 = 0 

R3 = address of one byte beyond the destination string 

R4 = 0 

R5 = O. 

3. MOVC3 is the preferred way to copy one block of memory to 
another. 

4. MOVC5 with a zero source length operand is the preferred way to 
fill a block of memory with the fill character. 

Move Translated Characters 

Format: 

ope ode sre1en.rw, sreaddr.ab, fi11.rb, tb1addr.ab, 

dstlen.rw, dstaddr.ab 

Operation: 

tmp1 ~ sre1en; 

tmp2 ~ sreaddr; 

tmp3 ~ dstlen; 

tmp4 ~ dstaddr; 

if tmp2 GTRU tmp4 then 

begin 

while {tmp1 NEQU O} AND {tmp3 NEQU O} do 

begin 

(tmp4) ~ (tb1addr + ZEXT( (tmp2) ) ) ; 

tmp1 ~ tmpl - 1; 

tmp2 ~ tmp2 + 1; 

tmp3 ~ tmp3 - 1; 

tmp4 ~ tmp4 + l' 

end; 

while {tmp3 NEQU O} do 

begin 

Instructions 

(tmp4) ~ fill; 

tmp3 ~ tmp3 - 1; 

tmp4 ~ tmp4 + 1; 

end; 
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else 

Rl ~ tmp2; 

R5 ~ tmp4; 

end; 

begin 

tmp5 ~ MINU (tmpl, tmp3) ; 

tmp6 ~ tmp3; 

tmp2 ~ tmp2 + ZEXT ( tmp5 ) ; 

tmp4 ~ tmp4 + ZEXT ( tmp6) ; 

while tmp3 GTRU tmpl do 

begin 

tmp3 ~ tmp3 - 1; 

tmp4 ~ tmp4 - 1; 

(tmp4) ~ fill; 

end; 

while tmp3 NEQU 0 do 

begin 

tmpl ~ tmpl - 1; 

tmp2 ~ tmp2 - 1; 

tmp3 ~ tmp3 - 1; 

tmp4 ~ tmp4 - 1; 

(tmp4) ~ (tbladdr + ZEXT ( ( tmp2) ) ) ; 

end; 

Rl .~ tmp2 + ZEXT( tmp5) ; 

R5 ~ tmp4 + ZEXT ( tmp6) ; 

end; 

RO ~ tmpl; 

R2 ~ 0; 

R3 ~ tbladdr; 

R4 ~ 0; 

Condition Codes: 

N ~ srclen LSS 

Z ~ srclen EQL 

V ~ 0; 

dstlen; 

dstlen; 

C ~ srclen LSSU dstlen; 

Exceptions: 
none 
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MOVTUC 

Opcode: 

2E MOVTC Move Translated Characters 

Description: 
The source string specified by the source length and source address 
operands is translated and replaces the destination string specified by 
the destination length and destination address operands. Translation 
is accomplished by using each byte of the source string as an 
index into a 256-byte table whose zeroth entry address is specified by 
the table address operand. The byte selected replaces the byte of 
the destination string. If the destination string is longer than the 
source string, the highest addressed bytes of the destination string 
are replaced by the fill operand. If the destination string is shorter 
than the source string, the highest addressed bytes of the source 
string are not translated and moved. The operation of the instruction 
is such that overlap of the source and destination strings does not 
affect the result. If the destination string overlaps the translation table, 
the destination string is UNPREDICTABLE. 

Notes: 
After execution: 

RD = number of untranslated bytes remaining in source string; RD is 
non-zero only if source string is longer than destination string 

R1 = address of one byte beyond the last byte in source string that 
was translated 

R2 = D 

R3 = address of the translation table 

R4 = D 

R5 = address of one byte beyond the destination string. 

Move Translated Until Character 

Format: 

ope ode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab, dstlen.rw, 

dstaddr.ab 

Operation: 

tmpl ~ srclen; 

tmp2 ~ srcaddr; 

tmp3 ~ dstlen; 

tmp4 ~ dstaddr; 

if tmpl GTRU 0 and tmp3 GTRU 0 then 
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begin 

while {tmpl NEQU O} AND {tmp3 NEQU O} do 

if{(tbladdr + ZEXT(tmp2)) NEQU esc} then 

begin 

(tmp4) ~ (tbladdr + ZEXT( tmp2) ) ; 

tmpl ~ tmpl - 1; 

tmp2 ~ tmp2 + 1; 

tmp3 ~ tmp3 - 1; 

tmp4 ~ tmp4 + 1; 

end; 

else exit while loop; 

end; 

RO ~ tmpl; 

Rl ~ tmp2; 

R2 ~ 0; 

R3 ~ tbladdr; 

R4 ~ tmp3; 

R5 ~ tmp4; 

Condition Codes: 

N ~ srclen LSS dstlen; 

Z ~ srclen EQL dstlen; 

V ~ {terminated by escape}; 

C ~ srclen LSSU dstlen; 

Exceptions: 
none 

Opcode: 

2F MOVTUC Move Translated Until Character 

Description: 
The source string specified by the source length and source address 
operands is translated and replaces the destination string specified by 
the destination length and destination address operands. Translation 
is accomplished by using each byte of the source string as index into 
a 256-byte table whose zeroth entry address is specified by the 
table address operand. The byte selected replaces the byte of the 
destination string. Translation continues until a translated byte is 
equal to the escape byte or until the source string or destination string 
is exhausted. If translation is terminated because of escape, the 
condition code V-bit is set; otherwise, it is cleared. If the destination 
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string overlaps the table, the destination string and registers RD 
through R5 are UNPREDICTABLE. If the source and destination 
strings overlap and their addresses are not identical, the destination 
string and registers RD through R5 are UNPREDICTABLE. If the 
source and destination string addresses are identical, the translation 
is performed correctly. 

Notes: 
After execution: 

RD = number of bytes remaining in source string (including the byte 
that caused the escape); RD is zero only if the entire source string 
was translated and moved without escape 

R1 = address of the byte that resulted in destination string exhaustion 
or escape; or if no exhaustion or escape, address of one byte beyond 
the source string 

R2 = D 

R3 = address of the table 

R4 = number of bytes remaining in the destination string 

R5 = address of the byte in the destination string that would have 
received the translated byte that caused the escape or would have 
received a translated byte if the source string were not exhausted; or 
if no exhaustion or escape, the address of one byte beyond the 
destination string. 

Scan Characters 

Format: 

opcode len.rw, addr.ab, tbladdr.ab, mask.rb 

Operation: 

tmpl ~ len; 

tmp2 ~ addr; 

if tmpl GTRU 0 then 

begin 

while {tmpl NEQU O} AND {{( tbladdr + ZEXT( (tmp2) ) ) 

AND mask} EQL O} do 

begin 

tmpl ~ tmpl - 1; 

tmp2 ~ tmp2 + l' 

end; 

end; 
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RO ~ tmpl; 

Rl ~ tmp2; 

R2 ~ 0; 

R3 ~ tbladdr; 

Condition Codes: 

N ~ 0; 

Z ~ RO EQL 0; 

V ~ 0; 

C ~ 0; 

Exceptions: 
none 

Opcode: 

2A SCANC Scan Characters 

Description: 
The bytes of the string specified by the length and address operands 
are successively used to index into a 256-byte table whose zeroth 
entry address is specified by the table address operand. The byte 
selected from the table is ANDed with the mask operand. The 
operation continues until the result of the AND is non-zero or all the 
bytes of the string have been exhausted. If a non-zero AND result 
is detected, the condition code Z-bit is cleared; otherwise, the Z-bit is 
set. 

Notes: 
1. After execution: 

RO = number of bytes remaining in the string (including the byte 
that produced the non-zero AND result); 

RO is zero only if there was no non-zero AND result 

R1 = address of the byte that produced non-zero AND result; or, if 
no non-zero result, address of one byte beyond the string 

R2 = 0 

R3 = address of the table. 

2. If the string has zero length, condition code Z is set just as though 
the entire string were scanned. 
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SKPC Skip Character 

Format: 

opcade char.rb, len.rw, addr.ab 

Operation: 

tmpl ~ len; 

tmp2 ~ addr; 

if tmpl GTRU 0 then 

begin 

while {tmpl NEQ rl AND {( tmp2) EQL char} do 

begin 

tmpl ~ tmpl - 1; 

tmp2 ~ 

end; 

end; 

RO ~ tmpl; 

Rl ~ tmp2; 

Condition Codes: 

N ~ 0; 

Z ~ RO EQL 

V ~ 0; 

C ~ 0; 

Exceptions: 
none 

Opcode: 

0; 

tmp2 + 1· 

3B SKPC Skip Character 

Description: 
The character operand is compared with the bytes of the string 
specified by the length and address operands. Comparison continues 
until inequality is detected or all bytes of the string have been 
compared. If inequality is detected; the condition code Z-bit is cleared; 
otherwise the Z-bit is set. 

Notes: 
1. After execution: 

RO = number of bytes remaining in the string (including the 
unequal one) if unequal byte located; otherwise, 0 
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R1 = address of the byte located if byte located; otherwise 
address of one byte beyond the string. 

2. If the string has zero length, condition code Z is set just as though 
each byte of the entire string were equal to character. 

Span Characters 

Format: 

opcode len.rw, addr.ab, tbladdr.ab, mask.rb 

Operation: 

tmpl ~ len; 

tmp2 ~ addr; 

if tmpl GTRU 0 then 

begin 

while {tmpl NEQU O} AND 

end; 

RO ~ tmpl; 

Rl ~ tmp2; 

R2 ~ 0; 

R3 ~ tbladdr; 

Condition Codes: 

N ~ 0; 

Z ~ RO EQL 0; 

V ~ 0; 

C ~ 0; 

Exceptions: 
none 

Opcode: 

{{ (tbladdr + ZEXT ( (tmp2) )) AND 
mask} NEQ O} do 
begin 

tmpl ~ tmpl - 1; 

tmp2 ~ tmp2 + 1; 

end; 

28 SPANC Span Characters 
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CYCLIC 
REDUNDANCY 
CHECK 
INSTRUCTION 

Description: 
The bytes of the string specified by the length and address operands 
are successively used to index into a 256-byte table whose zeroth 
entry address is specified by the table address operand. The byte 
selected from the table is ANDed with the mask operand. The 
operation continues until the result of the AND is zero or all the bytes 
of the string have been exhausted. If a zero AND result is detected, 
the condition code l-bit is cleared; otherwise, the l-bit is set. 

Notes: 
1. After execution: 

RO = number of bytes remaining in the string (including the byte 
that produced the zero AND result); RO is zero only if there was no 
zero AND result 

R1 = address of the byte that produced a zero AND result; or, if 
no non-zero result, address of one byte beyond the string 

R2 = 0 

R3 = address of the table. 

2. If the string has zero length, the condition code l is set just as 
though the entire string were spanned. 

Note 
The cyclic redundancy check instructions may be omitted from subset 
implementations of the VAX architecture. Execution of an omitted 
instruction results in an emulated instruction exception. For more 
detail, refer to Chapter 11. 

This instruction is designed to implement the calculation and checking 
of a cyclic redundancy check (CRC) for any CRC polynomial up to 
32 bits. Cyclic redundancy checking is an error-detection method 
involving a division of the data stream by a CRC polynomial. The data 
stream is represented as a standard VAX string in memory. Error 
detection is accomplished by computing the CRC at the source and 
again at the destination, comparing the CRC computed at each end. 
The choice of the polynomial is such as to minimize the number of 
undetected block errors of specific lengths. The choice of a CRC 
polynomial is not given here.· 

The operands to the CRC instruction are a string descriptor, a 16-
longword table, and an initial CRC. The string descriptor is a standard 
VAX operand pair of the length of the string in bytes (up to 65,535) 
and the starting address of the string. The contents of the table are a 

·See the article "Cyclic Codes for Error Detection" by W. Peterson and D. Brown in 
the Proceedings of the IRE (January 1961). 
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function of the CRC polynomial to be used. It can be calculated 
from the polynomial by the algorithm in the notes. Several common 
CRC polynomials are also included in the notes. The initial CRC 
is used to start the polynomial correctly. Typically, it has the value 0 
or - 1, but would be different if the data stream were represented by 
a sequence of non-contiguous strings. 

The CRC instruction operates by scanning the string, and for each 
byte of the data stream, including it in the CRC being calculated. The 
byte is included by XORing it to the right 8 bits of the CRC. Then 
the CRC is shifted right 1 bit, inserting zero on the left. The right-most 
bit of the CRC (lost by the shift) is used to control the XORing of the 
CRC polynomial with the resultant CRC. If the bit is set, the polynomial 
is XORed with the CRC. Then the CRC is again shifted right, and the 
polynomial is conditionally XORed with the result a total of eight 
times. The actual algorithm used can shift by 1, 2, or 4 bits at a time 
using the appropriate entries in a specially constructed table. The 
instruction produces a 32-bit CRC. For shorter polynomials, the result 
must be extracted from the 32-bit field. The data stream must be a 
multiple of 8 bits in length. If it is not, the stream must be right­
adjusted in the string with leading 0 bits. 

Calculate Cyclic Redundancy Check 

Format: 

opcode tbl.ab, inicrc.rl, strlen.rw, stream.ab 

Operation: 

tmpl <-- strlen; 

tmp2 <-- stream; 

tmp3 <-- inicrc; 

tmp4 <-- tbl; 

while tmpl NEQU 0 do 

begin 

tmp3(7: 0)<-- tmp3(7: 0) XOR (tmp2) + ; 

for tmp5 <-- 1, limit do ! see notes for limit, s, i 

tmp3 <-- ZEXT ( tmp3(31 : s)) XOR 

tmpl <-- tmpl -1; 

end; 

(tmp4 + {4*ZEXT (tmp3(s -1: O)*i)}; 

RO <-- tmp3; 

Rl <-- 0; 
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R2 <- 0; 

R3 <- tmp2; 

Condition Codes: 

N <c- RO LSS 

Z <c- RO EQL 

V <c- 0; 

C <c- 0; 

Exceptions: 
none 

Opcode: 

0; 

0; 

OB CRC Calculate Cyclic Redundancy Check 

Description: 
The CRC of the data stream described by the string descriptor is 
calculated. The initial CRC is given by inicrc and is normally 0 or -1 
unless the CRC is calculated in several steps. The result is left in 
RO. If the polynomial is less than order 32, the result must be 
extracted from the result. The CRC polynomial is expressed by the 
contents of the 16-longword table. See the notes for the calculation of 
the table. 

Notes: 
1. If the data stream is not a multiple of 8-bits long, it must be right­

adjusted with leading 0 fill. 

2. If the CRC polynomial is less than order 32, the result must be 
extracted from the low-order bits of RO. 

3. The following algorithm can be used to calculate the CRC table 
given a polynomial expressed as follows: 

polyn(n) <c- {coefficient of x'order -l-n}} 

This routine is available as system library routine 
LlB$CRC_ TABLE (poly.rl, table.ab). The bits of the poly operand, 
taken right to left, represent the coefficients of the polynomial, 
taken left to right and skipping the most significant bit. The table is 
the location of a 64-byte (16-longword) table into which the result 
will be written. 

SUBROUTINE LIB$CRC-TABLE (POLY, TABLE) 

INTEGER*4 POLY, TABLE(0:15), TMP, x 
DO 190 INDEX = 0, 15 

TMP = INDEX 

DO 150 I = 1, 4 
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Table 3.1 
CRC-16 

Initialize 
Polynomial POLY Value Result 

CRC-16 (used for DDCMP 
and Bisync) 
X'6+ X'5+ X2+ 1 0000A001 00000000 RO(15:0) 

CCITT (used for ADCCP, 
HDLC, SDLC) 
X'6 +X'2 +X5+ 1 00008408 OOOOFFFF one's complement of RO(15:0) 

AUTODIN-II 

X32 + X26 + X23 + X22 + EDB88320 FFFFFFFF one's complement of RO(31 :0) 
X'6+ X'2+ X" +x'o+ 
X8+ X7 +X5+ X4+X2+X+ 1 
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x = TMP . AND. 1 

TMP = ISHFT(TMP, -1) 
one bit 

!logical shift right 

IF (X .EQ. 1) TMP = TMP .XOR. POLY 

150 CONTINUE 

TABLE (INDEX) = TMP 

190 CONTINUE 

RETURN 

END 

4. Table 3.1 describes some commonly used CRC polynomials. 

5. This instruction produces an UNPREDICTABLE result unless the 
table is well formed, such as produced in item 3 above. Note 
that for any well formed table, entry[O] is always 0 and entry[8] is 
always the polynomial expressed as in item 3 above. The operation 
can be implemented using shifts of 1, 2, or 4 bits at a time as 
shown in Table 3.2. 

6. If the stream has zero length, RO receives the initial eRe. 

Table 3.2 
CRC Shift Amounts 

Shift 
Amount(s) 

1 
2 
4 

Steps 
Per Byte 
(Limit) 

8 
4 
2 

Table Index 

tmp3(0) 
tmp3(1 :0) 
tmp3(3:0) 
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Table Index 
Multiplier (1) 

8 
4 
1 

Table Entries Used 

[0] =0,[8] 
[0] = 0,[4],[8],[12] 
ali 



DECIMAL­
STRING 
INSTRUCTIONS 

Decimal-string instructions may be omitted from subset implementa­
tions of the VAX architecture. Execution of an omitted instruction 
results in an emulated instruction exception. Omitted instructions may 
be emulated by operating system software, which may use user-mode 
stack space during the emulation. For more detail, refer to Chapter 11. 

Decimal-string instructions operate on packed decimal strings. 
Convert instructions are provided between packed decimal and trailing 
numeric string (overpunched and zoned) and leading separate 
numeric string formats. Where necessary, a specific data type is 
identified. Where the phrase decimal string is used, it means any of 
the three data types. 

A decimal string is specified by two operands: 

• The first operand is the length; the number of digits in the string. 
The number of bytes in the string is a function of the length and the 
type of decimal string referenced (see Chapter 1) . 

• The second operand is the address of the lowest addressed byte of 
the string. This byte contains the most significant digit for trailing 
numeric and packed decimal strings. This byte contains a sign for 
left separate numeric strings. The address is specified by a byte 
operand of address access type. 

Each of the decimal-string instructions uses general registers RO 
through R3 or RO through R5 to contain a control block that maintains 
updated addresses and state during the execution of the instruction. 
At completion, the registers containing addresses are available to the 
software to use as string specification operands for a subsequent 
instruction on the same decimal strings. During the execution of the 
instructions, pending interrupt conditions are tested, and if any is 
found, the control block is updated. First-part-done is set in the PSL, 
and the instruction interrupted (see Chapter 5). After the interruption, 
the instruction resumes transparently. The format of the control 
block at completion is shown in Figure 3.8. The fields address 1, 
address 2, and address 3 (if required) contain the address of the byte 

31 

0 

address 1 

0 

address 2 

0 

address 3 

Figure 3.8 
Decimal-String Instruction Control Block 

Instructions 

o 
:RO 

:R1 

:R2 

:R3 

:R4 

:R5 
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Decimal 
Overflow 

Zero Numbers 

Reserved 
Operand 
Exception 

containing the most significant digit of the first, second, and third (if 
required) string operands respectively. 

The decimal-string instructions treat decimal strings as integers with 
the decimal point assumed immediately beyond the least significant 
digit of the string. If a string in which a result is to be stored is longer 
than the result, its most significant digits are filled with zeros. 

Decimal overflow occurs if the destination string is too short to contain 
all the digits (excluding leading zeros) of the result. On overflow, the 
destination string is replaced by the correctly signed least significant 
digits of the true result (even if the stored result is - 0). Note that 
neither the high nibble of an even-length packed decimal string, nor 
the sign byte of a leading separate numeric string is used to store 
result digits. 

A zero result has a: positive sign for all operations that complete 
without decimal overflow, except for CVTPT which does not fix a - 0 
to a + O. When digits are lost because of overflow, however, a zero 
result receives the sign (positive or negative) of the correct result. 

A decimal string wi~h value - 0 is treated as identical to a decimal 
string with value +0. For example, +0 compares equal to -0. When 
condition codes are affected on a - 0 result they are affected as if 
the result were + 0; that is, N is cleared and Z is set. 

A reserved operand abort occurs if the length of a decimal-string 
operand is outside the range 0 through 31, or if an invalid sign or digit 
is encountered in CVTSP and CVTTP. The PC points to the opcode 
of the instruction causing the exception. 

UNPREDICTABLE The result of any operation is UNPREDICTABLE if any source 
Results decimal-string operand contains invalid data. Except for CVTSP and 

CVTTP, the decimal-string instructions do not verify the validity of 
source operand data. 
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If the destination operands overlap any source operands, the result of 
an operation will, in general, be UNPREDICTABLE. The destination 
strings, registers used by the instruction and condition codes, will 
in general, be UNPREDICTABLE when a reserved operand abort 
occurs. 
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Packed Decimal Packed decimal strings generated by the decimal-string instructions 
Operations always have the preferred sign representation: 12 for "+" and 13 for 

"-". An even-length packed decimal string is always generated with 

Zero-Length 
Decimal 
Strings 

ADDP 

a "0" digit in the high nibble of the first byte of the string. 

A packed decimal string contains an invalid nibble if: 

1. A digit occurs in the sign position 

2. A sign occurs in a digit position 

3. For an even-length string, a non-zero nibble occurs in the high 
order nibble of the lowest addressed byte. 

The length of a packed decimal string can be o. In this case, the 
value is zero (plus or minus) and one byte of storage is occupied. 
This byte must contain a "0" digit in the high nibble and the sign in 
the low nibble. 

The length of a trailing numeric string can be O. In this case, no 
storage is occupied by the string. If a destination operand is a zero­
length trailing numeric string, the sign of the operation is lost. Memory 
access faults will not occur when a zero-length trailing numeric 
operand is specified because no memory reference occurs. The value 
of a zero-length trailing numeric string is identically O. 

The length of a leading separate numeric string can be O. In this 
case, one byte of storage is occupied by the sign. Memory is accessed 
when a zero-length operand is specified, and a reserved operand 
abort occurs if an invalid sign is detected. The value of a zero-length 
leading separate numeric string is identically O. 

Add Packed 

Format: 

ope ode addlen.rw, addaddr.ab, sumlen.rw, 

sumaddr.ab 

ope ode addllen.rw, addladdr.ab, add21en.rw, 

add2addr.ab, sumlen.rw, sumaddr.ab 

Operation: 

({sumaddr + ZEXT(sumlen/2)} : sumaddr) ~ 

({sumaddr + ZEXT (sumlen/2)) sumaddr) + 
({addaddr + ZEXT (addlen/2)} : addaddr); ! 4 
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operand 

({sumaddr + ZEXT (sumlen/2)} : sumaddr) ~ 

({add2addr + ZEXT(add21en/2)} add2addr) + 
({addladdr + ZEXT(addllen/2)} : addladdr); 16 

operand 

Condition Codes: 

N ~ {sum string} LSS 0; 

Z ~ {sum string} EQL 0; 

V ~ {decimal overflow}; 

C ~ 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcodes: 

20 ADDP4 Add Packed 4 Operand 

21 ADDP6 Add Packed 6 Operand 

Description: 
In 4 operand format, the addend string specified by the addend length 
and addend address operands is added to the sum string specified 
by the sum length and sum address operands, and the sum string is 
replaced by the result. 

In 6 operand format, the addend 1 string specified by the addend 1 
length and addend 1 address operands is added to the addend 2 
string specified by the addend 2 length and addend 2 address 
operands. The sum string specified by the sum length and sum 
address operands is replaced by the result. 

Notes: 
1. After execution of ADDP4: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the addend string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the sum string. 

2. After execution of ADDP6: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the addend 1 string 
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R2 == 0 

R3 == address of the byte containing the most Significant digit of 
the addend 2 string 

R4 == 0 

R5 == address of the byte containing the most significant digit of 
the sum string. 

3. The sum string, RO through R3 (or RO through R5 for ADDP6), and 
the condition codes are UNPREDICTABLE if the sum string 
overlaps the addend, addend 1, or addend 2 strings; the addend, 
addend 1, addend 2 or sum (4 operand only) strings contain an 
invalid nibble; or a reserved operand abort occurs. 

Arithmetic Shift and Round Packed 

Format: 

opcode cnt.rb, srclen.rw, srcaddr.ab, round.rb 

dstlen.rw, dstaddr.ab 

Operation: 

({dstaddr + ZEXT (dstlen/2)) : dstaddr) <-

{( {srcaddr + ZEXT (srclen/2)} : srcaddr) 

+ {round (3: 0)*{10 ** {-cnt -I}}}} 

* {10 ** cnt} ; 

Condition Codes: 

N <- {dst string} LSS 0; 

Z <- {dst string} EQL 0; 

V <- {decimal overflow}; 

C <- 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

F8 ASHP Arithmetic Shift and Round Packed 

Description: 
The source string specified by the source length and source address 
operands is scaled by a power of 10 specified by the count operand. 
The destination string specified by the destination length and 
destination address operands is replaced by the result. 
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A positive count operand effectively multiplies; a negative count 
effectively divides; and a zero count just moves and affects condition 
codes. When a negative count is specified, the result is rounded using 
the round operand. 

Notes: 
1. After execution: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the source string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the destination string. 

2. The destination string, RO through R3, and the condition codes are 
UNPREDICTABLE if the destination string overlaps the source 
string, the source string contains an invalid nibble, or a reserved 
operand abort occurs. 

3. When the count operand is negative, the result is rounded by 
decimally adding bits (3:0) of the round operand to the most 
significant low-order digit discarded and propagating the carry, if 
any, to higher order digits. Both the source operand and the round 
operand are considered to be quantities of the same sign for the 
purpose of this addition. 

4. If bits (7:4) of the round operand are non-zero, or if bits (3:0)of the 
round operand contain an invalid packed decimal digit, the result 
is UNPREDICTABLE. 

5. When the count operand is zero or positive, the round operand has 
no effect on the result except as specified in item 4 above. 

6. The round operand is normally five. Truncation may be accomplished 
by using a zero round operand. 

Compare Packed 

Format: 

ope ode len.rw, sreladdr.ab, sre2addr.ab 

ope ode srellen.rw, sreladdr.ab, sre21en.rw, 

sre2addr.ab 
operand 

Operation: 

({srcladdr + ZEXT(len/2)} : srcladdr) -

3 operand 

4 

({src2addr + ZEXT(len/2)} : src2addr); 13 operand 
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({srcladdr + ZEXT(srcllen/2)} : srcladdr) -

({src2addr + ZEXT(src21en/2)} : src2addr); !4 operand 

Condition Codes: 

N ~ {srcl string} 

Z ~ {srcl string} 

V ~ 0; 

C ~ 0; 

Exception: 
reserved operand 

Opcodes: 

LSS {src2 string}; 

EQL {src2 string}; 

35 CMPP3 Compare Packed 3 Operand 
37 CMPP4 Compare Packed 4 Operand 

Description: 
In 3 operand format, the source 1 string specified by the length and 
source 1 address operands is compared to the source 2 string 
specified by the length and source 2 address operands. The only 
action is to affect the condition codes. 

In 4 operand format, the source 1 string specified by the source 1 
length and source 1 address operands is compared to the source 2 
string specified by the source 2 length and source 2 address operands. 
The only action is to affect the condition codes. 

Notes: 
1. After execution of CMPP3 or CMPP4: 

RD = D 

R1 = address of the byte containing the most significant digit of 
string 1 

R2 = D 

R3 = address of the byte containing the most significant digit of 
string 2. 

2. RD through R3 and the condition codes are UNPREDICTABLE if 
the source strings overlap, if either string contains an invalid 
nibble, or if a reserved operand abort occurs. 

Convert Long to Packed 

Format: 

opcode src.rl, dstlen.rw, dstaddr.ab 
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Operation: 

({dstaddr + ZEXT( dstlen/2)} dstaddr) <- conversion of src; 

Condition Codes: 

N --- {dst string} LSS 0; 

Z --- {dst string} EQL 0; 

V --- {decimal overflow}; 

C --- 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

F9 CVTLP Convert Long to Packed 

Description: 
The source operand is converted to a packed decimal string and the 
destination string operand specified by the destination length and 
destination address operands is replaced by the result. 

Notes: 
1. After execution: 

RO = 0 

R1 = 0 
R2 = 0 

R3 = address of the byte containing the most significant digit of 
the destination string. 

2. The destination string, RO through R3, and the condition codes are 
UNPREDICTABLE on a reserved operand abort. 

3. Overlapping operands produce correct results. 

Convert Packed to Long 

Format: 

opcode srclen.rw, srcaddr.ab, dst.wl 

Operation: 

dst <- conversion of ({srcaddr + ZEXT (srclen/2)} srcaddr) ; 
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Condition Codes: 

N <- dst LSS 0; 

Z <- dst EQL 0; 

V <- {integer overflow}; 

C <- 0; 

Exceptions: 
reserved operand 
integer overflow 

Opcode: 

36 CVTPL Convert Packed to Long 

Description: 
The source string specified by the source length and source address 
operands is converted to a longword, and the destination operand 
is replaced by the result. 

Notes: 
1. After execution: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the source string 

R2 = 0 

R3 = O. 

2. The destination operand, RO through R3, and the condition codes 
are UNPREDICTABLE on a reserved operand abort or if the string 
contains an invalid nibble. 

3. The destination operand is stored after the registers are updated 
as specified in item 1 above. Thus, RO through R3 may be used as 
the destination operand. 

4. If the source string has a value outside the range - 2,147,483,648 
through 2,147,483,647, integer overflow occurs and the destination 
operand is replaced by the low-order 32 bits of the correctly 
signed infinite precision conversion. Thus, on overflow, the sign of 
the destination may be different from the sign of the source. 

5. Overlapping operands produce correct results. 

Convert Packed to Leading Separate Numeric 

Format: 

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab 
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Operation: 

{dst string} ~ conversion of {src string}; 

Condition Codes: 

N ~ {src string} LSS 0; 

Z ~ {src string} EQL 0; 

V ~ {decimal overflow}; 

C ~ 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

08 CVTPS Convert Packed to Leading Separate Numeric 

Description: 
The source packed decimal string specified by the source length and 
source address operands is converted to a leading separate numeric 
string. The destination string specified by the destination length 
and destination address operands is replaced by the result. 

Conversion is effected by replacing the lowest addressed byte of the 
destination string with the ASCII character" + " or "":"", determined by 
the sign of the source string. The remaining bytes of the destination 
string are replaced by the ASCII representations of the values of 
the corresponding packed decimal digits of the source string. 

Notes: 
1. After execution: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the source string 

R2 = 0 

R3 = address of the sign byte of the destination string. 

2. The destination string, RO through R3, and the condition codes are 
UNPREDICTABLE if the destination string overlaps the source 
string, the source string contains an invalid nibble, or a reserved 
operand abort occurs. 

3. This instruction produces an ASCII" +" or "-" in the sign byte of 
the destination string. 

4. If decimal overflow occurs, the value stored in the destination may 
be different from the value indicated by the condition codes 
(Z and N bits). 
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5. If the conversion produces a - 0 without overflow, the destination 
leading separate numeric string is changed to a + 0 representation. 

Convert Packed to Trailing Numeric 

Format: 

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, 
dstaddr.ab 

Operation: 

{dst string} <-- conversion of {src string}; 

Condition Codes: 

N <-- {src string} LSS 0; 

Z <-- {src string} EQL 0; 

V <-- {decimal overflow}; 

C <-- 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

24 CVTPT Convert Packed to Trailing Numeric 

Description: 
The source packed decimal string specified by the source length and 
source address operands is converted to a trailing numeric string. The 
destination string specified by the destination length and destination 
address operands is replaced by the result. The condition code Nand 
Z bits are affected by the value of the source packed decimal string. 

Conversion is effected by using the highest addressed byte (even if 
the source string value is - 0) of the source string (the byte containing 
the sign and the least significant digit) as an unSigned index into a 
256-byte table whose zeroth entry address is specified by the table 
address operand. The byte read out of the table replaces the least 
significant byte of the destination string. The remaining bytes of the 
destination string are replaced by the ASCII representations of the 
values of the corresponding packed decimal digits of the source 
string. 
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Notes: 
1. After execution: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the source string 

R2 = 0 

R3 = address of the most significant digit of the destination string. 

2. The destination string, RO through R3, and the condition codes are 
UNPREDICTABLE if the destination string overlaps the source 
string or the table, the source string or the table contains an invalid 
nibble, or a reserved operand abort occurs. 

3. The condition codes are computed on the value of the source 
string even if overflow results. In particular, condition code N is set 
if and only if the source is non-zero and contains a minus sign. 

4. By appropriate specification of the table, conversion to any form of 
trailing numeric string may be realized. See Chapter 1 for the 
preferred form of trailing overpunch, zoned and unsigned data. In 
addition, the table may be set up for absolute value, negative 
absolute value, or negated conversions. The translation table may 
be referenced even if the length of the destination string is zero. 

5. Decimal overflow occurs if the destination string is too short to 
contain the converted result of a non-zero packed decimal source 
string (not including leading zeros). Conversion of a source 
string with zero value never results in overflow. Conversion of a 
non-zero source string to a zero-length destination string results in 
overflow. 

6. If decimal overflow occurs, the value stored in the destination may 
be different from the value indicated by the condition codes 
(Z and N bits). 

Convert Leading Separate Numeric to Packed 

Format: 

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab 

Operation: 

{dst string} ~ conversion of {src string} 

Condition Codes: 

N ~ {dst string} LSS 0; 

Z ~ {dst string} EQL 0; 
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v <- {decimal overflow}; 

C <- 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

09 CVTSP Convert Leading Separate Numeric to Packed 

Description: 
The source numeric string specified by the source length and source 
address operands is converted to a packed decimal string, and the 
destination string specified by the destination address and destination 
length operands is replaced by the result. 

Notes: 
1. A reserved operand abort occurs if: 

• The length of the source leading separate numeric string is 
outside the range 0 through 31. 

• The length of the destination packed decimal string is outside the 
range 0 through 31. 

• The source string contains an invalid byte. An invalid byte is any 
character other than an ASCII "0" through "9" in a digit byte or 
an ASCII "+", "(space)", or "-" in the sign byte. 

2. After execution: 

RO = 0 

R1 = address of the sign byte of the source string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the destination string. 

3. The destination string, RO through R3, and the condition codes are 
UNPREDICTABLE if the destination string overlaps the source 
string, or a reserved operand abort occurs. 

Convert Trailing Numeric to Packed 

Format: 

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw, 
dstaddr.ab 
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Operation: 

{dst string} ~ conversion of {src string} 

Condition Codes: 

N ~ {dst string}LSS 0; 

Z ~ {dst string} EQL 0; 

V ~ {decimal overflow}; 

C ~ 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

26 CVTTP Convert Trailing Numeric to Packed 

Description: 
The source trailing numeric string specified by the source length and 
source address operands is converted to a packed decimal string, 
and the destination packed decimal string specified by the destination 
address and destination length operands is replaced by the result. 

Conversion is effected by using the highest addressed (trailing) byte 
of the source string as an unsigned index into a 256-byte table whose 
zeroth entry is specified by the table address operand. The byte read 
out of the table replaces the highest addressed byte of the destination 
string (the byte containing the sign and the least significant digit). 
The remaining packed digits of the destination string are replaced by 
the low-order 4 bits of the corresponding bytes in the source string. 

Notes: 
1. A reserved operand abort occurs if: 

• The length of the source trailing numeric string is outside the 
range a through 31 

• The length of the destination packed decimal string is outside the 
range a through 31 

• The source string contains an invalid byte; an invalid byte is any 
value other than ASCII "0" through "9" in any high-order byte 
(any byte except the least significant byte) 

• The translation of the least significant digit produces an invalid 
packed decimal digit or sign nibble. 

2. After execution: 

RO = a 
R1 = address of the most significant digit of the source string 
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R2 = 0 

R3 = address of the byte containing the most significant digit of 
the destination string. 

3. The destination string, RO through R3, and the condition codes are 
UNPREDICTABLE if the destination string overlaps the source 
string or the table, or a reserved operand abort occurs. 

4. If the convert instruction produces a -0 without overflow, the 
destination packed decimal string is changed to a + 0 representation, 
condition code N is cleared, and Z is set. 

5. If the length of the source string is 0, the destination packed 
decimal string is set identically equal to 0, and the translation table 
is not referenced. 

6. By appropriate specification of the table, conversion from any form 
of trailing numeric string may be realized. See Chapter 1 for the 
preferred form of trailing overpunch, zoned, and unsigned data. In 
addition, the table may be set up for absolute value, negative 
absolute value, or negated conversions. 

7. If the table translation produces a sign nibble containing any valid 
sign, the preferred sign representation is stored in the destination 
packed decimal string. 

Divide Packed 

Format: 

opcode divrlen.rw, divraddr.ab, divdlen.rw, 

divdaddr.ab, quolen.rw, quoaddr.ab, 

Operation: 

({quoaddr + ZEXT (quolen/2)} : quoaddr) ~ 

({di vdaddr + ZEXT (di vdlen/2)} di vdaddr) / 

({divraddr + ZEXT(divrlen/2)} divraddr); 

Condition Codes: 

N ~ {quo string} LSS 0; 

Z ~ {quo string} EQL 0; 

V ~ {decimal overflow}; 

C ~ 0; 

Exceptions: 
reserved operand 
decimal overflow 
divide by zero 
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Opcode: 

27 DrVp Divide Packed 

Description: 
The dividend string specified by the dividend length and dividend 
address operands is divided by the divisor string specified by the 
divisor length and divisor address operands. The quotient string 
specified by the quotient length and quotient address operands is 
replaced by the result. 

Notes: 
1. This instruction allocates a 16-byte workspace on the stack. After 

execution, SP is restored to its original contents and the contents of 
((SP) - 16}:{(SP) -1} are UNPREDICTABLE. 

2. The division is performed such that: 

• The absolute value of the remainder (which is lost) is less that 
the absolute value of the divisor 

• The product of the absolute value of the quotient times the 
absolute value of the divisor is less than or equal to the absolute 
value of the dividend 

• The sign of the quotient is determined by the rules of algebra 
from the signs of the dividend and the divisor. If the value of the 
quotient is zero, the sign is always positive. 

3. After execution: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the divisor string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the dividend string 

R4 = 0 

R5 = address of the byte containing the most significant digit of 
the quotient string. 

4. The quotient string, RO through R5, and the condition codes are 
UNPREDICTABLE if the quotient string overlaps the divisor or 
dividend strings, the divisor, dividend, or quotient strings overlap 
the 16 bytes of temporary storage on the stack, the divisor or 
dividend string contains an invalid nibble, the divisor is 0, or 
a reserved operand abort occurs. 
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Format: 

opcode len.rw, srcaddr.ab, dstaddr.ab 

Operation: 

({dstaddr + ZEXT(len/2)} : dstaddr) ~ 

({srcaddr + ZEXT (len/2)} : srcaddr); 

Condition Codes: 

N ~ {dst string} 

Z ~ {dst string} 

V ~ 0; 

C ~ C; 

Exception: 
reserved operand 

Opcode: 

LSS 0; 

EQL 0; 

34 MOVP Move Packed 

Description: 
The destination string specified by the length and destination address 
operands is replaced by the source string specified by the length 
and source address operands. 

Notes: 
1. After execution: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the source string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the destination string. 

2. The destination string, RO through R3, and the condition codes are 
UNPREDICTABLE if the destination string overlaps the source 
string, the source string contains an invalid nibble, or a reserved 
operand abort occurs. 

3. If the source is - 0, the result is + 0, N is cleared, and Z is set. 
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Multiply Packed 

Format: 

opcode mulrlen.rw, mulraddr.ab, muldlen.rw, 

muldaddr.ab, prodlen.rw, prodaddr.ab 

Operation: 

({prodaddr + ZEXT(prodlen/2)} : prodaddr) <-

({muldaddr + ZEXT(muldlen/2)} muldaddr) * 

({mulraddr + ZEXT(mulrlen/2)} mulraddr); 

Condition Codes: 

N <- {prod string} LSS 0; 

Z <- {prod string} EQL 0; 

V <- {decimal overflow}; 

C <- 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

25 MULP Multiply Packed 

Descri ption: 
The multiplicand string specified by the multiplicand length and 
multiplicand address operands is multiplied by the multiplier string 
specified by the multiplier length and multiplier address operands. The 
product string specified by the product length and product address 
operands is replaced by the result. 

Notes: 
1. After execution: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the multiplier string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the multiplicand string 

R4 = 0 

R5 = address of the byte containing the most significant digit of 
the product string. 

VAX Architecture Reference Manual 



SUBP 

2. The product string, RO through R5, and the condition codes are 
UNPREDICTABLE if the product string overlaps the multiplier 
or multiplicand strings, the multiplier or multiplicand strings contain 
an invalid nibble, or a reserved operand abort occurs. 

Subtract Packed 

Format: 

opcode sublen.rw, subaddr.ab, diflen.rw, 

difaddr.ab 

opcode sublen.rw, subaddr.ab, rninlen.rw, 

rninaddr.ab, diflen.rw, difaddr.ab 

Operation: 

({difaddr + ZEXT (di flen/2)} : di faddr) <­

({difaddr + ZEXT (di flen/2)} : di faddr) -

4 operand 

6 operand 

({subaddr + ZEXT (sublen/2)} : subaddr); ! 4 operand 

({di faddr + ZEXT (di flen/2)} : difaddr) <-

({rninaddr + ZEXT( rninlen/2)} rninaddr)-

({subaddr + ZEXT (sublen/2)} : subaddr); ! 6 operand 

Condition Codes: 

N <-- {dif string} LSS 0; 

Z <-- {dif string} EQL 0; 

V <-- {decimal overflow}; 

C <-- 0; 

Exceptions: 
reserved operand 
decimal overflow 

Opcodes: 

22 SUBP4 Subtract Packed 4 Operand 

23 SUBP6 Subtract Packed 6 Operand 

Description: 
In 4 operand format, the subtrahend string specified by subtrahend 
length and subtrahend address operands is subtracted from the 
difference string specified by the difference length and difference 
address operands, and the difference string is replaced by the result. 
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In 6 operand format, the subtrahend string specified by the subtrahend 
length and subtrahend address operands is subtracted from the 
minuend string specified by the minuend length and minuend address 
operands. The difference string specified by the difference length 
and difference address operands is replaced by the result. 

Notes: 
1. After execution of SUBP4: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the subtrahend string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the difference string. 

2. After execution of SUBP6: 

RO = 0 

R1 = address of the byte containing the most significant digit of 
the subtrahend string 

R2 = 0 

R3 = address of the byte containing the most significant digit of 
the minuend string 

R4 = 0 

R5 = address of the byte containing the most significant digit of 
the difference string. 

3. The difference string, RO through R3 (RO through R5 for SUBP6), 
and the condition codes are UNPREDICTABLE if the difference 
string overlaps the subtrahend or minuend strings; if the subtrahend, 
minuend, or difference (4 operand only) strings contain an invalid 
nibble; or if a reserved operand abort occurs. 

The edit instruction may be omitted from subset implementations of 
the VAX architecture. Execution of an omitted instruction results in an 
emulated instruction exception. Omitted instructions may be emulated 
by operating system software, which may use user-mode stack 
space during the emulation. For more detail, refer to Chapter 11. 

The edit instruction is designed to implement the common editing 
functions for handling fixed-format output. The instruction converts an 
input packed decimal number to an output character string, generating 
characters for the output. This operation is exemplified by a MOVE to 
a numeric edited (PICTURE) item in COBOL or PLlI, but the instruction 
can be used for other applications as well. When converting digits, 
options include leading zero fill, leading zero protection, insertion of 

VAX Architecture Reference Manual 



EDITPC 

floating sign, insertion of floating currency symbol, insertion of special 
sign representations, and blanking an entire field when it is zero. 

The operands to the EDITPC instruction are an input packed decimal 
string descriptor, a pattern specification, and the starting address of 
the output string. The packed decimal descriptor is a standard 
VAX operand pair of the length of the decimal string in digits (up to 
31) and the starting address of the string. The pattern specification is 
the starting address of a pattern operation editing sequence that is 
interpreted in much the same way as are the normal instructions. The 
output string is described by only its starting address because the 
pattern defines the length unambiguously. 

While the EDITPC instruction is operating, it manipulates two character 
registers and the four condition codes. One character register 
contains the fill character. This is normally an ASCII blank but would 
be changed to asterisk for check protection. The other character 
register contains the sign character. Initially, this register contains 
either an ASCII blank or a minus sign depending upon the sign of the 
input. The value of the register can be changed to allow other sign 
representations such as plus/minus or plus/blank and can be 
manipulated in order to output special notations such as CR or DB. 
The sign register can also be changed to the currency sign in order to 
implement a floating currency sign. After execution, the condition 
codes contain the sign of the input (N), the presence of a zero source 
(Z), an overflow condition (V), and the presence of significant digits 
(C). Condition code N is determined at the start of the instruction and 
is not changed thereafter (except to correct a - 0 input). The other 
condition codes are computed and updated as the instruction 
proceeds. When the EDITPC instruction terminates, registers RO 
through R5 contain the conventional values after a decimal instruction. 

Edit Packed to Character String 

Format: 

ope ode srelen.rw, sreaddr.ab, pattern.ab, dstaddr.ab 

Operation: 

if src1en GTRU 31 then {reserved operand abort}; 

PSw(v, C) <- 0; 

PSW(Z) <- 1; 

PSW(N) <- {src has minus sign}; 

RO <- src1en; 

tmp1 <-- RO; 
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RI <-- srcaddr; 

R2(15: 8) <-- {i f PSW(N) EQL 0 then else "_"} ! sign of src 

! R2(7: 0) is used for the fill character 

R3 <-- pattern; 

R5 <-- dstaddr; 

exit-flag <-- false; 

while NOT exit-flag do 

begin 

{fetch pattern byte}; 

{if pattern 0:4 no operand}; 

{if pattern 40:47 increment R3 and 

fetch one byte operand}; 

{if pattern 80:AF except 80, 90, AO 

operand is rightmost nibble}; 

{else {reserved operand fault»; 

{per form pattern opera tor}; 

if NOT exit-flag then {increment R3}; 

end; 

if RO NEQ 0 then {reserved operand abort}; 

RO <-- tmpl; 

RI <-- RI - {tmpl/2} 

R2 <-- 0; 

R4 <-- 0; 

!length of source string 

!point to start of source string 

if PSW(Z) EQL 1 then PSW(N) <-- 0; 

Condition Codes: 

N <-- {src string} LSS 0; 

Z <-- {src string} EQL 0; 

V <-- {decimal overflow}; 

C <-- {significance}; 

Exceptions: 
reserved operand 
decimal overflow 

Opcode: 

'N <-- 0 if src is-O 

!non-zero digits lost 

38 EDITPC Edit Packed to Character String 

Description: 
The destination string specified by the pattern and destination address 
operands is replaced by the edited version of the source string 
specified by the source length and source address operands. The 
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I source length 

source address 

0 

address of EO$END pattern operator 

0 

address of one byte past the last byte of destination string 

Figure 3.9 
EDITPC Control Block 

:RO 

:R1 

:R2 

:R3 

:R4 

:R5 

editing is performed according to the pattern string starting at the 
address pattern and extending until a pattern end (EO$END) pattern 
operator is encountered. The pattern string consists of one-byte 
pattern operators. Some pattern operators take no operands. Some 
take a repeat count which is contained in the right-most nibble of the 
pattern operator itself. The rest take a one-byte operand which 
immediately follows the pattern operator. This operand is either an 
unsigned integer length or a byte character. The individual pattern 
operators are described on the following pages. 

Notes: 
1. A reserved operand abort occurs if srclen GTRU 31. 

2. The destination string is UNPREDICTABLE if the source string 
contains an invalid nibble, if the EO$ADJUST _INPUT operand is 
outside the range 1 through 31, if the source and destination 
strings overlap, or if the pattern and destination strings overlap. 

3. After execution, the registers are as shown in Figure 3.9. If the 
destination string is UNPREDICTABLE, RO through R5 and 
the condition codes are UNPREDICTABLE. 

4. If V is set at the end and DV is enabled, numeric overflow trap 
occurs unless the conditions in item 9 are satisfied. 

5. The destination length is specified exactly by the pattern operators 
in the pattern string. If the pattern is incorrectly formed or if it is 
modified during the execution of the instruction, the length of the 
destination string is UNPREDICTABLE. 

6. If the source is - 0, the result may be - 0 unless a fixup pattern 
operator is included (EO$BLANLZERO or EO$REPLACE_ 
SIGN). 

7. The contents of the destination string and up to one page of 
memory preceding it are UNPREDICTABLE if the length covered 
by EO$BLANLZERO or EO$REPLACE_SIGN is 0 or is 
outside the destination string. 
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EDIT Pattern 
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8. If more input digits are requested by the pattern than are specified, 
then a reserved operand abort is taken with RO = - 1 and R3 = 
location of pattern operator which requested the extra digit. The 
condition codes and other registers are UNPREDICTABLE. 

9. If fewer input digits are requested by the pattern than are 
specified, then a reserved operand abort is taken with R3 = 

location of EO$END pattern operator. The condition codes and 
other registers are UNPREDICTABLE. 

