

SX-Aurora TSUBASA

Architecture Guide

Revision 1.1

NEC CORPORATION, 2018

1-1

About this document

This document covers the basic architecture of the NEC SX-Aurora TSUBASA series,
including information on its software visible resources and instruction set.

This manual’s content follows: Chapter 1 overview, Chapter 2 system overview. Software
visible registers are covered in Chapter 3 and the data types and instruction formats used
in NEC SX-Aurora TSUBASA are described in Chapter 4 and 5 respectively. The
memory architecture are shown in Chapter 6, and Chapter 7 describes exceptions. The
instruction set is described in Chapter 8. Some appendix information including SX-Aurora
TSUBASA CPU microarchitecture overview is also provided in this document.

Copyright© 2018 NEC Corporation. All right reserved.

All information in this document is subject to change without notice.

All product, brand, or trade names in this publication are the trademarks or registered trademarks
of their respective owners.

1-2

Terminology

 VE: Vector Engine, NEC SX-Aurora TSUBASA's vector processing component. It is

PCI express card form factored, consisting of multiple VE cores and the local HBM

memory.

 VE core: the core component of the VE. It fetches codes and data from the VE

memory, decodes and executes a program and write data to the VE memory, as its

central processing unit. It also supports a native vector processing capability.

 VE memory: High bandwidth memory (HBM) inside the VE, mainly accessed by VE

cores.

 VH: Vector Host, an x86 server to accommodate VEs inside. Currently Linux is

supported for its operating system.

 VH CPU: CPUs for the VH server. Intel XEON CPU are currently supported.

 VI: Vector Island, a VH and VEs installed in the VE. It may have IB (Infiniband) HCAs

for high performance data transfer.

1-3

Contents
1. Overview .. 1-10

1.1. Overview ... 1-10

2. Aurora Systems .. 2-11

2.1. Single VI systems .. 2-11

2.1.1. 1-2 VE node systems ... 2-11

2.1.2. 4 VE node systems .. 2-12

2.1.3. 8 VE node systems .. 2-13

2.2. VI cluster systems ... 2-14

3. Registers .. 3-0

3.1. Overview ... 3-0

3.2. User Registers .. 3-1

3.2.1. Process Status Word (PSW) .. 3-1

3.2.2. Instruction Counter (IC) .. 3-6

3.2.3. Scalar Register (S) ... 3-7

3.2.4. Vector Register (V) ... 3-8

3.2.5. Vector Mask Register (VM) .. 3-10

3.2.6. Vector Index Register (VIXR) ... 3-12

3.2.7. Vector Length Register (VL) ... 3-13

3.3. System Registers .. 3-14

3.3.1. Address Translation Buffer (ATB) ... 3-14

3.3.2. Communication Register Directory (CRD) .. 3-15

3.3.3. Communication Register (CR) .. 3-16

3.4. Performance Counters .. 3-18

4. Data Format ... 4-0

4.1 Data format .. 4-0

4.1.1 Fixed-point data ... 4-0

4.1.2 Floating-Point Data .. 4-1

4.1.3 Logical Data .. 4-4

4.2 Fixed-Point Arithmetic and Shift Operations ... 4-5

4.2.1 Addition and Subtraction .. 4-5

4.2.2 Multiplication .. 4-8

4.2.3 Division .. 4-10

4.2.4 Comparison ... 4-11

4.2.5 Compare and select operation ... 4-13

4.2.6 Arithmetic Shift .. 4-15

4.2.7 Logical Shift ... 4-20

4.3 Floating-Point Arithmetic Operations .. 4-25

4.3.1 Addition and Subtraction .. 4-25

4.3.2 Multiplication .. 4-25

4.3.3 Division .. 4-26

4.3.4 Square Root .. 4-26

4.3.5 Fused multiply add .. 4-26

4.3.6 Reciprocal Approximation .. 4-26

4.3.7 Reciprocal Square Root Approximation ... 4-27

4.3.8 Comparison ... 4-27

4.3.9 Compare and select operation ... 4-27

4.4 Format Conversion... 4-28

4.1.1. Floating-point data to fixed-point data ... 4-28

4.1.2. Fixed-point data to floating-point data ... 4-30

4.1.3. Floating-point data to Floating-point data ... 4-31

4.4 Arithmetic Exception .. 4-33

4.4.1 Floating-point overflow ... 4-33

4.1.4. Floating-point underflow ... 4-33

4.1.5. Fixed-point overflow ... 4-34

4.1.6. Division by zero .. 4-34

1-4

4.1.7. Invalid operation ... 4-35

4.1.8. Inexact ... 4-35

5. Instruction Format .. 5-0

RM Type .. 5-0

5.1.1. RM type x field ... 5-1

5.1.2. RM type y field ... 5-2

5.1.3. RM type z field ... 5-2

5.1.4. RM type D field ... 5-2

5.1.5. Effective Address ... 5-3

5.2. RRM Type ... 5-4

5.2.1. RRM type x field ... 5-4

5.2.2. RRM type y field ... 5-5

5.2.3. RRM type z field ... 5-5

5.2.4. RRM type D field .. 5-5

5.2.5. Effective Address ... 5-5

5.3. CF Type .. 5-6

5.3.1. CF type x field .. 5-6

5.3.2. CF type y field .. 5-9

5.3.3. CF type z field .. 5-9

5.3.4. CF type D field ... 5-9

5.3.5. Effective Address ... 5-9

5.4. RR Type .. 5-11

5.4.1. RR type x filed .. 5-11

5.4.2. RR type y field .. 5-12

5.4.3. RR type z field .. 5-13

5.4.4. RR type w field ... 5-14

5.4.5. RR type Vx and Vz field.. 5-15

5.5. RW Type ... 5-16

5.6. RVM Type ... 5-18

5.6.1. RVM type x field ... 5-18

5.6.2. RVM type y field ... 5-19

5.6.3. RVM type z field ... 5-19

5.6.4. RVM type w field .. 5-20

5.6.5. RVM type Vx and Vy field ... 5-20

5.6.6. RVM type instruction .. 5-20

5.7. RV Type .. 5-21

5.7.1. RV type x field .. 5-21

5.7.2. RV type y field .. 5-25

5.7.3. RV type z field .. 5-25

5.7.4. RV type Vx, Vy, Vz, Vw field ... 5-26

6. Memory Architecture .. 6-0

6.1. Memory Architecture Overview .. 6-0

6.2. Address Space .. 6-1

6.2.1. Absolute address space ... 6-1

6.3. Types of Memory Access .. 6-3

6.3.1. VE core memory accesses ... 6-3

6.4. Address Translation .. 6-4

6.4.1. Page size ... 6-4

6.4.2. Partial space .. 6-4

6.4.3. Address translation buffer ... 6-4

6.5. Memory Access Ordering .. 6-9

6.5.1. Release consistency model .. 6-9

6.6. Cache Memory .. 6-10

6.6.1. Cache hierarchy ... 6-10

6.6.2. Cache coherency ... 6-11

6.6.3. Cache control ... 6-12

6.6.4. Cache bypass .. 6-12

1-5

6.6.5. LLC .. 6-12

6.7. Communication Register ... 6-14

6.7.1. Access to CR ... 6-14

6.7.2. Barrier synchronization using CR ... 6-17

7. Exceptions .. 7-0

7.1. Exceptions and interrupts .. 7-0

7.1.1. Attributes of interrupts .. 7-1

7.1.2. Causes of interrupts ... 7-2

7.1.3. Fast synchronization debug interrupt flag ... 7-8

8. Instructions ... 8-0

8.1. Legends .. 8-0

8.1.1. Desctiption of the function .. 8-0

8.1.2. Operators ... 8-0

8.1.3. Keywords and notations ... 8-1

8.1.4. Syntax .. 8-2

8.1.5. Endianness .. 8-3

8.1.6. Vector elements ... 8-3

8.2. Load/Store instructions .. 8-4

8.2.1. LEA .. 8-4

8.2.2. LDS .. 8-6

8.2.3. LDU .. 8-7

8.2.4. LDL .. 8-8

8.2.5. LD2B .. 8-10

8.2.6. LD1B .. 8-12

8.2.7. STS .. 8-14

8.2.8. STU .. 8-15

8.2.9. STL .. 8-16

8.2.10. ST2B .. 8-17

8.2.11. ST1B .. 8-18

8.2.12. DLDS ... 8-19

8.2.13. DLDU ... 8-20

8.2.14. DLDL .. 8-21

8.2.15. PFCH ... 8-23

8.2.16. TS1AM ... 8-24

8.2.17. TS2AM ... 8-27

8.2.18. TS3AM ... 8-30

8.2.19. ATMAM .. 8-32

8.2.20. CAS.. 8-34

8.3. Transfer Control Instruction ... 8-36

8.3.1. FENCE ... 8-36

8.3.2. SVOB ... 8-39

8.4. Fixed-point Operation Instructions ... 8-41

8.4.1. ADD ... 8-41

8.4.2. ADS.. 8-42

8.4.3. ADX.. 8-43

8.4.4. SUB.. 8-44

8.4.5. SBS .. 8-45

8.4.6. SBX .. 8-46

8.4.7. MPY ... 8-47

8.4.8. MPS ... 8-48

8.4.9. MPX ... 8-49

8.4.10. MPD ... 8-50

8.4.11. DIV ... 8-51

8.4.12. DVS.. 8-52

8.4.13. DVX.. 8-53

8.4.14. CMP ... 8-54

8.4.15. CPS.. 8-56

1-6

8.4.16. CPX.. 8-58

8.4.17. CMS ... 8-59

8.4.18. CMX ... 8-60

8.5. Logical Operation Instructions ... 8-61

8.5.1. AND ... 8-61

8.5.2. OR ... 8-62

8.5.3. XOR ... 8-63

8.5.4. EQV ... 8-64

8.5.5. NND ... 8-65

8.5.6. MRG... 8-66

8.5.7. LDZ .. 8-67

8.5.8. PCNT ... 8-68

8.5.9. BRV.. 8-69

8.5.10. BSWP .. 8-70

8.5.11. CMOV .. 8-71

8.6. Shift Operation Instruction ... 8-73

8.6.1. SLL .. 8-73

8.6.2. SLD .. 8-74

8.6.3. SRL .. 8-75

8.6.4. SRD ... 8-76

8.6.5. SLA .. 8-77

8.6.6. SLAX .. 8-78

8.6.7. SRA.. 8-79

8.6.8. SRAX ... 8-80

8.7. Floating-Point Arithmetic Instructions .. 8-81

8.7.1. FAD .. 8-81

8.7.2. FSB .. 8-83

8.7.3. FMP ... 8-85

8.7.4. FDV .. 8-87

8.7.5. FCP .. 8-89

8.7.6. FCM ... 8-91

8.7.7. FAQ.. 8-93

8.7.8. FSQ.. 8-95

8.7.9. FMQ ... 8-97

8.7.10. FCQ ... 8-99

8.7.11. FIX ... 8-101

8.7.12. FIXX ... 8-103

8.7.13. FLT .. 8-105

8.7.14. FLTX .. 8-106

8.7.15. CVS.. 8-107

8.7.16. CVD ... 8-109

8.7.17. CVQ ... 8-111

8.8. Branch Instructions .. 8-113

8.8.1. BC .. 8-113

8.8.2. BCS.. 8-115

8.8.3. BCF .. 8-117

8.8.4. BCR ... 8-119

8.8.5. BSIC... 8-122

8.9. Vector Load/Store and Move Instructions .. 8-124

8.9.1. VLD .. 8-124

8.9.2. VLDU ... 8-126

8.9.3. VLDL .. 8-128

8.9.4. VLD2D ... 8-130

8.9.5. VLDU2D ... 8-132

8.9.6. VLDL2D ... 8-134

8.9.7. VST .. 8-136

8.9.8. VSTU ... 8-138

1-7

8.9.9. VSTL .. 8-140

8.9.10. VST2D ... 8-142

8.9.11. VSTU2D ... 8-144

8.9.12. VSTL2D ... 8-146

8.9.13. VGT.. 8-148

8.9.14. VGTU ... 8-150

8.9.15. VGTL .. 8-152

8.9.16. VSC.. 8-154

8.9.17. VSCU ... 8-156

8.9.18. VSCL .. 8-158

8.9.19. PFCHV ... 8-160

8.9.20. LSV .. 8-162

8.9.21. LVS .. 8-163

8.9.22. LVM.. 8-164

8.9.23. SVM ... 8-165

8.9.24. VBRD ... 8-166

8.9.25. VMV ... 8-168

8.10. Vector Fixed-Point Arithmetic Instructions .. 8-170

8.10.1. VADD ... 8-170

8.10.2. VADS ... 8-172

8.10.3. VADX ... 8-174

8.10.4. VSUB ... 8-175

8.10.5. VSBS ... 8-177

8.10.6. VSBX ... 8-179

8.10.7. VMPY ... 8-180

8.10.8. VMPS ... 8-182

8.10.9. VMPX ... 8-184

8.10.10. VMPD ... 8-185

8.10.11. VDIV ... 8-186

8.10.12. VDVS .. 8-188

8.10.13. VDVX .. 8-190

8.10.14. VCMP ... 8-192

8.10.15. VCPS .. 8-195

8.10.16. VCPX .. 8-198

8.10.17. VCMS ... 8-200

8.10.18. VCMX ... 8-203

8.11. Vector Logical Operation Instructions .. 8-205

8.11.1. VAND ... 8-205

8.11.2. VOR ... 8-207

8.11.3. VXOR ... 8-209

8.11.4. VEQV ... 8-211

8.11.5. VLDZ .. 8-213

8.11.6. VPCNT ... 8-215

8.11.7. VBRV ... 8-217

8.11.8. VSEQ ... 8-219

8.12. Vector Shift Operation Instructions ... 8-221

8.12.1. VSLL .. 8-221

8.12.2. VSLD .. 8-223

8.12.3. VSRL .. 8-224

8.12.4. VSRD ... 8-226

8.12.5. VSLA .. 8-227

8.12.6. VSLAX ... 8-229

8.12.7. VSRA ... 8-230

8.12.8. VSRAX ... 8-232

8.12.9. VSFA .. 8-233

8.13. Vector Floating-Point Arithmetic Instructions .. 8-234

8.13.1. VFAD ... 8-234

1-8

8.13.2. VFSB .. 8-237

8.13.3. VFMP ... 8-240

8.13.4. VFDV ... 8-243

8.13.5. VFSQRT .. 8-246

8.13.6. VFCP ... 8-248

8.13.7. VFCM ... 8-251

8.13.8. VFMAD .. 8-254

8.13.9. VFMSB ... 8-257

8.13.10. VFNMAD .. 8-260

8.13.11. VFNMSB... 8-263

8.13.12. VRCP ... 8-266

8.13.13. VRSQRT... 8-268

8.13.14. VFIX ... 8-270

8.13.15. VFIXX ... 8-273

8.13.16. VFLT ... 8-275

8.13.17. VFLTX .. 8-278

8.13.18. VCVS .. 8-279

8.13.19. VCVD ... 8-280

8.14. Vector Reduction Instructions .. 8-281

8.14.1. VSUMS .. 8-281

8.14.2. VSUMX .. 8-283

8.14.3. VFSUM .. 8-285

8.14.4. VMAXS .. 8-287

8.14.5. VMAXX .. 8-289

8.14.6. VFMAX ... 8-291

8.14.7. VRAND .. 8-294

8.14.8. VROR ... 8-295

8.14.9. VRXOR .. 8-296

8.15. Vector Iterative Operation Instructions ... 8-297

8.15.1. VFIA ... 8-297

8.15.2. VFIS ... 8-299

8.15.3. VFIM .. 8-301

8.15.4. VFIAM .. 8-303

8.15.5. VFISM .. 8-305

8.15.6. VFIMA .. 8-307

8.15.7. VFIMS .. 8-309

8.16. Vector Merger Operation Instructions .. 8-311

8.16.1. VMRG .. 8-311

8.16.2. VSHF ... 8-313

8.16.3. VCP.. 8-315

8.16.4. VEX .. 8-317

8.17. Vector Mask Operation Instructions ... 8-319

8.17.1. VFMK ... 8-319

8.17.2. VFMS ... 8-321

8.17.3. VFMF ... 8-323

8.17.4. ANDM .. 8-325

8.17.5. ORM... 8-326

8.17.6. XORM .. 8-327

8.17.7. EQVM .. 8-328

8.17.8. NNDM .. 8-329

8.17.9. NEGM .. 8-330

8.17.10. PCVM ... 8-331

8.17.11. LZVM .. 8-332

8.17.12. TOVM ... 8-333

8.18. Vector Control instructions ... 8-334

8.18.1. LVL .. 8-334

8.18.2. SVL .. 8-335

1-9

8.18.3. SMVL ... 8-336

8.18.4. LVIX ... 8-337

8.19. Control Instructions .. 8-338

8.19.1. SIC ... 8-338

8.19.2. LPM.. 8-339

8.19.3. SPM ... 8-341

8.19.4. LFR .. 8-342

8.19.5. SFR .. 8-343

8.19.6. SMIR .. 8-344

8.19.7. NOP ... 8-345

8.19.8. MONC .. 8-346

8.19.9. LCR .. 8-347

8.19.10. SCR .. 8-348

8.19.11. TSCR .. 8-349

8.19.12. FIDCR .. 8-351

8.20. Host Memory Access Instructions .. 8-354

8.20.1. LHM ... 8-354

8.20.2. SHM ... 8-356

9. Appendix-1 Microarchitecture of SX-Aurora TSUBASA .. 9-0

9.1. VE CPU ... 9-0

9.2. Core .. 9-2

9.3. LLC ... 9-6

9.4. NoC ... 9-8

9.5. Ring bus .. 9-8

9.6. MCU and VE memory.. 9-8

9.7. DMU .. 9-9

9.8. DGU .. 9-9

9.9. PEU ... 9-9

9.10. XIU .. 9-9

10. Appendix-2 List of Instructions .. 10-0

10.1. List of SX-Aurora TSUBASA Instructions ... 10-0

11. Appendix-3 Operation Code Table .. 11-12

11.1. Operation Code Table .. 11-12

1-10

1. Overview

1.1. Overview

Simulation of natural or artificial processes has established itself as the third pillar in the

fields of scientific research alongside theories and experiments. Especially in such as

astrophysics, fluid/aerodynamics, applied/organic chemistry, pharmaceuticals and life

science, supercomputing has been playing a major role and indispensable any more.

NEC's innovation platform SX-Aurora TSUBASA is designed to tackle such complex

mathematical, scientific or engineering problems. The NEC proprietary computing

systems provide complete solutions for all sorts of requirements by combining with a

wealth of x86-based products and storage appliances.

NEC SX-Aurora Vector Engine (VE) is for accelerated computing exploiting vector

computing technique proven by NEC's long history of supercomputing, on which a full

application runs on high performance Vector Engines, and only system tasks are taken

care of by the Vector Host (VH), a standard x86 server. With the vector computation

mechanism, large memory bandwidth and a small number of powerful cores, the

architecture gives a strong foundation for high sustained performance.

SX-Aurora TSUBASA Features:

 Eight vector cores, a peak performance of 2.45 TFLOPS

 Max 48 GB high bandwidth memory (HBM) with 1.2 TB/s memory bandwidth

 PCI express generation 3 x 16 lanes for VE-VH communication

2-11

2. Aurora Systems

This chapter covers system overview. For generation specific microarchitecture please

refer to Appendix SX-Aurora TSUBASA microarchitecture overview.

2.1. Single VI systems

2.1.1. 1-2 VE node systems

For 1-2 node systems, one or two VEs and the VH form a VI (Vector Island). All VEs may

be connected to PCIe slots from the one of VH CPUs.

2-12

2.1.2. 4 VE node systems

For four node systems, each two VEs are connected to a VH CPU and all VEs and VH

CPUs form a VI.

2-13

2.1.3. 8 VE node systems

For eight node systems, each four VEs are connected to a PCIe switch. Two PCIe

switches may be connected to the PCIe slots from a single VH CPU.

2-14

2.2. VI cluster systems

Any type of VIs is able to have IB (Infiniband) links by accommodating IB HCA card(s).

Multiple VIs with IB link(s) can form a multi island configuration (VI cluster). A VI cluster is

exampled on the figure above. IB links from VIs may be connected to the IB switch(es)

for high performance computing support.

3. Registers

3.1. Overview

 The Aurora system has three types of software visible registers, user registers, system

registers and system common registers.

 The user registers can be accessed by user processes running on a VE core. The

system registers and system common registers are controlled by the VEOS on the VH,

and the access to those registers from user processes is protected by its memory

protection mechanism. The system registers are also used for resource protection in the

Aurora system and are controlled by the resource manager of the VEOS. The system

common registers are unique within a VE CPU and shared by all VE cores on the VE

CPU, whereas each VE core has its own the user and system registers.

3-1

3.2. User Registers

3.2.1. Process Status Word (PSW)

 The 64 bit process status word (PSW) indicates the status of a process running on the

VE core. Each core has one PSW.

Figure 3-1 Process status word

3-2

Table 3-1 Process Status Word (1/3)

Class PSW Meaning

 bit
D

e
b

u
g
 m

o
d

e
 (

D
G

B
)

0 ADVO: Advance-off (lockstep execution) mode

 “0”: Advance-off disabled (default)

 “1”: Advance-off enabled. (Instruction execution is held until the

preceding instruction(s) has completed.)

1 STEP: One-step interrupt mode

 “0”: One-step interrupt disabled (default)

 “1”: One-step interrupt enabled. (An interrupt occurs and the

process halts right after the current instruction completes.)

2-3 RFU(Reserved for Future Use)

4 BTM: Branch trap mode

 “0”: Non-branch trap mode: branch trap exception interrupt is

disabled (default)

 “1”: Branch trap mode: branch trap exception interrupts is enabled.

5 BG: Branch (No Go/Go) flag

 “0”: indicates the result of the branch executed was NO-GO in the

branch trap mode.

 “1”: indicates the result of the branch executed was GO in the

branch trap mode.

6-7 RFU

S
y
st

e
m

 m
o
d

e

(S
M

)

8-15 RFU

S
y
st

e
m

 F
la

g
 (

S
F

)

16-31 VW0-15: Vector register write flag

 “0”: Write to the corresponding vector register(s) hasn’t occurred

since this flag was reset.

 “1”: Write to the corresponding vector register(s) has occurred since

this flag was reset.

 VW0: V0-3

VW1: V4-7

 :

VW15: V60-63

3-3

Table 3-2 Process Status Word (2/3)

Class PSW Meaning

 bit

 32-47 RFU

A
ri

th
m

e
ti

c

M
o
d

e
 (

A
M

)

48-49 RFU

50-51 IRM: Rounding modes

 “00”: Round toward Zero (RZ)

 “01”: Round toward Plus infinity (RP)

 “10”: Round toward Minus infinity (RM)

 “11”: Round to Nearest even (RN)

P
ro

g
ra

m
 e

x
ce

p
ti

o
n

 m
a

sk
 (

P
E

M
)

52 DIV: Divide exception mask

 “0”: When a divide exception is detected, no interrupt occurs.

 “1”: When a divide exception is detected, a divide exception

interrupt is generated.

53 FOF: Floating-point overflow mask

 “0”: When a floating-point overflow is detected, no interrupt

occurs.

 “1”: When a floating-point overflow is detected, a floating-point

overflow interrupt is generated.

54 FUF: Floating-point underflow mask

 “0”: When a floating-point underflow is detected, no interrupt

occurs.

 “1”: When a floating-point underflow is detected, a floating-point

underflow interrupt is generated.

55 XOF: Fixed-point overflow mask

 “0”: When a Fixed-point overflow is detected, no interrupt occurs.

 “1”: When a Fixed-point overflow is detected, a fixed-point

overflow interrupt is generated.

56 INV: Invalid operation exception mask

 “0”: When an invalid operation exception is detected, no interrupt

occurs.

 “1”: When an invalid operation exception is detected, an invalid

operation interrupt is generated.

57 INE: Inexact exception mask

 “0”: When an inexact exception is detected, no interrupt occurs.

 “1”: When an inexact exception is detected, an inexact interrupt is

generated.

3-4

Table 3-3 Process Status Word (3/3)

Class PSW Meaning

 bit
P

ro
g
ra

m
 f

la
g
 (

P
E

F
)

58 DIV: Divide exception flag

 “0”: No divide exception has occurred since the last time this flag

was reset.

 “1”: A divide exception has occurred since the last time this flag

was reset.

59 FOFF: Floating-point overflow flag

 “0”: No floating-point overflow exception has occurred since the

last time this flag was reset.

 “1”: A floating-point overflow exception has occurred since the last

time this flag was reset.

60 FUFF: Floating-point underflow flag

 “0”: No floating-point underflow exception has occurred since the

last time this flag was reset.

 “1”: A floating-point underflow exception has occurred since the

last time this flag was reset.

61 XOFF: Fixed-point overflow flag

 “0”: No fixed-point overflow exception has occurred since the last

time this flag was reset.

 “1”: A fixed-point overflow exception has occurred since the last

time this flag was reset.

62 INVF: Invalid operation exception flag

 “0”: No invalid operation exception has occurred since the last

time this flag was reset.

 “1”: An invalid operation exception has occurred since the last

time this flag was reset.

63 INEF: Inexact exception flag

 “0”: No inexact exception has occurred since the last time this flag

was reset.

 “1”: An inexact exception has occurred since the last time this flag

was reset.

 Note:

 ･Branch trap interrupt is triggered by the branch instruction

(BC/BCS/BCF/BSIC/BCR) that is firstly encountered.

 ･In the branch trap mode, it’s guaranteed that the interrupt happens after completing

the preceding instructions and the trigger branch instruction itself.

3-5

 ･VW flags may be overly set even when the corresponding vector register(s) is not

actually modified. Writing data to vector registers by other than execution of vector

instructions is not taken account about these flags (e.g. access from the host).

3-6

3.2.2. Instruction Counter (IC)

 The instruction counter(IC) indicates the address of the instruction currently being

executed on the VE core. Upper 16 bits and lower 3 bits of this register are always 0.

Each core has one IC.

0 16 6360

IC Instruction count

Figure 3-2 Instruction counter

3-7

3.2.3. Scalar Register (S)

Each core has 64 scalar registers (S) of 64 bits, denoted by S0, S1 ... S63

The scalar registers are used as base or index registers for address calculations, and

also as operands of many instructions.

0 63

S0

S1

S2

S63

Figure 3-3 Scalar register

3-8

3.2.4. Vector Register (V)

V(Vector Register) is a vector of 64bit registers of the length of MVL. Each core has 64

vector registers denoted by V0, V1 ... V63.

Each 64 bit register in a vector register is called a vector element, or simply an element.

Elements are numbered 0, 1 ... MVL-1 sequentially.

Aurora has various vector instructions such as arithmetic operations between/amongst

vector registers, data transfer operations between vector registers and the main memory.

The number of elements handled by a vector instruction is specified by the VL (Vector

Length) register.

0 63

0

1

2

MVL-1

V0
V1

V63

Figure 3-4 Vector register (V)

 Note:

 ･MVL in the SX-Aurora TSUBASA generation 1 is 256.

 ･In some SX-Aurora documents V0,V1,V2… may be denoted as VR0,VR1,VR2…

 ･Vector instructions are listed below.

 - Vector load/store and move Instructions

 - Vector fixed-point arithmetic instructions

 - Vector logical operation instructions

 - Vector shift operation instructions

 - Vector floating-point arithmetic instructions

3-9

 - Vector reduction instructions

 - Vector iterative operation instructions

 - Vector merger operation instructions

 - Vector mask operation instructions

3-10

3.2.5. Vector Mask Register (VM)

A VM is a register of the length of MVL to store vector mask data. Each core has 16 VMs

denoted as VM0, VM1... VM15. The VM0 is regarded as a special one in that all bits are

hardwired to 1 and cannot be modified (hardware ignores writes to the VM0).

A vector instruction with a mask field is element-maskable. Usually only one VM is

specified by the mask field in the instruction. Each bit of a VM sequentially corresponds

to a vector element, that is, only the vector elements enabled by corresponding VM bits

(=1) will be referred to and/or modified, while the other elements will stay untouched. No

exceptions will be detected for the elements that are not enabled by the corresponding

VM bits.

Vector instruction with the ‘packed data’ format may employ two consecutive VMs

starting from an even-numbered one. With packed data operations, the first and second

VMs are for the upper and lower 32-bits of a vector element respectively, that is, a

packed instruction can have different masks for its 32bit halves independently. Note that

when VM0 is specified as the first one, the second VM is then exceptionally treated as

VM0, whose all bits are always one.

VM registers can be the result operand of vector mask logical instructions or vector mask

forming instructions. VM’s value can be transferred to S registers and vice versa.

0 63

0

1

2

MVL-1

V0
V1

V63

0

1

2

1MVL-1

1

1

1

VM0
VM1

VM15

Figure 3-5 Correspondence of V and VM (non-packed data)

3-11

0 63

0

1

2

MVL-1

V0
V1

V63

0

1

2

1MVL-1

1

1

1

VM0,1
VM2,3

VM15,16

1

1

1

1

Upper 32bits Lower 32bits

Figure 3-6 Correspondence of V and VM (packed data)

 Note:

 ･MVL for the Aurora generation 1 is 256.

3-12

3.2.6. Vector Index Register (VIXR)

 VIXR is a 6-bit register used as an index for indirect vector register access. Each core

has one VIXR.

 An instruction to transfer data between the VIXR and an S register (LVIX) is provided.

0 6358

50

00000・・・0

VIXR

S Register

Figure 3-7 Vector index register

3-13

3.2.7. Vector Length Register (VL)

VL holds the vector element count (vector length) of vector operations to be executed. A

VL is provided in each core.

The maximum vector length (MVL) is the maximum value to be set to the VL. When a

larger value than MVL is given to the VL, an exception is raised and the result of the

operation is undefined.

When VL=0, vector instructions are treated as NOP.

There are instructions to transfer data between VL and S registers (LVL and SVL).

0 6354

90

00000・・・0

VL

S register

Figure 3-8 Vector length register

 Note:

 ･MVL in the Aurora generation 1 is 256. A 10bit register is equipped for the VL.

 ･When a VL value more than MVL is given by an LVL instruction, an illegal data

format exception will be generated, while there are some exceptional cases on the MVL

operation. See also Chapter 6 for the details.

3-14

3.3. System Registers

3.3.1. Address Translation Buffer (ATB)

 ATB is used for address translation from a VE memory virtual address to a VE memory

absolute address. The ATB is composed of 32 entries of partial space directory and 32

partial space page tables. The partial space directories hold base VE memory virtual

addresses and attribute information for the partial space. The partial space page tables

hold base VE memory absolute addresses and attribute information for each of 256

pages composing a partial space.

 Details of ATB and its operation are described in Chapter 5.

0 63

0

1

2

PageBase255

PageBase

PageBase

PageBase

Partial space directory

Partial space table

0 63

PartialSpace#

32 sets

Figure 3-9 Address translation buffer

3-15

3.3.2. Communication Register Directory (CRD)

 The CRD is used to translate an effective CR address to physical CR address on a CR

access from VE cores. The CRD is composed of 4 entries, and each core has one CRD.

 The details of CRD and its operation are described in Chapter 3.3.3 Communication

register.

V 0 4
CR index

CR index

CR index

CR index

Figure 3-10 Communication register directory

3-16

3.3.3. Communication Register (CR)

CRs are 64-bit registers used for control of exclusive execution or synchronous operation

among VE cores. There are 1024 CRs in each VE node. CRs are addressed by

sequential number 0 to 1023, forming 32 CR pages, 32 CRs for each page.

The communication register directory (CRD) is for address translation from an effective

address to CR address on accessing CR from VE core. Each core has one CRD. A CRD

has 4 entries, and each entry has a valid bit and the index to its target CR page.

There are instructions to access CR from a VE core (LCR, SCR, TSCR and FIDCR).

At a CR access, firstly CRD is referred to with the effective address’s bit 57-58 as the

index and its valid bit is checked. Then if it hits on the CRD, a physical CR address is

generated with the effective address bit 59-63 and its base address is obtained from the

entry. When the valid bit is ‘0’, a memory access exception will occur at an access to the

CR page.

3-17

～
～

32W

32W

32W

32W

32W

32W

～
～

0 63

Communication

Registers

0

32

64

96

128

160

992

1023

57 59 63

CR Directory

V 0 4

Effective address

Figure 3-11 Communication register and communication register directory

 Note:

 ･The base address (index) of a CR page is equivalent to the upper 5-bits of 10-bit CR

address.

 ･The CRD has four entries to CR pages. A VE core can access maximum 128 CRs

without updating the CRD.

 ･Bit 0-56 of an effective address is ignored at CR accesses (should be zero.)

3-18

3.4. Performance Counters

SX-Aurora TSUBASA provides performance monitor counters (PMCs) shown below, for

each core. These are default performance indicators and may change due to other

settings

PMC Target event

PMC00 Execution count (EX)

PMC01 Vector execution count (VX)

PMC02 Floating point data element count (FPEC)

PMC03 Vector elements count (VE)

PMC04 Vector execution clock count (VECC)

PMC05 L1 cache miss clock count (L1MCC)

PMC06 Vector elements count 2(VE2)

PMC07 Vector arithmetic execution clock count (VAREC)

PMC08 Vector load execution clock count (VLDEC)

PMC09 Port conflict clock count (PCCC)

PMC10 Vector Load Packet Count (VLPC)

PMC11 Vector load element count (VLEC)

PMC12 Vector load cache miss element count (VLCME)

PMC13 Fused multiply add element count (FMAEC)

PMC14 Power throttling clock count (PTCC)

PMC15 Thermal throttling clock count (TTCC)

4. Data Format

 This chapter describes the data formats and how the operations are performed on data.

The source operand is the input data source of an instruction which may be a scalar

register, immediate value, or vector register. The destination register may be a scalar

register or vector register.

4.1 Data format

4.1.1 Fixed-point data

These four types of fixed point integer are supported.

310

32-bit unsigned

binary integer

310

S

1

630

630

S

32-bit signed

binary integer

64-bit unsigned

binary integer

64-bit signed

binary integer

Binary integer

Binary integer

(negative number is two's

complement)

Binary integer

Binary integer

(negative number is two's complement)

 In a signed binary integer, the leftmost bit represents the sign; 0 means positive and 1 is

negative. A negative integer is represented in the form of the complement of two.

4-1

4.1.2 Floating-Point Data

 Single-precision data format (32bit), double-precision data format (64bit) and

quadruple-precision floating-point data format (128bit) complying with the IEEE754

standards are supported.

 (a) Single precision floating-point data

310

S

1

E F

8 9

The single-precision data format is composed of a 1bit sign (S), 8bit exponent (E) and a

23bit fraction part (F).

･The exponent part (E) of single-precision data format is an 8bit unsigned binary number

and the representation of bias value = 127 to correspond to -127 to 128. Accordingly,

although exponent range is from 0 to 255, the exponent range excluding the bias is from

-126 (Emin) to +127 (Emax). The exponent part is used to represent the special values

shown below when its value is 0 or 255.

･The fraction (F) part contains one hidden bit.

① NaN if E=255 and F≠0

② (-1)
S･∞ if E=255 and F=0

③ (-1)
S･2E-127･(1.F) if 0 < E < 255

④ (-1)
S･0 if E = 0 ….. Signed zero

 (b) Double precision floating-point data

630

S

1

E F

1112

The double-precision data format is composed of a 1bit sign part (S), an 11bit exponent

part (E) and a 52bit fraction part (F).

4-2

･The exponent part (E) is an 11bit unsigned binary and the representation of bias value =

1023 to correspond to -1023 to 1024. Accordingly, although exponent range is from 0 to

2047, the exponent range excluding the bias is from -1022 (Emin) to +1023 (Emax),

because the exponent part is used to represent the special values shown followings

when the part value is 0 or 2047.

･The fraction (F) part contains one hidden bit. Therefore, values represented in 64bit

double precision format are as shown.

①NaN if E = 2047 and F≠0

②(-1)
S･∞ if E = 2047 and F=0

③(-1)
S
･2

E-1023
･(1.F) if 0 < E < 2047

④(-1)
S
･0 if E = 0 …… Signed Zero

4-3

 (c) Quadruple precision floating-point data

630

S

1

E F

1516

F

64 127

The quadruple-precision data format is composed of a 1bit sign part (S), a 15bit

exponent part (E) and a 112bit fraction part (F).

･The exponent part (E) is a 15bit unsigned binary and the representation of bias value =

16383 to correspond to -16383 to 16384. Accordingly, although exponent range is from 0

to 16383, the exponent range excluding the bias is from -16382 (Emin) to +16383 (Emax),

The exponent part is used to represent the special values when the part value is 0 or

32767. The cardinal number of exponent part is 2.

･The fraction (F) part contains one hidden bit. Therefore, values represented in 128bit

double precision format are as shown.

①NaN if E = 32767 and F≠0

②(-1)
S･∞ if E = 32767 and F=0

③(-1)
S･2E-16383･(1.F) if 0 < E < 32767

④(-1)
S･0 if E = 0 …… Signed Zero

･Only scalar instructions support quadruple precision data format calculation.

 Note:

･The floating-point data format of the SX-Aurora architecture is different from the

format of the IEEE754 standards in that each of the denormal numbers (E=0

and F 0) is handled as zero in the SX-Aurora architecture.

･The following two type of format are defined as the NaN:

- signaling NaN : F=0xxx...x (except F=0)

 ‐quiet NaN : F=1xxx...x Value of xxx...x are don't care

4-4

4.1.3 Logical Data

 The following 2 type of data format are supported as logical data format.

630

64-bit

logical data
Logical data

MVL-10

MVL-bit

logical data
Logical data

 The 64bit logical data is stored into scalar registers and vector registers. There are

logical operation instructions subject to these registers.

 MVL-bit vector mask is stored in a VM register. There are logical operation instructions

between VM registers and vector form mask instructions to generate a MVL-bit logical

data from vector register values.

4-5

4.2 Fixed-Point Arithmetic and Shift Operations

 The following section describes major fixed-point arithmetic and shift operations. For

details of instructions, refer to Chapter 7.

4.2.1 Addition and Subtraction

There are 6 types of addition and subtraction operations as follows.

(a) 32bit unsigned operation

The bits 32-63 of the source operands are added or subtracted as 32bit unsigned binary

integer. The bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as a 32bit unsigned binary

integer. An overflow is ignored.

 The bits 0-31 of the destination register are filled with zero.

(b) 32bit signed operation

The bits 32-63 of the source operands are added or subtracted as 32bit signed binary

integer. The bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as a 32bit signed binary

integer. A fixed-point overflow exception will be raised when the result exceeds

representable range of 32bit signed binary integer. Overflowed bit is discarded.

The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

(c) 64bit unsigned operation

The source operands are added or subtracted as 64bit unsigned binary integer.

The result is stored into the destination register as a 64bit unsigned binary integer. An

overflow is ignored.

(d) 64bit signed operation

The source operands are added or subtracted as 64bit signed binary integer.

4-6

The result is stored into the destination register as a 64bit signed binary integer. A

fixed-point overflow exception is raised when the result exceeds representable range of

64bit signed binary integer. Overflowed bit is discarded.

(e) Packed 32bit unsigned operation

The source operands are separated into upper 32bit and lower 32bit, and each part is

added or subtracted as 32bit unsigned binary integer independently.

 The results are stored into the destination register as concatenation of upper and lower

32bit unsigned binary integers. An overflow is ignored.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of instruction.

4-7

(f) Packed 32bit signed operation

The source operands are separated into upper and lower 32bits, then each part is

added or subtracted as 32bit signed binary integer independently.

 The results are stored into the destination register as a concatenated value of upper and

lower 32bit signed binary integers. A fixed-point overflow exception is raised when any of

the results exceeds representable range of 32bit signed binary integers. Overflowed bit is

discarded.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of the instruction. In such a case, fixed-point overflow

exception for the masked part is not detected.

4-8

4.2.2 Multiplication

There are 5 types of multiplication operations as follows.

 (a) 32bit unsigned operation

The bits 32-63 of the source operands are multiplied as 32bit unsigned binary integer.

The bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as 32bit unsigned binary

integer. An overflow is ignored.

 The bits 0-31 of the destination register are filled with zero.

 (b) 32bit signed operation

 The bits 32-63 of the source operands are multiplied as 32bit signed binary integer.

The bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as 32bit signed binary

integer. A fixed-point overflow exception is raised when the result exceeds representable

range of 32bit signed binary integer. Overflowed bits are discarded.

The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

(c) 32bit signed operation with bit width extension

The bits 32-63 of the source operands are extended to 64bit signed binary integer and

multiplied. The bits 0-31 of the registers are ignored.

 The result is stored into the destination register as 64bit signed binary integer. An

overflow doesn’t occur.

(d) 64bit unsigned operation

The source operands are multiplied as 64bit unsigned binary integer.

The result is stored into the destination register as 64bit unsigned binary integer. An

overflow is ignored.

 (e) 64bit signed operation

The source operands are multiplied as 64bit signed binary integer.

4-9

The result is stored into the destination register as 64bit signed binary integer. A

fixed-point overflow exception is raised when the result exceeds representable range of

64bit signed binary integer. Overflowed bits are discarded.

4-10

4.2.3 Division

There are 4 types of division operations as follows.

 (a) 32bit unsigned operation

The bits 32-63 of the source operands are divided as 32bit unsigned binary integer. The

bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as 32bit unsigned binary

integer. A division exception occurs is raised when the divisor is zero, and the result of

the operation is zero.

The bits 0-31 of the destination register are filled with zero.

(b) 32bit signed operation

The bits 32-63 of the source operands are divided as 32bit signed binary integer. The

bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as 32bit signed binary

integer. A division exception is raised when the divisor is zero, and the result of the

operation is zero. A fixed-point overflow is raised when the result exceeds representable

range of 32bit signed binary integer.

The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

 (c) 64bit unsigned operation

The source operands are divided as 64bit unsigned binary integer.

The result is stored into the destination register as 64bit unsigned binary integer. A

division exception is raised when the divisor is zero, and the result of the operation is

zero.

(d) 64bit signed operation

The source operands are divided as 64bit signed binary integer.

The result is stored into the destination register as 64bit signed binary integer. A division

exception is raised when the divisor is zero, and the result of the operation is zero. A

fixed-point overflow is raised when the result exceeds representable range of 32bit

signed binary integer.

4-11

4.2.4 Comparison

There are 6 types of comparison operations as follows.

Result of comparison operation is expressed as follows. Assuming two source operands

as Y and Z, the result is positive non-zero value if Y > Z. Else the result is zero if Y = Z, or

negative value if Y < Z. Regardless of data format of the source operands, the result is

expressed as signed integer.

(a) 32bit unsigned operation

The bits 32-63 of the source operands are compared as 32bit unsigned binary integer.

The bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as 32bit signed binary

integer.

 The bits 0-31 of the destination register are filled with zero.

(b) 32bit signed operation

The bits 32-63 of the source operands are compared as 32bit signed binary integer. The

bits 0-31 of the operands are ignored.

 The result is stored into bits 32-63 of the destination register as 32bit signed binary

integer.

The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

(c) 64bit unsigned operation

The source operands are compared as 64bit unsigned binary integer.

 The result is stored into the destination register as 64bit signed binary integer.

 (d) 64bit signed operation

The source operands are compared as 64bit signed binary integer.

 The result is stored into the destination register as 64bit signed binary integer.

(e) Packed 32bit unsigned operation

4-12

The source operands are separated into upper 32bit and lower 32bit, and each part is

compared as 32bit unsigned binary integer independently.

 The results are stored into the destination register as the concatenation of upper and

lower 32bit signed binary integers.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of instruction.

(f) Packed 32bit signed operation

The source operands are separated into upper 32bit and lower 32bit, then each part is

compared as 32bit signed binary integer independently.

 The results are stored into the destination register as the concatenation of upper and

lower 32bit signed binary integers.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of instruction.

4-13

4.2.5 Compare and select operation

 There are 4 types of compare and select operations as follows.

 (a) 32bit signed operation

 The bits 32-63 of the source operands are compared as 32bit signed binary integer, and

selected greater value or lesser value in accordance with control field of the instruction.

The bits 0-31 of the operands are ignored.

 The result is stored into the bits 32-63 of the destination register as 32bit signed binary

integer.

The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

(b) 64bit signed operation

 The source operands are compared as 64bit signed binary integer, and selected greater

value or lesser value in accordance with control field of the instruction.

The result is stored into the destination register as 64bit signed binary integer.

(c) Packed 32bit unsigned operation

The source operands are separated into upper 32bit and lower 32bit, and each part is

compared as 32bit unsigned binary integer, and selected greater value or lesser value in

accordance with control field of the instruction independently.

 The results are stored into the destination register as the concatenation of upper and

lower 32bit unsigned binary integers.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of instruction.

(d) Packed 32bit signed operation

The source operands are separated into upper 32bit and lower 32bit, then each part is

compared as 32bit signed binary integer, and selected greater value or lesser value in

accordance with control field of the instruction independently.

 The results are stored into the destination register as the concatenation of upper and

lower 32bit signed binary integers.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of instruction.

4-14

4-15

4.2.6 Arithmetic Shift

 There are 6 types of arithmetic shift operations as follows.

(a) 32bit left arithmetic shift

630

Ignored

630

Input operand

Intermediate value

(After shifted)

3231

3231

630

SSS..S
Operation result

(sign extended)

3231

or

000.........0

000.........0

XX...........XSX...........................X

SX...........................XXX...........XIgnored

630

000..0

3231

000.........0

SX...........................X

SX...........................X
Operation result

(filled with zeros)

Shifted out

 The shift amount and the value to be shifted are given by the bits 59-63 and the bits

32-63 of the source operands respectively. The bits 0-58 of the shift amount operand and

the bits 0-31 of the value to be shifted operand are ignored.

