AMD

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 5:
64-Bit Media and
x87 Floating-Point
Instructions

Advanced Micro Devices g\
[AMD Public Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

© 2002-2021 Advanced Micro Devices, Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject
to change without notice. While every precaution has been taken in the preparation
of this document, it may contain technical inaccuracies, omissions and typographi-
cal errors, and AMD is under no obligation to update or otherwise correct this infor-
mation. Advanced Micro Devices, Inc. makes no representations or warranties with
respect to the accuracy or completeness of the contents of this document, and
assumes no liability of any kind, including the implied warranties of noninfringe-
ment, merchantability or fitness for particular purposes, with respect to the opera-
tion or use of AMD hardware, software or other products described herein. No
license, including implied or arising by estoppel, to any intellectual property rights is
granted by this document. Terms and limitations applicable to the purchase or use
of AMD's products are as set forth in a signed agreement between the parties or in
AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, and 3DNow! are trademarks,
and AMD-K® is a registered trademark of Advanced Micro Devices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks of their respective companies.

Reverse engineering or disassembly is prohibited.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Dolby Laboratories, Inc.

Manufactured under license from Dolby Laboratories.

Rovi Corporation

This device is protected by U.S. patents and other intellectual property rights. The use of Rovi Corporation's copy pro-
tection technology in the device must be authorized by Rovi Corporation and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Rovi Corporation.

USE OF THIS PRODUCT IN ANY MANNER THAT COMPLIES WITH THE MPEG ACTUAL OR DE FACTO VIDEO
AND/OR AUDIO STANDARDS IS EXPRESSLY PROHIBITED WITHOUT ALL NECESSARY LICENSES UNDER
APPLICABLE PATENTS. SUCH LICENSES MAY BE ACQUIRED FROM VARIOUS THIRD PARTIES INCLUDING,
BUT NOT LIMITED TO, IN THE MPEG PATENT PORTFOLIO, WHICH LICENSE IS AVAILABLE FROM MPEG LA,

[AMD Public Use]

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Contents
CONtENES . e e e e i
I QUI S, o e IX
T A S . .o e e Xi
REVISION HiStOrY . . o e Xiii
PrEfaCe. . ..o e XV
ADOUL THIS BOOK. . . o\ttt e e e e e e e e XV
AUAIENCE. . ..ot e e XV
(@070 . (o XV
Conventionsand DefiNitioNsottt e e e e XVi
REaed DOCUMIENES. . . .ottt e e e e e e XXViii
1 64-Bit Media Instruction REfFErence. e e 1
CV TP 2P . .. 3
CV TP 2P . ..t e 6
CV TP 2P . . . e 8
CV T PSP . . e 10
CV T T PD 2Pl . .. e e e e 12
CV T T PSP . . .o e e 15
EMM S L 17
FEMM S . 18
FRSTOR . . 20
FSAVE
(FNSAVE) © . ettt e e e 22
FXRSTOR . . 24
X SAVE . . 26
MASKMOV Q .o e e 28
MOV D .o 31
MOV D20 . . .ottt 34
MOVNT Q .ottt e e e e e e 36
MOV Q. e e 38
MOV Q2D Q. . ettt et e e e e e 40
PACK SO DY ..t 42
PACK SSWB .. 44
PACKUSWWB . . oo e 46
PA D DD ... 48
PA D DD ... 50
PAD DD . .. e 52
PAD DS . .. e e 54
PA D D OV . . 56
PAD DU SB . . . 58
PA D DU SN . 60
PA D DV . . 62
Contents ii

[AMD Public Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
PAN D . . 64
PAN DN L 66
PAV GB. ... 68
PAV GUSB . . o 70
PAV GV .. 72
PCOMPEQot 74
PCMPEQD . .. 76
POM PE QW . . . e 78
POM PG T B. . ..ot e 80
PCMPGTD .t e e e 82
POM PG TN .o 84
PEX TRV . L 86
PRI . . 88
PRIV L e 20
PRA . o e 92
PRA DD D . .t 94
PR PEQ . . oot 96
PRECMPGE 98
PRCM PG . o 101
PR A X 103
PRI L 105
PEMUL L 107
PEN A CC . . 109
PPN A CC . 112
PR CP . . 115
PER P T L . o 118
PR C P T 2 . . 121
PRSI T L. . ot 124
PR SR ..ot 127
PESUB . . 130
PESUBR . . 132
Pl 2D . . 134
L2V L 136
PIN SRV . . L 138
PMADDWND ...t e e 140
P A X O L 142
PM A XUB .. 144
PN SV . L e 146
PMINUB . . 148
PMOVM SK B ..t 150
PMULHRW . o e 152
PMULHUW . L 154
PMULHW L 156
PMULLWY L e 158
PMULUDQ . oottt e e e e e e e e 160
POR . 162
PO A D BV . .. 164

v [AMD Public Use] contents

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
PSHUR W . . 166
s 1 169
PO L Q. ettt 171
S T I 173
PO RA DD . 175
PO R A L 177
PO R D . .ttt 179
PO RL Q. .ottt 181
PO R L e 183
POUBt 185
POUB DD ..ot 187
POUB .ottt 189
PSUBSB . ..ot 191
PSUB SV . ..o 193
PSUBU S ... e e e 195
PSUBU SV, e e e e e 197
POUB WV .. 199
PO A D . .. 201
PUNPCKHBW .. e e e e e 203
PUNPCKHDQ. . ..ottt ettt et et e e e e e e e e 205
PUNPCKHWD . . e e e e e e 207
PUNPCK LBW. . e e e e e e 209
PUNPCKLDQ . . ottt e e e e e e 211
PUNPCK LW D. . ..o e e e e e e e e e e e 213
P O R, . 215

2 x87 Floating-Point Instruction Reference. i 217
2 218
FABS . . 220
FADD
FADDP
FLADDD . .. 222
FBL D . .t 225
FB ST P . 227
FCOHS . o 229
FCLEX
(FNCLEX) . ottt e e e e 230
FOMOV T . . ottt et e e e e e e e e 232
FCOM
FCOMP
FOOM PP . . 234
FCOMI
FCOMI P, . . 237
FCOS . o 239
FDEC ST P ..t 241
FDIV
FDIVP
FID IV . e e e 243

Contents v

[AMD Public Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FDIVR
FDIVRP
FIDI IV R . 246
FRREE . . . o 249
FICOM
FICOM . . . 250
FIL D 252
FINC ST P . . e e 254
FINIT
FNINIT e e e 256
FIST
IS P, o 258
FlST TP, . 261
I 263
FL D .o 265
FL D WV L 266
FLDENV .. 268
FL DL 2 . . .t 270
0 2 271
FL DL G .. e 272
FLD LN o 273
FL D P L 274
FL D Z . . 275
FMUL
FMULP
FIMUL . .o e e 276
FN O P . L 279
FRAT AN . 280
FPREM .. 282
FPREM L . . 284
PP AN L L 286
FRN DINT L e 288
FRSTOR . . 290
FSAVE
FNSAVE . .o 292
FSCALE .. e 294
FSIN. o 296
FSINCOS. . o 298
FOORT Lttt 300
FST
ST P o 302
FSTCW
(BN ST O) e e e 304
FSTENV
(FNSTENV). oot e e e e 306
FSTSW
(PN ST O) . oot e e e e 308

v [AMD Public Use] contents

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FSUB
FSUBP
FISUB .. e e 310
FSUBR
FSUBRP
FISUBR . . .o 313
F ST o e e 316
FUCOM
FUCOMP
FUCOM PP, . o e e 317
FUCOMI
FUCOMI P . . e e e 319
FWAIT
(WAL e e e 321
X AM L e e e e 322
FX CH. L 324
FX T RA CT et 325
FY L 2K . oot 327
FY L 2X P, .o 329
Appendix A Recommended Substitutionsfor 3DNow! ™ Instructions 333
INOEX . ot 335
Contents vii

[AMD Public Use]

AMDA
AMDG64 Technology 26569—Rev. 3.16—November 2021

v [AMD Public Use] Contents

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Figures
Figure1-1. Diagram Conventionsfor 64-Bit Medialnstructions. it 1

Figures [AMD Public Use] '

AMDA
AMDG64 Technology 26569—Rev. 3.16—November 2021

: [AMD Public Use] rigures

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Tables

Table1l-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW 86
Table1l-2. NumericRangefor PF2ID ResUItS.o e 89
Table1-3. NumericRangefor PF2IW ReSUItS o e e 91
Table1l-4. NumericRangefor PFACC RESUItS.ot e e 93
Table1-5. Numeric Rangeforthe PFADD ReSUItS.ot 95
Table1-6. Numeric Range for the PFCMPEQ Instruction, 97
Table1-7. Numeric Rangefor the PFCMPGE Instruction i 99
Table1-8. Numeric Rangefor the PFCMPGT Instructionot 102
Table1-9. Numeric Rangefor the PFMAX Instruction. i 104
Table 1-10. Numeric Rangeforthe PFMIN Instruction i, 106
Table1-11. Numeric Rangefor the PFMUL Instruction. 108
Table1-12. Numeric Range of PENACCReESUIES oo e 110
Table 1-13. Numeric Range of PFPNACC Result (Low Result). 113
Table 1-14. Numeric Range of PFPNACC Result (HighResult)o i, 113
Table1-15. Numeric Rangeforthe PFRCP Result i e 116
Table1-16. NumericRangeforthe PFRCP Result i e e 128
Table1-17. Numeric Rangeforthe PFSUB ReSUILS oot 131
Table1-18. Numeric Rangefor the PFSUBRRESUITS.o e 133
Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW. oo 138
Table 1-20. Immediate-Byte Operand Encoding for PSHUFW. 167
Table2-1. Storing NUmbers as Integers.ottt e e et 258
Table2-2. Storing NUMbErS as INtegerS.ottt e e et et e 261
Table2-3. Computing Arctangent of NUMbErs e e 280
Tables Xi

[AMD Public Use]

AMDA
AMDG64 Technology 26569—Rev. 3.16—November 2021

. [AMD Public Use] Tebles

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

Revision History

Date Revision Description
November 2021 3.16 Add_e_d Allgnme_nt Che_ck, #AC to FXRSTOR_ and FXSAVE and
additional details of alignment check behavior.
Added clarification to CVTPI2PS.
May 2018 3.15

Corrected PSHUFW detail.

Modified Exceptions for Floating-Point Load under x87 Floating-

September 2016 3.14 Point Exception Generated, #MF.

Corrected CPUID function and feature bit called out in text for
May 2013 3.13 FXSAVE/FXRSTOR optimization. Made other corrections and
clarifications related to the specification of feature bits.

March 2012 3.12 Clarified exception and trap behavior for MASKMOVQ

Revised FCOM, FCOMP, FCOMPP and FCOMI, FCOMIP
December 2009 3.11 instruction pages.
Corrected exception tables for FPREM and FPREML1.