10. On an unimplemented or reserved pattern operator, a reserved 
operand fault is taken with R3 = location of the faulting pattern 
operator. This fault may be continued as long as the defined 
register state is manipulated according to the pattern operator 
description and the state specified as implementation dependent 
is preserved. FPD is set and the condition codes and registers 
are as follows: 

N = {src has minus sign} 

Z = all source digits 0 so far 

V = non-zero digits lost 

C = significance 

RO(31 :16) = -{count of source zeros to supply} 

RO(15:0) = remaining srclen(15:0) 

R1 = current source location 

R2(31 :16) = implementation dependent 

R2(15:8) = current contents of sign character register 

R2(7:0) = current contents of fill character register 

R3 = location of edit pattern operator causing exception 

R4 = implementation dependent 

R5 = location of next destination byte 

Name Operand Summary 

insert 

move: 

186 

EO$INSERT 

EO$STORE_SIGN 

EO$FILL 

EO$MOVE 

EO$FLOAT 

EO$END_FLOAT 

ch 
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insert character, fill if insignificant 

insert sign 

insert fill 

move digits, filling insignificant 

move digits, floating sign 

end floating sign 



fixup: 

load: 

control: 

EDIT Pattern 
Operator 
Encoding 

EO$BLANLZERO 

EO$REPLACE_ 
SIGN 

EO$LOAD_FILL 

EO$LOAD_SIGN 

EO$LOAD_PLUS 

EO$LOAD_MINUS 

EO$SET _SIGNIF 

EO$CLEAFL-SIGNIF 

EO$ADJUST _INPUT 

EO$END 

where: 

len 

len 

ch 

ch 

ch 

ch 

len 

ch = one character 

fill backward when zero 

replace with fill if -0 

load fill character 

load sign character 

load sign character if positive 

load sign character if negative 

set significance flag 

clear significance flag 

adjust source length 

end edit 

r = repeat count in the range 1 through 15 

len = length in the range 1 through 255 

(hex) 

00 EO$END 

01 EO$END_FLOAT 

02 EO$CLEAFL-SIGNIF 

03 EO$SET _SIGNIF 

04 EO$STORE_SIGN 

05 .. 1 F Reserved to DIGITAL 

20 .. 3F Reserved for all time 

40 EO$LOAD_FILL 

41 EO$LOAD_SIGN 

42 EO$LOAD_PLUS -character is in next byte 

43 EO$LOAD_MINUS 

44 EO$INSERT 

45 EO$BLANLZERO 

46 EO$REPLACE_SIGN } -unsigned length is in next byte 

47 EO$ADJUST _INPUT 

48. ,5F Reserved to DIGITAL 

60 .. 7F Reserved to DIGITAL's customers 

Instructions 187 



Reserved to DIGITAL 80,90,AO 

81 .. 8F 

91 .. 9F 

A1 .. AF 

BO .. FE 

FF 

EO$FILL } 
EO$MOVE -repeat count is (3:0) 

EO$FLOAT 

Reserved to DIGITAL 

Reserved for all time 

On the following pages, each pattern operator is defined in a format 
similar to that of instruction descriptions. In each case, if there is 
an operand, it is either a repeat count (r) from 1 through 15, an 
unsigned byte length (len), or a character byte (ch). In the formal 
descriptions, the following two routines are invoked: 

READ: !function value 0 through 9 

if RO EQL 0 then {reserved operand}; 

if RO LSS 0 then 

begin 

READ <- 0; 

RO"(31: 16) <- RO(31: 16) + 1; !see EO$ADJUST_INPUT 

end; 

else 

begin 

READ <- (Rl)(3+4*RO(0):4*RO(0)); !get next nibble 

!alternating high then low 

return; 

STORE ( char) : 

RO<-RO-l; 

if RO(O) EQL 1 then Rl <- Rl + l; 

end; 

(R5) <- char; 

R5<-R5+l; 

return; 

Also the following definitions are used: 

fill· R2(7: 0) 

sign R2(15: 8) 

EO$ADJUST_ Adjust Input Length 
INPUT 

Purpose: 
Handle source strings with lengths different from the output 
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EO$BLANL 
ZERO 

Format: 

pattern len 

Operation: 

if len EQLU 0 or len GTRU 31 then {UNPREDICTABLE}; 

if RO(15: 0) GTRU len 

then 

begin 

RO(31: 16) ~ 0 

repeat RO(15: 0) - len do 

if READ NEQU 0 then 

begin 

PSW(Z) ~ 0; 

PSW(C) ~ 1; 

PSW(V) ~ 1; 

end; 

!set significance 

end; 

else RO(31:16) ~ RO(15:0) - len; !negative of number 
! to fill 

Pattern operators: 

47 EO$ADJUST_INPUT Adjust Input Length 

Description: 
The pattern operator is followed by an unsigned byte integer length in 
the range 1 through 31. If the source string has more digits than this 
length, the excess leading digits are read and discarded. If any 
discarded digits are non-zero, then overflow is set, significance is set, 
and zero is cleared. If the source string has fewer digits than this 
length, a counter is set of the number of leading zeros to supply. This 
counter is stored as a negative number in RO(31 :16). 

Note: 
If length is not in the range 1 through 31, the destination string, 
condition codes, and RO through RS are UNPREDICTABLE. 

Blank Backwards When Zero 

Purpose: 
Fix the destination to be blank when the value is zero 
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Format: 

pattern len 

Operation: 

if len EQLU 0 then {UNPREDICTABLE}; 

if PSW(Z) EQL 1 then 

begin 

R5 <---- R5 - len; 

repeat len do STORE(fill); 

end; 

Pattern operators: 

45 EO$BLANK-ZERO Blank Backwards When Zero 

Description: 
The pattern operator is followed by an unsigned byte integer length. If 
the value of the source string is zero, then the contents of the fill 
register are stored into the last length bytes of the destination string. 

Notes: 
1. The length must be non-zero and within the destination string 

already produced. If it is not, the contents of the destination string 
and up to one page of memory preceding it are UNPREDICTABLE. 

2. This pattern operator is used to blank out any characters stored in 
the destination under a forced significance, such as a sign or the 
digits following the radix point. 

End Edit 

Purpose: 
End the edit operation 

Format: 
pattern 

Operation: 

exit_flag <---- true; 

Pattern operators: 

00 EO$END End Edit 

!terminate edit loop 

lend processing is 

!described under EDITPC instruction 
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EO$END_ 
FLOAT 

EO$FILL 

Description: 
The edit operation is terminated. 

Notes: 
1. If there are still input digits, a reserved operand abort is taken. 

2. If the source value is - 0, the N condition code is cleared. 

End Floating Sign 

Purpose: 
End a floating sign operation 

Format: 
pattern 

Operation: 

if PSW(C) EQL 0 then 

begin 

STORE(sign) ; 

PSW(C) (- 1; 

end; 

Pattern operators: 

!set significance 

01 EO$END_FLOAT End Floating Sign 

Description: 
If the floating sign has not yet been placed in the destination (that is, 
if significance is not set), the contents of the sign register are stored 
in the destination and significance is set. 

Notes: 
This pattern operator is used after a sequence of one or more 
EO$FLOAT pattern operators which start with significance clear. The 
EO$FLOAT sequence can include intermixed EO$INSERT and 
EO$FILL pattern operators. 

Store Fill 

Purpose: 
Insert the fill character 
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EO$FLOAT 

192 

Format: 

pattern r 

Operation: 

repeat r do STORE(fill); 

Pattern operators: 

8x EO$FILL Store Fill 

Description: 
The right nibble of the pattern operator is the repeat count. The 
contents of the fill register is placed into the destination repeat times. 

Note: 
This pattern operator is used for fill (blank) insertion. 

Float Sign 

Purpose: 
Move digits, floating the sign across insignificant digits 

Format: 

pattern r 

Operation: 

repeat r do 

begin 

tmp <- READ; 

if tmp NEQU 0 then 

begin 

if PSW(C) EQL 0 then 

begin 

STORE(sign) ; 

PSW(Z) .;- 0; 

PSW(C) <- 1; ! set significance 

end; 

end; 

if PSW(C) EQL 0 thenSTORE( fill) 

else STORE("O" + tmp); 

end; 
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EO$INSERT 

Pattern operators: 

Ax EO$FLOAT Float Sign 

Description: 
The right nibble of the pattern operator is the repeat count. For repeat 
times, the following algorithm is executed. The next digit from the 
source is examined. If it is non-zero and significance is not yet set, 
then the contents of the sign register are stored in the destination, 
significance is set, and zero is cleared. If the digit is significant, it is 
stored in the destination; otherwise, the contents of the fill register is 
stored in the destination. 

Notes: 
1. If r is greater than the number of digits remaining in the source 

string, a reserved operand abort is taken. 

2. This pattern operator is used to move digits with a floating 
arithmetic sign. The sign must already be setup as for 
EO$STORE_SIGN. A sequence of one or more EO$FLOATs can 
include intermixed EO$INSERTs and EO$FILLs. Significance 
must be clear before the first pattern operator of the sequence. 
The sequence must be terminated by one EO$END_FLOAT. 

3. This pattern operator is used to move digits with a floating currency 
sign. The sign must already be setup with a EO$LOAD_SIGN. A 
sequence of one or more EO$FLOATs can include intermixed 
EO$INSERTs and EO$FILLs. Significance must be clear before 
the first pattern operator of the sequence. The sequence must be 
terminated by one EO$END_FLOAT. 

Insert Character 

Purpose: 
Insert a fixed character, substituting the fill character if not significant 

Format: 

pattern ch 

Operation: 

if PSW(C) EQL 1 then STORE(ch) else STORE(fill); 

Pattern operators: 

44 EO$INSERT Insert Character 
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EO$LOAD_ 
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Description: 
The pattern operator is followed by a character. If significance is set, 
then the character is placed into the destination. If significance is 
not set, then the contents of the fill register are placed into the 
destination. 

Notes: 
This pattern operator is used for blankable inserts (comma, for 
example) and fixed inserts (slash, for example). Fixed inserts require 
that significance be set (by EO$SET_SIGNIF or EO$END_FLOAT). 

Load Register 

Purpose: 
Change the contents of the fill or sign register 

Format: 

pattern ch 

Operation: iselect one depending on pattern 
operator 
fill ~ ch; iEO$LOAD]ILL 

sign ~ ch; iEO$LOAD_SIGN 

if PSW(N) EQL 0 then sign ~ ch; iEO$LOAD_PLUS 

if PSW(N) EQL 1 then sign ~ ch; i EO$LOADJHNUS 

Pattern operators: 

40 EO$LOAD_FILL Load Fill Register 

41 EO$LOAD_SIGN Load Sign Register 

42 EO$LOAD_PLUS Load Sign Register If Plus 

43 EO$LOAD~HjUS Load Sign Register If Minus 

Description: 
The pattern operator is followed by a character. For EO$LOAD_FILL, 
this character is placed into the fill register. For EO$LOAD_SIGN, 
this character is placed into the sign register. For EO$LOAD_PLUS, 
this character is placed into the sign register if the source string has a 
positive sign. For EO$LOAD_MINUS, this character is placed into 
the sign register if the Source string has a negative sign. 

Notes: 
1. EO$LOAD_FILL is used to setup check protection (asterisk 

instead of space). 
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EO$MOVE 

2. EO$LOAD_SIGN is used to setup a floating currency sign. 

3. EO$LOAD_PLUS is used to setup a non-blank plus sign. 

4. EO$LOAD_MINUS is used to setup a non-minus minus sign 
(such as CR, DB, or the PLiI +). 

Move Digits 

Purpose: 
Move digits, filling for insignificant digits (leading zeros) 

Format: 

pattern r 

Operation: 

repeat r do 

begin 

tmp +-- READ; 

if tmp NEQU 0 then 

begin 

PSW(Z) +-- 0; 

PSW(C) +-- 1; ! set significance 

end; 

if PSW(C) EQL 0 then STORE( fill) 

else STORE(' '0" + tmp); 

end; 

Pattern operators: 

9x EO$MOVE Move Digits 

Description: 
The right nibble of the pattern operator is the repeat count. For repeat 
times, the following algorithm is executed. The next digit is moved 
from the source to the destination. If the digit is non-zero, significance 
is set and zero is cleared. If the digit is not significant (that is, if it is 
a leading zero), it is replaced by the contents of the fill register in the 
destination. 

Notes: 
1. If r is greater than the number of digits remaining in the source 

string, a reserved operand abort is taken. 
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2. This pattern operator is used to move digits without a floating sign. 
If leading zero suppression is desired, significance must be clear. 
If leading zeros should be explicit, significance must be set. A 
string of EO$MOVEs intermixed with EO$INSERTs and EO$FILLs 
will handle suppressioh correctly. 

3. If check protection (*) is desired, EO$LOAD_FILL must precede 
the EO$MOVE. 

EO$REPLACL Replace Sign When Zero 
SIGN 

196 

Purpose: 
Fix the destination sign when the value is zero 

Format: 

pattern len 

Operation: 

if len EQLU 0 then {UNPREDICTABLE}; 

if PSW(Z) EQL 1 then (R5 - len) ~ fill; 

Pattern operators: 

46 EO$REPLACE_SIGN Replace Sign When Zero 

Description: 
The pattern operator is followed by an unsigned byte integer length. If 
the value of the source string is zero (that is, if Z is set), then the 
contents of the fill register is stored into the byte of the destination 
string which is length bytes before the current position. 

Notes: 
1. The length must be non-zero and within the destination string 

already produced. If it is not, the contents of the destination string 
and up to one page of memory preceding it are UNPREDICTABLE. 

2. This pattern operator can be used to correct a stored sign 
(EO$END_FLOAT or EO$STORE_SIGN) if a minus was stored 
and the source value turned out to be zero. 

Significance 

Purpose: 
Control the significance (leading zero) indicator 
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EO$STORE_ 
SIGN 

Format: 
pattern 

Operation: 

Psw(C) <- 0; 

PSW(C) <- 1; 

Pattern operators: 

!EO$CLEAR_SIGNIF 

!EO$SELSIGNIF 

02 EO$CLEAR_SIGNIF Clear Significance 

03 EO$SET_SIGNIF Set Significance 

Description: 
The significance indicator is set or cleared. This controls the treatment 
of leading zeros (leading zeros are zero digits for which the significance 
indicator is clear). 

Notes: 
1. EO$CLEAR_SIGNIF is used to initialize leading zero suppression 

(EO$MOVE) or floating sign (EO$FLOAT) following a fixed insert 
(EO$INSERT with significance set). 

2. EO$SET_SIGNIF is used to avoid leading zero suppression 
(before EO$MOVE) or to force a fixed insert (before EO$INSERT). 

Store Sign 

Purpose: 
Insert the sign character 

Format: 
pattern 

Operation: 

STORE (sign) ; 

Pattern operators: 

04 EO$STORE_SIGN Store Sign 

Description: 
The contents of the sign register are placed into the destination. 

Notes: 
This pattern operator is used for any non-floating arithmetic sign. It 
should be preceded by a EO$LOAD_PLUS or EO$LOAD_MINUS if 
the default sign convention is not desired. 

Instructions 197 





Memory Management 4 
Memory management consists of the hardware and software that 
control the allocation and use of physical memory. The effect of 
memory management is exemplified in a multiprogramming system 
where several processes may reside in physical memory at the same 
time. To ensure that one process will not affect other processes or the 
operating system, VAX architecture uses memory protection and 
multiple address spaces. 

Four hierarchical access modes provide the memory access control, 
which further improves software reliability. These access modes 
are, from most to least privileged, kernel, executive, supervisor, and 
user. For each of the four access modes, protection is specified at the 
individual page level, where a page may be inaccessible, read-only, 
or read/write. Any location accessible to one mode is also accessible 
to all more privileged modes. Furthermore, for each access mode, 
any location that can be written can also be read. 

Memory management provides the CPU with mapping information. 
First, the CPU generates virtual addresses when an image is 
executed. Before these addresses can be used to access instructions 
and data, however, they must be translated into physical addresses. 
Memory management software maintains tables of mapping information 
(page tables) that keep track of where each 512-byte virtual page is 
located in physical memory. The CPU uses this mapping information 
when it translates virtual addresses to physical addresses. 

Memory management, then, is the scheme that provides both the 
memory protection and memory mapping mechanisms of VAX 
architecture. Memory management accomplishes the following: 

• Provides a large address space for instructions and data 

• Allows data structures up to one gigabyte 

• Provides convenient and efficient sharing of instructions and data 

• Contributes to software reliability. 

A virtual memory system provides a large address space, yet allows 
programs to run on hardware with small memory configurations. 

Memory Management 199 



VIRTUAL 
ADDRESS 
SPACE 

200 

Programs execute in an environment termed a process. The virtual 
memory system for VAX provides each process with a 4-billion-byte 
address space. 

The virtual address space is divided into two, equal-size spaces: the 
system address space and the per-process address space. The 
system address space is the same for all processes. It contains the 
operating system which is written as callable procedures. Thus all 
system code can be available to all other system and user code via a 
simple CALL. Each process has its own separate process address 
space. However, several processes may have access to the same 
page, thus providing controlled sharing. 

A virtual address is a 32-bit unsigned integer specifying a byte 
location in the address space. The programmer sees a linear array of 
4,294,967,296 bytes. The virtual address space is broken into 512-
byte units termed pages. The page is the unit of relocation, sharing, 
and protection. 

This virtual address space is too large to be contained in any presently 
available main memory. Memory management provides the mecha­
nism to map the active part of the virtual address space to the 

0000 0000: 

3FFF FFFF: 

4000 0000: 

7FFF FFFF: 

8000 0000: 

BFFF FFFF: 

COOO 0000: 

FFFF FFFF: 

Figure 4.1 

PO (program) region 

---- PO length ----
~ PO region growth direction 

t P1 region growth direction 

---- P1 length ----
P1 (control) region 

system region 

I- - - - system length - - --

~ system region growth direction 

reserved region 

Virtual Address Space 
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available physical address space. Memory management also provides 
page protection between processes. The operating system controls 
the virtual-to-physical address mapping tables, and saves the inactive 
but used parts of the virtual address space on the external storage 
media. 

The virtual address space is divided into two parts, per-process space 
and system space, discussed in the following sections. Virtual 
address space is illustrated in Figure 4.1. 

Process Space The half of the virtual address space with smaller addresses (addresses 
00000000 through 7FFFFFFF, hex) is termed per-process space. 
Per-process space is divided into two equal parts: the program region 
(PO region) and the control region (P1 region). Each process has a 
separate address translation map for per-process space, so the per­
process spaces of all processes are potentially completely disjoint. 
The address map for per-process space is context switched (changed) 
when the process running on the system is changed (see Chapter 6, 
Process Structure). 

System Space The half of virtual address space with larger addresses (addresses 
80000000 through FFFFFFFF, hex) is termed system space. All 
processes use the same address translation map for system space, 
so system space is shared among all processes. The address 
map for system space is not context switched. 

Virtual Address The VAX processor generates a 32-bit virtual address for each 
Format instruction and operand in memory. As the process executes, the 

system translates each virtual address to a physical address. The 
virtual address consists of a region field, a virtual page number (VPN) 
field, and a byte within page field, as shown in Figure 4.2. 

The VPN field, bits (31 :9) of a virtual address, specifies the virtual 
page to be referenced. The virtual address space contains 8,388,608 
(223) pages. The byte-with in-page field, bits (9:0) of a virtual address, 
specifies the byte offset within the page. A page contains 512 bytes. 

313029 9 8 o 
reg virtual page number byte within page 

Figure 4.2 
Virtual Address Format 

Memory Management 201 



Virtual Address 
Space Layout 

MEMORY 
MANAGEMENT 
CONTROL 

202 

The region field (bits (31 :30) of a virtual address) is part of the virtual 
page number and specifies which of four regions the virtual address 
references. When bit (31) of a virtual address is 1, the address is 
in the system space. When bit (31) is 0, the address is in the per­
process space. 

Within system space, bit (3D) distinguishes between the system 
region and a reserved region. When bits (31 :30) are 11 (binary), the 
address refers to the reserved region. When bits (31 :30) are 10 
(binary), the address refers to the system region. 

Within per-process space, bit (3D) distinguishes between the program 
and control regions. When bits (31 :30) are 01 (binary), the control 
region is referenced; and when bits (31 :30) are the program region is 
referenced. 

The layout of virtual address space is illustrated in Figure 4.1. Note 
that access to each of the three regions (PO, P1, system) is controlled 
by a length register (POLR, P1 LR, SLR). Within the limits set by the 
length registers, the access is further controlled by page tables 
that specify the validity, access requirements, and physical location of 
each page in the memory. 

The action of translating a virtual address to a physical address is 
governed by the setting of the memory-mapping-enable (MME) bit in 
the MAPEN internal processor register. Figure 4.3 illustrates the 
privileged map-enable register. 

MAPEN(O) is the memory-mapping-enable bit. When MME is set to 1, 
memory management is enabled. When MME is set to 0, memory 
management is disabled. At processor initialization time, MAPEN is 
initialized to O. 

Setting MME to 0 turns off address translation and access control. 
Virtual address bit n, VA(n), is copied directly to the corresponding 
physical address bit, PA(n), for n = 0 to 29. VA(31 :30) are ignored; 
PA(31 :30) do not exist. VA(n) is ignored if PA(n) does not exist. (The 
number of PA bits is implementation dependent.) 

31 1 0 

MBZ ~I 
Figure 4.3 
Map Enable Register (MAP EN) 
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PA = VA(29:0) modulo (2**number of PA bits) 

There is no page protection: all accesses are allowed in all modes. 
No modify bit is maintained. 

Note, however, that references to nonexistent memory may cause 
unexpected results when memory management is disabled. The 
accessibility of nonexistent memory is UNPREDICTABLE when 
memory management is disabled (see the PROBE instructions). In 
addition, a processor may have an instruction buffer that prefetches 
instructions before execution. If the instruction stream comes within 
512 bytes of nonexistent memory when memory management is 
disabled, prefetcher references may cause UNDEFINED behavior. 

When MME is a 1, address translation and access control are on. The 
processor uses the following to determine whether an intended 
access is allowed: 

1. The virtual address, which is used to index a page table 

2. The intended access type (read or write) 

3. The current privilege level from the processor status longword, or 
kernel level for page table mapping references. 

If the access is allowed and the address can be mapped (the page 
table entry is valid), the result is the physical address corresponding 
to the specified virtual address. 

The intended access is READ if the operation to be performed is a 
read. The intended access is WRiTE if the operation to be performed 
is a write. If the operation to be performed is a modify (that is, read 
followed by write), the intended access is specified as a WRITE. 

If an operand is an address operand, then no reference is made. 
Hence the page need not be accessible and need not even exist. 

The CPU uses a page table entry (PTE), shown in Figure 4.4, to 
translate virtual addresses to physical addresses. The fields of the 
PTE are described in Table 4.1. 

31 30 27 25 23 21 20 o 
PFN 

Figure 4.4 
Page Table Entry 
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Table 4.1 
Fields of the PTE 

Extent Name Mnemonic Meaning 

(31) Valid V Indicates the validity of the M bit and PFN field. 
When V = 1, the M and PFN fields are valid 
for use by hardware; when V = 0, they are 
reserved for DIGITAL software. 

(30:27) Protection PROT Indicates at what access modes a process can 
reference the page. This field is always valid 
and is used by the CPU hardware even when 
V=O. 

(26) Modify M When V = 0, M is not used by CPU hardware 
and is reserved for DIGITAL software and 
1/0 devices. When V = 1, M shows whether the 
page has been modified: if M is clear, the 
page has not been modified; if M is set, the 
page may have been modified. 

M is cleared only by software. M is set by CPU 
hardware on a successful write or modify to 
the page. ,In addition, it may be set by the 
probe·write instruction (PROBEW) or by an 
implied probe-write. M is not set if the page is 
inaccessible. Beyond ,that, it is 
UNPREDICTABLE whether M is set if a fault 
occurs in an instruction that would otherwise 
have modified the page. 

For example, if a write reference crosses a 
page boundary where the first page is not 
accessible and the second page is accessible, 
the reference will fault. M is unchanged in 
the PTE mapping the first page. It is 
UNPREDICTABLE whether M is set in the PTE 
mapping the second page. 

It is UNPREDICTABLE whether the modification 
of a process PTE(M) bit causes, modification of 
the system PTE that maps that process page 
table. Note that the update of the M-bit is 
not interlocked in a multiprocessor system. 

(25) Reserved Reserved to DIGITAL and must be O. 

(24:23) Owner OWN Reserved for DIGITAL software. 

(22:21 ) Software Reserved for DIGITAL software. 

(20:0) Page Frame Number PFN The upper 21 bits of the physical address of the 
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base of the page. Used by CPU hardware only 
if V=1. 

The operating system software uses some combinations of the 
software bits to implement its page management data structures and 
functions. Among the functions implemented this way are initialize­
pages-with-zeros, copy-on-reference, page sharing, and transitions 
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between active and paged-out states. VAXIVMS encodes these 
functions in PTEs whose valid bit, PTE(31), is a 0 and processes 
them whenever a page fault occurs. 

Some I/O devices, such as the DR32, use VAX memory management 
to translate addresses. These I/O devices use a page table entry 
format that is an extension of that in Figure 4.4 used by the CPU. The 
extended PTE implements for 1/0 hardware some functions that the 
CPU does with software using software bits and page faults. In 
particular, PTE bits (31), (26), and (22) are decoded into four 
combinations, as shown in Table 4.2. Some of these are used in the 
same way as in the CPU PTE format, and some are used in different 
ways. 

When PTE(31,26,22) = 1 xx or as shown in Figure 4.5, PTE(20:0) 
is a valid PFN field. This is identical to the PFN field illustrated in 
Figure 4.4 for the CPU PTE. 

When PTE(31,26,22) = 001 as shown in Figure 4.5, PTE(21 :0) is a 
global page table index (GPTX). The 1/0 device has a global page 
table base register (GBR) that is loaded by software with a system 
virtual address. The 1/0 device calculates GBR + GPTX * 4 to 
get the system virtual address of a second PTE. The second PTE 
must contain a valid PFN and must have PTE(31,26,22) equal to 
either or 1 xx, binary. If either of these requirements is not met, the 
result is UNDEFINED. For those devices that use it, the protection 
field always comes from the first PTE. 

When PTE(31,26,22) = 01x, as shown in Figure 4.5, the PTE 
format is reserved to DIGITAL. 1/0 devices will abort in a device­
dependent manner. 

1/0 devices may look at and check the protection field or modify the 
M-bit; this check is device dependent. Those devices that do use PTE 
fields use them the same way the CPU does. 

Table 4.2 
PTE Types 

PTE(31,26,22) 

1 x x 
000 
o 0 

Memory Management 

PTE Type 

Valid PFN 
Valid PFN 
Global Page Table Entry 
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3130 272625 20 o 
PFN 

own 

PTE with Valid Page Frame Number. PTE<31,26,22> = 1xx. 

3130 272625 222120 o 

101 PROT loll ~o sl PFN 

own 

PTE with Valid Page Frame Number. PTE<31,26,22> = 000. 

3130 272625 2221 o 

101 PROT 1011211 GPTX 

own 

Global Page Table Index. PTE < 31 ,26,22 > = 001. 

31 30 272625 20 o 

101 PROTj1/ 12 I reserved for software use 

own 

Invalid PTE, 110 Abort. PTE<31,26,22> = 01x. 

Figure 4.5 
PTE Bits Decoded into Four Combinations 

liD devices that do memory mapping use the same system page 
table as the CPU, but they have their own copies of the SBR and 
SLR. Buffer addresses are described in terms of a system virtual ad­
dress of the PTE for the first buffer page and a byte offset within 
that page. In addition, the liD devices use a global page table 
in memory and an liD hardware global-page-table-base register that 
must be loaded by software. 

The operating system changes PTEs as part of its memory manage­
ment functions. For example, VMS sets and clears the valid bit and 
changes the PFN field as pages are moved to and from external 
storage devices. 

The software must guarantee that each PTE is always consistent 
within itself. Changing a PTE one field at a time may give incorrect 
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MEMORY 
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Processor 
Access Modes 

Protection 
Code 

system operation. An example would be to set PTE (V) with one 
instruction before establishing PTE(PFN) with another. An interrupt 
routine between the two instructions could use an address that would 
map using the inconsistent PTE. The software can solve this problem 
by building a new PTE in a register and then moving the new PTE to 
the page table with a single instruction such as MOVL. 

Multiprocessing makes the problem more complicated. Another 
processor, be it another CPU or an I/O processor, can reference the 
same page tables that the first CPU is changing. The second 
processor must always read consistent PTEs. In order to guarantee 
this, two requirements must be met (note that PTEs are longwords, 
longword-aligned) : 

1. Whenever the software modifies a PTE in more than one byte, it 
must use a longword, longword-aligned, and write-destination 
instruction such as MOVL. 

2. The hardware must guarantee that a longword, longword-aligned 
write is an "atomic" operation. That is, a second processor cannot 
read (or write over) any of the first processor's partial results. 

Memory protection is the function of validating whether a particular 
type of memory access is to be allowed to a particular page. Access 
to each page is controlled by a protection code that specifies for each 
access mode whether or not read or write references are allowed. 
Additionally, each address is checked to make certain that it lies 
within the PO, P1, or system region. 

In the order of most privileged to least privileged, the four processor 
modes are 

Kernel Used by the kernel of the operating system for page 
management, scheduling, and I/O drivers 

Executive Used for many of the operating system service calls, 
including the record management system 

Supervisor 

User 

Used for such services as command interpretation 

Used for user-level code, utilities, compilers, 
debuggers, etc. 

The access mode of a running process is the current processor 
mode, stored in the current-mode field of the processor status 
longword (PSL) (see Chapter 1, Basic Architecture). 

Every page in the virtual address space is protected according to its 
use. Even though all of the system space is shared, in the sense that 
all processes see the same system space, a program may be 
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Table 4.3 

prevented from modifying or even reading portions of it. A program 
may also be prevented from reading or modifying portions of per­
process space. 

In system space, for example, scheduling queues are highly protected, 
whereas library routines may be executable by code of any privilege. 
Similarly, per-process accounting information may be in per-process 
space but highly protected; while normal user code in per-process 
space is executable at low privilege. 

Associated with each page is a protection code that describes the 
accessibility of the page for each processor mode. The code allows a 
choice of protection for each processor mode, within the following 
limits: 

• Each mode's access can be read-write, read-only, or no-access. 

• If any level has read access, then all more privileged levels also 
have read access. 

• If any level has write access, then all more privileged levels also 
have write access. 

The protection codes for the 15 combinations of page protection are 
encoded in a 4-bit field in the page table entry, as shown in Table 4.3. 

PTE Protection Codes 

Accessibility 

Name Mnemonic Decimal Binary Kernel Exec Super User 

no access NA 0 0000 none none none none 

reserved 0001 UNPREDICTABLE 

kernel write KW 2 0010 write none none none 

kernel read KR 3 0011 read none none none 

user write UW 4 0100 write write write write 

exec write EW 5 0101 write write none none 

exec read, kernel write ERKW 6 0110 write read none none 

exec read ER 7 0111 read read none none 

super write SW 8 1000 write write write none 

super read, exec write SREW 9 1001 write write read none 

super read, kernel write SRKW 10 1010 write read read none 

super read SR 11 1011 read read read none 

user read, super write URSW 12 1100 write write write read 

user read, exec write UREW 13 1101 write write read read 

user read, kernel write URKW 14 1110 write read read read 

user read UR 15 1111 read read read read 
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ADDRESS 
TRANSLATION 

Every valid virtual address lies within bounds determined by the 
addressing region (PO, P1, or system) and the contents of the length 
register associated with that region (POLR, P1 LR, or SLR). Virtual 
addresses outside these bounds cause a length-violation fault. The 
addressing bounds algorithm is a simple limit check whose formal 
notation is 

case VAddr(31:30) 
set 

[0] : 

[1] : 

[2] : 

! PO region 

if ZEXT( VAddr(29:9) ) GEQU POLR 

then {length violation}; 

! Pl region 

if ZEXT( VAddr(29:9) ) LSSU P1LR 

then {length violation}; 

! System region 

if ZEXT( VAddr(29:9) ) GEQU SLR 

then {length violation}; 

[3] : reserved region 

{length violation}; 

tes; 

An access-control-violation fault occurs if an illegal access is attempted, 
as determined by the current PSL mode and the page's protection 
field, or if the address causes a length violation. 

If an access is made across a page boundary, the order in which the 
pages are accessed is UNPREDICTABLE. For a single reference to a 
page, however, access-control-violation fault always takes precedence 
over translation-not-valid fault. 

A virtual address with (31 :30) = 2 is an address in the system 
virtual address space. A system space address is shown in Figure 
4.6. 

The system virtual address space is defined by the system page 
table, which is a vector of page table entries. The system page table 
is located in physical address space. Its base address is a physical 
address and is contained in the system base register (SBR), shown in 
Figure 4.6. The size of the system page table in longwords (that is, 
the number of PTEs) is contained in the system length register (SLR). 
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313029 98 o 
virtual page number Ibyte within pagel 

System Virtual Address Format 

31,3029 2 1 0 

physical longword address 

System Base Register (SBR) 

31 2221 o 
MBZ length of system page table in longwords 

System Length Register (SLR) 

Figure 4.6 
System Virtual Address Space Registers 

The SBR points to the first PTE in the system page table. In turn, 
this PTE maps the first page of system space, virtual addresses 
80000000 through 800001 FF (hex). 

The PTEs in the system page table contain the mapping information 
or point to the mapping information in the global page table if the PTE 
is in GPTX format. (See the section "Page Table Entry for I/O 
Devices" in this chapter for a description of the GPTXformat.) 

Processor initialization leaves the contents of both registers UNPRE­
DieT ABLE. If part or all of the system page table resides in I/O space 
or in nonexistent memory while memory mapping is enabled, the 
operation of the processor is UNDEFINED. 

Bits (31 :9) of the virtual address contain the virtual page number. 
However, system virtual addresses have VAddr(31 :30) = 2. Thus, 
there could be as many as 221 pages in the system region. The length 
field in the SLR requires 22 bits to express the values 0 through 221 
inclusive. 

The algorithm to generate a physical address from a system region 
virtual address is 

SYS_PA = (SBR+4*SVA(29:9»)(20:0)'SVA(8:0) ! System Region 

Figure 4.7 illustrates the translation of a system virtual address to a 
physical address. 
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313029 9 8 0 
system virtual 

11 01 I address: virtual page number byte 

23122 

extract and check length Jo 31 

a virtual page number 1001 

add 

SBR: physical base address of SPT 

yields 

physical address of SPTE 

fetch 
3130 2120 0 

PTE: H page frame number I 
check access 

129 J8 0 

physical address of data: I page frame number I byte 

Figure 4.7 
System Virtual Address to Physical Translation 

The process virtual address space is divided into two, equal size, 
separately mapped regions. If virtual address bit (3D) is 0, the address 
is in region PO. If virtual address bit (3~) is 1, the address is in region 
P1. Figure 4.8 illustrates a process virtual address. 

The PO region maps a virtually contiguous area that begins at the 
smallest address (0) in the process virtual space and grows in 
the direction of larger addresses. PO is typically used for program 
images and can grow dynamically. 

The P1 region maps a virtually contiguous area that begins at the 
largest address (231 - 1) in the process virtual space and grows in 
the direction of smaller addresses. P1 is typically used for system­
maintained, per-process context. It may grow dynamically for the user 
stack. 

313029 98 o 
Ox virtual page number byte within page 

Figure 4.8 
Process Space Virtual Address Format 
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Each region is described by a virtually contiguous vector of page table 
entries. Unlike the system page table, which is addressed with a 
physical address, these two page tables are addressed with virtual 
addresses in the system region of the virtual address space. Thus, for 
process space, the address of the PTE is a virtual address in system 
space, and the fetch of the PTE is simply a longword fetch using a 
system virtual address. 

There is a significant reason to address process page tables in virtual 
rather than physical space. A physically addressed process page 
table that required more than a page of PTEs (that is, that mapped 
more than 64Kbytes of process virtual space) would require physically 
contiguous pages. Such a requirement would make dynamic allocation 
Of process page table space very awkward Since a running system 
tends to fragment storage into page-size areas. 

A process space address translation that causes a translation buffer 
miss will cause one memory reference for the process PTE. If the 
virtual address of the page containing the proces., PTE is also 
missing from the translation buffer, a second memory reference is 
required. 

When a process page table entry is fetched by the processor, a 
reference is made to system space. The system space page containing 
the process PTE may be marked valid or invalid. If it is marked valid, 
the processor can read the process space PTE. If the system space 
page is invalid, a translation-not-valid fault results, and the "PTE 
reference" bit is set in the fault parameter. This allows the process 
page tables to be paged. 

The operating system must make process page tables accessible to 
kernel mode, at least. The operation of the processor is UNDEFINED 
if process space page tables are read-only or no-access. Thus the 
processor mayor may not perform access checking (in kernel mode) 
when reading a process PTE or updating PTE(M) in a process PTE. 

When a process PTE is read, a check is made against the system­
page-table-length register (SLR). Thus, the fetch of an entry from 
a process page table can result in translation-not-valid or length­
violation faults. (See the section "Faults and Parameters" later in this 
chapter). 

If part or all of either process page table is mapped into I/O space or 
nonexistent memory while memory mapping is enabled, the operation 
of the processor is UNDEFINED. 
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PO Region The PO region of the address space is mapped by the PO page table 
(POPT) which is defined by the PO base register (POBR) and the PO 
length register (POLR). The POBR contains a virtual address in the 
system region that is the base address of the POPT. Figure 4.9a 
illustrates the POBR. The POLR contains the size of the POPT 
in longwords, that is, the number of page table entries. Figure 4.9b 
illustrates the POLR. The page table entry addressed by the POBR 
maps the first page of the PO region of the virtual address space, that 
is, virtual byte address O. 

The PTEs in the POPT contain the mapping information, or point to 
the mapping information in the global page table if the PTE is in 
GPTX format. (See the section "Page Table Entry for I/O Devices" in 
this chapter for a description of the GPTX format.) 

Writing POLR bits (26:24) has no effect. POLR bits (26:24) read as 
zero. At processor initialization time, the contents of both registers are 
UNPREDICTABLE. 

The virtual page number is contained in bits (29:9) of the virtual 
address. A 22-bit length field is required to express the values 
o through 221 inclusive. There could be as many as 221 pages in the 
PO region. An attempt to load POBR with a value less than 231 or 
greater than 231 + 230 - 4 results in a reserved-operand fault 
in some implementations. 

The algorithm to generate a physical address from a PO region virtual 
address is as follows: 

PYA_PTE 

PTE_PA 

PROC_PA 

POBR+4*PVA(29:9) ! PO Region 

( SBR + 4 *PV lLPTE(29 : 9) ) (20 : 0) , PVA_PTE(S : 0) 

(PTE_PA) (20: 0)' PVA(S: 0) 

313029 

system virtual longword address 

PO Base Register (POBR) 
a 

31 2726 24 21 

I MBZ IIGN 1001 
PO Length Register (POLR) 
b 

Figure 4.9 
PO Region Registers 
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P1 Region 
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313029 98 
process vi rtual ~ virtual page number I byte 
address 

23122 

extract and check length 
211 0 31 

0 I virtual page number 
1001 

add 

PxBR: system virtual address of PxPT 

yields 

system virtual address of PxPTE 

fetch by system space translation algorithm, including 
length and validity checks 

3130 2120 0 

PxTE: El page frame number 
1 

check access I this access check in current mode 

313029 J8 
physical address I 0 I page frame number I byte 
of data: 

Figure 4.10 
Process Virtual Address to Physical Address Translation 

Figure 4.10 illustrates the process virtual address to physical address 
translation. 

The P1 region of the address space is mapped by the P1 page table 
(P1 PT). P1 PT is defined by the P1 base register (P1 BR) and the 
P1 length register (P1 LR). Because P1 space grows toward smaller 
addresses, and because a consistent hardware interpretation of 
the base and length registers is desirable, P1 BR and P1 LR describe 
the portion of P1 space that is not accessible. Figure 4.11 illustrates 
the P1 base register and P1 length register. Note that P1 LR contains 
the number of nonexistent PTEs. P1 BR contains a virtual address 
of what would be the PTE for the first page of P1, that is, virtual byte 
address 40000000 hex). 

The address in P1 BR is not necessarily an address in system space, 
but all the addresses of PTEs must be in system space. 

The PTEs in the P1 PT contain the mapping information, or point to 
the mapping information in the GPT if the PTE is in GPTX format. 
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BUFFER 

31 2 1 0 

virtual longword address ~I 
P1BR 

31 30 2221 0 

H 00 2**21 - length of P1 PT in longwords 

P1LR 

Figure 4.11 
P1 Base and Length Registers 

(See the section "Page Table Entries for 1/0 Devices" in this chapter 
for a description of the GPTX format.) 

At processor initialization time, the contents of both registers are 
UNPREDICTABLE. Writing P1 LR bit (31) has no effect. The bit 
always reads as O. An attempt to load P1 BR with a value less than 
231 - 223 (7F80 0000, hex) or greater than 231 + 230 - 223 - 4 
results in a reserved-operand fault in some implementations. 

The algorithm to generate a physical address from a P1 region virtual 
address is as follows: 

PVLPTE 

PTE_PA 

PRO CPA 

PiBR+4*PVA(29:9) ! Pi Region 

(SBR +4*PVLPTE(29: 9») (20: 0) I PVLPTE(S: 0) 

(PT~PA) (20: 0) I PVA(S: 0) 

Figure 4.10 illustrates the process virtual address to physical address 
translation. 

In order to save actual memory references when repeatedly referencing 
the same pages, a hardware implementation may include a mechanism 
to remember successful virtual address translations and page states. 
Such a mechanism is termed a translation buffer. 

When the process context is loaded with LDPCTX, the translation 
buffer is automatically updated (that is, the process virtual address 
translations are invalidated). However, when the software changes any 
part of a valid PTE for the system or a current process region, it must 
also move a virtual address within the corresponding page to the 
translation-buffer-invalidate-single (TBIS) register with the MTPR 
instruction. 
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Additionally, when the software changes a System Page Table Entry 
which maps any part of the current process page table, all process 
pages so mapped must be invalidated in the translation buffer. They 
may be invalidated by moving an address within each such page into 
the TBIS register. They may also be invalidated by clearing the 
entire translation buffer. This is done by moving 0 to the translation­
buffer-invalidate-all (TBIA) register with the MTPR instruction. 

The translation buffer must not store invalid PTEs. Therefore, the 
software is not required to invalidate translation buffer entries when 
making changes for PTEs that are already invalid. 

When the location or size of the system map is changed (SBR, SLR) 
the entire translation buffer must be cleared by moving 0 to the 
TBIA register with the MTPR instruction. 

Whenever MME is a 0, the contents of the translation buffer are 
UNPREDICTABLE. Therefore, before enabling memory management 
at processor initialization time, or any other time, the entire translation 
buffer must be cleared by software. 

An internal processor register is available for interrogating the 
presence of a valid translation in the translation buffer. When a virtual 
address is written to the TBCHK register with a MTPR instruction, 
the condition code V-bit is set if the translation buffer holds a valid 
translation for that virtual page. 

The specification of the TBCHK register is based on VAXIVMS usage. 
Its specification is subject to change without prior notice. 

The TBIS, TBIA, and TBCHK processor registers are write only. The 
operation of MFPR from any of these registers is UNDEFINED. 

Two types of faults are associated with memory mapping and 
protection. A translation-not-valid fault is taken when a read or write 
reference is attempted through an invalid PTE (PTE(31)=0). An 
access-control~violation fault is taken when the protection field of the 
PTE indicates that the intended page reference in the specified 
access mode would be i"egal. Note that these two faults have distinct 
vectors in the system control block. If both faults could occur, then 
the access-control-violation fault takes precedence. An access­
control-violation fault is also taken if the virtual address referenced is 
beyond the end of the associated page table. Such a "length violation" 
is essentially the same as referencing a PTE that specifies "No 
Access" in its protection field. The fault software does not have to 
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0 IMlplL :(SP) 

some virtual address in the faulting page 

PC of faulting instruction 

PSL at time of fault 

Figure 4.12 
Memory Management Fault Stack Frame 

compute the length check becauses a "length violation" indication is 
stored in the memory management fault stack frame, illustrated in 
Figure 4.12. See Chapter 5, Exceptions and Interrupts, for a description 
of faults. 
The same parameters are stored for both types of fault. The first 
parameter pushed on the stack after the PSL and PC is some virtual 
address in the same page with the virtual address that caused the 
fault. A process-space reference can result in a system-space virtual 
reference for the PTE. If the PTE reference faults, the virtual address 
that is saved is the process virtual address. In addition, a 1 is stored 
in bit (1) of the fault parameter word if the fault occurred in the per­
process PTE reference. The fields of the second parameter are 
described in Table 4.4. 

Table 4.4 
Fields of the Memory Management Fault Parameter 

Name Extent 

modify or write intent (2) 

PTE reference (1 ) 

length violation (0) 

Memory Management 

Meaning 

Set to 1 to indicate that the 
instruction's intended access was 
write or modify. This bit is 0 if 
the instruction's intended access 
was read. 
Set to 1 to indicate that the fault 
occurred during the reference to the 
process page table associated with 
the virtual address. This can be 
set on either length-violation 
or translation-not-valid faults. 

Set to 1 to indicate that an access­
control-violation fault was the 
result of a length violation rather 
than a protection violation. This bit 
is always 0 for a translation-not-valid 
fault. 
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This section lists the instructions allowing access mode change, and 
describes two instructions that allow privileged services to check 
addresses passed as parameters. 

Four instructions allow a program to change its access mode to a 
more privileged mode and transfer control to a service dispatcher for 
the new mode. 

CHMK change mode to kernel 

CHME 

CHMS 

CHMU 

change mode to executive 

change mode to supervisor 

change mode to user 

These instructions provide the normal mechanism for less privileged 
code to call more privileged code; the instructions are described in 
detail in Chapter 5, Exceptions and Interrupts. When the mode 
transition takes place, the previous mode is saved in the previous­
mode field of the PSL, thus allowing the more privileged code to 
determine the privilege of its caller. 

Two instructions, PROBER and PROBEW, allow privileged services to 
check addresses passed as parameters. To avoid protection holes in 
the system, a service routine must always verify that its less privileged 
caller could have directly referenced the addresses passed as 
parameters. The PROBE instructions do this verification. 

Probe Accessibility 

Purpose: verify that arguments can be accessed 

Format: 

ope ode mode.rb, len.rw, base.ab 

Operation: 

probe_mode ~ MAXU (mode(l: 0), PSL(PRV_MOD)) 

condi tion codes ~ {accessibili ty of base} and 

{accessibility of {base+ZEXT(len) -l}} 

using probe_mode 
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Condition Codes: 

N <- 0; 

Z <- if {both accessible} then 0 else 1; 

V <- 0; 

C <- C; 

Exception: 
translation not valid 

Opcodes: 

OC PROBER Probe Read Accessibility 

OD PROBEW Probe Write Accessibility 

Description: 
The PROBE instruction checks the read or write accessibility of the 
first and last byte specified by the base address and the zero 
extended length. Note that the bytes in between are not checked. 
System software must check all pages between the two end bytes if 
they will be accessed. 

The protection is checked against the larger (and therefore less 
privileged) of the modes specified in bits (1 :0) of the mode operand 
and the previous-mode field of the PSL. Note that probing with a 
mode operand of 0 is equivalent to probing the mode specified 
in PSL(previous-mode). 

Notes: 
1. If the valid bit of the examined PTE is set, and write access is 

allowed, it is UNPREDICTABLE whether the modify bit of the 
examined PTE is set by a PROBEW. If the valid bit is clear or if 
write access is not allowed, the modify bit is not changed. 

2. Except for item 1 above, the processor ignores the valid bit of the 
PTE mapping the probed address. 

3. A length violation gives a status of "not-accessible." 

4. On the probe of a process virtual address, if the valid bit of the 
system PTE is 0, then a translation-not-valid fault occurs. This 
allows for the demand paging of the process page tables. 

5. An object one byte long is the smallest that can be probed. With a 
length of zero, the PROBE instructions test the accessibility of 
two bytes-base and base - 1 . 

6. If memory management is disabled, all memory is accessible, and 
probing nonexistent memory gives UNPREDICTABLE results. 
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Example: 

MOVL 4(AP) ,RO 

PROBER #O,#4,(RO) 

BEQL violation 

MOVQ 8( AP), RO 

PROBEW #O,RO, (Rl) 

BEQL violation 

Flows: 

Copy the address of first argument 

so that it can't be changed. 

Verify that the longword pointed to 

by the first arg could be read by 

the previous access mode. (Note 

that the arg list itself must already 

already have been probed. ) 

Branch if either byte gives an access 

violation. 

Copy length and address of buffer args 

so that they can't change. 

Verify that the buffer described by 

the second and third args could be 

written by the previous access mode. 

(Note that the arg list must already 

have been probed and that the second 

arg must be less than 512.) 

Branch if either byte gives an access 

violation. 

The following describes the operational flow of PROBE on each of the 
virtual addresses it is checking. Note that probing an address returns 
only the accessibility of the page(s) and has no effect on its residency, 
However, probing a process address may cause a page fault in the 
system address space on the per-process page tables, 

1. Look up the virtual address in the translation buffer. If found, use 
the associated protection field to determine the accessibility and 
EXIT. 

2. Check for length violation for system or per-process address as 
appropriate. See elsewhere in this chapter for the length-violation 
check flows. If length violation, then return No Access and EXIT. 

3. If system virtual address, form physical address of PTE, fetch the 
PTE, use the protection field to determine the accessibility, and 
EXIT. 

4. For per-process virtual address, must do a virtual memory reference 
for the PTE. 

a. Look up the virtual address of the PTE in the translation buffer, 
form the physical address of the PTE if found, fetch the PTE, 
use the protection field to determine the accessibility, and 
EXIT. 

VAX Architecture Reference Manual 



b. If the virtual address of the PTE is not in the translation buffer, 
check the system virtual address of the PTE for length violation. 
If length violation, then return No Access and EXIT. 

c. Read the SPTE for the system-space page containing the per­
process PTE. 

d. If the valid bit in the SPTE is 0, then take a translation-not-valid 
fault and EXIT. This case allows for the demand paging of 
per-process page tables. 

e. Finally, calculate the physical address of the per-process PTE 
from the PFN field of the SPTE (see the section "System 
Space Address Translation" in this chapter), fetch the per­
process PTE, use the protection field to determine the 
accessibility, and EXIT. 
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Exceptions and Interrupts 5 
At certain times during the operation of a system, events within 
the system require the execution of particular pieces of software 
outside the explicit flow of control. The processor transfers control by 
forcing a change in the flow of control from that explicitly indicated 
in the currently executing process. 