 The value is shifted left by the shift amount. The vacant bit positions are filled with zero,

and the bits that would be shifted to bit 31 or upper (lower in bit position) will not be used.

 The result is stored into bits 32-63 of the destination register. A fixed-point overflow

exception is raised when discarded shifted out bits or the sign of the result (bit 32)

includes a bit which value are not equal to the sign of the original value’s bit 32.

 The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

4-16

(b) 32bit right arithmetic shift

630

Ignored

630

Input operand

Intermediate value

(After shifted)

3231

3231

630

SSS..S
Operation result

(sign extended)

3231

or

SS............S

SX..X

SX...........................X XX...........XIgnored

630

000..0

3231

Operation result

(filled with zeros)

SS............S SX...........................X

SS............S SX...........................X

Shifted out

The shift amount and the value to be shifted are given by the bits 59-63 and the bits

32-63 of the source operands respectively. The bits 0-58 of the shift amount operand and

the bits 0-31 of the value to be shifted operand are ignored.

The value is shifted right by the shift amount. The vacant bit positions are filled with the

sign of the original (not-shifted) value’s bit 32, and the bits that would be right-shifted out

are discarded.

The result is stored into bits 32-63 of the destination register.

 The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

4-17

(c) 64bit left arithmetic shift

630

630

Input operand

Intermediate value

(After shifted)

630

Operation result

000.........0

000.........0

XX...........XSX...X

SX..XXX...........X

SX..X

Shifted out

The shift amount and the value to be shifted are given by the bits 58-63 and the bit 0-63

of the source operands respectively. The bits 0-57 of the shift amount operand are

ignored.

The value is shifted left by the shift amount. The lower bits are filled with zero. The bits

that would be left-shifted out are discarded.

The result is stored into bit 0-63 of the destination register. A fixed-point overflow

exception is raised when all bits in the discarded (shifted-out) part wouldn’t have been

the same as the sign bit (bit 0) of the result.

4-18

(d) 64bit right arithmetic shift

630

630

Input operand

Intermediate value

(After shifted)

630

Operation result

SS............S

SX..X

XX...........X

SS............S

SX..X

SX..X

Shifted out

The shift amount and the value to be shifted are given by the bits 58-63 and the bit 0-63

of the source operands respectively. The bits 0-57 of the shift amount operand are

ignored.

The value is shifted right by the shift amount. The vacant bit positions are filled with the

sign bit of the original value (bit 0) and bits shifted out are discarded.

The result is stored into the bit 0-63 of the destination register.

4-19

(e) Packed 32bit left arithmetic shift

The source operands are separated into upper 32bits and lower 32bits, then each part

may shift independently.

For the upper part, the shift amount and the value to be shifted are given by the bits

27-31 and the bits 0-31 of the source operands respectively. The bits 0-26 of the shift

amount operand are ignored.

For the lower part, the shift amount and the value to be shifted are given by the bits

59-63 and the bits 32-63 of the source operands respectively. The bits 32-58 of the shift

amount operand are ignored.

The results are calculated in the same fashion as (a) operation for the both part.

The results are stored into the destination register as concatenation of upper and lower

32bit signed binary integers. A fixed-point overflow exception is raised when either part of

discarded shifted out bits or the sign of the result includes a bit which value are not equal

to a sign bit of the initial value (bit 0 for the upper part, and bit 32 for the lower part).

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of the instruction. In such a case, fixed-point overflow

exception for the masked part is not detected.

(f) Packed 32bit right arithmetic shift

The source operands are separated into upper 32bits and lower 32bits, then each part

may shift independently.

For the upper part, the shift amount and the value to be shifted are given by the bits

27-31 and the bits 0-31 of the source operands respectively. The bits 0-26 of the shift

amount operand are ignored.

For the lower part, the shift amount and the value to be shifted are given by the bits

59-63 and the bits 32-63 of the source operands respectively. The bits 32-58 of the shift

amount operand are ignored.

The results are calculated in the same fashion as (b) operation for the both part.

The results are stored into the destination register as concatenation of upper and lower

32bit signed binary integers.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of the instruction.

4-20

4.2.7 Logical Shift

There are 6 types of logical shift operations as follows.

(a) Left Logical Shift

630

630

Input operand

Intermediate value

(After shifted)

630

Operation result

000.........0

000.........0

XX...........XXX...X

XX..XXX...........X

XX..X

Shifted out

The shift amount and the value to be shifted are given by the bits 58-63 and the bit 0-63

of the source operands respectively. The bits 0-57 of the shift amount operand are

ignored.

The value is shifted left by the shift amount. The vacant bit positions are filled with zero,

and the bits shifted out of bit 0 are discarded.

The result is stored into bit 0-63 of the destination register.

4-21

(b) Right Logical Shift

630

630

Input operand

Intermediate value

(After shifted)

630

Operation result

00............0

XX..X

XX...........X

00............0

XX..X

XX..X

Shifted out

The shift amount and the value to be shifted are given by the bits 58-63 and the bit 0-63

of the source operands respectively. The bits 0-57 of the shift amount operand are

ignored.

The value is shifted right by the shift amount. The vacant bit positions are filled with zero

and the bits shifted out of bit 63 are discarded.

The result is stored into the bit 0-63 of the destination register.

4-22

(c) Left Double Shift

630

Operand A

XX..X

0

Input operand

Intermediate value

(After shifted)

063

63

0

Operation result

63

Operand B

XX..X

XX...........X

XX...X

XX...........................X 000.........0

127

XX............XXX............................X

Shifted out

The value to be shifted is given by concatenation of the two source operands, A and B.

The shift amount is also given by the bits 56-63 of another source operand. The bits 0-55

of the shift amount operand are ignored.

The value is shifted left by the shift amount. The vacant bit positions are filled with zero,

and the bits shifted out of bit 0 are discarded.

The upper 64bit of the result is stored into bit 0-63 of the destination register

4-23

(d) Right Double Shift

630

1270

Input operand

Intermediate value

(After shifted)

630

Operation result

XX...........X

Operand B

XX..X
Operand A

XX..X

063

XX...........................X00............0 XX............................XXX...............X

XX..X

Shifted out

The value to be shifted is given by concatenation of the two source operands, B and A.

The shift amount is also given by the bits 56-63 of another source operand. The bits 0-55

of the shift amount operand are ignored.

The value is shifted right by the shift amount. The vacant bit positions are filled with zero,

and the bits shifted out of bit 127 are discarded.

The lower 64bit of the result is stored into bit 0-63 of the destination register

4-24

(e) Packed 32bit left logical shift

The source operands are separated into upper 32bit and lower 32bit, then each part is

shifted independently.

For the upper part, the shift amount and the value to be shifted are given by the bits

27-31 and the bits 0-31 of the source operands respectively. The bits 0-26 of the shift

amount operand are ignored.

For the lower part, the shift amount and the value to be shifted are given by the bits

59-63 and the bits 32-63 of the source operands respectively. The bits 32-58 of the shift

amount operand are ignored.

The values are shifted left by the shift amounts respectively. The vacant bit positions are

filled with zero, and the bits shifted out of bit 0 or bit 32 are discarded.

The results are stored into the destination register as concatenation of upper and lower

32bit unsigned binary integers.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of the instruction.

(f) Packed 32bit right logical shift

The source operands are separated into upper 32bit and lower 32bit, then each part is

shifted independently.

For the upper part, the shift amount and the value to be shifted are given by the bits

27-31 and the bits 0-31 of the source operands respectively. The bits 0-26 of the shift

amount operand are ignored.

For the lower part, the shift amount and the value to be shifted are given by the bits

59-63 and the bits 32-63 of the source operands respectively. The bits 32-58 of the shift

amount operand are ignored.

The values are shifted right by the shift amounts respectively. The vacant bit positions

are filled with zero, and the bits shifted out of bit 31 or bit 63 are discarded.

The results are stored into the destination register as concatenation of upper and lower

32bit signed binary integers.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of the instruction.

4-25

4.3 Floating-Point Arithmetic Operations

 The following section describes floating-point arithmetic operations. The arithmetic

operations for floating-point format comply with the IEEE754 standard unless otherwise

noted. Rounding mode for the operations is specified by the IRM field of the PSW. The

detection of floating-point underflow exception is always performed after rounding.

 Subnormal numbers are not supported. The result is cut down to zero when an

underflow occurs on the result. When a subnormal number is given by a source operand,

the numbers are also cut down to zero before the execution of the operation.

 There are operations for single precision, double precision, and quadruple precision

floating-point data. For the most operations, data format of the source operands and the

result of the operation is the same.

 On a single precision floating-point operation, the bits 0-31 of the source operands are

treated as input floating-point values. The result is stored into the bits 0-31 of the

destination register. The bits 32-63 of the source operands are ignored and the bits 32-63

of the destination register are filled with zero.

 On a quadruple precision floating-point operation, a source operand is given by

concatenation of the value of consecutive two source scalar register. The result is stored

into consecutive two destination scalar registers.

 On a packed single precision floating-point operation, the bits 0-31 and the bits 32-63 of

source operands are treated as input floating-point values individually. The results are

stored into the destination register as concatenation of upper and lower single precision

floating-point data. Either the result of the upper part or the lower part can be masked by

32bits of zero depending on the control field of instruction. In such a case, exceptions for

the masked part are not detected.

 The details of instructions are described in the chapter 8.

4.3.1 Addition and Subtraction

 There are addition and subtraction operations for single precision, double precision, and

quadruple precision floating-point data.

4.3.2 Multiplication

 There are multiplication operations for single precision, double precision, and quadruple

precision floating-point data.

4-26

4.3.3 Division

 There are division operations for single precision and double precision floating-point

data. A division exception occurs is raised when the divisor is zero, and the result of the

operation is infinity with the correct sign.

4.3.4 Square Root

There are square root operations for single precision and double precision floating-point

data.

4.3.5 Fused multiply add

 There are fused multiply add operations for single precision and double precision

floating-point data.

4.3.6 Reciprocal Approximation

 This instruction produces an approximate value for the inverse of the source operand.

There are reciprocal approximation operations for single precision and double precision

floating-point data.

4-27

4.3.7 Reciprocal Square Root Approximation

This instruction produces an approximate value for the inverse square root of the source

operand. There are reciprocal square root approximation operations for single precision

and double precision floating-point data.

4.3.8 Comparison

This instruction produces a comparison result for the source operands. Result of

comparison operation is expressed as follows. Assuming two source operands as Y and

Z, the result is positive non-zero value if Y > Z. Else the result is zero if Y = Z, or negative

value if Y < Z. +0 and -0 are regarded as the same value. Regardless of data format of

the source operands, the result is expressed as signed integer. If any of source operand

has a NaN value, an invalid operation exception is raised and the result is qNaN.

 There are comparison operations for single precision, double precision, and quadruple

precision floating-point data. The result of the quadruple precision floating-point

operation is returned by double precision floating-point data.

4.3.9 Compare and select operation

 This instruction compares the value of the two source operands, and selects the greater

value or the lesser value in accordance with control field of the instruction. If one of

source operands has a qNaN value and the other has a canonicalized value, the result is

the input value which is not qNaN. If both of source operands has a qNaN value, the

result is qNaN. If any of source operands have a sNaN value, an invalid operation

exception is raised and the result is qNaN. +0 and -0 are regarded as the same value.

The result for the operation for +0 and -0 is defined in chapter 8.

 There are compare and select operations for single precision and double precision

floating-point data.

 Note:

･On comparison performed by conditional branch (BCF) or mask generation

(VFMF) instructions, NaN input data does not invoke invalid operation

exception.

4-28

4.4 Format Conversion

 There are 3 groups of conversion operations, from floating-point data to fixed-point data,

from fixed-point data to floating-point data, and from floating-point data to floating-point

data conversion operations. The conversion operations comply with the IEEE754

standard unless otherwise noted. Rounding mode for the operations is specified by the

IRM field of the PSW or control bits in floating-point data to fixed-point data conversion

instructions. The detection of floating-point underflow exception is always performed after

rounding.

 Subnormal numbers are not supported. The result is cut down to zero when an

floating-point underflow occurs on the result. When a subnormal number is given by a

source operand, the numbers are also cut down to zero before the execution of the

operation.

4.1.1. Floating-point data to fixed-point data

There are 4 types of conversion operations from floating-point data to fixed-point data.

An invalid operation exception is raised when the input floating-point data is sNaN,

qNaN, or infinity, or the case that the result of the comparison exceeds representable

range of target fixed-point data format. When an invalid operation exception is raised, the

value of the destination register is unknown.

(a) From single precision floating-point data to 32bit signed binary integer

The bits 0-31 of the source operand are assumed as single precision floating-point data

and converted to 32bit signed binary integer. The bits 32-63 of the operands are ignored.

The result is stored into bits 32-63 of the destination register.

The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

(b) From double precision floating-point data to 32bit signed binary integer

The bit 0-63 of the source operand are assumed as double precision floating-point data

and converted to 32bit signed binary integer.

The result is stored into bits 32-63 of the destination register.

The bits 0-31 of the destination register are filled with extended sign of the result (bit 32)

or zeros depending on the control field of the instruction.

4-29

(c) From double precision floating-point data to 64bit signed binary integer

The bit 0-63 of the source operand are assumed as double precision floating-point data

and converted to 64bit signed binary integer.

The result is stored into bit 0-63 of the destination register.

(d) From packed single precision floating-point data to packed 32bit signed binary

integer

The source operand are separated into upper 32bit and lower 32bit, and each part is

assumed as single precision floating-point data and converted to 32bit signed binary

integer independently.

 The results are stored into the destination register as concatenation of upper and lower

32bit signed binary integers. An overflow is ignored.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of instruction. In such a case, exceptions for the masked

part are not detected.

4-30

4.1.2. Fixed-point data to floating-point data

There are 4 types of conversion operations from fixed-point data to floating-point data.

An inexact exception is raised when the conversion results in degradation of the

precision.

(a) From 32bit signed binary integer to single precision floating-point data

The bits 32-63 of the source operand are assumed as 32bit signed fixed-point data and

converted to single precision floating-point data. The bits 0-31 of the operands are

ignored.

The result is stored into bits 0-31 of the destination register.

The bits 32-63 of the destination register are filled with zero.

(b) From 32bit signed binary integer to double precision floating-point data

The bits 32-63 of the source operand are assumed as 32bit signed fixed-point data and

converted to double precision floating-point data. The bits 0-31 of the operands are

ignored.

The result is stored into bit 0-63 of the destination register.

(c) From 64bit signed binary integer to double precision floating-point data

The bit 0-63 of the source operand are assumed as 64bit signed fixed-point data and

converted to double precision floating-point data.

The result is stored into bit 0-63 of the destination register.

(d) From packed 32bit signed binary integer to packed single precision floating-point

data

The source operand are separated into upper 32bit and lower 32bit, and each part is

assumed as 32bit signed binary integer and converted to single precision floating-point

data independently.

 The results are stored into the destination register as concatenation of upper and lower

single precision floating-point data.

 Either the result of the upper part or the lower part can be masked by 32bits of zero

depending on the control field of instruction. In such a case, exception for the masked

part is not detected.

4-31

4.1.3. Floating-point data to Floating-point data

There are 6 types of conversion operations from floating-point data to floating-point

data.

(a) From double precision floating-point data to single precision floating-point data

The bit 0-63 of the source operand are assumed as double precision floating-point data

and converted to single precision floating-point data.

The result is stored into bits 0-31 of the destination register. The bits 32-63 of the

destination register are filled with zero.

(b) From quadruple precision floating-point data to single precision floating-point data

The concatenation of the two source operands are assumed as quadruple precision

floating-point data and converted to single precision floating-point data.

The result is stored into bits 0-31 of the destination register. The bits 32-63 of the

destination register are filled with zero.

(c) From single precision floating-point data to double precision floating-point data

The bits 0-31 of the source operand are assumed as single precision floating-point data

and converted to double precision floating-point data. The bits 32-63 of the operands are

ignored.

The result is stored into bit 0-63 of the destination register.

(d) From quadruple precision floating-point data to double precision floating-point data

The concatenation of the two source operands are assumed as quadruple precision

floating-point data and converted to double precision floating-point data.

The result is stored into bit 0-63 of the destination register.

(e) From single precision floating-point data to quadruple precision floating-point data

The bits 0-31 of the source operand are assumed as single precision floating-point data

and converted to quadruple precision floating-point data. The bits 32-63 of the operands

are ignored.

The result is stored into bit 0-63 of the two destination registers.

4-32

(f) From double precision floating-point data to quadruple precision floating-point data

The bit 0-63 of the source operand are assumed as double precision floating-point data

and converted to quadruple precision floating-point data.

The result is stored into bit 0-63 of the two destination registers.

4-33

4.4 Arithmetic Exception

 The following section describes exceptions raised by floating-point arithmetic

operations.

 For vector instructions, exception is raised after operation for all elements are finished,

and the exception is logical OR of the exceptions that is detected on the operations for

each element. For operations for packed data, exceptions detected for the upper part and

the lower part is also ORed.

4.4.1 Floating-point overflow

As a result of the operation, if the exponent exceeds its expressible range in the positive

direction (E> Emax), a floating-point overflow exception occurs. In this case the result is

one of follows depends on the PSW rounding mode:

RZ: The result is formally finite maximum value (E= Emax, F=11...1) with the sign before

rounding.

RN: The result is infinity with the sign before rounding.

RP: When the sign before rounding is positive, the result is +infinity. When the sign

before rounding is negative, the result is formally finite maximum value with a

negative sign.

RM: When the sign before rounding is negative, the result is -infinity. When the sign

before rounding is positive, the result is formally finite maximum value with a positive

sign.

If the floating-point overflow exception mask is enabled, an interrupt occurs. If not,

following instructions are executed.

The floating-point overflow flag (FOFF) is set to 1, regardless of the existence of an

interrupt.

4.1.4. Floating-point underflow

As a result of the operation, if the exponent exceeds its expressible range in the

negative direction (E< Emin), a floating-point underflow exception occurs. The operation

4-34

result is zero with a correct sign. If the floating-point underflow exception mask is enabled,

an interrupt occurs.

If the above mask is not enabled for interrupts, the following instruction is executed.

The floating-point underflow flag (FUFF) is set to 1, regardless of the existence of an

interrupt.

4.1.5. Fixed-point overflow

A fixed-point overflow exception occurs when the result of an operation on fixed-point

data exceeds the representation range of 32bit or 64bit signed binary integers. If the

fixed-point overflow mask is enabled, an interrupt occurs.

If the above mask is not enabled for interrupts, the following instruction is executed.

The fixed-point overflow flag (XOFF) is set to 1, regardless of the existence of an

interrupt.

4.1.6. Division by zero

On fixed-point or floating-point data division operation or inverse approximation

operation, if a divisor is zero and a dividend is a finite nonzero value, a zero division

exception occurs. If the division exception mask is enabled, an interrupt occurs.

If the above mask is not enabled for interrupts, the following instruction is executed.

The division exception flag (DIVF) is set to 1, regardless of the existence of an interrupt.

4-35

4.1.7. Invalid operation

An invalid operation exception occurs when a specified operand is invalid for the

operation to be performed. Invalid operations include:

 a) Operation on signaling NaN

 b) 0 * infinity in multiplication

 c) 0 * infinity + c in fused multiply add unless c is a quiet NaN

 b) Magnitude subtraction of infinities, such as (+infinity) + (-infinity)

 e) 0/0, infinity/infinity in division

 f) Negative non-zero value in square root or square root inverse approximation

 g) When non comparison-eligible numbers are compared

 h) When infinity, NaN, or a value exceeds the representable range of target data

format is converted to fixed-point data format

 The results of above a) to g) case is quiet NaN and the result of h) case is unknown.

If the invalid operation mask is enabled, an interrupt occurs.

If the above mask is not enabled for interrupts, the following instruction is executed. The

invalid operation flag (INVF) is set to 1, regardless of the existence of an interrupt.

4.1.8. Inexact

An inexact exception occurs when rounding results in degradation of the precision, that

is, when rounding affects the precision. The result is a rounded value. An inexact

exception also occurs when a result is replaced by a default value as a result of a

floating-point overflow or underflow exception.

An inexact exception also occurs when a floating-point overflow occurs as a result of

rounding. In this case, the result is the value specified in rounding mode.

If the inexact exception mask is enabled, an interrupt occurs.

If the above mask is not enabled for interrupts, the following instruction is executed. The

inexact exception flag (INEF) is set to 1, regardless of the existence of an interrupt.

5. Instruction Format

 The Aurora CPU supports seven instruction types. Generally they follow format rules

described in this chapter otherwise mentioned, but some individual instructions have

some exceptional bit use. Please also refer to the detail for each instruction in Chapter 8.

RM Type

 Format:

x

OP
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

 Outline:

The RM type is for scalar instructions excluding atomic and BSIC instructions.

The RM type instructions specify operational target S register by x field, and specify S

register to give an access target effective address (EA) by y, z and d field. The D field is

displacement.

5-1

5.1.1. RM type x field

 Sx
C

x

158

ｘ：

Cx:1) indicates whether D field is shifted or not in LEA instruction.

Cx=0: D field is not shifted.

Cx=1: D field is left shifted by 32-bit and added.

2) Sign extension of LDL, LD2B, LD2B, DLDL instruction.

Cx=0: Sign extended result is stored in the upper bits of register.

Cx=1: Zeros are stored to the upper bits of the register.

For the other RM instructions, Cx should be zero.

Sx: Bit 10-15 indicates S register. Bit 9 is not used (SBZ.)

5-2

5.1.2. RM type y field

 Sy
C

y

16 23

y：

Cy: whether immediate or S register value

Cy=0: y operand is an immediate value generated by Sy value.

Cy=1: y operand is S register value designated by Sy.

Sy: When Cy=0, It is a sign extended64-bit immediate value whose Sy is treated

as 7-bit signed binary integer. (It can express value from -64 to 63.)

When Cy=1, Bit 18-23 indicates S register. Not to use bit 17(SBZ).

5.1.3. RM type z field

 Sz
C

z

24 31

z：

Cz: indicates whether z operand is immediate value or S register.

Cz=0: z operand is immediate value 0.

Cz=1: z operand is S register value designated by Sz.

Sz: Cz=0: It is not used. (SBZ)

Cz=1: Bit 26-31 indicates S register. Not to use bit 25(SBZ).

5.1.4. RM type D field

Indicates 32-bit signed binary integer.

5-3

5.1.5. Effective Address

 An Effective address is calculated from Sy, Sz, or D fields according to the type of the

instructions. Effective address of instructions but LHM/SHM is VE memory virtual

address. LHM/SHM uses VE host virtual address.

Figure 5-1 Generation of effective address on RM type instruction

 The effective address of RM type instruction is computed as the sum of three 64-bit

values, Sy, Sz and Displacement. Displacement is a 64-bit value of 32bit D field and 32

bits of the extended sign on the top. On memory access, only the lower 48 bits of the

effective address are referred and the upper 16 bits are ignored. LEA instruction however

stores a full 64-bit effective address to the Sx register.

Sy or immediate value

630

Sy

Extended sign (bit32 of D)

Sz or zero

630

Sｚ

630

Displacement

630

Effective address

+)

32

16

D

Extra bits of
effective address

Effective

Address

5-4

5.2. RRM Type

Format:

x

OP
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

Outline:

 RRM type is for atomic operations and host memory access instructions.

The RRM type instructions have the target Sx register. And they have an immediate

value D(displacement), Sy and Sz to calculate an effective address as the access target.

5.2.1. RRM type x field

 Sx
C

x

158

ｘ：

Cx: indicates memory access data size of TS1AM and CAS instructions.

Cx=0: The memory access data size is 8-byte.

Cx=1: The memory access data size is 4-byte.

For other than RRM instructions, Cx should be zero.

Sx: Bit 10-15 indicates S register. Bit 9 is not used (SBZ).

5-5

5.2.2. RRM type y field

 Sy
C

y

16 23

y：

It is same as the RM type y field.

5.2.3. RRM type z field

 Sz
C

z

24 31

z：

It is same as RM type z field.

5.2.4. RRM type D field

It is same as RM type D field.

5.2.5. Effective Address

Figure 5-2 Generation of effective address on RRM type instruction

 The effective address of RRM type instruction is computed as the sum of two 64-bit

values, Sz and Displacement. Displacement is a 64-bit value of 32 bit D field of the

instruction with 32 bits of the extended sign on its top. In memory access, only the lower

48 bits of the effective address are referred and the upper 16 bits are ignored.

Extended sign (bit32 of D)

Sz or zero

630

Sｚ

630

Displacement

630

Effective address

+)

32

16

D

Extra bits of
effective address

Effective

Address

5-6

5.3. CF Type

 Format:

x

OP
 Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

C

x

2

B

P

F

CF

 Outline:

 CF type is used for branch instructions except for BSIC instruction.

 They have the branch condition in the X field and an S register/immediate value to be

evaluated in the Y field. And they also have an immediate value D and Sz register which

are used to calculate an effective address as the branch target.

5.3.1. CF type x field

C

x

C

x

2

B

P

F

CFｘ：

158

 Cx/Cx2:

1) specifies data type of comparison data designated y filed of BCF instruction.

 Cx=0: Double precision floating point data.

 Cx=1: Single precision floating point data.

2) specifies data type of comparison data designated y field of BCR instruction.

 Cx=0, Cx2=0: 64-bit signed binary integer.

 Cx=1, Cx2=0: 32-bit signed binary integer.

 Cx=0, Cx2=1: Double precision floating point data.

5-7

 Cx=1, Cx2=1: Single precision floating point data.

 In other CF type cases Cx and Cx2 should be zero.

 BPF: indicates the static branch prediction mode and its direction.

Table 5-1: Static branch prediction fields

BPF Meaning

0X Do not do static predict branch direction

10 Do static predict branch. The prediction is ‘not to branch’ (Not

taken).

11 Do static predict branch. The prediction is ‘to branch’ (take).

 X:value is don't care

5-8

 CF: test condition flag.

Table 5-2: Branch condition fields

CF

[Hexadecimal]

Branch conditions other

than BCR instruction
Branch conditions for BCR instruction

0000 [0] Always not satisfied

 (no branch)

Always not satisfied (no branch)

0001 [1] Sy>0 and Sy≠NaN Sy>Sz and Sy≠NaN and Sz≠NaN

0010 [2] Sy<0 and Sy≠NaN Sy<Sz and Sy≠NaN and Sz≠NaN

0011 [3] Sy≠0 and Sy≠NaN Sy≠Sz and Sy≠NaN and Sz≠NaN

0100 [4] Sy=0 and Sy≠NaN Sy=Sz and Sy≠NaN and Sz≠NaN

0101 [5] Sy≧0 and Sy≠NaN Sy≧Sz and Sy≠NaN and Sz≠NaN

0110 [6] Sy≦0 and Sy≠NaN Sy≦Sz and Sy≠NaN and Sz≠NaN

0111 [7] Sy≠NaN Sy≠NaN and Sz≠NaN

1000 [8] Sy=NaN Sy=NaN or Sz=NaN

1001 [9] Sy>0 or Sy=NaN Sy>Sz or Sy=NaN or Sz=NaN

1010 [A] Sy<0 or Sy=NaN Sy<Sz or Sy=NaN or Sz=NaN

1011 [B] Sy≠0 or Sy=NaN Sy≠Sz or Sy=NaN or Sz=NaN

1100 [C] Sy=0 or Sy=NaN Sy=Sz or Sy=NaN or Sz=NaN

1101 [D] Sy≧0 or Sy=NaN Sy≧Sz or Sy=NaN or Sz=NaN

1110 [E] Sy≦0 or Sy=NaN Sy≦Sz or Sy=NaN or Sz=NaN

1111 [F] Always satisfied

 (branch always)

Always satisfied (branch always)

 Notes:

 ･When comparing fixed-point data, it is assumed that the branch condition Sy≠

NaN and Sz≠NaN are always satisfied, and branch condition Sy=NaN and

Sz=NaN are never satisfied.

5-9

 ･When CF=0 (where branch condition is not satisfied), conflicting branch

prediction setting such as BPF=11 (statically predicted to the taken direction)

may cause instruction pipelines to be stalled each time, resulting in lower

performance. Please be sure not to specify conflicting conditions to CF and BPF.

By the same reason, condition of NaN comparison conflicting conditions of

comparison data or BPF should not be specified.

5.3.2. CF type y field

 Sy
C

y

16 23

y：

It is same as the RM type y field.

5.3.3. CF type z field

 Sz
C

z

24 31

z：

It is same as the RM type z field.

5.3.4. CF type D field

Indicates 32-bit signed binary integer.

5.3.5. Effective Address

Figure 5-3 Generation of effective address on CF type instruction

Extended sign (bit32 of D)

Sz or zero

630

Sｚ

630

Displacement

630

Effective address

+)

32

16

D

Extra bits of
effective address

Effective

Address

5-10

 The effective address of CF type instructions is computed as the sum of Sz and

displacement. Displacement is a 64-bit value of 32 bit D field of the instruction and 32 bits

of the extended sign on its top. In memory access, only the lower 48 bits of the effective

address are referred and the upper 16 bits are ignored.

5-11

5.4. RR Type

 Format:

x

OP
 Sx Sy

y

C

y

8 16 24 31

32 63

0

C

x

C

w

 Sz

z

C

z

C

ｗ
2

CFw

w

Vx Vz

 Outline:

 The RR type is for scalar instructions except for transfer, branch and some vector

transfer instructions.

 The RR type instructions specify the S register which retain operation results and

immediate value or S register which is the input operand for arithmetic operation.

Operation of the instruction is specified by w field. The target vector registers for transfer

instructions are specified by Vz and Vz field.

5.4.1. RR type x filed

 Sx
C

x

158

ｘ：

Cx: 1) Enables high-speed debugging interrupt processing on MONC instruction.

Cx=0: Disable high-speed debugging interrupt processing

Cx=1: Enable high-speed debugging interrupt processing.

2) Specifies data type of ADD, SUB, MPY, DIV, CMP and CPM instruction.

Cx=0: 64-bit unsigned binary integer.

Cx=1: 32-bit unsigned binary integer.

5-12

3) Specifies data type of arithmetic calculation result of ADS, SBS, MPS, DVS,

CPS, CMS, SLA and SRA instruction.

Cx=0: Storing sign extended lower 32-bit of arithmetic operation result

into upper 32-bit of arithmetic operation result.

Cx=1: Storing zeros into upper 32-bit of arithmetic operation result.

4) Specifies data type of type casting instructions and floating point arithmetic

instructions except quadruple precision floating point instructions.

Cx=0: Calculated as double precision data type

Cx=1: Calculated as single precision data type

5) Specifies data type of type casting instructions.

 The details are defined in the clause of each instruction.

6) To be used as AVO field of FENCE instruction.

 The details are defined in the clause of FENCE instruction.

Other than above, Cx is not used. (It should Be Zero)

Sx: Bit 10-15 indicates S register except FENCE instruction. Bit 9 is not used

(SBZ.) For Sx in the FENCE instruction, please refer to the FENCE

instruction in Chapter 8.

5.4.2. RR type y field

 Sy
C

y

16 23

y：

Cy: Specify whether the y operand is immediate value or S register value.

Cy=0: The y operand is value generated from the contents of Sy.

Cy=1: The y operand is the value of S register designated by Sy.

Sy: 1) LSV, LVS instruction

When Cy=0, it is a 64-bit immediate value whose Sy is treated as 7-bit

unsigned binary integer and upper 57-bit are filled with zeros. (It can

express value from 0 to 127.)

5-13

When Cy=1, Bit 18-23 indicates S register. Not to use bit 17(SBZ).

2) Other than above instructions

When Cy=0, It is a sign extended 64-bit immediate value whose Sy is

treated as 7-bit signed binary integer. (It can express value from -64 to

63.)

When Cy=1, Bit 18-23 indicates S register. Not to use bit 17(SBZ).

Ry: 1) SMIR instruction

indicates saving target register.

2) SHM, LHM instruction

indicates transfer data size.

5.4.3. RR type z field

 Sz
C

z

24 31

z：

Cz: Specifies the z operand is whether immediate value of S registers value.

Cz=0: The z operand is 0 or immediate value is generated from Sz.

Cz=1: The z operand is S resister value designated Sz.

Sz: 1) LCR, SCR, TSCR, SHM, LHM instruction

When Cz=0, the z operand is immediate value 0 regardless Sz. (SBZ)

When Cz=1, Bit 26-31 indicates S register. Not to use bit 25(SBZ).

2) Other instructions

When Cz=0, the z operand is an immediate value of sequential bit stream

of 0 or 1. It is generated by Sz value as follow.

5-14

Bit 25 of Sz is called f bit, and bits 26-31 are m field.

0

24 31

z： f m

When f=0, generating a 64-bit constant value by combining m bits

sequence of 1 from left and 64-m bits sequence of 0.

When f=1, generating a 64-bit constant value by combining m bits

sequence of 0 from left and 64-m bits sequence of 1.

Examples of immediate value generation are shown below.

1 1 1 0 0 0

m bit 64-m bit

0 0 0 1 1 1

m bit 64-m bit

f=0

f=1

0 63

0 63

 When Cz=1, Bit 26-31 indicates S register. Not to use bit 25(SBZ).

Rz: 1) FIX, FIXX instruction

It specifies the rounding mode.

2) FIDCR instruction

It specifies the CR function.

5.4.4. RR type w field

56 63

w：
C

w

C

ｗ
2

CFw

5-15

Cw/Cw2: 1) Specifies comparison criteria of CMS, CMX and FCM instruction.

 Cw=0: larger value.

 Cw=1: smaller value.

2) Specifies data type of CMOV instruction.

 Cw=0, Cw2=0: 64-bit signed binary integer.

 Cw=1, Cw2=0: 32-bit signed binary integer.

 Cw=0, Cw2=1: double precision floating point data.

 Cw=1, Cw2=1: single precision floating point data

3) Specifies data type of FIX instruction operation result.

 Cw=0: Storing sign extended lower 32-bit of arithmetic operation

result into upper 32-bit of arithmetic operation result.

 Cw=1: Storing zeros into upper 32-bit of arithmetic operation result.

CFw: Specifies comparison criteria of CMOV instruction.

The condition is the same as the CF type X field.

5.4.5. RR type Vx and Vz field

They are vector register or vector mask register for vector transfer instructions.

When used as a vector register, the register is expressed by lower 6 bits of

the field. The upper 2 bits are not used (SBZ).

When Vx=255 is assigned in Vx field, the vector register designated by VIXR

is exceptionally taken as the target of the transfer. Similarly, Vz=255 also

indicates VIXR indirect access for the operand Vz register.

5-16

5.5. RW Type

 Format:

x

OP
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Outline:

 The RW type is for arithmetic instructions whose input operand is quadratic precision

floating point data type.

 The RW type instructions are the same as RR type instructions except the followings.

 The RW type instructions, when the I/O operands are quadratic precision floating point

data, a S register pair can be indicated in x, y and z field. The S register pair is

combination of even number S register and its sequential odd number S register. In the

other words, the odd number is equal to the even number plus 1.

 The instructions which indicate S register pair by x field are FAQ, FSQ, FMQ and CVQ

instruction.

 The instructions which indicate S register pair by y field are FAQ, FSQ, FMQ, FCQ,

CVD (in case Cx=1) and CVS (in case Cx=1) instruction.

 The instructions which indicate S register pair by z field are FAQ, FSQ, FMQ and FCQ

instruction.

 If an odd number S register is indicated in the above instructions x, y and z field, then an

illegal instruction format exception is generated.

5-17

 The instructions which indicate S register pair by y or z field, Cy and Cz should be ‘1’.

But if 0 is indicated (i.e. immediate value is indicated) then an immediate value which is

explained RR type chapter is generated and use it as input operand. In this case the

immediate value corresponding y field odd number register will be the value which is

indicated by immediate filed plus 1, and the immediate value corresponding z field odd

number register will be generated by reversing the bit 31 of the instruction.

5-18

5.6. RVM Type

 Format:

x

OP
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

/

V

O

Vx Vy

V

C

M

C

s

Sw

w

 Outline:

 The RVM type is for vector transfer instructions.

 The RVM type instructions specify transfer control flags and vector mask registers by x

field, S registers which designate source and destination address by y and z field, S

registers which designate vector register number for storing list address by w field,

source and destination vector register by Vx field and vector registers which retain list

address by Vy field.

5.6.1. RVM type x field

158

ｘ：

C

x

/

V

O

V

C

M

C

s

 Cx: indicates whether sign extension is applied or not on VLDL, VLDL2D and VGTL

instruction.

 Cx=0: Sign extended load data is stored into upper bit of register.

 Cx=1: Upper bit of register are filled with zeros.

 VO: For VST, VSTU, VSTL, VST2D, VSTU2D, VSTL2D, VSC, VSCU and VSCL

instruction, specify how to guarantee operation order for address

dependence with following load instructions.

5-19

 VO=0: HW guarantees instruction order with the following load instructions.

 VO=1: HW does not guarantee instruction order with the following load

instructions before a SVOB is executed.

 VC: specifies the stickiness of the data loaded to the LLC by the vector memory

access instruction.

 VC=0: Loaded data is likely to be released from the LLC.

 VC=1: Loaded data is likely to stay in the LLC.

 Cs: For VGT, VGTU, VGTL, VSC, VSCU, VSCL instruction, indicates whether vector

register which retaining list address is indicated by Vy or scalar register value

designated Sw.

 Cs=0: List address retention vector register by Vy field.

 Cs=1: List address retention vector register by scalar register value

designated by Sw.

 M: indicates VM.

5.6.2. RVM type y field

 Sy
C

y

16 23

y：

It is same as RM type y field.

5.6.3. RVM type z field

 Sz
C

z

24 31

z：

It is same as RM type z field.

5-20

5.6.4. RVM type w field

56 63

w： Sｗ

Sw: Bit 58-63 indicates S register. Not to use bit 57(SBZ).

5.6.5. RVM type Vx and Vy field

They indicate vector register by lower 6 bits of each field. Not to use upper 2

bits of each field(SBZ).

 When Vx=255 is assigned in Vx field, the vector register designated by VIXR

value will be exceptionally taken as the target of the transfer. Similarly,

Vy=255 also indicates VIXR is referred to identify the operand V register.

5.6.6. RVM type instruction

Figure 5-6 Generation of effective address on RVM type instruction

 The effective address of RVM type instruction is directly expressed by the 64-bit values

of Sy or Sz. On memory access, only the lower 48 bits of the effective address is referred

and the upper 16 bits are ignored. For VLD, VLDU, VLDL, VST, VSTU or VSTL

instructions, bit16 of Sy value is regarded as the sign of its access stride. On VLD2D,

VLDU2D, VLDL2D, VST2D, VSTU2D or VSTL2D instructions, the bit0 and bit16 of Sy

value is regarded as the signs of the row and column strides respectively.

Sy or immediate value

630

Sy

Sz or zero

630

Sｚ

630

Effective address

16

Extra bits of
effective address

Effective

Address

5-21

5.7. RV Type

 Format:

8 16 24 31

32 63

0
x

OP
 Sy

y

C

y

z

Vx Vy

C

x

2

M

C

s

/

C

t

C

x

C

s

2

/

C

m

Vz Vw

 Outline:

The RV type is for vector instructions.

The RV type instructions specify the calculation control flags and the vector mask

register by x field, input S register by y field, vector register to store calculation result by

Vx field and vector registers which are treated as input operands by Vy, Vz and Vw field.

5.7.1. RV type x field

158

ｘ： M

C

x

2

C

s

/

C

t

C

x

C

s

2

/

C

m

 Cx/Cx2: 1) specifies data type for VADD, VSUB, VMPY, VDIV, VCMP, VCPM, VSLL,

VSRL instructions.For VMPY and VDIV instructions, Cx is assumed to be

‘0’.

 Cx=0, Cx2=0: 64-bit unsigned binary integer.

 Cx=0, Cx2=1: lower 32-bit unsigned binary integer.

 Cx=1, Cx2=0: upper 32-bit unsigned binary integer.

 Cx=1, Cx2=1: packed 32-bit unsigned binary integer.

5-22

 2) specifies data type for VADS, VSBS, VMPS, VDVS, VCPS, VCMS, VSUMS,

VMAXS, VSLA, VSRA instructions. For VMPS, VDVS, VSUMS, VMAXS

instructions, Cx is assumed to be ‘0’.

 Cx=0, Cx2=0: lower 32-bit signed binary integer with sign extention.

 Cx=0, Cx2=1: lower 32-bit signed binary integer without sign extention.

 Cx=1, Cx2=0: upper 32-bit signed binary integer.

 Cx=1, Cx2=1: packed 32-bit signed binary integer.

 3) specifies data type for vector floating point arithmetic instructions. For the

instructions which do not have packed data operating function, Cx2 is

assumed to be ‘0’

 Cx=0, Cx2=0: double precision floating point data.

 Cx=0, Cx2=1: lower 32-bit single precision floating point data.

 Cx=1, Cx2=0: upper 32-bit single precision floating point data.

 Cx=1, Cx2=1: packed 32-bit single precision floating point data.

 4) specifies data type for VFIX and VFLT instructions.

 For details, see chapter 8.

5-23

 5) specifies data type for VBRD, VAND, VOR, VXOR, VEQV, VLDZ, VPCNT,

VBRV, VSEQ instructions.

 Cx=0, Cx2=0: 64-bit logical data.

 Cx=0, Cx2=1: lower 32-bit logical data.

 Cx=1, Cx2=0: upper 32-bit logical data.

 Cx=1, Cx2=1: packed 32-bit logical data.

 6) specifies data type for VMRG instruction.

 Cx=0: 64-bit logical data.

 Cx=1: packed 32-bit logical data

 7) specifies data type for VFMS instruction.

 Cx=0: lower 32-bit signed binary integer

 Cx=1: upper 32-bit signed binary integer

 8) specifies data type for VFMF instruction.

 Cx=0, Cx2=0: double precision floating point data.

 Cx=0, Cx2=1: lower 32-bit single precision floating point data.

 Cx=1, Cx2=0: upper 32-bit single precision floating point data.

 Ct: Specifies how to select the element number of maximum and minimum value

in case that several elements are the same maximum or minimum value.

 Ct=0: Store the smaller element number as a result.

 Ct=1: Store the bigger element number as a result.

 Cm: 1) specifies comparison conditions of VCMS, VCMX, VFCM instructions.

 Cm=0: selects the bigger value.

 Cm=1: selects the smaller value.

 2) specifies operation of VRSQRT instruction when 0 is inputted.

 Cm=0: When 0 is inputted, a divide exception is generated.

 Cm=1: When 0 is inputted, a divide exception is NOT generated.

 3) Specifies data type of VFIX and VFLT instructions.

5-24

 Cm=0: Non-packed data type.

 Cm=1: Packed data type.

 4) Specifies comparison conditions of VMAXS, VMAXX, VFMAX instructions.

 Cm=0: Find the maximum value of vector elements.

 Cm=1: Find the minimum value of vector elements.

Cs/Cs2:1) Specifies Vy and Vz operand of VDIV, VDVS, VDVX, VFDV, VFMAD,

VFMSB, VFNMAD, VFNMSB instructions.

 Cs=0, Cs2=0: Sy value is not used.

 Cs=1, Cs2=0: Specifies immediate value or S register value designated

Sy as input operand replace with Vy.

 Cs=0, Cs2=1: Specifies immediate value or S register value designated

Sy as input operand replace with Vz.

 Cs=1, Cs2=1: Unspecified behavior. If it is assigned, then an illegal

instruction format exception is generated.

2) Specifies Vy operand of other than above vector arithmetic instructions.

 Cs=0: Sy value is not used.

 Cs=1: Specifies immediate value or S register value designated Sy as

input operand replace with Vy.

 M: Specifies a VM.

5-25

5.7.2. RV type y field

 Sy
C

y

16 23

y：

Cy: Specifies whether the y operand is an immediate value or S register.

Cy=0: The y operand is an immediate value generated by Sy.

Cy=1: The y operand is contents of S register designated by Sy.

Sy: 1) Vector arithmetic instruction (VAND, VOR, VXOR, VEQV)

When Cy=0, the y operand is an immediate value of sequential bit stream

of 0 or 1. It is generated by Sy value as follow.

Bit 17 of Sy filed is defined f, and bit 18-23 is defined m.

When f=0, generating a 64-bit constant value by combining m bits

sequence of 1 from left and 64-m bits sequence of 0.

When f=1, Generating a 64-bit constant value by combining m bits

sequence of 0 from left and 64-m bits sequence of 1.

When Cy=1, Bit 18-23 indicates S register. Not to use bit 17(SBZ).

2) VMV instruction

When Cy=0, it is a 64-bit immediate value whose Sy is treated as 7-bit

unsigned binary integer and upper 57-bit are filled with zeros. (It can

express value from 0 to 127.)

When Cy=1, it indicates S register by bit 18-23. Not to use bit 17(SBZ).

3) RV type instructions other than above.

When Cy=0, It is a sign extended 64-bit immediate value whose Sy is

treated as 7-bit signed binary integer. (It can express value from -64 to

63.)

When Cy=1, it indicates S register by bit 18-23. Not to use bit 17(SBZ).

5.7.3. RV type z field

 Sz
C

z

24 31

z：

5-26

Cz: Specifies whether the z operand is an immediate value or S register.

Cz=0: The y operand is an immediate value generated by Sz.

Cz=1: The y operand is contents of S register designated by Sz.

Sz: When Cz=0, the z operand is an immediate value of sequential bit stream of 0

or 1. It is generated by Sz value as follow.