Revised FCOM, FCOMP, FCOMPP description. Corrected
FISTTP exception table.

April 2009 3.10

Added minor clarifications and corrected typographical and

September 2007 3.09 ¢ .
ormatting errors.

Added misaligned access support to applicable instructions.

Deprecated 3DNow!™ instructions. Added Appendix
A, "Recommended Substitutions for 3DNow!™ [nstructions,” on
page 333.

Added minor clarifications and corrected typographical and
formatting errors.

July 2007 3.08

Added minor clarifications and corrected typographical and

September 2006 3.07 .
formatting errors.

Added minor clarifications and corrected typographical and

December 2005 3.06 X
formatting errors.

Revision History [AMD PUb“C Use] Xiii

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Date Revision Description

Added FISTTP instruction (SSE3). Updated CPUID information
December 2004 3.05 in exception tables. Corrected several typographical and
formatting errors.

Clarified x87 condition codes for FPREM and FPREM1
September 2003 3.04 instructions. Corrected tables of numeric ranges for results of
PF2ID and PF2IW instructions.

Corrected numerous typos and stylistic errors. Corrected
April 2003 3.03 description of FYL2XP1 instruction. Clarified the description of
the FXRSTOR instruction.

Xiv

[AMD Public Use] Revision History

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

Preface

About This Book

Thisbook is part of amultivolume work entitled the AMD64 Architecture Programmer’sManual. This
table lists each volume and its order number.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions | 26569

Audience

This volume (Volume 5) isintended for al programmers writing application or system software for a
processor that implements the AM D64 processor architecture.

Organization

Volumes 3, 4, and 5 describe the AMD®64 instruction set in detail. Together, they cover each
instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMDG64 instruction set isdivided into five subsets:

» General-purposeinstructions

e Systeminstructions

e 128-bit and 256-bit mediainstructions (Streaming SIMD Extensions — SSE)
* 64-bit mediainstructions (MMX™)

» x87 floating-point instructions

A number of instructions belong to—and are described identically in—multiple instruction subsets.

Thisvolume describesthe 64-bit mediaand x87 floating-point instructions. Theindex at the end cross-
references topics within this volume. For other topics relating to the AMDG64 architecture, and for
information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Preface [AMD Public Use] X

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Conventions and Definitions

The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMD64 Architecture Programmer’s Manual. Thisisfollowed by
a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Finally, the Register s section lists the registers which are a part of the application
programming model.

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value—in this example, a4-bit value.

FOEA_0B02h
A hexadecimal value. Underscore characters may beinserted to improve readability.

128
Numbers without an al pha suffix are decimal unless the context indicates otherwise.

74
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the” RRR’ notation isfollowed by
“ XYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CRO-CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

CRO[PE], CRO.PE
Notation for referring to afield within aregister—in this case, the PE field of the CRO register.

CRO[PE] =1, CRO.PE=1
The PE field of the CRO register is set (containsthe value 1).

X [AMD Public Use] Preface

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

EFER[LME] =0, EFER.LME=0
The LME field of the EFER register is cleared (contains a value of 0).

DS:S

A far pointer or logical address. The real address or segment descriptor specified by the segment
register (DSin thisexample) is combined with the offset contained in the second register (Sl inthis
example) to form areal or virtual address.

RFLAGS[13:12]

A field within aregister identified by its bit range. In this example, corresponding to the |OPL
field.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents’ on page xxviii for descriptions of the legacy x86 architecture.

128-bit mediainstructions

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit mediainstructions

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit mediainstructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MM X and 3DNow! ™ instruction sets and their extensions, with some additional instructionsfrom
the SSE1 and SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
asregister extensions, are supported for system and application software.

absolute

Said of adisplacement that references the base of acode segment rather than an instruction pointer.
Contrast with relative.

Preface [AMD Public Use] i

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

AES
Advance Encryption Standard (AES) agorithm acceleration instructions; part of Sreaming SMD
Extensions (SSE).

ASID
Address space identifier.

AV X

Extension of the SSE instruction set supporting 256-bit vector (packed) operands. See Streaming
SMD Extensions.

biased exponent

The sum of afloating-point value' s exponent and a constant biasfor a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear
To writeabit value of 0. Compare set.

compatibility mode
A submode of long mode. In compatibility mode, the default address sizeis 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit
Toirreversibly write, in program order, an instruction’ sresult to software-visible storage, suchasa
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data
Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absol ute addressing) or an instruction pointer
(relative addressing). Same as offset.

il [AMD Public Use] Preface

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except SSE
floating-point exceptions and x87 floating-point exceptions, control is transferred to the handler
(or service routine) for that exception, as defined by the exception’s vector. For floating-point
exceptions defined by the |EEE 754 standard, there are both masked and unmasked responses.
When unmasked, the exception handler is called, and when masked, a default responseis provided
instead of calling the handler.

extended SSE
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SSMD Extensions (SSE). Includes
the AVX, FMA, FMA4, and XOP instructions. Compare legacy SSE.
flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, asin “flush the cache
line,” or (2) invalidate, asin “flush the pipeline,” or (3) change avalue, asin “flush to zero.”
FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.

GDT
Global descriptor table.

Preface [AMD Public Use] XX

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on aread is indeterminate. See
reserved.

indirect
Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture. See “Related Documents” on page xxviii for descriptions of the
legacy x86 architecture.

legacy mode
An operating mode of the AM D64 architecturein which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE
A subset of the Streaming SIMD Extensions (SSE) composed of the SSE1, SSE2, SSE3, SSSE3,
SSE4.1, SSE4.2, and SSE4A instruction sets. Compare extended SSE.

long mode

An operating mode unique to the AMD®64 architecture. A processor implementation of the
AMD®64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

X [AMD Public Use] Preface

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Isb

L east-significant bit.
LSB

L east-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that isinstalled in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for acontrol purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. Seereserved.

memory
Unless otherwise specified, main memory.

msb
Most-significant bit.

MSB
Most-significant byte.

multimediainstructions

Those instructions that operate simultaneously on multiple elements within a vector data type.
Comprises the 256-bit media instructions, 128-bit media instructions, and 64-bit media
instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

Preface [AMD Public Use] o

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’ s caches or internal buffers. External probes originate
outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on aread is always zero (0) regardless of what was previously
written. (See reserved)

real-address mode
Seereal mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of areserved field (unless
qualified asRAZ), nor upon the ability of such fieldsto return apreviously written state.

If afield is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from aprior read.

Reserved fields may be qualified asIGN, MBZ, RAZ, or SBZ (see definitions).

REX
An instruction encoding prefix that specifies a 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

Xl [AMD Public Use] Preface

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

scalar

An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

Set
To writeabit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(1), and base (B).

SIMD
Singleinstruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)

Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSE1

Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.

SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A

A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

Preface [AMD Public Use] ol

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow

The condition in which afloating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the media instructions support vectors as operands. Vectors are also called packed or
S MD (single-instruction multiple-data) operands.

(2) Anindex into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

VEX

An instruction encoding escape prefix that opens a new extended instruction encoding space,
specifiesa64-bit operand size, and provides access to additional registers. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bhits.

XOPinstructions
Part of the extended SSE instruction set using the XOP prefix. See Sreaming SMD Extensions.

XOP prefix

Extended instruction identifier prefix, used by X OP instructions allowing the specification of up to
four operands and 128 or 256-bit operand widths.

[AMD Public Use] Preface

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

Registers

In the following list of registers, the names are used to refer either to agiven register or to the contents
of that register:
AH-DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL—DL.
AL-DL
Thelow 8-bit AL, BL, CL, and DL registers. Compare AH-DH.

AL—+15B

Thelow 8-bitAL, BL, CL, DL, SIL, DIL, BPL, SPL, and R8B—R15B registers, availablein 64-bit
mode.

BP
Base pointer register.
CRn

Control register number n.

CS
Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, S, BR, and SPregisters or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESPregisters. Compare r AX— SP.

EBP

Extended base pointer register.
EFER

Extended features enabl e register.
eFLAGS

16-bit or 32-hit flags register. Compare rFLAGS
EFLAGS

32-bit (extended) flags register.
elP

16-bit or 32-bit instruction-pointer register. Comparer|P.
EIP

32-bit (extended) instruction-pointer register.

Preface [AMD Public Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs
General-purpose registers. For the 16-bit data size, theseare AX, BX, CX, DX, DI, Sl, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
datasize, theseinclude RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor tableregister.

MSR
Model -specific register.

r8—+15
The 8-bit RBB—R15B registers, or the 16-bit RBW—-R15W registers, or the 32-bit RBD-R15D
registers, or the 64-bit R8-R15 registers.

rAX—SP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SPregisters, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESPregisters, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-hit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBPregister.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

[AMD Public Use] Preface

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

riP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP
64-bit instruction-pointer register.

RS
64-bit version of the ESI register.

RSP
64-bit version of the ESPregister.

SP
Stack pointer register.

SS
Stack segment register.

TPR

Task priority register (CR8), a new register introduced in the AM D64 architecture to speed
interrupt management.

TR
Task register.

Endian Order

The x86 and AMDG64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their |east-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytesincrease from right to left.

Preface [AMD Public Use] o

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021

Related Documents

Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume 1l, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
AMD, 3DNow! ™ Technology Manual, Sunnyvale, CA, 2000.
AMD, AMD Extensionsto the 3DNow! ™ and MMX™ [nstruction Sets, Sunnyvale, CA, 2000.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabgjyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOSInternals, Addison-Wesley, New York, 1994.

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Thom Hogan, The Programmer’ s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

XXVii [AMD PUb“C Use] Preface

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

IBM Corporation, 4869_C Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 4869.C2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486D X2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

Institute of Electrical and Electronics Engineers, IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE Standard for Radix-1ndependent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Sreaming SMD Extensions in the Pentium IlI,
www.x86.org/articles/sse ptl/ simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOSExtender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i1386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

Preface [AMD Public Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

e Walter A. Triebel, The 80386D X Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
» John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
* Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

[AMD Public Use] Preface

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

1 64-Bit Media Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the 64-bit mediainstructions. These instructions operate on datalocated in the
64-bit MM X registers. Most of the instructions operate in parallel on sets of packed elements called
vectors, although some operate on scalars. The instructions define both integer and floating-point
operations, and include the legacy MM X ™ instructions, the 3DNow! ™ instructions, and the AMD
extensionsto the MM X and 3DNow! instruction sets.

Each instruction that performs a vector (packed) operation isillustrated with adiagram. Figure 1-1 on
page 1 shows the conventions used in these diagrams. The particular diagram shows the PSLLW
(packed shift left logical words) instruction.