Some of the events are relevant primarily to the currently executing 
process and normally invoke software in the context of the current 
process. The notification of such an event is termed an exception. 

Other events are primarily relevant to other processes, or to the 
system as a whole, and are therefore serviced in a system-wide 
context. The notification process for these events is termed an 
interrupt, and the system-wide context is described as "executing on 
the interrupt stack." Further, some interrupts are of such urgency that 
they require high-priority service, while others must be synchronized 
with independent events. To meet these needs, the processor has 
priority logic that grants interrupt service to the highest priority event 
at any point in time. The priority associated with an interrupt is termed 
its interrupt priority level (IPL). 

The processor has 31 interrupt priority levels: 15 software levels 
(numbered, in hex, 01 to OF) and 16 hardware levels (10 to 1 F, hex). 
User applications, system calls, and system services all run at 
process level, which may be thought of as IPL o. Higher numbered 
interrupt levels have higher priority; that is to say, any requests at an 
interrupt level higher than the processor's current IPL will interrupt 
immediately, but requests at a lower or equal level ale deferred. 

Interrupt levels 01 through OF (hex) exist entirely for use by software. 
No device can request interrupts on those levels, but software can 
force an interrupt by executing MTPR src, #PR$_SIRR. (See 
Chapter 8, and the section "Software Interrupts" later in this chapter.) 
Once a software interrupt request is made, it will be cleared by the 
hardware when the interrupt is taken. 
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Interrupt levels 10 to 17 (hex) are for use by devices and controllers, 
including UNIBUS devices; UNIBUS levels BR4 to BR7 correspond to 
VAX interrupt levels 14 to 17 (hex). 

Interrupt levels 18 to 1 F (hex) are for use by urgent conditions, 
serious errors, and powerfail. 

The processor arbitrates interrupt requests according to priority. Only 
when the priority of an interrupt request is higher than the processor's 
current IPL (stored in PSL(20:16)) will the processor raise its IPL 
and service the interrupt request. The interrupt service routine 
is entered at the IPL of the interrupt request and will not usually 
change the IPL set by the processor. Note that this is different from 
the PDP -11 where the interrupt vector specifies the IPL for the 
interrupt service routine. 
Interrupt requests can come from devices, controllers, other processors, 
or the processor itself. Software executing in kernel mode can raise 
and lower the priority of the processor by executing MTPR src, 
#PR$_IPL where src contains the new priority desired. However, a 
processor cannot disable interrupts on other processors. Furthermore, 
the priority level of one processor does not affect the priority level of 
the other processors. Thus in multiprocessor systems, interrupt 
priority levels cannot be used to synchronize access to shared 
resources. Even the various urgent interrupts including those exceptions 
that run at IPL 1 F (hex) do so on only one processor. Consequently, 
special software action is required to stop other processors in a 
multiprocessor system. 

Most exception service routines execute at IPL 0 in response to 
exception conditions caused by the software. A variation from this is 
serious system failures, which raise IPL to the highest level (1 F, hex) 
to minimize processor interruption until the problem is corrected. 
Exception service routines are usually coded to avoid exceptions; 
however, nested exceptions can occur. 

A trap is an exception that occurs at the end of the instruction that 
caused the exception. Therefore the PC saved on the stack is 
the address of the next instruction that would normally have been 
executed. Any software can enable and disable some trap conditions 
by using the BISPSW and BICPSW instructions described in 
Chapter 3. 

A fault is an exception that occurs during an instruction and that 
leaves the registers and memory in a consistent state such that 
elimination of the fault condition and restarting the instruction will give 
correct results. After an instruction faults, the PC saved on the stack 
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points to the instruction that faulted. Note that faults do not always 
leave everything as it was prior to the faulted instruction; they 
only restore enough to allow restarting. Thus, the state of a process 
that faults may not be the same as that of a process that was 
interrupted at the same point. 

An abort is an exception that occurs during an instruction. An abort 
leaves the value of registers and memory UNPREDICTABLE such 
that the instruction cannot necessarily be correctly restarted, completed, 
simulated, or undone. After an instruction aborts, the PC saved on 
the stack points to the opcode of the aborted instruction. The following 
are UNPREDICTABLE: 

• Destination operands (including implied operands, such as the top 
of the stack in an JSB instruction) 

• Registers modified by operand specifier evaluation (including 
specifiers for implied operands) 

• The PTE(M) bit in PTEs that map destination operands, if the 
operands could have been written but were not written, and PTE(M) 
was clear before the instruction 

• Condition codes 

• PSL(FPD) 

• PSL(TP), if PSL(T) was set at the beginning of the instruction 

Except where otherwise noted in the description of the abort, the rest 
of the PSL, other registers, and memory are unaffected. 

Generally, exceptions and interrupts are very similar. When either is 
initiated, both the processor status longword and the program counter 
are pushed onto the stack. There are, however, seven important 
differences: 

• An exception condition is caused by the execution of the current 
instruction, whereas an interrupt is caused by some activity in the 
computing system that may be independent of the current instruction. 

• An exception condition is usually serviced in the context of the 
process that produced the exception condition, whereas an interrupt 
is serviced independently from the currently running process. 

• The IPL of the processor is usually not changed when the processor 
initiates an exception, whereas the IPL is always raised when an 
interrupt is initiated. 

• Exception service routines usually execute on a per-process stack, 
whereas interrupt service routines normally execute on a per-
CPU stack. 

• Enabled exceptions are always initiated immediately, no matter what 
the processor IPL is; whereas interrupts are held off until the 
processor IPL drops below the IPL of the requesting interrupt. 
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• Most exceptions cannot be disabled. However, if an exception­
causing event occurs while that exception is disabled, no exception 
is initiated for that event even when enabled subsequently. This 
includes overflow, the only exception condition whose occurrence is 
indicated by a condition code (V). If an interrupt condition occurs 
while it is disabled, or the processor is at the same or higher IPL, 
the condition will eventually initiate an interrupt when the proper 
enabling conditions are met if the condition is still present. 

• The previous mode field in the PSL is always set to kernel on an 
interrupt; but on an exception, it indicates the mode of the exception. 

When an exception or an interrupt is serviced, the processor status 
must be preserved so that the interrupted process may continue 
normally. Basically, this is done by automatically saving the PC and 
the PSL on the stack. (Refer to Chapter 1 for a description of the PC 
and PSL.) The PC and PSL are later restored with the Return from 
Exception or Interrupt instruction (REI). Any other status required 
to correctly resume an interruptible instruction is stored in the general 
registers. The terms current PSL and saved PSL are used to 
distinguish between this status information when it is in the processor 
and when copies of it are materialized in memory, as on the stack. 

Process context such as the mapping information is not saved or 
restored on each interrupt or exception. Instead, it is saved and 
restored only when process context switching is performed. Refer to 
the LDPCTX and SVPCTX instructions in Chapter 6. Other processor 
status is changed even less frequently; refer to the privileged register 
descriptions in Chapter 8. 

The processor services interrupt requests between instructions. 
The processor also services interrupt requests at well-defined points 
during the execution of long, iterative instructions such as the string 
instructions. For these instructions, interrupts are initiated when 
the instruction state can be completely contained in the registers, PSL 
and PC; saving additional instruction state in memory is thus avoided. 
The following events cause interrupts: 

• Device completion (IPL 10 -17 hex) 

• Device error (IPL 10- 17 hex) 

• Device alert (IPL 10 -17 hex) 

• Device memory error (lPL 10 -17 hex) 

• Console terminal transmit and receive (IPL 14 hex) 

• Interval timer (implementation dependent, IPL 16 or 18 hex) 

VAX Architecture Reference Manual 



Urgent 
Interrupts 

Device 
Interrupts 

Software 
Interrupts 

• Recovered memory or bus or processor errors (implementation 
dependent, IPL 18 to 10 hex) 

• Bus errors, processor errors, or uncorrectable memory errors 
(implementation dependent, IPL 18 to 10 hex) 

• Powerfail (IPL 1 E hex) 

• Software interrupt invoked by MTPR src, #PR$_SIRR (IPL 01 to 
OF hex) 

• AST delivery when REI restores a PSL with mode greater than or 
equal to ASTL VL (see Chapter 6) (IPL 02) 

Each device controller has a separate set of interrupt vector locations 
in the system control block (SCB). Thus interrupt service routines do 
not need to poll controllers in order to determine which controller 
interrupted. 

In order to reduce interrupt overhead, no memory mapping information 
is changed when an interrupt occurs. Thus the instructions, data, and 
contents of the interrupt vector for an interrupt service routine must be 
in the system address space or present in every process at the same 
address. 

The processor provides eight priority levels (18 through 1 F, hex) for 
use by urgent conditions including serious errors and powerfail. Some 
implementations may not use all eight priority levels. Interrupts on 
these levels are initiated by the processor upon detection of certain 
conditions. Some of these conditions are not interrupts. For example, 
machine-check is usually an exception, but it runs at a high priority 
level on the interrupt stack. 

Interrupt level 1E (hex) is reserved for powerfail. Interrupt level 1 F 
(hex) is reserved for those exceptions that must lock out all processing 
until the condition has been handled. This includes the hardware and 
software "disasters" (machine-check and kernel-stack-not-valid 
aborts). It mightalso be used to allow a kernel-mode debugger to 
gain control on any exception. 

The processor provides eight priority levels (10 through 17, hex) for 
use by peripheral devices. Some implementations may not implement 
all eight levels of interrupts. The minimal implementation is levels 14 
through 17 (hex) that correspond to the UNIBUS levels BR4 to BR7 if 
the system has a UNIBUS. 

The processor provides 15 interrupt levels (1 through OF, hex) for use 
by software. Pending software interrupts are recorded in the software-
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31 1615 1 0 

MBZ I pending software interrupts 101 

Figure 5.1 
Software Interrupt Summary Register 

interrupt-summary register (SISR), as shown in Figure 5.1. The 
SISR contains ones in the bit positions corresponding to levels at 
which software interrupts are pending. When the processor initiates a 
software interrupt, the corresponding bit in SISR is cleared. At no time 
can SISR bits corresponding to levels higher than the current 
processor IPL contain ones, since the processor would already have 
taken the requested interrupts. 
At processor initialization, SISR is cleared. The mechanism for 
accessing it follows: 

MFPR #PR$_SISR, dst 

MTPR src, #PR$_SISR 

Reads the software interrupt summary 
register. 

Loads it, but this is not the normal way 
of making software interrupt requests. 
It is useful, for example, for clearing 
the software interrupt system and for 
reloading its state during powerfail 
recovery. 

Software Interrupt Request Register-The software-interrupt-request 
register (SIRR) is a write-only, 4-bit, privileged register used for 
creating software interrupt requests. SIRR is shown in Figure 5.2. 

Executing MTPR src, #PR$_SIRR requests an interrupt at the level 
specified by src(3:0). Once a software interrupt request is made, it will 
be cleared by the hardware when the interrupt is taken. If src(3:0) is 
greater than the current IPL, the interrupt occurs before execution 
of the following instruction. If src(3:0) is less than or equal to the 
current IPL, the interrupt will be deferred until IPL is lowered to less 
than src(3:0) and there is no higher interrupt level pending. This 
lowering of IPL is by either REI or by MTPR src, #PR$_IPL. If 
src(3:0) is 0, no interrupt will occur. 

31 4 3 0 

ignored Irequestl 

Figure 5.2 
Software Interrupt Request Register 
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Note that no indication is given if there is already a request at the 
selected level. The service routine, therefore, must not assume that 
there is a one-to-one correspondence of interrupts generated and 
requests made. A valid protocol for generating such a correspondence 
is: 

1. The requester uses INSQUE to place a control block describing 
the request onto a queue for the service routine. 

2. The requester uses MTPR src, #PR$_SIRR to request an 
interrupt at the appropriate level. 

3. The service routine uses REMQUE to remove a control block from 
the queue of service requests. If REMQUE returns failure (nothing 
in the queue), the service routine exits with REI. 

4. If REMQUE returns success (an item was removed from the 
queue), the service routine performs the service and returns to 
step 3 to look for other requests. 

Writing to the IPL register with the MTPR instruction will load the 
processor priority field in the PSL; that is, PSL(20:16) is loaded from 
IPL(4:0). Reading from the IPL register with the MFPR instruction will 
read the processor priority field from the PSL. On writing the IPL 
register, bits (31 :5) are ignored; on reading the IPL register, bits 
(31 :5) are returned O. The IPL register is shown in Figure 5.3. At 
processor initialization, IPL is set to 31 (1 F, hex). 

Interrupt service routines must follow the discipline of not lowering IPL 
below their initial level. If they were to do so, an interrupt at an 
intermediate level could cause the stack nesting to be improper. This 
would result in REI faulting. If IPL is lowered to zero when the 
processor is running on the interrupt stack, the operation of the 
processor is UNDEFINED. Figure 5.4 is an example of interrupt 
processing. 

Exceptions can be grouped into six classes: 

• Arithmetic traps and faults 

• Memory management exceptions 

• Exceptions detected during operand reference 

31 54 0 

ignored; returns 0 I I 
PSL < 20: 16 > :::oJ 

Figure 5.3 
Interrupt Priority Level Register 
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State After Event 

IPL SISR Stacked 
Event (hex) (hex) PSL<IPL> 

Initial state: 5 00 0 
Execute MTPR #8, #PR$_IPL: 8 00 0 
Execute MTPR #3, #PR$_SIRR: 8 08 0 
Execute MTPR #7, #PR$_SIRR: 8 88 0 
Execute MTPR #9, #PR$_SIRR (interrupts at once): 9 88 8,0 
Device interrupt at IPL 20 (decimal): 14 88 9,8,0 
Device interrupt service routine executes REI: 9 88 8,0 
IPL 9 service routine executes REI: 8 88 0 
Execute MTPR #5, #PR$_IPL: " 7 08 5,0 
IPL 7 service routine executes REI: 5 08 0 
Initial IPL 5 service routine executes REI: " 3 00 0 
IPL 3 service routine executes REI: 0 00 

"This operation lowers IPL below that of an outstanding software interrupt request. 
The software interrupt occurs at once. 

Figure 5.4 
An Example of Interrupt Processing 

• Exceptions occurring as a consequence of an instruction 

• Tracing 

• Serious system failures 

This section contains the descriptions of the exceptions that occur as 
the result of an arithmetic or conversion operation. These exceptions 
are mutually exclusive and all are assigned the same vector in the 
SCB, and hence the same signal "reason" code. Each of them 
indicates that an exception had occurred during the last instruction 
and that the instruction has been completed (trap) or backed up 
(fault). An appropriate distinguishing code is pushed on the stack as a 
longword, as shown in Figure 5.5. Table 5.1 lists the arithmetic 
exception type codes. 

Integer Overflow Trap-An integer overflow trap is an exception that 
indicates that the last instruction executed had an integer overflow 
setting PSL(V) and that integer overflow was enabled (IV set). 
The result stored is the low-order part of the correct result. Nand Z 

type code :(SP) 
~----------------------------------~ PC of next instruction to execute 

PSL 

Figure 5.5 
Arithmetic Exception Stack Frame 
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Table 5.1 
Arithmetic Exception Type Codes 

Exception Type Mnemonic Decimal Hex 

Traps 

integer overflow SS$_INTOVF 
integer divide-by-zero SS$_INTDIV 2 

floating overflow SS$_FLTOVF 3 
floating or decimal divide-by-zero SS$_FLTDIV 4 

floating underflow SS$_FLTUND 5 
decimal overflow SS$_DECOVF 6 
subscript range SS$_SUBRNG 7 

Faults 

floating overflow SS$-FL TOVF _F 8 
floating divide-by-zero SS$-FL TDIV_F 9 

floating underflow SS$_FL TUND_F 10 

are set according to the stored result. The type code pushed on 
the stack is 1 (SS$_INTOVF). 

1 

2 

3 

4 

5 
6 
7 

8 

9 

A 

Integer Divide-By-Zero Trap-An integer divide-by-zero trap is an 
exception that indicates that the last instruction executed had an 
integer zero divisor. The result stored is equal to the dividend, and 
condition code V is set. The type code pushed on the stack is 2 
(SS$_INTDIV). 

Floating Overflow Trap-A floating overflow trap is an exception that 
indicates that the last instruction executed resulted in an exponent 
greater than the largest representable exponent for the data type after 
normalization and rounding. The result stored contains a one in the 
sign and zeros in the exponent and fraction fields. This is a reserved 
operand and will cause a reserved operand fault if used in a 
subsequent floating-point instruction. The N and V condition code bits 
are set, and Z and C are cleared. The type code pushed on the 
stack is 3 (SS$_FL TOVF). 

Divide-By-Zero Trap-A floating divide-by-zero trap is an exception 
that indicates that the last instruction executed had a floating zero 
divisor. The result stored is the reserved operand, as described above 
for floating overflow trap, and the condition codes are set as in 
floating overflow. 

A decimal string divide-by-zero trap is an exception that indicates that 
the last instruction executed had a decimal-string zero divisor. The 
destination, RO through R5, and condition codes are 
UNPREDICTABLE. The zero divisor can be either +0 or -0. 
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The type code pushed on the stack for both types of divide-by-zero is 
4 (SS$_FL TDIV). 

Floating Underflow Trap-A floating underflow trap is an exception 
that indicates that the last instruction executed resulted in an exponent 
less than the smallest representable exponent for the data type after 
normalization and rounding, and that floating underflow was enabled 
(FU set). The result stored is zero. Except for POLYx, the N, V, and C 
condition codes are cleared, and Z is set. In POL Yx, the trap occurs 
on completion of the instruction, which may be many operations after 
the underflow. The condition codes are set on the final result in 
POLYx. The type code pushed on the stack is 5 (SS$_FL TUND). 

Decimal-String Overflow Trap-A decimal-string overflow trap is an 
exception that indicates that the last instruction executed had a 
decimal-string result too large for the destination string provided and 
that decimal overflow was enabled (DV set). The V condition code 
is always set. Refer to the individual instruction descriptions in 
Chapter 3 for the value of the result and of the condition codes. The 
type code pushed on the stack is 6 (SS$_DECOVF). 

Subscript-Range Trap-A subscript-range trap is an exception that 
indicates that the last instruction was an INDEX instruction with a 
subscript operand that failed the range check. The value of the 
subscript operand is lower than the low operand or greater than the 
high operand. The result is stored in indexout, and the condition 
codes are set as if the subscript were within range. The type code 
pushed on the stack is 7 (SS$_SUBRNG). 

Floating Overflow Fault-A floating overflow fault is an exception that 
indicates that the last instruction executed resulted in an exponent 
greater than the largest representable exponent for the data type after 
normalization and rounding. The destination was unaffected, and the 
saved condition codes are UNPREDICTABLE. The saved PC points 
to the instruction causing the fault. In the case of a POLY instruction, 
the instruction is suspended with FPD set. The type code pushed 
on the stack is 8 (SS$_FLTOVF _F). 

Floating Divide-By-Zero Fault-A floating divide-by-zero fault is an 
exception that indicates that the last instruction executed had a 
floating zero divisor. The quotient operand was unaffected, and the 
saved condition codes are UNPREDICTABLE. The saved PC points 
to the instruction causing the fault. The type code pushed on the 
stack is 9 (SS$_FLTDIV_F). 

Floating Underflow Fault-A floating underflow fault is an exception 
that indicates that the last instruction executed resulted in an exponent 
less than the smallest representable exponent for the data type after 
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normalization and rounding, and that floating underflow was enabled 
(FU set). The destination operand is unaffected. The saved condition 
codes are UNPREDICTABLE. The saved PC points to the instruction 
causing the fault. In the case of a POLY instruction, the instruction is 
suspended with FPD set. The type code pushed on the stack is 10 
(SS$_FL TUND_F). 

A memory management exception can be either an access-control­
violation fault or a translation-not-valid fault. 

Access-Control-Violation Fault-An access-control-violation fault is an 
exception indicating that the process attempted a reference not 
allowed at the current access mode. See Chapter 4, Memory 
Management, for a description of the information pushed on the stack 
as parameters. Software may restart the process after changing the 
address translation information. 

Translation-Not-Valid Fault-A translation-not-valid fault is an exception 
indicating that the process attempted a reference to a page for which 
the valid bit in the page table was not set. See Chapter 4, Memory 
Management, for a description of the information pushed on the stack 
as parameters. 

Note that if a process attempts to reference a page for which the 
page table entry specifies both not-valid and access-control violation, 
an access-control-violation fault occurs. 

Reserved-Addressing-Mode Fault-A reserved-addressing-mode fault 
is an exception indicating that an operand specifier attempted to use 
an addressing mode that is not allowed in the situation in which it 
occurred. No parameters are pushed. 

See Chapter 2 for details of reserved addressing modes and for 
combinations of addressing modes and registers that cause UNPRE­
DICT ABLE results. 

Reserved-Operand Exception-A reserved-operand exception is an 
exception indicating that an operand accessed has a format reserved 
for future use by DIGITAL. No parameters are pushed. This exception 
always backs up the saved PC to pOint to the opcode. The exception 
service routine may determine the type of operand by examining the 
opcode using the saved PC. 

Note that only the changes made by instruction fetch and because of 
operand specifier evaluation may be restored. Therefore, some 
instructions are not restartable. These exceptions are labeled as 
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aborts rather than faults. The saved PC is always restored properly 
unless the instruction attempted to modify it in a manner that results 
in UNPREDICTABLE results. 

The reserved-operand exceptions are caused by: 

1. Bit field too wide (fault) 

2. Invalid combination of bits in PSL restored by REI (fault) 

3. Invalid combination of bits in PSW mask longword during RET 
(fault) 

4. Invalid combination of bits in BISPSW or BICPSW (fault) 

5. Invalid CALLS or CALLG entry mask (fault) 

6. Invalid register number in MFPR or MTPR (fault) 

7. Invalid PCB contents in LDPCTX for some implementations 
(abort) 

8. Unaligned operand in ADAWI (fault) 

9. Invalid register contents in MTPR for some implementations (fault) 

10. Invalid operand addresses in INSQHI, INSQTI, REMQHI, or 
REMQTI (fault) 

11. A floating-point number that has the sign bit set and the exponent 
zero except in the POLY table (fault) 

12. A floating-point number that has the sign bit set and the exponent 
zero in the POLY table (fault) (see Chapter 3 for restartability) 

13. POLY degree too large (fault) 

14. Decimal string too long (abort) 

15. Invalid digit in CVTTP or CVTSP (abort) 

16. Reserved pattern operator in EDITPC (fault) (see Chapter 3 for 
restartability) 

17. Incorrect source-string length at completion of EDITPC (abort) 

Reserved- or Privileged-Instruction Fault-A reserved- or privileged­
instruction fault occurs when the processor encounters an opcode that 
is not specifically defined, or that requires higher privileges than the 
current mode. No parameters are pushed. Opcode FFFF (hex) will 
always fault. 

An Opcode-Reserved-To-Customers Fault-An opcode-reserved-to­
customers fault is an exception that occurs when an opcode reserved 
to customers or to DIGITAL is executed. The operation is identical to· 
the reserved-or-privileged-instruction fault except that the event is 
caused by a different set of opcodes, and faults through a different' 
vector. All opcodes reserved to customers start with FC (hex), which 
is the XFC instruction. If the special instruction needs to generate a 
unique exception, one of the reserved-to-customer vectors should be 
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used. An example might be an unrecognized second byte of the 
instruction. 

The XFC fault is intended primarily for use with writable control store 
to implement installation-dependent instructions. The method used 
to enable and disable the handling of an XFC fault in user-written 
microcode is implementation-dependent. Some implementations may 
transfer control to microcode without checking bits (1 :0) of the 
exception vector. 

Instruction-Emulation Exceptions-When a subset processor executes 
a string instruction that is omitted from its instruction set, an emulation 
exception results. An emulation exception can occur through either 
of two SCB vectors, depending on whether or not PSL(FPD) was set 
at the beginning of the instruction. If PSL(FPD) is clear, a subset­
emulation trap occurs through the SCB vector at offset C8 (hex), and 
a subset-emulation trap frame is pushed onto the current stack. If 
PSL(FPD) is set, a suspended-emulation fault occurs through the SCB 
vector at offset CC (hex); and PC and PSL are pushed onto the 
current stack. 

The emulation exception handler runs in the mode of the emulated 
instruction, on the same stack, and at the same IPL. The exception 
parameters are pushed onto the current stack. See Chapter 11 for 
details of instruction emulation and the emulation exceptions. 

Compatibility-Mode Exceptions-A compatibility-mode exception is an 
exception that occurs when the processor is in compatibility mode. A 
longword of information is pushed on the stack, which contains a 
code indicating the exception type. The stack frame is the same as 
that for arithmetic exceptions, shown in Table 5.1. The compatibility 
mode exception type codes are shown in Table 5.2. 

Table 5.2 
Compatibility Mode Exception Type 
Codes 

Exception Type Decimal 

Faults 

reserved opcode 0 
BPT instruction 1 

lOT instruction 2 

EMT instruction 3 
TRAP instruction 4 

illegal instruction 5 

Aborts 

odd address 6 
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sign extended code :(SP) r------------------------------------4 
PC of next instruction 

old PSL 

Figure 5.6 
CHMx Instruction Stack Frame 

All other exceptions in compatibility mode occur to the regular native­
mode vector; for example, access-control-violation fault, translation­
not-valid fault, and machine-check abort. See Chapter 9, PDP - 11 
Compatibility Mode. 

Change-Mode Trap-A change-mode trap is an exception that occurs 
when one of the change-mode instructions (CHMK, CHME, CHMS, 
CHMU) is executed. The instruction operand is pushed on the 
exception stack, as shown in Figure 5.6. See the description of the 
change-mode instructions for details. 

Breakpoint Fault-A breakpoint fault is an exception that occurs when 
the breakpoint instruction (BPT) is executed. No parameters are 
pushed. 

To proceed from a breakpoint, a debugger or tracing program typically 
restores the original contents of the location containing the BPT, sets 
T in the PSL saved by the BPT fault, and resumes. When the 
instruction completes, a trace exception will occur (see section on 
tracing). At this point, the tracing program. can again re-insert the BPT 
instruction, restore T to its original state (usually clear), and resume. 
Note that if both tracing and breakpointing are in progress (if PSL(T) 
was set at the time of the BPT), then on the trace exception both 
the BPT restoration and a normal trace exception should be processed 
by the trace handler. 

A trace is an exception that occurs between instructions when trace is 
enabled. Tracing is used for tracing programs, for performance 
evaluation, or for debugging purposes. It is designed so that one and 
only one trace exception occurs before the execution of each traced 
instruction. The saved PC on a trace is the address of the next 
instruction that would normally be executed. If a trace fault and a 
memory management fault (or an odd address abort during a 
compatibility mode instruction fetch) occur simultaneously, the order in 
which the exceptions are taken is UNPREDICTABLE. The trace fault 
for an instruction takes precedence over all other exceptions. 
In order to ensure that exactly one trace occurs per instruction despite 
other traps and faults, the PSL contains two bits: trace enable (T) 
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and trace pending (TP). If only one bit were used, then the occurrence 
of an interrupt at the end of an instruction would either produce zero 
or two traces, depending on the design. Instead of the PSL(T) bit 
being defined to produce a trap after any other traps or aborts at the 
end of an instruction, the trap effect is implemented by copying 
PSL(T) to a second bit (PSL(TP)} that is actually used to generate the 
exception. PSL(TP) generates a fault before any other processing at 
the start of the next instruction. 

The rules of operation for trace are as follows: 

1. At the beginning of an instruction, if TP is set, then a trace fault is 
taken after clearing TP. 

2. TP is loaded with the value of T. 

3. If the instruction faults or an interrupt is serviced, PSL(TP) is 
cleared before the PSL is saved on the stack. The saved PC is set 
to the start of the faulting or interrupted instruction. Instruction 
execution is resumed at step 1. 

4. If the instruction aborts or takes an arithmetic trap, PSL(TP) is not 
changed before the PSL is saved on the stack. 

5. If an interrupt is serviced after instruction completion and arithmetic 
traps but before tracing is checked for at the start of the next 
instruction, then PSL(TP) is not changed before the PSL is saved 
on the stack. 

The routine entered by a CHMx is not traced because CHMx clears 
T and TP in the new PSL. However, if T was set at the beginning 
of CHMx, the saved PSL will have both T and TP set. Trace faults 
resume with the instruction following the REI in the routine entered by 
the CHMx. An instruction following an REI will fault either if Twas 
set when the REI was executed or if TP in the saved PSL is set; in 
both cases, TP is set after the REI. Note that a trace fault that occurs 
for an instruction following an REI that sets TP will be taken with the 
new PSL. Thus, special care must be taken if exception or interrupt 
routines are traced. If the T-bit is set by a BISPSW instruction, trace 
faults begin with the second instruction after the BISPSW. 

In addition, the CALLS and CALLG instructions save a clear T, 
although T in the PSL is unchanged. This is done so that a debugger 
or trace program proceeding from a BPT fault does not get a spurious 
trace from the RET that matches the CALL. 

The detection of reserved-instruction faults occurs after the trace fault. 
The detection of interrupts and other exceptions can occur during 
instruction execution. In this case, TP is cleared before the exception 
or interrupt is initiated. The entire PSL (including T and TP) is 
automatically saved on interrupt or exception initiation and is restored 
at the end with an REI. This makes interrupts and benign exceptions 
totally transparent to the executing pro9ram. 
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Table 5.3 shows the operation of tracing during execution of ordinary 
instructions, instructions that have special effects on tracing, and 
other system events that effect tracing. 

Table 5.3 
Tracing 

Before the Event After the Event 

Current Stacked Current Stacked 
Event T TP T TP T TP T TP Exception 

ordinary instruction execution 0 0 0 0 

0 1 1 

x 1 0 0 0 trace fault 

BISPSW that sets T 0 0 1 0 

0 0 0 0 0 trace fault 

0 1 

1 1 0 0 0 trace fault 

BICPSW that clears T 0 0 0 0 

0 1 0 0 0 0 trace fault 

0 0 1 

1 0 0 1 0 trace fault 

CALLS or CALLG 0 0 0 0 0 

0 1 0 0 0 0 trace fault 

0 0 

0 0 0 trace fault 
RET 0 0 0 0 0 

0 0 1 0 

0 0 0 0 0,0 0 trace fault" 

0 0 0 0,1 0 trace fault" 

0 0 0 0 

0 1 1 

0 0 0 1,0 0 trace fau It" 

1 1 0 0 1,1 0 trace fault" 
CHMx ... REI 0 0 0 0 

0 1 

x 0 0 0 trace fault 
interrupt or exception ... REI 0 0 0 0 

0 1 

x 1 0 0 1 0 trace fault 

CHMx 0 0 0 0 0 0 CHMx 

0 0 0 CHMx 

x 0 0 0 trace fault 
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Table 5.3 
Tracing (continued) 

Before the Event After the Event 

Current Stacked Current Stacked 
Event T TP T TP T TP T TP Exception 

REI 0 0 0 0 0 0 

0 0 0 1 0 

0 0 0 0 
0 0 1 1 1 1 

0 0 0 0 0 0,0 0,0 trace fault" 

0 0 1 0 0 0,0 0,1 trace fault" 

0 1 1 0 0 0 0,1 0,0 trace fault" 

0 1 1 1 0 0 0,1 0,1 trace fault" 

0 0 0 0 
0 0 1 0 
0 0 
0 

0 0 0 0 1,0 0,0 trace fault" 

0 1 0 0 1,0 0,1 trace fau It" 

0 0 0 1,1 0,0 trace fau It" 

1 1 0 0 1,1 0,1 trace fau It" 

interrupt or exception 0 0 0 0 0 0 
1 0 0 0 1 0 

0 0 0 0 
0 0 

"Where two entries are shown stacked, the first shown is on the kernel or interrupt stack for 
the trace fault handler. The second shown is on the original stack, unchanged by the trace 
fault. 

Routines using the trace facility are termed trace handlers. They 
should observe the following conventions and restrictions: 

1. When the trace handler performs its REI back to the traced 
program, it should always force the T-bit on in the PSL that will be 
restored. This defends against programs clearing T via RET, REI, 
or BICPSW. 

2. The trace handler should never examine or alter the TP bit when 
continuing tracing. The hardware flows ensure that this bit is 
maintained correctly to continue tracing. 

3. When tracing is to be ended, both T and TP should be cleared. 
This ensures that no further traces will occur. 

4. Tracing a service routine that completes with an REI will give a 
trace in the restored mode after the REI. If the program being 
restored to was also being traced, only one trace exception 
is generated. 
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5. If a routine entered by a CALLS or CALLG instruction is executed 
at full speed by turning off T, then trace control can be regained by 
setting T in the PSW in its call frame. Tracing will resume after 
the instruction following the RET. 

6. Tracing is disabled for routines entered by a CHMx instruction or 
any exception. Thus, if a CHMx or exception service routine is 
to be traced, a breakpoint instruction must be placed at its entry 
point. If such a routine is recursive, breakpointing will catch each 
recursion only if the breakpoint is not on the CHMx or instruction 
with the exception. 

7. If it is desired to allow multiple trace handlers, all handlers should 
preserve T when turning on and off trace. They also would have to 
simulate traced code that alters or reads T. 

Kernel-stack-not-valid abort is an exception that indicates that the 
kernel stack was not valid while the processor was pushing information 
onto the kernel stack during the initiation of an exception or interrupt. 
Usually this is an indication of a stack overflow or other operating 
system error. The attempted exception is transformed into an abort 
that uses the interrupt stack. No extra information is pushed on 
the interrupt stack in addition to PSL and PC of the original exception. 
IPL is raised to 1 F (hex). If the exception vector (1 :0) is not 1, the 
operation of the processor is UNDEFINED. 

Software may abort the process without aborting the system. Because 
of the lost information, however, the process cannot be continued. If 
the kernel stack is not valid during the normal execution of an 
instruction (including CHMx or REI), the normal memory management 
fault is initiated. 

An interrupt-stack-not-valid halt results when the interrupt stack was 
not valid, or a memory error occurred, while the processor was 
pushing information onto the interrupt stack during the initiation of an 
exception or interrupt. No further interrupt requests are acknowledged 
on the processor. The processor leaves the PC, the PSL, and the 
reason for the halt in registers so that they are available to a debugger, 
to the normal bootstrap routine, or to an optional watch-dog bootstrap 
routine. A watch-dog bootstrap can cause the processor to leave the 
halted state. 

A machine-check exception indicates that the processor detected an 
internal error in itself. As is usual for exceptions, machine-check is 
taken regardless of current IPL. The machine-check exception vector 
bits(1 :0) must specify 1 or the operation of the processor is UNDE­
FINED. The exception is taken on the interrupt stack, and IPL is 
raised to 1 F (hex). 
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00000010 (hex) :(SP) 

1 st longword of error report 

2nd longword of error report 

3rd longword of error report 

4th longword of error report 

PC 

PSL 

Figure 5.7 
An Example Machine·Check Stack Frame 

The processor pushes a machine-check stack frame onto the interrupt 
stack, consisting of a count longword, an implementation-dependent 
number of error report longwords, and a PC and PSL. The count 
longword reports the number of bytes of error report pushed. For 
example, if 4 longwords of error report are pushed, the count longword 
will contain 16 (decimal). An example machine-check stack frame is 
shown in Figure 5.7. 

Software can decide, on the basis of the information presented, 
whether to abort the current process if the machine-check came from 
the process. Machine-check includes uncorrected bus and memory 
errors anywhere, and any other processor-detected errors. Some 
processor errors cannot ensure the state of the machine at all. For 
such errors, the state will be preserved on a "best effort" basis. 

The interaction between arithmetic traps, tracing, other exceptions, 
and multiple interrupts is complex. In order to ensure consistent and 
useful implementations, it is necessary to understand this interaction 
at a detailed level. As an example, if an instruction is started with 
PSL(T) = 1 and PSL(TP) = 0, and it gets an arithmetic trap, and an 
interrupt request is recognized, the following sequence occurs: 

1. The instruction finishes, storing all its results. PSL(TP) is set at the 
end of this instruction since PSL(T) was set at the beginning. 

2. The overflow trap sequence is initiated, saving PC and PSL (with 
TP = 1), loading a new PC from the overflow trap vector, and 
creating a new PSL. 

3. The interrupt sequence is initiated, saving the PC and PSL 
appropriate to the overflow-trap service routine, loading a new PC 
from the interrupt vector, and creating a new PSL. 

4. If a higher priority interrupt is noticed, the first instruction of the 
interrupt service routine is not executed. Instead, the PC and PSL 
appropriate to that routine are saved as part of initiating the new 
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interrupt. The original interrupt service routine will then be executed 
when the higher priority routine terminates via REI. 

5. The interrupt service routine runs and then exits with REI. 

6. The overflow-trap service routine runs and then exits with REI, 
which sets PSL(TP) since the saved PSL(TP) was set. 

7. The trace fault occurs, again pushing PC and PSL but this time 
with PSL(TP) = o. 

8. Trace service routine runs and then exits with REI. 

9. The next instruction is executed. 

This sequence is accomplished by the following operation between 
instructions: 

! Here at completion of instruction. including 

at end of REI from an exception or interrupt routine. 

1$: {possibly take interrupts or console halt}; 

! If so, PSL(TP) is not modified before PSL is saved. 

if PSL(TP) EQLU 1 then 

begin 

PSL(TP) <- 0; 

! If trace pending, then fault. 

! Trace fault take~ precedence 

over other exceptions. 

{initiate trace fault}; 

end; 

{possibly take interrupts or console halt}; 

! If so, PSL(TP) is not modified before PSL is saved. 

PSL(TP) <- PSL(T); !if trace enable, set trace pending. 

{go start instruction execution}; 

! Reserved instruction faults are taken here. 

! FPD is tested here, thus TP takes 

precedence over FPD if both are set. 

if {instruction faults} OR {an interrupt or console hal t 

is taken before end of instruction} then 

begin 

{back up PC to start of opcode}; 

lei ther set PSL(FPD) or back up all general 

register side effects}; 

PSL(TP) <- 0; 

{ini tiate exception or interrupt}; 

end; 

if {arithmetic trap needed and no other abort or trap} 

then {initiate arithmetic trap}; 

! Note: All instructions end by flowing 

! through 1$, thus the REI from a service 

! routine will return to 1$. 
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The system control block is a page containing the vectors by which 
exceptions and interrupts are dispatched to the appropriate service 
routines. Table 5.4 shows the interrupt and exception vectors in the 
SCB. 

Table 5.4 
System Control Block Vectors 

Offset Name Type Parameters Notes 

00 passive release interrupt IPL is that of the request. 

04 machine check abort, fault, Number of parameters is 
or trap implementation-

dependent. 

08 kernel stack not valid abort 0 
OC power fail interrupt IPL is 1E. 

10 reserved or privileged fault 0 Opcodes reserved to 
instruction DIGITAL and privileged 

instruction. 
14 customer reserved fault 0 XFC instruction. 

instruction 

18 reserved operand fault or abort 0 
1C reserved addressing fault 0 

mode 

20 access-control violation fault 2 Virtual address and fault 
parameter are pushed. 

24 translation not valid fault 2 Virtual address and fault 
parameter are pushed. 

28 trace pending fault 0 
2C breakpoint instruction fault 0 
30 compatibility fault or abort A type code is pushed. 
34 arithmetic trap or fau It A type code is pushed. 

38 unused Reserved to DIGITAL. 

3C unused Reserved to DIGITAL. 

40 CHMK trap The operand word is sign-
extended and pushed. 

44 CHME trap The operand word is sign-
extended and pushed. 

48 CHMS trap The operand word is sign-
extended and pushed. 

4C CHMU trap The operand word is sign-
extended and pushed. 

50-60 reserved for bus or interrupt IPL is implementation 
memory error dependent. 

64-80 unused Reserved to DIGITAL. 

84 software level 1 interrupt IPL is 1. 
88 software level 2 interrupt IPL is 2. Ordinarily used 

for AST delivery. 
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Table 5.4 
System Control Block Vectors (continued) 

Offset Name Type Parameters Notes 

BC software level 3 interrupt IPL is 3. Ordinarily used 
for process scheduling. 

90-BC software levels 4·F interrupt Vector corresponds to IPL. 

CO interval timer interrupt IPL is 16 or 1B (hex), 
implementation-
dependent. 

C4 unused Reserved to DIGITAL. 
CB subset emulation trap 10 FPD clear. Emulation 

frame is pushed. 

CC suspended emulation fault 0 FPD set. 
DO-DC unused Reserved to DIGITAL. 
EO-EC unused Reserved to owners. 

FO console storage receive interrupt 11/750 and 11/730. IPL is 
implementation-
dependent. 

F4 console storage transmit interrupt 11/7.::a and 11/730. IPL is 
implementation-
dependent. 

FB console terminal receive interrupt IPL is 14 (hex). 
FC console terminal transmit interrupt IPL is 14 (hex). 

100-13C adapter vectors interrupt IPL is 14 (hex). 
Implementation-
dependent. 

140-17C adapter vectors interrupt IPL is 15 (hex). 
Implementation-
dependent. 

1BO-1BC adapter vectors interrupt IPL is 16 (hex). 
Implementation-
dependent. 

1CO-IFC adapter vectors interrupt IPL is 17 (hex). 
Implementation-
dependent. 

200-3FC device vectors interrupt Implementation-
dependent. 

400-5FC device vectors interrupt Implementation-
dependent. 

System Control 
Block Base 

The system control block base (SCBB) is a privileged register 
containing the physical address of the system control block, which 
must be page-aligned. Figure 5.8 shows the SCBB. 

244 

The actual length is implementation dependent because it represents 
a physical address. Processor initialization leaves the contents of 
SCBB UNPREDICTABLE. 

VAX Architecture Reference Manual 

k 
~ 
~ 
~ 

~ , 
~ 

:!: 



Interrupt and 
Exception 
Vectors 

313029 98 o 
1001 physical page address of SCB MBZ 

Figure 5.8 
System Control Block Base 

If the SCBB pOints to I/O space or nonexistent memory when an 
exception or interrupt occurs, the operation of the processor is 
UNDEFINED. 

A vector is a longword in the SCB. The processor examines the 
vector when an exception or interrupt occurs in order to determine 
how to service the event. 

Separate vectors are defined for each interrupting device controller 
and each class of exceptions. Each vector is interpreted as follows by 
the hardware. Bits (1 :0) contain a code interpreted: 

o Service this event on the kernel stack unless already running on the 
interrupt stack, in which case service on the interrupt stack. 

1 Service this event on the interrupt stack. If this event is an exception, 
the IPL is raised to 1 F (hex). 

2 Service this event in writable control store, passing bits (15:2) to the 
installation-dependent microcode there. If writable control store does 
not exist or is not loaded, the operation is UNDEFINED. 

3 Operation UNDEFINED. Reserved to DIGITAL. 

For codes 0 and 1, bits (31 :2) contain the virtual address of the 
service routine, which must begin on a longword boundary and will 
ordinarily be in the system space. CHMx is serviced on the stack 
selected by the new mode. Bits (1 :0) in the CHMx vectors must be 
zero or the operation of the processor is UNDEFINED. Emulation 
exceptions are serviced on the current stack. Bits (1 :0) in the 
emulation exception vectors must be zero or the operation of the 
processor is UNDEFINED. 

The assignment of SCB offsets and priority levels for controllers, 
adapters, and other devices connecting to the system bus is 
implementation dependent. Typically, interrupt priority levels 14 
through 17 (hex) are used to signal 110 device, controller, and adapter 
events. Typically, one interrupt vector is assigned to each priority 
level for each adapter. 

The use of second or third SCB pages (offsets 200-3FC and 400-
SFC) is implementation dependent. In some processors (VAX-11/7S0 
and VAX-11/730, for example) UNIBUS devicesinterrupt the processor 
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directly, and the second SGB page contains the UNIBUS device 
vectors. When a UNIBUS device connected to such a system 
requests an interrupt, the vector is determined by adding 2 hex) to the 
vector supplied by the device. If a second UNIBUS adapter is 
installed, the third SGB page contains its device vectors, and 400 
(hex) is added to the vector supplied by the device attached to the 
second UNIBUS. Only device vectors in the range 0 to 1 FG (hex) are 
allowed. Interrupt priority levels 14 through 17 (hex) correspond to 
UNIBUS levels BR4 through BR7. 

At any time, the processor is either in a process context (and PSL(IS) 
= 0) in one of four modes (kernel, executive, supervisor, user), or is 
in the system-wide interrupt service context (and PSL(IS) = 1) that 
operates with kernel privileges. There is a stack pointer associated 
with each of these five states; any time the processor changes from 
one of these states to another, the stack pointer (SP or R14) is stored 
in the process context stack pointer for the old state and is loaded 
from that for the new state. The five stack pointers are accessible as 
internal processor registers. 

KSP Kernel-mode stack pointer 

ESP Executive-mode stack pointer 

SSP Supervisor-mode stack pointer 

USP User-mode stack pointer 

ISP Interrupt stack pointer 

Operating system design must choose a priority level that is the 
boundary between kernel and interrupt stack use. The SGB interrupt 
vectors must be set such that interrupts to levels above this boundary 
run on the interrupt stack (vector(1 :0) = 1) and interrupts below this 
boundary run on the kernel stack (vector(1 :0) = 0). Typically, AST 
delivery (IPL 2) is on the kernel stack, and all higher levels are on the 
interrupt stack. 

The user, supervisor, and executive mode stacks do not need to be 
resident. Kernel-mode code can bring in or allocate process stack 
pages as translation-not-valid faults occur. The kernel stack for the 
current process and the interrupt stack (which is process-independent), 
however, must be resident and accessible. Translation-not-valid and 
access-control-violation faults occurring on references to either of 
these stacks are regarded as serious system failures. 

If either of these faults occurs on a reference to the kernel stack, the 
processor aborts the current sequence and initiates kernel-stack­
not-valid abort on hardware level 1 F (hex). If either of these faults 
occurs on a reference to the interrupt stack, the processor halts. Note 
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that this does not mean that every possible reference is checked, 
but rather that the processor will not loop on these conditions. 

It is not necessary that the kernel stack for a process other than the 
current one be resident, but it must be resident before that process is 
selected to run by the software's process dispatcher. Further, any 
mechanism that uses translation-not-valid or access-control-violation 
faults to gather process statistics, for instance, must exercise care not 
to invalidate kernel-stack pages. 

Except on CALLS and CALLG instructions, the hardware makes no 
attempt to align the stacks. For best performance on all processors, 
the software should align the stack on a longword boundary and 
allocate the stack in longword increments. The convert-byte-to-Iong 
(CVTBL and MOVZBL), convert-word-to-Iong (CVTWL and MOVZWL), 
convert-Iong-to-byte (CVTLB), and convert-Iong-to-word (CVTLW) 
instructions are recommended for pushing bytes and words on the 
stack and popping them off in order to keep it longword aligned. 

The interrupt stack bit (IS) and current mode bits in the privileged 
processor status longword specify which of the five stack pointers is 
currently in use, as shown in Table 5.5. 

The processor does not allow current mode to be non-zero when 
IS = 1. This is achieved by clearing the mode bits when taking 
an interrupt or exception, and by causing reserved operand fault if 
REI attempts to load a PSL in which both IS and mode are non-zero. 

The stack to be used for an interrupt or exception is selected by the 
current PSL(IS) and bits(1 :0) of the vector. If the current PSL(IS) is 1 
or if the low bits of the vector are 01 (binary), then the interrupt 
stack is used. If the current PSL(IS) is 0 and the low bits of the vector 
are then the kernel stack is used. Values 10 (binary) and 11 (binary) 
of the vector(1 :0) are used for other purposes. Refer to the section 
"System Control Block" earlier in this chapter for details. 

Table 5.5 
Indication of Current Stack Pointer 

Stack Pointer Mnemonic PSL(IS) PSL(CUFLMOD) 

Interrupt stack painter ISP 1 0 
Kernel stack pointer KSP 0 0 
Executive painter ESP 0 
Supervisor stack pointer SSP 0 2 

User stack pointer USP 0 3 
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Reference to SP (the stack pointer) in the general registers will 
access one of five possible architecturally defined stack pointers-the 
user, supervisor, executive, kernel, or interrupt-depending on the 
values of the current mode and IS bits in the PSL. Some processors 
may implement these five stack pointers as five internal processor 
registers. Other processors may store the four per-process stack 
pointers in memory in the PCB and store only the interrupt stack 
pointer in an internal register (see Chapter 8). In either case, software 
can access any of the five stack pointers with the MTPR and MFPR 
instructions. Results are correct even if the stack pointer specified by 
the current mode and IS bits in the PSL is referenced in the internal 
processor register space by an MTPR or MFPR instruction. 

If the four process stack pOinters are implemented as registers, then 
these instructions are the only method for accessing the stack 
pointers of the curreht process. See Chapter 8 for conventions to be 
followed when referencing other per-process registers in the internal 
processor register space. 

The internal processor register numbers were chosen to be the same 
as PSL(26:24). The previous stack pointer is the same as PSL(23:22) 
unless PSL(IS) is set. If PSL(IS) is set, the previous mode cannot be 
determined from the PSL since interrupts always clear PSL(23:22). 
Processor initialization leaves the contents of all stack pOinters 
UNPREDICTABLE. 

INITIATE Initiate Exception or Interrupt 
EXCEPTION 
OR INTERRUPT Operation: 

248 

! Read the vector into a temporary register, and check it for validity. 