Bit 25 of Sz filed is defined f, and bit 26-31 is defined m.

When f=0, generating a 64-bit constant value by combining m bits sequence

of 1 from left and 64-m bits sequence of 0.

When f=1, Generating a 64-bit constant value by combining m bits sequence

of 0 from left and 64-m bits sequence of 1.

When Cz=1, Bit 26-31 indicates S register. Not to use bit 25(SBZ).

5.7.4. RV type Vx, Vy, Vz, Vw field

Generally they specify vector registers or vector mask registers.

When they specify vector registers, the vector register is determined by lower

6 bits of each field unless those fields are 255. In this case, upper 2 bits of

each field are ignored (SBZ). When 255 is specified, the vector register is

determined by the value in the VIXR.

 On VFIX or VFIXX instruction, rounding condition is specified by lower 4 bits

of the Vz field.

 On VFMK, VFMS, or VFMF instruction, evaluation condition is specified by

lower 4 bits of the Vy field. The interpretation of evaluation condition is the

same as CF type x filed.

6. Memory Architecture

6.1. Memory Architecture Overview

The VE main memory (VE memory) is accessed by memory access instructions. A VE

has two layers of cache hierarchy, S (Scalar) cache and LLC (Last-Level Cache). S

cache is composed of the instruction cache (I-cache), operand cache (O-cache) and L2

cache. S cache is for a scalar unit while LLC is used by both scalar and vector arithmetic

units. LLC can hold instruction codes and data for scalar and vector computation.

The S cache is indexed with a virtual address. The system software is responsible to

flush the S cache whenever the mapping between virtual and absolute addresses

changes. With the same mapping, cache coherency between L2 and O-cache is kept by

hardware. I-cache is out of the L2-S cache coherency scope and not automatically

modified/invalidated when codes cached in the I-cache gets some change on the VE

memory. When code is dynamically modified, the I-cache has to be flushed on the

software responsibility.

(SW note) Aurora memory subsystem assumes release consistency model. Data transfer

between several cores may require specific procedures. The detailed procedure is

described later in this section.

A VE has multiple VE cores, VE memory. It also has the address translation buffer (ATB)

for address translation and memory protection.

Figure 6-1 Aurora system memory architecture

Vector Host (VH)

VH core

MMU

Vector Host Memory (VH memory)

Vector Engine (VE)

VE core

ATB

Vector Engine Memory (VE memory)

VE core

ATB

Vector Host I/O Unit

VH core

MMU

Vector Engine I/O Unit

DMAATBPCIATB

registers registers

PCI ExpressMMIO
BAR01

BAR23

6-1

6.2. Address Space

Virtual addresses of the VE memory are translated into absolute addresses by ATB

(Address Translation Buffer).

VE memory virtual address space

The VE memory virtual address space is used for memory access from a VE core. Each

VE core can have its own VE memory virtual address space. All memory access

instructions except LHM and SHM, and instruction fetch are processed within this

address space. VE memory virtual address is translated to a VE memory absolute

address space through ATB. This address space is 48 bit addressable.

VE host virtual address space

The VE host virtual address space is for DMA or LHM/SHM from a VE core. A VE host

virtual address is translated to a VE memory absolute address, VE register absolute

address, VE CR absolute address or VH system absolute address. This address space is

48 bit addressable.

VH virtual address space

The VH virtual address space is used by programs running on the VH. The VH virtual

address is translated to the VH system absolute address by the MMU mechanism on the

VH. Details of VH virtual address space or MMU are out of scope of this guidebook.

6.2.1. Absolute address space

VE memory absolute address space

The VE memory absolute address space is for VE main memory. This address space is

48 bit addressable.

VE register absolute address space

6-2

The VE register absolute address space is for registers in a VE node. The user registers,

system protection registers and system common registers are mapped on this address

space. This address space is 48 bit addressable.

Access to VE register absolute address space may produce exceptions depending on its

address and transfer size.

VE CR absolute address space

The VE CR absolute address space is mapped to communication registers in the VE

node. The same CRs have multiple addresses depending on the access type such as

read, write and other atomic operations. The size of this address space is 256KB.

To access a VE CR, its absolute addresses has to be 8B aligned, and its access size has

to be 8 bytes.

VH system absolute address space

6-3

6.3. Types of Memory Access

6.3.1. VE core memory accesses

Instruction fetch

Instruction fetch is one type of memory accesses automatically invoked by VE cores to

load instruction codes from the VE memory/LLC/L2 cache to L1 instruction cache. This

memory access is originated with a VE virtual memory address. When it needs to get

access to LLC/the main memory due to L1/L2 cache miss, the address is translated into

a VE absolute memory address by ATB.

Memory access instructions

Memory access instructions including LDS/STS/VLD/VST etc. in VE’s codes are issued

by a VE core with VE virtual memory addresses. When it needs to get access to LLC/the

main memory due to L1/L2 cache miss, the address is translated into a VE absolute

memory address by ATB.

Host memory access instructions

LHM/SHM instructions are provided to access the host memory with a VE host virtual

address.

6-4

6.4. Address Translation

6.4.1. Page size

Two page sizes are supported.

Large page: 2Mbyte

Huge page: 64Mbyte

6.4.2. Partial space

The partial space is a portion of the VE virtual address space. A partial space consists of

256 pages of the single page size of 2MB or 64MB, therefore a partial space can either

be 512MB or 16GB.

6.4.3. Address translation buffer

The address translation buffer (ATB) translates the VE memory virtual address into the

VE memory absolute address. The memory accesses are invoked by the execution of

memory access instructions or instruction fetch. Each VE core has its own ATB.

Each core can see 32 partial spaces at a time. The ATB consists of 32 partial space page

tables and 32 entries of partial space directory each of which corresponds to a partial

space page table. A partial space directory holds the virtual base address of its partial

space, and its page size. Each entry of a partial space page table holds its physical base

address and attributes. ATB supports 2MB or 64MB page size only.

ATB partial space directory

ATB partial space directory and the format of the entry in the partial space directory are

depicted in Figure 6-2 and Figure 6-3.

6-5

Figure 6-2 ATB partial space directory

Figure 6-3 the format of the entry in the ATB partial space directory

Partial space index (PS), bit 16-34

This field holds the partial space index, which is the virtual base address of its partial

address. The start address is naturally aligned to the size of the partial space, therefore

its entry holds only some upper bits of the virtual base address. Bit 16-34 is used for 2MB

page, while bit 16-29 is available for 64MB page.

Page size, bit 61-62

This field specifies the page size of the partial page. ‘01’ represents 2MB page, and ‘10’

for 64MB page. The rest is reserved for future use.

Valid, bit63

This is the valid bit for the partial space. When this bit is ‘1’, the entry and corresponding

partial space page table is available.

ATB partial space page table

Partial space entry 31

Partial space entry 0

Partial space entry 1

Partial space entry 2

0

1

2

31

6360160 34

VPS
Size

(01)

VPS
Size

(10)

2MB page

64MB page

6360160 29

6-6

 Figure 6-4 depicts ATB partial space page table (PSPT). A PSPT consists of 32 page

tables, each of which has 256 entries of page descriptors to hold its base physical

address and attributes.

Figure 6-4 ATB Partial space page table

 Figure 6-5 is the format of a page descriptor.

Figure 6-5 ATB page descriptor

Page base address (PB), bit 16-42

This field holds the page’s base physical address in the VE memory absolute address

space. Upper bits of the base address are used as PB. Bit 16-42 is referred for 2MB page,

and bit 16-37 is used for 64MB page.

Type, bit 52-54

This field must be ‘110’ for the valid pages in ATB.

Write inhibit (W), bit61

This page is protected from writing. When this bit is set to ‘1’, write request to the page

will cause a memory protection exception.

Cache bypass (B), bit62

When this bit is set to ‘1’, data in the page is not cached in L1 operand cache or L2 cache.

Note that this bit does not affect the behavior of L1 instruction cache. This bit is also

Page descriptor

Page descriptor

Page descriptor

Page descriptor

32 tables

Table 0

Table 31

6360160 42

U
A

PB

U
A

PB

2MB page

64MB page

6360160 37

Type
(110)

BW

Type
(110)

BW

51 54

51 54

6-7

referred as hint information for LLC replacement control. When this bit is set to ‘1’, LLC

may less-prioritize accesses to the page than others to let more useful data be likely to

stay on the cache.

Unavailable (UA), bit63

This page is unavailable when this bit is set to ‘1’. Access to an unavailable page will

cause a missing page exception.

Address translation in ATB

On the arrival of an virtual address to ATB, the address is compared with the PS of all

available spaces in the ATB (Note: comparison scope changes depending on the page

size of the directory being compared, for 64MB pages bit16-29 is referred while bit16-34

is compared for 2MB pages) When a matched partial space exists and the page is valid,

the space is chosen to refer to, and its page information is searched. Then page number

(PG) as an index of the page table, and relative page address (RPA) as its offset address

are extracted from the virtual address according to the page size of the matched partial

space. The PG is 8bits following the PS (Note: PS size also changes according to the

size of its hit page), and RPA is the rest bits.

A missing space exception is raised in the case that there is no matched partial space. A

memory access exception is raised when it hits more than one partial spaces that match.

The target page descriptor is searched in the page table using PG as its index. When UA

bit of the page descriptor is ‘1’, a missing page exception is generated. Otherwise, the

target absolute address is obtained by adding PB (page base) from the page descriptor

and RPA.

63160 35

RPAPS PG

43

PS

0

255

Table 0

Table 31

PB

Partial space

directory

Partial space

page table
Target address

＋

2MB

Entry number

2MB page address translation

32 Entries

6-8

Figure 6-6 Address Translation in ATB

63160 30

RPAPS PG

38

PS

0

255

Table 0

Table 31

PB

Partial space

directory

Partial space

page table
Target address

＋

64MB

Entry number

64MB page address translation

32 Entries

6-9

6.5. Memory Access Ordering

6.5.1. Release consistency model

In SX-Aurora TSUBASA system, the access order can change amongst memory and CR

accesses to different addresses by hardware. A VST instruction accessing a certain

address of the memory may be processed far later than the following atomic operations

to the different address. To secure safe data transfer among VE cores, DMA engines, the

VH and external PCIe devices, release consistency model is sometimes necessary.

FENCE instruction and several other functions are provided for that purpose.

 Figure 6-7 shows an example for a data transfer sequence between two entities under

the release consistency model with two entities, core A to release data and core B to

acquire it.

Core A acts as a releaser.

1. Core A writes the data to be transferred to the main memory or CR.

2. Then it “SYNC”s to secure the completion of all previous store instructions. .

SYNC operation on the VE core is made by executing FENCE(SF=1; store

fence) instruction. The FENCE(SF=1) instruction waits all data written by all

previous store instructions to become visible to all other entities and the following

store instructions are halted until the completion of the FENCE(SF=1) itself.

3. Finally it sets a flag on the main memory or a CR to indicate that the data has

become available.

Core B follows as an acquirer.

4. Core B reads the flag to check its availability and repeats until the data is

available.

5. When the data is available, it executes an FENCE(LF=1: load fence) instruction

to guarantee that the following load instructions are not executed until the flag is

set.

6. Then it reads the data to be transferred.

6-10

Figure 6-7 Data transfer sequence under release consistency model

6.6. Cache Memory

6.6.1. Cache hierarchy

Figure 6-8 shows the cache hierarchy of a VE node. A VE node has two types of cache,

the scalar cache, which is available only within a VE core, and the LLC (last level cache)

shared by all VE cores and the DMA engine. They cache only the data in the VE main

memory.

The scalar cache consists of L1 instruction cache (L1 I-cache), L1 operand cache (L1

O-cache) and L2 cache. The L1 I-cache is the first level cache used solely for instructions.

The L1 O-cache is accessed by scalar memory instructions executed in the VE core in

which the O-cache is. The L2 cache is a unified second level cache accessed by both

instruction fetch and scalar memory instructions. The L2 cache is read on a cache miss

on L1 I-cache or L1 O-cache. Note that L1 O-cache and L2 cache are not referred by

vector instructions. However, coherency between L1 O-cache, L2 cache and Vector

Load/Store instructions is kept by hardware. The scalar cache is not used for LHM or

SHM instructions. The scalar cache is indexed by the VE memory virtual address.

The LLC is shared by all VE cores and the DMA engine. The LLC is indexed by VE

memory absolute (physical) address. All accesses to the VE memory absolute address

space refers to the LLC.

FENCE(SF=1)

flag store

flag load

FENCE(LF=1)

Core A (to release) Core B (to acquire)

Write completion of all store instruction in this
term is guaranteed by FENCE(SF=1) instruction.

If Core B can see the flag written by Core A,
The visibility of the data written by Core A before
FENCE(SF=1) is guaranteed.

T
im

e

6-11

Figure 6-8 Cache hierarchy of VE node

6.6.2. Cache coherency

The VE hardware keeps coherency among L1 O-cache, L2 cache, LLC, and the VE main

memory. Note that coherency between L1 I-cache and the other cache or the VE main

memory is not maintained. The data in L1 I-cache is loaded from L2 cache, LLC or main

memory when L1 I-cache misses, but modifications on L2 cache, LLC, or main memory

afterwards will not reflect on the L1 I-cache automatically. The L1 I-cache needs explicit

flashing of old data to load the new data again.

Therefore, software running on the VE core has to take care of the coherency of L1

I-cache. When software modifies instructions, FENCE (CI=1) instruction to flash the L1

I-cache is required before the execution of the modified instructions.

The coherency of L1 I-cache has also to be taken care of at the beginning of execution

on the VE core. The L1 I-cache must be cleared before the first instruction fetch, or after

the concurrent load of a library.

Cache coherency for L1 O-caches and L2 caches is virtual address based. When an

absolute address is mapped to two or more different virtual addresses, ordering among

accesses to those addresses is not guaranteed. Additionally, when the ATB is modified

the scalar cache needs flushing by software as changes on ATB are not automatically

reflected on the cache.

L1 Instruction
cache

L1 Operand
cache

L2 cache

Scalar
registers

Instruction
fetch unit

Vector
registers

VE core

Last level cache (LLC)

Main memory

Scalar cache

VE core DMA engine

6-12

6.6.3. Cache control

To keep the coherency of the scalar cache, SX-Aurora TSUBASA has a cache flush

feature, the FENCE instruction with commands CI, CD and C2 bit which correspond to L1

I-cache, L1 O-cache and L2 cache respectively. When the FENCE instruction with any of

CI, CD and/or C2 is ‘1’ is executed, all data in the corresponding cache is flushed and

following load instructions are halted until the flush completes.

6.6.4. Cache bypass

ATB has the ‘cache bypass’ attribute in each page descriptor. The scalar cache won’t

cache those pages with the cache bypass attribute ON. LLC will accommodate those

data, but may less-prioritize them in the replacement policy.

6.6.5. LLC

Data on the LLC can be categorized into two, temporal and sticky* data. The sticky data

is one which is more likely to stay in the cache to be used again in the near future. The

temporal data is what may not quite be used and therefore it is expected to be ousted

soon. The LLC gives a higher priority to sticky data and evicts temporal data more likely

than sticky ones. Note that mechanism does not guarantee the survival of the sticky data.

The LLC selects the data to be evicted taking various conditions such as the number of

accesses to the data, and the time it was lastly referred to, into consideration.

The priority class of the cached data is identified by type and VC bit of the instruction as

Table 5-.

*The word ‘sticky’ simply means it may have a higher priority to stay in the cache than the

other data that is not sticky, in terms of cache replacement policy. No guarantee about

the longevity of the data on the LLC.

Table 5-24 Priority class of cached data on LLC

Types and VC bit priority class

Instruction fetch Sticky

Scalar load Sticky

Scalar store Sticky

Vector load (VC=0) Temporal

Vector load (VC=1) Sticky

Vector store (VC=0) Temporal

Vector store (VC=1) Sticky

6-13

For the data accessed by the DMA engine or inbound accesses, the priority class is

decided by the hint in its DMA descriptor or the target hint table.

When the data as sticky is accessed by a temporal request, the data may turn temporal

and vice versa.

FENCE (CL=1) instruction forces all LLC-cached data to be temporal.

6-14

6.7. Communication Register

The CRs are shared by VE cores to provide for low latency communication among the

VE cores. A VE node has 1024 CRs. They can be used as the simple shared memory or

barrier synchronization counters as well.

6.7.1. Access to CR

CRs are addressed sequentially from 0 to 1023, and every 32 CRs compose a CR page.

Two ways to access CRs are provided, and both support atomic operations such as

test-and-set or fetch-and-increment.

CR access instructions

LCR, SCR, TSCR and FIDCR instructions provide a capability to access CRs. CR

directory (CRD) is used for address translation for CR access.

When LCR/SCR/TSCR or FIDCR is executed, CRD is referred to by bit 57-58 of its

effective address. If the valid bit of the referred entry is ‘1’,the target CR number is

generated with the CR page number from the CRD entry and bit 59-63 of the effective

address as its offset. When the entry is invalid a memory access exception is raised.

6-15

Figure 6-25 Address translation on CR access by CR access instruction

CR directory (CRD)

Four entries of CR directory (CRD) are provided for CR address translation from a logical

CR to a physical CR. Each CRD entry consists a 64 bit register including a valid bit and a

5 bit pointer to the CR page#.

～
～

32W

32W

32W

32W

32W

32W

～
～

0 63

Communication

Registers

0

32

64

96

128

160

992

1023

57 59 63

CR Directory

V 0 4

Effective address

0 1 58 59 63

V CR page#

6-16

Access through VE CR absolute address space

The CRs are mapped on the VE CR absolute address space. VE cores, the DMA engine,

VH and external PCIe devices can access CRs through the mapped region. The mapping

is redundant in that the address includes a function in itself. In other words, address for a

physical CR may change depending on the function that is being applied on the CR, such

as simple read/write or atomic operations. Figure 6-9 shows the addressing for CRs.

46 63

CR page

50

CR #func
Must be

zero

55 600

S
Y
N

C

51

Figure 6-9 Addressing of the VE CR absolute address

CR page, bit 46-50CR page number.

CR number, bit 56-60

CR offset address within the CR page.

Func, bit 52-55

Function applied in this access. For details, see Table 5-1.

SYNC, bit51

Not used.

Table 5.2 shows the functions for CR access through the VE CR absolute address space.

Note that read requests may have side effects on the contents of CRs.

VE CR absolute address space must be accessed in an 8 byte size, with an alignment to

an 8-byte boundary. Otherwise, memory access exception will occur.

Any access with an undefined function causes memory access exception.

CR cache in a VE core is not updated by the LHM/SHM or DMA access through VE CR

absolute address space, or inbound accesses. When a VE core and the VH or external

PCIe devices operate the same CR at the same time, VE core should observe the CR by

LCR or FIDCR (Rz=7) instruction to bypass its CR cache.

Table 5-1 Function of CR access through VE CR absolute address space

Func
¥Type

Remarks
Read Write

0000 return CR(x) CR(x)  D Corresponds to
LCR/SCR.

6-17

0001 RFU (no effect on CR, and
undefined-value is returned.)

if(CR(x) [0] =0) {
CR(x)[0]  1
CR(x)[1:63]  D[1:63]

}

Corresponds to
TSCR.
This access should
be followed by
read access to
check the result.

0010 W  CR(x)
if(W[40:63] = 1) {

CR(x)[0]  #W[0]
CR(x)[40:63]  W[8:31]

} else {
CR(x)[40:63]  W[40:63] - 1

}
return W

W  CR(x)
if(W[40:63] = 1) {

CR(x)[0]  #W[0]
CR(x)[40:63]  W[8:31]

} else {
CR(x)[40:63]  W[40:63] - 1

}

Corresponds to
FIDCR(Rz=4 or 5).
This access has no
effect on CR cache
on each VE core.

0011 W  CR(x)
if(W[40:63] = 1) {

CR(x)[0]  #W[0]
CR(x)[40:63]  W[8:31]

} else {
CR(x)[40:63]  W[40:63] - 1
}
return W

W  CR(x)
if(W[40:63] = 1) {

CR(x)[0]  #W[0]
CR(x)[40:63]  W[8:31]

} else {
CR(x)[40:63]  W[40:63] - 1

}

Corresponds to
FIDCR(Rz=4 or 5).
This access has no
effect on CR cache
on each VE core.

0100 W  CR(x)
CR(x)  W + 1
return W

W  CR(x)
CR(x)  W + 1

Corresponds to
FIDCR(Rz=0).

0101 W  CR(x)
CR(x)  W - 1
return W

W  CR(x)
CR(x)  W - 1

Corresponds to
FIDCR(Rz=1).

0110 W  CR(x)
if(W != 0) {

CR(x)  W + 1
}
return W

W  CR(x)
if(W != 0) {

CR(x)  W + 1
}

Corresponds to
FIDCR(Rz=2).

0111 W  CR(x)
if(CR(x) != 0) {

CR(x)  CR(x) – 1
}
return W

W  CR(x)
if(CR(x) != 0) {

CR(x)  CR(x) – 1
}

Corresponds to
FIDCR(Rz=3).

other RFU (no effect on CR, and
undefined-value is returned.)

RFU (no effect on CR)

Note: CR(x) means access target CR.

6.7.2. Barrier synchronization using CR

A CR can be used as a flag and also a counter for barrier synchronization among VE

cores with an FIDCR(Rz=4 or 5) instruction or LHM/SHM to the equivalent VE CR

absolute address access. In those cases, the CR acts as below.

31 63

Initial counter value

40

CounterF

0 1 8

6-18

Figure 6-10 Interpretation of bits of CR for barrier synchronization

Flag, bit 0

This is the flag to indicate current phase of the synchronization. This flag is inverted when

the next synchronization is met.

Counter, bit 40-63

This is a 24bit counter for barrier synchronization. This counter may indicate the number

of participants which have not reached the synchronization condition.

Initial counter value, bit 8-31

This is a 24bit field to hold the initial value for the counter. This number is only referred at

the end of synchronization as the initial value of the counter bit40-63.

At first, initial values are set for the flag, the counter, and the initial counter value.

Typically the flag is initialized to ‘0’ and both the counter and the initial counter value are

set to the number of participants of the synchronization. The counter is decremented by

FIDCR (Rz=4 or 5) instruction or equivalent VE CR absolute address access. When the

counter value reaches zero, the synchronization is finished and the counter rewinds to

the initial value. The flag is inverted to indicate that the synchronization has completed.

The participants of the synchronization can detect the finish of the synchronization by

reading the inverted flag.

CR Cache

CR cache helps efficient barrier synchronization using CRs. CR cache can hold a copy of

bit 0, the synchronization flag, of CRs, and provides low latency access to the CR copy

for some specific use. To utilize CR cache, VE cores need to use FIDCR (Rz=4 or 6)

instruction. To the other instructions, CR cache may not be valid.

CR cache has following functions.

1. Registration

When a VE core executes FIDCR (Rz=4 or 6) instruction and CR cache does not hold the

copy of the destination CR, the value of the bit 0 of the destination CR is stored in the CR

cache. In the case of FIDCR (Rz=4), the value after the update is stored.

2. Update

When a VE core executes FIDCR (Rz=4) instruction and CR cache have the copy of the

destination CR, the cached data is updated with the result of FIDCR (Rz=4).

6-19

Also, CR update message is broadcasted to every VE cores when bit 0 of a CR is

updated by FIDCR (Rz=4 or 5) executed in any of VE cores. Upon arrival of the massage,

the CR cache updates its copy if it holds the copy of the updated CR.

3. Reference

When a VE core executes FIDCR (Rz=6) instruction, the data is returned from the CR

cache if the CR cache has the copy of the destination CR. Otherwise, the data is read

from the destination CR. Note that CR cache hold copy of bit 0 only. For the former case,

r the bit1-63 of the returned value is undefined.

4. Invalidation

When a VE core executes SCR, TSCR, or FIDCR (Rz=0,1,2, 3, 5 or 7) instruction, the

cached data for the target CR is invalidated from the CR cache. The cached data is also

invalidated when the entry of CR directory corresponding to the data is updated.

Note that the size and configuration of CR cache and its replacement policy is system

dependent. Also, CR cache may discard cached data anytime. The permanence of

cached data is not guaranteed.

Example of a barrier synchronization

The following is a sample scenario for barrier synchronization using the CR cache. This

example assumes core A, B and C as the participants of the synchronization, and CR[0]

is used as the barrier synchronization counter.

1. Core A initializes CR[0]. The flag (bit 0) is set to ‘0’, and the counter (bit 40-63)

and initial counter value (bit 8-31) are set to ‘3’.

2. Core A, B and C start computation in parallel.

3. Let’s say core A reaches the barrier point first. Then core A executes FIDCR

(Rz=4) instruction, and the value in CR[0] is stored into the target scalar register

and the counter field of the CR[0] is decremented to ‘2’. Then the result value of

CR[0]’s bit0 , which is still zero, is stored into the CR cache of core A.

4. Core A starts polling looking in CR[0] until the synchronization condition is met..

The polling includes FIDCR (Rz=6) and the reply of the FIDCR (Rz=6) comes

from the CR cache. Core A checks if the result value FIDCR has been flipped to

one, in other words, the participant cores have all reached each barrier point. If

yes, Core A escapes the polling loop.

5. Core B reaches the barrier point and executes FIDCR (Rz=4) instruction. The

counter field of CR[0] is decremented to ‘1’. The flag field is still unchanged.

Core B also starts to poll CR[0] as core A does.

6. Finally core C reaches the barrier point and execute FIDCR (Rz=4) instruction.

The counter field of CR[0] is decremented to ‘0’. Now the synchronization

condition is satisfied.. The flag field of CR[0] is inverted to ‘1’, and counter is set

back to ‘3’.Then an update message is broadcasted to all cores (Note: the

6-20

broadcast message arrives to not just the participant cores, but all available

cores in the VE.) CR caches in the cores are all updated to the new value ‘1’ by

the message. By the way the FIDCR (Rz=4) of Core C returns the value before

the synchronization is made, therefore the last comer core C still needs to get

into the polling loop anyway, and it escapes the loop soon.

7. Now Core A, B and C are all synchronized, and they step forward again.

7. Exceptions

7.1. Exceptions and interrupts

 A VE core raises an interrupt when the VE core encounters a problem hindering the

program from continuing processing any more, or the VE core reached a condition where

it raises interrupt(s) to the host due to MONC instruction or some debug feature. The

former causes are typically called exceptions and the latter are called interrupts or traps.

In this section, we collectively call them interrupts.

Table 7-1 shows the cause of interrupts. When a VE core detects interrupt cause(s), the

VE core raises an interrupt by asserting the corresponding bit(s) of the interrupt cause

field in EXS and starts the halt execution sequence.

Table 7-1 : Causes of interrupt

bit Name major cause

0 Memory protection exception Store to a write-inhibited page.

1 Missing page exception Page not found

2 Missing space exception Space not found

3 Memory access exception Other Invalid Memory access detected

4-7 (Reserved) -

8 Division exception Zero division detected.

9 Floating-point overflow exception Overflow in floating point calculation

10 Floating-point underflow exception Underflow in floating point calculation

11 Fixed-point overflow exception Overflow in fixed point calculation

12 Invalid operation exception
Invalid operation in floating point

calculation

13 Inexact exception
Inexact result in floating point

calculation

14-16 (Reserved) -

17 Illegal instruction format exception An undefined instruction executed

7-1

18 Illegal data format exception VL > MVL etc.

19 Software interrupt (MONC) Execution of MONC instruction.

20 Address match interrupt
Store to the pre-set address is detected.

Prepared for debugger use

21 Branch trap

Execution of branch instructions (BC,

BCS, BCF, BSIC, BCR) in the branch

trap mode.

22 One step interrupt
An instruction was executed in the

one-step interrupt mode.

23 Software interrupt (MONC TRAP)

Execution of MONC (Cx=1) instruction.

Note: when this turns one bit19 is also

one.

24 Host memory protection exception Store to a write-inhibited page.

25 Host missing page exception Page on host memory not found

26 Host missing space exception Space on host memory not found

27 Host memory access exception
Host memory access to unavailable

address detected

28 I/O access exception Timeout in LHM execution

29-39 (Reserved) -

7.1.1. Attributes of interrupts

SX-Aurora TSUBASA has two types of interrupts, recoverable and unrecoverable ones.

VE cores can restart their execution of program from a recoverable interrupt followed by

appropriate interrupt handling by the VH. Restarting from an unrecoverable interrupt is

not supported.

 Recoverable exceptions are:

･ Software interrupt (MONC)

･ Software interrupt (MONC TRAP)

･ Address matched interrupt

･ One-step interrupt

･ Branch trap

7-2

Interrupts caused by certain kinds of exceptions are maskable. Each maskable exception

has a corresponding mask bit and an exception flag in PSW. When the mask bit is set to

“0”, the interrupt due to the corresponding exception is not raised. Note that the exception

itself is recorded in the exception flag regardless of the mask bit.

 Maskable exceptions are:

･ Division exception (DIV)

･ Floating-point overflow exception (FOF)

･ Floating-point underflow exception (FUF)

･ Fixed-point overflow exception (XOF)･ Invalid operation exception (INV)

･ Inexact exception (INE)

7.1.2. Causes of interrupts

Memory protection exception

 Cause(s):

Memory instruction attempted to store data to a write prohibited page.

LHM and SHM are out of this interrupt’s scope.

Missing page exception

 Cause(s):

1) Instruction fetch from an unavailable page (Bit 63 of page descriptor is ‘1’)

2) Execution of an instruction which attempts to access an unavailable page.

LHM and SHM are out of this interrupt’s scope.

Missing space exception

 Cause(s):

1) Instruction fetch to the address that is not available in partial space directory.

2) Execution of an instruction with memory access to the address that is not

available in partial space directory.

LHM and SHM are out of this interrupt’s scope.

7-3

Memory access exception

 Cause(s):

1) Access to unavailable VE memory absolute address

・ Instruction fetch from an unavailable VE memory absolute address, such as

accessing the memory beyond its physical memory size.

・ Reading/Writing from/to an unavailable VE memory absolute address.

2) Memory boundary violation

・ Atomic memory access instructions violating their 4 or 8 byte memory

boundary rule

・ Vector memory access instructions violating their 4 or 8 byte memory

boundary rule

・ Branch instructions which are ‘taken’ and attempting to branch to a

non-8byte-aligned address

・ Host memory access instructions violating their memory boundary rule

depending on their access size

3) CR access violation

・ CR access instructions attempting to access an unavailable CR page

・ CR access instructions attempting to access a not-existing CR

4) Access over multiple spaces of different page sizes

・ A vector memory instruction attempting to access over two or more partial

spaces of different page size

5) Partial space multiple-hit

・ Instruction fetch from the address that resides in multiple partial spaces.

Illegal space reservation on ATB.

・ Execution of an instruction that attempts to access the address that resides

in multiple partial spaces. Illegal space reservation on ATB.

 LHM and SHM are out of this interrupt’s scope.

Host memory protection exception

 Cause(s):

Execution of a SHM instruction which attempts to store data to a write prohibit page.

7-4

Host missing page exception

 Cause(s):

Execution of a LHM or SHM instruction which attempts to access an unavailable page

Host missing space exception

 Cause(s):

The partial space corresponding to the target address of LHM/SHM is not available.

Host memory access exception

 Cause(s):

1) Access to unavailable absolute address

・ LHM or SHM instruction targeting to an unavailable VE memory absolute

address

・ LHM or SHM instruction targeting to an unavailable VE register absolute

address

・ LHM or SHM instruction targeting to an unavailable VE communication

register absolute address

2) Memory boundary violation

・ LHM or SHM instruction which violates the 2, 4 or 8 byte boundary rule.

・ 1, 2 or 4 byte SHM targeting to a VE register absolute address

・ 1, 2 or 4 byte LHM/SHM targeting to a VE communication register absolute

address

3) CR access violation

・ LHM or SHM instruction targeting to a not-existing number of CR

・ LHM or SHM instruction targeting to a CR with an undefined function.

4) Partial space multi-hit

7-5

・ LHM or SHM instruction accesses an address which hits multiple partial

spaces

5) Access to undefined address space

・ LHM or SHM instruction accesses an undefined type of address space

I/O Access Exceptions

 Cause(s):

An LHM or SHM instruction timed-out

Division exception

 Cause(s):

Divide by zero detected

Floating-point overflow exception

 Cause(s):

Floating-point overflow on floating-point arithmetic instructions

Floating-point underflow exception

 Cause(s):

Floating-point underflow on floating-point arithmetic instructions

Fixed-point overflow exception

 Cause(s):

Overflow on fixed-point arithmetic instructions or shift operation instructions.

7-6

Invalid operation exception

 Cause(s):

Invalid operation on floating-point arithmetic instructions

Inexact exception

 Cause(s):

Inexact result on floating-point arithmetic instructions

Illegal instruction format exception

 Cause(s):

 Following illegal formed instructions are fetched and decoded.

1) An instruction with an undefined opcode

2) A RW type instruction with invalid register number

3) A RV type instruction with invalid control flags.

4) A RV type instruction with invalid mask field.

Illegal data format exception

 Cause(s):

1) Execution of a LVL instruction which attempts to set a number exceeding MVL

into VL.

2) Execution of a vector instruction with VL exceeding MVL.

Software interrupt (MONC)

 Cause(s):

7-7

A MONC instruction is executed.

 Result(s):

 IC: The address of the instruction next to the MONC instruction

Software interrupt (MONC TRAP)

 Cause(s):

Execution of a MONC (Cx=1) instruction

 Result(s):

 IC: The address of the instruction next to the MONC instruction

Address match interrupt

 This capability is mainly used by debuggers.

 Cause(s):

Execution of a store instruction which attempts to store data to the address where

specified by store address register.

Branch trap

 This capability is mainly used by debuggers.

 Cause(s):

Execution of branch instruction under the branch trap mode, where branch instructions

are BC, BCS, BCF, BSIC and BCR.

One step interrupt

 This capability is mainly used by debuggers, especially for stepping run.

 Cause(s):

Execution of any instruction under one the step interrupt mode.

 Result(s):

 IC: The address for the restart point, which is branch target address if the last

executed instruction is a taken branch instruction, or the address next to the last

executed instruction otherwise.

7-8

7.1.3. Fast synchronization debug interrupt flag

SX-Aurora TSUBASA supports ‘Fast synchronization debug interrupt’ for debugging of

parallel programs over multiple cores.

8. Instructions

8.1. Legends

 This chapter describes the formats and the functions of the instructions executed by the

central processing unit (CPU) of this system.

8.1.1. Desctiption of the function

 ･Name of the instruction

 ･Format Although cross-out fields in instruction formats are ignored by the

CPU, they should be 0(SBZ) for future extensions.

 ･Function The function of the instruction is shown.

 ･Exceptions Exceptions possibly caused by the instruction are listed.

8.1.2. Operators

 + : Addition

 - : Subtraction

 * : Multiplication

 / : Division

 % : Modulo operation

 & : Logical AND (AND)

 | : Logical OR (OR)

 + : Exclusive logical OR (XOR)

 ≡ : Equivalence (exclusive NOR)

 ~ : Negation (Bit inversion)

 B << A : Left shift B by A

 B >> A : Right shift B by A

 C ? A : B : When C=1 this operation returns A, otherwise B is returned.

8-1

 Σ(A, B, …) : Summation (the total sum of A, B, …)

8.1.3. Keywords and notations

 M(A, B) : B-byte memory contents or location at the effective address given by the

contents of A. When B is omitted it is regarded as 1.

 EA Operation address, calculated by each fields of an instruction.

 A[i] bit i of A

 A[i:j] from bit i to bit j of A

 (A, B) Concatenated value of A on the left of B

 A B Storing (moving) of the contents of B into A.

 Sx Immediate value or S register designated by x field of instruction word.

 Sy Immediate value or S register designated by y field of instruction word.

 Sz Immediate value or S register designated by z field of instruction word.

 Sw Immediate value or S register designated by w field of instruction word.

 Vx V register designated by Vx field of instruction word.

 Vy V register designated by Vy field of instruction word.

 Vz V register designated by Vz field of instruction word.

 Vw V register designated by Vw field of instruction word.

 Vx(i) i-th element of Vx.

 Vy(i) i-th element of Vy.

 Vz(i) i-th element of Vz.

 Vw(i) i-th element of Vw.

 VMx VM register designated Vx field of instruction word.

 VMy VM register designated Vy field of instruction word.

 VMz VM register designated Vz field of instruction word.

 VM VM register designated M field of instruction word.

 mod(A, B) The remainder of A divided by B. Unless specified, A is treated as

 an unsigned interger.

 sext(A, B) B-bit value is generated by extending the sign bit

8-2

(Most significant bit) of A.

 cond(A, B, C) The result of comparison B and C in A condition.

C can be omitted and in this case C is handled as 0.

Refer to Chapter 5 for system interpretation of comparison

condition

 max(A, B) Maximum value of A and B.

 min(A, B) Minimum value of A and B.

8.1.4. Syntax

 If-else syntax:

 Notation: if (A) {B} else if (C) {D} else {E}

 Operation: If A is true, B is executed.

 If A is not true and C is true, D is executed.

 If both of A and C are not true, E is executed.

 for syntax: Iterative operation

 Notation: for (i = A to B) {C}

 Operation: C is executed for each i from A to B. When A>B

 C is not executed.

8-3

8.1.5. Endianness

The Aurora VE CPU stores/loads data to/from the memory in the little endian byte

order. When storing/loading more than 2 bytes data into/from the memory,

hardware takes care of its endianness properly.

8.1.6. Vector elements

The element number of V registers is not written unless otherwise specified, and

from element #0 to #VL-1 are operated together in a vector operation by default.

Formaskable vector instructions, only elements corresponding to the bit pattern in

the VM designated the M field are valid as their input operands or destinations.

Unless otherwise mentioned, vector elements that are not the objects of vector

operations preserve their contents.

8-4

8.2. Load/Store instructions

Load Effective Address

8.2.1. LEA

Format: RM

x

06
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

Function:

 if (Cx = 0) {

 EA ← Sy + Sz + sext(D, 64)

 Sx ← EA

 } else {

 Sx ← Sy + Sz + (sext(D, 64) << 32)

 }

 If Cx=0, an effective address (EA) is calculated from the y, z, and D field of the

instruction and loaded into the S register designated by the x field.

 The calculated 64 bit EA is loaded into bit 0-63 of Sx.

 If Cx=1, the Sy register value or an immediate, Sz register value or an immediate, and

the 32bit left-shifted value of the D field in 64bit unsigned integer, are added into the Sx

register.

8-5

Exception: None

Notes:

 ･When Cz=0 the z operand is regarded as 0 regardless of Sz.

8-6

Load S

8.2.2. LDS

Format: RM

x

01
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx ← M(EA, 8)

 Eight byte data at the memory location specified by the y, z, and D fields of the

instruction is loaded into the S register designated by the x field of the instruction.

Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

Notes:

 ･As for usage of ADB, refer to ADB section in Chapter 6.

 ･When Cz=0, z operand is regarded as an immediate zero regardless of Sz.

8-7

Load S Upper

8.2.3. LDU

Format: RM

x

02
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx[0:31] ← M(EA, 4)

 Sx[32:63] ← 00…0

Four byte data at the memory location specified by the y, z, and D fields of the

instruction is loaded into bits 0 to 31 of the S register designated by the x field of the

instruction.

Bits 32 to 63 of the Sx register are filled with zeros.

Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

Notes:

 ･As for usage of ADB (Assignable data buffer) functionality, refer to Chapter 6.

 ･When Cz=0, z operand is regarded as an immediate zero regardless of Sz.

8-8

Load S Lower

8.2.4. LDL

 Format: RM

x

03
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx[32:63] ← M(EA, 4)

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

Four byte data at the memory location specified by the y, z, and D fields of the

instruction is loaded into bits 32 to 63 of the S register designated by the x field of the

instruction.

When Cx = 0, bit 32 of the loaded data is copied to bits 0 to 31 of Sx for sign extention.

When Cx = 1, bits 0 to 31 of the Sx register are filled with zeros.

Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

8-9

Notes:

 ･As for usage of ADB functionality, refer to Chapter 6.

 ･When Cz=0, z operand is regarded as an immediate zero regardless of Sz.

8-10

Load 2B

8.2.5. LD2B

Format: RM

x

04
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx[48:63] ← M(EA, 2)

 if (Cx = 0) {Sx[0:47] ← sext(Sx[48], 48)}

 else {Sx[0:47] ← 00…0}

Two byte data at the memory location specified by the y, z, and D fields of the

instruction is loaded into bits 48 to 63 of the S register designated by the X field of the

instruction.

When Cx = 0, bit 48 of the loaded data is copied to bits 0 to 47 of Sx for sign extention.

When Cx = 1, bits 0 to 47 of the Sx register are filled with zeros.

Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

8-11

Notes:

 ･As for usage of ADB functionality, refer to Chapter 6.

 ･When Cz=0, z operand is regarded as an immediate zero regardless of Sz.

8-12

Load 1B

8.2.6. LD1B

Format: RM

x

05
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx[56:63] ← M(EA)

 if (Cx = 0) {Sx[0:55] ← sext(Sx[56], 56)}

 else {Sx[0:55] ← 00…0}

The one byte at the memory location designated by the y, z, and D fields (the address

syllable) is loaded into bits 56 to 63 of the S register designated by the x field of the

instruction.

When Cx = 0, bits 0 to 55 of the Sx register are filled with the the same value as the bit

56 of the Sx register (sign extended)

When Cx = 1, bits 0 to 55 of the Sx register are filled with zeros.

Exceptions:

 ･Missing page exception

 ･Missing space exception

8-13

 ･Memory access exception

Notes:

 ･As for usage of ADB functionality, refer to Chapter 6.

 ･When Cz=0, z operand is regarded as an immediate zero regardless of Sz.

8-14

Store S

8.2.7. STS

Format: RM

x

11
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 M(EA, 8) ← Sx

The contents of the S register designated by the x field are stored into the 8byte

memory location beginning at the address designated by the y, z, and D fields.

Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match exception

Notes:

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-15

Store S Upper

8.2.8. STU

 Format: RM

x

12
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 M(EA, 4) ← Sx[0:31]

The contents of bits 0 to 31 of the S register designated by the x field are stored into the

4byte memory location beginning at the address designated by the y, z, and D fields.

Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match exception

Notes:

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-16

Store S Lower

8.2.9. STL

Format: RM

x

13
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 M(EA, 4) ← Sx[32:63]

The contents of bits 32 to 63 of the S register designated by the x field are stored into

the 4byte memory location beginning at the address designated by the y, z, and D fields.

Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match exception

Notes:

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-17

Store 2B

8.2.10. ST2B

Format: RM

x

14
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 M(EA, 2) ← Sx[48:63]

The contents of bits 48 to 63 of the S register designated by the x field are stored into

the 2byte memory location beginning at the address designated by the y, z, and D fields.

Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match exception

Notes:

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-18

Store 1B

8.2.11. ST1B

Format: RM

x

15
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 M(EA) ← Sx[56:63]

The contents of bits 56 to 63 of the S register designated by the x field are stored into

the 1byte memory location beginning at the address designated by the y, z, and D fields.

Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match exception

Notes:

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-19

Dismissable Load S

8.2.12. DLDS

Format: RM

x

09
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx ← M(EA, 8)

The 8-byte data beginning at the memory byte location designated by the (y, z and D)

field is loaded into the S register designated by the x field of the instruction.

 No exception is detected regarding this instruction.

When a nonexistent or inaccessible memory area is specified, an unexpected value

may be loaded.

Exceptions: None

Notes:

 ･As for usage of ADB, refer to ADB section in Chapter 6.

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-20

Dismissable Load Upper

8.2.13. DLDU

 Format: RM

x

0A
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

 Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx[0:31] ← M(EA, 4)

 Sx[32:63] ← 00…0

The 4-byte data beginning at the memory byte location designated by the (y, z and D)

field is loaded into bits 0 to 31 of the S register designated by the x field of the instruction.

Bit 32 to 63 of the S register designated by the x field are filled with zeros.

No exception is detected regarding this instruction.

When a nonexistent or inaccessible memory area is specified, an unexpected value

may be loaded.

Exceptions: None

Notes:

 ･As for usage of ADB, refer to ADB section in Chapter 6.

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-21

Dismissable Load Lower

8.2.14. DLDL

Format: RM

C

x

x

0B
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx[32:63] ← M(EA, 4)

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

The 4-byte data beginning at the memory byte location designated by the (y, z and D)

field is loaded into bits 32 to 63 of the S register designated by the x field of the

instruction.

When Cx = 0, bit 0 to 31 of the Sx register are filled with the the same value as the bit 32

of the Sx register (sign extended)

When Cx = 1, bit 0 to 31 of the Sx register are filled with zeros.

No exception is detected regarding this instruction.

When a nonexistent or inaccessible memory area is specified, an unexpected value

may be loaded.

Exceptions: None

8-22

Notes:

 ･As for usage of ADB, refer to ADB section in Chapter 6.

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

8-23

Pre Fetch

8.2.15. PFCH

 Format: RM

x

0C
 Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

Function:

 EA ← Sy + Sz + sext(D, 64)

 Scalar Operand Cache ← M(EA)

An S-cache line (*1) including the byte position of designated by the y, z, and D fields is

loaded into the scalar operand cache.

Exceptions: None

Notes:

 ･*1: S-cache line size of Aurora system is 256-byte.

 ･As for usage of ADB, refer to ADB section in Chapter 6.

 ･When Cz=0, z operand is taken as 0 regardless of Sz value.

 ･When an inaccessible memory space or page is specified, prefetch operation to the

address is not performed, and no exception is generated.