Arrowheads going fo a source operand
indicate the writing of the result. In this

case, the result is written to the first source
operand, which is also the destination operand.

First Source Operand
(and Destination Operand) Second Source Operand
mmx]1 mmx2/memé64
6374847 3231 1615 0 63 4847 3231 1615 0
| . .
shift left « ! |
] i et
513-324.eps File name of
Operation. In this case, this figure (for
a bitwise shift-left. documentation
control)
Arrowheads coming from a source operand Ellipses indicate that the operation
indicate that the source operand provides is repeated for each element of the
a control function. In this case, the second source vectors. In this case, there are
source operand specifies the number of bits 4 elements in each source vector, so
to shift, and the first source operand specifies the operation is performed 4 times,
the data to be shifted. in parallel.

Figure 1-1. Diagram Conventions for 64-Bit Media Instructions

Gray areasin diagrams indicate unmodified operand bits.

64-Bit Media .
Instruction Reference [AMD PUb“C Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Like the 128-bit mediainstructions, many of the 64-bit instructions independently and simultaneously
perform a single operation on multiple elements of a vector and are thus classified as single-
instruction, multiple-data (SIMD) instructions. A few 64-bit mediainstructions convert operandsin
MMX registersto operandsin GPR, XMM, or x87 registers (or vice versa), or save or restore MM X
state, or reset x87state.

Hardware support of the MM X instruction set and specific optional extensions can be determined by
testing specific bits of the valuereturned in EDX by the CPUID instruction. If aspecific bitissetinthe
return value, the feature is supported on the processor. The following lists the CPUID function
numbers and feature bits indicating support for these features.

* MMX Instructions, indicated by EDX[23] returned by CPUID function 0000_0001h and function
8000_0001h.

 AMD Extensionsto MMX Instructions, indicated by EDX[22] of CPUID function 8000_0001h.

» SSE1, indicated by EDX[25] of CPUID function 0000_0001h.

» SSE2, indicated by EDX[26] of CPUID function 0000_0001h.

 AMD 3DNow! Instructions, indicated by EDX[31] of CPUID function 8000_0001h.

* AMD Extensionsto 3DNow! Instructions, indicated by EDX[30] of CPUID function 8000_0001h.

* FXSAVE and FXRSTOR, indicated by EDX[24] of CPUID function 0000_0001h and function
8000_0001h.

The 64-bit media instructions can be used in legacy mode or long mode. Their usein long mode is
availableif thefollowing CPUID function return bit is set:

* Long Mode, indicated by EDX[29] of CPUID function 8000_0001h.
For more information on using the CPUID instruction, see the instruction description in Volume 3.

Compilation of 64-bit media programs for execution in 64-bit mode offers four primary advantages:
access to the eight extended, 64-bit general-purpose registers (for a register set consisting of
GPRO-GPR15), access to the eight extended XMM registers (for a register set consisting of
XMMO-XMM15), accessto the 64-bit virtual address space, and accessto the RIP-relative addressing
mode.

For further information, see:

* “64-Bit MediaProgramming” in Volume 1.

e “Summary of Registersand Data Types’ in Volume 3.
* “Notation” in Volume 3.

e “Instruction Prefixes” in Volume 3.

2 . 64-Bit Media
[AMD PUb“C Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

CVTPD2PI Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers

Converts two packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MM X
register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) inthe MXCSR register. If the floating-point valueisaNaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (-231 to +231 — 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPDZ2PI instruction is an SSE2 instruction. Support for thisinstruction set is indicated by
CPUID Fn0000 0001 _EDX[SSE2] = 1. Support for misaligned 16-byte memory accessesisindicated
by CPUID Fn8000_0001_ECX[MisAlignSse] = 1.

Mnemonic Opcode Description

Converts packed double-precision floating-point

values in an XMM register or 128-bit memory location
CVTPD2PI mmx, xmm2/mem128 66 OF 2D /r to packed doubleword integers values in the

destination MMX register.

mmx Xxmm/mem128

63 1 32 31 l 0 127 64 63 0

convert ‘
convert

| cvtpd2pi.eps

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

?n4s-'I[3riL;[cl\t/:‘ca)(rj1iaReference [AM DCHﬁBﬁlél Use] ’

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26569—Rev. 3.16—November 2021

MM | FZ RC PM | UM | OM | ZmM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M
17 15 | 14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The SSE2 instructions are not supported, as
indicated by CPUID Fn0O0O00_0001_EDX[SSEZ2] = 0.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support
Invalid opcode, #UD bit (OSFXSR) of CR4 was cleared to O.
There was an unmasked SIMD floating-point
exception while CR4.0SXMMEXCPT was cleared to
X X X 0.
See SIMD Floating-Point Exceptions, below, for
details.
#I?ISJ\ICICG not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
was non-canonical.
General protection, #GP X A null data segment was used to reference memory.
X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM = 0.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled with
MXCSR.MM = 1.
x87 floating-point X X X An exception is pending due to an x87 floating-point
exception pending, #MF instruction.
There was an unmasked SIMD floating-point
SIMD Floating-Point X X X exception while CR4.0SXMMEXCPT was set to 1.
Exception, #XF See SIMD Floating-Point Exceptions, below, for
details.

[AMOPUBfC Use]

64-Bit Media
Instruction Reference

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

Virtual
Exception Real | 8086 |Protected Cause of Exception
SIMD Floating-Point Exceptions
X X X A source operand was an SNaN value, a QNaN
Invalid-operation value, or infinity.
exception (IE) X X X A source operand was too large to fit in the

destination format.

Precision exception X X X A result could not be represented exactly in the
(PE)

destination format.

64-Bit Media

Instruction Reference [AM DCbTﬁBﬁ%I Use] °

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

CVTPI2PD Convert Packed Doubleword Integers to Packed

Double-Precision Floating-Point
Converts two packed 32-bit signed integer valuesin an MM X register or a 64-bit memory location to
two double-precision floating-point values and writes the converted valuesin an XMM register.

The CVTPI2PD instruction is an SSE2 instruction. Support for thisinstruction set is indicated by
CPUID Fn0000_0001_EDX[SSEZ2] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Mnemonic Opcode Description

Converts two packed doubleword integer values in an

MMX register or 64-bit memory location to two packed
CVTPIZPD xmm, mmximem64 66 OF 2A /r double-precision floating-point values in the destination

XMM register.

Xxmm mmx/mem64

127 64 63 l 0 63 32 31 0

convert
| convert

cvtpi2pd.eps

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTSD2SI, CVTSI2SD, CVTTPD2DQ, CVTTPD2PI,
CVTTSD2SI

rFLAGS Affected

None

MXCSR Flags Affected

None

° [AM DCbTﬁbZﬁ&) Use] Instructio?14I-?Bei1:[e'\r/|eendcifa1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
X X X The SSE2 instructions are not supported, as
indicated by CPUID Fn0000_0001_ EDX[SSEZ2] = 0.
Invalid opcode, #UD X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support
bit (OSFXSR) of CR4 was cleared to 0.
gﬁ\,\'/'lce hot available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed

while alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD BUBHE Use] !

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

CVTPIZ2PS Convert Packed Doubleword Integers to Packed
Single-Precision Floating-Point

Converts two packed 32-bit signed integer valuesin an MM X register or a 64-bit memory location to
two single-precision floating-point values and writes the converted values in the low-order 64 bits of
an XMM register. The high-order 64 bits of the XMM register are not modified. If the result of the
conversion is an inexact value, the value is rounded as specified by the rounding control bits (RC) in
the MXCSR register.

The CVTPI2PS instruction is an SSE1 instruction. Support for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Mnemonic Opcode Description
Converts packed doubleword integer values in an MMX

CVTPI2PS xmm, mmx/mem64 OF 2A/r register or 64-bit memory location to single-precision
floating-point values in the destination XMM register.

xmm mmx/memé64

127 64 63 l 32 31 l 0 63 32 31 0

convert
| convert

Cvtpi2ps.eps

Related Instructions

CVTDQ2PS, CVTPS2DQ, CVTPS2PI, CVTSIZSS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2S

rFLAGS Affected

None

° [AM Dclf)Tﬁgﬁé U Se] Instructi0?14I-?Bei1:[e'\r/|eendciZ1

AMDZU

26569—Rev. 3.16—November 2021

MXCSR Flags Affected

AMDG64 Technology

MM | FZ RC PM | UM | OM | ZmM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 15 | 14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The SSEL1 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE] = 0.
X X X The emulate bit (EM) of CRO was setto 1.
. The operating-system FXSAVE/FXRSTOR support
Invalid opcode, #UD X X X bit (OSEXSR) of CR4 was cleared to 0.
There was an unmasked SIMD floating-point
X X X exception while CR4.0SXMMEXCPT was cleared to
0. See SIMD Floating-Point Exceptions, below, for
details.
Eﬁ\'\//llce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.
There was an unmasked SIMD floating-point
SIMD Floating-Point X X X exception while CR4.0SXMMEXCPT was set to 1.
Exception, #XF See SIMD Floating-Point Exceptions, below, for
details.
SIMD Floating-Point Exceptions
Precision exception X X X A result could not be represented exactly in the
(PE) destination format.

64-Bit Media
Instruction Reference

[AMDPGBHE Use] °

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

CVTPS2PI Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integers and writes the converted
valuesinan MMX register.

If the result of the conversion is an inexact value, the value is rounded as specified by the rounding
control bits (RC) inthe MXCSR register. If the floating-point valueisaNaN, infinity, or if the result of
the conversion is larger than the maximum signed doubleword (-23 to +231 — 1), the instruction
returns the 32-bit indefinite integer value (8000_0000h) when the invalid-operation exception (IE) is
masked.

The CVTPS2PI instruction is an SSE1 instruction. Support for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Mnemonic Opcode Description
CVTPS2PI mmx, Converts packed single-precision floating-point values in an

OF 2D /r XMM register or 64-bit memory location to packed
xmm/mem64 doubleword integers in the destination MMX register.

mmx Xmm/meme64

63 l 32 31 l 0 127 64 63 32 31 0

convert
| convert

vtps2pi.eps

Related Instructions

CVTDQ2PS, CVTPI2PS, CVTPS2DQ, CVTSI2SS, CVTSS2SI, CVTTPS2DQ, CVTTPS2PI,
CVTTSS2S

rFLAGS Affected

None

10 CMTPS2PI 64-Bit Media
[AMD]f)UBﬁC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

MXCSR Flags Affected

AMDG64 Technology

MM | FZ RC PM | UM | OM | ZmM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M
17 15 | 14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
X X X The SSEL1 instructions are not supported, as
indicated by CPUID Fn0O0O00_0001_EDX[SSE] = 0.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support
Invalid opcode, #UD bit (OSFXSR) of CR4 was cleared to O.
There was an unmasked SIMD floating-point
exception while CR4.0SXMMEXCPT was cleared to
X X X 0.
See SIMD Floating-Point Exceptions, below, for
details.
#I?'\el\'\//llce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment
Stack, #55 X X X limit or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed
Alignment check, #AC X X while alignment checking was enabled.
There was an unmasked SIMD floating-point
SIMD Floating-Point X X X exception while CR4.0SXMMEXCPT was set to 1.
Exception, #XF See SIMD Floating-Point Exceptions, below, for
details.
SIMD Floating-Point Exceptions
X X X A source operand was an SNaN value, a QNaN
Invalid-operation value, or infinity.
exception (IE) X X X A source operand was too large to fit in the
destination format.
Precision exception X X X A result could not be represented exactly in the
(PE) destination format.