! The vector number is determined by the exception or interrupt type. 

vector <- SCB[vector_number]; 

case vector(l: 0) of 

0: if {machine check OR kernel-stack-not-valid} 

then {UNDEFINED}: 

1: if {CHMx OR subset emulation exception} 

then {UNDEFINED): 

2: if {writable control store exists and is loaded} 

then {enter writable control store} 

else {UNDEFINED): 

3: {UNDEFINED): 

end: 
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! Save the current PSL in a temporary register. 

saved_PSL +- PSL; 

! Create and load a new PSL. 

case {exception or interrupt type} of 

{interrupt}: 

{CHMx}: 

begin 

PSL(CM.TP.FPD.DV.FU.IV.T.N.Z.V.C) +- 0; 

PSL(CUR_MOD. PRY _MOD) +- 0; 

if vector(l: 0) EQLU 1 

then PSL(IS) <- 1 

else PSL(IS) saved]SL(IS); 

PSL(IPL) <- new_IPL; 

end; 

begin 

PSL(CM.TP.FPD.DV.FU.IV.T.N.Z.V.C) +- 0; 

PSL(CUR_MOD) <-- new_mode; 

PSL(PRV _MOD) <-- saved_PSL(CUR_MOD); 

PSL(IS) <-- saved_PSL(IS); 

PSL(IPL) +- saved_PSL(IPL); 

end; 

{subset emulation exception}: 

begin 

PSL(CM. TP. FPD. DV. FU .IV. T) +- 0; 

PSL(CUR_MOD) +- saved_PSL(CUR_MOD); 

PSL(PRV_MOD) +- saved_PSL(PRV_MOD); 

PSL(IS) <-- saved]SL(IS); 

PSL(IPL) <-- saved_PSL(IPL); 

PSL(N. Z. V • C) +- saved_PSL(N. Z. V. C); 

end; 

otherwise 

begin 

(Other exceptions.) 

end; 

PSL(CM. TP. FPD. DV • FU. IV. T. N. Z. V • C) <- 0; 

PSL(CUR_MOD) <-- 0; 

PSL(PRV_MOD) <-- saved_PSL(CUR_MOD); 

if vector(l: 0) EQLU 1 

then PSL(IS) ...c 

else PSL(IS) <-- saved_PSL(IS); 

if vector(l: 0) EQLU 1 

then PSL(IPL) +- 31 

else PSL(IPL) ...c saved_PSL(IPL); 

end; 
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! If necessary, save the current stack pointer and load a new one. 

if saved_PSL(IS) EQLU 0 then 

begin 

IPR[saved_PSL(CUR_MOD)] <- SP; 

SP <- IPR [ PSL(IS)' PSL(CUR_MOD) ]; 

end; 

I Push PC, the saved PSL, and any parameters onto the new stack, 

! in the new mode. 

-(SPi <- saved_PSL; 

- (SPi <- PC; 

{push parameters if any); 

I Load PC with the address of the exception or interrupt handler. 

PC <- vector(3l:2) , 0(1:0); 

! Software interrupts clear the software-interrupt-pending bit. 

if {software interrupt} then SISR( PSL(IPL) ) <- 0; 

Condition Codes: 

N ~ 0; 

Z ~ 0; 
V ~ 0; 

C ~ 0; 

Exceptions: 
kernel-stack not valid 
interrupt-stack not valid 

Description: 
The vector associated with the exception or interrupt is read from the 
system control block. The current PSL is saved and a new PSL is 
created and loaded. If this is an interrupt, the new PSL has all fields 
cleared except (IS) and (IPL). IPL is raised to the priority level of 
the interrupt request. IS is set to 1 if the low bits of the vector contain 
01 (binary); otherwise, it is unchanged from the old PSL. If this is a 
CHMx exception, current mode is loaded with the new mode, previous 
mode is loaded with the old value of current mode, (IS) and (IPL) are 
retained from the old PSL, and all other fields are cleared. If this is an 
emulation exception, current mode, previous mode, (IS), (lPL), and 
the condition codes are all retained from'the old PSL, and all other 
fields are cleared. If this is any other kind of exception, previous mode 
is loaded with the old value of current mode, (IS) and (IPL) are 
loaded according to the low bits of the vector, and all other fields are 
cleared. If the low bits of the vector are 01 (binary), then (IS) is 
loaded with 1 and (IPL) is raised to 31; otherwise, (IS) and (IPL) are 
retained from the old PSL. Unless the processor is already running on 
the interrupt stack, the old stack pointer is saved and a new one is 
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loaded. The saved PSL and the PC are pushed onto the stack, along 
with any exception parameters. PC is loaded with the address of the 
interrupt or exception service routine indicated by bits (31 :2) of the 
vector. 

Notes: 
1. Interrupts are disabled during this sequence. 

2. On a fault or interrupt, the saved condition codes are UNPRE­
DICTABLE; they are only saved to the extent necessary to ensure 
correct completion of the instruction when resumed. 

3. After an abort, all the explicit and implicit operands of the aborted 
instruction are UNPREDICTABLE (see Appendix B). The PC 
pushed on the stack points to the opcode of the aborted instruction, 
unless the instruction modified PC in a way that produces 
UNPREDICTABLE results. 

4. After an abort or fault or interrupt that pushes a PSL with FPD set, 
the general registers except PC, SP, and FP are UNPREDICTABLE 
unless the instruction description specifies a setting. If FP is the 
destination in this case, then it is also UNPREDICTABLE. On 
a kernel-stack-not-valid abort, both SP and FP are UNPREDICT­
ABLE. This implies that processes stopped with FPD set cannot be 
resumed on processors of a different type or engineering-change 
level. 

5. If the processor gets an access-control-violation or translation-not­
valid condition while attempting to push information on the kernel 
stack, a kernel-stack-not-valid abort is initiated instead, and IPL is 
raised to 31. The PSL and PC saved on the interrupt stack are 
those that would have been pushed on the kernel stack by 
the original exception. Additional information, if any, associated 
with the original exception is lost. If vector(1 :0) for kernel-stack-not­
valid abort is 0, the operation of the processor is UNDEFINED. 
(Kernel stack not valid will not occur with CHMx or subset emulation 
exceptions, since they explicitly probe the destination stack and 
fault if it is invalid or inaccessible.) 

6. If the processor gets an access-control-violation or translation-not­
valid condition while attempting to push information on the interrupt 
stack, the processor is halted and only the state of ISP, PC, and 
PSL is ensured to be correct for subsequent analysis. The PSL 
and PC have the values that would have been pushed on the 
interrupt stack. 

7. The value of PSL(TP) that is saved on the stack is as follows: 

fault 

trace 

interrupt 

clear 

clear 

clear (if FPD set) 
from PSL(TP) (if after traps, before trace) 
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abort 

trap 

CHMx 

BPT,XFC 

UNPREDICTABLE 

from PSL(TP> 

from PSL(TP> 

clear 

reserved instr. clear 

8. The value of PC that is saved on the stack points to the following: 

fault instruction faulting 

trace 

interrupt 

abort 

trap 

CHMx 

BPT,XFC 

reserved instr. 

next instruction to execute 
(instruction at the beginning of which 
the trace fault was taken) 

instruction interrupted or 
next instruction to execute 

instruction aborting or 
detecting kernel-stack-not-valid 
(not ensured on machine-check) 

next instruction to execute 

next instruction to execute 

BPT, XFC instruction 

reserved instruction 

Return from Exception or Interrupt 

Format: 
Opcode 

Operation: 

tmpl <- (SP) +; ! Pick up saved PC 

tmp2 <- (SP) +; ! and PSL 

if {tmp2(IS) EQLU 1 AND tmp2(IPL) EQLU O} OR 

{tmp2(IPL) GTRU 0 AND tmp2(CUR-MOD) NEQU O} OR 

{tmp2(PRV-MOD) LSSU tmp2(CUR-MOD)} OR 

{tmp2(PSL-MBZ) NEQU O} OR 
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{tmp2(CUR-MOD) LSSU PSL(CUR-MOD)} OR 

{tmp2(IS) EQLU 1 AND PSL(IS) EQLU O} OR 

{tmp2(IPL) GTRU PSL(IPL)} then {reserved operand fault}; 

if {compatibility mode implemented} then 

begin 
if {tmp2(CM) EQLU l} AND 

{{tmp2(FPD, IS, DV, FU, IV) NEQU a} OR 

{tmp2(CUR-MOD) NEQU 3}} then 
{reserved operand fault}; 

end 

else if {tmp2(CM) EQLU l} then {reserved operand fault}; 

if PSL(IS) EQLU 1 then ISP <- SP ! save old stack pointer 

else PSL(CUR-MOD)-SP <- SP; 

if PSL(TP) EQLU 1 then tmp2(TP) <- 1; !TP <- TP or stack TP 

PC <- tmpl; 

PSL <- tmp2; 

if PSL(IS) EQLU 0 then 

begin 

SP <- PSL(CUR-MOD)-SP; !switch stack 

if PSL(CUR-MOD) GEQU ASTLVL !check for AST delivery 

then {request interrupt at IPL 2}; 

end; 

{check for so ftware interrupts}; 

{clear instruction look-ahead} 

Condition Codes: 

N <- saved PSL(3) ; 

Z <- saved PSL(2) ; 

V <- saved PSL(l) ; 

C <- saved PSL(O) ; 

Exception: 
reserved operand 

Opcode: 

02 REI Return from Exception or Interrupt 

Description: 
A longword is popped from the current stack and held in a temporary 
PC. A second longword is popped from the current stack and held 
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in a temporary PSL. The popped PSL is checked for internal 
consistency. The popped PSL is compared with the current PSL to 
make sure that the transition from current PSL to popped PSL is 
allowed. The current stack pOinter is saved, and a new stack pointer 
is selected according to the new PSL(CUR-MOD) and (IS) fields 
(see section "Stack Status Bits" earlier in this chapter). The level of 
the highest privileged AST is checked against the current mode to 
see whether a pending AST can be delivered (see Chapter 6). 
Execution resumes with the instruction being executed at the time of 
the exception or interrupt. Any instruction lookahead in the processor 
is reinitialized. 

Notes: 
1. The exception or interrupt service routine is responsible for 

restoring any registers saved and removing any parameters from 
the stack. 

2. As usual for faults, if access-control-violation or translation-not­
valid occurs while popping PC or PSL from the stack, the stack 
pointer is restored as part of the initiation of the fault. 

3. REI to compatibility mode results in a reserved operand fault if 
compatibility mode is not implemented. 

Change Mode 

Purpose: 
request services of more privileged software 

Format: 
opcode code.rw 

Operation: 

tmpl <- {mode selected by opcode (K=O, E=l, S=2, U=3)); 

tmp2 <- MINU (tmpl, PSL(CUR-MOD)); 

tmp3 <- SEXT (code) ; 

'maximize privilege 

if {PSL(IS) EQLU I} then HALT; 

PSL(CUR-MOD)-SP <- SP; 

tmp4 <- tmp2-SP; 

!illegal from I stack 

!save old stack pointer 

'get new stack pointer 

PROBEW (from tmp4 -1 through tmp4 -12 wi th mode = tmp2) ; 

I new stack access 

if {access-control violation} then 

{initiate access-control-violation fault}; 

if {translation not valid} then 

{ini tiate translation-not-valid faul tJ; 
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{initiate CHMx exception with new-mode=tmp2 

and parameter = tmp3 

using 40+tmpl*4 (hex) as SCB offset 

using tmp4 as the new SP 

and not storing SP again}; 

Condition Codes: 

N ~ 0; 

Z ~ 0; 

V ~ 0; 

C ~ 0; 

Exception: 
halt 

Opcodes: 

BC CHMK Change Mode to Kernel 

BO CHME Change Mode to Executive 
BE CHMS Change Mode to Supervisor 
BF CHMU Change Mode to User 

Description: 
Change-mode instructions allow processes to change their access 
mode in a controlled manner. The instruction only increases privilege 
(decreases the access mode) or leaves it unchanged. 

A change in mode also results in a change of stack pointers: the old 
pOinter is saved, the new pointer is loaded. The PSL, PC, and 
code passed by the instruction are pushed onto the stack of the new 
mode. The saved PC addresses the instruction following the CHMx 
instruction. The code is sign extended. Figure 5.6 illustrates ~the new 
stack's appearance after execution. 

The destination mode selected by the opcode is used to obtain a 
location from the system control block. This location addresses the 
CHMx dispatcher for the specified mode. If the vector(1 :0) code 
NEQU is 0, then the operation is UNDEFINED. 

Notes: 
1. As usual for faults, any access-control-violation or translation-not­

valid fault saves PC and PSL and leaves SP as it was at the 
beginning of the instruction except for any pushes onto the kernel 
stack. 

2. By software convention, negative codes are reserved to DIGITAL 
and DIGITAL's customers. 
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Table 5.6 
Processor State Transitions 

Final State 

User 
Initial State Mode Super Mode 

User Mode REI or CHMS 
CHMU 

Super Mode REI REI, CHMU, 
or CHME 

Exec Mode REI REI 

Kernel Stack, REI REI 
IPL = 0 

Kernel Stack, REI REI 
IPL) 0 

Interrupt Stack REI REI 

e(O) means exception with vector(1 :0) = 0 
e(1) means exception with vector(1 :0) = 1 
i(O) me.ans interrupt with vector(1 :0) = 0 
i(1) means interrupt with vector(1 :0) = 1 

Exec Mode Kernel, Stack, IPL = 0 Kernel Stack, IPL ) 0 Interrupt Stack 

CHME CHMK or e(O) i(O) e(1)ori(1) 

CHME CHMK or e(O) i(O) e(1)ori(1) 

REI, CHMU, CHMK or e(O) i(O) e(1)ori(1) 
CHMS, or 
CHME 

REI REI, CHMx, LDPCTX, MTPR IPL or i(O) e(1), i(1), or SVPCTX 
e(O), or MTPR IPL 

REI REI or MTPR IPL REI, CHMx, LDPCTX, e(1), i(1), or SVPCTX 
e(O), or i(O) 

REI REI REI or LDPCTX REI, SVPCTX, MTPR 
IPL, exception or 
interrupt 



Examples: 

CHMK #7 

CHME #4 

CHMS #-2 

Exceptions and Interrupts 

Request the kernel-mode service 

specified by code 7. 

Request the executive-mode service 

specified by code 4. 

Request the supervisor-mode service 

specified by customer code -2. 
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Process Structure 6 

A process is a single thread of execution. It is the basic, scheduling. 
bar entity that is executed by the processor. A process consists of an 
address space and both hardware and software context. The hardware 
context of a process is defined by a process control block (PCB) that 
contains images of the 14 general-purpose registers, the processor 
status longword, the program counter, the four per-process stack 
pointers, the process virtual memory defined by the base and length 
registers POBR, POLR, P1 BR, and P1 LR, and several minor control 
fields. In order for a process to execute, the majority of the PCB must 
be moved into the internal registers. While a process is executing, 
some of. its hardware context is being updated in the internal registers. 
When a process is not being executed, its hardware context is stored 
in a data structure termed the process control block. Saving the 
contents of the privileged registers in the PCB of the currently 
executing process and then loading a new context from another PCB 
is termed context switching. Context switching occurs as one process 
after another is scheduled for execution. 

Shown in Figure 6.1 is the process control block for the currently 
executing process. The PCB is pointed to by the process control block 
base (PCBB) register, an internal privileged register. Figure 6.2 
shows the PCBB. When the processor is initialized, the contents of 
PCBB are UNPREDICTABLE. 

The PCB contains all of the switch able process context collected into 
a compact form for ease of movement to and from the privileged 
internal registers. Although in any normal operating system there is 
additional software context for each process, the following description 
is limited to that portion of the PCB known to the hardware. The 
PCB's contents are described in Table 6.1. 
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KSP 

ESP 

SSP 

USP 

RO 

R1 

R2 

R3 

R4 

RS 

R6 

R7 

R8 

R9 

R10 

R11 

AP (R12) 

FP (R13) 

PC 

PSL 

POBR 

MBZ lAST jMBz\ POLR 

P1BR 

I MBZ I P1LR 

L PME 

Figure 6.1 
Process Control Block (PCB) 

313029 

physical address of PCB 

Figure 6.2 
Process Control Block Base Register (PCBB) 
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Performance 
Monitor Enable 
Register 

Table 6.1 
Contents of the Process Control Block 

Name Mnemonic Offset (hex) Extent 

kernel stack pointer KSP 0 (31 :0) 
executive stack pointer ESP 4 (31 :0) 
supervisor stack pointer SSP 8 (31 :0) 

user stack pointer USP C (31 :0) 

general registers RO-R13 10-44 (31 :0) 
program counter PC 48 (31 :0) 

processor status longword PSL 4C (31 :0) 
PO base register POBR 50 (31 :0) 

PO length register POLR 54 (21 :0) 

AST level ASTLVL 54 (26:24) 

P1 base register P1BR 58 (31 :0) 
P1 length register P1LR 5C (21 :0) 

performance monitor enable PME 5C (31) 

To alter its POBR, P1 BR, POLR, P1 LR, ASTLVL or PME, a process 
must be executing in kernel mode. The process must first store 
the desired new value in the memory image of the PCB, then move 
the value to the appropriate privileged register. This protocol results 
from the fact that these are read-only fields (for the context switch 
instructions) in the PCB. 

The ASTL VL and PME fields of the PCB may be contained in internal 
processor registers when the process is running. 

The performance-monitor-enable (PME) register controls a signal 
visible to an external hardware performance monitor. PME allows the 
system to identify those processes for which monitoring is desired and 
so permits their behavior to be observed without interference caused 
by the activity of other processes. Figure 6.3 shows PME. Processor 
initialization sets PME to zero. 

31 1 0 

MBZ ~I 
Figure 6.3 
Performance Monitor Enable Register (PME) 
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Asynchronous system traps (AST) are a technique for notifying a 
process of events that are not synchronized with its execution and for 
initiating processing of asynchronous events with the least possible 
delay. This delay in delivery of the AST may be due to either process 
non-residence or to an access mode mismatch. The efficient 
handling of ASTs in the VAX system requires some hardware 
assistance to detect changes in access mode (current mode in PSL). 
A process in any of the four access modes (kernel, executive, 
supervisor, and user) may receive ASTs; however, an AST for a less 
privileged access mode must not be permitted to interrupt execution 
in a more protected access mode. Since outward access mode 
transitions occur only in the REI instruction, comparison of the current 
access mode field is made with a privileged register, ASTLVL, 
shown in Figure 6.4. ASTL VL contains the most privileged access 
mode number for which an AST is pending. If the new access mode 
is greater than or equal to the pending ASTLVL, an IPL 2 interrupt 
is posted to cause delivery of the pending AST. 

The software flow for AST processing follows: 

1. An event associated with an AST causes software enqueuing of an 
AST control block to the software PCB, and the software sets the 
ASTL VL field in the hardware PCB to the most privileged access 
mode for which an AST is pending. If the target process is currently 
executing, the ASTLVL privileged register also has to be set. 

2. When an REI instruction detects a transition to an access mode 
that can be interrupted by a pending AST, an IPL 2 interrupt is 
triggered to cause delivery of the AST. Note that the REI instruction 
does not make pending AST checks while returning to a routine 
executing on the interrupt stack. 

3. The (IPL 2) interrupt service routine should compute the correct 
new value for ASTLVL that prevents additional AST delivery 
interrupts while in kernel mode and move that value to the PCB 
and the ASTLVL register before lowering IPL and actually 
dispatching the AST. This interrupt service routine normally 
executes on the kernel stack in the context of the process receiving 
the AST. 

31 3 2 a 
ignored; returns 0 

Figure 6.4 
AST Level Register (ASTL VL) 
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4. At the conclusion of processing for an AST, the ASTLVL is again 
computed and moved to the PCB and ASTLVL register by software. 

If ASTLVL contains 4, no AST is pending for the current process. If 
ASTLVL is less than 4, an AST is pending for the mode corresponding 
to the value of ASTLVL. 

Values of ASTLVL greater than 4 are reserved. Execution of MTPR 
src, #PR$----ASTLVL with src(2:O) GEQU 5 results in UNDEFINED 
behavior. The preferred implementation is to cause reserved-operand 
fault. Processor initialization sets ASTLVL to 4. Note that loading 
ASTLVL with MTPR does not affect SISR or request a software 
interrupt. Those affects of ASTLVL occur only during REI. 

Two of the software interrupt priorities are reserved for process 
scheduling software. 

They are: 

(IPL 2) 

(IPL 3) 

AST delivery interrupt. This interrupt is triggered by an 
REI that detects PSL(CUR_MOD) GEQU ASTL VL and 
indicates that a pending AST may now be delivered for 
the currently executing process. 

Process scheduling interrupt. This interrupt is triggered 
by software. It indicates that a process has changed 
software priority and that the process scheduler should 
reschedule to find the highest priority executable process 
to run. 

Process scheduling software must execute on the interrupt stack 
(PSL(IS) set) in order to have a non-context-switched stack available 
for use. If the scheduler were running on a process's kernel stack, 
then any state information it had there would disappear when a new 
process is selected. Running on the interrupt stack can occur as 
the result of the interrupt origin of scheduling events. However, some 
synchronous scheduling requests such as a WAIT service may want 
to cause rescheduling without any interrupt occurrence. For this 
reason, the save-process-context (SVPCTX) instruction can be 
executed while on either the kernel or the interrupt stack, and forces a 
transition to execution on the interrupt stack. 

All of the process structure instructions are privileged and require 
kernel mode. 

Process Structure 263 



LDPCTX 

264 

Load Process Context 

Purpose: 
restore register and memory management context 

Format: 
opcode 

Operation: 

if PSL(CUR_MOD) NEQU 0 

then {privileged instruction faul tj; 

if PSL(IS) NEQU 1 then {UNDEFINED}; 

{invalidate per-process translation buffer entries}; 

! The PCB is located by the physical address in PCBB, 

if {internal registers for stack pointers} then 

begin 

KSP (PCB) ; 

ESP (PCB+4) ; 

SSP (PCB+8) ; 

USP <- (PCB+12) ; 

end; 

RO <- (PCB+16) ; 

RI (PCB+20); 

R2 <- (PCB+24) ; 

R3 <- (PCB+28) ; 

R4 (PCB+32) ; 

R5 (PCB+36) ; 

R6 (PCB+40) ; 

R7 (PCB +44); 

R8 <- (PCB +48); 

R9 (PCB+52); 

RIO <- (PCB+56); 

Rll <- (PCB+60); 

AP (PCB+64); 

FP (PCB+68); 

tmpl <- (PCB +80) ; 

if {tmpl(3I' 30) NEQU 2} OR {tmpl(l' 0) NEQU O} then 

{UNDEFINED} ; 

POBH <- tmpl; 

if (PCB +84) (31: 27) NEQU 0 then {UNDEFINED); 

if (PCB + 84) (23 22) NEQU 0 then {UNDEFINED}; 

POLR <- (PCB +84) (21: 0); 

if (PCB + 84) (26: 24) GEQU 5 then {UNDEFINED}; 
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ASTLVL <- (PCB+84)(26:24); 

tmpl <- (PCB+88); 

tmp2 <- tmpl + 2**23; 

if (tmp2(31:30) NEQU 2} OR (tmp2(l:O) NEQU O} then 

{UNDEFINED} ; 

P1BR <- tmpl; 

if (PCB + 92) (30: 22) NEQU 0 then {UNDEFINED}; 

P1LR <- (PCB+92)(2l:0); 

PME <- (PCB+92)(31); 

ISP <- SP; 

{i'nterrupts off}; 

PSL(IS) <- 0; 

SP <- (PCB); 
{interrupts on}; 

- (SP) (PCB+76) ; 

- ( SP) <- (PCB + 72 ) ; 

Condition Codes: 

N ~ N; 

Z ~ z· 
v ~ v; 
C ~ C; 

Exceptions: 
reserved operand 
privileged instruction 

Opcode: 

Save the interrupt stack pOinter. 

Change from the interrupt stack 

to the new kernel stack. 

Push PSL onto kernel stack. 

Push PC onto kernel stack. 

(If kernel stack is inaccessible 

or invalid, then UNDEFINED.) 

06 LDPCTX Load Process Context 

Description: 
The process control block is specified by the privileged PCBB register. 
The general registers are loaded from the PCB. The memory 
management registers describing the' process address space are also 
loaded,and the process entries in the translation buffer are cleared. 
Execution is switched to the kernel stack. The PC and PSL are 
moved from the PCB to the stack, suitable for use by a subsequent 
REI instruction. 

Note: 
1. Some processors keep a copy of each of the per-process stack 

pointers in internal registers. In those processors, LDPCTX loads 
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the internal registers from the PCB. Other processors do not keep 
a copy of all four per-process stack pointers in internal registers. 
Rather such processors keep only the stack pointer for the current 
access mode in an internal register and switch this with the PCB 
contents whenever the current access mode changes. 

2. The preferred implementation of UNDEFINED operation is reserved 
operand abort. 

3. To guarantee correct operation, a LDPCTX must be followed by an 
REI instruction. 

Save Process Context 

Purpose: 
save register context 

Format: 
opcode 

Operation: 

i f PSL(CUR~MOD> NEQU 0 then 

{privileged instruction fault}; 

!PCB is located by physical address in PCBB 

if {internal registers for stack pointers} then 

begin 

( PCB) <- KSP; 

(PCB+4) <- ESP; 

(PCB+8) <- SSP; 

(PCB + 12) <- USP; 

end; 

(PCB+16) <- RO; 

(PCB +20) <- Rl; 

(PCB+24) <- R2; 

(PCB +28) <- R3; 

(PCB+32 ) <- R4; 

(PCB+36) <- R5; 

(PCB+40) <- R6; 

(PCB+44) <- R7; 

(PCB +48) <- R8; 

(PCB+52 ) <- R9; 

(PCB +56) <- RIO; 
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(PCB+60) ~ Rll; 

(PCB+64) ~ AP; 

(PCB+68) ~ FP; 

(PCB+72) ~ (SP) +; 

(PCB+76) ~ (SP) +; 

If PSL(IS) EQLU 0 then 

begin 

!pop PC 

!pop PSL 

PSL(IPL) ~ MAXU ( 1, PSL(IPL)); 

(PCB) ~ SP; !save KSP 

KSP ~ SP; 

{interrupts off}; 

PSL(IS) ~ 1; 

SP ~ ISP; 

{in terrupts on}; 

end; 

Condition Codes: 

N ~ N; 

Z ~ Z; 

V ~ v; 
C ~ C; 

Exception: 
privileged instruction 

Opcode: 

07 SVPCTX Save Process Context 

Description: 
The process control block is specified by the privileged PCBB register. 
The general registers are saved into the PCB. The PC and PSL 
currently on the top of the current stack are popped and stored in the 
PCB. If a SVPCTX instruction is executed when IS is clear, then IS 
is set, the interrupt stack pointer activated, and IPL is maximized with 
1 because of the switch to the interrupt stack. 

Notes: 
1. The map, ASTLVL, and PME from the PCB are not saved because 

they are rarely changed. Thus, not writing them saves overhead. 

2. Some processors keep a copy of each of the per-process stack 
pointers in internal registers. In those processors, SVPCTX stores 
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the internal registers into the PCB. Other processors do not keep a 
copy of all four per-process stack pOinters in internal registers. 
Rather these processors keep only the stack pointer for the current 
access mode in an internal register and switch this with the PCB 
contents whenever the current access mode changes. 

3. Between the SVPCTX instruction that saves state for one process 
and the LDPCTX that loads the state of another, the internal 
stack pointers may not be referenced by MFPR or MTPR 
instructions. This implies that interrupt service routines invoked at a 
priority higher than the lowest one used for context switching must 
not reference the process stack pointers. 

The following example illustrates how the process structure 
instructions can be used to implement process dispatching software. It 
is assumed that this simple dispatch routine is always entered via an 
interrupt. 

RESCHED: 

ENTERED VIA INTERRUPT 

IPL=3 

SVPCTX 

(set state to runnable) 

(and place current PCB) 

(on proper RUN queue) 

(Remove head of highest) 

(priority, non-empty, ) 

(RUN queue.) 

Save context in PCB 

MTPR @#PHYSPCB, #PR$_PCBB ; Set physical PCB address 

inPCBB 

LDPCTX Load context from PCB 

For new process 

REI Place process in execution 
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System Architecture and 
Programming Implications 7 

Certain portions of the VAX architecture have implications for the 
system structure of implementations and programming considerations. 
The broad categories of interaction are data sharing and synchroniza­
tion, memory reference behavior, restartability, I/O structure, interrupts, 
and errors. Of these, data sharing is most visible to the programmer. 

The memory system must be implemented such that the granularity of 
access for independent modification is the byte. Note that this does 
not imply a maximum reference size of one byte but only that 
independent modifying accesses to adjacent bytes produce the same 
results regardless of the order of execution. For example, suppose 
locations 0 and 1 contain the values 5 and 6. Suppose one processor 
executes INCB 0 and another executes INCB 1. Then, regardless of 
the order of execution, including effectively simultaneous execution, 
the final contents must be 6 and 7. 

Access to explicitly shared data that may be written must be 
synchronized by the programmer or hardware designer. Before 
accessing shared writable data, the programmer must acquire control 
of the data structure. Seven instructions (BBSSI, BBCCI, ADAWI, 
INSQHI, INSQTI, REMQHI, REMQTI) are provided to allow the 
programmer to control, or interlock, access to a control variable. 
These interlocked instructions are implemented in such a way that 
once an interlocked read has occurred, other processors and I/O 
devices are locked out of performing interlocked operations on the 
same control variable until the interlock is released. This is termed an 
interlocked sequence. The interlocked instructions operate on a 
control variable within an interlocked sequence. Only interlocked 
accesses are locked out by the interlock. On the VAX-11/780 system, 
the SBI primitive operations are interlock-read and interlock-write. 
The interlocked read operation sets the interlock, and the interlocked 
write releases it. 
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BBSSI and BBCCI instructions use hardware-provided primitive 
operations to read a single byte, test and modify a bit within that byte, 
and then write the byte, in an interlocked sequence. The ADAWI 
instruction uses a hardware-provided primitive operation to make a 
read and then a write operation to a single aligned word in an 
interlocked sequence to allow counters to be maintained without other 
interlocks. The ADAWI instruction takes the hardware lock on the 
read of the .mw operand (the second operand which is the one being 
modified). 

The INSQUE and REMQUE instructions provide a series of longword 
reads and writes in an un interruptible sequence to allow queues to 
be maintained without other interlocks in a uniprocessor system. The 
INSQHI, INSQTI, REMQHI, and REMQTI instructions use an interlock 
on the queue header to allow queues to be maintained consistently 
in a multiprocessor system. 

In order to provide a function upon which some UNIBUS peripheral 
devices rely, processors must ensure that all instructions making byte­
or word-sized modifying references (.mb and .mw) use the DATIP -
DATO(B) functions when the operand physical address selects a 
UNIBUS device. This constraint does not apply to longword, quadword, 
field, all floating, or string operations if implemented using byte- or 
word-modifying references. This constraint also does not apply to 
instructions precluded from 1/0 space references. 

In a multiprocessor system, any software clearing PTE(V) or changing 
the protection code of a page table entry for system space such that 
it issues a MTPR src, #PR$-TBIS must arrange for all other 
processors to issue a similar TBIS. The original processor must wait 
until all the other processors have completed their TBIS before it 
allows access to the system page. 

The VAX architecture encourages (and provides the mechanisms to 
facilitate) separation of procedure (instructions) and writable data. 
Native mode procedures may not write data that is to be subsequently 
executed as an instruction without an intervening REI instruction 
being executed (see Chapter 5). If no REI occurs between a procedure 
writing data as instructions to be executed and those instructions 
being executed, the instructions executed are UNPREDICTABLE. A 
compatibility mode procedure can write data and subsequently 
execute it as an instruction without any additional synchronization. 

The memory references made by each instruction (and therefore 
the possible memory exceptions) are specified as part of the VAX 
architecture. Any required or permitted memory reference (read, 
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modify, or write) may be made more than once, except for references 
to 1/0 space which are made once and only once. Operands 
requiring interlocked access are always referenced. In general, for 
operands not requiring interlocked access, it is UNPREDICTABLE 
whether an operand is referenced if it does not affect the result 
(including condition codes). Further clarifications and exceptions to 
this simplified rule are listed below. Software must not rely on the 
occurrence of memory management exceptions on operands that do 
not affect the result of an instruction. The probe instructions should be 
used to determine the accessibility of a memory location. Note that 
no results are written unless the instruction can be completed or can 
be suspended with FPD set. 

1. It is UNPREDICTABLE whether longwords containing indirect 
addresses are read. For example, MULL3 #0, @16(R5), A mayor 
may not access the longword containing the address of the 
second operand. 

2. If a branch is not taken, it is UNPREDICTABLE whether the 
branch displacement is read. 

3. It is UNPREDICTABLE whether all bytes for .r operands are read. 
For example, TSTF may only read the word containing the sign 
and exponent. BLBC and BLBS may only read the low byte of the 
source operand. 

4. All bytes for .w operands are always written. 

5. It is UNPREDICTABLE whether all bytes for .m operands are 
either read (with modify intent) or written. However, a modify 
operand requiring interlocked read and write is always accessed. 
For example, ADDL2 #0, A may only read A (without modify 
intent). INCL A may only write the bytes of A that changed. The 
sum operand of ADAWI #0, A is always read and written back 
interlocked. 

6. For.a operands (and for .v operands when .v is not a register), the 
memory reference behavior is peculiar to each instruction or 
instruction group. Overriding the rules given below, it is UNPRE­
DICTABLE whether an otherwise unreadable operand is read 
or not if it appears as an immediate mode operand. For example, 
PUSHAB (RO) cannot read the byte at (RO), but PUSHAB #512 
can read the value 512. 

a. POLY{F,D,G,H}. If the argument is not zero, each entry in the 
coefficient table is read unless an arithmetic exception occurs 
before the instruction completes. If the argument is zero, it 
is UNPREDICTABLE whether the entire table or only the last 
coefficient is read. 

b. MOVA{B,W,L,Q,O} and PUSHA{B,W,L,Q,O}. The address 
operand is not referenced. 

c. Field Instructions (EXTV, EXTZV, INSV, CMPV, CMPZV, FFS, 
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FFC). The aligned longword(s) containing the field specified 
by FIELD (pos, size, base) can be read. For INSV, only 
this aligned longword(s) can be written. It is UNPREDICTABLE 
whether all or some of the bytes in these longwords are 
accessed. 

d. BB{S,C}, BB{S,C}{S,C}. Only the single byte containing the test 
bit specified by the base and position operands is read. If the 
test bit does not need to change state, it is UNPREDICTABLE 
whether the byte is written back. 

e. BB{SS,CC}1. Only the single byte containing the test bit 
specified by the base and position operands is referenced 
using the interlocked forms of read and write. The test bit is 
written even if its state is unchanged. 

f. JMP and JSB. The address is not referenced by the JMP or 
JSB (but will be read as instruction stream data for the 
next instruction). 

g. CALL{S,G}. The two bytes (containing the entry mask) at the 
destination address are read. The argument list for CALLG 
is not referenced. 

h. Interlocked Queue. It is UNPREDICTABLE whether the 
backward pointer of the queue header is accessed for INSQHI, 
REMQHI. 

7. Some of the character string instructions (MOVTUC, CMPC3, 
CMPC5, SCANC, SPANC, LOCC, SKPC, and MATCHC) can stop 
before the whole source string is processed. Three definitions 
help define the required memory references for these instructions. 
The stop byte is the byte that ends the instruction execution 
without using the string length end condition. It is the last byte on 
which the answer of the instruction depends. (The stop byte 
may have any position in the string, including first or last, or it may 
not exist at all. For string matches, it is the last byte of the matched 
string.) 

A source string consists of a body concatenated with a tail. 

The body of a source string is the substring from the first byte up 
to and including the stop byte, if one exists, or up to and including 
the last byte (as determined by the source string's length) if no 
stop byte exists. (The body may be null only if the source string 
has a zero length.) 

The tail of a source string is the substring from the first byte after 
the body up to and including the last byte in the source string 
as determined by the source string's length. (The tail will be null if 
there is no stop byte or if the STOP byte is the last byte.) 

Character strings are defined by length and starting address. Some 
strings (ASCIZ strings) are delimited by a specific character. The 
"real" length of the string is not known, and 64K is used as the 
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length. Only some of the VAX character string instructions can be 
reasonably used on character delimited strings. These instructions 
are MOVTUC, SPANC, SCANC, LOCC, and SKPC. For these 
five instructions, it is necessary to guarantee that no memory 
management exceptions will occur beyond the page containing the 
delimiting character. The absence of such a requirement could 
cause a program that works on one processor to fail on another 
because of access violations on data that is not necessary to 
produce the correct result. 

For string operands specified by length and starting address, one 
of the following rules applies: 

a. For MOVC3, MOVTC, and CRC, all bytes are referenced. 
These instructions have no end condition other than string 
length. 

b. For MOVCS, the stop byte is defined as the last byte moved 
from the source string. MOVCS references all bytes except 
when the source string is longer than the destination string; in 
the latter case, no bytes in the source string's tail beyond 
the page containing the stop byte are referenced. 

c. For CMPC3, CMPCS, and MATCHC, all bytes in a string's 
body are referenced. It is UNPREDICTABLE whether any 
bytes in a string's tail are referenced. 

d. For MOVTUC, SCANC, SPANC, LOCC, and SKPC, all bytes in 
the source string's body are referenced, and no bytes in the 
source string's tail beyond the page containing the stop 
byte are referenced. For MOVTUC, the destination address 
which would receive the translated escape character is not 
written into, nor is any larger address written into. 

For table operands, one of the following rules applies: 

a. In the table for MOVTC, MOVTUC, SCANC, and SPANC, 
entries are accessed for the corresponding source characters 
or values. It is UNPREDICTABLE whether the other table 
entries are accessed. 

b. For the CRC table operand, it is UNPREDICTABLE whether all 
or only part of the table is accessed. 

8. If a packed decimal source string contains invalid digits, it is 
UNPREDICTABLE whether the entire source string is read and 
whether any or all of the destination is written. 

If there are no invalid digits in a packed decimal source string, one 
of the following rules applies: 

a. EDITPC, MOVP, ADDP6, SUBP6, MULP, DIVP, CVTPT, 
CVTTP, CVTPS, CVTSP, and ASHP. All bytes of the source 
strings are read, and all bytes of the result are written, unless 
an exception condition is detected and the instruction can be 
completed without reading all the bytes in the source strings. 
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b. CMPP3 and CMPP4. It is UNPREDICTABLE whether all bytes 
of the two source strings are read. 

c. ADDP4 and SUBP4. All bytes of the addend (or subtrahend) 
string are read. It is UNPREDICTABLE whether all bytes of the 
result are written. 

d. CVTLP. All bytes of the destination string are written. 

e. CVTPL. All bytes of the source string are read. 

f. EDITPC, CVTPT, CVTIP. The table entries are accessed for 
the corresponding source bytes. It is UNPREDICTABLE 
whether the other table entries are accessed. 

9. PROBER and PROBEW. The first and last bytes specified by the 
base and length operand are not accessed. 

A hardware implementation may include a mechanism to reduce 
access time by making local copies of recently used memory contents. 
Such a mechanism is termed a cache. A cache must be implemented 
in such a way that its existence is transparent to :::oftware (except for 
timing and error reporting, control, and recovery). In particular, the 
following must be true: 

1. An 1/0 transfer from memory to a peripheral, started after a 
program write to the same memory, must output the updated 
memory value. 

2.A program memory read, executed after the completion of an 1/0 
transfer from a peripheral to the same memory, must read the 
updated memory value. On the VAX-11/780 system, this is 
achieved by a cache that writes through to memory and that 
watches the memory bus for all external writes to memory. 

3. If one processor writes or modifies memory and then executes 
HALTs, a read or modify of the same memory by another processor 
must read the updated value. 

4. If a processor writes or modifies memory and then halts as a result 
of power failure, a read or modify of the same memory must read 
the updated value (provided that the duration of the power failure 
does not exceed the maximum non-volatile period of the main 
memory). 

5. In multiprocessor systems, access to variables shared between 
processors must be interlocked by software executing one of the 
interlocked instructions (BBSSI, BBCCI, ADAWI, INSOHI, INSOTI, 
REMOHI, REMOTI). 

6. Valid accesses to 1/0 registers must not be cached. 

7. A cache may prefetch instructions or data. In a virtual cache, 
memory management exception conditions could occur during 
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prefetch. Such exceptions should not be taken until the prefetched 
data is referenced by an instruction. 

Processor initialization must leave the cache either empty or valid. 

The VAX architecture requires that all instructions be restartable after 
a fault or interrupt that terminated execution before the instruction was 
completed. Generally, this means that modified registers are restored 
to the value they had at the start of execution. For some complex or 
iterative instructions, described in Chapter 3, intermediate results 
are stored in the general registers. In the latter case, memory contents 
may have been altered; but the former case requires that no operand 
be written unless the instruction can be completed. For most 
instructions with only a single modified or written operand, this implies 
special processing only when a multiple-byte operand spans a 
protection boundary making it necessary to test accessibility of both 
parts of the operand. 

Instructions that store intermediate results in the general registers 
must not compromise system integrity. Therefore they must ensure 
that any addresses stored or used are virtual addresses, subject 
to protection checking. In addition, any state information stored or 
used cannot result in a non-interruptible or non-terminating sequence. 

Instruction operands that are peripheral-device registers having 
access side effects may produce UNPREDICTABLE results due to 
instruction restarting after faults or interrupts. In order that software 
may dependably access peripheral-device registers, instructions used 
to access them must not permit a fault or interrupt after the first I/O 
space access. 

Memory modifications produced as a side effect of instruction 
execution (memory access statistics, for example) are specifically 
excluded from the constraint that memory not be altered until the 
instruction can be completed. 

Instructions that abort are constrained only by memory protection. 

Underlying the VAX architectural concept of an interrupt is the notion 
that an interrupt request is a static condition, not a transient event, 
which can be sampled by a processor at appropriate times. Further, if 
the need for an interrupt disappears before a processor has honored 
an interrupt request, the interrupt request can be removed (subject 
to implementation-dependent timing constraints) without consequence. 
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In order for software to operate deterministically, any instruction 
changing the processor priority (IPL) such that a pending interrupt is 
enabled must allow the interrupt to occur before executing the next 
instruction that would have been executed had the interrupt not been 
pending. 

Similarly, instructions that generate requests at the software interrupt 
levels must allow the interrupt to occur, if processor priority permits, 
before executing the apparently subsequent instruction. 

Processor errors, if not inconsistent with instruction completion, should 
create high priority interrupt requests. Otherwise, they must terminate 
instruction execution with an exception (fault, trap or abort), in which 
case there may also be an associated interrupt request. 

Error notification interrupts may be delayed from the apparent 
completion of the instruction in execution at the time of the error. But 
if enabled, the interrupt must be requested before processor context 
is switched, priority permitting. 

An example of a case where both an interrupt and an exception are 
associated with the same event occurs when the VAX-11 1780 
instruction buffer gets a read data substitution (that is, an uncorrectable 
memory read error). In this case, the interrupt request associated 
with error will not be taken if the priority of the running program 
is high; but an abort will occur when an attempt is made to execute 
the instruction. The interrupt is still pending, however, and will be 
taken when the priority is lowered. 

The VAX liD architecture is very similar to the PDP-11 structure. The 
principal difference is the method by which internal processor registers 
(such as the memory management registers) are accessed. Peripheral 
device control and status registers and data registers appear at 
locations in the physical address space and can therefore be 
manipulated by most memory reference instructions. Use of general 
instructions permits all the virtual address mapping and protection 
mechanisms described in Chapter 4 to be used when referencing liD 
registers. Note: Implementations that include a cache feature must 
suppress caching for references in the liD space. 

For any member of the VAX series implementing the UNIBUS, there 
will be one or more areas of the I/O physical address space, each 218 

bytes in length, that "map through" to UNIBUS addresses. The 
collection of these areas is referred to as the UNIBUS space. 
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The following is a list of both hardware and programming constraints 
on liD registers. These items affect both hardware register design and 
programming considerations. 

1. The physical address of an liD register must be an integral 
multiple of the register size in bytes (which must be a power of 
two); that is, all registers must be aligned on natural boundaries. 

2. References using a length attribute other than the length of the 
register, or to unaligned addresses, may produce UNPREDICTABLE 
results. For example, a byte reference to a word-length register 
will not necessarily respond by supplying or modifying the byte 
addressed. 

3. In all peripheral devices, error and status bits that may be 
asynchronously set by the device must be cleared by software 
writing a 1 to that bit position and are not affected by writing a o. 
This is to prevent clearing bits that may be asynchronously set 
between reading and writing a register. 

4. Only byte and word references of read-modify-write type (.mb or 
.mw access type) in UNIBUS liD spaces are guaranteed to 
interlock correctly. References in the liD space other than in 
UNIBUS spaces are UNDEFINED with respect to interlocking. This 
includes the BBSSI and BBCCI instructions. 

5. String, quadword, octaword, F _floating, D_floating, G_floating, 
H_floating, and field references in the liD space result in 
UNDEFINED behavior. 

6. Page tables must not be located in liD space. References to page 
table entries located in liD space result in UNDEFINED behavior. 

7. The PCB and SCB must not be located in liD space. References 
to the PCB or to SCB entries located in I/O space result in 
UNDEFINED behavior. 

Some of the instructions are not usable for referencing liD space. The 
reasons for this are as follows: 

1. String instructions are restartablevia PSL(FPD). 

2. The instruction is not in the kernel set. 

3. The PC, SP, or PCBB cannot point to liD space. 

4. liD space does not support operand types of quad, floating, field, 
or queue; nor can the position, size, length, or base of them be 
from liD space. 

5. The instruction may be interruptible because it is potentially a slow 
instruction in some implementations. 

6. Only instructions ~ith a maximum of one modify or write destination 
can be used. The destination must be the last operand. 
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For any memory reference to I/O space, the programmer must use an 
instruction from the following lists and must ensure that no interrupts 
or exceptions will occur, including page fault and overflow trap, 
after the first I/O space reference. To ensure no interrupts, the 
programmer must avoid operand specifier modes 9, 11, 13, and 15, 
and these modes indexed. (Symbolically, these are @(Rn)+, 
@BAD(Rn), @WAD(Rn), and @LAD(Rn), and these indexed.) The 
hardware may allow interrupts for these modes in order to minimize 
interrupt latency. For the instructions in the following lists, the 
hardware ensures that no other interrupts will occur after the first I/O 
space access. 

Since these instructions are not interruptible after I/O space accesses 
(except for the addressing modes above), their execution will extend 
the interrupt latency. The programmer should make some effort to 
keep them short by minimizing the number of memory references. Use 
RO through R13 instead, for example. 

Instructions for which any explicit operand can be in I/O space: 

ADAWI CHM{K,E,S,U} MOVZ{BW,BL,WL} 

ADD{B,W,L}2 CMP{B,W,L} MTPR 

ADD{B,W,L}3 

ADWC 

BIC{B,W,L}2 

BIC{B,W,L}3 

BICPSW 

BIS{B,W,L}2 

BIS{B,W,L}3 

BISPSW 

BIT{B,w,L} 

CASE{B,W,L} 

CLR{B,W,L} 

CVT{BW,BL,WB,WL,LB,LW} 

DEC{B,W,L} 

INC{B,w,L} 

MCOM{B,w,L} 

MFPR 

MNEG{B,W,L} 

MOV{B,W,L} 

MOVA{B,W,L} 

MOVAQ 

MOVPSL 

PROBE{R,W} 

PUSHA{B,W,L} 

PUSHAQ 

PUSHL 

SBWC 

SUB{B,W,L}2 

SUB{B,W,L}3 

TST{B,W,L} 

XOR{B,W,L}2 

XOR{B,W,L}3 

Instructions for which some operand can be in 1/0 space are as 
follows: 

BLB{S,C} 

XFC 

REMQUE 

REMQHI 

REMQTI 

(any operands but branch displacement) 

(depending on implementation) 

addr (destination) 

addr (destination) 

addr (destination) 

Notwithstanding the above rules, it is possible for a specific hardware 
implementation to execute macro code from the 1/0 space or to 
allow the stack or PCB to be in 1/0 space. This might, for example, be 
used as part of the bootstrap process. If this is done, then it is valid 
for software to transfer to this code. 
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Privileged Registers 8 

The internal processor register (IPR) space provides access to many 
types of CPU control and status registers such as the memory 
management base registers, parts of the PSL, and the multiple stack 
pointers. These registers are explicitly accessible only by the move-to­
processor-register (MTPR) and move-from-processor-register (MFPR) 
instructions which require kernel-mode privileges. 

All the internal processor registers are summarized in Table 8.1. 
Those internal processor registers that r':)quire further explanation are 
described below. Reference to general registers means RO through 
R13, the SP, and the PC (see Chapter 1). Registers referenced 
by the MTPR and MFPR instructions are designated processor 
registers and appear in the processor register space. 

Several per-process registers are loaded from the PCB during a 
context load operation and, with the exception of the memory mapping 
registers, PME, and AST level, are written back to the PCB during a 
context save operation (see Chapter 6). Some implementations 
may copy some or all of these registers from the PCB into scratch pad 
registers and write them back into the PCB during a context save 
operation. Other implementations may retain the registers in main 
memory in the PCB. 