8-24

Test and Set 1 AM

8.2.16. TS1AM

 Format: RRM

x

42
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

D

 Function:

 EA ← Sz + sext(D, 64)

 if (Cx = 0) {

 tempW ← M(EA, 8)

 for (i = 0 to 7) {

 if (Sy[56+i] = 1) {M(EA +7-i) ← Sx[8*i:8*i+7]}

 }

 Sx ← tempW

 } else {

 tempW ← M(EA, 4)

 for (i = 0 to 3) {

 if (Sy[60+i] = 1) {M(EA +3-i) ← Sx[8*(i+4):8*(i+4)+7]}

 }

 Sx[32:63] ← tempW

 Sx[0:31] ← 00…0

 }

8-25

 Case of Cx=0:

 The 8-byte data starting at the EA designated by z and D fields is replaced by the

contents of the Sx register according to bit [56:63] of the Sy register or immediate value

specified by the y field.

Sy[56:63] corresponds to the eight byte target in the memory and 8-byte data of Sx. The

Sy[56] corresponds to the lowest byte of memory and the highest byte of Sx, oppositely

Sy[63] is to the highest byte of memory and the lowest byte of Sx.

Each byte in Sx that its corresponding bit in Sy[56:63] is 1, is stored in the

corresponding byte position of memory. The content of the memory byte with its

corresponding bit=0 remains unchanged.

 The EA address specified by Sz and D must be aligned to an 8byte boundary. If bits 61,

62 and 63 of EA are not zero, a memory access exception is generated.

8-26

Case of Cx=1:

 The individual 4-byte data starting at the location designated by z and D fields is

replaced the contents of the S register specified in the x fields, according to bit[60:63] of

the Sy register or immediate value specified in the y field.

Sy[60:63] corresponds to the four byte target in the memory and 4-byte data of Sx. The

Sy[60] corresponds to the lowest byte of memory and the highest byte of Sx, oppositely

Sy[63] is to the highest byte of memory and the lowest byte of Sx.

Each byte in Sx that its corresponding bit in Sy[60:63] is 1, is stored in the

corresponding byte position of memory. The content of the memory byte with its

corresponding bit=0 remains unchanged.

The original memory data (before this operation) is loaded into Sx.

The address indicated by Sz must be aligned to a 4byte boundary. If bits 62 and 63 of

Sz are not zero, a memory access exception is generated.

 Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match interrupt

 Notes:

 ･Atomicity for this operation is guaranteed. Following instructions cannot access the

target address before the TS1AM has completed.

 ･When Cz=0, z operand is immediate 0 regardless of Sz value.

8-27

Test and Set 2 AM

8.2.17. TS2AM

 Format: RRM

x

43
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

D

 Function:

 EA ← Sz + sext(D, 64)

 tempW ← M(EA, 8)

 tempWE ← 1

 for (i = 0 to 7) {

 if (Sy[56+i] = 1){ tempWE ← tempWE & (M(EA +7-i) = 0)}

 }

 if (tempWE = 1) {

 for (i = 0 to 7) {

 if (Sy[56+i] = 1) {M(EA +7-i) ← Sx[8*i:8*i +7]}

 }

 }

 Sx ← tempW

8-28

The 8-byte memory data starting at the location designated by the S register or the

immediate value specified in the z field is loaded into the Sx register. According to bits 56

to 63 of the y operand (Sy register or immediate value specified in the y field) and the

memory data, corresponding Sx register data is written to the memory.

The bits of Sy[56:63] correspond to the eight bytes of memory and 8-byte data of Sx.

Sy[56] corresponds to the lowest byte of memory and highest byte of Sx. Oppositely

Sy[63] corresponds to the highest byte of memory and the lowest byte of Sx.

Write to the memory happens when all memory bytes corresponding to 1s in Sy[56:63]

are all zero. For example, if Sy[56] and Sy[57] are one but the second lowest byte is not

zero, write to both bytes won’t occur. When Sy[56:63] are all zero, the target memory

contents also stay unchanged.

If the condition is met, Sx are bytewise written to the corresponding byte location in the

memory, according to Sy[56:63] . In the previous example, when Sy[56] and Sy[57] are

one and the others are all zero, and the first and second lowest bytes are zero, Sx’s first

and second highest bytes are written to the first and second lowest bytes in the target

memory respectively. In that case the other target memory bytes stay unchanged.

The original memory data (before this instruction is operated) is stored in Sx.

 The EA address indicated by Sz and D must be aligned to an 8byte boundary. If bits 61

to 63 of EA are not zeros, then a memory access exception is generated.

8-29

 Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match interrupt

 Notes:

 ･TS1AM remark description also applies.

 ･When Cz=0, z operand is immediate 0 regardless of Sz value.

8-30

Test and Set 3 AM

8.2.18. TS3AM

Format: RRM

x

52
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

D

Function:

 EA ← Sz + sext(D, 64)

 tempW ← M(EA, 8)

 if (tempW[0] = 0) {

 M(EA +4, 4) ← Sx[0:31]

 } else if ((tempW[0] = 1) & (Sy[63] = 1)) {

 M(EA, 4) ← Sx[32:63]

 }

 Sx ← tempW

The target address of this instruction is defined as 8byte from the immediate value or S

register value designated by the z filed of the instruction.

If bit 0 of the 8 bytes loaded from the target address is 0, bit0-31 of the S register

designated by the x field are stored to the upper 4bytes of the target address.

8-31

If bit 0 of the 8 bytes loaded from the target address is 1 and Sy[63] is 1, bits 32-63 of

the S register designated by the x field are stored to the lower 4bytes of the target

address.

The original 8 byte memory data (before the modification) is stored in the S register

designated by the x field.

 The EA address indicated by Sz and D must be aligned to an 8-byte boundary. If bits 61

to 63 of EA are not zeros, a memory access exception is generated.

 Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match interrupt

 Notes:

 ･TS1AM remark description also applies.

 ･When Cz=0, z operand is immediate 0 regardless of Sz value.

8-32

Atomic AM

8.2.19. ATMAM

 Format: RRM

x

53
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

D

 Function:

 EA ← Sz + sext(D, 64)

 tempW ← M(EA, 8)

 if (Sy[62:63] = 0) {M(EA, 8) ← tempW & Sx}

 else if (Sy[62:63] = 1) {M(EA, 8) ← tempW | Sx}

 else if (Sy[62:63] = 2) {M(EA, 8) ← tempW + Sx}

 Sx ← tempW

Eight bytes beginning at the location of memory specified by the Sz register and the

contents of the Sx are logically AND-ed, OR-ed or arithmetically added according to bits

62 and 63 of the S register or the immediate value specified by the y field. The result is

stored in the same memory location. The previous memory data (before this operation) is

loaded to the S register designated by the x field.

The EA address indicated by Sz and D must be aligned to an 8byte boundary. If bits 61

to 63 of EA are not zeros, a memory access exception is generated.

8-33

 Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match interrupt

 Notes:

 ･TS1AM remark description also applies.

 ･Sy should not be set to 3, while hardware may treat it as Sy=2.

 ･When Cz=0, z operand is immediate 0 regardless Sz value.

8-34

Compare and Swap

8.2.20. CAS

 Format: RRM

x

62
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

D

 Function:

 EA ← Sz + sext(D, 64)

 if (Cx = 0) {

 tempW ← M(EA, 8)

 if (Sy = tempW) {

 M(EA, 8) ← Sx

 }

 Sx ← tempW

 } else {

 tempW ← M(EA, 4)

 if (Sy[32:63] = tempW) {

 M(EA, 4) ← Sx[32:63]

 }

 Sx[0:31] ← 00…0

 Sx[32:63] ← tempW

 }

8-35

When Cx=0, the 8-byte data at the location designated by the Sz, and the contents of Sy

are compared. If they are matched, the 8byte contents of Sx are stored into the memory

space designated by Sz and D. Regardless of the comparison result, the memory data

before this operation is loaded to Sx.

The address specified by Sz and D must be aligned to an 8-byte boundary. If bits 61 to

63 of Sz are not zeros, a memory access exception is generated.

When Cx=1, the 4byte data at the location designated by the Sz, and the contents of Sy

bit32-63 are compared. If they are matched, the contents of Sx bit32-63 are stored into

the memory designated by Sz and D. Regardless the comparison result, the memory

data before this operation loaded to the lower 4bytes of Sx, and the upper 4bytes of Sx

are filled with zeros.

The EA address specified by Sz and D must be aligned to a 4-byte boundary. If bits 62

and 63 of EA are not zeros, a memory access exception is generated.

The comparison result of the data in the EA address and Sy is not given. To obtain it,

another comparison between Sx and Sy is required.

 Exceptions:

 ･Memory protection exception

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Address match interrupt

 Notes:

 ･Refer to TS1AM.

 ･When Cz=0, z operand is an immediate 0 regardless of Sz.

8-36

8.3. Transfer Control Instruction

Fence

8.3.1. FENCE

 Format: RR

x

20

y z
8 16 24 31

32 63

0

S

F

L

F

A

V

O

C

O

C

I

C

2

 Function:

Controling execution ordering (Class A)

Store/load synchronization (Class B)

 Cache clear (Class C)

Class A

AVO: Sync between instructions (pipelined AdVancing Off)

 When AVO=1, hardware guarantees an instruction is executed after its precedent

instruction(s) is (are) all completed.

Class B

SF: Store Fence

LF: Load Fence

 When SF=1 and LF=0, the system guarantees that all following store instructions (*1) of

this instruction are executed after completion of all preceding store instructions. Loads

are out of this scope.

8-37

 When SF=0 and LF=1, the system guarantees that all following load instructions (*2) of

this instruction are executed after completion of all preceding load instructions of this

instruction. Stores are out of this scope.

 When SF=1 and LF=1, the system guarantees that all following store and load

instructions of this instruction are executed after completion of all preceding store and

load instructions of this instruction.

Class C

CI, CO and C2:

 When CI=1, the scalar instruction cache is cleared.

 When CO=1, the scalar operand cache is cleared.

 When C2=1, the scalar L2 is cleared.

A single FENCE instruction should include control bits that belong to a single class.

Otherwise, it may cause an unexpected result.

Exceptions: None

8-38

 Notes:

 ･*1 instructions: STS, STU, STL, ST1B, ST2B, VST, VSTU, VSTL, VST2D, VSTU2D,

VSTL2D, VSC, VSCU, VSCL, TS1AM, TS2AM, TS3AM, ATMAM,

CAS, SCR, TSCR, FIDCR, SHM

 ･*2 instructions: LDS, LDU, LDL, LD1B, LD2B, DLDS, DLDU, DLDL, PFCH, VLD,

VLDU, VLDL, VLD2D, VLDU2D, VLDL2D, VGT, VGTU, VGTL,

TS1AM, TS2AM, TS3AM, ATMAM, CAS, LCR, TSCR, FIDCR,

LHM

 ･ Note: instruction codes loaded in the S cache or being executed are not affected

by memory writes by cores or the DMA engine, even when their write is to the

memory area including the instruction codes. To avoid such inconsistency

between S cache and the memory, FENCE instruction should be executed

properly.

8-39

Set Vector Out-of-order memory access Boundary

8.3.2. SVOB

Format: RR

x

30

y z
8 16 24 31

32 63

0

Function:

 Set Vector Out-of-order memory access Boundary

 SVOB sets an ordering boundary against software-hinted out-of-order vector memory

accesses within a core. When an SVOB instruction is executed, out-of-order execution

between preceding vector store (*1) or vector scatter(*2) instructions with VO=1, and

scalar load (*3), scalar store (*4) or vector load (*5) instructions following the SVOB is

prohibited.

Exceptions: None

Notes:

 ･*1 instructions: VST, VSTU, VSTL, VST2D, VSTU2D, VSTL2D

 ･*2 instructions: VSC, VSCU, VSCL

 ･*3 instructions: LDS, LDU, LDL, LD1B, LD2B, DLDS, DLDU, DLDL, PFCH

 ･*4 instructions: STS, STU, STL, ST1B, ST2B

 ･*5 instructions: VLD, VLDU, VLDL, VLD2D, VLDU2D, VLDL2D, VGT, VGTU, VGTL,

PFCHV

8-40

･Refer to chapter of VST, VSTU, VSTL, VST2D, VSTU2D, VSTL2D, VSC, VSCU

and VSCL.

8-41

8.4. Fixed-point Operation Instructions

Add

8.4.1. ADD

 Format: RR

x

48
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Sy + Sz

 } else {

 Sx[32:63] ← Sy[32:63] + Sz[32:63]

 Sx[0:31] ← 00…0

 }

 When Cx=0, the immediate values or the contents of the S registers designated by the y

and z fields are added as 64-bit unsigned integers, and the result is stored in the S

register designated by the x field.

 When Cx=1, the immediate values or the contents of the S registers designated by the y

and z fields are added as 32-bit unsigned integers, and the result is stored in the S

register designated by the x field. It stores zeros into the upper 32 bits of Sx.

 Exceptions: None

8-42

Add Single

8.4.2. ADS

 Format: RR

C

x

x

4A
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx[32:63] ← Sy[32:63]+ Sz[32:63]

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

 The lower 32 bits of the immediate values or the contents of the S registers designated

by the y and z fields are added as signed integers, and the result is stored in the lower 32

bits of the S register designated by the x field.

When Cx=0, the sign bit Sx[32] is copied to Sx[0:31] for sign extension. When Cx=1,

Sx[0:31] is set to all zero.

Exceptions:

 ･Fixed-point overflow exception

8-43

Add

8.4.3. ADX

 Format: RR

x

59
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Sy + Sz

The immediate values or the contents of the S registers designated by the y and z fields

are added as 64-bit signed integers, and the result is stored in the S register designated

by the x field.

 Exceptions:

 ･Fixed-point overflow exception

8-44

Subtract

8.4.4. SUB

 Format: RR

x

58
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Sy - Sz

 } else {

 Sx[32:63] ← Sy[32:63] - Sz[32:63]

 Sx[0:31] ← 00…0

 }

 When Cx=0, the immediate value or the content of S register designated by the z field is

subtracted from the immediate value or the S register content designated by the y field.

The both values are treated as 64bit unsigned integers. The result is stored in the S

register designated by the x field.

 When Cx=1, the immediate values or the contents of the S registers designated by the z

field is subtracted from the immediate value or the S register contents designated by the

y field. The both values are treated as 32bit unsigned integers. The result is stored in the

S register designated by the x field. It stores zeros into the upper 32 bits of Sx.

 Exceptions: None

8-45

Subtract Single

8.4.5. SBS

 Format: RR

x

5A
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

Function:

 Sx[32:63] ← Sy[32:63] - Sz[32:63]

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

The lower 32 bits of the immediate values or the content of the S register designated by

the z is subtracted from the immediate value or S register content designated y field. The

both values are treated as 32-bit signed integers. And the result is stored in the lower 32

bits of the S register designated by the x field.

When Cx=0, the sign bit Sx[32] is copied to Sx[0:31] for sign extension. When Cx=1,

Sx[0:31] is set to all zero.

Exceptions:

 ･Fixed-point overflow exception

8-46

Subtract

8.4.6. SBX

 Format: RR

x

5B
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Sy - Sz

As a 64-bit signed integer, the immediate value or the contents of the S register

designated by the z field is subtracted from the immediate value or the contents of the S

register designated by the y field, and the result is stored in the S register designated by

the x field.

Exceptions:

 ･Fixed-point overflow exception

8-47

Multiply

8.4.7. MPY

 Format: RR

x

49
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Sy * Sz

 } else {

 Sx[32:63] ← Sy[32:63] * Sz[32:63]

 Sx[0:31] ← 00…0

 }

When Cx=0, the immediate values or contents of S register designated by the y and z

field are multiplied as 64-bit unsigned integers. The result is stored in the S register

designated by the x field.

 When Cx=1, the immediate values or the contents of the S registers designated by the y

and z field are multiplied as 32-bit unsigned integers. And the result is stored in the S

register designated by the x field. It stores zeros into the upper 32 bits of Sx.

 Exceptions: None

8-48

Multiply Single

8.4.8. MPS

 Format: RR

x

4B
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 Sx[32:63] ← Sy[32:63] * Sz[32:63]

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

The lower 32 bits of the immediate values or the contents of the S registers designated

by the y and z fields are multiplied as signed integers, and the result is stored in the lower

32 bits of the S register designated by the x field.

 When Cx=0, it stores sign extension value of first bit of lower 32-bit in the upper 32 bits

of the Sx. When Cx=1, it stores zeros into the upper 32 bits of Sx.

If the operations result is out of expression range of signed integers, then a fixed-point

overflow exception is generated. In this case lower 32-bit of the result is stored in Sx.

Fixed-point overflow interrupt at the detection of fixed overflow exception is maskable by

the fixed-point overflow interrupt mask.

 Exceptions:

 ･Fixed-point overflow exception

8-49

Multiply

8.4.9. MPX

Format: RR

x

6E
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Sy * Sz

The immediate values or the contents of the S registers designated by the y and z fields

are multiplied as 64-bit signed integers, and the result is stored in the S register

designated by the x field.

If the operations result is out of expression range of 64-bit signed integers, then a

fixed-point overflow exception is generated. In this case the lower 64bits of the result is

stored in Sx. Fixed-point overflow interrupt at the detection of fixed overflow exception is

maskable by the fixed-point overflow interrupt mask.

Exceptions:

 ･Fixed-point overflow exception

8-50

Multiply

8.4.10. MPD

Format: RR

x

6B
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Sy[32:63] * Sz[32:63]

The lower 32 bits of the immediate values or the contents of the S registers designated

by the y and z fields are multiplied as signed integers, and the result is stored in the S

register designated by the x field.

The result is a 64-bit signed integer. Both 32bit source operands are sign extended to

two 64bits then the multiplication of those two 64bit operands is performed. The result’s

lower 64bits are stored in Sx.

Exceptions: None

8-51

 Divide

8.4.11. DIV

 Format: RR

x

6F
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Sy / Sz

 } else {

 Sx[32:63] ← Sy[32:63] / Sz[32:63]

 Sx[0:31] ← 00…0

 }

When Cx=0, the immediate value or the contents of the S registers designated by the y

field is divided by the immediate value or the contents of the S registers designated by

the z field as 64-bit unsigned integer. And the result is stored into the S register

designated by the x field as 64-bit unsigned integer.

When Cx=1, the immediate value of lower 32 bits or the contents of the S registers

designated by the y field is divided by the immediate value of lower 32 bits or the

contents of the S registers designated by the z field as unsigned integers. And the result

is stored into the S register of lower 32 bits designated by the x field. It stores zeros into

the upper 32 bits of the Sx.

 Exceptions:

 ･Division exception

8-52

Divide Single

8.4.12. DVS

 Format: RR

x

7B
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 Sx[32:63] ← Sy[32:63] / Sz[32:63]

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

The lower 32-bit of immediate value or the contents of the S registers designated by the

y field is divided by the lower 32-bit of immediate value or the contents of the S registers

designated by the z field as 32-bit signed binary. And the result is stored into the lower

32-bit of S register designated by the x field. It stores sign extension of first bit of lower

32-bit into the upper 32-bit of Sx. When Cx=1, it stores zeros into the upper 32 bits of the

Sx.

 Exceptions:

 ･Division exception

 ･Fixed-point overflow exception

8-53

Divide

8.4.13. DVX

 Format: RR

x

7F
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Sy / Sz

The immediate value or the contents of the S registers designated by the y field is

divided by the immediate value or the contents of the S registers designated by the z field

as a 64bit signed integer. And the result is stored into the S register designated by the x

field as a 64bit signed integer.

 Exceptions:

 ･Division exception

 ･Fixed-point overflow exception

8-54

Compare

8.4.14. CMP

 Format: RR

x

55
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 if (Sy > Sz) {Sx[0:63] ← positive nonzero value}

 else if (Sy = Sz) {Sx[0:63] ← 00…0}

 else if (Sy < Sz) {Sx[0:63] ← negative value}

 } else {

 if (Sy > Sz) {Sx[32:63] ← positive nonzero value}

 else if (Sy = Sz) {Sx[32:63] ← 00…0}

 else if (Sy < Sz) {Sx[32:63] ← negative value}

 Sx[0:31] ← 00…0

 }

When Cx=0, the immediate values or the contents of the S registers designated in the y

and z fields are compared as 64-bit unsigned integers, and the result is stored into the S

register designated in the x field as 64-bit signed integers.

8-55

If Sy>Sz, a positive nonzero value is stored to Sx.

If Sy=Sz, zero is stored to Sx.

If Sy<Sz, a negative nonzero value is stored to Sx.

When Cx=1, the immediate 32bit values or the contents of the S registers designated in

the y and z fields are compared as unsigned integers, and the result is stored into the S

register designated in the x field as 32-bit signed integers. It stores zeros into the upper

32 bits of the Sx.

If Sy>Sz, a positive nonzero value is stored to the bit 32-63 of Sx.

If Sy=Sz, zero is stored to the bit 32-63 of Sx.

If Sy<Sz, a negative nonzero value is stored to the bit 32-63 of Sx.

In any case, no fixed-point overflow exception occurs with regardless of the value of the

exception mask.

 Exceptions: None

8-56

Compare Single

8.4.15. CPS

 Format: RR

x

7A
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Sy[32:63] > Sz[32:63]) {Sx[32:63] ← positive nonzero value}

 else if (Sy[32:63] = Sz[32:63]) {Sx[32:63] ← 00…0}

 else if (Sy[32:63] < Sz[32:63]) {Sx[32:63] ← negative value}

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

The low-order 32 bits of the immediate values or the contents of the S registers

designated by the y and z fields are compared as signed integers, and the result is stored

in the S register designated by the x field.

If Sy[32:32]>Sz[32:32] , a positive nonzero value is stored to bit 32-63 of Sx.

If Sy[32:32]=Sz[32:32] , zero is stored into bit 32-63 of Sx.

If Sy[32:32]<Sz[32:32] , 1 is stored in bit 32 of Sx, and an undefined value is stored to

bit33-63 of Sx.

8-57

When Cx=0, Sx[32] is copied to the upper 32 bits of the Sx for sign extension. When

Cx=1, zeros are stored to the upper 32 bits of the Sx.

In any case, no fixed-point overflow exception occurs irrespective of the value of the

exception mask.

 Exceptions: None

8-58

Compare

8.4.16. CPX

 Format: RR

x

6A
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 if (Sy > Sz) {Sx ← positive nonzero value}

 else if (Sy = Sz) {Sx ← 00…0}

 else if (Sy < Sz) {Sx ← negative value}

The immediate values or the contents of the S registers designated by the y and z fields

are compared as 64-bit signed integers, and the result is stored to the S register

designated by the x field.

If Sy>Sz, a positive and nonzero value is stored to Sx.

If Sy=Sz, zero is stored to Sx.

If Sy<Sz, a negative and nonzero value is stored to Sx.

 In any case no fixed-point overflow exception occurs irrespective of the value of the

exception mask.

 Exceptions: None

8-59

Compare and Select Maximum/Minimum Single

8.4.17. CMS

Format: RR

x

78
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

C

w

Function:

 if (Cw = 0) {

 Sx[32:63] ← max(Sy[32:63], Sz[32:63])

 } else {

 Sx[32:63] ← min(Sy[32:63], Sz[32:63])

 }

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

The immediate values or the contents of the S registers designated by the y and z fields

are compared as 32-bit signed integers. If Cw=0 the larger value is chosen, and

otherwise the smaller one is selected. The result is stored in the S register designated by

the x field.

When Cx=0, Sx[32] is copied to the upper 32 bits of the Sx for sign extension,

regardless of Cw. When Cx=1, it stores zeros to the upper 32 bits of the Sx.

Exceptions: None

8-60

Compare and Select Maximum/Minimum

8.4.18. CMX

Format: RR

x

68
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

w

Function:

 if (Cw = 0) {

 Sx ← max(Sy, Sz)

 } else {

 Sx ← min(Sy, Sz)

 }

The immediate values or the contents of the S registers designated by the y and z fields

are compared as 64-bit signed integers. If Cw=0 the larger value is chosen, and

otherwise the smaller one is selected. The result is stored in the S register designated by

the x field.

Exceptions: None

8-61

8.5. Logical Operation Instructions

AND

8.5.1. AND

Format: RR

x

44
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Sy & Sz

The immediate values or the contents of the S registers designated by the y and z fields

are bitwise-ANDed, and the results are stored in the S register designated by the x field.

Exceptions: None

8-62

OR

8.5.2. OR

Format: RR

x

45
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Sy | Sz

The immediate values or the contents of the S registers designated by the y and z fields

are bitwise-ORed, and the results are stored in the S register designated by the x field.

Exceptions: None

8-63

Exclusive OR

8.5.3. XOR

Format: RR

x

46
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Sy + Sz

The immediate values or the contents of the S registers designated by the y and z fields

are bitwise-exclusive-ORed, and the result is stored in the S register designated by the x

field.

Exceptions: None

8-64

Equivalence

8.5.4. EQV

 Format: RR

x

47
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Sy ≡ Sz

The immediate values or the contents of the S registers designated by the y and z fields

are bitwise-exclusive-NORed, and the results are stored in the S register designated by

the x field.

The truth table for exclusive-NOR (equivalence) operation is shown below:

Sx Sy Sz

1 0 0

0 0 1

0 1 0

1 1 1

 Exceptions: None

8-65

Negate AND

8.5.5. NND

Format: RR

x

54
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ←(~Sy) & Sz

 The 1's complement of the immediate value or the content of the S register designated

by the y field is bitwise-ANDed with the immediate value or the content of the S register

designated by the z field, and the results are stored in the S register designated by the x

field.

The truth table of the negate-AND operation is shown below:

Sx Sy Sz

0 0 0

1 0 1

0 1 0

0 1 1

Exceptions: None

8-66

Merge

8.5.6. MRG

 Format: RR

x

56
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← {Sx & (~Sz)} | {Sy & Sz}

 The contents of the S register designated by the x field is bitwise-merged with the

immediate value or the content of the S register designated by the y field, according to

the immediate value or the content of the S register designated by the z field. The

merged value is stored in Sx. The merger operation is based on the following bit selection

from Sx and Sy, using Sz.

Sz[i] Selection result(Sx[i])

0 Sx[i]

1 Sy[i]

Exceptions: None

8-67

Leading Zero Count

8.5.7. LDZ

 Format: RR

x

67
 Sx Sz

y z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Leading zeros of Sz

Consequtive zeros from the bit position 0 of the immediate value or S register

designated by the z field are counted, and the result is stored in the S register designated

by the x field.

If bit 0 of the input operand is 1, it stores 0 in the Sx.

If all operand bits are 0, then it stores 64 in Sx.

Exceptions: None

8-68

Population Count

8.5.8. PCNT

 Format: RR

x

38
 Sx Sz

y z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Population count of Sz

Ones in the S register designated by z filed or immediate value are counted, and the

count (0 - 64) is stored in the S register designated by the x field.

 Exceptions: None

8-69

Bit Reverse

8.5.9. BRV

 Format: RR

x

39
 Sx Sz

y z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Bit order reverse of Sz

The S register or immediate value designated the z field is bitwise-inverted and stored

to the S register designated by the x field.

 Exceptions: None

8-70

Byte Swap

8.5.10. BSWP

 Format: RR

x

2B
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 if (Sy[63] = 0) {

 Sx ← byte order reverse(Sz)

 } else {

 Sx[0:31] ← byte order reverse(Sz[0:31])

 Sx[32:63]← byte order reverse(Sz[32:63])

 }

 When Sy[63] =0, 8 bytes of Sz or immediate value designated in the z filed is bytewise-

inverted, and the result is stored to the S register designated by the x field.

 When Sy[63]=1, the upper 4 bytes of S register or immediate value designated in z filed

is bytewise-inverted and stored in the upper 4 bytes of Sx. Likewise for the lower 4 bytes.

 Exceptions: None

8-71

Conditional Move

8.5.11. CMOV

 Format: RR

x

3B
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

ｗ

C

ｗ
2

CFｗ

 機 能 :

 if ((Cw = 0) & (Cw2 = 0)) {

 if (cond(CFw, Sy)) {Sx ← Sz}

 } else if ((Cw = 1) & (Cw2 = 0)) {

 if (cond(CFw, Sy[32:63])) {Sx ← Sz}

 } else if ((Cw = 0) & (Cw2 = 1)) {

 if (cond(CFw, Sy)) {Sx ← Sz}

 } else if ((Cw = 1) & (Cw2 = 1)) {

 if (cond(CFw, Sy[0:31]) {Sx ← Sz}

 The immediate value or the contents of the S registers designated in y field is compared

with 0. If the condition CFw is satisfied, then the immediate value or the contents of S

register designated x field is stored into S register designated x field. Refer to chapter 5

instruction formats for interpretation of CFw field.

 When Cw=0 and Cw2=0, Sy is treated as a 64-bit signed integer.

8-72

 When Cw=1, Cw2=0, Sy is treated as 32-bit signed integer.

 When Cw=0, Cw2=1, Sy is treated as double precision floating point data.

 When Cw=1, Cw2=1, Sy is treated as single precision floating point data.

 If Cw2=1 and Sy’s exponent portion is all 0, Sy is regarded as a floating point 0.

Exceptions: None

8-73

8.6. Shift Operation Instruction

Shift Left Logical

8.6.1. SLL

 Format: RR

x

65
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Sz << Sy[58:63]

The immediate value or the contents of the S register designated by the z field is shifted

to the left by the amount given by the lower six bits of the immediate value or the contents

of the S register designated by the y field. And the result is stored in the S register

designated by the x field.

The vacated bit positions by the left shift are filled with zeros, and the bits shifted out to

the left are discarded.

 Exceptions: None

8-74

Shift Left Double

8.6.2. SLD

Format: RR

x

64
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← {(Sx, Sz) << Sy[57:63]}[0:63]

The 128-bit operand that has the contents of the S register designated by the x field as

its high-order 64 bits and the immediate value or the content of the S register designated

by the z field as its lower 64 bits is shifted to the left by the amount given by the low-order

seven bits of the immediate value, or the contents of the S register designated by the y

field. The resultant high-order 64 bits are stored in Sx. The result is stored in the S

register designated by the x field.

The vacated bit positions by the left shift are filled with zeros, and the bits shifted out to

the left are discarded.

Exceptions: None

8-75

Shift Right Logical

8.6.3. SRL

Format: RR

x

75
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← Sz >> Sy[58:63]

The immediate value or the contents of the S register designated by the z field is shifted

to the right by the amount given by the low-order six bits of the immediate value or the

contents of the S register designated by the y field. The result is stored in the S register

designated by the x field.

The vacated bit positions by the right shift are filled with zeros, and the bits shifted out to

the right are discarded.

Exceptions: None

8-76

Shift Right Double

8.6.4. SRD

 Format: RR

x

74
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← {(Sz, Sx) >> Sy[57:63]}[64:127]

The 128-bit operand that has the contents of the S register designated by the x field as

its low-order 64 bits and the immediate value or the contents of the S register designated

by the z field as its high-order 64 bits is shifted to the right by the amount given by the

low-order seven bits of the immediate value or the content of the S register designated by

the y field. The resultant low-order 64 bits are stored in Sx. The result is stored in the S

register designated by the x field.

The vacated bit positions by the right shift are filled with zeros, and the bits shifted out to

the right are discarded.

 Exceptions: None

8-77

Shift Left Arithmetic

8.6.5. SLA

 Format: RR

x

66
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 Sx[32:63] ← Sz[32:63] << Sy[59:63]

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

 The low-order 32 bits of the immediate value or the contents of the S register

designated by the z field are arithmetic-shifted left by the amount given by the low-order

five bits of the immediate value or the content of the S register designated by the y field.

And the result is stored in the S register designated by the x field.

The bits vacated by the left shift are filled with zeros (0s), and the bits shifted out to the

left from bit 32 are discarded. The high-order 32 bits of Sx are always filled with zeros.

When Cx=0, it stores sign extension value of first bit of lower 32-bit of the shift result in

the upper 32 bits of the Sx. When Cx=1, then it stores zeros into the upper 32 bits of the

Sx.

 Exceptions:

 ･Fixed-point overflow exception

8-78

Shift Left Arithmetic

8.6.6. SLAX

 Format: RR

x

57
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Sz << Sy[58:63]

 The immediate value or the contents of the S register designated by the z field is

arithmetic-shifted left by the amount given by the low-order six bits of the immediate

value or the contents of the S register designated by the y field. And the result is stored in

the S register designated by x field.

The bits vacated by the left shift are filled with zeros, and the bits shifted out to the left

from bit 0 are discarded.

 Exceptions:

 ･Fixed-point overflow exception

8-79

Shift Right Arithmetic

8.6.7. SRA

 Format: RR

x

76
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 Sx[32:63] ← Sz[32:63] >> Sy[59:63]

 if (Cx = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

The low-order 32 bits of the immediate value or the contents of the S register

designated by the z field are shifted to the right by the amount given by the low-order five

bits of the immediate value or the content of the S register designated by the y field. And

the result is stored in the S register designated by the x field.

 The value of bit 32 (sign) is preserved and propagated to the right to fill in the bits

vacated by the right shift. The bits shifted out to the right are discarded.

 When Cx=0, then it stores the sign extension of first bit of lower 32-bits of the shift result

in the upper 32 bits of the Sx. When Cx=1, then it stores zeros into the upper 32 bits of

the Sx.

 Exceptions: None

8-80

Shift Right Arithmetic

8.6.8. SRAX

 Format: RR

x

77
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 Sx ← Sz >> Sy[58:63]

The immediate value or the contents of the S register designated by the z field is

arithmetic-shifted right by the amount given by the lower-order six bits of the immediate

value or the contents of the S register designated by the y field. And the result is stored

into S register designated by x filed.

 The bits vacated by the right shift are filled with the value (sign) of bit 0 in the input

operand, and the bits shifted out to the right are discarded.

 Exceptions: None

8-81

8.7. Floating-Point Arithmetic Instructions

Floating Add

8.7.1. FAD

 Format RR

x

4C
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Sy + Sz

 } else {

 Sx[0:31] ← Sy[0:31] + Sz[0:31]

 Sx[32:63] ← 00…0

 }

 The contents of the S registers designated by the y and z fields of the instruction or the

immediate values are added as floating-point data. The result is normalized, and stored

in the S register designated by the x field.

 When Cx=0, the contents of the S registers designated in each field of the instruction or

the immediate values are regarded as double-precision floating point data. When Cx=1,

these data are regarded as single-precision floating point data.

8-82

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

 Notes:

 ･When Cy=0, Sy field indicates an immediate value of signed integer (-63 to 64).

 ･When Cz=0, Sz field indicates an immediate value with a bit pattern composed of

continuous 0s and 1s. See also 5.4.3 for the detail.

8-83

Floating Subtract

8.7.2. FSB

 Format : RR

C

x

x

5C
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 if (Cx = 0) {

 Sx ← Sy - Sz

 } else {

 Sx[0:31] ← Sy[0:31] - Sz[0:31]

 Sx[32:63] ← 00…0

 }

 The contents of the S register designated by the z field of the instruction or the

immediate value is subtracted as floating-point data from the contents of the S register

designated by the y field or the immediate value. The result is normalized, then stored in

the S register designated by the x field.

 When Cx=0, the contents of the S registers designated in each field of the instruction or

the immediate values are regarded as double-precision floating point data. When Cx=1,

these data are regarded as single-precision floating point data.

8-84

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

 Notes:

 ･See Notes on the FAD instruction.

8-85

Floating Multiply

8.7.3. FMP

 Format : RR

x

4D
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Sy * Sz

 } else {

 Sx[0:31] ← Sy[0:31] * Sz[0:31]

 Sx[32:63] ← 00…0

 }

 The contents of the S registers designated by the y and z fields of the instruction or the

immediate values are multiplied as floating-point data. The result is normalized, then

stored in the S-register designated by the x field.

 When Cx=0, the contents of the S registers designated in each field of the instruction or

the immediate values are regarded as double-precision floating point data. When Cx=1,

these data are regarded as single-precision floating point data.

8-86

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

 Notes:

 ･See Notes on the FAD instruction.

8-87

Floating Divide

8.7.4. FDV

 Format : RR

x

5D
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Sy / Sz

 } else {

 Sx[0:31] ← Sy[0:31] / Sz[0:31]

 Sx[32:63] ← 00…0

 }

 The contents of the S register designated by the y field of the instruction or the

immediate value is divided as floating-point data by the contents of the S register

designated by the z field or the immediate value. The result is normalized, then stored in

the S register designated by the x field.

 When Cx=0, the contents of the S registers designated in each field of the instruction or

the immediate values are regarded as double-precision floating point data. When Cx=1,

these data are regarded as single-precision floating point data.

8-88

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Divide exception

Notes:

 ･See Notes on the FAD instruction.

8-89

Floating Compare

8.7.5. FCP

 Format : RR

x

7E
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 if (Sy > Sz) {Sx ← positive nonzero value}

 else if (Sy = Sz) {Sx ← 00…0}

 else if (Sy < Sz) {Sx ← negative nonzero value}

 else {Sx ← quiet NaN}

 } else {

 if (Sy[0:31] > Sz[0:31]) {Sx[0:31] ← positive nonzero value}

 else if (Sy[0:31] = Sz[0:31]) {Sx[0:31] ← 00…0}

 else if (Sy[0:31] < Sz[0:31]) {Sx[0:31] ← negative nonzero value}

 else {Sx[0:31] ← quiet NaN}

 Sx[32:63] ← 00…0

 }

 The contents of the S registers designated by the y and z fields of the instruction or the

immediate values are compared as floating-point data, and the result is stored in the S

register designated by the x field.

8-90

When Sy>Sz, zero is stored into the sign field of Sx and a value greater than or equal

to Emin, but less than or equal to Emax is stored into the exponent field E (the mantissa

F is undefined), or Emax + 1 is stored into the exponent field E and 0 is stored into the

mantissa F.

If Sy=Sz, zero is stored into the bit positions corresponding to the exponent field of Sx.

The values of the bit positions other than the exponent field are undefined.

If Sy<Sz, 1 is stored into the sign field of Sx and a value greater than or equal to Emin,

but less than or equal to Emax is stored into the exponent field E (the mantissa F is

undefined), or Emax + 1 is stored into the exponent field E and 0 is stored into the

mantissa F.

In all cases, floating-point overflow exception, floating-point underflow exception, or

inexact exception won’t occur irrespective of the value of the exception mask.

 When Cx=0, the contents of the S registers designated in each field of the instruction or

the immediate values are regarded as double-precision floating point data. When Cx=1,

these data are regarded as single-precision floating point data.

Exceptions:

･Invalid operation exception

 Notes:

 ･See Notes on the FAD instruction.

8-91

Floating Compare and Select Maximum/Minimum

8.7.6. FCM

 Format : RR

x

3E
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

C

w

 Function:

 if (Cx = 0) {

 if (Cw = 0) {

 Sx ← max(Sy, Sz)

 } else {

 Sx ← min(Sy, Sz)

 }

 } else {

 if (Cw = 0) {

 Sx[0:31] ← max(Sy[0:31], Sz[0:31])

 } else {

 Sx[0:31] ← min(Sy[0:31], Sz[0:31])

 }

 Sx[32:63] ← 00…0

 }

8-92

 The contents of the S register designated by the y and z fields of the instruction or the

immediate values are compared as floating-point data.

 When Cw=0, the contents of big one is stored in the S register designated by the x

field.

 When Cw=1, the contents of small one is stored in the S register designated by the x

field.

 +0 and -0 are regarded as the same value. If both y and z operands are zero, the result

is zero with z operand’s sign bit.

 When Cx=0, the contents of the S register designated by the x, y and z fields of the

instruction or the immediate values are regarded as conforming to the IEEE

double-precision floating-point data format.

 When Cx=1, the contents of the S register designated by the x, y and z fields of the

instruction or the immediate values are regarded as conforming to the IEEE

single-precision floating-point data format.

Exceptions:

･Invalid operation exception

 Notes:

 ･See Notes on the FAD instruction.

8-93

Floating Add Quadruple

8.7.7. FAQ

 Format : RW

x

6C
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 (Sx, Sx+1) ← (Sy, Sy+1) + (Sz, Sz+1)

 The contents of the S register pairs designated by the y and z fields of the instruction or

the immediate values are added as floating-point data. The result is normalized, then

stored in the S register pair designated by the x field.

An S register pair refers to two consecutive S registers starting with an even-numbered

S register. That is, the x, y, and z fields must designate even-numbered S registers.

Otherwise, an illegal instruction format exception is generated.

The contents of an S register pair or the immediate value is added as a quadruple

precision floating-point data, yielding a quadruple precision floating-point result.

Exceptions:

8-94

 ･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

 Notes:

･If an immediate value is designated by the y or z field, the immediate value as

defined for RR-type instructions is generated for Sy or Sz. The immediate value of

Sy+1 is obtained by adding one to instruction bits 17 to 23. The immediate value

of Sz+1 is a 64-bit value obtained in accordance with the method defined for

RR-type instructions, using the inverted value of bit 31 of the instruction.

8-95

Floating Subtract Quadruple

8.7.8. FSQ

 Format : RW

x

7C
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 (Sx, Sx+1) ← (Sy, Sy+1) - (Sz, Sz+1)

 The contents of the S register pair designated by the z field of the instruction or the

immediate value is subtracted as floating-point data from the contents of the S register

pair designated by the y field or the immediate value. The result is normalized, then

stored in the S register pair designated by the x field.

An S register pair refers to two consecutive S registers starting with an even-numbered

S register. That is, the x, y, and z fields must designate even-numbered S registers.

Otherwise, an illegal instruction format exception is generated.

The contents of an S register pair or the immediate value is used in subtraction as a

quadruple precision floating-point data, providing a quadruple precision floating-point

result.

Exceptions:

 ･Illegal instruction format exception

8-96

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

 Notes:

 ･See Notes on the FAQ instruction

8-97

Floating Multiply Quadruple

8.7.9. FMQ

 Format : RW

x

6D
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 (Sx, Sx+1) ← (Sy, Sy+1) * (Sz, Sz+1)

 The contents of the S register pair designated by the y and z fields of the instruction or

the immediate values are multiplied as floating-point data. The result is normalized, then

stored in the S register pair designated by the x field.

An S register pair refers to two consecutive S registers starting with an even-numbered

S register. That is, the x, y, and z fields must designate even-numbered S registers.

Otherwise, an illegal instruction format exception is generated.

The contents of the S register or the immediate value is multiplied as quadruple

precision floating-point data, yielding a quadruple precision floating-point result.

Exceptions:

 ･Illegal instruction format exception

･Floating-point overflow exception

8-98

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

 Notes:

 ･See Notes on the FAQ instruction

8-99

Floating Compare Quadruple

8.7.10. FCQ

 Format : RW

x

7D
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 if ((Sy, Sy+1) > (Sz, Sz+1)) {Sx ← positive value}

 else if ((Sy, Sy+1) = (Sz, Sz+1)) {Sx ← 0}

 else if ((Sy, Sy+1) < (Sz, Sz+1)) {Sx ← negative value}

 The contents of the S register pairs designated by the y and z fields of the instruction or

the immediate values are compared as floating-point quadruple precision data, and the

result is stored in the S register designated by the x field.

If (Sy, Sy+1)>(Sz, Sz+1), 0 is stored into the sign field of Sx and a value greater than or

equal to Emin, but less than or equal to Emax is stored into the exponent field E (the

mantissa F is undefined), or Emax + 1 is stored into the exponent field E and zero is

stored into the mantissa F.

If (Sy, Sy+1)=(Sz, Sz+1), zeros are stored into the bit positions corresponding to the

exponent field of Sx. The values of the bit positions other than the exponent field are

undefined.

8-100

If (Sy, Sy+1)<(Sz, Sz+1), 1 is stored into the sign field of Sx and a value greater than or

equal to Emin, but less than or equal to Emax is stored into the exponent field E (the

mantissa F is undefined), or Emax + 1 is stored into the exponent field E and zero is

stored into the mantissa F.

In all cases, no floating-point overflow exception, floating-point underflow exception, or

inexact exception occurs irrespective of the value of the exception mask.

An S register pair refers to two consecutive S registers starting with an even-numbered

S register. The x field may designate any S registers from S0 to S63. The y and z fields

must designate even-numbered S registers. Otherwise, an illegal instruction format

exception occurs.

Exceptions:

 ･Illegal instruction format exception

･Invalid operation exception

 Notes:

 ･See Notes on the FAQ instruction

8-101

Convert to Fixed Point

8.7.11. FIX

 Format : RR

x

4E
 Sx Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

C

w

Rz

 Function:

 if (Cx = 0) {

 Sx[32:63] ← Convert double to int32(Sy)

 } else {

 Sx[32:63] ← Convert single to int32(Sy[0:31])

 }

 if (Cw = 0) {Sx[0:31] ← sext(Sx[32], 32)}

 else {Sx[0:31] ← 00…0}

 The contents of the S register designated by the y field or the immediate value is

handled as a double-precision floating-point data (Cx=0) or single-precision floating-point

data (Cx=1) and converted into the equivalent 32-bit signed integer, then stored in bits 32

to 63 of the S register designated by the x field. When Cw=0, bits 0 to 31 of the S register

are filled with the value which is sign-extended by the first bit of the lower-order 32 bit.

When Cw=1, the high-order 32 bits of Sx are filled with zeros.

8-102

 The result is a 32-bit signed integer which is rounded according to the round mode

specified by the z field. When Rz =RFU, the conversion result is undefined.

 0000:Round with designation of IRM (bit 50-51 of PSW)

 1000:Round toward Zero

 1001:Round toward Plus infinity

 1010:Round toward Minus infinity

 1011:Round to Nearest (ties to even)

 1100:Round to Nearest (ties to away)

 other:RFU

When the conversion result exceeds the expression range of the 32bit signed integer,

an invalid operation exception occurs. It depends on state of invalid operation exception

mask whether an invalid operation exception interrupt occurs. If an invalid operation

exception occurs, the value of the register used for storing results will be undefined.