64-Bit Media
Instruction Reference

[AMDPUBfic Use]

11

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

CVTTPD2PI Convert Packed Double-Precision Floating-Point to
Packed Doubleword Integers, Truncated

Converts two packed double-precision floating-point valuesin an XMM register or a 128-bit memory
location to two packed 32-bit signed integer values and writes the converted values in an MM X
register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value isaNaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (-231 to +231 — 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPD2PI instruction is an SSE2 instruction. Support for thisinstruction set is indicated by
CPUID Fn0000_0001_EDX[SSEZ2] = 1. Support for misaligned 16-byte memory accessesisindicated
by CPUID Fn8000_0001 ECX[MisAlignSse] = 1.

See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Converts packed double-precision floating-point
values in an XMM register or 128-bit memory location

CVTTPD2PI mmx, xmm/mem128 66 OF 2C /r to packed doubleword integer values in the
destination MMX register. Inexact results are
truncated.

mmx Xxmm/mem128

63 l 32 31 l 0 127 64 63 0

convert ‘
| convert

| ovttpd2pi.eps

Related Instructions

CVTDQ2PD, CVTPD2DQ, CVTPD2PI, CVTPI2PD, CVTSD2SI, CVTSI2SD, CVTTPD2DQ,
CVTTSD2SI

rFLAGS Affected

None

- [AM [S\ﬁ-ﬂ:bq'zgl Use] Instructio?l4l-:28(—:‘i1fe'\r/leendciz

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

MXCSR Flags Affected

MM | FZ RC PM | UM | OM | ZmM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M

17 | 15 | 14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The SSEZ2 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSEZ2] = 0.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
Invalid opcode, #UD (OSFXSR) of CR4 was cleared to 0.
There was an unmasked SIMD floating-point
exception while CR4.0SXMMEXCPT was cleared to
X X X 0.
See SIMD Floating-Point Exceptions, below, for
details.
#I?ISJ\ICICG not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
was non-canonical.
General protection, #GP X A null data segment was used to reference memory.
X X X The memory operand was not aligned on a 16-byte
boundary while MXCSR.MM = 0.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled with
MXCSR.MM = 1.
x87 floating-point X X X An exception is pending due to an x87 floating-point
exception pending, #MF instruction.
There was an unmasked SIMD floating-point
SIMD Floating-Point X X X exception while CR4.0SXMMEXCPT was set to 1.
Exception, #XF See SIMD Floating-Point Exceptions, below, for
details.

Fn4s-'I[3riJcl\t/:?)?1i??eference [AM [S\ﬁ[ﬁquZCPI Use] e

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

(PE)

Virtual
Exception Real | 8086 |Protected Cause of Exception
SIMD Floating-Point Exceptions
X X X A source operand was an SNaN value, a QNaN
Invalid-operation value, or infinity.
exception (IE) X X X A source operand was too large to fit in the
destination format.
Precision exception X X X Aresult could not be represented exactly in the

destination format.

14

[AM [S\ﬁ[lFEﬂ?CPI Use] Instructi0?14I-:zBei1:[e'\r/|eendci{:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

CVTTPS2PI Convert Packed Single-Precision Floating-Point to
Packed Doubleword Integers, Truncated

Converts two packed single-precision floating-point values in the low-order 64 bits of an XMM
register or a 64-bit memory location to two packed 32-bit signed integer values and writes the
converted valuesin an MMX register.

If the result of the conversion is an inexact value, the value is truncated (rounded toward zero). If the
floating-point value is aNaN, infinity, or if the result of the conversion is larger than the maximum
signed doubleword (-231 to +231 — 1), the instruction returns the 32-bit indefinite integer value
(8000_0000h) when the invalid-operation exception (IE) is masked.

The CVTTPS2PI instruction is an SSE1 instruction. Support for this instruction set is indicated by
CPUID Fn0000_0001_EDX[SSE] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Mnemonic Opcode Description

Converts packed single-precision floating-point values in
an XMM register or 64-bit memory location to doubleword
integer values in the destination MMX register. Inexact
results are truncated.

CVTTPS2PI mmx, xmm/mem64 OF 2C /r

mmx Xmm/meme64

63 l 32 31 l 0 127 64 63 32 31 0

cvitps2pi.eps

Related Instructions

CVTDQ2PS, CVTPIZ2PS, CVTPS2DQ, CVTPS2PI, CVTSI2SS, CVTSS2SI, CVTTPS2DQ,
CVTTSS2S|

rFLAGS Affected

None

?n4s_'I[3riL;[cl\t/:(ca)?1i??eference [AM [S\ﬁ-ll]:bﬁlzgl Use] °

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26569—Rev. 3.16—November 2021

MM | FZ RC PM | UM | OM | ZmM | DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M
17 15 | 14 | 13 | 12 11 10 9 8 7 6 5 4 3 2 1

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The SSE1 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE] = 0.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
Invalid opcode, #UD (OSFXSR) of CR4 was cleared to 0.
There was an unmasked SIMD floating-point
exception while CR4.0SXMMEXCPT was cleared to
X X X 0.
See SIMD Floating-Point Exceptions, below, for
details.
#I?ISI\ICIC(E not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.
There was an unmasked SIMD floating-point
SIMD Floating-Point X X X exception while CR4.0SXMMEXCPT was set to 1.
Exception, #XF See SIMD Floating-Point Exceptions, below, for
details.
SIMD Floating-Point Exceptions
X X X A source operand was an SNaN value, a QNaN
Invalid-operation value, or infinity.
exception (IE) X X X A source operand was too large to fit in the
destination format.
Precision exception X X X A result could not be represented exactly in the
(PE) destination format.

16

[AMD PUBITE Use]

64-Bit Media
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

EMMS Exit Multimedia State

Clearsthe MM X state by setting the state of the x87 stack registers to empty (tag-bit encoding of al 1s
for all MM X registers) indicating that the contents of the registers are available for a new procedure,
such as an x87 floating-point procedure. This setting of the tag bitsisreferred to as“clearingthe MM X
state”.

Because the MM X registers and tag word are shared with the x87 floating-point instructions, software
should execute an EMM S instruction to clear the MM X state before executing code that includes x87
floating-point instructions.

The functions of the EMM S and FEMM S instructions are identical .
For details about the setting of x87 tag bits, see “Mediaand x87 Processor State” in Volume 2.

The EMMSinstructionisan MM X ™ instruction. Support for the MM X instruction subset isindicated
by CPUID Fn0000_0001_EDX[MMX] =1 or CPUID Fn8000_0001_EDX[MMX] = 1. See“CPUID”
in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description
EMMS OF 77 Clears the MMX state.

Related Instructions

FEMMS (a3DNow! instruction)

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or FN8000_0001.
Device not available, #NM X X X The task-switch bit (TS) of CRO was set to 1.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.

Fn4s-'I[3riL}cl\t/:(ce)?liaReference [AMD E'\d%ﬁc Use] Y

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FEMMS Fast Exit Multimedia State

Clearsthe MM X state by setting the state of the x87 stack registers to empty (tag-bit encoding of al 1s
for all MM X registers) indicating that the contents of the registers are available for a new procedure,
such as an x87 floating-point procedure. This setting of the tag bitsisreferred to as“clearingthe MM X
state”.

Because the MM X registers and tag word are shared with the x87 floating-point instructions, software
should execute an EMMS or FEMM S instruction to clear the MM X state before executing code that
includes x87 floating-point instructions.

The functions of the FEMMS and EMMS instructions are identical. The FEMMS instruction is
supported for backward-compatibility with certain AMD processors. Software that must be both
compatible with both AMD and non-AMD processors should use the EMMS instruction.

FEMMS is a 3DNow! instruction. Support for this instruction subset is indicated by CPUID
Fn8000_0001 EDX[3DNow] = 1. See“CPUID” in Volume 3 for more information about the CPUID
instruction.

For details about the setting of x87 tag bits, see “Mediaand x87 Processor State” in Volume 2.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

EMMS
Mnemonic Opcode Description
FEMMS OF OE Clears MMX state.

Related Instructions

EMMS

rFLAGS Affected

None

18 FEMM 64-Bit Media
[AMD FEUbﬁ;C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not

X X X supported, as indicated by CPUID

Fn8000_0001_EDX[3DNow] = 0.

Device not available, #NM X X X The task-switch bit (TS) of CRO was set to 1.
x87 floating-point exception X X X An unmasked x87 floating-point exception was

pending, #MF

pending.

64-Bit Media
Instruction Reference

[AMD Piftiffc Use]

19

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FRSTOR Floating-Point Restore x87 and MMX™ State

Restores the compl ete x87 state from memory starting at the specified address, as stored by a previous
call to FNSAVE. The x87 state occupies 94 or 108 bytes of memory depending on whether the
processor isoperating in real or protected mode and whether the operand-size attribute is 16-bit or 32-
bit. Because the MM X registers are mapped onto the low 64 bits of the x87 floating-point registers,
this operation also restoresthe MM X state.

If FRSTOR resultsin set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flagsin the x87 status word before storing that environment.

For details about the memory image restored by FRSTOR, see “Media and x87 Processor State” in
Volume 2.

Mnemonic Opcode Description
FRSTOR
memo4/108env DD /4 Load the x87 state from mem94/108env.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code Value Description
Cco M Loaded from memory.
C1 M Loaded from memory.
Cc2 M Loaded from memory.
C3 M Loaded from memory.
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

2 [AM D FlBﬁ[ﬂFC Use] Instru cti0?14I-:zB(-:Aiftel\r/leendcifa1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
X X X An unmasked x87 floating-point exception was pending.

exception pending,
#MF

64-Bit Media

Instruction Reference

[AMD'Bubilt Use]

21

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FSAVE Floating-Point Save x87 and MMX™ State
(FNSAVE)

Storesthe complete x87 state to memory starting at the specified address and reinitializes the x87 state.
The x87 state requires 94 or 108 bytes of memory, depending upon whether the processor is operating
inreal or protected mode and whether the operand-size attribute is 16-bit or 32-bit. Because the MM X
registers are mapped onto the low 64 bits of the x87 floating-point registers, this operation also saves
the MM X state. For details about the memory image saved by FNSAVE, see “Media and x87
Processor State” in Volume 2.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point exceptions to be
processed. Processor interrupts should be disabled before using thisinstruction.
Assemblers usually provide an FSAV E macro that expands into the instruction sequence:

VWAI T ; Opcode 9B
FNSAVE desti nation ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNSAV E instruction then stores the x87 state to the specified destination.