An implementation may retain some or all per-process stack pointers 
only in the PCB. In this case., MTPR and MFPR for these registers 
must access the corresponding PCB location. However, implementa­
tions that have per-process stack pointers in hardware scratch pads 
are not required to access the corresponding PCB locations for MTPR 
and MFPR. The PCB locations get updated when a SVPCTX 
instruction is executed. 
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Table 8.1 
Architecturally Defined Internal Processor Registers 

Name Mnemonic Decimal Hex Type Scope 

kernel stack pointer KSP 0 0 RIW process 

executive stack pointer ESP 1 1 R/W process 

supervisor stack pointer SSP 2 2 RIW process 

user stack pointer USP 3 3 R/W process 

interrupt stack pOinter ISP 4 4 R/W CPU 

PO base register POBR 8 8 R/W process 

PO length register POLR 9 9 R/W process 

P1 base register P1BR 10 A R/W process 

P1 length register P1LR 11 B R/W process 

system base register SBR 12 C R/W CPU 

system limit register SLR 13 D R/W CPU 

process control block base PCBB 16 10 RIW CPU 

system control· block base SCBB 17 11 RIW CPU 

interrupt priority level IPL 18 12 RIW CPU 

AST level ASTLVL 19 13 RIW process 

software interrupt request SIRR 20 14 W CPU 

software interrupt summary SISR 21 15 RIW CPU 

interval clock control" ICCS 24 18 R/W CPU 

next interval count" NICR 25 19 W CPU 

interval count" ICR 26 1A R CPU 

time of year" TODR 27 1B RIW CPU 

console receiver status" RXCS 32 20 R/W CPU 

console receiver data buffer" RXDB 33 21 R CPU 

console transmit status" TXCS 34 22 R/W CPU 

console transmit data buffer" TXDB 35 23 W CPU 

memory management enable MAPEN 56 38 RIW CPU 

translation buffer invalidate all TBIA 57 39 W CPU 

translation buffer invalidate single TBIS 58 3A W CPU 

performance monitor enable" PME 61 3D R/W process 

system identification SID 62 3E R CPU 

translation buffer check TBCHK 63 3F W CPU 

Key: process one copy per process, loaded by LDPCTX 
CPU one copy per processor, not affected by LDPCTX 
R register can be read but cannot be written 
W register can be written but cannot be read 
R/W register can be both read and written 

"Subset implementations are not required to include NICR, ICR, TODR, RXCS, RXDB, TXCS, 
TXDB, and PME. Only a subset of ICCS is required. 
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It is possible that some implementations will retain some or all of the 
memory mapping registers (POBR, POLR, P1BR, P1LR), ASTLVL, 
and PME only in the PCB. These processors will implement MTPR 
and MFPR for those registers as a no-op, at least in the sense 
that the destination or register is not written. Other implementations 
may copy some or all of these registers from the PCB into scratch pad 
registers. The SVPCTX instruction does not write these registers 
back into the PCB. To ensure that the PCB is always correctly 
updated, software must use the following convention when referencing 
any of the memory mapping registers (POBR, POLR, P1 BR, P1 LR), 
or ASTLVL, or PME. 

1. Write. Software must first write the value directly into the proper 
location in the current PCB by using a MOVL (for example), then 
execute an MTPR with the same source as the MOVL. Implemen­
tations that do not retain internal copies of these registers will 
effectively no-op the MTPR instruction. They will not take a 
reserved operand fault which would normally occur for a non­
existent register. 

2. Read. Software can read the value directly from the proper location 
in the current PCB by using a EXTZV (for example). It is not 
necessary to execute a MFPR from the corresponding internal 
register, since the PCB location always contains an updated value 
due to the software convention for writing these registers. 

Reference to SP (the stack pointer) in the general registers will 
access one of five possible stack pointers---user, supervisor, executive, 
kernel, or interrupt---depending on the values of the current mode 
and IS bits in the PSL (see Chapter 5). Additionally, software can 
access any of the five stack pointers (including the one currently 
selected by the current mode and IS bits in the PSL) via the MTPR 
and MFPR instructions (even on processors that implement the KSP, 
SSP, ESP, or USP only in the PCB). Results are correct even if the 
stack pointer specified by the current mode and IS bits in the PSL 
is referenced in the internal processor register address space by an 
MTPR or MFPR instruction. This means that a MFPR or MTPR to the 
KSP (if IS = 0) or the ISP (if IS = 1) is equivalent to a MOVL from or 
to the SP. 

Move To Processor Register 
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Format: 

opcode src.rl, procreg.rl 

Operation: 

if PSL (CUR[cb3]-[cbO]MODl NEQ 0 then {reserved 

instruction fault}; 

IPR[procreg] ~ src; 

Condition Codes: 

N ~ src LSS 0; !if register is replaced 

Z ~ src EQL 0; 

V ~ 0: !except TBCHK register (see Chapter 

C ~ C; 

N ~ N; !if register is not replaced 

Z ~ Z; 

V ~ V; 

C ~ C; 

Exception: 
reserved instruction fault 

Opcode: 

DA MTPR Move To Processor Register 

Description: 

4) 

MTPR loads the source operand specified by source into the processor 
register specified by procreg. The procreg operand is a longword that 
contains the processor register number. Execution may have register­
dependent side effects. 

Notes: 
1. A reserved instruction fault occurs if instruction execution is 

attempted in other than kernel mode. 

2. If a register is implemented only as a PCB location, MTPR to that 
register has no effect. 

3. The operation of the processor is UNDEFINED after execution of 
MTPR to a read-only register, MTPR to a nonexistent register, 
MTPR of a non-zero value to an MBZ field, or MTPR of a reserved 
value to a register. The preferred implementation is to cause 
reserved-operand fault. 
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MFPR Move From Processor Register 

Format: 

opcode procreg.rl, dst.wl 

Operation: 

if PSL (CUR[cb3]-[cbO]MOD) NEQ 0 then {reserved 

instruction fault}; 

dst ~ IPR[procreg]; 

Condition Codes: 

N ~ dst LSS 0; !if destination is replaced 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ C; 

N ~ N; !if destination is not replaced 

Z ~ z; 
v ~ v; 
C ~ C; 

Exception: 
reserved instruction fault 

Opcode: 

DB MFPR Move From Processor Register 

Description: 
The destination operand is replaced by the contents of the processor 
register specified by procreg. The procreg operand is a longword 
which contains the processor register number. Execution may have 
register-dependent side effects. 

Notes: 
1. A reserved instruction fault occurs if instruction execution is 

attempted in other than kernel mode. 

2. If a register is implemented only as a PCB location, MFPR from 
that register has no effect. 

3. The operation of the processor is UNDEFINED after execution of 
MFPR from a register that does not exist,or after execution of 
MFPR from a write-only register. The preferred implementation is 
to cause reserved-operand fault. 
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31 2423 o 
TYPE type dependent 

Figure 8.1 
System Identification Register (SID) 

The system identification register (SID) specifies the processor type 
and includes an inplementation-dependent field. The processor 
type field is used by software in handling implementation-dependent 
processor features. The implementation-dependent field typically 
specifies additional information,such as hardware revision level and 
microcode revision level, and is included in the error log to more finely 
distinguish processor types. The SID is shown.in Figure 8.1. Table 
8.2 shows the processor type codes. See Appendix B for details on 
particular implementations. 

For systems based on the MicroVAX chip, the different system 
implementations can be distinguished by the contents of the MicroVAX 
system type register (SYS_ TYPE), at physical address 20040004 
(hex). SYS_TYPE is shown in Figure 8.2, and the system type codes 
are shown in Table 8.3. 

Table 8.2 
Processor Type Codes 

Code Processor 

0 Reserved to DIGITAL 
VAX-11/780 or VAX-11/785 

2 VAX-11/750 

3 VAX-11/730 

4 VAX 8600 

5 Reserved to DIGITAL 
6 Reserved to DIGITAL 

7 MicroVAX I 
8 MicroVAX II chip 
9-255 Reserved to DIGITAL 

31 2423 1615 o 
I SYS_ TYPE I . rev level type dependent 

Figure 8.2 
MicroVAX System Type Register (SYS-TYPE) 
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Table 8.3 
MicroVAX System Type Codes 

Code System 

o Reserved to DIGITAL 
1 

2-127 
28-255 

MicroVAX II 
Reserved to DIGITAL 
Reserved to owners 

The time-of-year clock is used to measure the duration of power 
failures and is required for unattended restart after a power failure. 

The time-of-year clock consists of one longword register, shown in 
Figure 8.3. The register forms an unsigned 32-bit binary counter that 
is driven by a precision clock source with at least .0025% accuracy 
(approximately 65 seconds per month). The least significant bit of the 
counter represents a resolution of 10 milliseconds. Thus, the counter 
cycles to 0 after approximately 497 days. 

The counter has an optional battery back-up power supply sufficient 
for at least 1 ours of operation, and the clock does not gain or lose 
any ticks during transition to or from stand-by power. The battery 
is recharged automatically. If the battery has failed, so that time is not 
accurate, then the register is cleared upon power-up. One of two 
things then happens: 

1. The register starts counting from o. Thus, if software initializes this 
clock to a value corresponding to a large time (say, a month), it 
can check for loss of time after a power restore by checking 
the clock value. This is the VAX-11/780 implementation. 

2. The register stays at 0 until the software writes a non-zero value 
into it. It counts only when it contains a non-zero value. This is the 
VAX-11/750 implementation. 

31 o 
time of year since setting 

Figure 8.3 
Time of Year (TOOR) 
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The interval clock is used for accounting, for time-dependent events, 
and to maintain the software date and time. It provides an interrupt at 
IPL 22 or 24 at programmed intervals. IPL 24 is used on the VAX-
111780, VAX-11/750, and VAX-11/730 systems. The preferred 
implementation is at IPL 22. The counter is incremented at 
1-microsecond intervals, with at least .01 % accuracy (8.64 seconds 
per day). The clock interface consists of three internal processor 
registers, shown in Figure 8.4 and are described as follows: 

• Interval Count Register (lCR)-The interval count register is a read­
only register incremented once every microsecond. Upon a carry 
out (overflow) from bit (31), it is automatically loaded from NICR; an 
interrupt is generated if the interrupt is enabled. That is, the value 
of ICR on successive microseconds will be FFFFFFFD (hex), 
FFFFFFFE, FFFFFFFF, (value of NICR). 

• Next Interval Count Register (NICR)-This reload register is a write­
only register that holds the value to be loaded into ICR when ICR 
overflows. The value is retained when ICR is loaded. 

• Interval Clock Control Status Register (ICCS)-The ICCS register 
contains control and status information for the interval clock. 

31 o 
interval count 

Interval Count (ICR) 

31 o 
next interval count 

Next Interval Count (NICR) 

3130 876543 10 

MBZ 

error run~ 
transfer 

single step 
interrupt enable -----' 

interrupt -------' 

Interval Clock Control and Status (ICCS) 

Figure 8.4 
Clock Interface Internal Processor Registers 
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Table 8.4 
Fields of the Interval Clock Control and Status Register 

Name Extent Description 

Error (31) When ICR overflows, if interrupt is already 
set, then error is set. Thus, error indicates a 
missed clock tick. Writing 1 to clear. 

Interrupt (7) Set by hardware every time ICR overflows. If 
interrupt-enable is set, then an interrupt is 
also generated. Writing a 1 to this bit 
with MTPR clears it, thereby re-enabling the 
clock tick interrupt. 

Interrupt enable (6) When set, an interrupt request is generated 
every time ICR overflows (every time interrupt 
is set). When clear, no interrupt is requested. 
Similarly, if interrupt is already set and the 
software sets interrupt enable, an interrupt is 
generated. That is, an interrupt is generated 
whenever the function (interrupt enable 
and interrupt) changes from 0 to 1. Processor 
initialization clears interrupt enable. 

Single step (5) If run is clear, each time this bit is set, ICR is 
incremented by one. Write only. 

Transfer (4) When a 1 is written to this bit, NICR is 
transferred to ICR. Write only. 

Run (0) When set, ICR increments each microsecond. 
When clear, ICR does not increment 
automatically. Processor initialization clears 
run. 

The fields of the interval clock control and status register are described 
in Table 8.4. 

Note 
Subset processors may omit NICR and ICR, and are required only to 
implement ICCS(IE). If this bit is set, an interrupt request at IPL 22 
is generated once every 10 milliseconds. 

Thus, to use the interval clock, load the negative of the desired 
interval into NICR. Then a MTPR #X51 ,#PR$_ICCS will enable 
interrupts, reload ICR with the NICR interval, and set run. Every 
"interval count" microseconds will cause interrupt to be set and an 
interrupt to be requested. The interrupt routine should execute a 
MTPR #XC1 ,#PR$_ICCS to clear the interrupt. If interrupt has not 
been cleared (the interrupt has not been handled) by the time of the 
next ICR overflow, error will be set. 
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Note 
If NICR is written while the clock is running, the clock may lose or add 
a few ticks. If the interval clock interrupt is enabled, this may cause 
the loss of an interrupt. 

Processor initialization leaves ICR and NICR UNPREDICTABLE, 
clears ICCS (6) and (0), and leaves the rest of ICCS UNPREDICTABLE. 
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PDP-11 Compatibility Mode 9 
Implementation of PDP-11 compatibility mode is optional. Processors 
that do implement compatibility mode do so as specified in this 
chapter. Operating system software may emulate compatibility mode 
on processors that omit this mode. 

VAX compatibility mode hardware, in conjunction with a compatibility 
mode software executive (which runs in VAX mode), can emulate the 
environment provided to user programs on a PDP-11 system. This 
environment does not include the following features of normal PDP-11 
system operation: 

• Privileged instructions such as HALT and RESET 

• Special instructions such as traps and WAIT 

• Access to internal processor registers such as the PSW and the 
console switch register 

• Direct access to trap and interrupt vectors 

• Direct access to I/O devices 

• Interrupt servicing 

• Stack overflow protection 

• Alternate general register sets 

• Any processor mode other than user (that is, kernel and supervisor 
modes are not supported) and separate I and D spaces 

• Floating-point instructions 

This speCification is based on the behavior of all PDP-11 implementa­
tions. Compatibility mode behavior is defined as UNPREDICTABLE 
where there is a difference between any two PDP-11 implementations. 

All of the PDP-11 general registers and addressing modes are 
provided in compatibility mode. Side effects caused by a destination 
address calculation have no effect on source values (except in JSR), 
and autoincrement modes in JMP and JSR do not affect the new 
PC. Side effects caused by a source address calculation, however, 
affect the value of a register used for destination address calculation. 
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All PDP-11 addresses are 16-bits wide. In compatibility mode, a 16-bit 
PDP-11 address is zero-extended to 32 bits. 

The operands of some PDP-11 instructions are implied by the 
instruction type, whereas others are specified as part of the instruction. 
The different kinds of operand specifiers appearing in PDP-11 
instructions are shown in Figure 9.1. Address mode operand specifiers 
include a 3-bit mode field, specifying one of eight modes: register, 
register deferred, autoincrement, autoincrement deferred, autodecre­
ment, autodecrement deferred, index, or index deferred mode. These 
modes are discussed in the following sections. 

5 32 0 

Imodel reg I 
Address Mode Operand Specifier 

2 0 

~ 
Register Operand Specifier 

7 o 
displ.bb 

Eight-Bit Displacement Branch Destination Specifier 

5 0 

I displ.b6 

Six-Bit Displacement Branch Destination Specifier 

4 0 

I mask 

Five·Bit Literal Specifier 

Figure 9.1 
PDP-11 Instruction Operand Specifiers 
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Deferred Mode 

Autoincrement 
Mode 

Autoincrement 
Deferred Mode 

In register mode addressing, the operand is the contents of register n: 

operand = Rn 

Byte operations, except for MOVB to a register, access the low order 
byte, that is, bits (7:0). The low byte is sign-extended if a register is 
used as the destination of a MOVB instruction. If the PC is used 
as the destination of a byte instruction, the result is UNPREDICTABLE. 

The assembler notation for register mode is Rn. 

In register deferred mode addressing, the address of the operand is 
the contents of register n: 

OA = Rn 

operand = (OA) 

The assembler notation for register deferred mode is (Rn) or @Rn. 

In autoincrement mode addressing, the address of the operand is the 
contents of register n. After the operand address is determined, the 
size of the operand in bytes (1 for byte, 2 for word) is added to 
the contents of register n (except in the case of SP and PC); the 
register is then replaced by the result. If Rn denotes SP or PC, the 
register is incremented by 2 and the register is replaced by the result. 

OA = Rn 

if n LEQ 5 then Rn ~ Rn + size else Rn ~ Rn + 2 

operand = (OA) 

If Rn denotes PC, immediate data follows the instruction. The mode is 
termed immediate mode. 

The assembler notation for autoincrement mode is (Rn) +. For 
immediate mode, the notation is #constant where constant is the data 
immediately following the instruction. 

In autoincrement deferred mode addressing, the address of the 
operand is the contents of a word whose address is the contents of 
register n. After the operand address is determined, 2 is added to the 
contents of register n, and the register is replaced by the result. 

OA = (Rn) 

Rn ~ Rn + 2 

operand = (OA) 
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If Rn denotes PC, a 16-bit address follows the instruction. The mode 
is termed absolute mode. 

The assembler notation for autoincrement deferred mode is @(Rr:l)+. 
For absolute mode, the notation is @#address where address is the 
word that follows the instruction. 

In autodecrement mode addressing, the size of the operand in bytes 
(1 for byte, 2 for word) is subtracted from the contents of register n 
(except in the case of SP and PC); the register is then replaced 
by the result. If Rn denotes SP or PC, the register is decremented by 
2 and the register is replaced by the result. The updated contents of 
register n is the address of the operand: 

if n LEQ 5 then Rn ~ Rn - size else Rn ~ Rn - 2 

OA = Rn 

operand = (OA) 

The assembler notation for autodecrement mode is - (Rn). 

In autodecrement deferred mode addressing, 2 is subtracted from 
the contents of register n; the register is replaced by the result. The 
updated contents of register n is the address of the word whose 
contents is the address of the operand: 

Rn ~ Rn - 2 

Ok = (Rn) 

operand = (OA) 

The assembler notation for autodecrement deferred mode is @- (Rn). 

In index mode. the index (contents of the word following the instruction) 
is added to the contents of register n. The result is the address of the 
operand: . 

OA = Rn + index 

operand = (OA) 

If Rn denotes PC, the updated contents of the PC is used. The mode 
is termed relative mode. 

The assembler notation for index mode is index(Rn), where the index 
value is the word following the instruction. 

In index deferred mode, the index (contents of the word following the 
instruction) is added to the contents of register n. The result is the 
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address of a word whose contents are the address of the operand: 

OA = (Rn + index) 

operand = (OA) 

If Rn denotes PC, the updated contents of the PC are used. The 
mode is termed relative deferred mode. 

The assembler notation for index deferred mode is @index(Rn), 
where the index value is the word following the instruction. 

General register R6 is used as the stack pointer by certain instructions, 
as in the PDP-11 system. It is not, however, used by the hardware 
for any exceptions or interrupts. There is also no stack overflow 
protection in compatibility mode. 

PDP-11 compatibility mode uses a subset of the full PDP-11 processor 
status word. Only bits (4:0) are used; bits (15:5) are zero. When an 
RTI or RTT instruction is executed, bits (15:5) in the saved PSW 
on the stack are ignored. Compatibility mode PSW bits (4:0) have the 
same meaning as do VAX PSL bits (4:0). They are, respectively, 
PSL(T,N,Z,V,C). See Chapter 1 for a description of the PSL. 

Table 9.1 lists the instructions provided in compatibility mode. 

Table 9.1 
Compatibility Mode Instructions 

Opcode (Octal) Mnemonic 

000002 RTI 
000006 RTT 
000100 JMP 
00020R RTS 
000240-000277 Condition codes 
000300 SWAB 
000400-003777 Branches 
100000-103777 Branches 
004ROO JSR 
.05000 CLR(B) 
.05100 COM(B) 
.05200 INC(B) 
.05300 OEC(B) 
.05400 NEG(B) 
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Table 9.1 
Compatibility Mode Instructions (continued) 

Opcode (Octal) Mnemonic 

.05500 AOC(B) 

.05600 SBC(B) 

.057SS TST(B) 

.060dd ROR(B) 

.061 DO ROL(B) 

.06200 ASR(B) 

.06300 ASL(B) 
0065SS MFPI* 

006600 

1065SS 
106600 
006700 

070RSS 
071RSS 

072RSS 
073RSS 

074ROO 
077RNN 

.1SS00 

.2SSSS 

.3SSSS 

.4SS00 

.5SS00 
06SS00 
16SS00 

Key: R 
SS 
DO 

MTPI* 
MFPO* 
MTPO* 

SXT 

MUL 
OIV 

ASH 
ASHC 

XOR 
SOB 
MOV(B) 
CMP(B) 

BIT(B) 
BIC(B) 

BIS(B) 
ADD 
SUB 

Register specifier 
Source operand specifier 
Destination operand specifier 
o for word operations and 1 for byte operations 

*These instructions execute exactly as they would on a POP-11 in user 
mode with Instruction and Data space overmapped. More specifically, they 
ignore the previous access level and act like PUSH and POP instructions 
referencing the current stack. 

Table 9.2 lists the trap instructions that cause the processor to fault to 
VAX mode, where either the complete trap may be serviced or 
where the instruction may be simulated. 
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Table 9.2 
Compatibility Mode Trap Instructions 

Opcode (Octal) Mnemonic 

000003 BPT 

000004 

104000-104377 

104400-104777 

lOT 

EMT 

TRAP 

The instructions listed in Table 9.3 and ali other opcodes not listed in 
Tables 9.1 or 9.2 are considered reserved instructions in compatibility 
mode. These instructions fault to VAX mode. 

Table 9.3 
Compatibility Mode Reserved Instructions 

Opcode (Octal) Mnemonic 

000000 HALT 

000001 WAIT 

000005 RESET 

000007 MFPT 

00023N SPL 
0064NN MARK 

0070DD CSM 
07500R FADD-FIS 

07501R FSUB-FIS 
07502R FMUL-FIS 

07503R FDIV-FIS 

076XXX Extended Instructions 

1064SS MTPS 

1067DD MFPS 

17XXXX FP11 Floating Point 

Key: R Register specifier 
SS Source operand specifier 
DD Destination operand specifier 

PDP-11 Compatibility Mode 295 



296 

Note that no floating-point instructions are included in compatibility 
mode. 

Figure 9.2 shows seven compatibility mode instruction formats. 

151211 65 a 

Fpcodel src.rx I dst.wx 

Double Operand Format with Two Address Mode Specifiers 

15 9 8 6 5 a 
opcode I reg I src.rw I 

Double Operand Format with Register and Address Mode Specifiers 

15 98 65 a 
opcode I reg I displ.b6 I 

Loop Format with Register and 6-Bit Branch Displacement Specifiers 

15 8 7 a 
opcode displ.bb 

Branch Format 8-Bit Branch Displacement Specifier 

15 6 5 a 
opcode I dst.wx 

Single Operand Format with Address Mode Specifier 

15 32 a 
opcode 

Single Operand Format with Register Specifier 

15 a 
opcode 

Zero Operand Format 

Figure 9.2 
Seven Compatibility Mode Instruction Formats 
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CLR 

The following single operand instructions are described in this section. 
The instructions are grouped according to type: arithmetic, logical, 
shifts, multiprecision, and rotates. 

Arithmetic: 
CLR(B) dst.wx 

DEC(B) dst.mx 

INC(B) dst.mx 

NEG(B) dst.mx 

TST(B) src.rx 

Logical: 
COM (B) dst.mx 

Shifts: 
ASR(B) dst.mx 

ASL(B) dst.mx 

Multiprecision: 
ADC(B) dst.mx 

SBC(B) dst.mx 

SXT dst.ww 

Rotates: 
ROL(B) dst.mx 

ROR(B) dst.mx 

SWAB dst.mw 

Clear 

Format: 

ope ode dst.wx 

Operation: 

dst ~ 0; 

Condition Codes: 

N ~ 0; 

Z ~ 1; 

V ~ 0; 

C ~ 0; 
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Exceptions: 
none 

Opcodes (octal): 

0050 CLR Clear Word 

1050 CLRB Clear Byte 

Description: 
The destination operand is replaced by zero. The instruction is single 
operand format with address mode specifier. See Figure 9.2. 

Decrement 

Format: 

opcode dst.mx 

Operation: 

dst ~ dst - 1; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ {integer 

C ~ C; 

Exceptions: 
none 

overflow}; 

Opcodes (octal): 

0053 DEC Decrement Word 

1053 DECB Decrement Byte 

Description: 
One is subtracted from the destination operand, and the destination 
operand is replaced by the result. The instruction is single operand 
format with address mode specifier. See Figure 9.2. 

Note: 
Integer overflow occurs if the largest negative integer is decremented. 
On overflow, the destination operand is replaced by the largest 
positive integer. 
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NEG 

Increment 

Format: 

opcode dst.mx 

Operation: 

dst +- dst + 1; 

Condition Codes: 

N +- ds t LSS 0; 

Z +- ds t EQL 0; 

v +- {integer overflow}; 

C +- C; 

Exceptions: 
none 

Opcodes (octal): 

0052 INC Increment Word 

1052 INCB Increment Byte 

Description: 
One is added to the destination operand, and the destination operand 
is replaced by the result. The instruction is single operand format 
with address mode specifier. See Figure 9.2. 

Note: 
Integer overflow occurs if the largest positive integer is incremented. 
On overflow, the destination operand is replaced by the largest 
negative integer. 

Negate 

Format: 

opcode dst.mx 

Operation: 

dst +- -dst; 
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Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ dst EQL most 

C ~ dst NEQ O· 

Exceptions: 
none 

Opcodes (octal): 

negative integer; 

0054 NEG Negate Word 

1054 NEGB Negate Byte 

Description: 
The destination operand is negated (two's complement), and the 
destination operand is replaced by the result. The instruction is single 
operand format with address mode specifier. See Figure 9.2. 

Note: 
Integer overflow occurs if the operand is the most negative integer 
(which has no positive counterpart). On overflow, the destination 
operand is replaced by itself. 

Test 

Format: 

opcode src.rx 

Operation: 

src - 0; 

Condition Codes: 

N ~ src LSS 0; 

Z ~ src EQL 0; 

V ~ 0; 

C ~ 0; 

Exceptions: 
none 
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Opcodes (octal): 

0057 TST Test Word 

1057 TSTB Test Byte 

Description: 
The condition codes are affected according to the value of the source 
operand. The instruction is single operand format with address mode 
specifier. See Figure 9.2. 

Complement 

Format: 

opeode dst.mx 

Operation: 

dst ~ NOT dst; 

Condition Codes: 

N ~ dst LSS 

Z ~ dst EQL 

V ~ 0; 

C ~ 1; 

Exceptions: 
none 

0; 

0; 

Opcodes (octal): 

0051 COM Complement Word 

1051 COMB Complement Byte 

Description: 
The destination operand is complemented (one's complement), and 
the destination operand is replaced by the result. The instruction is 
single operand format with address mode specifier. See Figure 9.2. 

Arithmetic Shift Right 

Format: 

ope ode dst.mx 
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Operation: 

dst ~ dst shifted one place to the right; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ {bit shifted out} XOR {dst LSS O}; 

C ~ bit shifted out; 

Exceptions: 
none 

Opcodes (octal): 

0062 ASR Arithmetic Shift Right Word 

1062 ASRB Arithmetic Shift Right Byte 

Description: 
The destination operand is arithmetically shifted right by one bit and 
the destination operand is replaced by the result. The instruction is 
single operand format with address mode specifier. See Figure 9.2. 

Notes: 
1. The sign bit of the destination operand is replicated in shifts to the 

right. The condition code C-bit stores the bit shifted out. 

2. If the PC is used as the destination operand, the result and the 
next instruction executed are UNPREDICTABLE. 

Arithmetic Shift Left 

Format: 

opcode dst.mx 

Operation: 

dst ~ dst shifted one place to the left; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ {integer overflow}; 

C ~ bit shifted out; 
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Exceptions: 
none 

Opcodes (octal): 

0063 ASL Arithmetic Shift Left Word 

1063 ASLB Arithmetic Shift Left Byte 

Description: 
The destination operand is arithmetically shifted left by one bit, and 
the destination operand is replaced by the result.The instruction is 
single operand format with address mode specifier. See Figure 9.2. 

Notes: 
1. The least significant bit is filled with zero in shifts to the left. The 

condition code C-bit stores the bit shifted out. 

2. Integer overflow occurs if the destination changes sign due to the 
shift. 

Add Carry 

Format: 

opcode dst.mx 

Operation: 

dst (- dst + C; 

Condition Codes: 

N (- dst LSS 0; 

Z (- dst EQL 0; 

V (- {integer overflow}; 

C (- {carry from most significant bit}; 

Exceptions: 
none 

Opcodes (octal): 

0055 ADC Add Carry to Word 

1055 ADCB Add Carry to Byte 

Description: 
The contents of the condition code C-bit are added to the destination 
operand, and the destination operand is replaced by the result. The 
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instruction is single operand format with address mode specifier. See 
Figure 9.2. 

Note: 
Integer overflow occurs if the most positive integer is incremented. On 
overflow, the result is the most negative integer. 

Subtract Carry 

Format: 

opcode dst.mx 

Operation: 

dst ~ dst - C; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

v ~ {integer overflow}; 

C ~ {borrow into most significant bit}; 

Exceptions: 
none 

Opcodes (octal): 

0056 SBC Subtract Carry from Word 

1056 SBCB Subtract Carry from Byte 

Description: 
The contents of the condition code C-bit are subtracted from the 
destination operand, and the destination operand is replaced by the 
result. The instruction is single operand format with address mode 
specifier. See Figure 9.2. 

Note: 
Integer overflow occurs if the most negative integer is decremented. 
On overflow, the result is the most positive integer. 

Sign Extend Word 

Format: 

opcode dst.ww 
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Operation: 

if N EQL 1 then dst <- -1 else dst <- 0; 

Condition Codes: 

N <- dst LSS 

Z <- dst EQL 

V <- 0; 

C <- C; 

Exceptions: 
none 

Opcode (octal): 

0; 

0; 

!N <- N 

0067 SXT Sign Extend 

Description: 
If the condition code N-bit is set, then the destination operand is 
replaced by - 1 ; otherwise, the destination operand is cleared. The 
instruction is single operand format with address mode specifier. See 
Figure 9.2. 

Note: 
If the PC is used as the destination operand, the results and the next 
instruction executed are UNPREDICTABLE. 

Rotate Left 

Format: 

ope ode dst.mx 

Operation: 

dst'C <- dst'C rotated left; 

Condition Codes: 

N <- dst LSS 0; 

Z <- dst EQL 0; 

V <- {integer overflow}; 

C <- {bit rotated 

Exceptions: 
none 

out of 
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Opcodes (octal): 

0061 ROL Rotate Left Word 

1061 ROLB Rotate Left Byte 

Description: 
The condition code C-bit and the destination operand are rotated left 
by one bit position; that is, the C-bit gets the most significant bit of the 
destination operand, and the destination is replaced by the destination 
shifted left by one bit with the initial C-bit filling the least significant bit. 
The instruction is single operand format with address mode specifier. 
See Figure 9.2. 

Notes: 
1. The rotate instructions operate on the destination operand and the 

condition code C-bit taken as a circular datum. 

2. Integer overflow occurs if the destination changes sign because of 
the rotate. 

Rotate Right 

Format: 

opcode dst.mx 

Operation: 

dst'C +- dst'C rotated right; 

Condition Codes: 

N +- dst LSS 0; 

Z +- ds t EQL 0; 

v +- {C bit changed due to rotate}; 

C +- {bit rotated out of dst}; 

Exceptions: 
none 

Opcodes (octal): 

0060 ROR Rotate Right Word 

1060 RORB Rotate Right Byte 

Description: 
The condition code C-bit and the destination operand are rotated right 
by one bit position; that is, the C-bit gets the least significant bit of 
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the destination operand, and the destination is replaced by the 
destination shifted right by one bit with the initial C-bit filling the most 
significant bit. The instruction is single operand format with address 
mode specifier. See Figure 9.2. 

Note: 
The rotate instructions operate on the destination operand and the 
condition code C-bit taken as a circular datum. 

Swap Bytes 

Format: 

opcode dst.rnw 

Operation: 

dst <- dst<7: 0)' dst<15: 8); 

Condition Codes: 

N <- dst(7: 0) LSS 

Z <- dst<7:0) 

V <- 0; 

C <- 0; 

Exceptions: 
none 

Opcode (octal): 

EQL 

0; 

0; 

0003 SWAB Swap Bytes 

Description: 
The high and low bytes of the destination word operand are swapped. 
The instruction is single operand format with address mode specifier. 
See Figure 9.2. 

Note: 
If the PC is used as the destination operand, the result and the next 
instruction executed are UNPREDICTABLE. 

The following PDP-11 compatibility mode double operand instructions 
are described in this section. The instructions are grouped according 
to type: arithmetic and logical, and shift. 
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Arithmetic and logical: 
MOV(B) src.rx, dst.mx· 

ADD src.rw, dst.mw 

SUB src.rw, dst.mw 

CMP(B) src1.rx, src2.rx 

MUL reg, src.rw 

DIV reg, src.rw 

XOR reg, dst.mw 

BIS(B) src.rx, dst.mx 

BIC(B) src.rx, dst.mx 

BIT(B) src1.rx, src2.rx 

Shift: 
ASH reg, src.rw 

ASHC reg, src.rw 

If a register that is used in the source operand specifier in autoincrement 
or autodecrement modes is also used in the destination (or source 2) 
operand specifier, the updated value of the register is used to 
evaluate the destination specifier. Side effects caused by a destination 
address calculation have no effect on source values. 

Move 

Format: 

opcode src.rx, dst.wx 

Operation: 

dst ~ src; 

Condition Codes: 

N ~ dst LSS 

Z ~ dst EQL 

V ~ 0; 

C ~ C; 

Exceptions: 
none 

0; 

0; 
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ADD 

Opcodes (octal): 

01 MOV Move Word 

11 MOVB Move Byte 

Description: 
The destination operand is replaced by the source operand. The 
instruction is double operand format with two address mode specifiers. 
See Figure 9.2. 

Note: 
The low byte is sign-extended on a MOVB to a register; that is, bits 
(15:8) of the destination register are replaced by bit (7) of the source 
operand. 

Add 

Format: 

opcode src.rw, dst.mw 

Operation: 

dst ~ dst + src; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ {integer overflow}; 

C ~ {carry from most significant digit}; 

Exceptions: 
none 

Opcode (octal): 

06 ADD Add Word 

Description: 
The source operand is added to the destination operand, and the 
destination operand is replaced by the result. The instruction is double 
operand format with two address mode specifiers. See Figure 9.2. 

Note: 
Integer overflow occurs if the input operands have the same sign and 
the result has the opposite sign. On overflow, the destination 
operand is replaced by the low-order bits of the true result. 
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Subtract 

Format: 

opcode src.rw, dst.mw 

Operation: 

dst ~ dst - src; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ {integer 

C ~ {borrow 

Exceptions: 
none 

overflow}; 

into most significant 

Opcode (octal): 

16 SUB Subtract Word 

Description: 

digit}; 

The source operand is subtracted from the destination operand, and 
the destination operand is replaced by the result. The instruction is 
double operand format with two address mode specifiers. See Figure 
9.2. 

Note: 
Integer overflow occurs if the input operands are of different signs and 
the result has the sign of the source. On overflow, the destination 
operand is replaced by the low-order bits of the true result. 

Compare 

Format: 

opcode src1.rx, src2.rx 

Operation: 

tmp ~ src1 - src2; 

Condition Codes: 

N ~ tmp LSS 0; 
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MUL 

z ~ tmp EQL 0; 

V ~ {integer overflow}; 

C ~ {borrow into most significant digit}; 

Exceptions: 
none 

Opcodes (octal): 

02 CMP Compare Word 

12 CMPB Compare Byte 

Description: 
The source 1 operand is compared with the source 2 operand. The 
only action is to set the condition codes. The instruction is double 
operand format with two address mode specifiers. See Figure 9.2. 

Note: 
Integer overflow occurs if the operands are of different sign and the 
result of the subtraction (src1 - src2) has the same sign as the source 
2 operand. 

Multiply 

Format: 

opcode reg, src.rw 

Operation: 

tmp(31 : 0) ~ Rn * src; 

~n ~ tmp(3l: 16); 

R[n OR 1] ~ tmp(15:0); 

Condition Codes: 

N ~ tmp LSS 

Z ~ tmp EQL 

V ~ 0; 

C ~ {resul t 

Exceptions: 
none 

0; 

O' 

cannot 

Opcode (octal): 

be represented 

070 MUL Multiply Word 

PDP-11 Compatibility Mode 

in 16 bits}; 

311 

----------- ~----



DIV 
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Description: 
The destination register is multiplied by the source operand. The most 
significant 16 bits of the 32-bit product are stored in register Rn. 
Then the least significant 16 bits are stored in R[n OR 1]. The 
condition codes are set based on the 32-bit result. The instruction is 
double operand format with register and address mode specifiers. 
See Figure 9.2. 

Note: 
1. The C-bit is set if the result of the multiplication cannot be 

represented in 16 bits; that is, if the 32-bit product is less than 
_215 or greater than or equal to 215. 

2. If an odd-numbered register is used as the destination, the low­
order 16 bits are stored as the result. 

3. If R6 or PC is used as the destination, the next instruction executed 
and the result are UNPREDICTABLE. 

Divide 

Format: 

opcode reg, src.rw 

Operation: 

tmp ~ Rn'R[n OR 1] 

Rn ~ tmp / src; 

R[n OR 1] ~ REM(tmp , src); 

Condition Codes: 

N ~ Rn LSS 0; ! UNPREDICTABLE if V is set 

Z ~ Rn EQL 0; !UNPREDICTABLE if V is set 

V ~ {src EQL O} OR {integer overflow}; 

C ~ {src EQL O}; 

Exceptions: 
none 

Opcode (octal): 

071 DIV Divide 

Description: 
If the source operand is not zero, the 32-bit integer in Rn'R[n OR 1] is 
divided by the source operand. The quotient is stored in Rn, and the 
remainder is stored in R[n OR 1]. The remainder has the same 
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BIS 

sign as the dividend. If the source operand is zero, the instruction 
terminates without modifying the destination registers. 

Notes: 
1. Integer overflow occurs if the quotient is less than - 215 or greater 

than or equal to 215. On integer overflow, the contents of the 
destination registers are UNPREDICTABLE. 

2. If an odd register or R6 is used as the destination, the results are 
UNPREDICTABLE. Furthermore, if R6 or PC is used as the 
destination, the next instruction executed is UNPREDICTABLE. 

Exclusive-OR 

Format: 

opcode reg, dst.mw 

Operation: 

dst ~ Rn XOR dst; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ c; 

Exceptions: 
none 

Opcode (octal): 

074 XOR Exclusive-OR Word 

Description: 
The source register is XORed with the destination operand, and the 
destination operand is replaced by the result. The instruction is double 
operand format with register and address mode specifiers. See 
Figure 9.2. 

Bit Set 

Format: 

opcode src.rx, dst.mx 
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Operation: 

dst ~ dst OR sro; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ C; 

Exceptions: 
none 

Opcodes (octal): 

05 BIS Bit Set Word 

15 BISB Bit Set Byte 

Description: 
The source operand is ORed with the destination operand, and the 
destination operand is replaced by the result. The instruction is double 
operand format with two address mode specifiers. See Figure 9.2. 

Bit Clear 

Format: 

opoode src.rx, dst.mx 

Operation: 

dst ~ dst AND {NOT sro}; 

Condition Codes: 

N ~ dst LSS 0; 

Z ~ dst EQL 0; 

V ~ 0; 

C ~ c; 

Exceptions: 
none 

Opcodes (octal): 

04 BIC Bit Clear Word 

14 BICB Bit Clear Byte 
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Description: 
The destination operand is ANDed with the one's complement of the 
source operand, and the destination operand is replaced by the result. 
The instruction is double operand format with two address mode 
specifiers. See Figure 9.2. 

Bit Test 

Format: 

opcode src1.rx, src2.rx 

Operation: 

tmp ~ src1 AND src2; 

Condition Codes: 

N ~ tmp LSS 0; 

Z ~ tmp EQL 0; 

V ~ 0; 

C ~ c; 

Exceptions: 
none 

Opcodes (octal): 

03 BIT Bit Test Word 

13 BITB Bit Test Byte 

Description: 
The source 1 operand is ANDed with the source 2 operand. The only 
action is to set the condition codes. The instruction is double operand 
format with two address mode specifiers. See Figure 9.2. 

Arithmetic Shift 

Format: 

opcode reg, src.rw 

Operation: 

Rn ~ Rn shifted src(5: 0) bits; 
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Condition Codes: 

N <- Rn LSS 0; 

Z <- Rn EQL 0; 

v <- if src(5: 0) EQL 0 then 0 else {integer over flow}; 

C <- if src(5: 0) EQL 0 then 0 else {last bi t shifted out}; 

Exceptions: 
none 

Opcode (octal): 

072 ASH Arithmetic Shift 

Description: 
The specified register is arithmetically shifted by the number of bits 
specified by the count operand (bits (5:0) of the source operand), and 
the register is replaced by the result. The count ranges from - 32 to 
+ 31. A negative count signifies a right shift. A positive count signifies 
a left shift. A zero count implies no shift, but condition codes are 
affected. The instruction is double operand format with register and 
address mode specifiers. See Figure 9.2. 

Notes: 
1. The sign bit of Rn is replicated in shifts to the right. The least 

significant bit is filled with zero in shifts to the left. The C-bit stores 
the last bit shifted out. 

2. Integer overflow occurs on a left shift if any bit shifted into the sign 
position differs from the initial sign bit of the register. 

3. If the PC is used as the destination operand, the result and the 
next instruction executed are UNPREDICTABLE. 

Arithmetic Shift Combined 

Format: 

opcode reg, src.rw 

Operation: 

tmp <- Rn'R[n OR 1]; 

tmp <- tmp shifted src(5: 0) bits; 

Rn <- tmp(31: 16); 

R[n OR 1] <- tmp(15:0); 
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Instructions 

Condition Codes: 

N <- tmp LSS 0; 

Z <- tmp EQL 0; 

V <- if src(5: 0) EQL 0 then 0 else {integer overflow}; 

C <- if src(5: 0) EQL 0 then 0 else {last bit shifted out}; 

Exceptions: 
none 

Opcode (octal): 

073 ASHC Arithmetic Shift Combined 

Description: 
The contents of the specified register, Rn, and the register R[n OR 1] 
are treated as a single 32-bit operand and are shifted by the number 
of bits specified by the count operand (bits (5:0) of the source 
operand); the registers are replaced by the result. First, bits (31 :16) of 
the result are stored in register Rn. Then, bits (15:0) of the result are 
stored in register R[n OR 1]. The count ranges from - 32 to + 31. 
A negative count signifies a right shift. A positive count signifies a left 
shift. A zero count implies no shift, but condition codes are affected. 
Condition codes are always set on the 32-bit result. The instruction is 
double operand format with register and address mode specifiers. 
See Figure 9.2. 

Notes: 
1. The sign bit of Rn is replicated in shifts to the right. The least 

significant bit is filled with zero in shifts to the left. The C-bit stores 
the last bit shifted out. 

2. Integer overflow occurs on a left shift if any bit shifted into the sign 
position differs from the initial sign bit of the 32-bit operand. 

3. If the SP or PC is used as the destination operand, the result and 
the next instruction executed are UNPREDICTABLE. 

The following PDP-11 compatibility mode branch instructions are 
described in this section. 

BCC dispLbb 

BCS dispLbb 

BEQ dispLbb 

BGE dispLbb 

BGT dispLbb 

BHI dispLbb 

BHIS dispLbb 
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BLE dispLbb 

BLO dispLbb 

BLOS dispLbb 

BLT dispLbb 

BMI dispLbb 

BNE dispLbb 

BPL displ.bb 

BR dispLbb 

BVC dispLbb 

BVS dispLbb 

SOB reg, dispLb6 

Branch 

Format: 

opcode displ.bb 

Operation: 

PC ~ PC + SEXT (2*displ) ; 

Condition Codes: 

N ~ N; 

Z ~ Z; 

v ~ v; 
C ~ C; 

Exceptions: 
none 

Opcode (octal): 

0004 BR Branch 

Description: 
Twice the sign-extended displacement is added to the PC, and the 
PC is replaced by the result. The instruction is branch format with 
8-bit displacement. See Figure 9.2. 

Branch on (condition) 
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Format: 

opcode displ.bb 

Operation: 

if condition then PC ~ PC + SEXT( 2*displ) ; 

Condition Codes: 

N ~ N; 

Z ~ z; 
V ~ v; 
C ~ C; 

Exceptions: 
none 

Opcodes (octal): 
Condition 

0014 BEQ Z EQL 1 

0010 BNE Z EQL 0 

1004 BMI N EQL 1 

1000 BPL N EQL 0 

1034 BCS, C EQL 1 

BLO 

1030 BCC, C EQL 0 

BHIS 

1024 BVS V EQL 1 

1020 BVC V EQL 0 

0024 BLT {N XOR V} EQL 

Branch on Equal 

Branch Not Equal 

Branch on Minus 

Branch on Plus 

Branch on Carry Set, 

Branch on Lower 

Branch on Carry Clear, 

Branch on Higher or Same 

Branch on Overflow Set 

Branch on Overflow Clear 

1 Branch on Less Than 

0020 BGE {N XOR V} EQL 0 Branch on Greater Than or Equal 

0034 BLE {Z OR {N XOR V}} 

EQL 1 Branch on Less Than or Equal 

0030 BGT {Z OR {N XOR V}} 

EQL 0 Branch on Greater Than 

1010 BHI {C OR Z} EQL 0 Branch on Higher 

1014 BLOS {C OR Z} EQL 1 Branch on Lower or Same 

Description: 
The condition codes are tested and, if the condition indicated by the 
instruction is met, twice the sign-extended displacement is added 
to the PC; the PC is replaced by the result. These instructions are 
branch format with 8-bit displacement. See Figure 9.2. 
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Subtract One and Branch 

Format: 

opcode reg, displ.b6 

Operation: 

Rn <- Rn - 1; 

if Rn NEQ 0 then PC <- PC - ZEXT(2*displ); 

Condition Codes: 

N <- N; 

Z <- z· 
v <- v; 
C <- C; 

Exceptions: 
none 

Opcode (octal): 

077 SOB Subtract One and Branch 

Description: 
One is subtracted from the specified register, and the register is 
replaced by the result. If the register is not equal to zero, twice the 
zero-extended displacement is subtracted from the PC; the PC is 
replaced by the result. The instruction is loop format. See Figure 9.2. 

Notes: 
1. If the PC is specified as the register, the results and the next 

instruction executed are UNPREDICTABLE. 

2. The 6-bit displacement operand is contained in bits (5:0) of the 
instruction. 

The following PDP-11 compatibility mode jump and subroutine 
instructions are described in this section. 

JMP dst.aw 

JSR reg, dst.aw 

RTS reg 
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JMP 

JSR 

Jump 

Format: 

opcode dst.aw 

Operation: 

PC ~ dst; 

Condition Codes: 

N ~ N; 

Z ~ Z; 

v ~ v; 
C ~ C; 

Exceptions: 
compatibility mode illegal instruction 

Opcode (octal): 

0001 JMP Jump 

Description: 
The PC is replaced by the destination operand. The instruction is 
single operand format with address mode specifier. See Figure 9.2. 

Note: 
A compatibility mode illegal instruction fault occurs if destination mode 
o is used. 

Jump to Subroutine 

Format: 

opcode reg. dst.aw 

Operation: 

tmp ~ dst; 

- (SP) ~ Rn; 

Rn ~ PC; 

PC ~ tmp; 

Value of Rn is affected by 

dst specifier evaluation. 
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Condition Codes: 

N ~ N' 

Z ~ Z· 

v ~ v; 
C ~ C; 

Exceptions: 
compatibility mode illegal instruction 

Opcode (octal): 

004 JJSR Jump to Subroutine 

Description: 
The source register is pushed on the stack, and the source register is 
replaced by the PC. The PC is replaced by the destination operand. 
The instruction is double operand format with register and address 
mode specifier. See Figure 9.2. 

Notes: 
1. A compatibility mode illegal instruction fault occurs if destination 

mode 0 is used. 

2. If the destination uses the same register as the source in the 
autoincrement or autodecrement addressing modes, the updated 
contents of the register are pushed on the stack. 

Return from Subroutine 

Format: 

opcode reg 

Operation: 

PC ~ Rn; 

Rn ~ (SP) +; 

Condition Codes: 

N ~ N; 

Z ~ z; 

v ~ v; 
C ~ c; 

Exceptions: 
none 
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Return from 
Interrupts and 
Traps 

RTI 

RTT 

Opcode (octal): 

00020 RTS Return from Subroutine 

Description: 
The PC is replaced by the destination register. The destination 
register is replaced by a word popped from the stack. The instruction 
is single operand format with register specifier. See Figure 9.2. 

The following PDP-11 compatibility mode return-from-interrupts and 
return-from-trap instructions are described in this section. 

RTI 

RTT 

Return from Interrupt 

Return from Trap 

Format: 

ope ode 

Operation: 

PC ~ (SP) +; 

PSW(4:0) ~ {(SP) +}(4:0); 

Condition Codes: 

N ~ saved 

Z ~ saved 

V ~ saved 

C ~ saved 

Exceptions: 
none 

PSW(3) ; 

PSW(2); 

PSW(l) ; 

PSW(O) ; 

Opcodes (octal): 

000002 RTI Return from Interrupt 

000006 RTT Return from Trap 
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Description: 
The PC is replaced by the first word popped from the stack. The low 
five bits of the PSW are replaced by the corresponding bits of the 
second word popped from the stack. The instruction is zero operand 
format. See Figure 9.2. 

Notes: 
1. In compatibility mode, the RTI and RTT instructions ignore the high 

11 bits of the PSW popped from the stack. 

2. In compatibility mode, the RTI and RTT instructions are identical. 

The following miscellaneous PDP-11 compatibility mode instructions 
are described in this section. 