Exceptions:

･Invalid operation exception

･Inexact exception

8-103

Convert to Fixed Point

8.7.12. FIXX

 Format : RR

x

4F
 Sx Sy

y

C

y

z
8 16 24 31

32 63

0

Rz

 Function:

 Sx ← Convert double to int64(Sy)

The contents of the S register designated by the y field or the immediate value is

handled as a double-precision floating-point data and converted into the equivalent 64-bit

signed integer. The result is then stored in the S register designated by the x field.

 The result is a 64-bit signed integer which is rounded according to the round mode

specified by the z field. When Rz =RFU, the conversion result is undefined.

 0000:Round with designation of IRM (bit 50-51 of PSW)

 1000:Round toward Zero

 1001:Round toward Plus infinity

 1010:Round toward Minus infinity

 1011:Round to Nearest (ties to even)

 1100:Round to Nearest (ties to away)

8-104

 other:RFU

 When the conversion result exceeds the expression range of the 64bit signed integer,

an Invalid operation exception occurs. It depends on the state of the invalid operation

exception mask whether an Invalid operation exception interrupt occurs. If an invalid

operation exception occurs, the value of the register used for storing results will be

undefined.

Exceptions:

･Invalid operation exception

･Inexact exception

8-105

Convert to Floating Point

8.7.13. FLT

 Format : RR

x

5E
 Sx Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Convert int32 to double(Sy[32:63])

 } else {

 Sx[0:31] ← Convert int32 to single(Sy[32:63])

 Sx[32:63] ← 00…0

 }

 The contents of the S register designated by the y field or bits 32 to 63 of the immediate

value is handled as a 32-bit signed integer and converted into a normalized

double-precision floating-point data (Cx=0) or single-precision floating-point data (Cx=1),

then stored in the S register designated by the x field.

 Exceptions:

･Inexact exception

 Notes:

 ･See Notes on the FAD instruction.

8-106

Convert to Floating Point

8.7.14. FLTX

 Format : RR

x

5F
 Sx Sy

y

C

y

z
8 16 24 31

32 63

0

 Function:

 Sx ← Convert int64 to double(Sy)

 The contents of the S register designated by the y field or the immediate value is

handled as a 64-bit signed integer and converted into a normalized double-precision

floating-point data. The result is then stored in the S register designated by the x field.

 Exceptions:

･Inexact exception

 Notes:

 ･See Notes on the FAD instruction.

8-107

Convert to Single-format

8.7.15. CVS

 Format : RW

x

1F
 Sx Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx[0:31] ← Convert double(Sy) to single

 } else {

 Sx[0:31] ← Convert quadruple(Sy, Sy+1) to single

 }

 Sx[32:63] ← 00…0

 When Cx=0, the contents of the S register or the immediate value designated by the y

field of the instruction are regarded as conforming to the IEEE double-precision

floating-point data format and it is converted to single-precision floating-point. The result

is stored in bits 0 to 31 of the S register designated by the x field.

 When Cx=1, the contents of the S register pair or the immediate value designated by

the y field of the instruction are regarded as conforming to the IEEE quadruple-precision

floating-point data format it is converted to single-precision floating-point. The result is

stored in bits 0 to 31 of the S register designated by the x field.

8-108

 It stores zeros in bits 32 to 63 bits of the Sx in both cases.

 During conversion, the mantissa is rounded according to the PSW rounding

specification.

 An S register pair refers to two consecutive S registers starting with an even-numbered

S register. That is, the y field must designate even-numbered S registers. Otherwise, an

illegal instruction format exception occurs.

 Exceptions:

 ･Floating-point overflow exception

 ･Floating-point underflow exception

 ･Invalid operation exception

 ･Inexact exception

 Notes:

 ･See Notes on the FAD and FAQ instructions.

8-109

Convert to Double-format

8.7.16. CVD

 Format : RW

x

0F
 Sx Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 Sx ← Convert single(Sy[0:31]) to double

 } else {

 Sx ← Convert quadruple (Sy, Sy+1) to double

 }

 When Cx=0, the contents of the S register or the immediate value designated by the y

field of the instruction are regarded as conforming to the IEEE single-precision

floating-point data format and it is converted to double-precision floating-point.

 When Cx=1, the contents of the S register pair or the immediate value designated by

the y field of the instruction are regarded as conforming to the IEEE quadruple-precision

floating-point data format it is converted to double-precision floating-point.

 During conversion, the mantissa is rounded according to the PSW rounding

specification.

8-110

 An S register pair refers to two consecutive S registers starting with an even-numbered

S register. That is, the y field must designate even-numbered S registers. Otherwise, an

illegal instruction format exception occurs.

 Exceptions:

 ･Floating-point overflow exception

 ･Floating-point underflow exception

 ･Invalid operation exception

 ･Inexact exception

 Notes:

 ･See Notes on the FAD and FAQ instructions.

8-111

Convert to Quadruple-format

8.7.17. CVQ

 Format : RW

x

2D
 Sx Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

 Function:

 if (Cx = 0) {

 (Sx, Sx+1) ← Convert double to quadruple(Sy)

 } else {

 (Sx, Sx+1) ← Convert single to quadruple(Sy[0:31])

 }

 When Cx=0, the contents of the S register or the immediate value designated by the y

field of the instruction are regarded as conforming to the IEEE double-precision

floating-point data format and it is converted to quadruple-precision floating-point. The

result is stored in bits 0 to 31 of the S register pair designated by the x field.

 When Cx=1, the contents of the S register or the immediate value designated by the y

field of the instruction are regarded as conforming to the IEEE single-precision

floating-point data format it is converted to quadruple-precision floating-point. The result

is stored in bits 0 to 31 of the S register pair designated by the x field.

8-112

 An S register pair refers to two consecutive S registers starting with an even-numbered

S register. That is, the x field must designate even-numbered S registers. Otherwise, an

illegal instruction format exception occurs.

 Exceptions:

 ･Invalid operation exception

 Notes:

 ･See Notes on the FAD and FAQ instructions.

8-113

8.8. Branch Instructions

8.8.1. BC

 Format : CF

x

19
 Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

B

P

F

CF

 Function:

 EA ← Sz + sext(D, 64)

 if (cond(CF, Sy)) {IC ← EA}

The contents of the S register designated by the y field or the immediate value are

compared with zero, as a 64-bit signed integer. If the condition designated by the

condition field (CF) of bits 12 to 15 is met, it jumps to the memory location designated by

the z and D fields. If not, the next instruction is executed.

 The lowest three bits of the branch destination address must be zero. If not, an

interrupt due to a memory access exception occurs when the condition is met.

See Section 5.3 for the relation between the value at the static branch prediction field

(BPF) and the comparison conditions at the condition field (CF).

 Exceptions:

 ･Missing page exception

8-114

 ･Missing space exception

 ･Memory access exception

 ･Branch trap

 Notes:

 ･When Cz=0, an immediate value of 0 is formed into the z operand irrespective of Sz

value.

8-115

Branch on Condition Single

8.8.2. BCS

 Format : CF

x

1B
 Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

B

P

F

CF

 Function:

 EA ← Sz + sext(D, 64)

 if (cond(CF, Sy[32:63])) {IC ← EA}

Bits 32 to 63 of the contents of the S register designated by the y field or the immediate

value are compared with zero as a 32-bit signed integer. If the condition designated by

the condition field (CF) of bits 12 to 15 is met, it jumps to the memory location designated

by the z and D fields. If not, the next instruction is executed.

 The lowest three bits of the branch destination address must be zero. If not, an

interrupt due to a memory access exception occurs when the condition is met.

See Section 5.3 for the relation between the value at the static branch prediction field

(BPF) and the comparison conditions at the condition field (CF).

8-116

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Branch trap

 Notes:

 ･When Cz=0, an immediate value of 0 is formed into the z operand irrespective of Sz

value.

8-117

8.8.3. BCF

 Format : CF

x

1C
 Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

B

P

F

CF

 Function:

 EA ← Sz + sext(D, 64)

 if (Cx = 0) {

 if (cond(CF, Sy)) {IC ← EA}

 } else {

 if (cond(CF, Sy[0:31])) {IC ← EA}

 }

The contents of the S register designated by the y field or the immediate value are

compared with zero, as a double-precision floating-point data (Cx=0) or single-precision

floating-point data (Cx=1). If the condition designated by the condition field (CF) of bits 12

to 15 is met, it jumps to the memory location designated by the z and D fields. If not, the

next instruction is executed.

 The floating-point data used in the comparison is regarded as 0 when its exponent part

is all zeros.

Branch on Condition Floating Point

8-118

 The lowest three bits of the branch destination address must be zero. If not, an

interrupt due to a memory access exception occurs when the condition is met.

See Section 5.3 for the relation between the value at the static branch prediction field

(BPF) and the comparison conditions at the condition field (CF).

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Branch trap

 Notes:

 ･When Cz=0, an immediate value of 0 is formed into the z operand irrespective of Sz

value.

8-119

Branch on Condition Relative

8.8.4. BCR

 Format : CF

x

18
 Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

C

x

C

x

2

B

P

F

CF

 Function:

 if ((Cx = 0) & (Cx2 = 0)) {

 if (cond(CF, Sy, Sz)) {IC ← IC + sext(D, 64)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if (cond(CF, Sy[32:63], Sz[32:63])) {IC ← IC + sext(D, 64)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if (cond(CF, Sy, Sz)) {IC ← IC + sext(D, 64)}

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if (cond(CF, Sy[0:31], Sz[0:31])) { IC ← IC + sext(D, 64)}

 }

The contents of the S register designated by the y field or the immediate value are

compared with the contents of the S register designated by the z field or the immediate

value. If the condition designated by the condition field (CF) of bits 12 to 15 is met, the

control branches to the memory location designated by the z and D fields. If not, the next

instruction is executed.

8-120

 When Cx=0 and Cx2=0, Sy is compared with Sz as a 64-bit signed integer.

 When Cx=1 and Cx2=0, Sy is compared with Sz as a 32-bit signed integer.

 When Cx=0 and Cx2=1, Sy is compared with Sz as a double-precision floating-point

data.

 When Cx=1 and Cx2=1, Sy is compared with Sz as a single-precision floating-point

data.

 The floating-point data tested in the comparison is regarded as 0 when its exponent

part is all zero.

 The lowest three bits of the branch destination address must be zero. If not, an

interrupt due to a memory access exception occurs when the condition is met.

See Section 5.3 for the relation between the value at the static branch prediction field

(BPF) and the comparison conditions at the condition field (CF).

8-121

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Branch trap

 Notes:

 ･When Cz=0, an immediate value of 0 is formed into the z operand irrespective of Sz

value.

8-122

Branch and Save IC

8.8.5. BSIC

 Format : RM

x

08
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

D

32 63

0

 Function:

 EA ← Sy + Sz + sext(D, 64)

 Sx ← IC + 8

 IC ← EA

 The current instruction counter (IC) for the BSIC instruction + 8 is saved to bits 0 to 63 of

the S register designated by the x field. Then it jumps to the memory location designated

by the y, z, and D fields of the instruction.

 The lowest three bits of the branch destination address must be zero. If not, an

interrupt due to a memory access exception occurs.

Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

 ･Branch trap

8-123

 Notes:

 ･As memory addresses, only 48 bits are effective in Aurora. The upper 16 bits of Sx

are always set to zero by this operation.

 ･When Cz=0, an immediate value of 0 is formed into the z operand irrespective of Sz

value.

8-124

8.9. Vector Load/Store and Move Instructions

Vector Load

8.9.1. VLD

 Format : RVM

x

81
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

 Function:
 for (i = 0 to VL-1) {

 Vx(i) ← M(Sz + Sy * i, 8)

 }

 A series of 8 byte vector elements in memory is loaded into the elements 0 to VL-1 of

the V register designated by the x field. The immediate value or the contents of the S

register designated by the z field gives the start address of the source memory, and the

immediate value or the contents of the S register designated by the y field gives the

vector stride.

 When the vector stride equals zero, the 8B data in the identical memory address is

loaded into elements 0 to VL-1 of the destination V register.

 The lowest three bits of the starting address and the stride must be zero. Otherwise

memory access exception occurs.

8-125

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When Cz=0, z operand is regarded as immediate zero irrespective of the value of

Sz.

 ･Refer to Chapter 6 for ADB functionality.

8-126

Vector Load Upper

8.9.2. VLDU

 Format : RVM

x

82
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

 Function:
 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← M(Sz + Sy * i, 4)

 Vx(i)[32:63] ← 00…0

 }

A series of 4 byte vector elements in memory is loaded into bits 0 to 31 of the elements

0 to VL-1 of the V register designated by the x field. The immediate value or the contents

of the S register designated by the z field gives the start address of the source memory,

and the immediate value or the contents of the S register designated by the y field gives

the vector stride. Bits 32 to 63 of elements 0 to VL of the destination V register are filled

with zeros.

 When the vector stride equals zero, the 4B data in the identical memory address is

loaded into elements 0 to VL-1 of the destination V register.

 The lowest two bits of the starting address and the stride must be zero. Otherwise

memory access exception occurs.

8-127

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When Cz=0, z operand is regarded as immediate zero irrespective of the value of

Sz.

 ･Refer to Chapter 6 for ADB functionality.

8-128

Vector Load Lower

8.9.3. VLDL

 Format : RVM

x

83
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

C

x

 Function:
 for (i = 0 to VL-1) {

 Vx(i)[32:63] ← M(Sz + Sy * i, 4)

 if (Cx = 0) {Vx(i)[0:31] ← sext(Vx(i)[32], 32)}

 else {Vx(i)[0:31] ← 00…0}

 }

A series of 4 byte vector elements in memory is loaded into bits 32 to 63 of the elements

0 to VL-1 of the V register designated by the x field. The immediate value or the contents

of the S register designated by the z field gives the start address of the source memory,

and the immediate value or the contents of the S register designated by the y field gives

the vector stride. Bits 0 to 31 of elements 0 to VL of the destination V register are filled

with zero or the same bit value for bit 32 of the element, depending on the Cx value.

 When Cx=0, the bits 0 to 31 of V register element are filled with a copy of the most

significant bit of the loaded 4 bytes.

 When Cx=1, the bits 0 to 31 of V register element are filled with zero.

8-129

 When the vector stride equals zero, the 4B data in the identical memory address is

loaded into elements 0 to VL-1 of the destination V register.

 The lowest two bits of the starting address and the stride must be zero. Otherwise

memory access exception occurs.

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

 Notes:

･When Cz=0, z operand is regarded as immediate zero irrespective of the value of

Sz.

 ･Refer to Chapter 6 for ADB functionality.

8-130

Vector Load 2D

8.9.4. VLD2D

 Format : RVM

x

C1
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

 Function:
 for (i = 0 to VL-1) {

 STR ← sext(Sy[0:47], 64)

 STC ← sext(Sy[48:63], 64)

 Vx(i) ← M(Sz + STR * (i/16) + STC * (i%16), 8)

 }

 A series of 8 byte vector elements in memory is loaded to the elements 0 to VL-1 of the

V register designated by the x field. The immediate value or the contents of the S register

designated by the z field gives the starting address in memory, and the immediate value

or the contents of the S register designated by the y field gives the two dimensional

vector strides. Sy[0:47] and Sy[48:63] give row and column strides respectively, and then

several series of 16 column-striding vector elements are loaded from each row strode

address.

 When the row or column stride equals zero, a data of an identical address in memory

may be loaded into multiple elements of the V register.

8-131

 The lowest three bits of the starting address and both the row and column stride must

be zero. Otherwise memory access exception occurs.

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When Cz=0, z operand is regarded as immediate zero irrespective of Sz.

 ･See also Chapter 6 for ADB functionality.

8-132

Vector Load Upper 2D

8.9.5. VLDU2D

 Format : RVM

x

C2
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

 Function:
 for (i = 0 to VL-1) {

 STR ← sext(Sy[0:47], 64)

 STC ← sext(Sy[48:63], 64)

 Vx(i) [0:31] ← M(Sz + STR * (i/16) + STC * (i%16), 4)

 Vx(i)[32:63] ← 00…0

 }

 A series of 4-bytes vector elements in memory is loaded into bits 0 to 31 of elements 0

- VL-1 of the V register designated by the x field. The immediate value or the contents of

the S register designated by the z field give the starting address in memory, and the

immediate value or the contents of the S register designated by the y field give the two

dimensional vector strides. Sy[0:47] and Sy[48:63] gives row and column strides

respectively, and then several series of column-striding 16 vector elements are loaded

from each row strode address. Zeros are stored into bits 32 to 63 of each element of V

register.

 When the row or column stride equals zero, a data of an identical address in memory

may be stored into more than one element of V register.

8-133

 The lowest two bits of the starting address and both the row and column stride must be

zero. Otherwise memory access exception occurs.

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

8-134

Vector Load Lower 2D

8.9.6. VLDL2D

 Format : RVM

x

C3
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

C

x

 Function:
 for (i = 0 to VL-1) {

 STR ← sext(Sy[0:47], 64)

 STC ← sext(Sy[48:63], 64)

 Vx(i) [32:63] ← M(Sz + STR * (i/16) + STC * (i%16), 4)

 if (Cx = 0) {Vx(i)[0:31] ← sext(Vx(i)[32], 32)}

 else {Vx(i)[0:31] ← 00…0}

 }

 A series of 4-bytes vector elements in memory is loaded to bits 32 to 63 of elements 0

– VL-1 of the V register designated by the x field. The immediate value or the contents of

the S register designated by the z field give the starting address in memory, and the

immediate value or the contents of the S register designated by the y field give the two

dimensional vector strides. Sy[0:47] and Sy[48:63] gives row and column strides

respectively, and series of column-strinding 16 vector elements are loaded from each

row strode address.

 When Cx=0, the bits 0 to 31 of V register elements are filled with a copy of the most

significant bit of the loaded 4-byte data.

8-135

 When Cx=1, the bits 0 to 31 of V register elements are filled with zero.

 When the row or column stride equals zero, a data of an identical address in memory

can be stored into more than one element of V register.

 The lowest two bits of the starting address and both the row and column stride must be

zero. Otherwise memory access exception occurs.

 Exceptions:

 ･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

8-136

Vector Store

8.9.7. VST

Format : RVM

x

91
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

V

O

M

Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 M(Sz + Sy * i, 8) ← Vx(i)

 }

 }

A series of 8-bytes vector elements of the V register designated by the Vx field is

stored in memory. The immediate value or the contents of the S register designated by

the z field give the starting address in memory, and the immediate value or the contents

of the S register designated by the y field give the vector stride.

 If the stride is 0, all vector elements are stored to the identical memory address.

This instruction is an element-maskable vector instruction.

 The lowest three bits of the starting address and the stride must be zero. Otherwise

memory access exception occurs.

When VO=0, the hardware guarantees the memory access semantics between VST

and the following memory accesses instructions (*1, *2, *3). As far as the target memory

access area doesn’t overlap, following scalar load instructions, scalar store instructions

and vector load instructions can overtake the VST.

8-137

 When VO=1, the hardware does not guarantee the memory access sequence between

VST and the following memory accesses (*1,*2,*3) until SVOB appears in the instruction

sequence. The hardware may give execution priority to the memory accesses (*1, *2, *3)

following the VST. Since hardware doesn’t see address dependencies between the VST

and the followers before SVOB, software must take care of it to avoid unexpected side

effect to occur. And also, it is not always guaranteed to give priority to following scalar

load instructions, scalar store instructions and vector load instructions.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of

Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

 ･Refer to SVOB instruction.

 ･ *1 : LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH

 ･ *2 : STS,STU,STL,ST1B,ST2B

 ･ *3 : VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D, VGT,VGTU,VGTL,PFCHV

8-138

Vector Store Upper

8.9.8. VSTU

 Format : RVM

x

92
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

V

O

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 M(Sz + Sy * i, 4) ← Vx(i)[0:31]

 }

 }

The bit 0 to31 of vector elements of the V register designated by the Vx field is stored

in memory. The immediate value or the contents of the S register designated by the z

field give the starting address in memory, and the immediate value or the contents of the

S register designated by the y field give the vector stride.

 When the stride is 0, all vector elements are stored to the identical memory address.

This instruction is an element-maskable vector instruction.

 The lowest two bits of the starting address and the stride must be zero. Otherwise

memory access exception occurs.

 When VO=0, the hardware guarantees the memory access semantics between VSTU

and the following memory accesses instructions (*1, *2, *3). As far as the target memory

access area doesn’t overlap, following scalar load instructions, scalar store instructions

and vector load instructions can overtake the VSTU.

8-139

 When VO=1, the hardware does not guarantee the memory access sequence between

VSTU and the following memory accesses (*1,*2,*3) until SVOB appears in the

instruction sequence. The hardware may give execution priority to the memory accesses

(*1, *2, *3) following the VSTU. Since hardware doesn’t see address dependencies

between the VSTU and the followers before SVOB, software must take care of it to avoid

unexpected side effect to occur. And also, it is not always guaranteed to give priority to

following scalar load instructions, scalar store instructions and vector load instructions.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of

Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

 ･Refer to SVOB instruction.

 ･ *1 : LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH

 ･ *2 : STS,STU,STL,ST1B,ST2B

 ･ *3 : VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-140

Vector Store Lower

8.9.9. VSTL

 Format : RVM

x

93
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

V

O

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 M(Sz + Sy * i, 4) ← Vx(i)[32:63]

 }

 }

The bit 32 to 63 of vector elements of the V register designated by the Vx field is stored

in memory. The immediate value or the contents of the S register designated by the z

field give the starting address in memory, and the immediate value or the contents of the

S register designated by the y field give the vector stride.

 If the stride is 0, all vector elements are stored to the identical memory address.

This instruction is an element-maskable vector instruction.

 The lowest two bits of the starting address and the stride must be zero. Otherwise

memory access exception occurs.

 When VO=0, the hardware guarantees the memory access semantics between VSTL

and the following memory accesses instructions (*1, *2, *3). As far as the target memory

access area doesn’t overlap, following scalar load instructions, scalar store instructions

and vector load instructions can overtake the VSTL.

8-141

 When VO=1, the hardware does not guarantee the memory access sequence between

VSTL and the following memory accesses (*1,*2,*3) until SVOB appears in the

instruction sequence. The hardware may give execution priority to the memory accesses

(*1, *2, *3) following the VSTL. Since hardware doesn’t see address dependencies

between the VSTL and the followers before SVOB, software must take care of it to avoid

unexpected side effect to occur. And also, it is not always guaranteed to give priority to

following scalar load instructions, scalar store instructions and vector load instructions.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

 ･Refer to SVOB instruction.

 ･ *1 : LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH

 ･ *2 : STS,STU,STL,ST1B,ST2B

 ･ *3 : VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-142

Vector Store 2D

8.9.10. VST2D

 Format : RVM

x

D1
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

V

O

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 STR ← sext(Sy[0:47], 64)

 STC ← sext(Sy[48:63], 64)

 M(Sz + STR * (i/16) + STC * (i%16), 8) ← Vx(i)

 }

 }

A series of 8-bytes vector elements of the V register designated by the Vx field is

stored in memory. The immediate value or the contents of the S register designated by

the z field give the starting address in memory, and the immediate value or the contents

of the S register designated by the y field give the two dimensional vector strides.

Sy[0:47] and Sy[48:63] gives row and column strides respectively, and then vector

elements are stored to several series of 16 column strode addresses starts from each

row strode address sequentially.

 If the row or column stride is 0, multiple vector elements can be stored to the identical

memory address.

8-143

This instruction is an element-maskable vector instruction.

 The lowest three bits of the starting address and both the row and column stride must

be zero. Otherwise memory access exception occurs.

 When VO=0, the hardware guarantees the memory access semantics between VST2D

and the following memory accesses instructions (*1, *2, *3). As far as the target memory

access area doesn’t overlap, following scalar load instructions, scalar store instructions

and vector load instructions can overtake the VST2D.

 When VO=1, the hardware does not guarantee the memory access sequence between

VST2D and the following memory accesses (*1,*2,*3) until SVOB appears in the

instruction sequence. The hardware may give execution priority to the memory accesses

(*1, *2, *3) following the VST2D. Since hardware doesn’t see address dependencies

between the VST2D and the followers before SVOB, software must take care of it to

avoid unexpected side effect to occur. And also, it is not always guaranteed to give

priority to following scalar load instructions, scalar store instructions and vector load

instructions.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of

Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

 ･Refer to SVOB instruction.

 ･ *1 : LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH

 ･ *2 : STS,STU,STL,ST1B,ST2B

 ･ *3 : VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-144

Vector Store Upper 2D

8.9.11. VSTU2D

 Format : RVM

x

D2
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

V

O

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 STR ← sext(Sy[0:47], 64)

 STC ← sext(Sy[48:63], 64)

 M(Sz + STR * (i/16) + STC * (i%16), 4) ← Vx(i)[0:31]

 }

 }

The bit 0 to31 of vector elements of the V register designated by the Vx field is stored

in memory. The immediate value or the contents of the S register designated by the z

field give the starting address in memory, and the immediate value or the contents of the

S register designated by the y field give the two dimensional vector strides. Sy[0:47] and

Sy[48:63] gives row and column strides respectively, and then vector elements are

stored to several series of 16 column strode addresses from each row strode address

sequentially.

8-145

 If the row or column stride is 0, multiple vector elements can be stored to the identical

memory address.

This instruction is an element-maskable vector instruction.

 The lowest two bits of the starting address and both the row and column stride must be

zero. Otherwise memory access exception occurs.

 When VO=0, the hardware guarantees the memory access semantics between

VSTU2D and the following memory accesses instructions (*1, *2, *3). As far as the target

memory access area doesn’t overlap, following scalar load instructions, scalar store

instructions and vector load instructions can overtake the VSTU2D.

 When VO=1, the hardware does not guarantee the memory access sequence between

VSTU2D and the following memory accesses (*1,*2,*3) until SVOB appears in the

instruction sequence. The hardware may give execution priority to the memory accesses

(*1, *2, *3) following the VSTU2D. Since hardware doesn’t see address dependencies

between the VSTU2D and the followers before SVOB, software must take care of it to

avoid unexpected side effect to occur. And also, it is not always guaranteed to give

priority to following scalar load instructions, scalar store instructions and vector load

instructions.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

 ･Refer to SVOB instruction.

 ･ *1 : LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH

 ･ *2 : STS,STU,STL,ST1B,ST2B

 ･ *3 : VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-146

Vector Store Lower 2D

8.9.12. VSTL2D

 Format : RVM

x

D3
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

V

C

V

O

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 STR ← sext(Sy[0:47], 64)

 STC ← sext(Sy[48:63], 64)

 M(Sz + STR * (i/16) + STC * (i%16), 4) ← Vx(i)[32:63]

 }

 }

The bit 32 to 63 of vector elements of the V register designated by the Vx field is stored

in memory. The immediate value or the contents of the S register designated by the z

field give the starting address in memory, and the immediate value or the contents of the

S register designated by the y field give the two dimensional vector strides. Sy[0:47] and

Sy[48:63] gives row and column strides respectively, and then vector elements are

stored to several series of 16 column strode addresses from each row strode address

sequentially.

 If the row or column stride is 0, multiple vector elements can be stored to the identical

memory address.

8-147

This instruction is an element-maskable vector instruction.

 The lowest two bits of the starting address and both the row and column stride must be

zero. Otherwise memory access exception occurs.

 When VO=0, the hardware guarantees the memory access semantics between

VSTL2D and the following memory accesses instructions (*1, *2, *3). As far as the target

memory access area doesn’t overlap, following scalar load instructions, scalar store

instructions and vector load instructions can overtake the VSTL2D.

 When VO=1, the hardware does not guarantee the memory access sequence between

VSTL2D and the following memory accesses (*1,*2,*3) until SVOB appears in the

instruction sequence. The hardware may give execution priority to the memory accesses

(*1, *2, *3) following the VSTL2D. Since hardware doesn’t see address dependencies

between the VSTL2D and the followers before SVOB, software must take care of it to

avoid unexpected side effect to occur. And also, it is not always guaranteed to give

priority to following scalar load instructions, scalar store instructions and vector load

instructions.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of

Sz.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

 ･Refer to SVOB instruction.

 ･ *1 : LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH

 ･ *2 : STS,STU,STL,ST1B,ST2B

 ･ *3 : VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-148

Vector Gather

8.9.13. VGT

 Format : RVM

x

A1
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx Vy

V

C

M

C

s

Sw

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 if (Cs = 0) {Vx(i) ← M(Vy(i), 8)}

 else {Vx(i) ← M(V(Sw)(i), 8)}

 } else {

 Vx(i) ← undefined

 }

 }

When Cs=0, 8 byte data is read from the memory address contained in each of Vy’s

elements 0 to VL-1. The read 64 bit data is sequentially stored to each of Vx’s elements 0

to VL-1.

When Cs=1, 8 byte data is read from the memory address contained in each of

elements 0 to VL-1 of the V register designated by Sw. The read 64 bit data is

sequentially stored to each of Vx’s elements 0 to VL-1.

8-149

This instruction is an element-maskable vector instruction.An undefined value may be

loaded to the Vx[i] element where the corresponding VM[i]=0, and no memory-related

exception is detected for the element.

 The lowest three bits of any read address must be zero, otherwise memory access

exception occurs.

 Sy and Sz respectively specify the lowest and highest memory addresses to designate

the region that potentially covers accesses by this instruction. The accesses by this

instruction are assumed to be confined in the area specified by Sy and Sz. The virtual

area information is taken into consideration of memory dependency check with the

following memory access instructions (*1). If any target address (es) by this instruction

should be out of the area, the code’s semantics may not be preserved for the element(s).

If Sy is larger than Sz, it may cause an unexpected result unless Sz<4. When a value

less than four is given to Sz, the hardware preserves its memory semantics regardless of

Sy value.

Exceptions:

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is regarded as an immediate zero irrespective of the value of

Sz.

 ･See also Chapter 6 for ADB functionality.

 ･*1

LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH,STS,STU,ST

L,ST1B,ST2B,TS1AM,TS2AM,TS3AM,ATMAM,CAS,VLD,VLDU,VL

DL,VLD2D,VLDU2D,VLDL2D,PFCHV,VST,VSTU,VSTL,

VST2D,VSTU2D,VSTL2D,VGT,VGTU,VGTL,VSC,VSCU,VSCL

8-150

Vector Gather Upper

8.9.14. VGTU

 Format : RVM

x

A2
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx Vy

V

C

M

C

s

Sw

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 if (Cs = 0) {Vx(i)[0:31] ← M(Vy(i), 4)}

 else {Vx(i)[0:31] ← M(V(Sw)(i), 4)}

 Vx(i)[32:63] ← 00…0

 } else {

 Vx(i) ← undefined

 }

 }

 When Cs=0, 4 byte data is read from the memory address contained in each element

of Vy. The read data is stored sequentially into bit 0 to 31 of Vx.

When Cs=1, 4 byte data is read from the memory address contained in each element

of the V register designated by Sw. The read data is stored sequentially into bit 0 to 31 of

Vx.

Bit32 to 63 of each element of Vx are filled with zero.

8-151

This instruction is an element-maskable vector instruction.An undefined value may be

loaded to the Vx[i] element where the corresponding VM[i]=0, and no memory-related

exception is detected for the element.

 The lowest two bits of any read address must be zero, otherwise memory access

exception occurs.

 Sy and Sz respectively specify the lowest and highest memory addresses to designate

the region that potentially covers accesses by this instruction. The accesses by this

instruction are assumed to be confined in the area specified by Sy and Sz. The virtual

area information is taken into consideration of memory dependency check with the

following memory access instructions (*1). If any target address (es) by this instruction

should be out of the area, the code’s semantics may not be preserved for the element(s).

If Sy is larger than Sz, it may cause an unexpected result unless Sz<4. When a value

less than four is given to Sz, the hardware preserves its memory semantics regardless of

Sy value.

Exceptions:

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is regarded as an immediate zero irrespective of the value

of Sz.

 ･See also Chapter 6 for ADB functionality.

 *1

LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH,STS,S

TU,STL,ST1B,ST2B,TS1AM,TS2AM,TS3AM,ATMAM,CAS,V

LD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,PFCHV,VST,VSTU

,VSTL,VST2D,VSTU2D,VSTL2D,VGT,VGTU,VGTL,VSC,VSC

U,VSCL

8-152

Vector Gather Lower

8.9.15. VGTL

 Format : RVM

x

A3
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

C

x

Vx Vy

V

C

M

C

s

Sw

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 if (Cs = 0) {Vx(i)[32:63] ← M(Vy(i), 4)}

 else {Vx(i)[32:63] ← M(V(Sw)(i), 4)}

 if (Cx = 0) {Vx(i)[0:31] ← sext(Vx(i)[32], 32)}

 else {Vx(i)[0:31] ← 00…0}

 } else {

 Vx(i) ← undefined

 }

 }

 When Cs=0, 4 byte data is read from the memory address contained in each element

of Vy. The read data is stored sequentially into bit 32 to 63 of Vx.

8-153

When Cs=1, 4 byte data is read from the memory address contained in each element

of the V register designated by Sw. The read data is stored sequentially into bit 32 to 63

of Vx.

When Cx=0, bit0 to 31 of each element of Vx are filled with the value of the element's

bit32 for sign extension. When Cx=1, bit 0 to 31 are simply filled with all zero.

This instruction is an element-maskable vector instruction.An undefined value may be

loaded to the Vx[i] element where the corresponding VM[i]=0, and no memory-related

exception is detected for the element.

 The lowest two bits of any read address must be zero, otherwise memory access

exception occurs.

 Sy and Sz respectively specify the lowest and highest memory addresses to designate

the region that potentially covers accesses by this instruction. The accesses by this

instruction are assumed to be confined in the area specified by Sy and Sz. The virtual

area information is taken into consideration of memory dependency check with the

following memory access instructions (*1). If any target address (es) by this instruction

should be out of the area, the code’s semantics may not be preserved for the element(s).

If Sy is larger than Sz, it may cause an unexpected result unless Sz<4. When a value

less than four is given to Sz, the hardware preserves its memory semantics regardless of

Sy value.

Exceptions:

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

･When Cz=0, z operand is regarded as an immediate zero irrespective of the value of Sz.

･See also Chapter 6 for ADB functionality.

*1

LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH,STS,S

TU,STL,ST1B,ST2B,TS1AM,TS2AM,TS3AM,ATMAM,CAS,V

LD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,PFCHV,VST,VSTU

,VSTL,VST2D,VSTU2D,VSTL2D,VGT,VGTU,VGTL,VSC,VSC

U,VSCL

8-154

Vector Scatter

8.9.16. VSC

 Format : RVM

x

B1
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx Vy Sw

M

V

C

C

s

V

O

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 if (Cs = 0) {M(Vy(i), 8) ← Vx(i)}

 else {M(V(Sw)(i), 8) ← Vx(i)}

 }

 }

 When Cs=0, 8 byte data of V register designated by Vx field are stored into the

memory with the element of V register designated by Vy field used as the execution

address.

 When Cs=1, the elements of V register designates by value of S register specified by

Sw field indicate the execution address. 8 byte data of V register designated by Vx field

are stored into the memory with the execution address.

This instruction is an element-maskable vector instruction. No store operation is

performned for the Vx[i] element where the corresponding VM[i]=0, and no

memory-related exception is detected for the element.

 The lowest three bits of any read address must be zero, otherwise memory access

exception occurs.

8-155

 Sy and Sz respectively specify the lowest and highest memory addresses to designate

the region that potentially covers accesses by this instruction. The accesses by this

instruction are assumed to be confined in the area specified by Sy and Sz. The virtual

area information is taken into consideration of memory dependency check with the

following memory access instructions (*1). If any target address (es) by this instruction

should be out of the area, the code’s semantics may not be preserved for the element(s).

If Sy is larger than Sz, it may cause an unexpected result unless Sz<4. When a value

less than four is given to Sz, the hardware preserves its memory semantics regardless of

Sy value.

 When VO=0, the address dependence guarantees between VSC and the other

memory access instructions based on value of the above Sy and Sz.

 When VO=1, the address dependence does not guarantee between VSC and the other

memory access instructions (*1,*2,*3) until SVOB instruction is executed. After SVOB

instruction executes, the address dependence guarantees based on value of the above

Sy and Sz.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is regarded as an immediate zero irrespective of the value

of Sz.

 ･Refer to SVOB.

*1:LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH,STS,STU,STL,ST1B,

ST2B,TS1AM,TS2AM,TS3AM,ATMAM,CAS,VLD,VLDU,VLD

L,VLD2D,VLDU2D,VLDL2D,PFCHV,VST,VSTU,VSTL,VST2D,

VSTU2D,VSTL2D,VGT,VGTU,VGTL,VSC,VSCU,VSCL

 ･*2:STS,STU,STL,ST1B,ST2B,STM

 ･*3:VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-156

Vector Scatter Upper

8.9.17. VSCU

 Format : RVM

x

B2
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx Vy

V

O

M

V

C

C

s

Sw

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 if (Cs = 0) {M(Vy(i), 4) ← Vx(i)[0:31]}

 else {M(V(Sw)(i), 4) ← Vx(i)[0:31]}

 }

 }

 When Cs=0, bits 0 to 31 of V register designated by Vx field are stored into the

memory with the element of V register designated by Vy field used as the execution

address.

 When Cs=1, the elements of V register designates by value of S register specified by

Sw field indicate the execution address. Bit 0 to 31 of V register designated by Vx field

are stored into the memory with the execution address.

 This instruction is an element-maskable vector instruction. No store operation is

performned for the Vx[i] element where the corresponding VM[i]=0, and no

memory-related exception is detected for the element.

 The lowest two bits of any read address must be zero, otherwise memory access

exception occurs.

8-157

 Sy and Sz respectively specify the lowest and highest memory addresses to designate

the region that potentially covers accesses by this instruction. The accesses by this

instruction are assumed to be confined in the area specified by Sy and Sz. The virtual

area information is taken into consideration of memory dependency check with the

following memory access instructions (*1). If any target address (es) by this instruction

should be out of the area, the code’s semantics may not be preserved for the element(s).

If Sy is larger than Sz, it may cause an unexpected result unless Sz<4. When a value

less than four is given to Sz, the hardware preserves its memory semantics regardless of

Sy value.

 When VO=0, the address dependence guarantees between VSCU and the other

memory access instructions based on value of the above Sy and Sz.

 When VO=1, the address dependence does not guarantee between VSCU and the

other memory access instructions (*1,*2,*3) until SVOB instruction is executed. After

SVOB instruction executes, the address dependence guarantees based on value of the

above Sy and Sz.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cz=0, z operand is regarded as an immediate zero irrespective of the value

of Sz.

 ･Refer to SVOB.

*1:LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH,STS,STU,STL,ST1B,

ST2B,TS1AM,TS2AM,TS3AM,ATMAM,CAS,VLD,VLDU,VLD

L,VLD2D,VLDU2D,VLDL2D,PFCHV,VST,VSTU,VSTL,VST2D,

VSTU2D,VSTL2D,VGT,VGTU,VGTL,VSC,VSCU,VSCL

 ･*2:STS,STU,STL,ST1B,ST2B,STM

 ･*3:VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-158

Vector Scatter Lower

8.9.18. VSCL

 Format : RVM

x

B3
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Vx

M

V

C

V

O

Vy

C

s

Sw

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 if (Cs = 0) {M(Vy(i), 4) ← Vx(i)[32:63]}

 else {M(V(Sw)(i), 4) ← Vx(i)[32:63]}

 }

 }

 When Cs=0, bit 32 to 63 of V register designated by Vx field are stored into the

memory with the element of V register designated by Vy field used as the execution

address.

 When Cs=1, the elements of V register designates by value of S register specified by

Sw field indicate the execution address. Bit 32 to 63 of V register designated by Vx field

are stored into the memory with the execution address.

This instruction is an element-maskable vector instruction. No store operation is

performned for the Vx[i] element where the corresponding VM[i]=0, and no

memory-related exception is detected for the element.

 The lowest two bits of any read address must be zero, otherwise memory access

exception occurs.

8-159

 Sy and Sz respectively specify the lowest and highest memory addresses to designate

the region that potentially covers accesses by this instruction. The accesses by this

instruction are assumed to be confined in the area specified by Sy and Sz. The virtual

area information is taken into consideration of memory dependency check with the

following memory access instructions (*1). If any target address (es) by this instruction

should be out of the area, the code’s semantics may not be preserved for the element(s).

If Sy is larger than Sz, it may cause an unexpected result unless Sz<4. When a value

less than four is given to Sz, the hardware preserves its memory semantics regardless of

Sy value.

 When VO=0, the address dependence guarantees between VSCL and the other

memory access instructions based on value of the above Sy and Sz.

 When VO=1, the address dependence does not guarantee between VSCL and the

other memory access instructions (*1,*2,*3) until SVOB instruction is executed. After

SVOB instruction executes, the address dependence guarantees based on value of the

above Sy and Sz.

Exceptions:

 ･Memory protection exception

･Missing page exception

 ･Missing space exception

 ･Memory access exception

･Illegal data format exception : When VL > MVL

Notes:

･When Cz=0, z operand is regarded as an immediate zero irrespective of the value of

Sz.

 ･Refer to SVOB.

*1:LDS,LDU,LDL,LD1B,LD2B,DLDS,DLDU,DLDL,PFCH,STS,STU,STL,ST1B,

ST2B,TS1AM,TS2AM,TS3AM,ATMAM,CAS,VLD,VLDU,VLD

L,VLD2D,VLDU2D,VLDL2D,PFCHV,VST,VSTU,VSTL,VST2D,

VSTU2D,VSTL2D,VGT,VGTU,VGTL,VSC,VSCU,VSCL

 ･*2:STS,STU,STL,ST1B,ST2B,STM

 ･*3:VLD,VLDU,VLDL,VLD2D,VLDU2D,VLDL2D,VGT,VGTU,VGTL,PFCHV

8-160

Pre FetCH Vector

8.9.19. PFCHV

 Format : RVM

x

80
 Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

V

C

Function :

 for (i = 0 to VL-1) {

 Cache ← M(Sz + Sy * i, 4)

 }

 A series of vector elements is read from memory and loaded on the cache. The target

cache and its line size are system dependent. The immediate value or the contents of the

S register designated by the z field gives the starting address in memory, and the

immediate value or the contents of the S register designated by the y field give the vector

stride.

 When the lowest two bits of the starting address or stride are not zero, this instruction

is treated as a nop and returns no exepction.

Exceptions:

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of

Sz.

8-161

 ･The cache line size of ADB is 128 bytes in Aurora.

 ･Refer to an item of ADB of Chapter 6 about a use presence of ADB.

･When this instruction try to access the page or the space of access prohibition,

the exception does not occur and the prefetch to the address does not operate.

8-162

Load S to V

8.9.20. LSV

Format : RR

x

8E
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx

 Sz
C

z

Function :

 Vx(mod((unsigned)Sy, MVL)) ← Sz

 Sz is stored into an element of Vx register. The target element is identified as

(unsigned) Sy mod MVL. When an immediate value is designated as Sy, one of elements

0 to 127 can be specified as the target element.

Exceptions:

Notes:

 ･When Cy=0, y operand is regarded as an immediate unsigned integer from 0 to 127.

 ･Aurora’s MVL is 256.

8-163

Load V to S

8.9.21. LVS

 Format : RR

x

9E
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx

 Sx

Function :

 Sx ← Vx(mod((unsigned)Sy, MVL))

An element of Vx register is loaded to S register specified in the x field. The source

element is identified as (unsigned) Sy mod MVL. When an immediate value is designated

as Sy, one of elements 0 to 127 can be specified as the source element.

Exceptions:

Notes:

 ･When Cy=0, y operand is regarded as an immediate unsigned integer from 0 to 127.

 ･Aurora’s MVL is 256.

8-164

Load VM

8.9.22. LVM

 Format : RR

x

B7
 Sy

y

C

y

z
8 16 24 31

32 63

0

VMx

 Sz
C

z

Function:

 VMx[64 * Sy[62:63]:64 * Sy[62:63] + 63] ← Sz

 Sz is transferred to a 64bit segment in the VM register specified by Vx field.

 A 256 bit VM consists of four segments of 64 bits and the target segment is identified

by Sy [62:63]. The three segments other than the target stay unchanged by executing

this instruction.

Exceptions:

Notes:

 ･Aurora’s MVL is 256.

8-165

Save VM

8.9.23. SVM

 Format : RR

x

A7

z
8 16 24 31

32 63

0

 Sx

VMz

 Sy

y

C

y

Function:

 Sx ← VMz[64 * Sy[62:63]:64 * Sy[62:63] + 63]

A 64bit segment in the VM register specified by Vx field is transferred to the register

specified by x field.

A 256 bit VM consists of four segments of 64 bits and the source segment is identified

by Sy [62:63].

Exceptions:

Notes:

 ･Aurora’s MVL is 256.

8-166

Vector Broadcast

8.9.24. VBRD

Format: RV

x

8C
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx

M

C

x

2

C

x

Function:

 for (i = 0 to VL-1) {

 if ((Cx = 0) | (Cx2 = 0)) {

 if(VM[i]=1) {

 if ((Cx = 0) & (Cx2 = 0)) {

 Vx(i) ← Sy

 } else if ((Cx = 0) & (Cx2 = 1)) {

 Vx(i)[0:31] ← 00…0

 Vx(i)[32:63] ← Sy[32:63]

 } else if ((Cx = 1) & (Cx2 = 0)) {

 Vx(i)[0:31] ← Sy[0:31]

 Vx(i)[32:63] ← 00…0

 }

 }

 else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Sy[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Sy[32:63]}

8-167

 }

 }

 Sy is broadcasted to each element of the V register designated by Vx field according to

Cx and Cx2 fields. This instruction is an element-maskable vector instruction.