Mnemonic Opcode Description
ENSAVE Copy the x87 state to mem94/108env without checking for
mem94/108env DD /6 pending floating-point exceptions, then reinitialize the x87

State.

Copy the x87 state to mem94/108env after checking for
FSAVE mem94/108env 9B DD /6 pending floating-point exceptions, then reinitialize the x87
state.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co 0
C1 0
c2 0
C3 0

” [A I\F/ﬁvﬁ &Fb\lﬁé)S e] Instructi 0?14I-?B(—:Aifte'\r/leendci Z

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was

General protection, non-canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

64-Bit Media 23

Instruction Reference

[ANTPUBNC Tse]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FXRSTOR Restore XMM, MMX™ and x87 State

Restores the XMM, MM X, and x87 state from a 16-byte aligned area in memory pointed to by the
source operand. The dataloaded from memory is the state information previously saved using the
FXSAVE instruction. Restoring data with FXRSTOR that had been previously saved with an FSAVE
(rather than FXSAVE) instruction resultsin an incorrect restoration. If the source pointer is not 16-byte
aligned, execution may be inhibited either by an #AC exception at CPL=3 if alignment checking is
enabled, otherwise by a#GP(0) exception.

If FXRSTOR resultsin set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

If the restored MXCSR register contains a set bit in an exception status flag, and the corresponding
exception mask bit is cleared (indicating an unmasked exception), loading the MX CSR register does
not cause a SIMD floating-point exception (#XF).

FXRSTOR does not restore the x87 error pointers (last instruction pointer, last data pointer, and last
opcode), except when FXRSTOR sets FSW.ES=1 after recomputing it from the error mask bitsin
FCW and error status bitsin FSW.

The architecture supports two 512-bit memory formats for FXRSTOR, a 64-bit format that |oads
XMMO-XMM15, and a 32-bit legacy format that loads only XMMO-XMM?7. If FXRSTOR is
executed in 64-bit mode, the 64-bit format is used, otherwise the 32-bit format is used. When the 64-
bit format is used, if the operand-size is 64-bit, FXRSTOR loads the x87 pointer registers as offset64,
otherwise it loads them as sel: offset32. For details about the memory format used by FXRSTOR, see
"Saving Media and x87 Processor State" in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXRSTOR does not restore the
XMM registers (XMMO-XMM 15) when executed in 64-bit mode at CPL 0. MXCSR is restored
whether fast-FXSAVE/FXRSTOR is enabled or not.

Support for the fast-FXSAVE/FXRSTOR feature is indicated by CPUID
Fn8000_0001_EDX[FFXSR] = 1.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0O, the saved
image of XMM0O-XMM 15 and MXCSR is not loaded into the processor. A general-protection
exception occursif the FXRSTOR instruction attempts to load non-zero valuesinto reserved MXCSR
bits. Software can use MXCSR_MASK to determine which bits of MXCSR are reserved. For details
onthe MXCSR_MASK, see®SSE, MM X, and x87 Programming” in Volume 2.

Support for this instruction is implementation-specific. CPUID Fn8000_ 0001 EDX[FXSR] =1 or
CPUID Fn0000_0001_EDX[FXSR] = 1 indicates support for the FXSAVE and FXRSTOR
instructions. See “CPUID” in Volume 3 for more information about the CPUID instruction.

“ [A M U:EQU%HE U Se] Instru ctio?l4l-?Bei1Ee'\rAeendci:

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Mnemonic Opcode Description

FXRSTOR mem512eny OF AE /1 an%?Tt]%rglslé:I\gtl\i/(I),nMMxm, and x87 state from 512-byte

Related Instructions

FWAIT, FXSAVE

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM|UM | OM | ZM | DM | IM |DAZ| PE | UE | OE | ZE | DE IE
M M M | M M M M M M M M M M M M M M
17 15 14 13 12 11 10 8 7 6 5 4 3

Note: A flag that can be set to one or zero is M (modified). Unaffected flags are blank. Shaded fields are reserved.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
The FXSAVE/FXRSTOR instructions are not
Invalid opcode, #UD X X X supported, as indicated by EDX[FXSR] = 0, returned
by CPUID Fn0000_0001 or CPUID Fn8000_0001.
Device not available, X X X The emulate bit (EM) of CRO was set to 1.
#NM X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit,
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded the data segment limit
or was non-canonical.
X A null data segment was used to reference memory.
General protection, #GP The memory operand was not aligned on a 16-byte
X X X boundary. At CPL=3 (including virtual 8086 mode),
this will be overridden by a #AC exception if
alignment checking is enabled.
X X X Ones were written to the reserved bits in MXCSR.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
; An unaligned memory reference was performed while
Alignment Check, #AC X X alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD BHBHE Use] %

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FXSAVE Save XMM, MMX, and x87 State

Saves the XMM, MM X, and x87 state to a 16-byte aligned areain memory pointed to by the source
operand. If the destination pointer is not 16-byte aligned, execution may be inhibited by an #AC
exception at CPL=3if alignment checking is enabled, otherwise by a#GP(0) exception.

Unlike FSAVE and FNSAVE, FXSAVE does not alter the x87 tag bits. The contents of the saved
MM X/x87 dataregisters are retained, thusindicating that the registers may bevalid (or whatever other
value the x87 tag bits indicated prior to the save). To invalidate the contents of the MM X/x87 data
registers after FXSAVE, software must execute an FINIT instruction. Also, FXSAVE (like FNSAVE)
does not check for pending unmasked x87 floating-point exceptions. An FWAIT instruction can be
used for this purpose.

FXSAVE does not save the x87 pointer registers (last instruction pointer, last data pointer, and last
opcode), except in the relatively rare cases in which the exception-summary (ES) bit in the x87 status
word is set to 1, indicating that an unmasked x87 exception has occurred.

The architecture supports two 512-bit memory formats for FXSAVE, a 64-bit format that saves
XMMO-XMM15, and a 32-bit legacy format that saves only XMMO-XMM7. If FXSAVE is executed
in 64-bit mode, the 64-bit format isused, otherwise the 32-bit format is used. When the 64-bit format is
used, if the operand-size is 64-bit, FXSAVE saves the x87 pointer registers as offset64, otherwise it
saves them as sel: offset32. For more details about the memory format used by FXSAVE, see* Saving
Mediaand x87 Execution Unit State” in Volume 2.

If the fast-FXSAVE/FXRSTOR (FFXSR) feature is enabled in EFER, FXSAVE does not save the
XMM registers (XMMO-XMM15) when executed in 64-bit mode at CPL 0. MXCSR is saved whether
fast-FXSAVE/FXRSTOR is enabled or not.

Support for the fast-FXSAVE/FXRSTOR feature is indicated by CPUID
Fn8000_0001_EDX[FFXSR] = 1.

If the operating-system FXSAVE/FXRSTOR support bit (OSFXSR) of CR4 is cleared to 0, FXSAVE
does not save the image of XMMO-XMM 15 or MXCSR. For details about the CR4.OSFXSR bit, see
“FXSAVE/FXRSTOR Support (OSFXSR) Bit” in Volume 2.

Support for thisinstruction is implementation-specific. CPUID Fn8000 0001 EDX[FXSR] =1 or
CPUID Fn0000_0001_EDX[FXSR] = 1 indicates support for the FXSAVE and FXRSTOR
instructions. See “ CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description
EXSAVE mem512env OF AE /0 E)%\é%?)r)l(MM, MMX, and x87 state to 512-byte memory

Related Instructions

FINIT, FNSAVE, FRSTOR, FSAVE, FXRSTOR, LDMXCSR, STMXCSR

2 [AM D Flﬁa;b\ﬂzc Use] Instructi06314I-:zBeiftel\r/leendcifa1

AMDZU

26569—Rev. 3.16—November 2021

rFLAGS Affected

None

MXCSR Flags Affected

AMDG64 Technology

None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
The FXSAVE/FXRSTOR instructions are not
Invalid opcode, #UD X X X supported, as indicated by EDX[FXSR] = 0, returned
by CPUID Fn0000_0001 or CPUID Fn8000_0001.
Device not available, X X X The emulate bit (EM) of CRO was set to 1.
#NM X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit,
Stack, #SS X X X or was non-canonical.
X X X A memory address exceeded the data segment limit
or was non-canonical.
X A null data segment was used to reference memory.
. The memory operand was not aligned on a 16-byte
General protection, #GP X X X boundary. At CPL=3 (including virtual 8086 mode),
this will be overridden by an #AC exception if
alignment checking is enabled.
X The destination operand was in a non-writable
segment.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
Alignment Check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD Piblfc Use] °!

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

MASKMOVQ Masked Move Quadword

Stores bytes from the first source operand, as selected by the second source operand, to a memory
location specified in the DS:rDI registers (except that DS isignored in 64-bit mode). The first source
operand is an MM X register, and the second source operand is another MM X register. The most-
significant bit (msb) of each byte in the second source operand specifies the store (1 = store, 0 = no
store) of the corresponding byte of the first source operand.

Exception and trap behavior for the elements not selected for storage to memory are implementation
dependent. For instance, agiven implementation may signal adatabreakpoint or a page fault for bytes
that are zero-masked and not actually written.

MASKMOVQ implicitly usesweakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. If the stored data is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (refer to “ Cache and TLB Management” in VVolume 2).

The MASKMOVQ instruction isan AMD extension to MM X ™ instruction set and is an SSE1
instruction. Support for AMD extensions to the MM X instruction subset is indicated by CPUID
Fn8000_0001 EDX[MmxExt] = 1. See*“CPUID” in Volume 3 for moreinformation about the CPUID
instruction.

Mnemonic Opcode Description

Store bytes from an MMX register, selected by the most-
MASKMOVQ mmx1, mmx2 OF F7 Ir significant bit of the corresponding byte in another MMX
register, to DS:rDI.

2 [AM mﬁgﬁ%ﬂ\é% Se] Instructi0?14I-?Bei1:(e'\r/|eendciZ1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

mmx2
63 55 47 39 31 23 15 7 0

(T

Related Instructions

Memory

store address DS:rDI

maskmovg.eps

MASKMOVDQU
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 was cleared to 0.
Invalid opcode, #UD The SSEL1 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE] = 0 and the AMD
X X X extensions to the MMX™ instruction set are not
supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.
gﬁ\'\//ilce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
i X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memaory.
Page fault, #PF X X A page fault resulted from the execution of the

instruction.