MTP{I,D} dst.ww 

MFP{I,D} src.rw 

NOP 

ClC 

ClV 

Move To Previous Space 

Format: 

opcode dst.ww 

Operation: 

tmp <E--- (SP) +; 

dst <E--- tmp; 

Condition Codes: 

N <E--- dst LSS 0; 

Z <E--- dst EQL 0; 

V <E--- 0; 

c <E--- C; 

Exceptions: 

none 

Opcodes (octal): 

ClZ SEV 

ClN SEZ 

CCC SEN 

SEC SCC 

!Pop source from stack (updating SP) 

!Write source to destination 

0066 MTPI Move To Previous Instruction Space 

1066 MTPD Move To Previous Data Space 
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CC 

Description: 
In compatibility mode, this PDP-11 instruction works like a POP 
instruction. The destination operand is replaced by a word popped 
from the stack. The instruction is single operand format with address 
mode specifier. See Figure 9.2. 

Note: 
The implied source operand specifier is evaluated before the 
destination specifier. 

Move From Previous Space 

Format: 

opcode src.rw 

Operation: 

- (SP) ~ src; 

Condition Codes: 

N ~ src LSS 0; 

Z ~ src EQL 0; 

V ~ 0; 

C ~ c; 

Exceptions: 
none 

Opcodes (octal): 

0065 MFPI Move From Previous Instruction Space 

1065 MFPD Move From Previous Data Space 

Description: 
In compatibility mode, this PDP-11 instruction works like a PUSH 
instruction. The source operand is pushed onto the stack. The 
instruction is single operand format with address mode specifier. See 
Figure 9.2. 

Condition Code Operators 

Format: 

opcode mask 
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Operation: 

if mask(4) EQL 1 then PSW(3: 0) ~ PSW(3: 0) OR mask(3: 0) 

else PSW(3:0) ~ PSW(3:0) AND {NOT mask(3:0)}; 

Condition Codes: 

if mask(4) EQL 1 then 

begin 

N ~N OR mask(3); 

Z ~Z OR mask(2) ; 

V ~V OR mask(l) ; 

C ~ C OR mask(O); 

end 

else 

begin 

N ~N AND {NOT mask(3)}; 

Z ~Z AND {NOT mask(2)}; 

V ~V AND {NOT mask(l)}; 

C ~ C AND {NOT mask(O)}; 

end 

Exceptions: 
none 

Opcodes (octal): 

000240 NOP No operation 

000241 CLC Clear C 

000242 CLV Clear V 

000244 CLZ Clear Z 

000250 CLN Clear N 

000257 CCC Clear all Condition Codes 

000261 SEC Set C 

000262 SEV Set V 

000264 SEZ Set Z 

000270 SEN Set N 

000277 SCC Set all Condi tion Codes 

Combinations of the above set or clear operations may be ORed 
together to form combined instructions. 
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Description: 
If the mask(4) bit is set, the PSW condition code bits are ORed with 
mask(3:0) and the condition codes are replaced by the result. If 
the mask(4) bit is clear, the PSW condition code bits are ANDed with 
the one's complement of mask(3:0) and the condition codes are 
replaced by the result. The instruction is zero operand format. See 
Figure 9.2. Bits (4:0) of the opcode are used as the mask operand. 

Compatibility mode is entered by executing an REI instruction with the 
compatibility mode bit set in the PSL on the stack. Other bits in the 
PSL either have the effects they have in native mode or are required 
to have specific values in compatibility mode. PSL(TP), (T), (N), (Z), 
N), and (C) have the same effects and meanings as they have in 
native mode. PSL(FPD), (IS), (IPL), (IV), (FU), (DV) must be 0, and 
(CUR-MOD) and (PRV-MOD) must be 3. 

VAX native mode is returned to from compatibility mode by the 
compatibility mode program causing an exception, or by an interrupt. 

Note that when an RTI or RTT instruction is executed in compatibility 
mode, the 11 high bits of the PSW are ignored. But when the PSW 
is restored as part of the PSL when going from VAX native mode 
to compatibility mode, those bits must be 0, or a reserved operand 
fault occurs. 

Compatibility mode registers RO through R6 are bits (15:0) of VAX 
general registers RO through R6, respectively. Compatibility mode 
register R7 (PC) is bits (15:0) of VAX general register R15 (PC). VAX 
registers R8 through R14 (SP) are not affected by compatibility 
mode. When entering compatibility mode, VAX register R7 and the 
upper halves of registers RO through R6 and R15 are ignored. When 
an exception or interrupt occurs from compatibility mode, VAX register 
R7 is UNPREDICTABLE and the upper halves of RO through R6 are 
either cleared or left unchanged; the upper half of the stacked R15 
(PC) is zero. Since there are no FP11 floating-point instructions in 
compatibility mode, there are no floating accumulators. 

PDP-11 addresses are 16-bit byte addresses. Hence, compatibility 
mode programs are confined to execute in the first 64K bytes of the 
per-process part of the virtual address space. A one-to-one corre­
spondence exists between a compatibility mode virtual address and 
its VAX counterpart. (Virtual address 0, for example, references 
the same location in both modes.) A compatibility mode address is 
interpreted in the following paragraphs as a native mode address by 
appending zero in bits (31 :16) to the compatibility mode address in 
bits (15:0). 
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PDP-11 segments can consist of 1 to 128 blocks of 64 bytes. VAX 
pages are 512 bytes long. The PDP-11 capability of providing different 
access protection to different segments is provided in 8-block chunks 
since protection is specified at the page level in the VAX architecture. 

The memory management system protects and relocates compatibility 
mode addresses in the normal native mode manner. Thus, all of the 
memory management mechanisms available in VAX mode are 
available to the compatibility mode executive for managing both the 
virtual and physical memory of compatibility mode programs. All of the 
exception conditions that can be caused by memory management in 
VAX mode can also occur when relocating a compatibility mode 
address. See Chapter 4. 

All interrupts and exception conditions that occur while the processor 
is in compatibility mode cause the processor to enter VAX mode. 
These conditions are serviced as indicated in Chapter 5 (note that this 
includes backing up instruction side effects if necessary). The 
exception conditions discussed in this section are specific to compati­
bility mode. All these exceptions create a three-Iongword frame on the 
kernel stack containing PSL and PC,and one longword of exception­
dependent information. Bits (15) through (0) of this longword contain a 
code indicating the specific type of exception, and bits (31) through 
(16) are zero. There are no compatibility mode exception conditions 
that result in traps. (See Chapter 5 for definitions of trap, fault, and 
abort.) 

An odd address error abort is caused in compatibility mode whenever 
a word reference is attempted on a byte boundary. The code for odd 
address errors is 6. 

The following paragraphs give the compatibility mode instruction faults 
and their corresponding code numbers. 

Reserved Instruction Fault-A reserved instruction fault occurs for 
opcodes that are defined as reserved in compatibility mode (see the 
section "Instructions" earlier in this chapter). The code for the 
reserved instruction fault is O. 

BPT Instruction Fault-The code for the BPT instruction fault is 1. 

lOT Instruction Fault-The code for the lOT instruction fault is 2. 

EMT Instruction Fault-The fault code for the group of EMT instructions 
is 3. 

VAX Architecture Reference Manual 



TRACING IN 
COMPATIBILITY 
MODE 

TRAP Instruction Fault-The fault code for the group of TRAP 
instructions is 4. 

Illegal Instruction Fault-In compatibility mode, JMP and JSR 
instructions with a register destination are illegal. The fault code for 
illegal instructions is 5. 

In compatibility mode, a trace fault occurs at the beginning of an 
instruction when the T-bit is set in the PSW at the beginning of the 
prior instruction. This effect is achieved by using the TP bit in the PSL 
(see Chapter 5). On trace faults, a two-Iongword kernel stack frame 
is created, containing PSL and PC. IPL and IS are 0 and CM is 1 
in the stacked PSL. Compatibility mode trace fault uses the same 
vector as VAX mode trace fault (see Chapter 5). The rules for trace 
fault generation in compatibility mode are identical to those for native 
mode. However, an odd address abort for an instruction fetch may 
precede the trace fault for that instruction. 

There are two ways to get the T-bit set at the beginning of a 
compatibility mode instruction: 

• An RTT or RTI instruction is executed in compatibility mode with the 
T-bit set in the PSW image on the stack. In this case, the next 
instruction is executed (the 1 pointed to by the PC on the stack), 
and a trace fault is taken before the following instruction . 

• An REI instruction is executed in VAX mode which has both the 
T-bit and CM bit set (and TP clear) in the saved PSL image on the 
stack. Again, one instruction is executed, and the trace fault is 
taken. (See Chapter 5 for a complete description of the interaction 
of REI, T-bit, and TP bit. The operations that occur as a function of 
these conditions are the same whether or not compatibility mode 
is being entered from the REI.) 

The T-bit interacts with other compatibility mode operations as 
follows. For interaction with other than compatibility mode, see 
Chapter 5. 

1. T-bit is set (but TP is clear) at the beginning of any compatibility 
mode instruction that does not cause a compatibility mode fault. 

In this case, the instruction sets TP and executes. A trace fault is 
taken before the next instruction. The saved PSL has the T-bit set 
and TP clear. The compatibility mode executive can take one of 
the following courses of action: 

a. If it services the exception directly, it can clear the T-bit in the 
saved PSL on the kernel stack if it no longer wants to trace the 
program; or it can leave it set if it wants to continue tracing 
the program. It exits with an REI. 
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b. If it returns the trace exception to compatibility mode, it pushes 
a (16-bit) PC and (16-bit) PSW with the T-bit set on the 
compatibility mode user stack to simulate the effect of the 
PDP-11 trace trap. It then clears the T-bit in the saved PSL 
image on the kernel stack, changes the saved PC to point to 
the compatibility mode service routine, and does an REI. 
The compatibility mode service routine can then clear the T-bit 
in the PSW image on its stack if it does not want to continue 
tracing. The compatibility mode routine'returns with RTT or 
RTI. 

2. T-bit is set (but TP is clear) at the beginning of an RTI or RTT. 

The RTT or RTI instruction executes, and TP is set. A trace fault 
occurs before the next instruction is executed. Two different cases 
exist depending on whether or not the T-bit was set in the image of 
the PSW which was popped from the stack by the RTT or RTI 
instruction: 

a. T-bit is not set. Neither TP nor T will be set in the saved PSL 
on the kernel stack. 

b. T-bit is set. TP will not be set, and T will be set, as is the case 
for other compatibility mode instructions. 

3. T-bit is set (but TP is clear) at the beginning of any instruction 
which causes a compatibility mode fault. 

The fault condition is serviced first. TP is clear and T is set in the 
saved PSL pushed on the kernel stack. 

Several traps that occur in PDP-11 systems are not implemented in 
compatibility mode: 

• There is no stack overflow trap. This is equivalent to the user mode 
of the KT11 where there is also no overflow protection. Stack 
overflow can be provided by the compatibility mode executive using 
the memory management mechanisms. 

• There is no concept of a double error trap in compatibility mode, 
since the first error always puts the processor in VAX mode. 

• All other exception conditions such as power failure, memory parity, 
and memory management exceptions cause the processor to 
enter VAX mode. 

Neither instruction stream references nor data reads or writes can 
be to I/O space. The results are UNPREDICTABLE if I/O space 
is referenced from compatibility mode. 

The only processor register available in compatibility mode is part of 
the PSW, and it maybe explicitly referenced only with the condition 
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code instructions, RTI, and RTT. Access to all other registers must be 
done in VAX mode. 

All PDP-11 systems guarantee that read-modify-write operations to 
1/0 device registers are interlocked; that is, the device can determine 
at the time of the read that the same register will be written as the 
next bus cycle. This synchronization also works in memory on most 
PDP-11 systems. In compatibility mode, instructions that have modify 
destinations will perform this synchronization for UNIBUS 1/0 device 
registers and never for memory. 

Compatibility mode procedures can write data that is to be subsequently 
executed as an instruction without requiring any additional 
synchronization. 
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A VAX processor can be in one of five major states: attempting to 
load and start (bootstrap) the operating system, attempting to restart 
the operating system, powered off, halted, or running. This chapter 
describes the processor when it is not running and describes the 
transitions between major states. 

The four major states described in this chapter are differentiated from 
the running state. When the processor is running, it interprets 
instructions, services interrupts and exceptions, and initiates 1/0 
operations. The console acts like a normaloperating system terminal 
(the console is in program 1/0 mode). 

When the processor is halted, it does not interpret instructions, 
service interrupts or exceptions, or initiate 1/0 operations. The console 
interprets a command language that provides control over the system 
(the console is in console 1/0 mode). 

When system power supplies are unable to provide power to the 
processor, the processor halts, and is powered off. 

The console can restart a halted operating system and can also load 
and start (bootstrap) an operating system. How the console handles 
these states is described in the following sections. 

System bootstrap can occur as the result of a powerfail recovery, a 
processor halt, or the operator entering a BOOT command at the 
console. See the section "Major System State Transitions" in this 
chapter for a complete description of these state transitions. 

To prevent repeated attempts and failures to bootstrap or restart the 
operating system, the consolemaintains two flags called the bootstrap­
in-progress flag and the restart-in-progress flag. If a system bootstrap 
or restart would occur automatically but the corresponding flag is 
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already set, the console assumes that an attempt has already been 
made and has failed. The console therefore does not try again. 

To load and start (bootstrap) the operating system, the console 
searches for a section of correctly functioning system memory large 
enough to hold a primary bootstrap program (called VMB). If a section 
of memory is found, the console loads and starts VMB. VMB loads 
and starts the operating system. 

The console uses this algorithm to bootstrap the operating system: 

1. If this bootstrap is the result of a console BOOT command, skip to 
step 4. 

2. Print the message "Attempting system bootstrap" on the console 
terminal. 

3. Check to see if the bootstrap-in-progress flag is set. If so, boot 
fails. 

4. Set the bootstrap-in-progress flag. 

5. Locate a page-aligned 64-kilobyte block of g~od memory. Testing 
memory leaves the contents of memory UNPREDICTABLE. If such 
a block cannot be found, boot fails. 

6. Load a bootstrap program into that good memory, starting 512 
bytes from the beginning. The name of the bootstrap program is 
VMB.EXE. If VMB cannot be found on the load device, or if there 
is an error during loading, boot fails. 

7. Load the general registers: 

RO 

R1 Together, RO through R3 specify a boot device. 

R2 They are interpreted by VMB. 

R3 

R4 Reserved for future use. 

R5 Boot control parameter. Contains the value specifiedby 
the BOOT command, if any; otherwise, zero. 

R6 Reserved for future use. 

R7 Reserved for future use. 

R8 Reserved for future use. 

R9 Reserved for future use. 

R10 The halt PC. 

R11 The halt PSL. 

AP The halt code. 

FP Reserved for future use. 

SP The address of 512 bytes past the start of good memory. 
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8. Start VMB at the address in SP. VMB loads and starts the 
operating system. 

If bootstrap fails, the console prints a message reporting the failure. 
The message may explain the cause of the failure, or it may just 
report "System bootstrap failed." 

If the bootstrap is successful, the operating system sends a message 
to the console, causing the console to clear the bootstrap-in-progress 
flag. See the section on "System Running" for a description of the 
messages the operating system can pass to the console. 

The console can restart a halted operating system. To do so, the 
console searches system memory for the Restart Parameter Block 
(RPB), a data structure constructed for this purpose by the operating 
system. If a valid RPB is found, the console restarts the operating 
system at an address specified in the RPB. 

The console keeps an internal flag called restart-in-progress, which it 
uses to avoid repeated attempts to restart a failing operating system. 
An additional restart-in-progress flag may be maintained by software in 
the RPB. 

A system restart can occur as the result of a powerfail restart, or as 
the result of a processor halt. See the section "Major System State 
Transitions" for a complete description. 

The console uses this algorithm to restart the operating system: 

1. Print the message "Attempting system restart" on the console 
terminal. 

2. Check to see if the internal restart-in-progress flag is set. If so, 
restart fails. 

3. Set the internal restart-in-progress flag. 

4. Check to see if memory has been preserved by battery backup. If 
not, restart fails. 

5. Look for an RPB left in memory by the operating system. If none is 
found, restart fails. 

6. Read the software restart-in-progress flag from bit (0) of the fourth 
longword of the RPB. If it is set, restart fails. 

7. Load SP with the address of the RPB plus 512. 

Boad AP with the halt code. 

9. Start the processor at the restart address, which is read from the 
second longword in the RPB. 
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physical address of the RPB 

physical address of the restart routine 

checksum of the first 31 longwords of the restart routine 

software restart in progress flag (bit 0) 

Figure 10.1 
Restart Parameter Block (RPB) 

:RPB 

If restart fails, the console prints a message reporting the failure. The 
message may explain the cause of the failure, or it may just report 
"System restart failed." 

If the restart is successful, the operating system sends a message to 
the console, causing the console to clear its internal restart-in­
progress flag. See the section "System Running" later in this chapter 
for a description of the messages the operating system can pass to 
the console. 

The RPB is a page-aligned control block created by the operating 
system. Its format is this shown in Figure 10.1. 

The console uses this algorithm to find an RPB: 

1. Search for a page of memory that contains its address in the first 
longword. If none is found, the search for an RPB has failed. 

2. Read the second longword in the page (the physical address of the 
restart routine). If it is nota valid physical address, or if it is 0, 
return to step 1. The check for 0 is necessary to ensure that 
a page of zeros does not pass the test for a valid RPB. 

3. Calculate the 32-bit two's complement sum (ignoring overflows) of 
the first 31 longwords of the restart routine. If the sum does not 
match the third longword of the RPB, return to step 1. 

4. A valid RPB has been found. 

The system requires power to operate. The system power supply 
conditions external power and transforms it for use by the processor. 
When external power fails, the power supply requests a powerfail 
interrupt of the processor. The power supply continues to provide 
power to the processor for at least 2 milliseconds after the interrupt is 
requested in order to allow the operating system to save state. 
When the power supply can no longer provide power to the processor, 
the processor is halted and powered off. Battery backup options are 
available on some processors to supply power after external power 
fails, to maintain the contents of main memory, and to keep system 
time with the time-of-day clock. 
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When power is restored, the console initializes itself, initializes the 
processor, and examines the front panel console-lock and auto restart 
switches. If the console is locked, it attempts a system restart; if that 
fails, it attempts a system bootstrap. If the console is not locked, its 
action is determined by the setting of the auto restart switch. 

Note that when the processor loses power, its state is lost. For 
example, if a processor is halted when power fails, the action on 
power-up is still determined by the front panel switches. So the 
system does not necessarily stay halted. 

When power is restored, the processor initializes itself. There are 
three kinds of hardware initialization called processor initialization, 
system bus initialization, and power-up initialization. Processor 
initialization is the result of a console INITIALIZE and involves the 
initialization of registers internal to the processor and the console. 
System bus initialization is the result of a console UNJAM command 
and is implementation-dependent. Power-up initialization affects the 
system as a whole. It is the result of the restoration of power, and 
includes a processor initialization. 

The processor must be initialized after an error halt. If the processor 
starts running after an error halt, without an intervening processor 
initialization, the operation of the processor is UNDEFINED. 

The following processor registers are affected by a processor 
initialization. Registers not listed here are UNPREDICTABLE after a 
processor initialization. 

PSL 

IPL 

ASTLVL 

SISR 

ICCS 

RXCS 

TXCS 

MAPEN 

PME 

ACCS 

cache, instruction buffer, write 
buffer, etc. 

System Bootstrapping and Console 

041 FOOOO (hex) 

1 F (hex) 

4 

o 
(6) and (0) clear, the rest is 
UNPREDICTABLE 

o 
80 (hex) 

o 
o 
o if no accelerator; 8001 (hex) if 
a floating-point accelerator is 
installed 

empty or valid 
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console previous reference 

KSP, ESP, SSP, USP, ISP 

POBR, POLR, P1BR,P1LR 

SBR,SLR 

PCBB 

SCBB 

translation buffer 

NICR,ICR 

TODR 

main memory 

registers RO through PC 

halt code 

bootstrap-in-progress flag 

restart-in-progress flag 

physical address, longword 
size, address 0 

UNPREDICTABLE 

UNPREDICTABLE 

UNPREDICTABLE 

UNPREDICTABLE 

UNPREDICTABLE 

UNPREDICTABLE 

UNPREDICTABLE 

unaffected 

unaffected 

unaffected 

unaffected 

unaffected 

unaffected 

In addition to what processor initialization does, power-up initializes 
the following: 

bootstrap-in-progress flag 

internal restart-in-progress flag 

halt code 

general registers 

system memory 

TODR 

cleared 

cleared 

03 (power-up) 

UNPREDICTABLE 

unaffected if preserved by 
battery backup; otherwise, 
UNPREDICTABLE 

unaffected if preserved by 
batterybackup; otherwise, 0 

The transitions between major system states are determined by the 
current state and by a number of variables and events, including: 

• Whether power is available to the system 

• The console front panel autorestart switch 

• The console lock switch 

• The bootstrap-in-progress flag 

• The restart-in-progress flag 

• Processor error halts 

• The HALT instruction 

• Console commands. 

Table 10.1 shows the actions that cause major system state transitions. 
The processor follows these rules: 
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Table 10.1 
Major System State Transitions 

Initial 
State 

Powered 
Off 

Halted 

Booting 

Restart 

Running 

Key: A 
B 
C 

D 

Final State 

Powered 
Off Halted Booting Restarting Running 

A and power B and power C and power 
restored restored restored 

powerfail BOOT START or 
command and CONTINUE and 
unlocked unlocked 

powerfail boot fails, or D boot succeeds 

powerfail D restart fails restart succeeds 

powerfail A and processor B and processor C and processor 
halts, or D halts halts 

The console is unlocked and the halt action switch is set to Halt. 
The console is unlocked and the halt action switch is set to Boot. 
The console is unlocked and the halt action switch is set to Restart, or the console 
is locked. 
The console is unlocked, and the operator types CTRLlP and HALT. 

• If the console is not locked when power is restored or when the 
processor halts, enter the state selected by the console front panel 
auto restart switch. 

• If the console is locked when power is restored or when the 
processor halts, attempt a system restart. 

• When system restart fails, attempt a system bootstrap. 

• When system bootstrap fails, halt. 

• When system bootstrap or system restart succeed, the processor 
starts running. 

• When the processor is halted and the console is not locked, the 
console BOOT command causes a system bootstrap. 

• When the processor is halted and the console is not locked, the 
console START and CONTINUE commands cause the processor to 
start running. 

• If the console is not locked and is running or booting or restarting, 
typing CTRLlP followed by a HALT command at the console 
halts the processor. 

SYSTEM 
HALTED 
(CONSOLE I/O 
MODE) 

Included in this section about the system-halted state are descriptions 
of the console; command syntax, keywords, language subsets; 
errors and error messages; and halt and halt messages. 

Console Traditionally, computers have had a panel of lights and switches on 
the front for pro~essor diagnosis and for operation of standalone 

System Bootstrapping and Console 339 



Special 
Characters 

340 

programs. On VAX, this function is provided by an ASCII console 
through which the operator controls the processor. The ASCII console 
may be envisioned as a virtual console processor attached to the 
main processor, to a console terminal, and to a console file-storage 
device. Note that the console processor need not be physically 
separate from the main processor. It may be implemented in main 
processor microcode, as in the VAX-11/750 computer system. 
The console processor interprets commands typed on the console 
terminal and controls the operation of the main processor. 

Through the console terminal, an operator can boot the operating 
system, a field service engineer can maintain the system, and a 
system user can communicate with running programs. Sophisticated 
users may also use the console for developing software. 

The processor can halt as the result of an operator command, a 
serious system error, a HALT instruction, or a powerfail recovery. 
(See the section "Major System State Transitions" earlier in this 
chapter for a complete description.) When the processor is halted, the 
operator controls the system through the console command language. 
The console is in console 1/0 mode. The console prompts the 
operator for input with the string of right angle brackets 0»). 

It may be possible for the operator to put the system in an inconsistent 
state through the use of the console commands. For example, it may 
be possible to use the console to set bits in MBZ fields or to set 
conflicting control bits. The operation of the processor in such a state 
is UNDEFINED. 

In console 1/0 mode, several characters have special meanings. 
Some of these characters are produced by pressing a single key, 
while others, like the control characters, are produced by pressing the 
character while simultaneously pressing the control key (CTRL) . 

• Carriage return-Typing a carriage return ends a command line. No 
action is taken on a command until after it is terminated by a 
carriage return. A null line terminated by a carriage return is treated 
as a valid, null command. No action is taken, and the console 
again prompts for input. Carriage return is echoed as carriage return, 
line feed. 

• Rubout-When the operator types rubout, the console deletes the 
character that the operator previously typed. The console echoes 
with a backslash (I), followed by the character being deleted. If the 
operator types additional rubouts, the additional characters deleted 
are echoed. When the operator types a non-rubout character, the 
console echoes another backslash, followed by the character typed. 

VAX Architecture Reference Manual 



The result is to echo the characters deleted, surrounding them with 
backslashes. For example: 

The operator types: EXAMI;E(rubout)(rubout)NE(CR) 

The console echoes: EXAMI;E\E;\NE(CR) 

The console sees the command line: EXAMINE(CR) 

The console does not delete characters past the beginning of a 
command line. If the operator types more rubouts than there are 
characters on the line, the extra rubouts are ignored. If a rubout is 
typed on a blank line, it is ignored. 

o CTRUU-The console echoes /\U and deletes the entire line. If 
CTRUU is typed on an empty line, it is echoed; otherwise, it is 
ignored. The console prompts for another command. 

o CTRUS-Typing CTRUS stops console transmissions to the 
console terminal until CTRUQ is typed. Additional input between 
CTRUS and CTRUQ is buffered as input but not echoed until 
CTRUQ is typed. CTRUS typed again before the CTRUQ is 
ignored. CTRUS and CTRUQ are not echoed. 

o CTRUo-Typing CTRUQ resumes console transmissions stopped 
by CTRUS. Additional typing of CTRUQ is ignored. CTRUS and 
CTRUQ are not echoed. 

o CTRUO- Typing CTRUO causes the console to throwaway 
transmissions to the console terminal until the next CTRUO is 
entered. CTRUO is echoed as /\O(CR) when it disables output; it is 
not echoed when it reenables output. Output is reenabled if the 
console prints an error message or if it promptsfor a command from 
the terminal. Reading a command from a command file and 
displaying a REPEAT command do not reenable output. When 
output is reenabled for reading a command, the console prompt is 
displayed. Output is also enabled by entering program 1/0 mode by 
CTRUP and by CTRUC. 

o CTRUC-Typing CTRUC causes the console to echo /\C and to 
abort processing of a command. CTRUC has no effect as part of a 
binary load data stream. CTRLlC reenables output stopped by 
CTRUO. When CTRUC is typed as part of a command line, the 
console deletes the line as it does with CTRUU. 

o CTRUP-If the console is in console 1/0 mode, CTRUP is equivalent 
to CTRUC and is echoed as /\p. If the console is in program 1/0 
mode and is locked, CTRUP is not echoed but is passed to the 
operating system like any other character. If the console is in 
program 1/0 mode and is not locked, CTRUP is not echoed but 
causes the processor to enter console 1/0 mode. It is UNPREDICT­
ABLE whether CTRUP also causes the processor to halt. HALT 
must subsequently be typed to halt the processor. 
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If an unrecognized control character is typed (a control character here 
means a character with an ASCII code less than 32 decimal), it is 
echoed as caret followed by the character with ASCII code 64 
greater. For example, BEL (ASCII code 7) is echoed as G, since 
capital G is ASCII code 7 + 64 = 71. When a control character is 
deleted with rubout, it is echoed the same way. After echoing the 
control character, the console processes it as a normal character. 
Unless the control character is part of a comment, the command will 
be invalid and the console will respond with an error message. 

The response of the console to characters with codes greater than 
127 (decimal) is UNPREDICTABLE. 

The console accepts commands of lengths up to 80 characters. 
Longer commands are responded to with an error message. 

Commands may be abbreviated. Abbreviations are formed by 
dropping characters from the end of a keyword. All commands but 
SET may be unambiguously abbreviated to one character. SET 
cannot be abbreviated to less than two characters, since it then 
conflicts with START. The console verifies all characters typed in a 
command, even when they are not needed to uniquely identify the 
command. 

Multiple adjacent spaces and tabs are treated as a single space by 
the console. Leading and trailing spaces and tabs are ignored. 

Command qualifiers can appear after the command keyword, or after 
any symbol or number in the command. 

All numbers (addresses, data, counts) are in hexadecimal. (Note, 
though, that symbolic register names include decimal digits.) Hex digits 
are 0 through 9, and A through F. The console does not distinguish 
between upper- and lowercase either in numbers or in commands. 
Both are accepted. 

Following is a list of processor control, data transfer, and console 
control command keywords. These commands are described in the 
next section of this chapter. 

Processor Control Commands 

INITIALIZE 

ST ART(address) 

CONTINUE 
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HALT 

BOOT (device) 

NEXT (count) 

MICROSTEP (count) 

UNJAM 

Data Transfer Commands 

EXAMINE (address) 

DEPOSIT (address) (data) 

LOAD (file) 

X (address) (count) 

Console Control Commands 

FIND 

REPEAT (command) 

SET (parameter) (value) 

TEST 

@ (file) 

! (comment) 

BOOT 

The device specification is of the format "ddan," where "dd" is a two­
letter device mnemonic, "a" is an optional alphabetic adapter identifier, 
and "n" is a one-digit unit number 

The console initializes the processor and starts VMB running. (See 
the section "System Bootstrapping" earlier in this chapter.) VMB 
boots the operating system from the specified device. The default 
device is implementation dependent. 

Format: 

BOOT [(qualifier list)] [(device)] 

Qualifier: 

/ 
R5: (data) 

After initializing the processor and before starting 
VMB, RS is loaded with the specified data. This 
allows a command file containing a BOOT command 
or a console user to pass a parameter to VMB. 

CONTINUE 

The processor begins instruction execution at the address currently 
contained in the program counter. Processor initialization is not 
performed. The console enters program I/O mode. 
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DEPOSIT 

The command deposits the data into the address specified. If no 
address space or data size qualifiers are specified, the defaults are 
the last address space and data size used in a DEPOSIT or EXAMINE 
command. After processor initialization, the default address space is 
physical memory, the default data size is long, and the default 
address is zero. 

If the specified data is too large to fit in the data size to be deposited, 
the console ignores the command and issues an error response. If 
the specified data is smaller that the data size to be deposited, it 
is extended on the left with zeros. 

Format: 

DEPOSIT [(qualifier list) 1 (address) (data) 

Qualifiers: 
18 
IW 
IL 
Iv 

IP 
II 

IG 

1M 

Ie 
IU 

IN:(count) 

The data size is byte. 

The data size is word. 

The data size is longword. 

The address space is virtual memory. All access 
and protection checking occur. If the access would 
not be allowed to a program running with the 
current PSL, the console issues an error message. 
This includes refusing odd address references if 
PSL(CM) is set. Virtual space DEPOSITs cause the 
PTE(M) bit to be set. If memory mapping is not 
enabled, virtual addresses are equal to physical 
addresses. 

The address space is physical memory. 

The address space is internal processor registers. 
These are the registers addressed by the MTPR 
and MFPR instructions. 

The address space is the general register set, RO 
through PC. 

(Optional.) The address space is machine­
dependent. 

The address space is microcode memory. 

(Optional.) The address space is console micro­
processor memory. 

The address is the first of a range. The console 
deposits to the first address, then to the specified 
number of succeeding addresses. Even if the 
address is the symbolic address" -", the succeed-
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For example: 

ing addresses are at larger addresses. The 
symbolic address specifies only the starting 
address, not the direction of succession. For 
repeated references to preceding addresses, use 
"REPEAT DEPOSIT - (data)." 

D/P/B/N:1FF 0 0 Clears the first 512 bytes of physical 
memory. 

D/V/L/N:3 1234 5 

D/N:8 RO FFFFFFFF 

D/N:200 - 0 

Deposits "5" into four longwords in virtual 
memory. 

Loads general registers RO through R8. 

Clears the previous address, then the next 
512. 

If conflicting address space or data sizes are specified, the console 
ignores the command and issues an error response. 

The address may also be one of the following symbolic addresses: 

PSL The processor status longword. No address space qualifier 
is legal. When PSL is examined, the address space is 
identified as M (machine dependent). 

PC program counter (general register 15). The address space 
is set to IG. 

SP The stack pointer (general register 14). The address space 
is IG. 

Rn General register n. The register number is in decimal. The 
address space is IG. For example: 

D R5 1234 is equivalent to DIG 5 1234 

D R10 6FFOO is equivalent to DIG A 6FFOO 

Plus sign ( + )-The location immediately following the last location 
referenced in an examine or deposit. For references to physical 
or virtual memory spaces, the location referenced is the last address, 
plus the size of the last reference (1 for byte, 2 for word, 4 for long). 
For other address spaces, the address is the last addressed 
referenced, plus one. 

Minus sign (- )-the location immediately preceding the last location 
referenced in an EXAMINE or DEPOSIT. For references to physical 
or virtual memory spaces, the location referenced is the last address 
minus the size of this reference (1 for byte, 2 for word, 4 for long). For 
other address spaces, the address is the last addressed referenced 
minus one. 

Asterisk (*)-the location last referenced in an examine or deposit. 
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At sign (@)-the location addressed by the last location referenced in 
an examine or deposit. 

EXAMINE 

This command examines the contents of the specified address. If no 
address is specified, The plus sign ( +) is assumed. The same 
qualifiers may be used on EXAMINE as may be used on DEPOSIT. 
The address may also be one of the symbolic addresses described 
under DEPOSIT. 

Format: 

EXAMINE [(qualifier list>] [(address)] 

Response: 

(tab)(address space identifier) (address) (data) 

The address space identifier can be: 

P Physical memory. Note that when virtual memory is 
examined, the address space and address in the 
response are the translated physical address. 

G 

I 

M 

c 
u 

FIND 

General register. 

Internal processor register. 

Machine-dependent address space. When the PSL 
is examined, the address space identified is machine 
dependent. 

Microcode memory. 

(Optional.) Console microprocessor memory. 

The console searches main memory starting at address zero for a 
page-aligned 64-kilobyte block of good memory, or a restart parameter 
block (RPB). If the block is found, its address plus 512 is left in SP. If 
the block is not found, an error message is issued, and the contents 
of SP are UNPREDICTABLE. If no qualifier is specified, IRPB is 
assumed. 

Format: 

FIND [(qualifier list)] 

Qualifiers: 

MEMORY Search memory for a page-aligned block of good 
memory, 64 kilobytes in length. Since the search may 
include a read and write test of memory, the search 
leaves the contents of memory UNPREDICTABLE. 
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IRPB Search memory for a restart parameter block. See the 
section "System Restart" earlier in this chapter for 
the search algorithm. The search leaves the contents 
of memory unchanged. 

HALT 

The processor stops execution of macroinstructions after completing 
the current macroinstruction. Neither processor initialization nor 1/0 
initialization occurs, so 1/0 operations already in progress are 
unaffected. If the processor is already halted, the HALT command has 
no affect. 

On the VAX-11/7S0 and VAX-11/730 systems, the processor is halted 
whenever the console is in console 1/0 mode; the HALT command 
does not affect the processor. On the VAX-111780 system, it is 
possible for the console to be in console 1/0 mode when the processor 
is running. The HALT command causes the VAX-11/780 console to 
halt the VAX-11 1780 processor. 

Response: 

PC = (PC) 

If the processor is already halted, the response is preceded by a halt 
message. 

Message: 
Already halted 

INITIALIZE 

A processor initialization is performed. See the section "System 
Powerfail and Recovery" for initial register contents. 

LOAD 

The console loads data from the specified file into memory. If no 
qualifiers are specified, data is loaded into physical memory starting 
at address O. If an unrecoverable device or memory error occurs 
during the load, the command is aborted and the console issues an 
error message. 

Format: 

LOAD [(qualifier list) 1 (file) 

Qualifiers: 

IS: (address) The data is loaded starting at the specified 
address. 

IC The data is to be loaded into microcode memory. 
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IU 

MICROSTEP 

(Optional.) The data is to be loaded into console 
microprocessor memory. 

The console causes the processor to execute the specified number of 
microinstructions. If no count is specified, 1 is assumed. After the 
last microinstruction is executed, the console enters space-bar-step 
mode. 

In space-bar-step mode, the console executes one microinstreuction 
each time the operator presses the space bar. If the operator presses 
any other key, the console exits space-bar-step mode, then 
processes the character typed. Typing carriage return is the suggested 
means of exiting from space-bar-step mode. 

The operator can use the NEXT command to cause the console to 
finish the macroinstruction executing. 

Format: 

MICROSTEP [(count)] 

Response: 

uPC = (uPC) 

NEXT 

The console causes the processor to execute the specified number of 
macroinstructions. If no count is specified, 1 is assumed. After the 
last macroinstruction is executed, the console enters space-bar-step 
mode. 

In space-bar-step mode, the console executes one macroinstruction 
each time the operator presses the space bar. If the operator presses 
any other key, the console exits space-bar-step mode, then 
processes the character typed. Typing carriage return is the suggested 
means of exiting from space-bar-step mode. 

The NEXT command can be used to finish a macroinstruction partially 
executed by MICROSTEP. This partial execution is counted by 
NEXT as though it were the execution of a full instruction. 

Format: 

NEXT [(count)] 

Response: 

PC = (PC) 

VAX Architecture Reference Manual 



REPEAT 

The console repeatedly displays and executes the specified command. 
The repeating is stopped when the operator types CTRLlC. Any valid 
console command may be specified for this command with the 
exceptions of the REPEAT command and the @ command. If the 
command is REPEAT or @, the results are UNPREDICTABLE. 

Format: 

REPEAT (command) 

Response: 
(dependent upon command specified) 

SET 

Sets the console parameter to the indicated value. The console 
parameters and their meanings are all implementation-dependent. 

Format: 

SET (parameter) (data) 

START 

The console starts instruction execution at the specified address. The 
default address is implementation-dependent. If no qualifier is present, 
macroinstruction execution is started. If memory mapping is enabled, 
macroinstructions are executed from virtual memory. The START 
command is equivalent to a DEPOSIT to PC followed by a CONTINUE. 
No INITIALIZE is performed. 

Format: 

START [(qualifier list)] [(address)] 

Qualifiers: 

Ie 

IU 

TEST 

Microinstruction (rather than macro) execution is 
started. 

(Optional.) Console microprocessor instruction 
execution is started. 

The console executes a self-test. All qualifiers are optional. 

Format: 

TEST [(qualifier list)] 
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UNJAM 

A system bus initialization is performed. The effects of a system bus 
initialization are implementation-dependent. 

The X command is for use by automatic systems communicating with 
the console. It is not intended for use by operators. The console loads 
or unloads (that is, writes to memory or reads from memory) the 
specified number of data bytes, starting at the specified address. If no 
qualifiers specify otherwise, data is transferred to or from physical 
memory. 

If bit (31) of the count is clear, data is to be received by the console 
and deposited into memory. If bit (31) of the count is set, data is to be 
read from memory and sent by the console. The remaining bits in the 
count are a positive number indicating the number of bytes to load 
or unload. 

The console accepts the command upon receiving the carriage return. 
The next byte the console receives is the command checksum, 
which is not echoed. The command checksum is verified by adding all 
command characters, including the checksum (but not including the 
terminating carriage return or rubouts or characters deleted by 
rubout), into an 8-bit register initially set to zero. If no errors occur, the 
result is zero. If the command checksum is correct, the console 
responds with the input prompt and either sends data to the requester 
or prepares to receive data. If the command checksum is in error, 
the console responds with an error message. The intent is to prevent 
inadvertent operator entry into a mode where the console is accepting 
characters from the keyboard as data with no escape sequence 
possible. 

If the command is a load (bit (31) of the count is clear), the console 
responds with the input prompt, then accepts the specified number of 
bytes of data for depositing to memory and an additional byte of 
received data checksum. The data is verified by adding all data 
characters and the checksum character into an 8-bit register initially 
set to zero. If the final contents of the register is non-zero, the data or 
checksum are in error, and the console responds with an error 
message. 

If the command is a binary unload (bit (31) of the count is set), the 
console responds with the input prompt followed by the specified 
number of bytes of binary data. As each byte is sent, it is added to a 
checksum register initially set to zero. At the end of the transmission, 
the two's complement of the low byte of the register is sent. 
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The Indirect 
Command 

If the data checksum is incorrect on a load, or if memory errors or line 
errors occur during the transmission of data, the entire transmission 
is completed and then the console issues an error message. If an 
error occurs during loading, the contents of the memory being loaded 
are UNPREDICTABLE. 

If the console implements SET TERMINAL ECHO and SET TERMINAL 
NOECHO commands, the state of the echo flag is unaffected by the 
X command. Regardless of the flag, echo is suppressed while data 
string and checksums are being received. 

It is possible to control the console through the use of the console 
control characters (CTRUC, CTRUS, CTRUO, etc.) during a binary 
unload. It is not possible during a binary load because all received 
characters are valid binary data. 

Data being loaded with a binary load command must be received by 
the console at a rate of at least one byte per second. If the console 
does not receive a data byte for more than one second, the console 
aborts the transmission by issuing an error message and prompting 
for input. 

The entire command, including the checksum, may be sent to the 
console as a single burst of characters at the console's specified 
character rate. To make this command useful in automated systems, 
the console is able to receive at least 4K bytes of data in a single X 
command. 

Format: 

x [(qualifier list) 1 (address) (count) (CR) (checksum) 

Qualifiers: 
IP 

IC 

IU 

Data is to be read from or written to physical 
memory. 

Data is to be read from or written to microcode 
memory. 

(Optional.) Data is to be read from or written to 
console microprocessor memory. 

The console reads and executes commands from the specified file. 
The commands are displayed on the console terminal as they are 
read. When a BOOT, START, or CONTINUE command is executed, 
putting the console into program 1/0 mode, command file processing 
is suspended. If a "software done" message is received by the 
console (see the section "System Running" later in this chapter) and 
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the processor halts, command file processing is continued. If the 
processor halts before a "software done" message is received by the 
console, the remainder of the command file is ignored. 

Command files can be chained by using another @ command as the 
last command in a file. If an @ command is encountered in the 
middle of a command file, the console executes it but may ignore the 
remainder of the original command file. It is an implementation 
option whether or not the console resumes execution of the original 
command file on completion of the secondary. 

Format: 

@ (file) 

The comment 

The comment is ignored. 

Format: 

! (comme~t) 

To reduce cost, some implementations may not implement the full 
console command set. A subset implementation is defined. 

The commands supported by a subset console are as follows: 

• BOOT (device) 

• CONTINUE 

• DEPOSIT (address) (data) 

• EXAMINE [(address)] 

• INITIALIZE 

• HALT 

• START (address) 

• TEST 

• X (address) (count) 

• ! (comment) 

EXAMINE and DEPOSIT support the qualifiers IB IW IL IP N II IG 
and the symbolic address PSL. 

The control characters supported are carriage return, CTRUP, CTRUS, 
CTRUQ, CTRUU, and rubout. 
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The subset console may perform range checking on addresses and 
data. If it does not, it truncates values that are too large and uses the 
lower digits. 

The subset console may accept only abbreviated commands. It may 
also limit the command length to less than 80 characters. It may 
accept only uppercase commands. Automatic systems communicating 
with a console must limit themselves to the commands in the subset, 
must abbreviate all commands, and must use only uppercase if 
they are to communicate with any console implementation. 

Options Some features are optional, such as the diagnosis mode and the 1M 
and IU qualifiers. These may be implemented by any console, 
even by a subset. 

Errors and The console can issue error messages in response to commands. 
Error Messages The case (uppercase or lowercase) is implementation dependent. 

The console responds to all commands within 1 second. If the 
processor does not respond to a console request, the console issues 
an error message within 1 second. 

The following three messages indicate failure of the requested 
operation. Some implementations may abbreviate some or all of these 
messages to "Can't." 

Can't power up 

File not found 

Reference not 
allowed 

The console microprocessor cannot 
complete its own power-up initialization. 
The state of the console and that of 
the processor is UNDEFINED. 

The file specified in a BOOT, LOAD, or @ 
command cannot be found. 

The requested reference would violate 
virtual memory protection, or the address 
is not mapped, or the reference is 
invalid in the specified address space, or 
the value is invalid in the specified 
destination. 

The messages below are responses to ill-formed commands. Some 
implementations may abbreviate some or all of these messages to 
"Illegal command." 

Illegal command 

Invalid digit 

The command string cannot be parsed. 

A number has an invalid digit. 
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Line too long 

Illegal address 

Value too big 

Conflicting 
switches 

Unknown switch 

Unknown symbol 

The command was too large for the 
console to buffer. The message is issued 
only after receipt of the terminating 
carriage return. 

The address specified falls outside the 
limits of the address space. 

The value specified does not fit in the 
destination. 

For example, two different data sizes are 
specified with an EXAMINE command. 

The switch is unrecognized. 

The symbolic address in an EXAMINE or 
DEPOSIT is unrecognized. 

The following message is produced when a binary transfer command 
is improperly specified. 

Incorrect checksum The command or data checksum of an X 
command is incorrect. If the data 
checksum is incorrect, this message is 
issued and is not abbreviated to "Illegal 
command." 

The following message is produced when a HALT command is given 
to the console and the processor is already halted. 

Already halted The operator entered a HALT command 
and the processor was already halted. 

Some console commands may result in errors. For example, if a 
memory error occurs as the result of a console command, the console 
will respond with an error message. Such errors do not affect the 
halted program. Specifically, the processor stays halted, and if it is 
started later, no exception or interrupt occurs as the result of the 
console error. 

Whenever the processor halts, the console prints the response 
"PC = "(PC). Except when the halt was requested by a console 
HALT command or by a NEXT command, the response is preceded 
by a halt message. For example: 

?06 HALT executed 

PC = 80005003 

The number preceding the halt message is the halt code, and is 
passed to the operating system on a restart. Halt code 03 does not 
have a corresponding message. It is passed by the console during 
powerfail restart. 
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The halt messages are: 

700 CPU halted 

701 Microverify 
complete 

702 CPU halted 

03 

704 I-stack not 
valid 

705 CPU double 
error 

706 HALT executed 

707 Invalid SCB 
vector 

708 No user WCS 

709 Error pending 
on halt 

70A CHM from 
I-stack 

70B CHM to inter­
rupt stack 

70C SCB read 
error 

The operator entered a HALT command 
while the processor was running, so 
the console halted the processor. 

The console quick-verify completed 
successfu Ily. 

The operator typed CTRLlP while the 
console was in program liD mode. The 
console was not locked, and the console 
halted the processor. 

Halt code 03 does not appear in a halt 
message but is passed by the console on 
powerfail restart. 

In attempting to push state onto the 
interrupt stack during an interrupt or 
exception, the processor discovered that 
the interrupt stack was mapped NO 
ACCESS or NOT VALID. 

The processor attempted to report a 
machine-check to the operating system, 
and a second machine-check occurred. 

The processor executed a HALT instruc­
tion in kernel mode. 

The vector had bits (1 :0) set. 

An SCB vector had bits (1 :0) equal to 2, 
and no user writable control store was 
installed. 

The processor was halted (by CTRLlP) 
before it could perform an error halt. 

A change mode instruction was executed 
when PSL(IS) was set. 

The exception vector for a change mode 
had bit (0) set. 

A hard memory error occurred while the 
processor was trying to read an exception 
or interrupt vector. 
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When the processor is running, the console is in program 1/0 mode. 
In this mode, all terminal interaction is handled by the operating 
system. The console terminal becomes like any other operating 
system terminal and passes through all characters (except for 
CTRUP). If the console is locked, even CTRLlP is passed through. If 
the console is not locked, CTRUP causes the processor to halt and 
the consoleto enter console I/O mode. 

The console is accessed by the operating system through four 
internal processor registers. Two are associated with passing informa­
tion from the console to the processor (receive registers) and two 
with passing information from the processor to the console (transmit 
registers). In each direction, there is a control and status register and 
a data buffer register. The registers are shown in Figure 10.2. The 
fields of the registers are described in Table 10.2. 

31 8765 0 

MBZ FH MBZ 

Console Receive Control and Status Register (RXCS) 

31 1211 8 7 0 

reserved I 10 I data I 
Console Receive Data Buffer Register (RXDB) 

31 8765 0 

MBZ 

Console Transmit Data Buffer Register (TXDB) 

31 12 11 8 7 o 
reserved I 10 I data 

Console Transmit Control and Status Register (TXCS) 

Figure 10.2 
Four Console Terminal Registers 
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Table 10.2 
Fields of the Console Terminal Registers 

Name Extent Description 

RXCS Register Fields 
ready (7) 

interrupt enable (6) 

RXDB Register Fields 

error (15) 

Cleared by processor initialization and by 
reading RXDB. When Ready is clear, RXDB 
is UNPREDICTABLE. When Ready is set, 
RXDB contains valid data to be read. 

Read/write .. Cleared by processor initialization 
and by being written zero. If interrupt enable 
is set by software while RXDB Ready is 
already set, or if ready is set by the console 
while Interrupt enable is already set, then 
an interrupt is requested at IPL 14 (hex). That 
is, an interrupt is requested whenever the 
function [interrupt enable AND ready] changes 
from 0 to 1. 

An error occurred while receiving data, such 
as data overrun or loss of carrier. Cleared by 
processor initialization and by reading from 
RXDB. 

identification (11 :8) If zero, then data is from the console terminal. 
If nonzero, then the rest of the register is 
implementation dependent. Cleared by 
processor initialization and by reading from 
RXDB. 

data (7:0) Data from the console terminal (if ID is zero). 

TXCS Register Fields 

ready (7) 

interrupt enable (6) 

TXDB Register Fields 

identification (11 :8) 

UNPREDICTABLE unless RXCS ready is set. 

Read only. Set by processor initialization. 
Ready is clear when the console terminal is 
busy writing a character written to TXDB. 
Ready is set when the console terminal 
is ready to receive another character. 

Read/write. Cleared by processor initialization 
and by being written clear. If interrupt-enable 
is set when ready becomes set, or if interrupt­
enable is set by software when ready is 
already set, an interrupt is requested at IPL 
14 (hex). That is, an interrupt is requested 
whenever the function [interrupt enable AND 
ready] changes from 0 to 1. 