When Cx=Cx2=0, 64bit data Sy is broadcasted to each element of Vx elements 0 –

VL-1, where its corresponding bit in the VM(M) is 1. When M=0, all mask bits are

regarded as 1.

When Cx=0 and Cx2=1, Sy [32:63] are broadcasted to bits 32 to 63 in each element of

Vx elements 0 – VL-1, where its corresponding bit in the VM(M) is 1. Upper 32bits are

filled with zeros. When M=0, all mask bits are regarded as 1.

When Cx=1 and Cx2=0, Sy [0:31] are broadcasted to bits 0 to 31 in each element of Vx

elements 0 – VL-1, where its corresponding bit in the VM(M) is 1. Lower 32bits are filled

with zeros. When M=0, all mask bits are regarded as 1.

When Cx=Cx2=1, Sy [0:31] and Sy [32:63] are broadcasted to bits 0 to 31 and bits 32 to

63 of each element of Vx elements 0-VL-1. Two VM(M) and VM(M+1) are separately

used as masks for those two 32bit vectors. When M=0, only VM(0) is used for both of

upper and lower parts. In this case, M must be an even number. Otherwise an illegal

instruction format exception occurs.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-168

Vector Move

8.9.25. VMV

 Format : RV

x

9C
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vz

M

 Function:

 for (i = 0 to VL-1) {

 Vx(i) ← Vz(mod((unsigned)(Sy + i), MVL))

 }

 The designated elements of Vz register are sequentially transferred to Vx resgister’s

elements 0 – VL-1 with their corresponding mask bit=1. The starting element posision of

source Vz register is specified by (unsigned) Sy mod MVL. The source elements are

continuously read and rewound from element zero when the operation reaches the last

one. When an immediate value is designated as Sy, the specifiable starting position is

from 0 to 127.

 When the identical V register is designated for Vx and Vz, its result is undefined.

This instruction is an element-maskable vector instruction. In this instruction each bit of

the VM register corresponds to each element of a V register of transfer source. The

target vector elements with its corresponding VM bits are zero stay unchanged.

 The following figure shows a sample operation of this instruction.

8-169

a0Vz a1 a2 a3 a127 a128 a129

1 0 1 1 1 0 1 1

a128 b1 a130 b3

VM

Vx

a130

0

a255

a0 b129 a2 b131a255

Example case: Sy=128, VL=130

a131

0

VL elements (MVL-VL) elements

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cy=0, the y operand is regarded as an immediate unsigned integer from 0 to

127.

 ･Aurora’s MVL is 256.

Example: VL=131, Sy=128

8-170

8.10. Vector Fixed-Point Arithmetic Instructions

Vector Add

8.10.1. VADD

 Format : RV

x

C8
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY + Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

8-171

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]}

 }

 }

 Element i of Vy register or the value of Sy is added to element i of Vz register, and

stored into element i of Vx register where 0<= i< VL and its corresponding mask bit=1 .

When Cs=1 Sy is used instead of Vy register.

 When Cx=0 and Cx2=0, it operates as a 64bit unsigned integer operation.

 When Cx=0 and Cx2=1, it operates as 32 bit unsigned integer operation and its result

is stored in the lower 32bits of the destination. The upper 32bits of the result are filled

with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit unsigned integer operation and its result

is stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32bit unsigned integer operation. Two

consequtive VMs are employed in this case. M must be an even number. Otherwise, an

illegal instruction format exception occurs.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-172

Vector Add Single

8.10.2. VADS

 Format : RV

C

x

x

CA
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

2

Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]

 Vx(i)[0:31] ← sext(Vx(i)[32], 32)

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

8-173

 Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]}

 }

 }

 Element i of Vy register or the value of Sy is added to element i of Vz register, and

stored into element i of Vx register where 0<= i< VL and its corresponding mask bit=1 .

When Cs=1 Sy is used instead of Vy register. Depending on the result a fixed-point

overflow exception can be detected.

 When Cx=0 and Cx2=0, it operates as a 32-bit signed integer operation. The upper

32-bits of the result are filled with extended sign bits.

 When Cx=0 and Cx2=1, it operates as 32 bit signed integer operation and its result is

stored in the lower 32bits of the destination. The upper 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit signed integer operation and its result is

stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit signed integer operation. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

8-174

Vector Add

8.10.3. VADX

 Format : RV

x

8B
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {Vx(i) ← tempY + Vz(i)}

 }

Element i of Vy register or the value of Sy is added to element i of Vz register, and

stored into element i of Vx register where 0<= i< VL and its corresponding mask bit=1 .

When Cs=1 Sy is used instead of Vy register. Depending on the result a fixed-point

overflow exception can be detected.

 It operates as a 64-bit signed integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

8-175

Vector Subtract

8.10.4. VSUB

 Format : RV

x

D8
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY - Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] - Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] - Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

8-176

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] - Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] - Vz(i)[32:63]}

 }

 }

Element i of Vz register is subtracted from element i of Vy register or the value of Sy,

and stored into element i of Vx register where 0<= i< VL and its corresponding mask

bit=1 . When Cs=1 Sy is used instead of Vy register.

 When Cx=0 and Cx2=0, it operates as a 64-bit unsigned integer operation.

 When Cx=0 and Cx2=1, it operates as 32 bit unsigned integer operation and its result

is stored in the lower 32bits of the destination. The upper 32bits of the result are filled

with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit unsigned integer operation and its result

is stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit unsigned integer operation.

Two consequtive VMs are employed in this case. M must be an even number. Otherwise

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

 Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

 Notes:

8-177

Vector Subtract Single

8.10.5. VSBS

 Format : RV

x

DA
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

C

x

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] - Vz(i)[32:63]

 Vx(i)[0:31] ← sext(Vx(i)[32], 32)

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] - Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

8-178

 Vx(i)[0:31] ← tempY[0:31] - Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] - Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] - Vz(i)[32:63]}

 }

 }

Element i of Vz register is subtracted from element i of Vy register or the value of Sy,

and stored into element i of Vx register where 0<= i< VL and its corresponding mask

bit=1 . When Cs=1 Sy is used instead of Vy register. Depending on the result a

fixed-point overflow exception can be detected.

 When Cx=0 and Cx2=0, it operates as a 32-bit signed integer operation. The upper

32-bits of the result are filled with extended sign bit.

 When Cx=0 and Cx2=1, it operates as 32 bit signed integer operation and its result is

stored in the lower 32bits of the destination. The upper 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit signed integer operation and its result is

stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit signed integer operation. Two

consequtive VMs are employed in this case. M must be an even number. Otherwise, an

illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

Notes:

8-179

Vector Subtract

8.10.6. VSBX

 Format : RV

x

9B
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {Vx(i) ← tempY - Vz(i)}

 }

Element i of Vz register is subtracted from element i of Vy register or the value of Sy,

and stored into element i of Vx register where 0<= i< VL and its corresponding mask

bit=1 . When Cs=1 Sy is used instead of Vy register. Depending on the result a

fixed-point overflow exception can be detected.

 It operates as a 64-bit signed integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

8-180

Vector Multiply

8.10.7. VMPY

Format: RV

x

C9
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

2

Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if (Cx2 = 0) {

 if(VM[i]=1) {Vx(i) ← tempY * Vz(i)}

 } else /* if (Cx2 = 1) */ {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] * Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 }

 }

8-181

Element i of Vz register is multiplied by element i of Vy register or the value of Sy, and

stored into element i of Vx register where 0<= i< VL and its corresponding mask bit=1 .

When Cs=1 Sy is used instead of Vy register.

 When Cx2=0, it operates as a 64-bit unsigned integer operation.

 When Cx2=1, it operates as a 32-bit unsigned integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-182

Vector Multiply Single

8.10.8. VMPS

 Format : RV

x

CB
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if (Cx2 = 0) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] * Vz(i)[32:63]

 Vx(i)[0:31] ← sext(Vx(i)[32], 32)

 }

 } else /* if (Cx2 = 1) */ {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] * Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 }

 }

8-183

Element i of Vz register is multiplied by element i of Vy register or the value of Sy, and

stored into element i of Vx register where 0<= i< VL and its corresponding mask bit=1 .

When Cs=1 Sy is used instead of Vy register. Depending on the result it can detect

fixed-point overflow exception.

 It operates as a 32-bit signed integer operation.

 When Cx2=0, the upper 32-bits of the result are filled with extended sign bit.

 When Cx2=1, the upper 32-bits of the result are filled with zero.

This instruction is an element-maskable vector instruction.

 Exceptions:

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

 Notes:

8-184

Vector Multiply

8.10.9. VMPX

Format: RV

x

DB
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {Vx(i) ← tempY * Vz(i)}

 }

Element i of Vz register is multiplied by element i of Vy register or the value of Sy, and

stored into element i of Vx register where 0<= i< VL and its corresponding mask bit=1 .

When Cs=1 Sy is used instead of Vy register. Depending on the result it can detect

fixed-point overflow exception.

 It operates as a 64-bit signed integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

8-185

Vector Multiply

8.10.10. VMPD

Format: RV

x

D9
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {Vx(i) ← tempY[32:63] * Vz(i)[32:63]}

 }

Element i of Vz register is multiplied by element i of Vy register or the value of Sy, and

stored into element i of Vx register where 0<= i< VL and its corresponding mask bit=1 .

When Cs=1 Sy is used instead of Vy register.

 It operates as a 32-bit signed operation. Only lower 32 bits of both source operands

are used. Its results are 64 bit signed integers.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

8-186

Vector Divide

8.10.11. VDIV

 Format : RV

x

E9
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

s

2

C

x

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 else

for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if (Cx2 = 0) {

 if(VM[i]=1) {Vx(i) ← tempY / tempZ}

 } else /* if (Cx2 = 1) */ {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] / tempZ[32:63]

 Vx(i)[0:31] ← 00…0

 }

 }

 }

8-187

 The contents of V register designated by Vz field, or the contents of the S register or

the immediate value designated by Sy field are divided by the contents of V register

designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field. The results are stored into the V register designated by Vx field.

The use of S register or immediate value is specified by Cs and Cs2 field.

Two operands of element i of Vz register, element i of Vy register and the value of Sy,

are used for devision, where 0<= i< VL and its corresponding mask bit=1. Which two of

the three operands are used follows this rule.

 When Cs=0 and Cs2=0, it returns Vy / Vz.

 When Cs=1 and Cs2=0, it returns Sy / Vz.

 When Cs=0 and Cs2=1, it returns Vy / Sy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

Cx2 field switches this operation’s data size.

 When Cx2=0, it operates as a 64-bit unsigned integer operation.

 When Cx2=1, it operates as a 32-bit unsigned integer operation.

This instruction is an element-maskable vector instruction.

When its divisor is zero, division exception is detected.

 Exceptions:

 ･Illegal instruction format exception

 ･Division exception

･Illegal data format exception : When VL > MVL

 Notes:

8-188

Vector Divide Single

8.10.12. VDVS

 Format: RV

x

EB
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

s

2

C

x

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 else

for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if (Cx2 = 0) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] / tempZ[32:63]

 Vx(i)[0:31] ← sext(Vx[32], 32)

 }

 } else /* if (Cx2 = 1) */ {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] / tempZ[32:63]

 Vx(i)[0:31] ← 00…0

8-189

 }

 }

 }

The contents of V register designated by Vz field, or the contents of the S register or

the immediate value designated by Sy field are divided by the contents of V register

designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field. The results are stored into the V register designated by Vx field.

The use of S register or immediate value is specified by Cs and Cs2 field. Depending on

the result it can detect fixed-point overflow exception.

Two operands of element i of Vz register, element i of Vy register and the value of Sy,

are used for devision, where 0<= i< VL and its corresponding mask bit=1. Which two of

the three operands are used follows this rule.

 When Cs=0 and Cs2=0, it returns Vy / Vz.

 When Cs=1 and Cs2=0, it returns Sy / Vz.

 When Cs=0 and Cs2=1, it returns Vy / Sy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

 It operates as a 32-bit signed integer operation.

 When Cx2=0, the upper 32-bits of the result are filled with extended sign bit.

 When Cx2=1, the upper 32-bits of the result are filled with zero.

This instruction is an element-maskable vector instruction.

When its divisor is zero, division exception is detected.

Exceptions:

 ･Illegal instruction format exception

 ･Division exception

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

8-190

Vector Divide

8.10.13. VDVX

 Format : RV

x

FB
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

s

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if(VM[i]=1) {Vx(i) ← tempY / tempZ}

 }

The contents of V register designated by Vz field, or the contents of the S register or

the immediate value designated by Sy field are divided by the contents of V register

designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field. The results are stored into the V register designated by Vx field.

The use of S register or immediate value is specified by Cs and Cs2 field. Depending on

the result it can detect fixed-point overflow exception.

Two operands of element i of Vz register, element i of Vy register and the value of Sy,

are used for devision, where 0<= i< VL and its corresponding mask bit=1. Which two of

the three operands are used follows this rule.

 When Cs=0 and Cs2=0, it returns Vy / Vz.

8-191

 When Cs=1 and Cs2=0, it returns Sy / Vz.

 When Cs=0 and Cs2=1, it returns Vy / Sy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

 It operates as a 64-bit signed integer operation.

This instruction is an element-maskable vector instruction.

When its divisor is zero, division exception is detected.

Exceptions:

 ･Illegal instruction format exception

 ･Division exception

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

Notes:

8-192

Vector Compare

8.10.14. VCMP

 Format : RV

x

B9
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← compare(tempY, Vz(i))}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← compare(tempY[32:63], Vz(i)[32:63])

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← compare(tempY[0:31], Vz(i)[0:31])

 Vx(i)[32:63] ← 00…0

 }

8-193

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← compare(tempY[0:31], Vz(i)[0:31])}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← compare(tempY[32:63],

Vz(i)[32:63])}

 }

 }

 where compare(y, z) is defined as follows.

 compare(y, z) {

 if (y > z) {x ← positive nonzero value}

 else if (y = z) {x ← 00…0}

 else if (y < z) {x ← negative value}

 return x

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are compared with the contents of the V

register designated by Vz field. The results are stored into the V register designated by

Vx field. The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a 64-bit unsigned integer operation.

 When Cx=0 and Cx2=1, it operates as 32 bit unsigned integer operation and its result

is stored in the lower 32bits of the destination. The upper 32bits of the result are filled

with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit unsigned integer operation and its result

is stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit unsigned integer operation.

Two VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

8-194

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-195

Vector Compare Single

8.10.15. VCPS

 Format : RV

x

FA
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

C

x

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← compare(tempY[32:63], Vz(i)[32:63])

 Vx(i)[0:31] ← sext(Vx(i)[32], 32)

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← compare(tempY[32:63], Vz(i)[32:63])

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← compare(tempY[0:31], Vz(i)[0:31])

8-196

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← compare(tempY[0:31], Vz(i)[0:31])}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← compare(tempY[32:63],

Vz(i)[32:63])}

 }

 }

 where compare(y, z) is defined as follows.

 compare(y, z) {

 if (y > z) {x ← positive nonzero value}

 else if (y = z) {x ← 00…0}

 else if (y < z) {x ← negative value}

 return x

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are compared with the contents of the V

register designated by Vz field. The results are stored into the V register designated by

Vx field. The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a 32-bit signed integer operation. The upper

32-bits of the result are filled with extended sign.

 When Cx=0 and Cx2=1, it operates as 32 bit signed integer operation and its result is

stored in the lower 32bits of the destination. The upper 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit signed integer operation and its result is

stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

8-197

 When Cx=1 and Cx2=1, it operates as a packed 32-bit signed integer operation. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

 Notes:

8-198

Vector Compare

8.10.16. VCPX

 Format : RV

x

BA
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {

 if (tempY > Vz(i)) {Vx(i) ← positive nonzero value}

 else if (tempY = Vz(i)) {Vx(i) ← 00…0}

 else if (tempY < Vz(i)) {Vx(i) ← negative value}

 }

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are compared with the contents of the V

register designated by Vz field. The results are stored into the V register designated by

Vx field. The use of S register or immediate value is specified by Cs field.

 It operates as a 64-bit signed integer operation.

8-199

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

 Notes:

8-200

Vector Compare and Select Maximum/Minimum Single

8.10.17. VCMS

 Format : RV

x

8A
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

C

x

M

C

s

C

m

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {

 if(Cm = 0) {Vx(i)[32:63] ← max(tempY[32:63], Vz(i)[32:63])}

 else {Vx(i)[32:63] ← min(tempY[32:63], Vz(i)[32:63])}

 Vx(i)[0:31] ← sext(Vx(i)[32], 32)

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 if(Cm = 0) {Vx(i)[32:63] ← max(tempY[32:63], Vz(i)[32:63])}

 else {Vx(i)[32:63] ← min(tempY[32:63], Vz(i)[32:63])}

 Vx(i)[0:31] ← 00…0

 }

8-201

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 if(Cm = 0) {Vx(i)[0:31] ← max(tempY[0:31], Vz(i)[0:31])}

 else {Vx(i)[0:31] ← min(tempY[0:31], Vz(i)[0:31])}

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {

 if(Cm = 0) {Vx(i)[0:31] ← max(tempY[0:31], Vz(i)[0:31])}

 else {Vx(i)[0:31] ← min(tempY[0:31], Vz(i)[0:31])}

 }

 if((M=0) | (VM(M+1)[i] =1)) {

 if(Cm = 0) {Vx(i)[32:63] ← max(tempY[32:63], Vz(i)[32:63])}

 else {Vx(i)[32:63] ← min(tempY[32:63], Vz(i)[32:63])}

 }

 }

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are compared with the contents of the V

register designated by Vz field, and the larger or smaller values are element-wise

selected according to the Cm field. The results are stored into the V register designated

by Vx field. When Cs=1 Sy is used instead of Vy.

 When Cm=0, the larger value is selected, otherwise the smaller one is selected.

 When Cx=0 and Cx2=0, it operates as a 32-bit signed integer operation. The upper

32-bits of the result are filled with extended sign.

 When Cx=0 and Cx2=1, it operates as 32 bit signed integer operation and its result is

stored in the lower 32bits of the destination. The upper 32bits of the result are filled with

zeros.

8-202

 When Cx=1 and Cx2=0, it operates as 32 bit signed integer operation and its result is

stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit signed integer operation. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception occurs.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-203

Vector Compare and Select Maximum/Minimum

8.10.18. VCMX

Format: RV

x

9A
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

m

Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {

 if(Cm = 0) {Vx(i) ← max(tempY, Vz(i))}

 else {Vx(i) ← min(tempY, Vz(i))}

 }

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are compared with the contents of the V

register designated by Vz field, and the larger or smaller values are element-wise

selected to the Cm field. The results are stored into the V register designated by Vx field.

When Cs=1 Sy is used instead of Vy.

8-204

 When Cm=0, the larger value is selected as the result, otherwise the smaller value is

selected.

 It operates as a 64-bit signed integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-205

8.11. Vector Logical Operation Instructions

Vector And

8.11.1. VAND

 Format : RV

x

C4
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY & Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] & Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] & Vz(i)[0:31]

8-206

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] & Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] & Vz(i)[32:63]}

 }

 }

 Bitwise logical AND operation is performed using the contents of the V register

designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field, and the contents of the V register designated by Vz field. The

results are stored into the V register designated by Vx field. The use of S register or

immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as an operation for 64-bit logical data.

 When Cx=0 and Cx2=1, it operates as 32 bit logical operation and its result is stored in

the lower 32bits of the destination. The upper 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit logical operation and its result is stored in

the upper 32bits of the destination.The lower 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=1, it operates as an operation for packed 32-bit logical data. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

 ･See also 5.7.3 RV type z field.

8-207

Vector OR

8.11.2. VOR

 Format : RV

x

C5
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY | Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] | Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] | Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

8-208

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] | Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] | Vz(i)[32:63]}

 }

 }

 Bitwise logical OR operation is performed using the contents of the V register

designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field, and the contents of the V register designated by Vz field. The

results are stored into the V register designated by Vx field. The use of S register or

immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as an operation for 64-bit logical data.

 When Cx=0 and Cx2=1, it operates as 32 bit logical operation and its result is stored in

the lower 32bits of the destination. The upper 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit logical operation and its result is stored in

the upper 32bits of the destination.The lower 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=1, it operates as an operation for packed 32-bit logical data. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･See also 5.7.3 RV type z field.

8-209

Vector Exclusive OR

8.11.3. VXOR

 Format : RV

x

C6
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY + Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

8-210

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]}

 }

 }

 Bitwise logical exclusive OR operation is performed using the contents of the V register

designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field, and the contents of the V register designated by Vz field. The

results are stored into the V register designated by Vx field. The use of S register or

immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as an operation for 64-bit logical data.

 When Cx=0 and Cx2=1, it operates as 32 bit logical operation and its result is stored in

the lower 32bits of the destination. The upper 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit logical operation and its result is stored in

the upper 32bits of the destination.The lower 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=1, it operates as an operation for packed 32-bit logical data. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

 ･See also 5.7.3 RV type z field.

8-211

Vector Equivalence

8.11.4. VEQV

 Format : RV

x

C7
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY ≡ Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] ≡ Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] ≡ Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

8-212

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] ≡ Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] ≡ Vz(i)[32:63]}

 }

 }

 Bitwise logical equivalence (exclusive-NOR) operation is performed using the contents

of the V register designated by Vy field, or the contents of the S register or the immediate

value designated by Sy field, and the contents of the V register designated by Vz field.

The results are stored into the V register designated by Vx field. The use of S register or

immediate value is specified by Cs field.

See the scalar equivalence (EQV) instruction for the truth table for equivalence

operation.

 When Cx=0 and Cx2=0, it operates as an operation for 64-bit logical data.

 When Cx=0 and Cx2=1, it operates as 32 bit logical operation and its result is stored in

the lower 32bits of the destination. The upper 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit logical operation and its result is stored in

the upper 32bits of the destination.The lower 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=1, it operates as an operation for packed 32-bit logical data. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

 ･See also 5.7.3 RV type z field.

8-213

Vector Leading Zero Count

8.11.5. VLDZ

 Format : RV

x

E7

y z
8 16 24 31

32 63

0

Vx Vz

M

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← Leading zeros of Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Leading zeros of Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Leading zeros of Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Leading zeros of Vz(i)[0:31]}

8-214

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Leading zeros of Vz(i)[32:63]}

 }

 }

 Leading zeros operation is performed using the contents of the V register designated

by Vz field. The number of consecutive zeros is counted from the MSB of the source. The

results are stored into the V register designated by Vx field. If the MSB is 1 the result is 0.

If all bit of the input value is zero, the result is the bit width of the source value.

 When Cx=0 and Cx2=0, it operates as an operation for 64-bit logical data.

 When Cx=0 and Cx2=1, it operates as 32 bit logical operation and its result is stored in

the lower 32bits of the destination. The upper 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit logical operation and its result is stored in

the upper 32bits of the destination.The lower 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=1, it operates as an operation for packed 32-bit logical data. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-215

Vector Population Count

8.11.6. VPCNT

 Format : RV

x

AC

y z
8 16 24 31

32 63

0

Vx Vz

M

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← Population count of Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Population count of Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Population count of Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Population count of Vz(i)[0:31]}

8-216

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Population count of Vz(i)[32:63]}

 }

 }

Population count operation is performed using the contents of the V register

designated by Vz field. The number of bit=1 in the source value is counted. The results

are stored into the V register designated by Vx field. If all bits are 0 the result is zero.

 When Cx=0 and Cx2=0, it operates as an operation for 64-bit logical data.

 When Cx=0 and Cx2=1, it operates as 32 bit logical operation and its result is stored in

the lower 32bits of the destination. The upper 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit logical operation and its result is stored in

the upper 32bits of the destination.The lower 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=1, it operates as an operation for packed 32-bit logical data. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

 Notes:

8-217

Vector Bit Reverse

8.11.7. VBRV

 Format : RV

x

F7

y z
8 16 24 31

32 63

0

Vx Vz

M

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← Bit order reverse of Vz(i)}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Bit order reverse of Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Bit order reverse of Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Bit order reverse of Vz(i)[0:31]}

8-218

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Bit order reverse of Vz(i)[32:63]}

 }

 }

Bit order reverse operation is performed using the contents of the V register

designated by Vz field. The results are stored into the V register designated by Vx field.

 When Cx=0 and Cx2=0, it operates as an operation for 64 bit logical data.

 When Cx=0 and Cx2=1, it operates as 32 bit logical operation and its result is stored in

the lower 32bits of the destination. The upper 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit logical operation and its result is stored in

the upper 32bits of the destination.The lower 32bits of the result are filled with zeros.

 When Cx=1 and Cx2=1, it operates as an operation for packed 32 bit logical data. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-219

Vector Sequential Number

8.11.8. VSEQ

 Format : RV

x

99

y z
8 16 24 31

32 63

0

Vx

M

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← i}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← i

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← i

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← 2 * i}

8-220

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← 2 * i + 1}

 }

 }

A sequence starting from 0 is generated and stored into the V register designated by

Vx field.

 When Cx=0 and Cx2=0, the results are stored as 64-bit signed integer.

 When Cx=0 and Cx2=1, it operates as 32 bit signed integer operation and its result is

stored in the lower 32bits of the destination. The upper 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit signed integer operation and its result is

stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, the results are stored as packed 32-bit signed integer data.

Generated sequential numbers are alternately stored into upper 32-bit and lower 32-bit.

Two VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-221

8.12. Vector Shift Operation Instructions

Vector Shift Left Logical

8.12.1. VSLL

 Format : RV

x

E5
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← Vz(i) << tempY[58:63]}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Vz(i)[32:63] << tempY[59:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Vz(i)[0:31] << tempY[27:31]

8-222

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Vz(i)[0:31] << tempY[27:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Vz(i)[32:63] << tempY[59:63]}

 }

 }

 The contents of V register designated by Vz field are shifted leftwards by the shift

amount which is given by the lowest 6bits of the contents of V register designated by Vy

field, or the contents of the S register or the immediate value designated by Sy field. The

vacant bit positions are filled with zero. The results are stored into the V register

designated by Vx field. The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a 64-bit unsigned integer operation.

 When Cx=0 and Cx2=1, it operates as 32 bit unsigned integer operation and its result

is stored in the lower 32bits of the destination. The upper 32bits of the result are filled

with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit unsigned integer operation and its result

is stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit unsigned integer operation.

Two VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-223

Vector Shift Left Double

8.12.2. VSLD

 Format : RV

x

E4
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

 Function:

 for (i = 0 to VL-1) {

 tempS[0:127] ← (Vy(i), Vz(i)) << Sy[57:63]

 if(VM[i]=1) {Vx(i) ← tempS[0:63]}

 }

 The contents of V register designated by Vy field and are V register designated by Vz

field are concatenated as 128-bit value, and shifted leftwards by the shift amount which is

given by the lowest 7bits of the contents of the S register or the immediate value

designated by Sy field. The vacant bit positions are filled with zero. The upper 64-bits of

results are stored into the V register designated by Vx field.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

8-224

Vector Shift Right Logical

8.12.3. VSRL

 Format : RV

x

F5
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← Vz(i) >> tempY[58:63]}

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Vz(i)[32:63] >> tempY[59:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Vz(i)[0:31] >> tempY[27:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

8-225

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Vz(i)[0:31] >> tempY[27:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Vz(i)[32:63] >> tempY[59:63]}

 }

 }

 The contents of V register designated by Vz field are shifted rightwards by the shift

amount which is given by the lowest 6bits of the contents of V register designated by Vy

field, or the contents of the S register or the immediate value designated by Sy field. The

vacant bit positions are filled with zero. The results are stored into the V register

designated by Vx field. The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a 64-bit unsigned integer operation.

 When Cx=0 and Cx2=1, it operates as 32 bit unsigned integer operation and its result

is stored in the lower 32bits of the destination. The upper 32bits of the result are filled

with zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit unsigned integer operation and its result

is stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit unsigned integer operation.

Two VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-226

Vector Shift Right Double

8.12.4. VSRD

 Format : RV

x

F4
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

 Function:

 for (i = 0 to VL-1) {

 tempS ← (Vz(i), Vy(i)) >> Sy[57:63]

 if(VM[i]=1) {Vx(i) ← tempS[64:127]}

 }

 The contents of V register designated by Vz field and are V register designated by Vy

field are concatenated as a 128-bit value, and shifted rightwards by the shift amount

which is given by the lowest 7bits of the contents of the S register or the immediate value

designated by Sy field. The vacant bit positions are filled with zero. The lower 64-bits of

results are stored into the V register designated by Vx field.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

8-227

Vector Shift Left Arithmetic

8.12.5. VSLA

 Format : RV

x

E6
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Vz(i)[32:63] << tempY[59:63]

 Vx(i)[0:31] ← sext(Vx[32], 32)

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Vz(i)[32:63] << tempY[59:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

8-228

 Vx(i)[0:31] ← Vz(i)[0:31] << tempY[27:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Vz(i)[0:31] << tempY[27:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Vz(i)[32:63] << tempY[59:63]}

 }

 }

 The contents of V register designated by Vz field are shifted leftwards by the shift

amount which is given by the lowest 5bits of the contents of V register designated by Vy

field, or the contents of the S register or the immediate value designated by Sy field. The

vacant bit positions are filled with zero. The results are stored into the V register

designated by Vx field. The use of S register or immediate value is specified by Cs field.

When overflown a fixed-point overflow exception occurs.

 When Cx=0 and Cx2=0, it operates as a 32-bit signed integer operation. The upper

32-bits of the result are filled with extended sign bits.

 When Cx=0 and Cx2=1, it operates as 32 bit signed integer operation and its result is

stored in the lower 32bits of the destination. The upper 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit signed integer operation and its result is

stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit signed integer operation. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

8-229

Vector Shift Left Arithmetic

8.12.6. VSLAX

 Format : RV

x

D4
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

Function :

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {Vx(i) ← Vz(i) << tempY[58:63]}

 }

 The contents of V register designated by Vz field are shifted leftwards by the shift

amount which is given by the lowest 6bits of the contents of V register designated by Vy

field, or the contents of the S register or the immediate value designated by Sy field. The

vacant bit positions are filled with zero. The results are stored into the V register

designated by Vx field. The use of S register or immediate value is specified by Cs field.

An overflow causes fixed-point overflow exception.

 It operates as a 64 bit signed integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

8-230

Vector Shift Right Arithmetic

8.12.7. VSRA

 Format : RV

x

F6
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Vz(i)[32:63] >> tempY[59:63]

 Vx(i)[0:31] ← sext(Vx[32], 32)

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Vz(i)[32:63] >> tempY[59:63]

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Vz(i)[0:31] >> tempY[27:31]

8-231

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Vz(i)[0:31] >> tempY[27:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Vz(i)[32:63] >> tempY[59:63]}

 }

 }

 The contents of V register designated by Vz field are shifted rightwards by the shift

amount which is given by the lowest 5bits of the contents of V register designated by Vy

field, or the contents of the S register or the immediate value designated by Sy field. The

vacant bit positions are filled with the sign of the initial value. The results are stored into

the V register designated by Vx field. The use of S register or immediate value is

specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a 32-bit signed integer operation. The upper

32-bits of the result are filled with extended sign.

 When Cx=0 and Cx2=1, it operates as 32 bit signed integer operation and its result is

stored in the lower 32bits of the destination. The upper 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=0, it operates as 32 bit signed integer operation and its result is

stored in the upper 32bits of the destination.The lower 32bits of the result are filled with

zeros.

 When Cx=1 and Cx2=1, it operates as a packed 32-bit signed integer operation. Two

VMs are employed in this case. M must be an even number. Otherwise, an illegal

instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

8-232

Vector Shift Right Arithmetic

8.12.8. VSRAX

 Format : RV

x

D5
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if(VM[i]=1) {Vx(i) ← Vz(i) >> tempY[58:63]}

 }

 The contents of V register designated by Vz field are shifted rightwards by the shift

amount which is given by the lowest 6bits of the contents of V register designated by Vy

field, or the contents of the S register or the immediate value designated by Sy field. The

vacant bit positions are filled with the sign of the initial value. The results are stored into

the V register designated by Vx field. The use of S register or immediate value is

specified by Cs field.

 It operates as a 64-bit signed integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

8-233

Vector Shift Left and Add

8.12.9. VSFA

 Format : RV

x

D7
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vz

M Sz
C

z

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {Vx(i) ← Sz(i) + (Vz(i) << Sy[61:63])}

 }

 The contents of V register designated by Vz field are shifted left by the shift amount

which is given by the lowest 3bits of the contents of the S register or the immediate value

designated by Sy field, and added to the contents of the S register or the immediate

value designated by Sz field. The vacant bit positions are filled with zero. The results are

stored into the V register designated by Vx field. The use of S register or immediate value

is specified by Cs field.

 It operates as a 64-bit unsigned integer operation.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-234

8.13. Vector Floating-Point Arithmetic Instructions

Vector Floating Add

8.13.1. VFAD

 Format : RV

x

CC
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY + Vz(i)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]

8-235

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] + Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] + Vz(i)[32:63]}

 }

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are added to the contents of the V register

designated by Vz field. The results are stored into the V register designated by Vx field.

The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a double precision floating point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

8-236

･Illegal data format exception : When VL > MVL

 Notes:

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-237

Vector Floating Subtract

8.13.2. VFSB

 Format : RV

C

x

x

DC
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY - Vz(i)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] - Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] - Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

8-238

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] - Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] - Vz(i)[32:63]}

 }

 }

 The contents of V register designated by Vz field are subtracted from the contents of V

register designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field. The results are stored into the V register designated by Vx field.

The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

8-239

 Notes:

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-240

Vector Floating Multiply

8.13.3. VFMP

 Format : RV

x

CD
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← tempY * Vz(i)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] * Vz(i)[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← tempY[32:63] * Vz(i)[32:63]

 Vx(i)[0:31] ← 00…0

 }

8-241

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← tempY[0:31] * Vz(i)[0:31]}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← tempY[32:63] * Vz(i)[32:63]}

 }

 }

 The contents of V register designated by Vz field are multiplied by the contents of V

register designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field. The results are stored into the V register designated by Vx field.

The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

8-242

 Notes:

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-243

Vector Floating Divide

8.13.4. VFDV

 Format : RV

x

DD
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz

M

C

s

C

s

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if (Cx = 0) {

 if(VM[i]=1) {Vx(i) ← tempY / tempZ}

 } else if (Cx = 1) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← tempY[0:31] / tempZ[0:31]

 Vx(i)[32:63] ← 00…0

 }

 }

 }

8-244

 The contents of V register designated by Vz field, or the contents of the S register or

the immediate value designated by Sy field are divided by the contents of V register

designated by Vy field, or the contents of the S register or the immediate value

designated by Sy field. The results are stored into the V register designated by Vx field.

The use of S register or immediate value is specified by Cs and Cs2 field.

 When Cs=0 and Cs2=0, it divides Vy by Vz.

 When Cs=1 and Cs2=0, it divides Sy by Vz.

 When Cs=0 and Cs2=1, it divides Vy by Sy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

 When Cx=0, it operates as a double precision floating-point operation.

 When Cx=1, it operates as a single precision floating-point operation. The lower 32-bits

of the result are filled with zero.

This instruction is an element-maskable vector instruction.

8-245

Exceptions:

 ･Divide exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-246

Vector floating Square Root

8.13.5. VFSQRT

 Format : RV

x

ED

y z
8 16 24 31

32 63

0

C

x

Vx Vy

M

 Function:

 for (i = 0 to VL-1) {

 if (Cx = 0) {

 if(VM[i]=1) {Vx(i) ← Vy(i) }

 } else {

 if(VM[i]=1) {

 Vx(i)[0:31] ←  31:0Vy(i)

 Vx(i)[32:63] ← 00…0

 }

 }

 }

 Square root operation is performed using the contents of the V register designated by

the Vy field. The results are stored into the V register designated by Vx field.

8-247

 When Cx=0, it operates as a double precision floating-point operation.

 When Cx=1, it operates as a single precision floating-point operation. The lower 32-bits

of the result are filled with zero.

This instruction is an element-maskable vector instruction.

Exceptions:

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

8-248

Vector Floating Compare

8.13.6. VFCP

 Format : RV

x

FC
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz

M

C

s

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← compare(tempY, Vz(i))}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← compare(tempY[0:31], Vz(i)[0:31])

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← compare(tempY[32:63], Vz(i)[32:63])

 Vx(i)[0:31] ← 00…0

 }

8-249

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← compare(tempY[0:31], Vz(i)[0:31])}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← compare(tempY[32:63],

Vz(i)[32:63])}

 }

 }

 where compare(y, z) is defined as follows.

 compare(y, z) {

 if (y > z) {x ← positive nonzero value}

 else if (y = z) {x ← 00…0}

 else if (y < z) {x ← negative nonzero value}

 else {x ← quiet NaN}

 return x

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are compared with the contents of the V

register designated by Vz field. The results are stored into the V register designated by

Vx field. The use of S register or immediate value is specified by Cs field.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

8-250

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Invalid operation exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-251

Vector Floating Compare and Select Maximum/Minimum

8.13.7. VFCM

 Format : RV

x

BD
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz

M

C

s

C

m

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if (Cs = 0) {tempY ← Vy(i)}

 else {tempY ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {

 if(Cm = 0) {Vx(i) ← max(temp, Vz(i))}

 else {Vx(i) ← min(tempY, Vz(i))}

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 if(Cm = 0) {Vx(i)[32:63] ← max(tempY[32:63], Vz(i)[32:63])}

 else {Vx(i)[32:63] ← min(tempY[32:63], Vz(i)[32:63])}

 Vx(i)[0:31] ← 00…0

 }

8-252

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 if(Cm = 0) {Vx(i)[0:31] ← max(tempY[0:31], Vz(i)[0:31])}

 else {Vx(i)[0:31] ← min(tempY[0:31], Vz(i)[0:31])}

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {

 if(Cm = 0) {Vx(i)[0:31] ← max(tempY[0:31], Vz(i)[0:31])}

 else {Vx(i)[0:31] ← min(tempY[0:31], Vz(i)[0:31])}

 }

 if((M=0) | (VM(M+1)[i] =1)) {

 if(Cm = 0) {Vx(i)[32:63] ← max(tempY[32:63], Vz(i)[32:63])}

 else {Vx(i)[32:63] ← min(tempY[32:63], Vz(i)[32:63])}

 }

 }

 }

 The contents of the V register designated by Vy field, or the contents of the S register

or the immediate value designated by Sy field are compared with the contents of the V

register designated by Vz field, and the larger or smaller value is selected for each

element according to the Cm field. The results are stored into the V register designated

by Vx field. The use of S register or immediate value is specified by Cs field.

 When Cm=0, the greater value is selected. Or else, the lesser value is selected.

 +0 and -0 are regarded as the same value. If both operands are zero, the result is zero

with the sign of Vz operand.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

8-253

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Invalid operation exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-254

Vector Floating Fused Multiply Add

8.13.8. VFMAD

 Format : RV

x

E2
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz Vw

M

C

s

C

s

2

C

x

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← (tempZ * Vw(i)) + tempY}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← (tempZ[0:31] * Vw(i)[0:31]) + tempY[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← (tempZ[32:63] * Vw(i)[32:63]) + tempY[32:63]

 Vx(i)[0:31] ← 00…0

8-255

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {

 Vx(i)[0:31] ← (tempZ[0:31] * Vw(i)[0:31]) + tempY[0:31]

 }

 if((M=0) | (VM(M+1)[i] =1)) {

 Vx(i)[32:63] ← (tempZ[32:63] * Vw(i)[32:63]) + tempY[32:63]

 }

 }

 }

 The contents of the V register designated by Vz field, or the contents of the S register

or the immediate value designated by Sy field are multiplied by the contents of the V

register designated by Vw field, and added to the contents of the V register designated by

Vy field, or the contents of the S register or the immediate value designated by Sy field.

The results are stored into the V register designated by Vx field. The use of S register or

immediate value is specified by Cs and Cs2 field.

 When Cs=0 and Cs2=0, it calculates Vz * Vw + Vy.

 When Cs=1 and Cs2=0, it calculates Vz * Vw + Sy.

 When Cs=0 and Cs2=1, it calculates Sy * Vw + Vy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

8-256

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･After all operation, normalization is performed only once before outputting result of

calculation.

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-257

Vector Floating Fused Multiply Subtract

8.13.9. VFMSB

 Format : RV

x

F2
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz Vw

M

C

s

C

s

2

C

x

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← (tempZ * Vw(i)) – tempY}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← (tempZ[0:31] * Vw(i)[0:31]) - tempY[0:31]

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← (tempZ[32:63] * Vw(i)[32:63]) - tempY[32:63]

8-258

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {

 Vx(i)[0:31] ← (tempZ[0:31] * Vw(i)[0:31]) - tempY[0:31]

 }

 if((M=0) | (VM(M+1)[i] =1)) {

 Vx(i)[32:63] ← (tempZ[32:63] * Vw(i)[32:63]) - tempY[32:63]

 }

 }

 }

 The contents of the V register designated by Vz field, or the contents of the S register

or the immediate value designated by Sy field are multiplied by the contents of the V

register designated by Vw field, and the contents of the V register designated by Vy field,

or the contents of the S register or the immediate value designated by Sy field are

subtracted from the intermediate result. The results are stored into the V register

designated by Vx field. The use of S register or immediate value is specified by Cs and

Cs2 field.

 When Cs=0 and Cs2=0, it calculates Vz * Vw - Vy.

 When Cs=1 and Cs2=0, it calculates Vz * Vw - Sy.

 When Cs=0 and Cs2=1, it calculates Sy * Vw - Vy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

8-259

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･After all operation, normalization is performed only once before outputting result of

calculation.

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-260

Vector Floating Fused Negative Multiply Add

8.13.10. VFNMAD

 Format : RV

x

E3
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz Vw

M

C

s

C

s

2

C

x

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← - ((tempZ * Vw(i)) + tempY)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← - ((tempZ[0:31] * Vw(i)[0:31]) + tempY[0:31])

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← - ((tempZ[32:63] * Vw(i)[32:63]) + tempY[32:63])

 Vx(i)[0:31] ← 00…0

8-261

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {

 Vx(i)[0:31] ← - ((tempZ[0:31] * Vw(i)[0:31]) + tempY[0:31])

 }

 if((M=0) | (VM(M+1)[i] =1)) {

 Vx(i)[32:63] ← - ((tempZ[32:63] * Vw(i)[32:63]) + tempY[32:63])

 }

 }

 }

 The contents of the V register designated by Vz field, or the contents of the S register

or the immediate value designated by Sy field are multiplied by the contents of the V

register designated by Vw field, and added to the contents of the V register designated by

Vy field, or the contents of the S register or the immediate value designated by Sy field,

and then the sign bit of the result is inversed. The results are stored into the V register

designated by Vx field. The use of S register or immediate value is specified by Cs and

Cs2 field.

 When Cs=0 and Cs2=0, it calculates Vz * Vw + Vy.

 When Cs=1 and Cs2=0, it calculates Vz * Vw + Sy.

 When Cs=0 and Cs2=1, it calculates Sy * Vw + Vy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

8-262

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･After all operation, normalization is performed only once before outputting result of

calculation.

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-263

Vector Floating Fused Negative Multiply Subtract

8.13.11. VFNMSB

 Format : RV

x

F3
 Sy

y

C

y

z
8 16 24 31

32 63

0

C

x

Vx Vy Vz Vw

M

C

s

C

s

2

C

x

2

 Function:

 if ((Cs = 1) & (Cs2 = 1)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if ((Cs = 0) & (Cs2 = 0)) {tempY ← Vy(i); tempZ ← Vz(i)}

 else if ((Cs = 1) & (Cs2 = 0)) {tempY ← Sy; tempZ ← Vz(i)}

 else if ((Cs = 0) & (Cs2 = 1)) {tempY ← Vy(i); tempZ ← Sy}

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← - ((tempZ * Vw(i)) - tempY)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← - ((tempZ[0:31] * Vw(i)[0:31]) - tempY[0:31])

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← - ((tempZ[32:63] * Vw(i)[32:63]) - tempY[32:63])

 Vx(i)[0:31] ← 00…0

8-264

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {

 Vx(i)[0:31] ← - ((tempZ[0:31] * Vw(i)[0:31]) - tempY[0:31])

 }

 if((M=0) | (VM(M+1)[i] =1)) {

 Vx(i)[32:63] ← - ((tempZ[32:63] * Vw(i)[32:63]) - tempY[32:63])

 }

 }

 }

 The contents of the V register designated by Vz field, or the contents of the S register

or the immediate value designated by Sy field are multiplied by the contents of the V

register designated by Vw field, and the contents of the V register designated by Vy field,

or the contents of the S register or the immediate value designated by Sy field are

subtracted from the intermediate result, and then the sign bit of the result is inversed. The

results are stored into the V register designated by Vx field. The use of S register or

immediate value is specified by Cs and Cs2 field.

 When Cs=0 and Cs2=0, it calculates Vz * Vw - Vy.

 When Cs=1 and Cs2=0, it calculates Vz * Vw - Sy.

 When Cs=0 and Cs2=1, it calculates Sy * Vw - Vy.

 When Cs=1 and Cs2=1, illegal instruction format exception occurs.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

8-265

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･After all operation, normalization is performed only once before outputting result of

calculation.