64-Bit Media

Instruction Reference

[AMBBIBHE Use] #

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Virtual
Exception Real | 8086 |Protected Cause of Exception
x87 floating-point . . ,
exception pending, X X X An l:jr_lmasked x87 floating-point exception was
EME pending.
Alignment check. #AC X X An unaligned memory reference was performed while
9 ’ alignment checking was enabled.

30

[AM ﬁﬁﬁﬁ%ﬂ\é% Se] Instructio(ls"14I-?Bei1:[e'\r/|eendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

MOVD Move Doubleword or Quadword
Moves a 32-bit or 64-bit valuein one of the following ways:

» from a32-bit or 64-hit general-purpose register or memory location to the low-order 32 or 64 bits
of an XMM register, with zero-extension to 128 bits

e from the low-order 32 or 64 bits of an XMM to a 32-hit or 64-bit general-purpose register or
memory location

» from a32-bit or 64-bit general-purpose register or memory location to the low-order 32 bits (with
zero-extension to 64 bits) or the full 64 bits of an MM X register

» from the low-order 32 or the full 64 bits of an MM X register to a 32-bit or 64-bit general-purpose
register or memory location.

The MOVD instruction is amember of both the MM X and the SSE2 instruction sets. The presence of
this instruction set is indicated by EDX[MMX] = 1 returned by CPUID Fn0000_0001 or
CPUID Fn8000_0001. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Move 32-bit value from a general-purpose register or

MOVD mmx, reg/mem32 OF 6E /r 32-bit memory location to an MMX register.

Move 64-bit value from a general-purpose register or

MOVD mmx, reg/mem64 OF 6E /r 64-bit memory location to an MMX register.

Move 32-bit value from an MMX register to a 32-bit
MOVD reg/mem32, mmx OF 7E /r general-purpose register or memory location.
MOVD reg/mem64, mmx OF 7E Ir Move 64-bit value from an MMX register to a 64-bit

general-purpose register or memory location.

Thefollowing diagramsiillustrate the operation of the MOV D instruction.

?n4s-'I[3riL;[cl\t/:(ca)?1i??eference [AMD ﬁaﬁ[ﬁc Use] ”

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Xxmm reg/mem32
127 23 v 0 3] 0
: | | []
|
xmm reg/meme64
127 64 63 v 0 63 0
0 | | |
with REX prefix
reg/mem32 xmm
All operations 1Y 0 127 32 3] 0
are "copy" | | | | |
|
reg/mem64 xmm
63 v 0 127 64 63 0
with REX prefix
mmx reg/mem32
63 23 v 0 3] 0
o1 | []
|
mmx reg/mem64
63 v 0 63 0
with REX prefix
reg/mem32 mmx
5ov 0 63 32 3] 0
|
reg/mem64 mmx
63 v 0 63 0
with REX prefix movdeps
32 64-Bit Media

[AMD Btffic Use]

Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

Related Instructions

AMDG64 Technology

MOVDQA, MOVDQU, MOVDQ2Q, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None
Exceptions
Virtual
Exception Real | 8086 | Protected Description
The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0 returned by CPUID
function 0000_0001h or 8000_0001h.
. X X X The SSE2 instructions are not supported, as indicated
Invalid opcode, #UD by CPUID Fn0000_0001_EDX[SSEZ] = 0.
X X X The emulate bit (EM) of CRO was set to 1.
X X X The instruction used XMM registers while
CR4.0SFXSR=0.
Eﬁ\,\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
was non-canonical.
#GEGegeral protection, X The destination operand was in a non-writable
segment.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point ; ; :
exception pending, X X X An lér)masked x87 floating-point exception was
HME pending.
Alignment check. #AC X X An unaligned memory reference was performed while
9 ' alignment checking was enabled.

64-Bit Media

Instruction Reference

[AMD PBtbfic Use]

33

AMDZU

AMDG64 Technology

MOVDQ2Q

26569—Rev. 3.16—November 2021

Move Quadword to Quadword

Movesthe low-order 64-bit valuein an XMM register to a64-bit MM X register.

The MOVDQ2Q instruction is an SSE2 instruction. Support for this instruction subset isindicated by
CPUID Fn0000_0001_EDX[SSE2] = 1. See “CPUID” in Volume 3 for more information about the

CPUID instruction.

Mnemonic Opcode
MOVDQ2Q mmx, Xmm F2 OF D6 /r
mmx
63 l

Description

Moves low-order 64-bit value from an XMM register to the
destination MMX register.

xmm

64 63 0

copy

Related Instructions

movdq2q.eps

MOV D, MOVDQA, MOVDQU, MOVQ, MOVQ2DQ

rFLAGS Affected

None

MXCSR Flags Affected

None
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD X ¥ X The SSEZ2 instructions are not supported, as indicated
by CPUID Fn0000_0001_EDX[SSE2] = 0.
Es\,(/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
34 64-Bit Media

[AMD'PIATE Use]

Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Virtual
Exception Real | 8086 | Protected Cause of Exception
gggeral protection, X X X The destination operand was in non-writable segment.
x87 floating-point A ked x87 floati int i
exception pending X X X n unmasked x87 floating-point exception was
#ME ' pending.

64-Bit Media
Instruction Reference

[AMD'PIATE Use]

35

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

MOVNTQ Move Non-Temporal Quadword

Stores a 64-bit MM X register value into a 64-bit memory location. This instruction indicates to the
processor that the datais non-temporal, and is unlikely to be used again soon. The processor treats the
store as awrite-combining (WC) memory write, which minimizes cache pollution. The exact method
by which cache pollution is minimized depends on the hardware implementation of the instruction.
For further information, see “Memory Optimization” in Volume 1.

MOVNTQ is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE instruction to force strong memory ordering of MOV NTQ with respect to
other stores.

MOVNTQ implicitly uses weakly-ordered, write-combining buffering for the data, as described in
“Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple
processors, this instruction should be used together with a fence instruction in order to ensure data
coherency (refer to “ Cache and TLB Management” in Volume 2).

The MOVNTAQ instruction is amember of both the AMD MM X extensions and the SSE1 instruction
sets. Support for the SSE1 instruction subset is indicated by CPUID Fn0O000_0001_EDX[SSE] = 1.
Support for AMD’s extensions to the MM X instruction subset is indicated by CPUID
Fn8000 0001 EDX[MmxExt] = 1. See“CPUID” inVolume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Stores a 64-bit MMX register value into a 64-bit memory

MOVNTQ mem64, mmx OF E7 /r location, minimizing cache pollution.

memé64 mmx

copy

| movntq.eps

Related Instructions

MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS

* [AM DNB[\"I/%T% Use] |nStI‘UCti06I']4|-:QBeiftel:’/leend(ig

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSEL1 instructions are not supported, as indicated
Invalid opcode, #UD by CPUID Fn0000_0001_EDX[SSE] = 0 and the AMD
X X X extensions to the MMX™ instruction set are not
supported, as indicated by
CPUID Fn8000_0001_EDX[MmxExt] = 0.
gﬁ\'\/;lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
was non-canonical.
gggeral protection, X The destination operand was in a non-writable
segment.
X A null data segment was used to reference memaory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point An unmasked x87 floating-point exception was
exception pending, X X X di 9-p P
HME pending.
Alignment check. #AC X X An unaligned memory reference was performed while
9 ' alignment checking was enabled.

64-Bit Media

Instruction Reference

[AMD'BUBIR Use]

37

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

MOVQ Move Quadword
Moves a 64-bit value:

» froman MMX register or 64-bit memory location to another MM X register, or
* froman MMX register to another MM X register or 64-bit memory location.

The MOVQ instruction isan MMX™ instruction. Support for thisinstruction subset is indicated by
EDX[MMX] = 1, asreturned by CPUID FnOO00_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Moves 64-bit value from an MMX register or memory

MOVQ mmx1, mmx2/mem&4 OF 6F Ir location to an MMX register.

Moves 64-bit value from an MMX register to an MMX

MOVQ mmx1/mem64, mmx2 OF 7F Ir register or memory location.

mmx]1 mmx2/memé64
63 l 0 63 0
copy
|
mmx1/memé64 mmx2
63 l 0 63 0

copy

| movq-64.eps

Related Instructions

MOV D, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ2DQ

rFLAGS Affected

None

64-Bit Media

> [AMD ﬁa}gﬁc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or FN8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeds the stack segment limit or
Stack, #55 X X X is non-canonical.
X X X A memory address exceeded the stack segment limit
or was non-canonical.
gégeral protection, X A null data segment was used to reference memory.
X The destination operand was in a non-writable
segment.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
X87 floating-point An unmasked x87 floating-point exception was
exception pending, X X X di 9-p P
“ME pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s-'I[3riL}cl\t/:(ca)?1i??eference [AMD ﬁaﬁ(ﬁc Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

MOVQ2DQ Move Quadword to Quadword

Moves a 64-bit value from an MM X register to the low-order 64 bits of an XMM register, with zero-
extension to 128 hits.

The MOV Q2DQ instruction is an SSE2 instruction. Support for this instruction subset is indicated by
CPUID Fn0000 0001 _EDX[SSE2] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Mnemonic Opcode Description
MOVQ2DQ xmm, mmx F3 OF D6 /r Moves 64-bit value from an MMX register to an XMM register.

xmm mmx

127 64 63 l 0 63 0

copy

| movq2dq.eps

Related Instructions

MOVD, MOVDQA, MOVDQU, MOVDQ2Q, MOVQ

rFLAGS Affected

None

MXCSR Flags Affected

None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

X X X The emulate bit (EM) of CRO was set to 1.

X X X The operating-system FXSAVE/FXRSTOR support bit
Invalid opcode, #UD (OSFXSR) of CR4 was cleared to 0.

X X X The SSE2 instructions are not supported, as indicated

by CPUID Fn0000_0001_EDX[SSE2] = 0.

* [AM [ﬂﬂﬁ\{" zﬁ)g Use] Instructio?l4l-?8eiftel\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Virtual
Exception Real | 8086 |Protected Cause of Exception
gﬁ\'\/;lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
x87 floating-point An unmasked x87 floating-point exception was
exception pending, X X X di
EME pending.
64-Bit Media 41

Instruction Reference

[AMD'PIBIC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PACKSSDW Pack with Saturation Signed Doubleword to Word

Converts each 32-bit signed integer in the first and second source operands to a 16-bit signed integer
and packsthe converted values into words in the destination (first source). Thefirst source/destination
operand is an MM X register and the second source operand is another MM X register or 64-bit
memory location.

Converted values from thefirst source operand are packed into the low-order words of the destination,
and the converted values from the second source operand are packed into the high-order words of the
destination.