If ID is written zero when TXDB is written, the 
data goes to the console terminal. If ID is 
written with OF (hex), the data is a message 
to be sent to the console. If ID is neither zero 
nor Of (hex), the meaning is implementation­
dependent. 
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Table 10.2 
Fields of the Console Terminal Registers (continued) 

Name 

data 

Extent Description 

(7:0) If 10 is zero, the data is a character sent to 
the console terminal to type. If 10 is Of (hex), 
the data is a message to be sent to the 
console, with the following meaning: 

1. Software done-A program started by a 
console indirect command file is signaling 
successful completion. When the processor 
halts, the console should resume processing 
the indirect command file. 

2. Boot processor-The console should 
initiate a system bootstrap. 

3. Clear "restart in progress" flag-A system 
restart has successfully completed. If a 
system restart would occur automatically, the 
attempt should be allowed. 

4. Clear "bootstrap in progress" flag-A 
system bootstrap has successfully completed. 
If a system bootstrap would occur 
automatically, the attempt should be allowed. 
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GOALS 

Architectural Subsetting 11 
This chapter describes those parts of the VAX architecture that may 
be included as standard features of a processor, provided as options 
to the processor, or omitted completely from the processor. 

A processor implementing a subset of the VAX instructions, data 
types, or registers, as described in this chapter, is known as a subset 
VAX. Of the many subsets possible, the following are important 
enough to name: 

• Full VAX-includes all VAX data types, instructions, and registers 

• Kernel subset-the minimum allowed subset 

• MicroVAX I subset-as implemented by the MicroVAX I 

• MicroVAX chip subset-as implemented by the MicroVAX chip 

For a description of the MicroVAX I and MicroVAX chip subsets, see 
Appendix B. 

The subsetting of the architecture reflects the need to be able to 
trade-off manufacturing cost, software development cost, and 
performance of VAX processors. The following conflicting hardware 
and software goals influenced the design of the subsetting rules: 

• Hardware goal-Permit an implementor of a low-end processor to 
omit instructions and other features in order to reduce manufacturing 
cost without losing the ability to run all of the system software. The 
decision to implement a subset will have some impact on the 
performance of various classes of software products. 

• Software goal-Provide as small a number of classes of processor 
instruction sets as possible to reduce software development 
costs. In particular, a single version of each compiler or other 
layered software product should run on all processors in the VAX 
family. Also the combination of hardware and instruction emulation 
routines in operating systems must (as required) give the appearance 
of a complete architecture on all processors. 
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The features of the architecture that may be omitted can be divided 
into several groups, with different rules for subsetting. 

The first group consists of the F _floating, D_floating, G_floating, 
and H_floating data types, and the associated instructions. Each of 
these data types may only be subset as an entity. This means that 
if one of these data types is included, all the instructions that operate 
on that data type must be included. 
Twenty-two F _floating instructions: MOVF, MNEGF, CVTF{B,W,L}, 
CVT{B,W,L}F, CMPF, TSTF, ADDF2, ADDF3, SUBF2, SUBF3, 
MULF2, MULF3, DIVF2, DIVF3, CVTRFL, EMODF, POL YF, ACBF 

Twenty-four D_floating instructions: MOVD, MNEGD, CVTD{B,W,L,F}, 
CVT{B,W,L,F}D, CMPD, TSTD, ADDD2, ADDD3, SUBD2, SUBD3, 
MULD2, MULD3, DIVD2, DIVD3, CVTRDL, EMODD, POL YO, ACBD 

Twenty-four G_floating instructions: MOVG, MNEGG, CVTG{B,W,L,F}, 
CVT{B,W,L,F}G, CMPG, TSTG, ADDG2, ADDG3, SUBG2, SUBG3, 
MULG2, MULG3, DIVG2, DIVG3, CVTRGL, EMODG, POL YG, ACBG 

Thirty-two H_floating instructions: MOVH, MNEGH, 
CVTH{B,W,L,F,D,G}, CVT{B,W,L,F,D,G}H, CMPH, TSTH, ADDH2, 
ADDH3, SUBH2, SUBH3, MULH2, MULH3, DIVH2, DIVH3, CVTRHL, 
EMODH, POLYH, ACBH, MOVO, CLRH (CLRO), MOVAH (MOVAO), 
PUSHAH (PUSHAO) 

If an instruction in this group is omitted by a processor, execution of 
the instruction results in a reserved-instruction fault. 

The second group, listed below, consists of the string instructions and 
their associated data types, including the decimal string, EDITPC, 
CRC, and character-string instructions, but not including MOVC3 or 
MOVC5. (That is, MOVC3 and MOVC5 are part of the kernel 
instruction set, and may not be omitted.) Instructions in this second 
class may be subset individually. 

Nine character string instructions: MOVTC, MOVTUC, CMPC3, 
CMPC5,SCANC, SPANC, LOCC,SKPC, MATCHC 

Sixteen decimal string instructions: MOVP, CMPP3, CMPP4, ADDP4, 
ADDP6,SUBP4,SUBP6,CVTLP, CVTPL,CVTPT,CVTTP, CVTPS, 
CVTSP, ASHP, MULP, DIVP 

One other decimal string instruction: EDITPC 

One other string instruction: CRC 
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If an instruction in this group is omitted by a processor, execution of 
the instruction results in a sUbset-emulation exception. 

The third group consists of the compatibility mode instruction set. If 
compatibility mode is omitted by a processor, the execution of an REI 
instruction attempting to enter compatibility mode results in a reserved­
operand fault. 

The fourth group consists of internal processor registers. The registers 
described below may be omitted from subset processors. If any of 
the registers named on one of the following lines is included, all the 
registers on that line must be included. 

• Interval timer registers: NICR, ICR, ICCS except for <IE). (That is, 
ICCS<IE) is part of the kernel subset and may not be omitted.) 

• Time-of-Year clock register: TODR 

• Console registers: RXCS, RXDB, TXCS, TXDB 

• Performance Monitor Enable register: PME 

The kernel instruction set is defined by exception; it is those instructions 
that may not be omitted. For convenience, the kernel set is listed 
here. There are 304 native mode instructions in the full VAX instruction 
set. Of these, 129 may be omitted, leaving 175 instructions in the 
kernel instruction set. They are: 

Eighty-nine integer arithmetic and logical instructions: ADAWI, 
ADD{B,W,L}{2,3}, ADWC, ASH{L,Q}, BIC{B,W,L}{2,3}, BIS{B,W,L}{2,3}, 
BIT{B,W,L}, CLR{B,W,L,Q}, CMP{B,W,L}, CVTB{W,L}, CVTW{B,L}, 
CVTL{B,w}, DEC{B,W,L}, DIV{B,W,L}{2,3}, EDIV, EMUL, INC{B,W,L}, 
MCOM{B,W,L}, MNEG{B,W,L}, MOV{B,W,L,Q}, MOVZ{BW,BL,WL}, 
MUL{B,W,L}{2,3}, PUSHL, ROTL, SBWC, SUB{B,W,L}{2,3}, 
TST{B,W,L}, XOR{B,W,L}{2,3} 
Eight address instructions: MOVA{B,W,L,Q}, PUSHA{B,W,L,Q}. 

Seven variable-length bit field instructions: CMPV, CMPZV, EXTV, 
EXTZV, FF{S,C}, INSV. 

Thirty-nine branch and control instructions: ACB{B,W,L}, AOBLEQ, 
AOBLSS, BLSS,BLEQ, BEQL, BNEQ,BGEQ,BGTR,BLSSU, 
BLEQU, BGEQU, BGTRU, BVS, BVC, BB{S,C}, BB{S,C}{S,C}, 
BB{SS,CC}I, BLB{S,C}, BR{B,W}, BSB{B,W}, CASE{B,W,L}, JMP, 
JSB, RSB, SOBGEQ, SOBGTR. 

Three procedure call instructions: CALLG, CALLS, RET. 

Six queue instructions: INSQHI, INSQTI, INSQUE, REMQHI, REMQTI, 
REMQUE. 
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Two character string instructions: MOVC3, MOVC5. 

Twelve instructions for use by operating systems: PROBE{R,w}, 
CHM{K,E,S,U}, HALT, REI, LDPCTX, SVPCTX, MTPR, MFPR. 

Nine miscellaneous instructions: BI{C,S}PSW, BPT, INDEX, MOVPSL, 
NOP, POPR, PUSHR, XFC. 

Byte, word, longword, and quadword operand sizes have been 
included in the kernel instruction set. The octaword operand size has 
not been included. 

Subset VAX processors and their operating systems cooperate to 
support emulation of those instructions that are omitted from the 
processor's instruction set. Programs running under the operating 
system can make use of these instructions as though they were 
supported directly by the processor. The process of emulating an 
omitted instruction depends on the instruction type. Emulation of 
string instructions is assisted by the processor through the instruction­
emulation exception. Emulation of compatibility mode instructions 
and floating-point instructions is done entirely by software. 

The process of emulating an omitted string instruction consists of the 
following steps: 

1. The processor reads the instruction opcode and finds that this is 
an omitted instruction. The processor saves the opcode. 

2. The processor evaluates the operand specifiers in order of 
instruction stream occurrence. The processor saves the operand 
address for each operand of write-access type or address type, 
and it reads and saves the operand itself for operands of read­
access type. 

3. The processor initiates a subset-emulation trap, pushing an 
emulation trap frame onto the stack. The opcode and operands (or 
their addresses) are part of the trap frame. Unlike many exceptions, 
subset emulation trap does not cause the processor to enter kernel 
mode. The exception handler runs in the same mode as the 
trapped instruction, and the trap frame is pushed onto the current 
stack. 

4. The emulation-exception handler in the operating system examines 
the opcode of the trapped instruction and dispatches to the 
appropriate emulation routine. 

5. The instruction-emulation routine reads and writes the instruction 
operands, as appropriate to the instruction being emulated. The 
operands need not be probed, since the emulation handler is 
running in the same mode as the emulated instruction. 
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Instruction­
Emulation 
Exceptions 

6. The instruction-emulation routine sets the condition codes in the 
PSL on the stack, pops the emulation trap frame (except for 
the new PC and PSL) from the stack, and returns with REI. 

7. Emulation is now complete, and the instruction following the 
emulated instruction begins execution. 

If, during the emulation of an instruction, an exception such as access 
violation occurs, the emulation code must gain control, save state in 
the registers just as the emulated instruction would, set FPD in the 
saved PSL, and reflect the exception to the user's current exception 
handler. If the conditions causing the exception are corrected and the 
exception was a fault, the instruction can be restarted. In this case, 
PSL(FPD) will be set when instruction execution begins. Emulation 
consists of the following steps: 

1. The processor reads the opcode and finds that this is an omitted 
instruction and that PSL(FPD) is set. 

2. The processor initiates a suspended-emulation fault, pushing PC 
and PSL onto the stack. 

3. The emUlation-exception handler rebuilds the intermediate state of 
the instruction, using the information saved in the general 
registers at the time the emulated instruction was faulted. 

4. The emulation handler resumes emUlation of the instruction, as in 
steps 5 through 7 in the previous list above. 

Emulation software runs in the mode of the emulated instruction and 
uses the same stack. Emulation software may allocate and use up 
to five pages of stack space for temporary storage. The contents of 
this area are UNPREDICTABLE after execution of an emulated 
instruction. If an emulated instruction addresses part of this area as 
an operand without first allocating it, or if an emulated instruction uses 
SP as an operand, the results of the instruction are UNPREDICTABLE. 
That is, the instructions DIVF3 R1, R2, - 50(SP) and DIVF3 R1, R2, 
SP produce UNPREDICTABLE results. The instruction DIVF3 R1, R2, 
- (SP) allocates the area on top of the stack before using it and is 
legal. 

When a subset processor executes a string instruction that is omitted 
from its instruction set, an emulation exception results. An emulation 
exception occurs through one of two SCB vectors, depending on 
whether or not PSL(FPD) is set at the beginning of the instruction. If 
PSL(FPD) is clear, a subs3t-emulation trap occurs through the 
SCB vector at offset C8 (hex), and a SUbset-emulation trap frame is 
pushed onto the stack. The PC pushed points to the instruction 
following the omitted instruction. If PSL(FPD) is set, a suspended­
emulation fault occurs through the SCB vector at offset CC (hex), and 
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PC and PSL are pushed onto the stack. The PC pushed points to 
the faulted instruction. 

In either case, if PSL(T) is set at the time of the trap, PSL(TP) is set 
in the PSL pushed onto the stack. All other bits in the pushed PSL 
are unchanged. If PSL(FPD) was set, it is set in the saved PSL. 

The new PSL has (TP,FPD,IV,DV,FU,T) clear. All other fields are 
unchanged, including PSL(CUR_MOD,PRV_MOD,IS,IPL). That is, 
the emulation-exception handler runs in the mode of the emulated 
instruction, on the same stack, and at the same IPL. The exception 
parameters are pushed onto the current stack. (Ifthe current stack 
cannot be written, the processor takes a memory management fault 
rather than an emulation exception.) 

If either emUlation-exception vector has bits (1 :0) set to 1 (indicating 
that the exception is to be taken on the interrupt stack), the operation 
of the processor is UNDEFINED. 

The emUlation-exception stack frame is shown in Figure 11.1 and 
includes the following: 

• Opcode-contains the opcode of the trapped instruction. 

• Old PC-contains the address of the trapped instruction. 

• Specifiers 1 through 8-contain the addresses of corresponding 
instruction operands or contain the operands themselves. For each 
operand of the trapped instruction, if the operand is of read access 
type (.rx), the parameter contains the operand value; if the operand 

opcode :(SP) 

old PC 

specifier #1 

specifier #2 

specifier #3 

specifier #4 

specifier #5 

specifier #6 

specifier #7 

specifier #8 

new PC 

saved PSL 

Figure 11.1 
Subset-Emulation Trap Frame 
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is writeaccess type (.wx) or address type (.ax), the parameter 
contains the operand address. For read-type operands of byte size, 
bits (31 :8) of the longword are UNPREDICTABLE. For read-type 
operands of word size, bits (31:16) are UNPREDICTABLE. When 
an operand is in a register, the register is denoted by a reserved 
system space address corresponding to the one's complement 
of the register number. The parameter corresponding to an 
instruction operand that does not exist is UNPREDICTABLE. For 
example, if the trapped instruction has four operands, the parameters 
for specifiers 5 through 8 are UNPREDICTABLE . 

• New PC-contains the address of the instruction following the 
trapped instruction . 

• Saved PSL-contains the PSL at the time of the trap. If PSL(T) was 
set at the beginning of the instruction, saved PSL(TP) is set. 
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Opcode Assignments A 

SINGLE BYTE Binary Hex Mnemonic Binary Hex Mnemonic 
OPCODES 00000000 00 HALT 00100000 20 ADDP4 

00000001 01 NOP 00100001 21 ADDP6 
00000010 02 REI 00100010 22 SUBP4 
00000011 03 BPT 00100011 23 SUBP6 
00000100 04 RET 00100100 24 CVTPT 
00000101 05 RSB 00100101 25 MULP 
00000110 06 LDPCTX 00100110 26 CVTTP 
00000111 07 SVPCTX 00100111 27 DIVP 
00001000 08 CVTPS 00101000 28 MOVC3 
00001001 09 CVTSP 00101001 29 CMPC3 
00001010 OA INDEX 00101010 2A SCANC 
00001011 OB CRC 00101011 2B SPANC 
00001100 OC PROBER 00101100 2C MOVC5 
00001101 OD PROBEW 00101101 2D CMPC5 
00001110 OE INSQUE 00101110 2E MOVTC 
00001111 OF REMQUE 00101111 2F MOVTUC 
00010000 10 BSBB 00110000 30 BSBW 
00010001 11 BRB 00110001 31 BRW 
00010010 12 BNEQ,BNEQU 00110010 32 CVTWL 
00010011 13 BEQL, BEQLU 00110011 33 CVTWB 
00010100 14 BGTR 00110100 34 MOVP 
00010101 15 BLEQ 00110101 35 CMPP3 
00010110 16 JSB 00110110 36 CVTPL 
00010111 17 JMP 00110111 37 CMPP4 
00011000 18 BGEQ 00111000 38 EDITPC 
00011001 19 BLSS 00111001 39 MATCHC 
00011010 1A BGTRU 00111010 3A LOCC 
00011011 1B BLEQU 00111011 3B SKPC 
00011100 1C BVC 00111100 3C MOVZWL 
00011101 10 BVS 00111101 3D ACBW 
00011110 1E BGEQU, BCC 00111110 3E MOVAW 
00011111 1F BLSSU, BCS 00111111 3F PUSHAW 
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Binary Hex Mnemonic Binary Hex Mnemonic 

01000000 40 ADDF2 01110000 70 MOVD 
01000001 41 ADDF3 01110001 71 CMPD 
01000010 42 SUBF2 01110010 72 MNEGD 
01000011 43 SUBF3 01110011 73 TSTD 
01000100 44 MULF2 01110100 74 EMODD 
01000101 45 MULF3 01110101 75 POLYD 
01000110 46 DIVF2 01110110 76 CVTDF 
01000111 47 DIVF3 01110111 77 Reserved to DIGITAL 

01001000 48 CVTFB 01111000 78 ASHL 
01001001 49 CVTFW 01111001 79 ASHQ 
01001010 4A CVTFL 01111010 7A EMUL 
01001011 4B CVTRFL 01111011 7B EDIV 
01001100 4C CVTBF 01111100 7C CLRQ,CLRD,CLRG 
01001101 4D CVTWF 01111101 7D MOVQ 
01001110 4E CVTLF 01111110 7E MOVA {Q, D, G} 
01001111 4F ACBF 01111111 7F PUSHA{Q,D,G} 

01010000 50 MOVF 10000000 80 ADDB2 
01010001 51 CMPF 10000001 81 ADDB3 
01010010 52 MNEGF 10000010 82 SUBB2 
01010011 53 TSTF 10000011 83 SUBB3 
01010100 54 EMODF 10000100 84 MULB2 
01010101 55 POLYF 10000101 85 MULB3 
01010110 56 CVTFD 10000110 86 DIVB2 
01010111 57 Reserved to DIGITAL 10000111 87 DIVB3 
01011000 58 ADAWI 10001000 88 BISB2 
01011001 59 Reserved to DIGITAL 10001001 89 BISB3 
01011010 5A Reserved to DIGITAL 10001010 8A BIC82 
01011011 5B Reserved to DIGITAL 10001011 8B BICB3 
01011100 5C INSQHI 10001100 8C XORB2 
01011101 5D INSQTI 10001101 8D XORB3 
01011110 5E REMQHI 10001110 8E MNEGB 
01011111 5F REMQTI 10001111 8F CASEB 
01100000 60 ADDD2 10010000 90 MOVB 
01100001 61 ADDD3 10010001 91 CMPB 
01100010 62 SUBD2 10010010 92 MCOMB 
01100011 63 SUBD3 10010011 93 BITB 
01100100 64 MULD2 10010100 94 CLRB 
01100101 65 MULD3 10010101 95 TSTB 
01100110 66 DIVD2 10010110 96 INCB 
01100111 67 DIVD3 10010111 97 DECB 
01101000 68 CVTDB 10011000 98 CVTBL 
01101001 69 CVTDW 10011001 99 CVTBW 
01101010 6A CVTDL 10011010 9A MOVZBL 
01101011 6B CVTRDL 10011011 98 MOVZBW 
01101100 6C CVTBD 10011100 9C ROTL 
01101101 6D CVTWD 10011101 9D ACBB 
01101110 6E CVTLD 10011110 9E MOVAB 
01101111 6F ACBD 10011111 9F PUSHAB 
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Binary Hex Mnemonic Binary Hex Mnemonic 

10100000 AO AOOW2 11010000 DO MOVL 
10100001 A1 AOOW3 11010001 01 CMPL 
10100010 A2 SUBW2 11010010 02 MCOML 
10100011 A3 SUBW3 11010011 03 BITL 
10100100 A4 MULW2 11010100 04 CLRL, CLRF 
10100101 A5 MULW3 11010101 05 TSTL 
10100110 A6 0lVW2 11010110 06 INCL 
10100111 A7 0lVW3 11010111 07 OECL 

10101000 A8 BISW2 11011000 08 AOWC 
10101001 A9 BISW3 11011001 09 SBWC 
10101010 AA BICW2 11011010 OA MTPR 
10101011 AB BICW3 11011011 DB MFPR 
10101100 AC XORW2 11011100 DC MOVPSL 
10101101 AD XORW3 11011101 DO PUSHL 
10101110 AE MNEGW 11011110 DE MOVAL, MOVAF 
10101111 AF CASEW 11011111 OF PUSHAL, PUSHAF 

10110000 BO MOVW 11100000 EO BBS 
10110001 B1 CMPW 11100001 E1 BBC 
10110010 B2 MCOMW 11100010 E2 BBSS 
10110011 B3 BITW 11100011 E3 BBCS 
10110100 B4 CLRW 11100100 E4 BBSC 
10110101 B5 TSTW 11100101 E5 BBCC 
10110110 B6 INCW 11100110 E6 BBSSI 
10110111 B7 OECW 11100111 E7 BBCCI 

10111000 B8 BISPSW 11101000 E8 BLBS 
10111001 B9 BICPSW 11101001 E9 BLBC 
10111010 BA POPR 11101010 EA FFS 
10111011 BB PUSHR 11101011 EB FFC 
10111100 BC CHMK 11101100 EC CMPV 
10111101 BO CHME 11101101 ED CMPZV 
10111110 BE CHMS 11101110 EE EXTV 
10111111 BF CHMU 11101111 EF EXTZV 

11000000 CO AOOL2 11110000 FO INSV 
11000001 C1 AOOL3 11110001 F1 ACBL 
11000010 C2 SUBL2 11110010 F2 AOBLSS 
11000011 C3 SUBL3 11110011 F3 AOBLEO 
11000100 C4 MULL2 11110100 F4 SOBGEO 
11000101 C5 MULL3 11110101 F5 SOBGTR 
11000110 C6 0lVL2 11110110 F6 CVTLB 
11000111 C7 0lVL3 11110111 F7 CVTLW 

11001000 C8 BISL2 11111000 F8 ASHP 
11001001 C9 BISL3 11111001 F9 CVTLP 
11001010 CA BICL2 11111010 FA CALLG 
11001011 CB BICL3 11111011 FB CALLS 
11001100 CC XORL2 11111100 FC XFC 
11001101 CD XORL3 11111101 FO Two-byte opcode 
11001110 CE MNEGL 11111110 FE Two-byte opcode 
11001111 CF CASEL 11111111 FF Two-byte opcode 
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TWO BYTE Hex Mnemonic Hex Mnemonic 
OPCODES 

OOFD 
to 

31FD Reserved to DIGITAL 

32FD CVTDH 33FD CVTGF 

34FD 
to 

3FFD Reserved to DIGITAL 

40FD ADDG2 60FD ADDH2 
41FD ADDG3 61FD ADDH3 
42FD 8UBG2 62FD 8UBH2 
43FD 8UBG3 63FD 8UBH3 
44FD MULG2 64FD MULH2 
45FD MULG3 65FD MULH3 
46FD DIVG2 66FD DIVH2 
47FD ·DIVG3 67FD DIVH3 

48FD CVTGB 68FD CVTHB 
49FD CVTGW 69FD CVTHW 
4AFD CVTGL 6AFD CVTHL 
4BFD CVTRGL 6BFD CVTRHL 
4CFD CVTBG 6CFD CVTBH 
4DFD CVTWG 6DFD CVTWH 
4EFD CVTLG 6EFD CVTLH 
4FFD ACBG 6FFD ACBH 

50FD MOVG 70FD MOVH 
51FD CMPG 71FD CMPH 
52FD MNEGG 72FD MNEGH 
53FD T8TG 73FD T8TH 
54FD EMODG 74FD EMODH 
55FD POLYG 75FD POLYH 
56FD CVTGH 76FD CVTHG 
57FD Reserved to DIGITAL 77FD Reserved to DIGITAL 

58FD Reserved to DIGITAL 78FD Reserved to DIGITAL 
59FD Reserved to DIGITAL 79FD Reserved to DIGITAL 
5AFD Reserved to DIGITAL 7AFD Reserved to DIGITAL 
5BFD Reserved to DIGITAL 7BFD Reserved to DIGITAL 
5CFD Reserved to DIGITAL 7CFD CLRH;CLRO 
5DFD Reserved to DIGITAL 7DFD MOVO 
5EFD Reserved to DIGITAL 7EFD MOVAH, MOVAO 
5FFD Reserved to DIGITAL 7FFD PU8HAH,PU8HAO 

80FD 
to 

97FD Reserved to DIGITAL 

98FD CVTFH 99FD CVTFG 

9AFD 
to 

F5FD Reserved to DIGITAL 

F6FD CVTHF F7FD CVTHD 
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Hex Mnemonic Hex Mnemonic 

F8FD OOFE Reserved to DIGITAL 
to to 

FFFD Reserved to DIGITAL FFFE 

OOFF 
to 

FCFF Reserved to DIGITAL 

FDFF BUGL (used by VMS for BUGCHECK) FEFF BUGW 

FFFF Reserved for all time 
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Instruction 
Subsetting 

The Physical 
Address Space 

Implementation 
Dependencies B 

The VAX family of processors shares a common architecture, 
including data types, instructions and addressing modes, and registers. 
Software written to depend only on these features will run on any 
VAX processor. Some software, however, typically operating system 
software, by necessity depends on features that vary from implemen­
tation to implementation. 

This appendix describes individual VAX processors, in particular those 
features that are typically of interest to operating systems program­
mers. Such features include: 

• Instruction subset 

• Layout of physical memory 

• System control block 

• Codes for the halt conditions 

• Internal processor registers 

• Contents of the machine-check stack frame 

• Operations that are specified UNDEFINED or UNPREDICTABLE. 

Some instructions, data types, and processor registers described in 
this book may be omitted from VAX processors. Chapter 11 describes 
the subsetting rules and the allowed subsets. 

VAX virtual addresses are 32 bits in length. When memory mapping 
is enablea, virtual addresses are translated to physical addresses 
as described in Chapter 4, Memory Management. 

VAX physical addresses are at most 30 bits in length, so as to fit in a 
PTE. Implementations may recognize fewer address bits, in which 
case the additional bits are ignored. When memory mapping is 
disabled, virtual addresses are translated to physical addresses by 
ignoring virtual address bits (31 :30). 
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The phy~ical address space consists of two parts: memory space and 
1/0 space. Memory space starts at address zero and continues to an 
implementation-dependent limit. 1/0 space begins at that limit and 
continues to the end of the physical address space. Neither memory 
space nor I/O space are necessarily filled and typically will be sparsely 
filled. 

Both memory space and I/O space are addressed by bytes. Aligned 
and unaligned references to memory of byte, word, and longword size 
are supported. Only aligned longword references are necessarily 
supported to I/O space. References of other sizes may be supported 
on some implementations. 

Typically, 1/0 space consists of several "adapter spaces" and one or 
more address spaces. The adapter spaces are sections of the 
address space set aside for the registers of various bus adapters and 
memory controllers. Many adapter spaces begin with an "adapter 
configuration register" which contains an adapter type code. This is 
for use by the operating system during power-up initialization to help it 
determine the system hardware configuration. 

UNIBUS address spaces are sections of the 1/0 address space which 
directly map to a UNIBUS address space. UNIBUS addresses are 
18 bits in length, so a UNIBUS address space is 256 kilobytes in 
length. Within the UNIBUS address space, the low 248 Kbytes 
is UNIBUS memory space. Typically, UNIBUS references to UNIBUS 
memory space are translated by a set of UNIBUS map registers to 
references in the VAX physical address space. This allows UNIBUS 
devices to directly access VAX physical memory. 

The system control block is a block of physical memory that contains 
vectors for exceptions and interrupts. Chapter 5 describes its format 
and interpretation. VAX processors may include exception and 
interrupt vectors in addition to those described in Chapter 5. 

Chapter 10 describes halting. When a VAX processor halts, the 
reason for the halt is saved in a halt code. A processor may report 
halt codes in addition to those described in Chapter 10. 

Chapter 8, Privileged Registers, describes the internal processor 
register address space and the registers found there on every 
machine. Processors may include internal processor registers in 
addition to those described in Chapter 8. 
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Machine­
Checks 

UNPREDICT A­
BLE and 
UNDEFINED 

Chapter 5 describes the overall format of the machine-check stack 
frame. Included in the stack frame is space for implementation­
dependent error report information. The circumstances that cause 
machine-check are different for each processor, and the information 
reported is different as well. 

As used in this book, the terms UNPREDICTABLE and UNDEFINED 
have particular meanings. Results specified as UNPREDICTABLE 
may vary from one execution to the next. Software must not depend 
on any UNPREDICTABLE results. The results of an instruction 
include: 

• Explicit destination operands (those with operand specifiers) 

• Implicit destination operands 

• Registers modified by operand specifier evaluation, including 
specifiers for implied operands 

• PSL condition codes 

• PSL(FPD> 

• PSL(TP>, if PSL(T> was set at the beginning of the instruction 

• PTE(M> for pages mapping write or modify type operands (PTE(M> 
will be set if the instruction modified the page, or if PTE(M> was 
set before the instruction started.) 

PC and unlisted fields of the PSL are specifically excluded from this 
list. They are UNPREDICTABLE only when they appear as explicit or 
implicit operands. 

UNPREDICTABLE results are constrained by memory mapping and 
access protection. That is, if correctly operating instructions cannot 
affect a memory location or privileged register, then an instruction with 
UNPREDICTABLE results cannot either. 

UNPREDICTABLE results include: 

• Any instruction whose operands wrap around from PC to RD 

• Any native mode VAX instruction that is modified by writing into the 
instruction stream, until the instruction stream is resynchronized 
by REI 

• Any instruction mapped by a PTE that has been modified in 
memory, until the translation buffer is updated. See Chapter 5, 
Memory Management 

• Any instruction that uses PC in register mode, register deferred 
mode, or autodecrement mode 

• Any instruction that writes or modifies an immediate mode operand 
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• Any instruction that uses the same register twice in autoincrement 
indexed mode, autodecrement indexed mode, or autoincrement 
deferred indexed mode 

• Any instruction that uses the same register as a floating-point 
number and as an address in autoincrement mode, autodecrement 
mode, or autoincrement deferred mode 

• Any instruction that uses immediate indexed mode 

• Any instruction whose operands, general registers, or PSL is 
modified while PSL(FPD) is set 

• Any instruction that is started with PSL(FPD) set if PSL(FPD) was 
not set as a result of the instruction's previous execution 

• The condition codes after a fault or interrupt. The condition codes 
are preserved only to the extent necessary to ensure correct 
completion of the instruction when it is resumed. 

• ADA WI when the operands overlap 

• Five pages above the top of the current stack, after the execution of 
an omitted instruction that is emulated by software 

• Any emulated instruction that references the five pages above the 
top of the stack without allocating it first 

• Any emulated instruction that references SP as an operand 

• MOVTC and MOVTUC when the destination operand overlaps the 
table operand or the escape operand 

• CRC when the table operand is not well formed 

• Any packed decimal-string instruction that encounters an invalid 
packed decimal digit in a source operand 

• Any decimal-string instruction that encounters a reserved operand 

• Any decimal-string instruction whose operands overlap, except 
as noted in CVTPL and CVTLP 

• ASHP when the round operand is greater than 9 

• EDITPC when used incorrectly; see the description of EDITPC, 
Chapter 3 

• DIVP when the divisor is 0 

• Any compatibility mode byte instruction that writes or modifies PC 

• Compatibility mode ASR, SXT, SWAB, ASH, and SOB, when 
the operand is PC 

• Compatibility mode MUL, DIV, and ASHC, when the operand is SP 
or PC 

• Compatibility mode DIV when integer overflow occurs 

• The order of multiple exceptions within a single instruction 

• Saved condition codes and general registers when PSL(FPD) is set 

• Memory from -1 (SP) through -16(SP) after DIVP; see the 
description of DIVP in Chapter 3 
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• The order of access of pages in operands that cross page boundaries 

• The contents of many privileged registers after processor initialization 

• PTE(M) after PROBEW, if it was zero at the start of the instruction, 
and access is allowed 

• PTE(M) in PTEs that map destination operands in instructions that 
fault, when the operands could have been written but were not 
written, and PTE(M) was clear at the beginning of the instruction 

• Clearing PSL(TP) without clearing PSL(T) 

• PSL(T) viewed by software. 

• The order of trace fault and page fault on an instruction opcode 

• VAX native mode R7 after executing in compatibility mode 

• Whether the top half of RO through R6 are zeroed or left unchanged 
by executing in compatibility mode 

• Whether an instruction reads any operand it does not need to 
complete correctly. Completing correctly includes having the 
specified values in all explicit and implicit operands, including PSL 
and registers modified by operand specifier evaluation; completing 
correctly does not include page faults or reserved operand exceptions 
resulting from reading operands not needed to otherwise complete 
the instruction. 

UNDEFINED operations result from privileged software performing 
proscribed actions. The effects may be widespread and are not 
necessarily constrained by memory mapping or access control. 
UNDEFINED operations may affect the contents of memory, the 
operation of peripherals, and the operation of the processor. UNDE­
FINED operations are constrained only to not hang the processor and 
console. Control of the machine can be regained by reinitializing the 
processor from the console. 

The complete list of UNDEFINED operations is implementation­
dependent but includes: 

• Writing non-zero values into fields specified as MBZ 

• Writing values specified as reserved into privileged registers 

• An exception or interrupt whose SCB vector has bits (1 :0) both set 

• Restarting an instruction that references an I/O register with side 
effects 

• Unaligned references to I/O space 

• References to I/O space registers in which the reference size is not 
the register size 

• Console START or CONTINUE after an error halt and before a 
processor initialization 

• Page tables, the PCB, or the SCB in I/O space 

• LDPCTX when the new kernel stack is invalid or inaccessible. 
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MicroVAX I 

MicroVAX II 

VAX-11/725 

VAX-11/730 

VAX-11/750 
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The MicroVAX I computer system is the first subset VAX. Announced 
in 1984, it is packaged in a box about 6 inches by 28 inches by 22 
inches. 

The MicroVAX I comes in two versions; one includes F _floating and 
G_floating instructions, the other includes F _floating and D_floating 
instructions. Neither version includes H_floating instructions. The 
MicroVAX I processor includes some of the optional string instructions 
(CMPC3, LOCC, SCANC, SKPC, SPAN C) but does not include any 
of the optional processor registers or compatibility mode. 

Implementation-dependent features of the MicroVAX I are described 
in Figures B.1-B.3 and Tables B.1-B.4. 

The MicroVAX II computer system is the first VAX with the processor 
on a single chip. F _floating, D_floating, and G_floating instructions 
are provided by a floating-point unit (another chip). The MicroVAX II 
is a subset VAX, and includes none of the optional string instructions, 
optional processor registers, H-floating instructions, or compatibility 
mode. 

Implementation-dependent features of the MicroVAX II are described 
in Figures B.4-B.6 and Tables B.5-B.8. 

The VAX-11 1725 computer system, announced in 1984, is a repackaged 
version of the VAX-11/730 processor. The cabinet is 25 inches high 
and 18 inches wide, and includes memory, two TU58 tape cartridge 
drives, and an RC25 disk. 

The VAX-11/730 computer system, announced in 1982, was the third 
processor in the VAX family, and the first to include G_floating and 
H_floating as standard. It is packaged with two disks in a cabinet 42 
inches tall and 22 inches wide. 

The VAX-11/730 includes all the instructions, all the architecturally 
defined processor registers, and compatibility mode. 

Implementation-dependent features of the VAX-11/730 are described 
in Figures B.7-B.9 and Tables B.9-B.12. 

The VAX-11/750, announced in 1980, was the second processor in 
the VAX family. It is packaged in a cabinet 42 inches tall and 29 
inches wide. 

The VAX-11/750 includes all the instructions (G_floating and 
H_floating are available as an option), all architecturally defined 
processor registers, and compatibility mode. 
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VAX-11/780 

VAX-11/782 

VAX-11/785 

VAX 8200 

VAX 8300 

VAX 8500 

Implementation-dependent features of the VAX-11 1750 are described 
in Figures B.10 through B.12 and Tables B.13 through B.16. 

The VAX-11 1780 computer, announced in 1978, was the first processor 
of the VAX family. It is packaged in a cabinet 60 inches tall and 47 
inches wide. 

The VAX-11/780 includes all the instructions (G_floating and 
H_floating instructions are available as an option), all the architecturally 
defined processor registers, and compatibility mode. 

Implementation-dependent features of the VAX-11/780 are described 
in Figures B.13 through B.15 and Tables B.17 through B.20. 

The VAX-11/782 computer system, announced in 1982, is a dual 
processor VAX-11/780 with shared memory. The cabinets containing 
the processor, 1/0 adapters, and shared memory are 60 inches tall 
and 190 inches wide. 

The VAX-11 1785 computer system, announced in 1984, is available 
as a field upgrade of the VAX-11/780. It is packaged in a cabinet 60 
inches tall and 80 inches wide, including processor, memory, and 1/0 
adapters. The VAX-11 1785 is identical to the VAX-11 1780 from the 
point of view of software, except that the VAX-11/785 has increased 
performance and has a bit set in the SID internal processor register, 
by which software can differentiate between the two processor types. 

The VAX 8200, announced in 1986, is packaged with two disks in a 
cabinet 42 inches tall and 22 inches wide. 

The 8200 includes all the instructions and architecturally defined 
processor registers, but does not include compatibility mode. 

Implementation-dependent features of the VAX 8200 are described in 
Figures B.16-B.18 and Tables B.21-B.22. 

The VAX 8300, announced in 1986, is a dual-processor version of the 
VAX 8200, packaged in the same cabinet. 

The VAX 8500, announced in 1986, is a single-processor version of 
the VAX 8800. It is packaged in a cabinet 60 inches tall and about 27 
inches wide. 
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VAX 8600 

VAX 8650 

VAX 8800 
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The 8600, announced in 1984, is packaged in a cabinet 60 inches tall 
and about 80 inches wide. 

The 8600 includes all the instructions, architecturally defined processor 
registers, and compatibility mode. 

Implementation-dependent features of the VAX 8600 are described in 
Figures 8.19-8.21 and Tables 8.23-8.26. 

The 8650, announced in 1985, is available as a field upgrade of the 
8600. The 8650 is packaged in the same cabinet as the 8600 and 
offers higher performance. 

The dual-processor 8800, announced in 1986, is the highest 
performance member of the VAX family. It is packaged in a cabinet 
60 inches tall and about 80 inches wide. 

The 8800 includes all the instructions and architecturally defined 
processor registers. The 8800 does not include PDP-11 compatibility 
mode. 

Implementation-dependent features of the VAX 8800 are described in 
Figures 8.22-8.24 and Tables 8.27-8.29. 
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Table B.1 
MicroVAX I Implementation-Dependent System Control Block Vectors 

Offset Vector Name IPL Notes 

60 write-bus timeout 
CO interval timer 

10 
16 

20Q-3FC 022 bus interrupts 14-17 IPL corresponds to bus 
request levels 4 through 7. 

Table B.2 
MicroVAX I Halt Codes 

Code Meaning 

1 microverify succeeded 

2 processor halted by HALT button or console break 
3 powerup 
4 interrupt stack not valid 
5 double machine-check 

6 HALT instruction executed 

A change mode from the interrupt stack 
C SCB vector read error 

FF microverify failed 

Table B.3 
MicroVAX I Implementation-Dependent Internal Processor Registers 

IPR Mnemonic Name 

18 ICCS Interval-clock control and status (1) 

19 NICR Next interval count (2) 

1A ICR Interval count (2) 
1B TODR Time-of-year clock (2) 
24 TBDR Translation-buffer disable (2) 
25 CDR Cache disable 
26 MCESR Machine-check error summary 
27 CAER Cache error (2) 

30 SBIFS SBI fault status (2) 
31 SBIS SBI silo (2) 

32 SBISC SBI silo comparator (2) 
33 SBIMT SBI maintenance (2) 
34 SBIER SBI error (2) 

35 SBITA SBI timeout address (2) 

36 SBIOC SBI quadword clear (2) 

37 10HESET I/O reset 
3B TBDATA Translation-buffer data 

3C MBRK Microprogram breakpoint 
3D PME Performance-monitor enable 
3E SID System identification 
3F TBCHK Translation-buffer check (3) 

(1) Subset implel"(1entation. (3) Always returns "TB miss." 
(2) Reads as zero, ignores writes. 
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Figure B.2 
MicroVAX I System Identification Register (SID) 
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second parameter 
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PSL 

Figure B.3 
MicroVAX I Machine-Check Stack Frame 

Table B.4 
MicroVAX I Machine-Check Type Codes 

Code Meaning 

0 memory controller bug check' 
1 unrecoverable memory read error' 

2 nonexistent memory' 

3 illegal I/O space operation' 

4 unrecoverable PTE read error' 

5 unrecoverable PTE write error' 

6 control store parity errort 

7 micromachine bug checkt 

8 022 bus vector read errort 

9 write parameter error:t: 

'Bits(29,21 :0) of the first parameter contain the corresponding bits of 
the physical address of the last memory reference, and the second 
parameter contains the address presented to the memory controller. 
tBoth parameters are zero. 
:t:The first parameter contains the virtual address that was being 
written, and the second parameter is zero. 
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Table 8.5 
MicroVAX II Implementation-Dependent System Control Block Vectors 

Offset Vector Name IPL Notes 

CO interval timer 16 
200-3FC Q22 bus interrupts 14-17 

Implementation Dependencies 

IPL corresponds to bus 
request levels 4 through 7. 
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Table 8.6 
MicroVAX II Implementation-Dependent Internal Processor Registers 

IPR Mnemonic Name 

18 ICCS Interval-clock control and status (1) 

19 NICR Next interval count (2) 

1A ICR Interval count (2) 

1B TODR Time-of-year clock (2) 

1C CSRS Console storage receiver status (2) 

10 CSRD Console storage receiver data (2) 

1E CSTS Console storage transmitter status (2) 

1F CSTD Console storage transmitter data (2) 

20 RXCS Console receiver status (2) 

21 RXDB Console receiver data (2) 

22 TXCS Console transmitter status (2) 

23 TXDB Console transmitter data (2) 

24 TBDR Translation-buffer disable (2) 

25 CADR Cache disable (2) 

26 MCESR Machine-check error summary (2) 

27 CAER Cache error (2) 

20 SAVISP Console saved interrupt stack pointer 

2A SAVPC Console saved PC 

2B SAVPSL Console saved PSL 

30 SBIFS SBI fault status (2) 

31 SBIS SBI silo (2) 

32 SBISC SBI silo comparator (2) 

33 SBIMT SBI maintenance (2) 

34 SBIER SBI error (2) 

35 SBITA SBI timeout address (2) 

36 SBIQC SBI quadword clear (2) 

37 10RESET 1/0 reset (2) 

3B TBDATA Translation-buffer data (2) 

3C MBRK Microprogram breakpoint (2) 

3D PME Performance-monitor enable (2) 

3E SID System identification 

3F TBCHK Translation-buffer check 

(1) Subset implementation. 
(2) Reads as zero, ignores writes. 

31 2423 o 

8 o 

Figure B.5 
MicroVAX II System Identification Register (SID) 
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Figure B.6 
MicroVAX II Machine-Check Stack Frame 

Table B.7 
MicroVAX II Machine-Check Type Codes 

Code Meaning 

impossible microcode state (FSO) 

2 impossible microcode state (SSO) 

3 undefined FPU error code 0 

4 undefined FPU error code 7 
5 undefined memory management status (TB miss) 

6 undefined memory management status (M = 0) 
7 process PTE in PO space 

8 process PTE in P1 space 
9 undefined interrupt 10 code 

80 read bus error, address parameter is virtual 

81 read bus error, address parameter is physical 

82 write bus error, address parameter is virtual 

83 write bus error, address parameter is physical 

Table B.8 
MicroVAX II Halt Codes 

Code Meaning 

2 HALT L asserted 
3 Initial power on 

4 Interrupt stack not valid during exception 
5 Machine-check during machine-check or kernel-stack-not-valid 

exception 
6 HALT instruction executed in kernel mode 

7 SCB vector bits (1 :0) = 11 

8 SCB vector bits (1 :0) = 10 
A CHMx executed while on interrupt stack 

10 Access-control-violation or translation-not-valid during machine­
check exception 

11 Access-control-violation or translation-not-valid during kernel­
stack-not-valid exception 

Implementation Dependencies 385 



386 

0000 0000: 

OOEF FFFF: 

OOFO 0000: 

OOFl FFFF: 

00F2 0000: 

00F2 2000: 

00F2 4000: 

00F2 6000: 

00F2 8000: 

00F2 FFFF: 

00F3 0000: 

OOFE FFFF: 

OOFe 0000: 

OOFF FFFF: 

Figure B.7 

installed memory 

r---------------
memory address space 

beyond installed memory 

reserved 

memory adapter space 

reserved adapter space 

reserved adapter space 

Unibus adapter space 

reserved adapter space · · · reserved adapter space 

reserved 

Unibus address space 

VAX-11/730 Physical Address Space 

Table B.9 
VAX-11/730 Implementation-Dependent System Control Block Vectors 

Offset Vector Name IPL Notes 

54 Corrected Read Data 1A Corrected memory error. 

FO Console Storage Device 14 Console load device 
(TU58) Receive signalling read complete. 

F4 Console Storage Device 14 Console load device 
(TU58) Transmit signalling write complete. 

20Q-3FC Unibus interrupts 14 IPL corresponds to 
bus request levels 4 
through 7. 
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Table B.10 
VAX·11/730 Halt Codes 

Code Meaning 

02 CTRLlP was typed at the console. 

03 Does not appear in a halt message, but is passed by the 
console during powerfail restart. 

04 The interrupt stack was not valid when the processor tried to 
push PC and PSL from an exception or an interrupt. 

05 While the processor was trying to process a machine-check, a 
second machine-check occurred. 

06 A HALT instruction was executed, while the processor was in 
kernel mode. 

07 An exception or interrupt occurred and the SCB vector had 
bit(1) set. 

OA A CHMx instruction was executed when the processor was 
executing on the interrupt stack. 

OB A CHMx instruction was executed and the SCB vector had bit(O> 
set. 

OC A hard memory error occurred while the processor was trying 
to read an SCB vector. 