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-266

Vector floating Reciprocal

8.13.12. VRCP

 Format : RV

x

E1

y z
8 16 24 31

32 63

0

C

x

Vx Vy

M

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← approximate value of (1/Vy)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← approximate value of (1/Vy[0:31])

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← approximate value of (1/Vy[32:63])

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← approximate value of (1/Vy[0:31])}

8-267

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← approximate value of

(1/Vy[32:63])}

 }

 }

 The approximate value for the reciprocal of the contents of V register designated by Vy

is calculated. The results are stored into the V register designated by the Vx field.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

 The precision of the approximation is system dependent.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

 ･Divide exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

8-268

Vector floating Reciprocal Square Root

8.13.13. VRSQRT

 Format : RV

x

F1

y z
8 16 24 31

32 63

0

C

x

Vx Vy

M

C

m

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if ((Cx = 0) & (Cx2 = 0)) {

 if(VM[i]=1) {Vx(i) ← approximate value of (1/ Vy)}

 } else if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← approximate value of (1/  31:0Vy)

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← approximate value of (1/  63:32Vy)

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

8-269

 if(VM(M)[i]=1) {Vx(i)[0:31] ← approximate value of (1/  31:0Vy)}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← approximate value of (1/

 63:32Vy)}

 }

 }

 The approximate value for the reciprocal square root of the contents of V register

designated by Vy is calculated. The results are stored into the V register designated by

the Vx field.

 The Cm field specifies the behavior of this operation at zero division. When Cm=0, a

division exception occurs and the result is infinity which has same sign with the input

value. When Cm=1, divide exception does not occur and the result is positive zero.

 When Cx=0 and Cx2=0, it operates as a double precision floating-point operation.

 When Cx=0 and Cx2=1, it operates as a 32 bit single precision floating point operation

and its result is stored in the lower 32bits of the destination. The upper 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=0, it operates as a 32 bit single precision floating point operation

and its result is stored in the upper 32bits of the destination.The lower 32bits of the result

are filled with zeros.

 When Cx=1 and Cx2=1, it operates as a packed single precision floating-point

operation. Two VMs are employed in this case. M must be an even number. Otherwise,

an illegal instruction format exception is generated.

 The precision of the approximation is system dependent.

This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

 ･Divide exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

8-270

Vector Convert to Fixed Point

8.13.14. VFIX

 Format : RV

x

E8

y z
8 16 24 31

32 63

0

Vx Vy

M

C

x

C

m

Rvz

C

x

2

 Function:

 if ((Cm = 1) & (Cx = 0) & (Cx2 = 0)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if (Cm = 0) {

 if(VM[i]=1) {

 if (Cx = 0) {Vx(i)[32:63] ← Convert double to int32(Vy)}

 else {Vx(i)[32:63] ← Convert single to int32(Vy[0:31])}

 if (Cx2 = 0) {Vx(i)[0:31] ← sext(Vx[32], 32)}

 else {Vx(i)[0:31] ← 00…0}

 }

 } else /* if (Cm = 1) */ {

 if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Convert single to int32(Vy[0:31])

 Vx(i)[32:63] ← 00…0

 }

8-271

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Convert single to int32(Vy[32:63])

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Convert single to int32(Vy[0:31])}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Convert single to

int32(Vy[32:63])}

 }

 }

 The contents of the V register designated by Vy field are converted from floating-point

data format to fixed-point data format. The results are stored into the V register

designated by Vx field.

 The result is rounded to an integer according to the rounding mode specified by the

lowest 4bit of Rvz field as follows. When Rvz is not specified as a valid mode, the

conversion result is undefined.

 0000:Round according to the IRM field in PSW.

 1000:Round towards Zero

 1001:Round towards Plus infinity

 1010:Round towards Minus infinity

 1011:Round to Nearest (ties to even)

 1100:Round to Nearest (ties to away)

 other:RFU

 When Cm=0 and Cx=0, it operates as a conversion from double precision

floating-point data to 32-bit signed integer. The upper 32-bits of the result are filled with

extended sign if Cx2=0, or else filled with zero.

 When Cm=0 and Cx=1, it operates as conversion from single precision floating-point

data to 32-bit signed integer. The upper 32-bits of the result are filled with extended sign

if Cx2=0, or else filled with zero.*

8-272

 When Cm=1 and Cx=1 and Cx2=0, it operates like conversion from packed single

precision floating-point data to packed 32-bit signed integer, but the lower 32-bits of the

result are filled with zeros. Having M of an odd number is allowed.

 When Cm=1 and Cx=0 and Cx2=1, it operates like conversion from packed single

precision floating-point data to packed 32-bit signed integer, but the upper 32 bits of the

result are filled with zeros. Having M of an odd number is allowed.

 When Cm=1 and Cx=1 and Cx2=1, it operates as conversion from packed single

precision floating-point data to packed 32-bit signed integer. Two VMs are employed in

this case. M must be an even number. Otherwise, an illegal instruction format exception

is generated.

 When Cm=1 and Cx=0 and Cs2=0, illegal instruction format exception occurs.

 When the conversion result exceeds the representable range of 32-bit signed integer,

an invalid operation exception occurs. When an invalid operation exception occurs, the

result is undefined.

 This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･Refer to a form change item in Chapter 4 about the numerical value expression

range of the change (restriction).

8-273

Vector Convert to Fixed Point

8.13.15. VFIXX

 Format : RV

x

A8

y z
8 16 24 31

32 63

0

Vx Vy

M

Rvz

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {Vx(i) ← Convert double to int64(Vy(i))}

 }

 The contents of the V register designated by Vy field are converted from floating-point

data format to fixed-point data format. The results are stored into the V register

designated by Vx field.

 The result is rounded to an integer according to the rounding mode which is specified

by the lowest 4bit of Rvz field as follows. When Rvz =RFU, the conversion result is

undefined.

 0000:Round according to the IRM field in PSW.

 1000:Round toward Zero

 1001:Round toward Plus infinity

 1010:Round toward Minus infinity

 1011:Round to Nearest (ties to even)

 1100:Round to Nearest (ties to away)

8-274

 other:RFU

 It operates as a conversion from double precision floating-point data to 64-bit signed

integer.

 When the conversion result exceeds the representable range of 64-bit signed integer,

an invalid operation exception occurs. When an invalid operation exception occurs, the

result is undefined.

 This instruction is an element-maskable vector instruction.

Exceptions:

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･Refer to a form change item in Chapter 4 about the numerical value expression

range of the change (restriction).

8-275

Vector Convert to Floating Point

8.13.16. VFLT

 Format : RV

x

F8

y z
8 16 24 31

32 63

0

Vx Vy

M

C

x

C

m

C

x

2

 Function:

 if ((Cm = 1) & (Cx = 0) & (Cx2 = 0)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if (Cm = 0) {

 if(VM[i]=1) {

 if (Cx = 0) {

 Vx(i) ← Convert int32 to double(Vy)}

 } else {

 Vx(i)[0:31] ← Convert int32 to single(Vy[32:63])

 Vx(i)[32:63] ← 00…0

 }

 }

 } else {

 if ((Cx = 1) & (Cx2 = 0)) {

 if(VM[i]=1) {

 Vx(i)[0:31] ← Convert int32 to single(Vy[0:31])

8-276

 Vx(i)[32:63] ← 00…0

 }

 } else if ((Cx = 0) & (Cx2 = 1)) {

 if(VM[i]=1) {

 Vx(i)[32:63] ← Convert int32 to single(Vy[32:63])

 Vx(i)[0:31] ← 00…0

 }

 } else if ((Cx = 1) & (Cx2 = 1)) {

 if(VM(M)[i]=1) {Vx(i)[0:31] ← Convert int32 to single(Vy[0:31])}

 if((M=0) | (VM(M+1)[i] =1)) {Vx(i)[32:63] ← Convert int32 to

single(Vy[32:63])}

 }

 }

 The contents of the V register designated by Vy field are converted from fixed-point

data format to floating-point data format. The results are stored into the V register

designated by Vx field.

 When Cm=0 and Cx=0, it operates as a conversion from 32-bit signed integer to

double precision floating-point data.

 When Cm=0 and Cx=1, it operates as a conversion from 32-bit signed integer to single

precision floating-point data. The lower 32-bits of the result are filled with zero.

 When Cm=1 and Cx=1 and Cx2=0, it operates as a conversion from packed 32-bit

signed integer to packed single precision floating-point data, but the lower 32-bits of the

result are filled with zeros. Having M of an odd number is allowed.

 When Cm=1 and Cx=0 and Cx2=1, it operates like a conversion from packed 32-bit

signed integer to packed single precision floating-point data, but the upper 32 bits of the

result are filled with zeros. Having M of an odd number is allowed.

 When Cm=1 and Cx=1 and Cx2=1, it operates like a conversion from packed 32-bit

signed integer to packed single precision floating-point data. Two VMs are employed in

this case. M must be an even number. Otherwise, an illegal instruction format exception

is generated.

 When Cm=1 and Cx=0 and Cs2=0, illegal instruction format exception occurs.

8-277

 An inexact exception is raised when the conversion results in degradation of the

precision.

 This instruction is an element-maskable vector instruction.

Exceptions:

･Illegal instruction format exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

8-278

Vector Convert to Floating Point

8.13.17. VFLTX

 Format : RV

x

B8

y z
8 16 24 31

32 63

0

Vx Vy

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {Vx(i) ← Convert int64 to double(Vy(i))}

 }

 The contents of the V register designated by Vy field are converted from fixed-point

data format to floating-point data format. The results are stored into the V register

designated by Vx field.

 It operates as a conversion from 64-bit signed integer to double precision floating-point

data.

 An inexact exception is raised when the conversion results in degradation of the

precision.

 This instruction is an element-maskable vector instruction.

Exceptions:

･Inexact exception

･Illegal data format exception : When VL > MVL

8-279

Vector Convert to Single-format

8.13.18. VCVS

 Format : RV

x

9F

y z
8 16 24 31

32 63

0

Vx Vy

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {

 Vx(i)[0:31]← Convert double to single(Vy(i))

 Vx(i)[32:63]← 00…0

 }

 }

 The contents of the V register designated by Vy field are converted from double

precision floating-point data format to single precision floating-point data format. The

results are stored into the V register designated by Vx field.

This instruction is an element-maskable vector instruction.

Exceptions:

･floating-point overflow exception

･floating-point underflow exception

･Invalid operation exception

･Inexact exception

 ･Illegal data format exception : When VL > MVL

8-280

Vector Convert to Double-format

8.13.19. VCVD

 Format : RV

x

8F

y z
8 16 24 31

32 63

0

Vx Vy

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {Vx(i) ← Convert single to double(Vy(i)[0:31])}

 }

 The contents of the V register designated by Vy field are converted from single

precision floating-point data format to double precision floating-point data format. The

results are stored into the V register designated by Vx field.

This instruction is an element-maskable vector instruction.

Exceptions:

･Invalid operation exception

･Illegal data format exception : When VL > MVL

 Notes:

8-281

8.14. Vector Reduction Instructions

Vector Sum Single

8.14.1. VSUMS

 Format : RV

x

EA

y z
8 16 24 31

32 63

0

Vx Vy

M

C

x

2

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {tempY(i) ← Vy(i)}

 else {tempY(i) ← 0}

 }

 Vx(0)[32:63] ← Σ(tempY(0)[32:63], tempY(1)[32:63], ……, tempY(VL-1)[32:63])

 if (Cx2 = 0) {Vx(0)[0:31] ← sext(Vx(0)[32], 32)}

 else {Vx(0)[0:31] ← 00…0}

 The 32-bit signed interger sum of elements 0 to VL of the V register designated by Vy

field is calculated, and the result is stored in the lower 32 bits of element 0 of the V

register designated by Vx field.

When Cx2=0, the bits 0 to 31 of V register designated by Vx field are filled with the

value of bit 32 for sign extension. When Cx2=1, the bits 0 to 31 of V register designated

by Vx field are filled with zero.

8-282

The calculation order of the summation is system dependent.

This instruction is an element-maskable vector instruction. The elements with mask=1

are only taken for calculation. The elements with mask=0 are ignored.

When the masks for elements 0 to VL-1 are all 0, the result is 0.

 When Fixed-point overflow exception occurs by the calculation, the result is undefined.

Exceptions:

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

Notes:

8-283

Vector Sum

8.14.2. VSUMX

 Format : RV

x

AA

y z
8 16 24 31

32 63

0

Vx Vy

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {tempY(i) ← Vy(i)}

 else {tempY(i) ← 0}

 }

 Vx(0) ← Σ(tempY(0), tempY(1), ……, tempY(VL-1))

 The 64 bit signed interger sum of elements 0 to VL of the V register designated by Vy

field is calculated, and the result is stored in the element 0 of the V register designated by

Vx field.

The calculation order of the summation is system dependent.

This instruction is an element-maskable vector instruction. The elements with mask=1

are only taken for calculation. The elements with mask=0 are ignored.

When the masks for elements 0 to VL-1 are all 0, the result is 0.

 When Fixed-point overflow exception occurs by the calculation, the result is undefined.

8-284

 Exceptions:

 ･Fixed-point overflow exception

･Illegal data format exception : When VL > MVL

 Notes:

8-285

Vector Floating Sum

8.14.3. VFSUM

 Format : RV

x

EC

y z
8 16 24 31

32 63

0

C

x

Vx Vy

M

 Function:

 for (i = 0 to VL-1) {

 if(VM[i]=1) {tempY(i) ← Vy(i)}

 else {tempY(i) ← 0}

 }

 if (Cx = 0) {

 Vx(0) ← Σ(tempY(0), tempY(1), ……, tempY(VL-1))

 } else {

 Vx(0)[0:31] ← Σ(tempY(0)[0:31], tempY(1)[0:31], ……, tempY(VL-1)[0:31])

 Vx(0)[32:63] ← 00…0

 }

 The floating-point sum of elements 0 to VL of the V register designated by Vy field is

calculated, and the result is stored in the element 0 of the V register designated by Vx

field.

8-286

 When Cx=0, the input data and the result are regarded as double-precision floating

point data. When Cx=1, it is regarded as single-precision floating point data.

The calculation order of the summation and normalization is system dependent.

 When Floating-point overflow exception or Floating-point underflow exception occurs

by the calculation, the result is undefined.

 When the input data is NaN, invalid operation exception occurs and the result is NaN.

This instruction is an element-maskable vector instruction. The elements with mask=1

are only taken for calculation. The elements with mask=0 are ignored.

When the masks for elements 0 to VL-1 are all 0, the result is 0.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

8-287

Vector Maximum/Minimum Single

8.14.4. VMAXS

 Format : RV

x

BB

y z
8 16 24 31

32 63

0

Vx Vy

M

C

t

C

m

C

x

2

Function :

/* Elements with their corresponding mask=1 are only used in the max/min calculation

below.*/

 if (Cm = 0) {

 Vx(0)[32:63] ← max(Vy(0)[32:63], Vy(1)[32:63], ……, Vy(VL-1)[32:63])

 Vx(MVL / 64) ← element number of

 (max(Vy(0)[32:63], Vy(1)[32:63], ……, Vy(VL-1)[32:63]))

 } else /* if (Cm = 1) */ {

 Vx(0)[32:63] ← min (Vy(0)[32:63], Vy(1)[32:63], ……, Vy(VL-1)[32:63])

 Vx(MVL / 64) ← element number of

 (min(Vy(0)[32:63], Vy(1)[32:63], ……, Vy(VL-1)[32:63]))

 }

 if (Cx2 = 0) {Vx(0) [0:31] ← sext(Vx[32], 32)}

 else {Vx(0) [0:31] ← 00…0}

8-288

 An element with the largest/smallest value as a 32 bit signed integer is searched from

the elements 0 to VL-1 of the V register specified by Vy field. The upper 32 bits of the Vy

register elements are not referred in this operation. When Cm=0, largest element is

chosen, otherwise the smallest one is taken as the result. The max/min result is stored in

element 0 of the V register specified by the x field.

When Cx2=0, the upper 32-bits of the result are filled with extended sign bits. When

Cx2=1, the upper 32-bits of the result are filled with zeros.

The element position corresponding to the maximum value (Cm=0) or the minimum

value (Cm=1) is also stored in the element MVL/64 of the V register specified by the x

field at the same time.

 When multiple elements contain the maximum (Cm=0) or minimum value (Cm=1), the

result element position is specified by the Ct bit as follows. If Ct=0, the result is the

element position at which the result value is firstly found (the smallest position number.) If

Ct=1, the result is the last element position at which the result value is found (the largest

position number.)

This instruction is an element-maskable vector instruction. Only elements with mask =

1 are taken for this computation. The elements with mask = 0 are ignored. When mask

bits for elements 0 to VL-1 are all 0, the result max/min value of this operation is 0 and

the element number returned for this operation is 64bits of 1 (111..111) .

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

 ･MVL is 256 in Aurora.

8-289

Vector Maximum/Minimum

8.14.5. VMAXX

 Format : RV

x

AB

y z
8 16 24 31

32 63

0

Vx Vy

M

C

t

C

m

 Function:

/* Elements with their corresponding mask=1 are only used in the max/min calculation

below.*/

 if (Cm = 0) {

 Vx(0) ← max(Vy(0), Vy(1), ……, Vy(VL-1))

 Vx(MVL / 64) ← Element number of (max(Vy(0), Vy(1), ……, Vy(VL-1)))

 } else {

 Vx(0) ← min (Vy(0), Vy(1), ……, Vy(VL-1))

 Vx(MVL / 64) ← Element number of (min(Vy(0), Vy(1), ……, Vy(VL-1)))

 }

An element with the largest/smallest value of 64 bit signed integer is searched from the

elements 0 to VL-1 of the V register specified by Vy field. When Cm=0, largest element is

chosen, otherwise the smallest one is taken as the result. The max/min result is stored in

element 0 of the V register specified by the x field.

The element position corresponding to the maximum value (Cm=0) or the minimum

value (Cm=1) is also stored in the element MVL/64 of the V register specified by the x

field at the same time.

 When multiple elements contain the maximum (Cm=0) or minimum value (Cm=1), the

result element position is specified by the Ct bit as follows. If Ct=0, the result is the

8-290

element position at which the result value is firstly found (the smallest position number.) If

Ct=1, the result is the last element position at which the result value is found (the largest

position number.)

This instruction is an element-maskable vector instruction. Only elements with mask =

1 are taken for this computation. The elements with mask = 0 are ignored. When mask

bits for elements 0 to VL-1 are all 0, the result max/min value of this operation is 0 and

the element number returned for this operation is 64bits of 1 (111..111) .

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

 ･MVL is 256 in Aurora.

8-291

Vector Floating Maximum/Minimum

8.14.6. VFMAX

 Format : RV

x

AD

y z
8 16 24 31

32 63

0

C

x

Vx Vy

M

C

t

C

m

 Function:

/* Elements with their corresponding mask=1 are only used in the max/min calculation

below.*/

 if (Cm = 0) {

 if (Cx = 0) {

 Vx(0) ← max(Vy(0), Vy(1), ……, Vy(VL-1))

 Vx(MVL / 64) ← Element number of (max(Vy(0), Vy(1), ……, Vy(VL-1)))

 } else {

 Vx(0)[0:31] ← max(Vy(0)[0:31], Vy(1)[0:31], ……, Vy(VL-1)[0:31])

 Vx(0)[32:63] ← 00…0

 Vx(MVL / 64) ← Element number of

 (max(Vy(0)[0:31], Vy(1)[0:31], ……, Vy(VL-1)[0:31]))

 }

 } else {

 if (Cx = 0) {

 Vx(0) ← min(Vy(0), Vy(1), ……, Vy(VL-1))

 Vx(MVL / 64) ← Element number of (min(Vy(0), Vy(1), ……, Vy(VL-1)))

8-292

 } else {

 Vx(0)[0:31] ← min(Vy(0)[0:31], Vy(1)[0:31], ……, Vy(VL-1)[0:31])

 Vx(0)[32:63] ← 00…0

 Vx(MVL / 64) ← Element number of

 (min(Vy(0)[0:31], Vy(1)[0:31], ……, Vy(VL-1)[0:31]))

 }

 }

An element with the largest/smallest floating point value is searched from the elements

0 to VL-1 of the V register specified by Vy field. When Cm=0, largest element is chosen,

otherwise the smallest one is taken as the result. The max/min result is stored in element

0 of the V register specified by the x field.

The element position corresponding to the maximum value (Cm=0) or the minimum

value (Cm=1) is also stored in the element MVL/64 of the V register specified by the x

field at the same time.

 When multiple elements contain the maximum (Cm=0) or minimum value (Cm=1), the

result element position is specified by the Ct bit as follows. If Ct=0, the result is the

element position at which the result value is firstly found (the smallest position number.) If

Ct=1, the result is the last element position at which the result value is found (the largest

position number.)

This instruction is an element-maskable vector instruction. Only elements with mask =

1 are taken for this computation. The elements with mask = 0 are ignored. When mask

bits for elements 0 to VL-1 are all 0, the result max/min value of this operation is 0 and

the element number returned for this operation is 64bits of 1 (111..111) .

When Cx=0, the input data and the result are regarded as double-precision floating

point data. When Cx=1, it is regarded as single-precision floating point data.

 When any of the input data is sNaN, invalid operation exception occurs and the results

are undefined.

 When all of the input data is qNaN, the result for maximum/minimum value is qNaN and

the element number is any of element number which mask is ‘1’.

 +0 and -0 are regarded as the same value. If the maximum/minimum value is zero and

there are multiple elements equal to zero, the result for maximum/minimum value is zero

with the sign of the element which is specified by the Ct bit in the same manner with

element number result.

 Exceptions:

8-293

･Invalid operation exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･MVL is 256 in Aurora.

8-294

Vector Reduction AND

8.14.7. VRAND

 Format : RV

x

88

y z
8 16 24 31

32 63

0

Vx Vy

M

 Function:

 tempY ← 111…1

 for (i = 0 to VL-1) {

 if(VM[i]=1) {tempY ← tempY & Vy(i)}

 }

 Vx(0) ← tempY

 Elements 0 to VL-1 of the V register designated by Vy field are bitwise-ANDed together.

The result is stored in element 0 of the V register designated by Vx field.

This instruction is an element-maskable vector instruction. Only elements

coresponding mask=1 are taken for the bitwise-AND operation.

When all mask bits of elements 0 to VL-1 are 0, the result is 64bits of one (11…11.)

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-295

Vector Reduction OR

8.14.8. VROR

 Format : RV

x

98

y z
8 16 24 31

32 63

0

Vx Vy

M

 Function:

 tempY ← 000…0

 for (i = 0 to VL-1) {

 if(VM[i]=1) {tempY ← tempY | Vy(i)}

 }

 Vx(0) ← tempY

Elements 0 to VL-1 of the V register designated by Vy field are bitwise-ORed together.

The result is stored in element 0 of the V register designated by Vx field.

This instruction is an element-maskable vector instruction. Only elements

coresponding mask=1 are taken for the bitwise-OR operation.

When all mask bits of elements 0 to VL-1 are 0, the result is 64bits of zero (00…00.)

 Exceptions:

･Illegal data format exception : When VL > MVL

8-296

Vector Reduction Exclusive OR

8.14.9. VRXOR

 Format : RV

x

89

y z
8 16 24 31

32 63

0

Vx Vy

M

 Function:

 tempY ← 000…0

 for (i = 0 to VL-1) {

 if(VM[i]=1) {tempY ← tempY + Vy(i)}

 }

 Vx(0) ← tempY

Elements 0 to VL-1 of the V register designated by Vy field are bitwise-XORed together.

The result is stored in element 0 of the V register designated by Vx field.

This instruction is an element-maskable vector instruction. Only elements

coresponding mask=1 are taken for the bitwise-XOR operation.

When all mask bits of elements 0 to VL-1 are 0, the result is 64bits of zero (00…00.)

Exceptions:

･Illegal data format exception : When VL > MVL

8-297

8.15. Vector Iterative Operation Instructions

Vector Floating Iteration Add

8.15.1. VFIA

 Format : RV

x

CE

y z
8 16 24 31

32 63

0

Vx Vy

 Sy
C

x

C

y

 Function:

 if (Cx = 0) {

 for (i = 0 to VL-1) {

 Vx(i) ← Vy(i) + Vx(i-1), where Vx(-1)=Sy

 }

 } else {

 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← Vy(i)[0:31] + Vx(i-1)[0:31], where Vx(-1)=Sy

 Vx(i)[32:63] ← 00…0

 }

 }

An iterative recurrence opration Vx[i]=Vy[i]+Vx[i-1] is performed for each i of 0 - VL-1,

where Sy is used as Vx[-1].

8-298

Vx indicates the V register designated by Vx field, and Vy is the V register designated

by Vy field. Vx[i] is the i-th element of Vx, Vy[i] is Vy’s element i.

 When Cx=0, the input data and the result are regarded as double-precision floating

point data, otherwise (when Cx=1) it is regarded as single-precision floating point data.

 This instruction doesn’t have the element masking feature.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cy=0, y operand is the immediate value of signed integers(-64 ~ 63).

8-299

Vector Floating Iteration Subtract

8.15.2. VFIS

 Format : RV

x

DE

y z
8 16 24 31

32 63

0

Vx Vy

 Sy
C

x

C

y

 Function:

 if (Cx = 0) {

 for (i = 0 to VL-1) {

 Vx(i) ← Vy(i) - Vx(i-1), where Vx(-1)=Sy

 }

 } else {

 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← Vy(i)[0:31] - Vx(i-1)[0:31], where Vx(-1)=Sy

 Vx(i)[32:63] ← 00…0

 }

 }

An iterative recurrence opration Vx[i]=Vy[i]-Vx[i-1] is performed for each i of 0 - VL-1,

where Sy is used as Vx[-1].

Vx indicates the V register designated by Vx field, and Vy is the V register designated

by Vy field. Vx[i] is the i-th element of Vx, Vy[i] is Vy’s element i.

8-300

 When Cx=0, the input data and the result are regarded as double-precision floating

point data, otherwise (when Cx=1) it is regarded as single-precision floating point data.

 This instruction doesn’t have the element masking feature.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cy=0, y operand is the immediate value of signed integers(-64 ~ 63).

8-301

Vector Floating Iteration Multiply

8.15.3. VFIM

 Format : RV

x

CF

y z
8 16 24 31

32 63

0

Vx Vy

C

x
 Sy

C

y

 Function:

 if (Cx = 0) {

 for (i = 0 to VL-1) {

 Vx(i) ← Vy(i) * Vx(i-1), where Vx(-1)=Sy

 }

 } else {

 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← Vy(i)[0:31] * Vx(i-1)[0:31], where Vx(-1)=Sy

 Vx(i)[32:63] ← 00…0

 }

 }

An iterative recurrence opration Vx[i]=Vy[i]*Vx[i-1] is performed for each i of 0 - VL-1,

where Sy is used as Vx[-1].

Vx indicates the V register designated by Vx field, and Vy is the V register designated

by Vy field. Vx[i] is the i-th element of Vx, Vy[i] is Vy’s element i.

8-302

 When Cx=0, the input data and the result are regarded as double-precision floating

point data, otherwise (when Cx=1) it is regarded as single-precision floating point data.

 This instruction doesn’t have the element masking feature.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cy=0, y operand is the immediate value of signed integers(-64 ~ 63).

8-303

Vector Floating Iteration Add and Multiply

8.15.4. VFIAM

 Format : RV

x

EE
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

C

x

 Function:

 if (Cx = 0) {

 for (i = 0 to VL-1) {

 Vx(i) ← (Vy(i) + Vx(i-1)) * Vz(i), where Vx(-1)=Sy

 }

 } else {

 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← (Vy(i)[0:31] + Vx(i-1)[0:31]) * Vz(i)[0:31], where Vx(-1)=Sy

 Vx(i)[32:63] ← 00…0

 }

 }

An iterative recurrence opration Vx[i]=(Vy[i]+Vx[i-1])*Vz[i] is performed for each i of 0 -

VL-1, where Sy is used as Vx[-1].

Vx indicates the V register designated by Vx field, Vy is the V register designated by Vy

field, and Vz is the V register specified by Vz field. Vx[i] is the i-th element of Vx, same for

Vy and Vz.

8-304

 When Cx=0, the input data and the result are regarded as double-precision floating

point data, otherwise (when Cx=1) it is regarded as single-precision floating point data.

 This instruction doesn’t have the element masking feature.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cy=0, y operand is the immediate value of signed integers(-64 ~ 63).

8-305

Vector Floating Iteration Subtract and Multiply

8.15.5. VFISM

 Format : RV

x

FE
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

C

x

 Function:

 if (Cx = 0) {

 for (i = 0 to VL-1) {

 Vx(i) ← (Vy(i) - Vx(i-1)) * Vz(i), where Vx(-1)=Sy

 }

 } else {

 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← (Vy(i)[0:31] - Vx(i-1)[0:31]) * Vz(i)[0:31], where Vx(-1)=Sy

 Vx(i)[32:63] ← 00…0

 }

 }

An iterative recurrence opration Vx[i]=(Vy[i]-Vx[i-1])*Vz[i] is performed for each i of 0 -

VL-1, where Sy is used as Vx[-1].

Vx indicates the V register designated by Vx field, Vy is the V register designated by Vy

field, and Vz is the V register specified by Vz field. Vx[i] is the i-th element of Vx, same for

Vy and Vz.

8-306

 When Cx=0, the input data and the result are regarded as double-precision floating

point data, otherwise (when Cx=1) it is regarded as single-precision floating point data.

 This instruction doesn’t have the element masking feature.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

 Notes:

 ･When Cy=0, y operand is the immediate value of signed integers(-64 ~ 63).

8-307

Vector Floating Iteration Multiply and Add

8.15.6. VFIMA

 Format : RV

x

EF
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

C

x

 Function:
 if (Cx = 0) {

 for (i = 0 to VL-1) {

 Vx(i) ← Vy(i) + Vx(i-1) * Vz(i), where Vx(-1)=Sy

 }

 } else {

 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← Vy(i)[0:31] + Vx(i-1)[0:31] * Vz(i)[0:31], where Vx(-1)=Sy

 Vx(i)[32:63] ← 00…0

 }

 }

An iterative recurrence opration Vx[i]=Vy[i] + Vx[i-1] *Vz[i] is performed for each i of 0 -

VL-1, where Sy is used as Vx[-1].

Vx indicates the V register designated by Vx field, Vy is the V register designated by Vy

field, and Vz is the V register specified by Vz field. Vx[i] is the i-th element of Vx, same for

Vy and Vz.

8-308

 When Cx=0, the input data and the result are regarded as double-precision floating

point data, otherwise (when Cx=1) it is regarded as single-precision floating point data.

 This instruction doesn’t have the element masking feature.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cy=0, y operand is the immediate value of signed integers(-64 ~ 63).

8-309

Vector Floating Iteration Multiply and Subtract

8.15.7. VFIMS

 Format : RV

x

FF

y z
8 16 24 31

32 63

0

Vx Vy Vz

 Sy
C

y

C

x

 Function:

 if (Cx = 0) {

 for (i = 0 to VL-1) {

 Vx(i) ← Vy(i) - Vx(i-1) * Vz(i), where Vx(-1)=Sy

 }

 } else {

 for (i = 0 to VL-1) {

 Vx(i)[0:31] ← Vy(i)[0:31] - Vx(i-1)[0:31] * Vz(i)[0:31], where Vx(-1)=Sy

 Vx(i)[32:63] ← 00…0

 }

 }

An iterative recurrence opration Vx[i]=Vy[i] - Vx[i-1] *Vz[i] is performed for each i of 0 -

VL-1, where Sy is used as Vx[-1].

Vx indicates the V register designated by Vx field, Vy is the V register designated by Vy

field, and Vz is the V register specified by Vz field. Vx[i] is the i-th element of Vx, same for

Vy and Vz.

8-310

 When Cx=0, the input data and the result are regarded as double-precision floating

point data, otherwise (when Cx=1) it is regarded as single-precision floating point data.

 This instruction doesn’t have the element masking feature.

Exceptions:

･Floating-point overflow exception

･Floating-point underflow exception

･Invalid operation exception

･Inexact exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When Cy=0, y operand is the immediate value of signed integers(-64 ~ 63).

8-311

8.16. Vector Merger Operation Instructions

Vector Merge

8.16.1. VMRG

 Format : RV

x

D6
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

M

C

s

C

x

 Function:
 for (i = 0 to VL-1) {

 if(Cx = 0) {

 if(Cs = 0) {Vx(i) ← VM[i] ? Vz(i) : Vy(i)}

 else {Vx(i) ← VM[i] ? Vz(i) : Sy}

 } else {

 if(Cs = 0) {

 Vx(i)[0:31] ← VM(M)[i] ? Vz(i)[0:31] : Vy(i)[0:31]

 Vx(i)[32:63] ← VM(M+1)[i] ? Vz(i)[32:63] : Vy(i)[32:63]

 } else {

 Vx(i)[0:31] ← VM(M)[i] ? Vz(i)[0:31] : Sy[0:31]

 Vx(i)[32:63] ← VM(M+1)[i] ? Vz(i)[32:63] : Sy[32:63]

 }

 }

 }

8-312

 Note: When M=0, VM(0) is used instead of VM(M+1).

A ternary operation using a VM register as a condition is performed and the result is

stored to each of elements 0 to VL-1 of the V register specified by Vx field.

The VM register is specified by the M field. According to each mask bit in the VM, Vz, Vy

or Sy value is selected. When the VM’s mask bit is 1, Vz is selected. Otherwise Sy is

chosen if Cs=1, or Vz is selected if Cs=0.

 This operation doesn’t support element masking feature.

 When Cx=0, it operates as a 64-bit logical operation.

 When Cx=1, it operates as an operation for packed 32-bit logical data. Two VMs are

employed, and M must be an even number then. Otherwise an illegal instruction format

exception is generated.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

 ･When (Cs=1) and (Cy=0)), y operand is the immediate value of signed integers(-64 ~

63).

8-313

Vector Shuffle

8.16.2. VSHF

 Format : RV

x

BC
 Sy

y

C

y

z
8 16 24 31

32 63

0

Vx Vy Vz

 Function:

 for (i = 0 to VL-1) {

 if (Sy[60:61] = 00) {Vx[0:31] ← Vy[0:31]}

 else if (Sy[60:61] = 01) {Vx[0:31] ← Vy[32:63]}

 else if (Sy[60:61] = 10) {Vx[0:31] ← Vz[0:31]}

 else if (Sy[60:61] = 11) {Vx[0:31] ← Vz[32:63]}

 if (Sy[62:63] = 00) {Vx[32:63] ← Vy[0:31]}

 else if (Sy[62:63] = 01) {Vx[32:63] ← Vy[32:63]}

 else if (Sy[62:63] = 10) {Vx[32:63] ← Vz[0:31]}

 else if (Sy[62:63] = 11) {Vx[32:63] ← Vz[32:63]}

 }

 The contents of the Vy and Vz register are shuffled according to the contents of the S

register or the immediate value designated by Sy field. The results are stored into the Vx

register.

8-314

 The shuffling follows these rules. Sy[60:61] and Sy[63:64] are used as shuffling

specifiers, respectively for Vx’s upper and lower 32bits.

 When the shuffling specifier is 00, Vy[0:31] is selected.

 When the shuffling specifier is 01, Vy[32:63] is selected.

 When the shuffling specifier is 10, Vz[0:31] is selected.

 When the shuffling specifier is 11, Vz[32:63] is selected.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-315

Vector Compress

8.16.3. VCP

 Format : RV

x

8D

y z
8 16 24 31

32 63

0

Vx Vz

M

 Function:

 i ← 0

 for (j=0 to VL-1) {

 if (VM[j] = 1) {

 Vx(i) ← Vz(j)

 i ← i + 1

 }

 }

 Each of elements 0 to VL-1 of the Vz register with corresponding mask bit = 1 is picked

up and packed into the Vx register from the element position 0 in a sequential manner.

The other elements of Vx stay unchanged. The VM register is specified by M the field.

When Vx and Vz specify the identical V register, the result is undefined.

 The next figure outlines how this operation is performed.

8-316

a0Vz a1 a2 a3 a4 a5 a6

1 0 0 1 1 0 1

a0 a3 a4 a6

VM

Vx

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-317

Vector Expand

8.16.4. VEX

 Format : RV

x

9D

y z
8 16 24 31

32 63

0

Vx Vz

M

 Function:

 j ← 0

 for (i = 0 to VL-1) {

 if (VM[i] = 1) {

 Vx(i) ← Vz(j)

 j ← j + 1

 }

 }

Starting with an imaginary pointer j=0. Mask bits 0 to VL-1 of the VM are tested

sequentially. When 1 is found at the position i (less than VL), the element j of Vz is copied

to Vx’s element i, to which the mask bit =1 corresponds, then the pointer j increases. The

VM register is specified by M field.

When Vx and Vz specify the identical V register, the result is undefined.

The next figure outlines how this operation is performed.

8-318

a0

Vz

b1 b2 a3 a4 b5 a6

1 0 0 1 1 0 1

a0 a3 a4 a6

VM

Vx

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-319

8.17. Vector Mask Operation Instructions

Vector Form Mask

8.17.1. VFMK

 Format : RV

x

B4

y z
8 16 24 31

32 63

0

Vz

M

VMx CF

 Function:

 for (i = 0 to VL-1) {

 VMx[i] ← VM[i] & cond(CF, Vz(i))

 }

 for (i=VL to MVL-1) {

 VMx[i] ← undefined

 }

 Each element of Vz’s elements 0 to VL-1 is tested as a 64 bit signed integer value

according to the condition specified by the CF field. When the condition is not met, 0 is

set to the corresponding bit in VMx, otherwise the bit stays unchanged. In other words,

comparison results in the range of position 0 to VL-1 are set to the VMx in an

element-masked manner. The result for VMx bits VL to MVL-1 (if any) is undefined.

 Refer to Chapter 5 Instruction Format for the CF field.

Vz indicates V register designated by Vz field. Similarly VMx indicates Vector Mask

register designated by VMx field.

8-320

This operation on VM0 does nothing.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-321

Vector Form Mask Single

8.17.2. VFMS

 Format : RV

x

B5

y z
8 16 24 31

32 63

0

Vz

M

VMx CF

C

x

 Function:

 for (i = 0 to VL-1) {

 if(Cx=0) {VMx[i] ← VM[i] & cond(CF, Vz(i)[32:63])}

 else {VMx[i] ← VM[i] & cond(CF, Vz(i)[0:31])}

 }

 for (i=VL to MVL-1) {

 VMx[i] ← undefined

 }

 Each element of Vz’s elements 0 to VL-1 is tested as a 32 bit signed integer value

according to the condition specified by the CF field. Comparison is done using either

upper or lower 32bits of Vz depending on the Cx bit (when Cx=1 upper, otherwise lower

32 bits are taken.) When the condition is not met, 0 is set to the corresponding bit in VMx,

otherwise the bit stays unchanged. In other words, comparison results in the range of

position 0 to VL-1 are set to the VMx in an element-masked manner. The result for VMx

bits VL to MVL-1 (if any) is undefined.

 Refer to Chapter 5 Instruction Format for the CF field.

Vz indicates V register designated by Vz field. Similarly VMx indicates Vector Mask

register designated by the VMx field.

8-322

This operation on VM0 does nothing.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-323

Vector Form Mask Floating Point

8.17.3. VFMF

 Format : RV

x

B6

y z
8 16 24 31

32 63

0

Vz

C

x

M

VMx CF

C

x

2

 Function:

 if ((Cx = 1) & (Cx2 = 1)) {illegal instruction format exception}

 for (i = 0 to VL-1) {

 if ((Cx = 0) & (Cx2 = 0)) {VMx[i] ← VM[i] & cond(CF, Vz(i))}

 else if ((Cx = 1) & (Cx2 = 0)) {VMx[i] ← VM[i] & cond(CF, Vz(i)[0:31])}

 else if ((Cx = 0) & (Cx2 = 1)) {VMx[i] ← VM[i] & cond(CF, Vz(i)[32:63])}

 }

 for (i=VL to MVL-1) {

 VMx[i] ← undefined

 }

 Each element of Vz’s elements 0 to VL-1 is tested as a floating point value according to

the condition specified by the CF field. When the condition is not met, 0 is set to the

corresponding bit in VMx, otherwise the bit stays unchanged. In other words, comparison

results in the range of position 0 to VL-1 are set to the VMx in an element-masked

manner. The result for VMx bits VL to MVL-1 (if any) is undefined.

When Cx=0 and Cx2=0 64 bit double floating point comparison is performed. This

operation on VM0 does nothing.

 When Cx=1 and Cx2=0 32 bit single floating point comparison is performed. The upper

32bits of Vz are used for this operation. This operation on VM0 does nothing.

8-324

 When Cx=0 and Cx2=1 32 bit single floating point comparison is performed. The lower

32bits of Vz are used for this operation. This operation on VM0 does nothing.

 When Cx=1 and Cx2=1 an illegal instruction exception is detected.

 Refer to Chapter 5 Instruction Format for the CF field.

Exceptions:

･Illegal instruction format exception

･Illegal data format exception : When VL > MVL

Notes:

8-325

AND VM

8.17.4. ANDM

 Format : RV

x

84

y z
8 16 24 31

32 63

0

VMx VMy VMz

Function :

 VMx ← VMy & VMz

 The contents of VMy and VMz are bitwise-ANDed and its result is stored in VMx. The

operation is performed on all range of bits 0 to MVL. This opearation with VMx=0 does

nothing.

VMx, VMy and VMz are Vector Mask registers specified by the VMx, VMy and VMz

fields respectively.

Exceptions:

Notes:

 ･MVL is 256 in Aurora.

8-326

8-16-10

OR VM

8.17.5. ORM

 Format : RV

x

85

y z
8 16 24 31

32 63

0

VMx VMy VMz

 Function:

 VMx ← VMy | VMz

 The contents of VMy and VMz are bitwise-ORed and its result is stored in VMx. The

operation is performed on all range of bits 0 to MVL. This opearation with VMx=0 does

nothing.

VMx, VMy and VMz are Vector Mask registers specified by the VMx, VMy and VMz

fields respectively.

Exceptions:

Notes:

 ･MVL is 256 in Aurora.

8-327

Exclusive OR VM

8.17.6. XORM

 Format : RV

x

86

y z
8 16 24 31

32 63

0

VMx VMy VMz

 Function:

 VMx ← VMy + VMz

 The contents of VMy and VMz are bitwise-XORed and its result is stored in VMx. The

operation is performed on all range of bits 0 to MVL. This opearation with VMx=0 does

nothing.

VMx, VMy and VMz are Vector Mask registers specified by the VMx, VMy and VMz

fields respectively.

 Exceptions:

 Notes:

 ･MVL is 256 in Aurora.

8-328

Equivalence VM

8.17.7. EQVM

 Format : RV

x

87

y z
8 16 24 31

32 63

0

VMx VMy VMz

Function :

 VMx ← VMy ≡ VMz

 The contents of VMy and VMz are XNORed and its result is stored in VMx. The

operation is performed on all range of bits 0 to MVL. This opearation with VMx=0 does

nothing.

VMx, VMy and VMz are Vector Mask registers specified by the VMx, VMy and VMz

fields respectively.

Exceptions:

Notes:

 ･MVL is 256 in Aurora.

8-329

Negate AND VM

8.17.8. NNDM

 Format : RV

x

94

y z
8 16 24 31

32 63

0

VMx VMy VMz

 Function:

 VMx ← (~VMy) & VMz

 The contents of VMy and negated VMz are ANDed and its result is stored in VMx. The

operation is performed on all range of bits 0 to MVL. This opearation with VMx=0 does

nothing.

VMx, VMy and VMz are Vector Mask registers specified by the VMx, VMy and VMz

fields respectively.

Exceptions:

Notes:

 ･MVL is 256 in Aurora.

 Notes:

 ･MVL is 256 in Aurora.

8-330

Negate VM

8.17.9. NEGM

 Format : RV

x

95

y z
8 16 24 31

32 63

0

VMx VMy

 Function:

 VMx ← ~VMy

 The contents of VMy are negated and its result is stored in VMx. The operation is

performed on all range of bits 0 to MVL. This opearation with VMx=0 does nothing.

VMx, VMy are Vector Mask registers specified by the VMx and VMy fields respectively.

Exceptions:

Notes:

 ･MVL is 256 in Aurora.

8-331

Population Count of VM

8.17.10. PCVM

 Format : RV

x

A4

y z
8 16 24 31

32 63

0

 Sx

VMy

Function :

 Sx ← Population count of VMy[0:VL-1]

 For VMy’s bits 0 to VL-1, the number of bits that are 1 are counted, and the result is

stored to the S register designated by the x field.

If VMy is all zero, zero is stored into the S register.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-332

Leading Zero of VM

8.17.11. LZVM

 Format : RV

x

A5

y z
8 16 24 31

32 63

0

 Sx

VMy

 Function:

 Sx ← Leading zeros of VMy[0:VL-1]

 This instruction counts 0s that come before the first 1 in the region of VMy’s bit 0 to VL-1,

starting from bit position 0. The result is stored to the S register designated by the x

field.

If the first bit of VMy is 1, it stores zero in Sx. If all bits of [0: VL-1] bit are zeros, it stores

VL into Sx.

VMy indicate Vector Mask register designated by VMy field.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-333

Trailing One of VM

8.17.12. TOVM

Format : RV

x

A6

y z
8 16 24 31

32 63

0

 Sx

VMy

Function :

 Sx ← Trailing one of VMy[0:VL-1]

 For VMy[0: VL-1], the last bit that is 1 is searched in the style of result n where the last

1 is at the n-th position of VMy[0:VL-1]. The result n is stored to the S register specified in

the x field.

If the first bit of VMy is 1 and the other bits are all 0, 1 is stored to Sx, indicating the last

1 is at the 1st position of VMy.

If the last bit of VMy is 1, VL is stored to Sx.

If no 1 is found in VMy[0:VL-1], zero is stored to Sx instead.