For each packed value in the destination, if the valueislarger than the largest signed 16-bit integer, itis
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

The PACKSSDW instructionisan MMX ™ instruction. Support for thisinstruction subset isindicated
by EDX[MMX] = 1, asreturned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See“CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description
Packs 32-bit signed integers in an MMX register
and another MMX register or 64-bit memory
PACKSSDW mmx1, mmx2/mem64 OF 6B /r location into 16-bit signed integers in an MMX
register.
mmx1 mmx2/mem64
63 32 3] 0 63 32 31 0
~ ~ - —~
convert convert convert convert

63 4847 3231 1615 0

packssdw-64.eps

Related Instructions

PACKSSWB, PACKUSWB

* [AM ﬁﬁlﬁﬁﬂ?cvvu Se] Instructio?l4l-:28(—:‘iftel\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Eﬁ;\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s-'I[3riL}cl\t/:(ca)?1i??eference [AM 5Aﬁlf"ﬁ)ﬁ[iDC\Nlee] *

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PACKSSWB Pack with Saturation Signed Word to Byte

Converts each 16-bit signed integer in the first and second source operands to an 8-bit signed integer
and packs the converted values into bytesin the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MM X register or 64-bit
memory location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

For each packed value in the destination, if the valueislarger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

The PACKSSWB instructionisan MM X instruction. Support for thisinstruction subset isindicated by
EDX[MMX] = 1, asreturned by CPUID FnO0O00_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Packs 16-bit signed integers in an MMX register
and another MMX register or 64-bit memory
location into 8-bit signed integers in an MMX
register.

PACKSSWB mmx1, mmx2/mem64 OF 63 /r

mmx]1 mmx2/mem64

-

63 4847 3231 1615 0 63 4847 3231 1615 0

63 32 31 0 packsswb-64.eps

Related Instructions

PACKSSDW, PACKUSWB

rFLAGS Affected

None

* [AM ﬁﬁﬁsb Y\éBuse] Instructio?l4l-:28(—:‘iftel\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

Fn4s-'I[3riJcl\t/:3?1i??eference [AM ﬁﬁﬁ% Y\éBU Se] *

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PACKUSWB Pack with Saturation Signed Word to Unsigned
Byte

Converts each 16-bit signed integer in the first and second source operands to an 8-bit unsigned integer
and packs the converted values into bytesin the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MM X register or 64-bit
memory location.

Converted values from the first source operand are packed into the low-order bytes of the destination,
and the converted values from the second source operand are packed into the high-order bytes of the
destination.

For each packed value in the destination, if the valueislarger than the largest unsigned 8-bit integer, it
is saturated to FFh, and if the value is smaller than the smallest unsigned 8-bit integer, it is saturated to
00h.

The PACKUSWB instruction isan MM X ™ instruction. Support for thisinstruction subset isindicated
by EDX[MMX] = 1, asreturned by CPUID Fn0O000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Packs 16-bit signed integers in an MMX register
and another MMX register or 64-bit memory

PACKUSWB mmx1, mmx2/mem64 OF 67 /r location into 8-bit unsigned integers in an MMX

register.
mmx]1 mmx2/mem64
63 4847 3231 1615 0 63 4847 3231 1615 0
convert convert convert convert

63 32 31 0 packuswb-64.eps

Related Instructions

PACKSSDW, PACKSSWB

* [AM @Aﬁlﬁ\b \lAéBuse] |nStI‘UCtiO6I’]4|-?Beiftel:’/leend(:2

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Eﬁ;\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s-'I[3rScl\t/:(ce)?1i??eference [AM ﬁﬁﬁ% \lAéBuse] Y

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDB Packed Add Bytes

Adds each packed 8-bit integer value in the first source operand to the corresponding packed 8-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
byte of the destination (first source). The first source/destination operand isan MMX register and the
second source operand is another MM X register or 64-bit memory location.

The PADDB instruction operates on both signed and unsigned integers. If the result overflows, the
carry isignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of
each result are written in the destination.

The PADDB instruction isan MMX™ instruction. Support for thisinstruction subset is indicated by
EDX[MMX] = 1, asreturned by CPUID FnO0O00_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Adds packed byte integer values in an MMX register
PADDB mmx1, mmx2/mem64 OF FCIr and another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

mmx]1 mmx2/memé64

| paddb-64.eps

Related Instructions

PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

* [AMD E\L’[I)Bﬁc Use] Instructio?]4l-?Beifte'\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s_'I[3riL}cl\t/:‘cs)?1i??eference [AMD ﬁl"ll)BﬁC Use] *

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDD Packed Add Doublewords

Adds each packed 32-bit integer value in the first source operand to the corresponding packed 32-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
doubleword of the destination (first source). The first source/destination operand isan MM X register
and the second source operand is another MM X register or 64-bit memory location.

The PADDD instruction operates on both signed and unsigned integers. If the result overflows, the
carry isignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of
each result are written in the destination.

The PADDD instruction isan MMX™ instruction. Support for thisinstruction subset is indicated by
EDX[MMX] = 1, asreturned by CPUID FnO0O00_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Adds packed 32-bit integer values in an MMX register
PADDD mmx1, mmx2/mem64 OF FE Ir and another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

mmx]1 mmx2/memé64

63 32 31 0 63 32 31 0

| paddd-64.eps

Related Instructions

PADDB, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

> [AMD E\L’[I)Bﬁc Use] Instructio?]4l-?Beifte'\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s_'I[3riL}cl\t/:‘cs)?1i??eference [AMD ﬁl"ll)Bl:i)C Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDQ Packed Add Quadwords

Adds each packed 64-bit integer value in the first source operand to the corresponding packed 64-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
quadword of the destination (first source). The first source/destination operand isan MMX register
and the second source operand is another MM X register or 64-bit memory location.

The PADDQ instruction operates on both signed and unsigned integers. If the result overflows, the
carry isignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of
each result are written in the destination.

The PADDQ instruction is an SSE2 instruction. The presence of thisinstruction set isindicated by a
CPUID Fn0000_0001_EDX[SSE2] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Mnemonic Opcode Description

Adds 64-bit integer value in an MMX register and
PADDQ mmx1, mmx2/mem64 OF D4 Ir another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

mmx]1 mmx2/memé64

paddq-64.eps

Related Instructions

PADDB, PADDD, PADDSB, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

> [AMD Fﬁl"[l)BﬁC Use] |nStI‘UCtiO6I’]4|-?Beiftel:’/leend(i:

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD X ¥ X The SSEZ2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

?n4s_'I[3riL}cl\t/:‘cs)?1i??eference [AMD Pﬁﬁ)BﬁC Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDSB Packed Add Signed with Saturation Bytes

Adds each packed 8-bit signed integer value in thefirst source operand to the corresponding packed 8-
bit signed integer in the second source operand and writes the signed integer result of each addition in
the corresponding byte of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MM X register or 64-bit memory location.

For each packed value in the destination, if the value is larger than the largest representable signed 8-
bit integer, it is saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is
saturated to 80h.

The PADDSB instruction isan MMX™ instruction. Support for thisinstruction subset is indicated by
EDX[MMX] = 1, asreturned by CPUID Fn0000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Adds packed byte signed integer values in an MMX
register and another MMX register or 64-bit memory

PADDSB mmx1, mmx2/mem64 OF EC /r location and writes the result in the destination MMX

register.
mmx]1 mmx2/memé64
— }
63 0 63 0
HERRERRN HERRERRN
add |
| add
saturate |
! saturate
| paddsb-64.eps

Related Instructions

PADDB, PADDD, PADDQ, PADDSW, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

64-Bit Media

> [AM Dpﬁa%ﬂ% Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

Fn4s_'I[3riL;[c'\t/:g(rjliaReference [AM Dpﬁa%ﬂsc Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDSW Packed Add Signed with Saturation Words

Adds each packed 16-hit signed integer value in the first source operand to the corresponding packed
16-bit signed integer in the second source operand and writes the signed integer result of each addition
in the corresponding word of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MM X register or 64-bit memory location.

For each packed value in the destination, if the valueis larger than the largest representable signed 16-
bit integer, it is saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it
Is saturated to 8000h.

The PADDSW instructionisan MM X ™ instruction. Support for thisinstruction subset isindicated by
EDX[MMX] = 1, asreturned by CPUID FnO0O00_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Adds packed 16-bit signed integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

PADDSW mmx1, mmx2/mem64 OF ED /Ir

mmx]1 mmx2/mem64

63 4847 3231 1615 0 63 4847 3231 1615 0

| | |
add |

| add
saturate |

—, saturate

| paddsw-64.eps

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDUSB, PADDUSW, PADDW

rFLAGS Affected

None

56 PADDSW 64-Bit Media
[AMD U[bs“C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

64-Bit Media PADDSW 57
Instruction Reference [AMD U[bS“C Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDUSB Packed Add Unsigned with Saturation Bytes

Adds each packed 8-bit unsigned integer value in the first source operand to the corresponding packed
8-bit unsigned integer in the second source operand and writes the unsigned integer result of each
addition in the corresponding byte of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MM X register or 64-bit
memory location.

For each packed value in the destination, if the valueislarger than the largest unsigned 8-bit integer, it
Is saturated to FFh.

The PADDUSB instruction isan MMX™ instruction. Support for this instruction subset is indicated
by EDX[MMX] =1, asreturned by CPUID Fn0O000_0001 or CPUID Fn8000_0001. See“CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Adds packed byte unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

PADDUSB mmx1, mmx2/mem64 OF DC Ir

mmx]1 mmx2/mem64

add i

saturate
L

saturate
| paddusb-64.eps

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSW, PADDW

rFLAGS Affected

None

> [AM ﬁﬁ)l%ﬁg Use] Instructi06n4l-?Bei1Ee'\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s_'I[3riL}c'\t/:§(rjliaReference [AM ﬁﬁ)l%ﬁg Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDUSW Packed Add Unsigned with Saturation Words

Adds each packed 16-bit unsigned integer value in the first source operand to the corresponding
packed 16-bit unsigned integer in the second source operand and writes the unsigned integer result of
each addition in the corresponding word of the destination (first source). The first source/destination
operand is an MM X register and the second source operand is another MM X register or 64-bit
memory location.

For each packed value in the destination, if the value is larger than the largest unsigned 16-bit integer,
it is saturated to FFFFh.

The PADDUSW instruction isan MM X ™ instruction. Support for this instruction subset is indicated
by EDX[MMX] =1, asreturned by CPUID Fn0O000_0001 or CPUID Fn8000_0001. See“CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Adds packed 16-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes result in the destination
MMX register.