Table B.11 
VAX-11/730 Implementation-Dependent Internal Processor Registers 

IPR Mnemonic Name 

1C CSRS Console storage receive status 

10 CSRD Console storage receive data 

1E CSTS Console storage transmit status 

1F CSTD Console storage transmit data 
24 TBDR Translation-buffer disable (1) 

25 CDR Cache disable (1) 

26 MCESR Machine-check error summary (2) 

27 CAER Cache error (1) 

28 ACCS Accelerator control and status 
30 SBIFS SBI fault status (1) 

31 SBIS SBI silo (3) 

32 SBISC SBI silo comparator (1) 

33 SBIMT SBI maintenance (1) 
34 SBIER SBI error (1) 

35 SBITA SBI timeout address (3) 

36 SBIQC SBI quadword clear (4) 

37 10RESET I/O reset 

3D PME Performance-monitor enable 

3E SID System identification 

3F TBCHK Translation-buffer check 

(1 ) Reads as zero, ignores writes. 
(2) Reads as zero, any write clears the "machine-check in progress" flag. 
(3) Reads as zero, writes cause reserved-operand fault. 
(4) Ignores writes, reads cause reserved-operand fault. 
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Modify access type, 42 
MOV (move instructions): 

compatibility mode, 308-309 
floating point, 130-131 
integer and logical, 59 
MCOM (move complemented), 

56-57 
MFP (move from previous 

space), 325 
MFPR (move from processor 

register), 283 
MNEG (move negated), 58, 130 
MOVA (move address), 66 
MOVC (move character), 

147-151 
move character string, 147-155 
move IPR,229, 282,283 
MOVP (move packed), 179 
MOVPSL (move PSL), 99 
MOVTC (move translated char-

acters),151-153 
MOVTUC (move translated until 

character), 153-155 
MOVZ (move zero-extended), 

59-60 
MTP (move to previous space), 

324-325 
MTPR (move to processor 

register), 229, 282 
packed decimal, 179 

MTP (move to previous space), 
324-325 

MTPR (move to previous register 
instruction), 229, 282 

MUL (multiply instructions): 
compatibility mode, 311-312 
EMOD (extended multiply and 

integerize), 128-130 
EMUL (extended multiply), 56 
floating point; 131-132 
integer, 60-61 
MULP (multiply packed), 

180-181 
packed decimal, 180-181 

Multiprocessors: 
PTE,204,205 
restrictions on caches, 274-275 
synchronization, 224 

NEG (negate instruction), 
299-300 

Negative condition code (N), 22 

Index 

NEXT console command, 348 
Next interval count register (NICR), 

286, 288 
No-access. See Access type 
NOP (no operation instruction), 

98-99 
Numeric decimal string. See 

Decimal string 

OA (operand address notation), 27 
Octaword: 

data type, 6, 7 
notation for, 43 
in registers, 20 

Odd address error abort, 328 
Opcode formats, 25, 26 
Opcode reserved to customers 

fault, 234-235 
Operand specifier, 25, 26-27 
Operand specifier notation, 42-43 
Operand description notation, 

43-45 
Overflow, 22 
Overflow exceptions, 230-232 

PO and P1 registers: 
in PCB, 261 
POBR (PO base register), 213 
POLR (PO length register), 213 
P1 BR (P1 base register), 

214-215 
P1 LR (P1 length register), 

214-215 
restrictions when changing, 

215-216 
Packed decimal string, 18, 165 

See also Decimal string 
Page, 200 
Page boundaries, 209 
Page frame number field of PTE 

(PFN),204 
Page table(s): 

paging of, 212, 220-221 
process page tables, 212, 214 
restrictions when changing, 216 
system page table, 209 

Page table entry (PTE), 203-207 
changes to, 206-207 
global page table index, 205 
for 1/0 devices, 205-206 

PC. See Program counter 
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PCB (process control block), 
259-263 

PCBB (process control block base 
register), 259 

PDP-11 : 
comparison with VAX, 1 
differences in interrupts, 224 
See also Compatibility mode 

Performance monitor enable 
register (PME), 261 

Per-process. See Process 
PME (performance monitor enable 

register), 261 
POLY (polynomial evaluation 

instructions), 132-138 
POPR (pop registers instruction), 

100 
Powerfail, 335, 336-338 
Precedence: 

of memory management faults, 
216 

of multiple events, 241-242 
of trace fault, 236 

Previous mode (PRV MOD), 22 
use of, 218, 219 

Priority level. See Interrupt priority 
level 

Privileged-instruction fault, 234 
PROBE (probe instructions), 

218-221 
Procedure call instructions; 88-93 
Process, 259-267 

address space, 201, 211-216 
address translation, 211-215 
context, 259 
context switching, 226 
definition of, 201, 259 
regions, 213-215 
scheduling interrupts, 263 
structure instructions, 263-267 

Process control block (PCB), 
259-261 

Process control block base register 
(PCBB),259 

Process page tables, 212, 214 
paging of, 212, 220-221 
restrictions when changing, 216 

Processor access mode. See 
Access mode 

Processor state, 18-21 
Processor status longword (PSL), 

19,20-23 

Index 

access modes, 207 
definition of, 20 
in PCB, 261 

Processor status word (PSW) , 
20-21,293,330-331 

Processor type, 284 
Program counter (PC): 

definition of, 19 
in PCB, 261 

Program region of process space, 
201 

Protection, of memory. See 
Memory 

Protection codes, 208 
PRV_MOD. See Previous mode 
PSL (processor status longword), 

19,20-23,207,261 
PSW (processor status word), 

20-21,293,330-331 
PTE. See Page table entry 
PUSH (push instructions): 

PUSHA (push address), 67 
PUSHL (push long), 61 
PUSHR (push registers), 100 

Quadword: 
data type, 6, 7 
notation for, 43 
in registers, 20 

Queue instructions, 102-117 

Read access, 208 
Read access type, 42 

See also Access type 
Read-only access, 208 
Read-write access, 208 
Register(s), 279-288 

base register, 19, 20, 244-246 
in compatibility mode, 289-293 
general-purpose, 19-20, 

289-293 
index, 19 
in PCB, 261 
values during bootstrap, 334 
See also Internal processor 

register 
Register deferred mode addressing, 

291 
Register deferred mode operand 

specifier format, 30, 32 
Register mode addressing, 291 



Register mode operand specifier 
format, 30-32 

REI (return from exception or 
interrupt instruction), 
252-254,270 

Relocation, of memory. See 
Memory 

REM (remainder notation), 44 
REM (remove queue instructions): 

REMQHI (remove from head 
interlocked), 110-112 

REMQTI (remove from tail 
interlocked), 113-115, 270 

REMQUE (remove), 115-117, 
229,270 

REPEAT console command, 349 
Reserved, definition of, 2-3 
Reserved-addressing mode fault, 

233 
Reserved-operand exception, 164, 

234-235 
Reserved- or privileged instruction 

fault, 234 
Reserved to customers fault, 234 
Restart of system. See Bootstrap 
Restart parameter block (RPB), 

335-336, 347 
Restartability of instructions, 

224-225, 233, 275 
RET (return from procedure 

instruction), 92- 93 
ROL (rotate left instruction), 

305-306 
ROR (rotate right instruction), 

306-307 
ROTL (rotate long instruction), 

61-62 
RPB (restart parameter blOCk), 

335-336, 347 
RSB (return from subroutine 

instruction), 86 
RTI (return from interrupt instruc­

tion),323 
RTS (return from subroutine 

instruction), 322-323 
RTT (return from trap instruction), 

323-324 
RXCS (console terminal receive 

control and status register), 
357 

RXDB (console terminal receive 
data buffer register), 357 

Index 

SBC (subtract carry instruction), 
304 

SBR (system base register), 
209-211 

SBWC (subtract with carry 
instruction), 62-63 

SCANC (scan characters instruc­
tion),155-156 

SCB. See System control block 
SCBB (system control block base 

register), 244-246 
Scheduling, of a process, 263 
Self-relative queue, 103 
Self-relative queue, data type, 

13-14 
Self test console command, 349 
SET console command, 349 
SEXT (sign extend notation), 27, 

44 
Sharing, of memory. See Memory 
SID (system identification register), 

284-285 
Single precision floating point. See 

F_floating 
SIRR (software interrupt request 

register), 228, 229 
SISR (software interrupt summary 

register), 228 
SKPC (skip character instruction), 

157-158 
SLR (system length register), 209, 

210 
SOB (subtract one and branch), 

320 
SOBGEQ (subtract one and branch 

greater than or equal 
instruction), 86-87 

SOBGTR (subtract one and branch 
greater than instruction), 
87-88 

Software interrupt, 227-229 
Software interrupt request register 

(SIRR), 228, 229 
Software interrupt summary 

register (SISR), 228 
Source string, 272 
SP. See Stack pointer 
SPANC (span characters instruc­

tion),158-159 
SSP (supervisor-mode stack 

pointer), 246 
Stack, 246-248, 293 
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Stack (continued) 
accessing stack registers, 248 
alignment, 247 
not-valid, 246 
residency, 246-247 
running on the interrupt, 223, 

246,263 
status bits, 247 
switching between, 246, 250, 

254 
See also Stack pointer 

Stack frame: 
CALL instructions, 88-92 
CHM instructions, 255 
emulation trap, 364 
machine-check exception, 240 
memory management fault, 217 

Stack pointer, 246, 281, 293 
definition of, 19 
indication of, 247 
IPRs, 248 
in PCB, 261 
referencing, 248 
switching between, 246, 250, 

254 
See also Stack 

START console command, 349 
State transitions of the system, 256 
Stop byte, 272 
String: 

character string, 14 
character string instructions, 

140-159 
CRC instruction, 160-162 
decimal string instructions, 

163-182 
EDITPC instruction, 183-186 
leading separate string, 17 
packed decimal string, 18 
in registers, 20 
trailing numeric string, 15-17 

SUB (subtract instructions): 
compatibility mode, 310 
floating point, 138-139 
integer, 63- 64 
packed decimal, 181-182 
SBC (subtract carry), 304 
SBWC (subtract with carry), 

62-63 
SOB (subtract one and branch), 

320 

Index 

SUBP (subtract packed), 
181-182 

Subscript-range trap, 232 
Subsetting, 359-365 

compatibility mode, 361 
floating point instructions, 360 
full VAX, 359 
instruction emulation, 362-365 
IPRs, 361 
kernel subset, 361-362 
MicroVAX chip subset, 359 
MicroVAX I subset, 359 
rules, 360-361 
string instructions, 360-361 

Supervisor access mode, 207 
Supervisor-mode stack pOinter 

(SSP),246 
Suspended emulation fault, 235 
SVPCTX (save process context 

instruction), 263, 266- 267 
SWAB (swap bytes instruction), 

307 
SXT (sign extended word instruc­

tion),304-305 
Synchronization, 269-270 

in compatibility mode, 331 
with I/O device registers, 277 
restrictions on caches, 

274-275 
using IPL, 224 
writing to the instruction, 

269-270 
System address space, 201 

address translation, 209-211 
System-base register (SBR), 

209-211 
System control block (SCB), 

243-244 
vectors, 243-244 

System control block base register 
(SCBB), 244-246 

System failures, 240-241 
System identification register (SID), 

284-285 
System length register (SLR), 209, 

210 
System page table, 209, 216 
System states, major transitions, 

256,338-339 
SYS_TYPE(MicroVAX system 

type register), 284-285 



Table B.12 
VAX-11/730 Machine-Check Error Type Codes 

Code Meaning 

o Microcode shouldn't be here. If the first parameter is zero, no 
other information is available. If the first parameter is two, 
the problem was inability to write back a PTE(M> bit. If the 
parameter is three, the problem was a bad 8085 interrupt. The 
second parameter is always zero. 

Translation buffer parity error. The first parameter is the bad 
value from the TB. PFN is in bits (23:0>. PTE(V), the protection 
code, and PTE(M> are in bits (31 :26>. TB valid bit is in bit 
(25). The second parameter is the virtual address referenced. 

3 Impossible value in memory CSA. The first parameter is the 
virtual address referenced. The second parameter is the 
bad value of the CSR. 

4 

5 

6 

7 

8 

9 

A 

B 

Fast interrupt without support. A fast interrupt was requested 
and no microcode was loaded to handle it. Both parameters are 
zero. 

FPA parity error. The FPA control store had a parity error. The 
first parameter has parity error summary in bit(O>, group 0 parity 
in bit (1 >, group 1 parity in bit (2), and in unpredictable in 
bits(31 :3>. The second parameter is zero. 

Error on SPTE read. The first parameter is the physical 
address of the SPTE. The second parameter contains the error 
syndrome bits. 

Uncorrectable ECC error. The first parameter is the physical 
address of the reference. The second parameter contains the 
error syndrome bits. 

Nonexistent memory. The first parameter is the physical 
address referenced. The second parameter is zero. 

Unaligned or non-Iongword reference to I/O space. The first 
parameter is the physical address referenced. The second 
parameter is zero. 

Illegal I/O space address. The first parameter is the physical 
address referenced. The second parameter is zero. 

Illegal UNIBUS reference. The first parameter is the physical 
address referenced. The second parameter is zero. 
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Table 8.13 
VAX-11/750 Implementation-Dependent System Control Block Vectors 

Offset Vector Name IPL Notes 

54 corrected read data, or 1A Corrected memory error 
read data substitute and uncorrected memory 

error. 

60 write bus error 10 Taken regardless of 
current IPL if error occurs 
during exception or 
interrupt. 

FO console storage device 17 Console load device 
(TU58) receive signalling read complete. 

F4 console storage device 17 Console load device 
(TU58) transmit signalling write complete. 

10D-13C adapter interrupts, 14 Adapter interrupt. 
adapters 0 through 15 

14D-17C adapter interrupts, 15 Adapter interrupt. 
adapters 0 through 15 

180-1BC adapter interrupts, 16 Adapter interrupt. 
adapters 0 through 15 

1CO-1 FC adapter interrupts, 17 Adapter interrupt. 
adapters 0 through 15 

200-3FC Unibus interrupts 14-17 IPL corresponds to 
bus request levels 4 
through 7. 

Table 8.14 
VAX-11/750 Halt Codes 

Code Meaning 

1 successful completion of console TEST command 

2 processor halted by flP or single step 
3 powerup 

4 interrupt stack not valid, or SCB read failure 
5 double bus write error 
6 HALT instruction executed 

7 illegal interrupt or exception vector (bits(1 :0) = 3) 

8 jump to nonexistent user writable control store (SCB vector 
bits(1 :0) = 2, and no user WCS installed) 

A change mode from the interrupt stack 
B change mode to the interrupt stack 

11 can't find a valid Restart Parameter Block during powerup 
restart, and powerup action switch set to RESTART/HALT 

12 "system restart in progress" flag already set during powerup 
restart, and powerup action switch set to RESTART/HALT 

13 can't find 64K bytes of good memory during system bootstrap 
14 bad boot ROM or no boot ROM during powerup bootstrap 

15 "system bootstrap in progress" flag already set during boot 
16 
FF 

powerup and powerup action switch set to HALT 

self-test failure 



Table 8.15 
VAX-11/750 Implementation-Dependent Internal Processor Registers 

IPR Mnemonic Name 

17 CMIERR CMI error 
1C CSRS Console storage receive status 

10 CSRD Console storage receive data 

1E CSTS Console storage transmit status 

1F CSTD Console storage transmit data 

24 TBDR Translation-buffer disable 

25 CADR Cache disable 

26 MCESR Machine-check error summary 

27 CAER Cache error 

28 ACCS Accelerator control and status 
27 IORESET Initialize UNIBUS 

3B TB Translation-buffer test 

3D PME Performance-monitor enable 

3E SID System identification 
3F TBCHK Translation-buffer check 

31 2423 1615 87 a 

2 reserved I microcode rev I hardware rev I 
Figure B.11 
VAX-11/750 System Identification Register (SID) 

count of bytes pushed, excluding PC, PSL and count. 28 hex. :SP 

error code 

VA register 

PC at the time of the error 

MDR 

saved mode register 

read lock timeout 

TB group parity error register 

cache error register 

bus error register 

machine-check error summary register 

PC 

PSL 

Figure B.12 
VAX-11/750 Machine-Check Stack Frame 
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Table B.16 
VAX-11/750 Machine-Check Error Summary Register 

Code Meaning 

2 

6 

7 

0000 0000: 

1FFF FFFF: 

2000 0000: 

2000 2000: 

2001 EOOO: 

2002 0000: 

200F FFFF: 

2010 0000: 

2014 0000: 

2018 0000: 

2018 0000: 

2020 0000: 

3FFF FFFF: 

Figure B.13 

control store parity error 

translation buffer parity error, bus error, or cache parity error 

"microcode shouldn't be here" error 

"unused IRD ROM slot" error 

installed memory 

f--------------
memory address space 

beyond installed memory 

TRO adapter space 

TR1 adapter space 

· · · 
TR15 adapter space 

reserved 

UNIBUS 0 address space 

UNIBUS 1 address space 

UNIBUS 2 address space 

UNIBUS 3 address space 

reserved 

VAX-11/7BO Physical Address Space 
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Table B.17 
VAX-11/780 Implementation-Dependent System Control Block Vectors 

Offset Vector Name IPL Notes 

50 SBI silo compare 19 System bus error. 

54 corrected read data, or 1A Corrected memory error, 
read data substitute or uncorrected memory 

error. 

58 SBI alert 1B System bus error. 

5C SBI fault 1C System bus error. 

60 memory write timeout 10 Memory error. 

100-13C nexus interrupts, nexuses 14 Device or adapter 
o through 15 interrupt. 

140-17C nexus interrupts, nexuses 15 Device or adapter 
o through 15 interrupt. 

180-1BC nexus interrupts, nexuses 16 Device or adapter 
o through 15 interrupt. 

1 CO-1FC nexus interrupts, nexuses 17 Device or adapter 
o through 15 

Table B.18 
VAX-11/780 Halt Codes 

Code Message 

3 
4 

5 

7 

8 

OA 

none 

?lNT-STK lNVLD 

?CPU DBLE-ERR HLT 

?lLL liE VEC 

?NO USR WCS 

?CHM ERR 

Implementation Dependencies 

interrupt. 

Meaning 

Powerup. 

The interrupt stack was not valid when 
the processor attempted to take an 
exception or interrupt. 

A second processor error occurred 
during the processing of a previous 
error. 

Illegal interrupt or exception vector. 
(Vector bits(1 :0) were 3.) 

Jump to nonexistent user writable 
control store. 

Change mode from the interrupt stack. 
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Table 8.19 
VAX-11/780 Implementation-Dependent Internal Processor Registers 

IPR Mnemonic Name 

20 

21 

22 

23 

28 

29 

2C 

2D 

30 

31 

32 

33 

34 

35 

36 

3C 

3D 

3E 

3F 

31 

Figure B.14 

RXCS Console terminal receive control and status 

RXDB Console terminal receive data buffer 

TXCS Console terminal transmit control and status 

TXDB Console terminal transmit data buffer 

ACCS Accelerator control and status 

ACCR Accelerator maintenance 

WCSA Writable-control-store address 

WCSD Writable-control-store data 

SBIFS SBI fault status 

SBIS SBI silo 

SBISC SBI silo comparator 

SBIMT SBI maintenance 

SBIER SBI error 

SBITA SBI timeout address 

SBIQC SBI quadword clear 

MBRK Microprogram breakpoint 

PME Performance-monitor enable 

SID System identification 

TBCHK Translation-buffer check 

242322 1514 1211 o Igeo level I plant I 
o = VAX-11 1780 
1 = VAX -11 1785 

serial number 

VAX·11/780 System Identification Register (SID) 
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count of bytes pushed, excluding PC, PSL and count. 28 hex. :SP 

summary parameter 

CPU error status register 

trapped microPC 

VA or VIBA 

D register 

TB ERR 0 register 

TB ERR 1 register 

timeout address 

parity register 

SBI error register 

PC 

PSL 

Figure B.15 
VAX-11/780 Machine-Check Stack Frame 

Table B.20 
VAX-11/780 Machine-Check Error Summary Parameter 

Code 

00 

02 
03 
05 
OA 
OC 
OD 
OF 
F1 

F2 

F3 

F4 

F5 

F6 

Meaning 

central processor read timeout or error confirmation fault 

central processor translation buffer parity error fault 

central processor cache parity error fault 

central processor read data substitute fault 

instruction buffer translation buffer parity error fault 

instruction buffer read data substitute fault 

instruction buffer read timeout or error confirmation fault 

instruction buffer cache parity error fault 

control store parity error abort 

central processor translation buffer parity error abort 

central processor cache parity error abort 

central processor read timeout or error confirmation abort 

central processor read data substitute abort 

"microcode not supposed to get here" abort 
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0000 0000: 

1FFF FFFF: 

2000 0000: 

2000 2000: 

2001 FFFF: 

2002 0000: 

2003 FFFF: 

2004 0000: 

203F FFFF: 

2040 0000: 

2044 0000: 

207F FFFF: 

2080 0000: 

3FFF FFFF: 

Figure B.16 

installed memory f---------------
memory address space 

beyond installed memory 

node 0 nodes pace 

node 1 nodespace 

· · · 
node 15 nodes pace 

reserved 

node private space 

node 0 
window space 

node 1 window space 

· · · 
node 15 window space 

reserved 

VAX 8200 Physical Address Space 

Table B.21 
VAX 8200 Implementation-Dependent SCB Vectors 

Offset Vector Name 

50 BI bus-error interrupt 

54 Corrected read data 

58 RXCD (receive data register) 

80 Interprocessor interrupt 

CO Interval timer interrupt 

C8 Serial line #1 RX interrupt 

CC Serial line #1 TX interrupt 

DO Serial line #2 RX interrupt 

D4 Serial line #2 TX interrupt 

D8 Serial line #3 RX interrupt 

DC Serial line #3 TX interrupt 

FO Console storage device 

F8 Console terminal RX interrupt 

FC Console terminal TX interrupt 

100-3FFC BI defined, loaded by software 

IPL 

14 

1A 

14 

14 

16 

14 

14 

14 

14 

14 

14 

14 

14 

14 

14-17 



Table 8.22 
VAX 8200 Implementation· Dependent Internal Processor Registers 

IPR Mnemonic Name 

16 IPIR Interprocessor interrupt request 

20 RXCS Console terminal receive control and status 

21 RXDB Console terminal receive data buffer 

22 TXCS Console terminal transmit control and status 

23 TXDB Console terminal transmit data buffer 

24 TBDR Translation-buffer disable 

25 CADR Cache disable 

26 MCESR Machine-check error summary 

28 ACCS Accelerator control and status 

2C WCSA Writable-control-store address 

2D WCSD Writable-control-store data 

2E WCSL Writable-control-store load 

3E SID System identification 

50 RXCS1 Serial line 1 receive control and status 

51 RXDB1 Serial line 1 receive data buffer 

52 TXCS1 Serial line 1 transmit control and status 

53 TXDB1 Serial line 1 transmit data buffer 

54 RXCS2 Serial line 2 receive control and status 

55 RXD~2 Serial line 2 receive data buffer 

56 TXCS2 Serial line 2 transmit control and status 

57 TXDB2 Serial line 2 transmit data buffer 

58 RXCS2 Serial line 3 receive control and status 

59 RXDB3 Serial line 3 receive data buffer 

5A TXCS3 Serial line 3 transmit control and status 

5B TXDB3 Serial line 3 transmit data buffer 

5C RXCD Receive console data 

5D CACHEX Cache invalidate 

5E BINID 81 node identification 
5F BISTOP BI stop 

31 2423 1918 987 o 
5 I patch rev 

L CPU revision 

H ucode rev 

Figure B.17 
VAX 8200 System Identification Register (SID) 
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count of bytes pushed, excluding PC, PSL, and count. 20 hex. 

machine-check type code 

parameter 1 

VA 

VA prime 

MAR 

status word 

PC at failure 

micro-PC at failure 

PC 

PSL 

Figure B.18 VAX 8200 Machine-Check Stack Frame 

0000 0000: 
installed memory 

~-------------
1FFF FFFF: 

2000 0000: 

2000 2000: 

2001 FFFF: 

2002 0000: 

2008 0000: 

2008 0000: 

2010 0000: 

2014 0000: 

201F FFFF: 

2020 0000: 

2200 0000: 

2200 2000: 

2201 FFFF: 

2202 0000: 

2208 0000: 

2208 ooeo: 

2210 0000: 

2214 0000: 

221F FFFF: 

2220 0000: 

2400 0000: 

2600 0000: 

2800 0000: 

noneXistent-memory space 

SBIO.TRO adapter space 

SBI0.TR1 adapter space 

· · · SBI0.TR15 adapter space 

reserved 

SBIA #0 registers 

reserved 

UNIBUS 0 address space 

UNIBUS 1 address space · · · UNIBUS 3 address space 

reserved 

SBI1.TRO adapter space 

SBI1.TR1 adapter space 

· · · SBI1. TR 15 adapter space 

reserved 

SBIA #1 registers 

reserved 

UNIBUS 4 address space 

UNIBUS 5 address space · · · UNIBUS 7 address space 

reserved 

SBIA #2 address space 

SBIA #3 address space 

reserved 

Figure B.19 VAX 8600 Physical Address Space 

:SP 



Table B.23 VAX 8600 Implementation· Dependent SCB Vectors 

Offset Vector Name IPL Notes 

04 machine checks 10 or 1 F At IPL 1 D only if the error is 
unrelated to the current 
instruction 

50 SBIO silo compare 19 System-bus memory error 

54 Corrected read data 10 Corrected memory error 

58 SBIO alert 1B System-bus error 

5C SBIO fault 1C System-bus error 

60 SBIAO internal fail 10 Abus-to-SBI-adapter error 

64 SBIO power fail 1E 

100-13C SBIAO nexus interrupts at 14 Device or adapter interrupt 
BR4, nexus 0 thru 15 

140-17C SBIAO nexus interrupts at 15 Device or adapter interrupt 
BR5, nexus 0 thru 15 

180-1 BC SBIAO nexus interrupts at 16 Device or adapter interrupt 
BR6, nexus 0 thru 15 

1CO-1FC SBIAO nexus interrupts at 17 Device or adapter interrupt 
BR7, nexus 0 thru 15 

250 SBI1 silo compare 19 System-bus error 

258 SBI1 alert 1B System-bus error 

25C SBI1 fault 1C System-bus error 

260 SBIA 1 internal error 10 Abus-to-SBI-adapter error 

264 SBI1 power fail 1E 

300-33C SBIA 1 nexus interrupts at 14 Device or adapter interrupt 
BR4, nexus 0 thru 15 

340-37C SBIA1 nexus interrupts at 15 Device or adapter interrupt 
BR5, nexus 0 thru 15 

380-3BC SBIA 1 nexus interrupts at 16 Device or adapter interrupt 
BR6, nexus 0 thru 15 

3CO-3FC SBIA 1 nexus interrupts at 17 Device or adapter interrupt 
BR7, nexus 0 thru 15 

400-5FC lOA #2 vectors Correspond to 200-3FC 

600-7FC lOA # 3 vectors Correspond to 200-3FC 

Table B.24 VAX 8600 Implementation-Dependent Halt Codes 

Code Message Meaning 

0 UNRECOVERABLE MACHINE HANG Console-support microcode is not running 

4 INTERRUPT STACK INVALID Interrupt stack not valid during the initiation 
of an exception or interrupt. 

5 NON-EBOX DOUBLE ERROR While initiating a machine check, a second 
machine check occurred. 

6 KERNEL MODE HALT HALT instruction in kernel mode. 

7 SCB VECTOR<1:0>=3, INVALID Illegal SCB vector (bits<1 :0> = 3). 

8 SCB VECTOR< 1 :0> = 2, NO USER Illegal SCB vector (bits<1 :0> = 2, no WCS 
WCS microcode). 

9 ERROR PENDING ON HALT Pending error on HALT. 

A CHM WITH IS = 1 CHMx from the interrupt stack. 

B CHM WITH VECTOR<1 :0> NOT 0 CHMx to the interrupt stack. 

11 INVOKED BY CONSOLE Operator typed HALT at console. 
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Table B.25 
VAX 8600 Implementation-Dependent Internal Processor Registers 

IPR Mnemonic Name 

20 

21 

22 

23 

28 

3D 

3E 

3F 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

4A 

4C 

40 

4E 

4F 

31 

4 

Figure 8.20 

RXCS Console terminal receive control and status 

RXDB Console terminal receive data buffer 

TXCS Console terminal transmit control and status 

TXDB Console terminal transmit data buffer 

ACCS Accelerator control and status 

PME Performance-monitor enable 

SID System identification 

TBCHK Translation-buffer check 

PAMACC Physical address memory map access 

PAMLOC Physical address memory map location 

CSWP Cache sweep 

MDECC M-box data ECC 

MENA M-box error enable 

MDCTL M-box data control 

MCCTL M-box MCC control 

MERG M-box error generator 

CRBT Console reboot 

DFI Diagnostic fault insertion 

EHSR Error handling status 
STXCS Console block storage control and status 

STXDB Console block storage data buffer 

ESPA E-box scratch pad address 

ESPD E-box scratch pad data 

242322 1615 1211 o 

I geo level I plant I 
0= VAX 8600 
1 = VAX 8650 

serial number 

VAX 8600 System Identification Register (SID) 
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count of bytes pushed, excluding PC, PSL, and count. 58 hex. 

EHM.STS 

EVMQSAV 

EBCS 

EDPSR 

CSLlNT 

IBESR 

EBXWD1 

EBXWD2 

IVASAV 

VIBASAV 

ESASAV 

ISASAV 

CPC 

MSTAT1 

MSTAT2 

MDECC 

MERG 

CSHCTL 

MEAR 

MEDR 

FBXERR 

CSES 

PC 

PSL 

Figure 8.21 
VAX 8600 Machine-Check Stack Frame 
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Table B.26 
VAX 8600 Machine-Check Stack Frame Contents 

Field Offset Extent Meaning 

COUNT 00 <31 :0> Bytes pushed, excluding PC, PSL, and count 

EHM.STS 04 <31 :24> Error-handling status 

<23:19> Control-store correction request 

<15:8> Trap vector 

<7:0> Status code 

EVMQSAV 08 <31:0> E-box virtual address 

EBCS OC <31 :27> E-box control-store parity error 

<15:8> E-box, I-box, M-box error 

<4:0> Abort flags 

EDPSR 10 <31 :28> A-mux byte in error 

<27:24> B-mux byte in error 

<15:12> VMQ byte in error 

<11 :0> E~box datapatherror flags 

CSLlNT 14 <29:23> Interrupt request flags 

<22:21> lOA number 

<20:16> Interrupt priority requests 

<15:8> C-bus data 

<7:6> C-bus control 

<5:0> C-bus addresss 

IBESR 18 <31 :21> I-box error flags 

<15:8> Diagnostic and maintenance flags 

EBXWD1 1C <31 :0> Top of scratch-pad stack 

EBXWD2 20 <31 :0> Next on scratch-pad stack 

IVASAV 24 <31:0> Virtual address for operand fetch 

VIBASAV 28 <31 :0> Virtual address of next IB port request to fill IB 

ESASAV 2C <31 :0> PC being evaluated by E-box 
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Table 8.26 
VAX 8600 Machine-Check Stack Frame Contents (continued) 

Field Offset Extent Meaning 

ISASAV 30 <31:0> PC being evaluated by operand fetch unit 

CPC 34 <31 :0> PC being evaluated by I-buffer 

MSTAT1 38 <31 :26> M-box cycle in error 

<25:24> Word count 

<23:16> M-box error conditions 

<15:12> Cache hit/miss history 

<11 :8> TB errors 

<7:0> M-box datapath error summary 

MSTAT2 3C <20:16> PAMM data 

<15:8> SBIA diagnostic status 

<7:0> M-box error information 

MDECC 40 <22:16> Data ECC error flags 

<14:9> Data ECC syndrome 

<7:1> Data ECC check bit invert 

<0> Longword parity invert 

MERG 44 <12:9> Diagnostic bits 

<8> Memory management enable 

<5:0> M-box diagnostic error-insertion bits 

CSHCTL 48 <3:0> Cache control 

MEAR 4C <29:2> Physical address latched 

MEDR 50 <31 :00> Data word latched 

FBXERR 54 <25:9> Accelerator status 

CSES 58 <28:16> Control-store address 

<15:8> Control-store syndrome 

<2:0> Control-store code 

PC 5C <31 :0> PC 

PSL 60 <31 :0> PSL 
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0000 0000: 

1F'FF FFFF: 

2000 0000: 

2000 2000: 

2001 FFFF: 

2002 0000: 

2004 0000: 

2006 0000: 

2008 0000: 

2010 0000: 

2040 0000: 

207F FFFF: 

2044 0000: 

2080 0000: 

2200 0000: 

2400 0000: 

2600 0000: 

2800 0000: 

3FFF FFFF: 

Figure B.22 

installed memory 1----------:------
memory address space 

beyond installed memory 

BI#O node 0 nodespace 

BI#O node 1 nodespace 

· .. · BI#O node 15 nodespace 

multicast space 

boot ROM 

reserved 

node private space 

reserved 

node 0 window space 

node 1 window space · · · node 15 window space 

reserved 

BI #1 space 

BI #2 space 

BI'#3 space 

reserved 

VAX 8800 Physical Address Space 
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Table B.27 
VAX 8800 Implementation-Dependent SCB Vectors 

Offset Vector Name IPL Notes 

5C NMI fault 1C System-bus error 
80 interprocessor interrupt 14 Not included in 8500 

148 memory error 15 Corrected or uncorrected 
error, interlock timeout, 
or controller error. 

100-13C SBIAO nexus interrupts at BR4, 14 Device or adapter interrupr 
nexus 0 thru 15 

140-17C SBIAO nexus interrupts at BR5, 15 Device or adapter interrupt 
nexus 0 thru 15 

180-1BC SBIAO nexus interrupts at BR6, 16 Device or adapter interrupt 
nexus 0 thru 15 

1CO-1FC SBIAO nexus interrupts at BR7, 17 Device or adapter interrupt 
nexus 0 thru 15 

200-3FC UNIBUS device interrupts 14-17 Devices on UNIBUS 0 
400-5FC UNIBUS device interrupts 14-17 Devices on UNIBUS 1 

600-38FC Unused 
3900-393C BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt 
3940-397C BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt 

3980-39BC BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt 

39CO-39FC BI#O interrupts, nodes 0 through 15 14-17 Device or adapter interrupt 
3AOO-3BFC BI#1 interrupt vectors 14-17 Device or adapter interrupt 
3COO-3DFC BI#2 interrupt vectors 14-17 Device or adapter interrupt 

3EOO-3FFC BI#3 interrupt vectors 14-17 Device or adapter interrupt 

Table 8.28 
VAX 8800 Implementation-Dependent Internal Processor Registers 

IPR Mnemonic Name 

26 MCSTS Machine check status 

80 NICTRL NMI interrupt control 

81 INOP Interrupt other processor 

82 NMIFSR NMI fault/status 

83 NMISILO NMI bus silo 

84 NMIEAR NMI error address 

85 COR Cache on 

86 REVR1 Revision register #1 

87 REVR2 Revision register #2 

88 CLRTOSTS Clear timeout status 
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31 242322 1615 

6 I ~PU reVisionl serial number 

Figure B.23 

L 0 = Right processor 
1 = Left processor 

VAX 8800 System Identification Register (SID) 

count of bytes pushed, excluding PC, PSL, and count. 

MCSTS 

PC 

VAIVIBA 

IBER 

CBER 

EBER 

NMIFSR 

NMIEAR 

PC 

PSL 

Figure B.24 
VAX 8800 Machine-Check Stack Frame 

Table B.29 
VAX 8800 Machine-Check Stack Frame Contents 

Mnemonic Offset Contents 

o 

1C hex. :SP 

COUNT 00 Count of bytes pushed, excluding PC, PSL, and 
count 

MCSTS 04 Machine-check status 

PC 08 Current PC 

VAIVIBA OC Virtual addresslvirtual instruction-buffer address 

IBER 10 IBOX error 

CBER 14 CBOX error 

EBER 18 EBOX error 

NMIFSR 1C NMI fault summary 

MNIEAR 20 NMI error address 

PC 24 PC of faulted opcode 

PSL 28 Processor status longword 
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Index 

Abort, 225 
See also Exceptions 

Absolute queue, 102-103 
data type, 11-12 

ACB (add compare and branch 
instructions), 72-74 

Access control. See Memory, 
protection of 

Access-control-violation fault 
(ACCVIO), 209, 216, 217, 
233 

Access mode, 21, 207 
changing of, 218 
use of, in protection of memory, 

207 
Access type: 

indication of, 217 
modify, 203, 217 
notation for, 42-43 
use of, in protection of memory, 

204, 208 
write, 217 

ADAWI (add aligned word inter­
locked instruction), 45, 270 

ADD (add instructions): 
ADAWI (add aligned word 

interlocked), 45 
ADC (add carry), 303-304 
ADD, 46-47, 309 
ADDP (add packed), 165-167 
ADWC (add with carry), 47 
compatibility mode, 309 
floating point, 121-122 
integer, 45~47 
packed decimal, 165-167 

Address, 5 
Address access type. See Access 

type 
Address instructions, 66-67 

Address modes, 27-40, 
289-293 

base operand specifier, 37 
branch mode addressing, 

38-39 
general mode addressing, 

27-38 
Address translation, 203-206 

process space, 201, 211-216 
system space, 201, 209-211 
translation buffer, 215-216 
when mapping is disabled, 202 

ADWC (add with carry instructions), 
47 

Alignment: 
of 1/0 registers, 277 
of stacks, 247 

AOBLEQ (add one and branch less 
than or equal instruction), 74 

AOBLSS (add one and branch 
less than instruction), 74 

Argument pointer (AP), 20 
Argument validation, 218-221 
ASH (arithmetic shift instructions): 

ASHC (arithmetic shift combined), 
316 

ASHP (arithmetic shift and round 
packed), 167-168 

ASL (arithmetic shift left), 
302-303 

ASR (arithmetic shift right), 
301-302 

compatibility mode, 315-317 
integer, 47-48 
packed decimal, 167-168 

AST (asynchronous system trap), 
262-263 

ASTLVL (AST level register), 262 
software interupt, 263 

407 
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At console command (@ console 
command), 352 

Atomic operations: 
changing page table entries, 207 
modify operands, 39 

Autodecrement deferred mode 
addressing, 292 

Autodecrement mode addressing, 
292 

Autodecrement mode operand 
specifier format, 30, 33-34 

Autoincrement deferred mode 
addressing, 291-292 

Autoincrement deferred mode 
operand specifier format, 30, 
33 

Autoincrement mode addressing, 
291 

Autoicrement mode operand 
specifier format, 30, 32-33 

Autorestart, 337 

B (conditional branch instructions), 
75-77,318-319 

Base operand specifier, 37 
Base register, 19,20 
BB (branch on bit instructions): 

and modify interlocked, 79-81, 
270 

and modify without interlock, 
78-79 

noninterlocked, 77-78 
BIC (bit clear instructions): 

BICPSW (bit clear PSW), 94 
compatibility mode, 314-315 
logical, 48-49 

Binary load and unload console 
command, 350- 351 

BIS (bit set instructions): 
BISPSW (bit set PSW), 94-95 
compatibility mode, 313-314 
logical, 49-50 

BIT (bit test instructions), 50-51, 
315 

Bit field: 
access type, 42-43 
data type, 10-11 
FIELD addressing notation, 68 
instructions, 68-88 
in registers, 20 

Index 

BLB (branch on low bit instructions), 
81 

BOOT console command, 343 
Bootstrap, 333 

bootstrap algorithm, 333-335 
console BOOT command, 343 
powerfail and recovery, 

336-338 
restart algorithm, 335-336 

BPT (breakpoint instruction), 95 
instruction fault, 328 

BR (branch instructions), 81-82, 
317-320 

Branch displacement access type. 
See Access type 

Branch mode addressing, 38-39 
Breakpoint fault, 236 
Breakpoint instruction (BPT), 95 
BSB (branch to subroutine 

instructions), 82 
BUG (bugcheck instructions), 96 
Byte: 

notation for, 42 
in registers, 20 

Byte data type, 5, 6 
Byte displacement deferred mode, 

31,34-35 
Byte-within-page, 201 

Caches, restrictions on, 274-275 
CALL (call instructions), 88-92 
Call frame, 89 
CALLG, 90-91, 237 
CALLS, 91-92,237 
Carry condition code (C), 22 
CASE (case instructions), 82-83 
CC (condition code operator 

instructions), 325-327 
Change mode instructions (CHM), 

254-257 
Change-mode trap, 236 
Character string: 

data type, 14 
instructions, 140-159, 

272-273 
in registers, 20 

CHM (change mode instructions), 
254-257 

Clock: 
interval timer, 286-288 
time-of-year, 285 



Field. See Bit field 
FIND console command, 346-347 
First part done (FPD), 21 
Floating point: 

data types, 7-9, 20 
divide-by-zero exception, 232 
instructions, 117-140 
in literal addressing mode, 35 
overflow fault, 232 
overflow trap, 231 
underflow fault, 232-233 
underflow trap, 232 

Frame pointer (FP), 19 

General mode addressing, 27-38 
General purpose register (GPR). 

See Register G floating: 
data type, 8, 9 
notation for, 42 
in registers, 20 

Global page, 205 

Halt: 
console command, 342-355 
halt messages, 354-355 
instruction, 96-97 
interrupt-stack-not-valid, 240 

HALT instruction, 96-97 
console command, 347 

ICCS (interval clock control and 
status register), 286-287 

ICR (interval count register), 286, 
288 

Illegal instruction fault, 329 
INC (increment instructions), 

56-57, 299 
INDEX (compute index instruction), 

97-99 
Index deferred mode, 292-293 
Index mode, 292 
Index mode operand specifier 

format, 37-38 
Index register, 19 
Intialization effects of, 337 
INITIALIZE console command, 347 
Initiate exception or interrupt, 

248-252 
INS (insert queue instructions): 

INSQHI (insert at head inter­
locked), 104, 270 

Index 

INSQTI (insert at tail interlocked), 
106-108,270 

INSQUE (insert), 108-110, 229, 
270 

Instruction buffer, flushing by REI, 
254 

Instruction-emulation exception, 
235 

Instruction format, 25-26 
Instruction interpretation: 

by hardware, 39-40 
by software, 234-235 

INSV (insert field instruction), 72 
Integer: 

data types, 5-7 
divide-by-zero exception, 231 
instructions, 45-65 
overflow exception, 22, 

230-231 
Interlocking, 269 

changing page table entries, 207 
in 1/0 space, 277 
restrictions on caches, 274 

Internal processor register (IPR), 
19,279-288 

address space, 279 
definition of, 23 
in PCB, 261 
subsetting of, 361 

Interrupt(s), 224, 226-257 
AST delivery, 262-263 
compatibility mode, 328 
definition of, 223 
device, 227 
exceptions vs., 225-226 
initiation of, 248-252 
instructions, 252-257, 323 
precedence of, 241-242 
process scheduling, 263 
restrictions to allow restarting 

instructions, 275-276 
software interrupts, 227-229 
urgent, 227 
vectors, 245-246 

Interrupt priority level (I PL): 
definition of, 223 
as IPR, 224, 229 
in PSL, 22, 229 

Interrupt stack, 21 
bit in PSL, 21 
not valid, 240, 246, 251 

Interrupt stack pOinter (ISP), 246 
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Interval clock, 286-288 
Interval clock control and status 

register (ICCS), 286-287 
Interval counter register (lCR), 286, 

288 
1/0,276-278 

instructions usable to reference 
1/0 space, 277-278 

PTEs for 1/0 devices, 205-206 
restrictions on caches, 274 
restrictions on 1/0 registers, 277 

lOT instruction fault, 328 
IPL. See Interrupt priority level 
IPR. See Internal processor 

register 
ISP (interrupt stack pointer), 246 

JMP (jump instruction), 
84-85, 321 

JSB (jump to subroutine instruction), 
85 

JSR (jump to subroutine instruction), 
321-322 

Kernel processor mode, 207 
Kernel stack, 246 

not-valid, 240, 246, 251 
See also Stack; Stack pointer 

KSP (kernel-stack pointer), 246 
in PCB, 261 

LDPCTX {load process context 
instruction), 264-266 

Leading separate decimal string, 
17 

See also Decimal string 
Length violation, 209, 216-217 
Literal mode operand specifier 

format, 35-36 
LOAD console command, 

347-348 
LOCC (locate character instruction), 

144-145 
Logical instructions, 45-65 
Longword: 

data type, 6-7 
notation for, 43 
in registers, 20-23 

Longword displacement deferred 
mode, 31,34-35 

Machine-check exception, 240 

Index 

MAPEN (memory mapping enable 
register), 202-203 

MATCHC (match characters 
instruction), 145-147 

MBZ, definition of, 2 
MCOM (move complemented 

instructions), 56-57 
Memory: 

address translation, 203-206 
enabling memory mapping, 

202-203 
faults and parameters, 216-217 
1/0 address space, 276 
management, 199-221, 

327-328 
PO and P1 regions, 213-216 
page, 200 
page boundaries, 209 
physical address, 202 
physical address space, 277 
privileged services and argument 

validation, 218-221 
protection of, 207-209 
process space, 201, 211-216 
required references, 270-274 
sharing of, 269 
system space, 201, 209-211 
translation buffer, 215-216 
virtual address, 200-202 
when mapping is disabled, 202 

Memory management exceptions. 
See Exceptions 

Memory mapping enable bit 
(MME), 202-203 

Memory maping enable register 
(MAPEN), 202-203 

MFP (more from previous space), 
325 

MFPR (move from processor 
register instruction), 283 

MICROSTEP console command, 
348 

MicroVAX I, 359 
MINU (minimum unsigned notation), 

44 
MME (memory mapping enable 

bit), 202-203 
MNEG (move negated instructions): 

floating point, 130 
integer, 58 

Mode, CHM, 254-257 
Modify access. See Access type 



CLR (clear instructions): 
compatibility mode, 297-298 
floating point, 122-123 
integer and logical, 51 

CMP (compare instructions): 
character string, 141-144 
CMPC (compare characters), 

141-144 
CMPP (compare packed), 

168-169 
compatibility mode, 310-311 
floating point, 123-124 
integer and logical, 52 
packed decimal, 168-169 
variable length bit field, 68-69 

COM (complement instruction), 301 
Command files (@ console 

command), 352 
Compatibility mode (CM): 

addresses, 327 
address modes, 289-293 
bit in PSL, 21 
entering, 327 
exceptions, 235-236, 

328-330 
instructions, 293-327 
interrupts, 328-330 
1/0,330 
leaving, 327 
memory management, 327-328 
omission of, 327, 361 
processor registers, 330-331 
PSW, 293 
register mapping, 327 
registers, 289-293 
stack,293 
synchronization, 331 
tracing, 329-330 
unimplemented traps, 330 

Condition code(s), 21 
UMPREDICT ABLE after fault or 

interrupt, 251 
Condition code operators instruction 

(CC), 325-327 
Console, 339-340 

commands, 342-355 
console 1/0 mode, 340 
registers, 356-358 

@ console command, 352 
Context, of a process, 259 
Context switching, 226, 279-281 

Index 

CONTINUE console command, 343 
Control characters, as console 

commands, 340-342 
Control region, of process space, 

201 
CRC (calculate cyclic redundancy 

check instruction), 160-162 
CTRLlC console command, 341 
CTRLlO console command, 341 
CTRLlP console command, 341 
CTRLlQ console command, 341 
CTRLlS console command, 341 
CTRLlU console command, 341 
Current access mode (CUR MOD), 

21 
CVT (convert instructions): 

decimal, 169-177 
floating pOint, 124-126 
integer, 52-53 

Cyclic redundancy check instruc­
tion, 159-162 

Data, separation of procedure and, 
270 

Data sharing, 269-270 
Data types: 

definitions of, 5-18 
notation for, 42-43 
in registers, 20 

DEC (integer decrement instruc­
tions), 53-54, 298 

Decimal overflow (DV), 22, 164 
Decimal string: 

data types, 15-18 
divide-by-zero exception, 231 
instructions, 163-182 
overflow exception, 232 
packed, 18, 165 
in registers, 20 
zero-length, 165 

DEPOSIT console command, 
344-346 

Device interrupts, 227 
D_floating: 

data type, 8 
notation for, 42 
in registers, 20 

Displacement deferred mode 
operand specifier formats, 
31,34-35 
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Displacement mode operand 
specifier format, 31, 34 

DIV (divide instructions): 
compatibility mode, 312-313 
DIVP (divide packed), 177-178 
EDIV (extended divide), 55-56 
floating point, 127-128 
integer, 54-55 
packed decimal, 177-178 

Divide-by-zero exception, 231, 232 
Double precision floating point. See 

D_floating; G_floating 

Edit instructions, 182-197 
EDIT pattern operators. See EO$ 
EDITPC (edit packed to character 

string instruction), 183-186 
ED IV (extended divide instruction), 

55-56 
EMOD (extended multiply and 

integerize instructions) 
128-130 

EMT instruction fault, 328 
EMUL (extended multiply instruc­

tion), 56 
Emulation exceptions, 235, 

363-365 
Entry mask, 88 
EO$ (EDITPC pattern operators): 

encoding, 187-188 
EO$ADJUST_INPUT (adjust 

input length), 188-189 
EO$BLANK---ZERO (blank 

backwards when zero), 
189-190 

EO$END (end floating sign), 191 
EO$END (end edit), 190-191 
EO$END_FLOAT (end floating 

sign), 191 
EO$FILL (store fill), 191-192 
EO$FLOAT (float sign), 

192-193 
EO$INSERT (insert character), 

193-194 
EO$LOAD (load register), 

194-195 
EO$MOVE (move digits), 

195-196 
EO$REPLACE_SIGN (replace 

sign when zero), 196-197 
EO$SET _SIGNIF (set signifi­

cance),196-197 

Index 

EO$STORE_SIGN (store sign), 
197 

summary of, 186-187 
Errors, 276 

console, 353- 354 
serious system failures, 

240-241 
EXAMINE console command, 346 
Exceptions, 224-225, 229-241 

arithmetic, 230-233 
compatibility mode, 235-236, 

328-330 
definition of, 223 
detected during operand 

reference, 233-234 
emulation, 235 
initiation of, 248-252 
instructions, 252-257 
interrupts vs., 225-226 
memory management, 233 
occurring as consequence of 

instruction, 234-236 
precedence of, 236, 241-242 
restrictions to allow restarting 

instructions, 275-276 
serious system failures, 

240-241 
trace fault, 236-240 
vectors, 245-246 

Executive-mode stack pointer 
(ESP), 246 

in PCB, 261 
Executive processor mode, 207 
Executive stack, 246 
EXT (extract field instructions), 

69-70 

Fault: 
compatibility mode instruction, 

328-329 
definition of, 224 
in memory mapping and 

protection, 216-217 
parameters (see Exceptions; 

Stack frame) 
precedence of, 209, 216 

FF (find first bit instructions), 
70-71 

F _floating: 
data type, 7, 8 
notation for, 42 
in registers, 20 



TB. See Translation buffer 
TEST console command, 349 
Time-of-year clock register (TODR), 

285 
Trace enable (T), 22, 236-240 
Trace pending (TP), 21, 237-239 
Tracing: 

breakpoint fault, 236 
in compatibility mode, 329-330 
trace fault, 236-240 

Trailing numeric decimal string. 
See Decimal string 

Trailing numeric string, 15-17 
Transitions, between major system 

states, 256, 338-339 
Translation buffer (TB), 215-216 

TBCHK (check register), 216 
TBIA (invalidate all register), 216 
TBIS (invalidate single register), 

215,216 
Translation-not-valid fault, 216, 

217,233 
Translation of virtual addresses. 

See Address translation 
Trap: 

definition of, 224 
unimplemented PDP-11, 330 
See a/so Exceptions 

TRAP instruction fault, 329 
TST (test instructions): 

compatibility mode, 300-301 
floating pOint, 139-140 
integer and logical, 64 

TXCS (console terminal transmit 
control and status register), 
357 

TXDB (console terminal transmit 
data buffer register), 357 

Type: 
of processor, 284 
of system (SYS_ TYPE), 

284-285 

UNDEFINED, 2 
Underflow exceptions, 232-233 
UNIBUS: 

DATIP-DATO,270 

Index 

interrupt priority levels, 227 
interrupt vectors, 246 
space, 276 

UNJAM console command, 350 
UNPREDICTABLE, 2, 270-271 

definition of, 164 
Urgent interrupts, 227 
User access mode, 207 
User-mode stack pOinter (USP), 

246 
in PCB, 261 

Validation, of arguments, 
218-221 

Variable-length bit field. See Bit 
field 

Vector: 
interrupt and exception, 

245-246 
system control block, 243-244 

Virtual address, 5, 200-202 
Virtual memory. See Memory 
Virtual page number (VPN), 201 

Word: 
notation for, 43 
in registers, 20 

Word data type, definition of, 5, 6 
Word displacement deferred mode, 

31,34-35 
Write access type, 42 

X console command, 350-351 
XFC (customer reserved instruc­

tion), 234-235 
XFC (extended function cali 

instruction), 101-102 
XOR (exclusive-OR instructions), 

65, 313 

Zero condition code (Z), 22 
Zero extend notation (ZEXT), 27, 

44 
Zero numbers, 164 
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