Exceptions:

･Illegal data format exception : When VL > MVL

Notes:

8-334

8.18. Vector Control instructions

Load VL

8.18.1. LVL

 Format : RR

x

BF
 Sy

y

C

y

z
8 16 24 31

32 63

0

 Function:

 VL ← Sy[54:63]

 The lower 10 bits of the immediate value or S register designated by the y field are

loaded into the VL register.

Exceptions:

 ･Illegal data format exception : When VL > MVL

Notes:

 ･MVL is 256 in Aurora.

8-335

Save VL

8.18.2. SVL

 Format : RR

x

2F

y z
8 16 24 31

32 63

0

 Sx

Function:

 Sx[0:53] ← 00…0

 Sx[54:63] ← VL

The contents of VL are stored into bits 54-63 of the S register designated by the x field.

The 0-53 bits of Sx are filled with zeros.

Exceptions:

8-336

Save Maximum Vector Length

8.18.3. SMVL

Format : RR

x

2E

y z
8 16 24 31

32 63

0

 Sx

Function:

 Sx[0:53] ← 00…0

 Sx[54:63] ← MVL

 The MVL is stored into bits 54 to 63 of the S register designated by the x field. The 0-53

bits of the S register are filled with zeros.

Exceptions:

Notes:

 ･MVL is fixed to 256 in Aurora.

8-337

Load Vector Data Index

8.18.4. LVIX

 Format : RR

x

AF
 Sy

y

C

y

z
8 16 24 31

32 63

0

Function:

 VIXR ← Sy[58:63]

 The lower 6 bits of the immediate value or S register designated by the y field are

stored into the VIX register.

 The VIX register is initially undefined.

Exceptions:

8-338

8.19. Control Instructions

Save Instruction Counter

8.19.1. SIC

 Format : RR

x

28
 Sx

y z
8 16 24 31

32 63

0

Function:

 Sx ← IC + 8

The logical address for the next instruction (the current instruction pointer + 8) is stored

to the S register designated by the x field.

Exceptions:

Notes:

 ･As memory addresses, only 48 bits are effective in Aurora. The upper 16 bits of Sx

are always set to zero by this operation.

8-339

Load Program Mode Flags

8.19.2. LPM

Format : RR

x

3A
 Sy

y

C

y

z
8 16 24 31

32 63

0

Function:

 PSW[50:57] ← Sy[50:57]

 The contents of bits 50 to 57 of the immediate value or S register designated by the y

field are loaded into PSW bits 50 to 57. The other bits of PSW are unchanged. Sy[0:49]

and Sy[58:63] should be zeros (referred to as SBZ).

0 4 8 12 16 20 24 28 31

D
IV

F
O

F

F
U

F

X
O

F

PEM

IN
V

IN
E

AM

IR
M

32 36 40 44 48 52 56 60 63

 IRM Floating-point data rounding mode

 DIV : Divide exception mask

 FOF : floating-point overflow exception mask

 FUF : floating-point underflow exception mask

 XOF : Fixed-point overflow exception mask

8-340

 INV Invalid operation exception mask

 INE Inexact exception mask

Exceptions:

Notes:

8-341

Save Program Mode Flags

8.19.3. SPM

 Format : RR

x

2A
 Sx

y z
8 16 24 31

32 63

0

 Function:

 Sx[0:49] ← 00…0

 Sx[50:57] ← PSW[50:57]

 Sx[58:63] ← 00…0

The contents of PSW bits 50 to 57 are stored into the S register designated by the x

field. Sx[0:49] and [58:63] are set to all zero.

Exceptions:

8-342

Load Flag Register

8.19.4. LFR

 Format : RR

x

69
 Sy

y

C

y

z
8 16 24 31

32 63

0

 Function:

 PSW[58:63] ← Sy[58:63]

 The contents of bits 58to 63 of the immediate value or S register designated by the y

field are loaded into PSW bits 58 to 63. The other PSW bits are unchanged. Sy[0:57]

should be zeros (referred to as SBZ).

0 4 8 12 16 20 24 28 31

D
IV

F

F
O

F
F

F
U

F
F

X
O

F
F

PEF

IN
V

F

IN
E
F

32 36 40 44 48 52 56 60 63

 DIV : Divide exception flag

 FOF : floating-point overflow exception flag

 FUF : floating-point underflow exception flag

 XOF : Fixed-point overflow exception flag

 INV Invalid operation exception flag

 INE Inexact exception flag

Exceptions:

8-343

Save Flag Register

8.19.5. SFR

 Format : RR

x

29
 Sx

y z
8 16 24 31

32 63

0

 Function:

 Sx[0:57] ← 00…0

 Sx[58:63] ← PSW[58:63]

 PSW[58:63] ← 000000

The value of the program exception flag (PSW bits 58 to 63) is stored into bits 58 to 63

of the S register designated by the x field. The other bits of Sx are set to zeros. Then, the

program exception flag (PSW bits 58 to 63) are cleared to all zeros.

Exceptions:

8-344

Save Miscellaneous Register

8.19.6. SMIR

 Format : RR

x

22
 Sx Ry

y z
8 16 24 31

32 63

0

 Function:

 Sx ← Misc.Reg(Ry)

 The contents of the hardware register designated by the y field are loaded into S

register designated by the x field. The hardware register is specified by bits 19 to 23 of

the y field.

Exceptions:

8-345

No Operation

8.19.7. NOP

 Format : RR

x

79

y z
8 16 24 31

32 63

0

Function:

 No Operation

 No operation is carried out.

Exceptions:

8-346

Monitor Call

8.19.8. MONC

 Format : RR

x

3F

y z
8 16 24 31

32 63

0

C

x

Function:

 if (Cx = 0) {

 Cause a software interrupt (MONC).

 } else {

 Cause a software interrupt (MONC) and software interrupt (MONC TRAP).

 }

 A software interrupt (MONC) is caused.

 When Cx=1, a software interrupt (MONC TRAP) is generated at the same time.

Exceptions:

 ･MONC exception

 ･MONC TRAP exception

Notes:

Load Communication Register

8-347

8.19.9. LCR

 Format : RR

x

40
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 Sx ← CR(Sy + Sz)

 The contents of the CR designated by y and z fields are stored in the S register

designated by x field.

Exceptions:

 ･Memory access exception:

 - When the CR block (32W) to be accessed is not available (e.g. The CR block is

not opened in the CR directory)

 - Nonexistent CR is specified.

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of Sz.

8-348

Store Communication Register

8.19.10. SCR

 Format : RR

x

50
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

Function:

 CR(Sy + Sz) ← Sx

 The contents of the S register designated by x field are stored in the CR designated by

y and z fields.

Exceptions:

 ･Memory access exception:

 - When the CR block (32W) to be accessed is not available (e.g. The CR block is

not opened in the CR directory)

 - Nonexistent CR is specified.

Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of Sz.

8-349

Test & Set Communication Register

8.19.11. TSCR

 Format : RR

x

41
 Sx Sy Sz

y

C

y

z

C

z

8 16 24 31

32 63

0

 Function:

 tempW ← CR(Sy + Sz)

 if (CR(Sy + Sz)[0] = 0) {

 CR(Sy + Sz)[0] ← 1

 CR(Sy + Sz)[1:63] ← Sx[1:63]

 }

 Sx ← tempW

The contents of the CR before this operation are stored in the S register specified in

the x field.

Then, if bit 0 of the CR specified by the y and z fields is 0 (UNLOCKED), the bit 0 is set

to 1 and the contents of bits 1 to 63 of the S register specified in the x field are stored in

bits 1 to 63 of the CR. Otherwise (when CR[1] =1, LOCKED), the CR is unchanged.

Exceptions:

 ･Memory access exception:

 - When the CR block (32W) to be accessed is not available (e.g. The CR block is

not opened in the CR directory)

8-350

 - Nonexistent CR is specified.

 Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of Sz.

8-351

Fetch & Increment/Decrement CR

8.19.12. FIDCR

 Format : RR

x

51
 Sx Sy

y

C

y

z

R

z

8 16 24 31

32 63

0

 Function:

 tempW ← CR(Sy)

 if (Rz = 0) {CR(Sy) ← tempW + 1}

 else if (Rz = 1) {CR(Sy) ← tempW – 1}

 else if (Rz = 2) {if (tempW != 0) {CR(Sy) ← tempW + 1}}

 else if (Rz = 3) {if (tempW != 0) {CR(Sy) ← tempW – 1}}

 else if (Rz = 4) {

 if (tempW[40:63] = 1) {

 CR(Sy)[0] ← ~tempW[0]

 CR(Sy)[40:63] ← tempW[8:31]

 Update CR cache of every VE core.

 } else {

 CR(Sy)[40:63] ← tempW[40:63] – 1

 Update CR cache of the VE core.

 }

 }

 else if (Rz = 5) {

8-352

 if (tempW[40:63] = 1) {

 CR(Sy)[0] ← ~tempW[0]

 CR(Sy)[40:63] ← tempW[8:31]

 Update CR cache of every VE core

 } else {

 CR(Sy)[40:63] ← tempW[40:63] – 1

 Invalidate CR cache of the VE core.

 }

 }

 else if (Rz = 6)) {

 tempW[0] ← CR(Sy)[0] through CR cache

 tempW[1:63] ← undefined

 }

 else if (Rz = 7) {

 tempW[0] ← CR(Sy)[0] not via CR cache

 tempW[1:63] ← undefined

 Invalidate CR cache of the VE core.

 }

 Sx ← tempW

 The CR contents before this operation are stored in the S register specified by the x

field. Then the CR specified by the y field increments/decrements as specified in the z

field. The contents of

 Addition or subtraction is performed as a 64-bit unsigned integer operation.

Exceptions:

 ･Memory access exception:

 - When the CR block (32W) to be accessed is not available (e.g. The CR block is

not opened in the CR directory)

 - Nonexistent CR is specified.

8-353

Notes:

 Unless the use of CR cache is explicitly intended by specifying Rz=4 or 6, processor

core accesses the CR bypassing the CR cache. Since the intended CR data may be

evicted from the CR cache by other accesses, software should take care not to incur

performance loss due to that.

8-354

8.20. Host Memory Access Instructions

Load Host Memory

8.20.1. LHM

 Format : RRM

x

21
 Sx Sz

y z

C

z

8 16 24 31

32 63

0

R

y

D

 Function:

 EA ← Sz + sext(D, 64)

 Sx ← Host memory space(EA)

 Data is loaded from the location in the VE host virtual address space addressed by the

z and D fields, to the S register designated by x field, in the size specified by the y field.

The transfer data size is as follows.

 00:1byte

 01:2byte

 10:4byte

 11:8byte

 When the designated data size is less than 8 bytes, the load data is stored into lower

bytes of the S register designated by x field, and its sign bit is extended and stored into

higher bits of the S register.

8-355

 The host memory address designated by z and D fields must be aligned to transfer

data size boundary. Otherwise memory access exception occurs.

 Exceptions:

 ･Host missing page exception

 ･Host missing space exception

 ･Host memory access exception

 ･I/O Access exception

 Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of

Sz.

8-356

Store Host Memory

8.20.2. SHM

 Format : RRM

x

31
 Sx Sz

y z

C

z

8 16 24 31

32 63

0

R

y

D

 Function:

 EA ← Sz + sext(D, 64)

 Host memory space(EA) ← Sx

 Sx is stored to the location in the VE host virtual address space addressed by the z and

D fields, in the size specified by the y field. The transfer data size is as follows.

 The transfer data size is designated by 2 bits of Ry as follows.

 00:1byte

 01:2byte

 10:4byte

 11:8byte

 When the designated data size is less than 8 byte, it is assumed the write data is

stored into lower bytes of S register designated by x field.

 The host memory address designated by z and D fields must be aligned to transfer

data size boundary, otherwise memory access exception occurs.

8-357

 Exceptions:

 ･Host memory protection exception

 ･Host missing page exception

 ･Host missing space exception

 ･Host memory access exception

 Notes:

 ･When Cz=0, z operand is the immediate value of zero irrespective of the value of

Sz.

9. Appendix-1 Microarchitecture of SX-Aurora

TSUBASA

9.1. VE CPU

 The Aurora VE CPU is the central processing component of the Aurora VE. The CPU

executes programs compiled for Aurora systems, holds data on its own memory and

communicates with other PCIe devices and the VE host.

 Figure 9-1 shows a diagram of the VE CPU for SX-Aurora TSUABASA systems, For

SX-Aurora TSUBASA generation systems, the VE CPU contains eight VE cores, LLC

(Last level cache), MCU (Memory control unit) and DMU (DMA management unit), XIU

(AXI bus interface unit) and PEU (PCIe unit). It also has DGU (Diagnosis unit) and a ring

bus connecting DMU and LLCs.

 The cores and LLCs are connected by a 2D mesh styled NoC (network on chip).

MCUs controls memory transaction to external HBMs (high bandwidth memory).

 The Aurora VE has 6 HBMs on the interposer module, and the CPU has 6 MCUs as

their counterparts.

9-1

Figure 9-1 Aurora VE CPU

9-2

9.2. Core

 The Aurora VE's core is the computational part and consists of three main

components, SPU (scalar processing unit), VPU (vector processing unit) and NoC

interface. In SX-Aurora TSUBASA systems, the core runs at 1.4 to 1.6GHz, depending

on models.

Figure 9-2 Aurora VE Core

 Figure 9-2 shows a core diagram of the core for SX-Aurora TSUBASA systems. For

the SX-Aurora TSUBASA generation, the SPU contains L1-I (instruction) cache of 32KB

2 way set associative, L1-O (operand/data) cache of 32KB 2 way set associative. It also

has an L2 cache of 256KB. It is a 4 way set associative cache, and its cache line size is

256B. It covers both of instruction and data. L2 covers the data that is cached in L1-O in

an inclusive manner. The SPU has two floating add/multi units therefore when operating

at 1.6GHz, 2 x 1.6GHz = 3.2 GF of peak performance per core. For a VE of 8 cores total

25.6 GF of scalar FP performance will be gained.

9-3

Figure 9-3 shows a diagram of SPU for SX-Aurora TSUBASA systems. The SPU

originates the VE program execution. It fetches program codes from the memory,

decodes and executes versatile operations in itself, and issues vector operations to VPU.

Figure 9-3 Aurora VE Core SPU

9-4

 Figure 9-4 shows SX-Aurora TSUBASA’s VPU. The VPU provides vector

computation capability based on the vector architecture proven by NEC SX

supercomputers.

 For the SX-Aurora TSUBASA generation, the VPU consists of 32 VPPs (vector

processing pipeline). As shown in Figure 9-5, VPP has three FMA (Floating point

Multi-Add) units, integer/logical arithmetic units, and a floating point divider that supports

root/division approximation feature.

 The VPPs also hold physical VRs (vector registers) inside. Each VR is comprised of

256 vector elements. Those 256 elements are placed over 32 VPPs, 8 elements each.

Figure 9-4 Aurora VE Core VPU

When operating at 1.6GHz, the VE CPU will have 8 cores x 32 VPPs x 3 VFMAs x

2(M+A) x 1.6GHz = 2.457TFlops of peak performance.

9-5

Figure 9-5 Aurora VE VPU/VPP

The VPU also holds ATB for address conversion from VE memory virtual address to VE

memory absolute address. See also Chapter 6 for details.

9-6

9.3. LLC

 The LLC (Last Level Cache) is a shared cache that provides a caching capability for

the entire VE CPU. It is referred to by all VE cores and LLC, DMU and DGU unit and

provides them with data which is cache coherent in the VE’s scope.

 Noted that the cache coherency is preserved only within a VE, and not with different

VEs over PCIe interface. L1-I cache is out of the coherence scope.

 For the SX-Aurora TSUBASA generation, a CPU has 8 slices of LLCs. Each LLC slice

has 2MB in size, 16MB in total. The LLC is formed as a 4 way skewed cache, with a

cache line size of 128B. The cached data is interleaved among 8 LLCs.

The LLC is a physical write back cache and has the directory to keep cache

coherency amongst LLC and L1-O/L2 cache within cores. It is formed as an inclusive

cache to L2 and L1-O cache of VE cores within the VE in which the LLC resides. Its

cache coherence is kept within a VE CPU, except for L1-I cache.

 Each LLC slice has 16 banks. An LLC slice is interleaved into those banks. Since an

SX-Aurora TSUBASA VE has 6 HBM memory stacks, regardless of 4-hi or 8-hi, 8 to 3

crossbars are inserted between LLC slices and HBM2 memory modules to correlate

them. Figure 9-6 shows its implementation for SX-Aurora TSUBASA systems.

9-7

Figure 9-6 Aurora VE connection between LLCs and HBMs

9-8

9.4. NoC

 The SX-Aurora TSUBASA VE has NoC (Network on Chip) to connect 8 cores and

LLC slices. It is formed as a 2D mesh shown in the Figure. The bidirectional bandwidth

per link is 819.2GB/s.

9.5. Ring bus

 The SX-Aurora TSUBASA VE has a ring styled bus connecting LLC slices and DMU.

This ring bus is used for LHM/SHM data transfer, PIO access and for direct memory

access data transfer.

9.6. MCU and VE memory

 For the main memory of the VE, the MCU supports 1.6Gbps HBM2 memory. The

SX-Aurora TSUBASA VE supports HBM2 memory of 4 or 8 level stacking memory

(referred to as 4-hi and 8-hi respectively). With the 4-hi HBM2 memory x 6 configuration

VE's total memory will be 24GB in size, while 48GB with the 8-hi HBM memory x 6

configuration. And VE's maximum memory bandwidth reaches 1.2TB/s with 8-hi HBM

memory.

9-9

9.7. DMU

 The DMU controls the direct memory access between the VE and other external PCIe

devices or the VE host using Aurora VE's PCIe interface. It reads/writes data from/to

HBM through LLCs, therefore the consistency amongst core accesses and DMA is safely

kept (L1-I is outside of this scope). Internally The SX-Aurora TSUBASA has four DMA

engines and can operate four DMA transaction in parallel.

 The DMU contains DMAATB, which controls address conversion of a VE host virtual

address to a PCIe physical address as a VH system absolute address, VE memory

absolute address or VE communication register absolute address space. It also contains

DMAATB tables and DMAATB directory. See Chapter 6 and 9 for details.

9.8. DGU

 The DGU has a diagnosis/error reporting feature to keep the whole VE safe to use.

When any serious error is reported from a unit, it attempts to stop the circuit and raise

MSI-X styled interrupt(s) to the VE host, so that the VE driver component on the VE host

fetches the interrupt and then starts an error handling procedure.

9.9. PEU

The PEU is a PCI express controller that supports PCI express generation 1, 2 and 3

x 16 lanes. PEU also works as an interface block to convert protocols between PCI

express and AMBA AXI4 interface.

9.10. XIU

 The XIU is a bridging unit amongst PEU, DGU and DMU. It also operates AMBA AXI4

formatted messages and translates them into hardware protocol packets, and vice versa.

10. Appendix-2 List of Instructions

10.1. List of SX-Aurora TSUBASA Instructions

Mnemonic Code Type Page Functions

ADD 48 RR 8.4.1. Add

ADS 4A RR 8.4.2. Add Single

ADX 59 RR 8.4.3. Add

AND 44 RR 8.5.1. AND

ANDM 84 RV 8.17.4. AND VM

ATMAM 53 RRM 8.2.19. Atomic AM

BC 19 CF 8.8.1. Branch

BCF 1C CF 8.8.3. Branch on Condition Floating Point

BCR 18 CF 8.8.4. Branch on Condition Relative

BCS 1B CF 8.8.2. Branch on Condition Single

BRV 39 RR 8.5.9. Bit Reverse

BSIC 08 RM 8.8.5. Branch and Save IC

BSWP 2B RR 8.5.10. Byte Swap

CAS 62 RRM 8.2.20. Compare and Swap

CMOV 3B RR 8.5.11. Conditional Move

CMP 55 RR 8.4.14. Compare

CMS 78 RR 8.4.17. Compare and Select Maximum/Minimum Single

10-1

Mnemonic Code Type Page Functions

CMX 68 RR 8.4.18. Compare and Select Maximum/Minimum

CPS 7A RR 8.4.15. Compare Single

CPX 6A RR 8.4.16. Compare

CVD 0F RW 8.7.16. Convert to Double-format

CVQ 2D RW 8.7.17. Convert to Quadruple-format

CVS 1F RW 8.7.15. Convert to Single-format

DIV 6F RR 8.4.11. Divide

DLDL 0B RM 8.2.14. Dismissable Load Lower

DLDS 09 RM 8.2.12. Dismissable Load S

DLDU 0A RM 8.2.13. Dismissable Load Upper

DVS 7B RR 8.4.12. Divide Single

DVX 7F RR 8.4.13. Divide

EQV 47 RR 8.5.4. Equivalence

EQVM 87 RV 8.17.7. Equivalence VM

FAD 4C RR 8.7.1. Floating Add

FAQ 6C RW 8.7.7. Floating Add Quadruple

FCM 3E RR 8.7.6. Floating Compare and Select

Maximum/Minimum

FCP 7E RR 8.7.5. Floating Compare

FCQ 7D RW 8.7.10. Floating Compare Quadruple

10-2

Mnemonic Code Type Page Functions

FDV 5D RR 8.7.4. Floating Divide

FENCE 20 RR 8.3.1. Fence

FIDCR 51 RR 8.19.12. Fetch & Increment/Decrement CR

FIX 4E RR 8.7.11. Convert to Fixed Point

FIXX 4F RR 8.7.12. Convert to Fixed Point

FLT 5E RR 8.7.13. Convert to Floating Point

FLTX 5F RR 8.7.14. Convert to Floating Point

FMP 4D RR 8.7.3. Floating Multiply

FMQ 6D RW 8.7.9. Floating Multiply Quadruple

FSB 5C RR 8.7.2. Floating Subtract

FSQ 7C RW 8.7.8. Floating Subtract Quadruple

LCR 40 RR 8.19.9. Load Communication Register

LD1B 05 RM 8.2.6. Load 1B

LD2B 04 RM 8.2.5. Load 2B

LDL 03 RM 8.2.4. Load S Lower

LDS 01 RM 8.2.2. Load S

LDU 02 RM 8.2.3. Load S Upper

LDZ 67 RR 8.5.7. Leading Zero Count

LEA 06 RM 8.2.1. Load Effective Address

10-3

Mnemonic Code Type Page Functions

LFR 69 RR 8.19.4. Load Flag Register

LHM 21 RRM 8.20.1. Load Host Memory

LPM 3A RR 8.19.2. Load Program Mode Flags

LSV 8E RR 8.9.20. Load S to V

LVIX AF RR 8.18.4. Load Vector Data Index

LVL BF RR 8.18.1. Load VL

LVM B7 RR 8.9.22. Load VM

LVS 9E RR 8.9.21. Load V to S

LZVM A5 RV 8.17.11. Leading Zero of VM

MONC 3F RR 8.19.8. Monitor Call

MPD 6B RR 8.4.10. Multiply

MPS 4B RR 8.4.8. Multiply Single

MPX 6E RR 8.4.9. Multiply

MPY 49 RR 8.4.7. Multiply

MRG 56 RR 8.5.6. Merge

NEGM 95 RV 8.17.9. Negate VM

NND 54 RR 8.5.5. Negate AND

NNDM 94 RV 8.17.8. Negate AND VM

NOP 79 RR 8.19.7. No Operation

10-4

Mnemonic Code Type Page Functions

OR 45 RR 8.5.2. OR

ORM 85 RV 8.17.5. OR VM

PCNT 38 RR 8.5.8. Population Count

PCVM A4 RV 8.17.10. Population Count of VM

PFCH 0C RM 8.2.15. Pre Fetch

PFCHV 80 RVM 8.9.19. Pre FetCH Vector

SBS 5A RR 8.4.5. Subtract Single

SBX 5B RR 8.4.6. Subtract

SCR 50 RR 8.19.10. Store Communication Register

SFR 29 RR 8.19.5. Save Flag Register

SHM 31 RRM 8.20.2. Store Host Memory

SIC 28 RR 8.19.1. Save Instruction Counter

SLA 66 RR 8.6.5. Shift Left Arithmetic

SLAX 57 RR 8.6.6. Shift Left Arithmetic

SLD 64 RR 8.6.2. Shift Left Double

SLL 65 RR 8.6.1. Shift Left Logical

SMIR 22 RR 8.19.6. Save Miscellaneous Register

SMVL 2E RR 8.18.3. Save Maximum Vector Length

SPM 2A RR 8.19.3. Save Program Mode Flags

10-5

Mnemonic Code Type Page Functions

SRA 76 RR 8.6.7. Shift Right Arithmetic

SRAX 77 RR 8.6.8. Shift Right Arithmetic

SRD 74 RR 8.6.4. Shift Right Double

SRL 75 RR 8.6.3. Shift Right Logical

ST1B 15 RM 8.2.11. Store 1B

ST2B 14 RM 8.2.10. Store 2B

STL 13 RM 8.2.9. Store S Lower

STS 11 RM 8.2.7. Store S

STU 12 RM 8.2.8. Store S Upper

SUB 58 RR 8.4.4. Subtract

SVL 2F RR 8.18.2. Save VL

SVM A7 RR 8.9.23. Save VM

SVOB 30 RR 8.3.2. Set Vector Out-of-order memory access

Boundary

TOVM A6 RV 8.17.12. Trailing One of VM

TS1AM 42 RRM 8.2.16. Test and Set 1 AM

TS2AM 43 RRM 8.2.17. Test and Set 2 AM

TS3AM 52 RRM 8.2.18. Test and Set 3 AM

TSCR 41 RR 8.19.11. Test & Set Communication Register

10-6

Mnemonic Code Type Page Functions

VADD C8 RV 8.10.1. Vector Add

VADS CA RV 8.10.2. Vector Add Single

VADX 8B RV 8.10.3. Vector Add

VAND C4 RV 8.11.1. Vector And

VBRD 8C RV 8.9.24. Vector Broadcast

VBRV F7 RV 8.11.7. Vector Bit Reverse

VCMP B9 RV 8.10.14. Vector Compare

VCMS 8A RV 8.10.17. Vector Compare and Select

Maximum/Minimum Single

VCMX 9A RV 8.10.18. Vector Compare and Select

Maximum/Minimum

VCP 8D RV 8.16.3. Vector Compress

VCPS FA RV 8.10.15. Vector Compare Single

VCPX BA RV 8.10.16. Vector Compare

VCVD 8F RV 8.13.19. Vector Convert to Double-format

VCVS 9F RV 8.13.18. Vector Convert to Single-format

VDIV E9 RV 8.10.11. Vector Divide

VDVS EB RV 8.10.12. Vector Divide Single

VDVX FB RV 8.10.13. Vector Divide

10-7

Mnemonic Code Type Page Functions

VEQV C7 RV 8.11.4. Vector Equivalence

VEX 9D RV 8.16.4. Vector Expand

VFAD CC RV 8.13.1. Vector Floating Add

VFCM BD RV 8.13.7. Vector Floating Compare and Select

Maximum/Minimum

VFCP FC RV 8.13.6. Vector Floating Compare

VFDV DD RV 8.13.4. Vector Floating Divide

VFIA CE RV 8.15.1. Vector Floating Iteration Add

VFIAM EE RV 8.15.4. Vector Floating Iteration Add and Multiply

VFIM CF RV 8.15.3. Vector Floating Iteration Multiply

VFIMA EF RV 8.15.6. Vector Floating Iteration Multiply and Add

VFIMS FF RV 8.15.7. Vector Floating Iteration Multiply and Subtract

VFIS DE RV 8.15.2. Vector Floating Iteration Subtract

VFISM FE RV 8.15.5. Vector Floating Iteration Subtract and Multiply

VFIX E8 RV 8.13.14. Vector Convert to Fixed Point

VFIXX A8 RV 8.13.15. Vector Convert to Fixed Point

VFLT F8 RV 8.13.16. Vector Convert to Floating Point

VFLTX B8 RV 8.13.17. Vector Convert to Floating Point

VFMAD E2 RV 8.13.8. Vector Floating Fused Multiply Add

10-8

Mnemonic Code Type Page Functions

VFMAX AD RV 8.14.6. Vector Floating Maximum/Minimum

VFMF B6 RV 8.17.3. Vector Form Mask Floating Point

VFMK B4 RV 8.17.1. Vector Form Mask

VFMP CD RV 8.13.3. Vector Floating Multiply

VFMS B5 RV 8.17.2. Vector Form Mask Single

VFMSB F2 RV 8.13.9. Vector Floating Fused Multiply Subtract

VFNMAD E3 RV 8.13.10. Vector Floating Fused Negative Multiply Add

VFNMSB F3 RV 8.13.11. Vector Floating Fused Negative Multiply

Subtract

VFSB DC RV 8.13.2. Vector Floating Subtract

VFSQRT ED RV 8.13.5. Vector floating Square Root

VFSUM EC RV 8.14.3. Vector Floating Sum

VGT A1 RVM 8.9.13. Vector Gather

VGTL A3 RVM 8.9.15. Vector Gather Lower

VGTU A2 RVM 8.9.14. Vector Gather Upper

VLD 81 RVM 8.9.1. Vector Load

VLD2D C1 RVM 8.9.4. Vector Load 2D

VLDL 83 RVM 8.9.3. Vector Load Lower

VLDL2D C3 RVM 8.9.6. Vector Load Lower 2D

10-9

Mnemonic Code Type Page Functions

VLDU 82 RVM 8.9.2. Vector Load Upper

VLDU2D C2 RVM 8.9.5. Vector Load Upper 2D

VLDZ E7 RV 8.11.5. Vector Leading Zero Count

VMAXS BB RV 8.14.4. Vector Maximum/Minimum Single

VMAXX AB RV 8.14.5. Vector Maximum/Minimum

VMPD D9 RV 8.10.10. Vector Multiply

VMPS CB RV 8.10.8. Vector Multiply Single

VMPX DB RV 8.10.9. Vector Multiply

VMPY C9 RV 8.10.7. Vector Multiply

VMRG D6 RV 8.16.1. Vector Merge

VMV 9C RV 8.9.25. Vector Move

VOR C5 RV 8.11.2. Vector OR

VPCNT AC RV 8.11.6. Vector Population Count

VRAND 88 RV 8.14.7. Vector Reduction AND

VRCP E1 RV 8.13.12. Vector floating Reciprocal

VROR 98 RV 8.14.8. Vector Reduction OR

VRSQRT F1 RV 8.13.13. Vector floating Reciprocal Square Root

VRXOR 89 RV 8.14.9. Vector Reduction Exclusive OR

VSBS DA RV 8.10.5. Vector Subtract Single

10-10

Mnemonic Code Type Page Functions

VSBX 9B RV 8.10.6. Vector Subtract

VSC B1 RVM 8.9.16. Vector Scatter

VSCL B3 RVM 8.9.18. Vector Scatter Lower

VSCU B2 RVM 8.9.17. Vector Scatter Upper

VSEQ 99 RV 8.11.8. Vector Sequential Number

VSFA D7 RV 8.12.9. Vector Shift Left and Add

VSHF BC RV 8.16.2. Vector Shuffle

VSLA E6 RV 8.12.5. Vector Shift Left Arithmetic

VSLAX D4 RV 8.12.6. Vector Shift Left Arithmetic

VSLD E4 RV 8.12.2. Vector Shift Left Double

VSLL E5 RV 8.12.1. Vector Shift Left Logical

VSRA F6 RV 8.12.7. Vector Shift Right Arithmetic

VSRAX D5 RV 8.12.8. Vector Shift Right Arithmetic

VSRD F4 RV 8.12.4. Vector Shift Right Double

VSRL F5 RV 8.12.3. Vector Shift Right Logical

VST 91 RVM 8.9.7. Vector Store

VST2D D1 RVM 8.9.10. Vector Store 2D

VSTL 93 RVM 8.9.9. Vector Store Lower

VSTL2D D3 RVM 8.9.12. Vector Store Lower 2D

10-11

Mnemonic Code Type Page Functions

VSTU 92 RVM 8.9.8. Vector Store Upper

VSTU2D D2 RVM 8.9.11. Vector Store Upper 2D

VSUB D8 RV 8.10.4. Vector Subtract

VSUMS EA RV 8.14.1. Vector Sum Single

VSUMX AA RV 8.14.2. Vector Sum

VXOR C6 RV 8.11.3. Vector Exclusive OR

XOR 46 RR 8.5.3. Exclusive OR

XORM 86 RV 8.17.6. Exclusive OR VM

11-12

11. Appendix-3 Operation Code Table

11.1. Operation Code Table

()
XXXX
Page

 (): Instruction type. An RR type instruction if not specified.
 XXXX: Mnemonic

11-13

	1. Overview
	1.1. Overview

	2. Aurora Systems
	2.1. Single VI systems
	2.1.1. 1-2 VE node systems
	2.1.2. 4 VE node systems
	2.1.3. 8 VE node systems

	2.2. VI cluster systems

	3. Registers
	3.1. Overview
	3.2. User Registers
	3.2.1. Process Status Word (PSW)
	3.2.2. Instruction Counter (IC)
	3.2.3. Scalar Register (S)
	3.2.4. Vector Register (V)
	3.2.5. Vector Mask Register (VM)
	3.2.6. Vector Index Register (VIXR)
	3.2.7. Vector Length Register (VL)

	3.3. System Registers
	3.3.1. Address Translation Buffer (ATB)
	3.3.2. Communication Register Directory (CRD)
	3.3.3. Communication Register (CR)

	3.4. Performance Counters

	4. Data Format
	4.1 Data format
	4.1.1 Fixed-point data
	4.1.2 Floating-Point Data
	4.1.3 Logical Data

	4.2 Fixed-Point Arithmetic and Shift Operations
	4.2.1 Addition and Subtraction
	4.2.2 Multiplication
	4.2.3 Division
	4.2.4 Comparison
	4.2.5 Compare and select operation
	4.2.6 Arithmetic Shift
	4.2.7 Logical Shift

	4.3 Floating-Point Arithmetic Operations
	4.3.1 Addition and Subtraction
	4.3.2 Multiplication
	4.3.3 Division
	4.3.4 Square Root
	4.3.5 Fused multiply add
	4.3.6 Reciprocal Approximation
	4.3.7 Reciprocal Square Root Approximation
	4.3.8 Comparison
	4.3.9 Compare and select operation

	4.4 Format Conversion
	4.1.1. Floating-point data to fixed-point data
	4.1.2. Fixed-point data to floating-point data
	4.1.3. Floating-point data to Floating-point data

	4.4 Arithmetic Exception
	4.4.1 Floating-point overflow
	4.1.4. Floating-point underflow
	4.1.5. Fixed-point overflow
	4.1.6. Division by zero
	4.1.7. Invalid operation
	4.1.8. Inexact

	5. Instruction Format
	RM Type
	5.1.1. RM type x field
	5.1.2. RM type y field
	5.1.3. RM type z field
	5.1.4. RM type D field
	5.1.5. Effective Address

	5.2. RRM Type
	5.2.1. RRM type x field
	5.2.2. RRM type y field
	5.2.3. RRM type z field
	5.2.4. RRM type D field
	5.2.5. Effective Address

	5.3. CF Type
	5.3.1. CF type x field
	5.3.2. CF type y field
	5.3.3. CF type z field
	5.3.4. CF type D field
	5.3.5. Effective Address

	5.4. RR Type
	5.4.1. RR type x filed
	5.4.2. RR type y field
	5.4.3. RR type z field
	5.4.4. RR type w field
	5.4.5. RR type Vx and Vz field

	5.5. RW Type
	5.6. RVM Type
	5.6.1. RVM type x field
	5.6.2. RVM type y field
	5.6.3. RVM type z field
	5.6.4. RVM type w field
	5.6.5. RVM type Vx and Vy field
	5.6.6. RVM type instruction

	5.7. RV Type
	5.7.1. RV type x field
	5.7.2. RV type y field
	5.7.3. RV type z field
	5.7.4. RV type Vx, Vy, Vz, Vw field

	6. Memory Architecture
	6.1. Memory Architecture Overview
	6.2. Address Space
	VE memory virtual address space
	VE host virtual address space
	VH virtual address space
	6.2.1. Absolute address space
	VE memory absolute address space
	VE register absolute address space
	VE CR absolute address space
	VH system absolute address space

	6.3. Types of Memory Access
	6.3.1. VE core memory accesses
	Instruction fetch
	Memory access instructions
	Host memory access instructions

	6.4. Address Translation
	6.4.1. Page size
	6.4.2. Partial space
	6.4.3. Address translation buffer
	ATB partial space directory
	Partial space index (PS), bit 16-34
	Page size, bit 61-62
	Valid, bit63

	ATB partial space page table
	Page base address (PB), bit 16-42
	Type, bit 52-54
	Write inhibit (W), bit61
	Cache bypass (B), bit62
	Unavailable (UA), bit63

	Address translation in ATB

	6.5. Memory Access Ordering
	6.5.1. Release consistency model

	6.6. Cache Memory
	6.6.1. Cache hierarchy
	6.6.2. Cache coherency
	6.6.3. Cache control
	6.6.4. Cache bypass
	6.6.5. LLC

	6.7. Communication Register
	6.7.1. Access to CR
	CR access instructions
	CR directory (CRD)
	Access through VE CR absolute address space
	CR page, bit 46-50CR page number.
	CR number, bit 56-60
	Func, bit 52-55
	SYNC, bit51

	6.7.2. Barrier synchronization using CR
	Flag, bit 0
	Counter, bit 40-63
	Initial counter value, bit 8-31
	CR Cache
	Example of a barrier synchronization

	7. Exceptions
	7.1. Exceptions and interrupts
	7.1.1. Attributes of interrupts
	7.1.2. Causes of interrupts
	Memory protection exception
	Missing page exception
	Missing space exception
	Memory access exception
	Host memory protection exception
	Host missing page exception
	Host missing space exception
	Host memory access exception
	I/O Access Exceptions
	Division exception
	Floating-point overflow exception
	Floating-point underflow exception
	Fixed-point overflow exception
	Invalid operation exception
	Inexact exception
	Illegal instruction format exception
	Illegal data format exception
	Software interrupt (MONC)
	Software interrupt (MONC TRAP)
	Address match interrupt
	Branch trap
	One step interrupt

	7.1.3. Fast synchronization debug interrupt flag

	8. Instructions
	8.1. Legends
	8.1.1. Desctiption of the function
	8.1.2. Operators
	8.1.3. Keywords and notations
	8.1.4. Syntax
	8.1.5. Endianness
	8.1.6. Vector elements

	8.2. Load/Store instructions
	8.2.1. LEA
	8.2.2. LDS
	8.2.3. LDU
	8.2.4. LDL
	8.2.5. LD2B
	8.2.6. LD1B
	8.2.7. STS
	8.2.8. STU
	8.2.9. STL
	8.2.10. ST2B
	8.2.11. ST1B
	8.2.12. DLDS
	8.2.13. DLDU
	8.2.14. DLDL
	8.2.15. PFCH
	8.2.16. TS1AM
	8.2.17. TS2AM
	8.2.18. TS3AM
	8.2.19. ATMAM
	8.2.20. CAS

	8.3. Transfer Control Instruction
	8.3.1. FENCE
	8.3.2. SVOB

	8.4. Fixed-point Operation Instructions
	8.4.1. ADD
	8.4.2. ADS
	8.4.3. ADX
	8.4.4. SUB
	8.4.5. SBS
	8.4.6. SBX
	8.4.7. MPY
	8.4.8. MPS
	8.4.9. MPX
	8.4.10. MPD
	8.4.11. DIV
	8.4.12. DVS
	8.4.13. DVX
	8.4.14. CMP
	8.4.15. CPS
	8.4.16. CPX
	8.4.17. CMS
	8.4.18. CMX

	8.5. Logical Operation Instructions
	8.5.1. AND
	8.5.2. OR
	8.5.3. XOR
	8.5.4. EQV
	8.5.5. NND
	8.5.6. MRG
	8.5.7. LDZ
	8.5.8. PCNT
	8.5.9. BRV
	8.5.10. BSWP
	8.5.11. CMOV

	8.6. Shift Operation Instruction
	8.6.1. SLL
	8.6.2. SLD
	8.6.3. SRL
	8.6.4. SRD
	8.6.5. SLA
	8.6.6. SLAX
	8.6.7. SRA
	8.6.8. SRAX

	8.7. Floating-Point Arithmetic Instructions
	8.7.1. FAD
	8.7.2. FSB
	8.7.3. FMP
	8.7.4. FDV
	8.7.5. FCP
	8.7.6. FCM
	8.7.7. FAQ
	8.7.8. FSQ
	8.7.9. FMQ
	8.7.10. FCQ
	8.7.11. FIX
	8.7.12. FIXX
	8.7.13. FLT
	8.7.14. FLTX
	8.7.15. CVS
	8.7.16. CVD
	8.7.17. CVQ

	8.8. Branch Instructions
	8.8.1. BC
	8.8.2. BCS
	8.8.3. BCF
	8.8.4. BCR
	8.8.5. BSIC

	8.9. Vector Load/Store and Move Instructions
	8.9.1. VLD
	8.9.2. VLDU
	8.9.3. VLDL
	8.9.4. VLD2D
	8.9.5. VLDU2D
	8.9.6. VLDL2D
	8.9.7. VST
	8.9.8. VSTU
	8.9.9. VSTL
	8.9.10. VST2D
	8.9.11. VSTU2D
	8.9.12. VSTL2D
	8.9.13. VGT
	8.9.14. VGTU
	8.9.15. VGTL
	8.9.16. VSC
	8.9.17. VSCU
	8.9.18. VSCL
	8.9.19. PFCHV
	8.9.20. LSV
	8.9.21. LVS
	8.9.22. LVM
	8.9.23. SVM
	8.9.24. VBRD
	8.9.25. VMV

	8.10. Vector Fixed-Point Arithmetic Instructions
	8.10.1. VADD
	8.10.2. VADS
	8.10.3. VADX
	8.10.4. VSUB
	8.10.5. VSBS
	8.10.6. VSBX
	8.10.7. VMPY
	8.10.8. VMPS
	8.10.9. VMPX
	8.10.10. VMPD
	8.10.11. VDIV
	8.10.12. VDVS
	8.10.13. VDVX
	8.10.14. VCMP
	8.10.15. VCPS
	8.10.16. VCPX
	8.10.17. VCMS
	8.10.18. VCMX

	8.11. Vector Logical Operation Instructions
	8.11.1. VAND
	8.11.2. VOR
	8.11.3. VXOR
	8.11.4. VEQV
	8.11.5. VLDZ
	8.11.6. VPCNT
	8.11.7. VBRV
	8.11.8. VSEQ

	8.12. Vector Shift Operation Instructions
	8.12.1. VSLL
	8.12.2. VSLD
	8.12.3. VSRL
	8.12.4. VSRD
	8.12.5. VSLA
	8.12.6. VSLAX
	8.12.7. VSRA
	8.12.8. VSRAX
	8.12.9. VSFA

	8.13. Vector Floating-Point Arithmetic Instructions
	8.13.1. VFAD
	8.13.2. VFSB
	8.13.3. VFMP
	8.13.4. VFDV
	8.13.5. VFSQRT
	8.13.6. VFCP
	8.13.7. VFCM
	8.13.8. VFMAD
	8.13.9. VFMSB
	8.13.10. VFNMAD
	8.13.11. VFNMSB
	8.13.12. VRCP
	8.13.13. VRSQRT
	8.13.14. VFIX
	8.13.15. VFIXX
	8.13.16. VFLT
	8.13.17. VFLTX
	8.13.18. VCVS
	8.13.19. VCVD

	8.14. Vector Reduction Instructions
	8.14.1. VSUMS
	8.14.2. VSUMX
	8.14.3. VFSUM
	8.14.4. VMAXS
	8.14.5. VMAXX
	8.14.6. VFMAX
	8.14.7. VRAND
	8.14.8. VROR
	8.14.9. VRXOR

	8.15. Vector Iterative Operation Instructions
	8.15.1. VFIA
	8.15.2. VFIS
	8.15.3. VFIM
	8.15.4. VFIAM
	8.15.5. VFISM
	8.15.6. VFIMA
	8.15.7. VFIMS

	8.16. Vector Merger Operation Instructions
	8.16.1. VMRG
	8.16.2. VSHF
	8.16.3. VCP
	8.16.4. VEX

	8.17. Vector Mask Operation Instructions
	8.17.1. VFMK
	8.17.2. VFMS
	8.17.3. VFMF
	8.17.4. ANDM
	8.17.5. ORM
	8.17.6. XORM
	8.17.7. EQVM
	8.17.8. NNDM
	8.17.9. NEGM
	8.17.10. PCVM
	8.17.11. LZVM
	8.17.12. TOVM

	8.18. Vector Control instructions
	8.18.1. LVL
	8.18.2. SVL
	8.18.3. SMVL
	8.18.4. LVIX

	8.19. Control Instructions
	8.19.1. SIC
	8.19.2. LPM
	8.19.3. SPM
	8.19.4. LFR
	8.19.5. SFR
	8.19.6. SMIR
	8.19.7. NOP
	8.19.8. MONC
	8.19.9. LCR
	8.19.10. SCR
	8.19.11. TSCR
	8.19.12. FIDCR

	8.20. Host Memory Access Instructions
	8.20.1. LHM
	8.20.2. SHM

	9. Appendix-1 Microarchitecture of SX-Aurora TSUBASA
	9.1. VE CPU
	9.2. Core
	9.3. LLC
	9.4. NoC
	9.5. Ring bus
	9.6. MCU and VE memory
	9.7. DMU
	9.8. DGU
	9.9. PEU
	9.10. XIU

	10. Appendix-2 List of Instructions
	10.1. List of SX-Aurora TSUBASA Instructions

	11. Appendix-3 Operation Code Table
	11.1. Operation Code Table