PADDUSW mmx1, mmx2/mem64 OF DD Ir

mmx]1 mmx2/memé64
63 4847 3231 1615 0 63 4847 3231 1615 0
add ! ‘ ‘
I add
saturate |
L saturate
| paddusw-64.eps

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDW

rFLAGS Affected

None

o [AM ﬁﬁﬁﬁﬁ\é, Use] Instructio?l4l-?8(—:‘i1:(e'\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s_'I[3riL}c'\t/:§(rj1iaReference [AM ﬁﬁﬁﬁﬁ\é/ Use] o

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PADDW Packed Add Words

Adds each packed 16-bit integer value in the first source operand to the corresponding packed 16-bit
integer in the second source operand and writes the integer result of each addition in the corresponding
word of the destination (first source). The first source/destination operand isan MM X register and the
second source operand is another MM X register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

The PADDW instruction isan MMX™ instruction. Support for thisinstruction subset is indicated by
EDX[MMX] = 1, asreturned by CPUID FnO0O00_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Adds packed 16-bit integer values in an MMX register
PADDW mmx1, mmx2/mem64 OF FD /Ir and another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

mmx]1 mmx2/mem64
63 4847 3231 1615 0 63 4847 3231 1615 0
add ! ‘ ‘
L add

paddw-64.eps

Related Instructions

PADDB, PADDD, PADDQ, PADDSB, PADDSW, PADDUSB, PADDUSW

rFLAGS Affected

None

> [AMD Pﬁl[jBYva Use] Instructio?l4l-?B(—:‘iftel\r/leendciZ

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s_'I[3riL}cl\t/:‘cs)?1i??eference [AMD PﬁBBWC Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PAND Packed Logical Bitwise AND

Performs a bitwise logical AND of the valuesin the first and second source operands and writes the
result in the destination (first source). Thefirst source/destination operand isan MM X register and the
second source operand is another MM X register or 64-bit memory location.

The PAND instruction isan MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, asreturned by CPUID FnO0O00_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Performs bitwise logical AND of values in an MMX
register and in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.

PAND mmx1, mmx2/mem64 OF DB /r

mmx]1 mmx2/memé64

pand-64.eps

Related Instructions

PANDN, POR, PXOR

rFLAGS Affected

None

64-Bit Media

o [AMD lBﬁ%[hC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
. X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point . . :
exception pending, X X X An lér)masked x87 floating-point exception was
#MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

?n4s-'I[3riL}cl\t/:(ca)?1i??eference [AMD ﬁﬁ%[hc Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PANDN Packed Logical Bitwise AND NOT

Performs a bitwise logical AND of the value in the second source operand and the one’ s complement
of the value in the first source operand and writes the result in the destination (first source). The first
source/destination operand isan MM X register and the second source operand is another MM X
register or 64-bit memory location.

The PANDN instruction isan MMX™ instruction. Support for this instruction subset is indicated by
EDX[MMX] = 1, asreturned by CPUID Fn0O000_0001 or CPUID Fn8000_0001. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Performs bitwise logical AND NOT of values in an MMX
register and in another MMX register or 64-bit memory

PANDN mmx1, mmx2/memé64 OF DF /r location and writes the result in the destination MMX

register.
mmx]1 mmx2/memé64
63 1 0 63 0
|
invert
I
AND
pandn-64.eps

Related Instructions

PAND, POR, PXOR

rFLAGS Affected

None

66 ND 64-Bit Media
[AMD &Ubhlc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
. X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point . . :
exception pending, X X X An lér)masked x87 floating-point exception was
#MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media ND 67
Instruction Reference [AMD EUthC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PAVGB Packed Average Unsigned Bytes

Computes the rounded average of each packed unsigned 8-bit integer value in the first source operand
and the corresponding packed 8-bit unsigned integer in the second source operand and writes each
average in the corresponding byte of the destination (first source). The averageis computed by adding
each pair of operands, adding 1 to the 9-bit temporary sum, and then right-shifting the temporary sum
by one bit position. The destination and source operands are an MM X register and another MM X
register or 64-bit memory location.

The PAVGB instruction is amember of both the AMD MMX™ extensions and the SSE1 instruction
sets. Support for the SSE1 instruction subset is indicated by CPUID Fn0O000_0001_EDX[SSE] = 1.
Support for AMD’s extensions to the MM X instruction subset is indicated by CPUID
Fn8000 0001 EDX[MmXxExt] = 1. See“CPUID” inVolume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Averages packed 8-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

PAVGB mmx1, mmx2/mem64 OF EO Ir

mmx]1 mmx2/memé64

.

average ! | ‘
_, dverage
|

pavgb-64.eps

Related Instructions

PAVGW

rFLAGS Affected

None

> [AMD Eﬁ}l/ﬁﬁc Use] Instructio?]4l-?8ei1fe'\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as
Invalid opcode, #UD indicated by CPUID Fn0000_0001_EDX[SSE] = 0;
X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by
CPUID Fn8000_0001_EDX[MmXxExt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

?n4s-'I[3riL;[cl\t/:§?1iaReference [AMD Bﬁ/ﬁﬁc Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PAVGUSB Packed Average Unsigned Bytes

Computes the rounded-up average of each packed unsigned 8-bit integer value in the first source
operand and the corresponding packed 8-bit unsigned integer in the second source operand and writes
each average in the corresponding byte of the destination (first source). The average is computed by
adding each pair of operands, adding 1 to the 9-bit temporary sum, and then right-shifting the
temporary sum by one bit position. The first source/destination operand is an MM X register. The
second source operand is another MM X register or 64-bit memory location.

The PAV GUSB instruction performs a function identical to the 64-bit version of the PAVGB
instruction, although the two instructions have different opcodes. PAVGUSB isa3DNow! instruction.
Itisuseful for pixel averaging in MPEG-2 motion compensation and video scaling operations.

The PAVGUSB instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by a CPUID feature bit. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

PAVGB

Mnemonic Opcode Description

Averages packed 8-bit unsigned integer values in an
MMX register and another MMX register or 64-bit

PAVGUSB mmx1, mmx2/memé4 OF OF /r BF memory location and writes the result in the destination
MMX register.

" [AM DD@/ﬁHﬁCB: Use] Instru ctio?l-?Bei:el\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

mmx]1 mmx2/mem64
— !
63 0 63 0
average |
J dverage
| pavgusb.eps
Related Instructions
None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
Eﬁ;\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD PbiE Use]

71

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PAVGW Packed Average Unsigned Words

Computes the rounded average of each packed unsigned 16-bit integer value in the first source
operand and the corresponding packed 16-bit unsigned integer in the second source operand and writes
each average in the corresponding word of the destination (first source). The average is computed by
adding each pair of operands, adding 1 to the 17-bit temporary sum, and then right-shifting the
temporary sum by one bit position. The first source/destination operand isan MM X register and the
second source operand is another MM X register or 64-bit memory location.

The PAVGW instruction is a member of both the AMD MMX™ extensions and the SSE1 instruction
sets. Support for the SSE1 instruction subset is indicated by CPUID Fn0O000_0001_EDX[SSE] = 1.
Support for AMD’s extensions to the MM X instruction subset is indicated by CPUID
Fn8000 0001 EDX[MmXxExt] = 1. See“CPUID” inVolume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Averages packed 16-bit unsigned integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the result in the
destination MMX register.

PAVGW mmx1, mmx2/mem64 OF E3 /r

mmx]1 mmx2/memé64

— }

63 48 47 3231 1615 0 63 4847 3231 1615 0

| | |
average |

_, average

| pavgw-64.eps

Related Instructions

PAVGB

rFLAGS Affected

None

" [AMD Fﬁ\l\jg‘nlc Use] Instructi06n4l-?B(—:‘iftel\r/leendciZ

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as
Invalid opcode, #UD indicated by CPUID Fn0000_0001_EDX[SSE] = 0;
X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by
CPUID Fn8000_0001_EDX[MmXxExt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

?n4s-'I[3riL}cl\t/:(ca)?1i??eference [AMD Pﬁ\l\jﬁwc Use] "

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PCMPEQB Packed Compare Equal Bytes

Compares corresponding packed bytesin the first and second source operands and writes the result of
each compare in the corresponding byte of the destination (first source). For each pair of bytes, if the
values are equal, theresult is all 1s. If the values are not equal, the result is all 0s. The first
source/destination operand isan MM X register and the second source operand is another MM X
register or 64-bit memory location.

The PCMPEQB instruction isan MMX ™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Compares packed bytes in an MMX register and an

PCMPEQB mmx1, mmx2/mem64 OF 74 /r MMX register or 64-bit memory location.

mmx1 mmx2/memé64

| compare |

I compare

all 1sor 0s ‘

| all 1s or 0s

| pcmpeqgb-64.eps

Related Instructions

PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

" [AM [fﬁﬂupﬁﬁCB Use] Instructio?l4l-?Bei1:[e'\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID

Fn0000_0001 or Fn8000_0001.

5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit

Stack, #5S X X X or was non-canonical.

. X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memaory.

A page fault resulted from the execution of the

Page fault, #PF X X instruction.

x87 floating-point An unmasked x87 floating-point exception was

exception pending, X X X di 9-p P

#MF pending.

Alignment check. #AC X X An unaligned memory reference was performed while

9 ’ alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD PUBHE Use] ®

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PCMPEQD Packed Compare Equal Doublewords

Compares corresponding packed 32-bit values in the first and second source operands and writes the
result of each compare in the corresponding 32 bits of the destination (first source). For each pair of
doublewords, if the values are equal, theresult isall 1s. If the values are not equal, the result is all Os.
The first source/destination operand is an MM X register and the second source operand is another
MMX register or 64-bit memory location.

The PCMPEQD instruction isan MM X ™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Compares packed doublewords in an MMX register

PCMPEQD mmix1, mmx2/mem64 OF 76 /r and an MMX register or 64-bit memory location.

mmx]1 mmx2/memé64

63 32 31 0 63 32 31 0

compare |

| compare
all 1s or 0s |

all 1s or 0s

| pcmpeqd-64.eps

Related Instructions

PCMPEQB, PCMPEQW, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

" [AM [fﬁﬂupﬁﬁg Use] Instructio?l4l-?Bei1:[e'\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID

Fn0000_0001 or Fn8000_0001.

5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit

Stack, #5S X X X or was non-canonical.

. X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memaory.

A page fault resulted from the execution of the

Page fault, #PF X X instruction.

x87 floating-point An unmasked x87 floating-point exception was

exception pending, X X X di 9-p P

#MF pending.

Alignment check. #AC X X An unaligned memory reference was performed while

9 ’ alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD PUBHE Use] !

AMDZU

AMDG64 Technology

PCMPEQW

26569—Rev. 3.16—November 2021

Packed Compare Equal Words

Compares corresponding packed 16-bit values in the first and second source operands and writes the
result of each compare in the corresponding 16 bits of the destination (first source). For each pair of
words, if thevaluesareequal, theresultisall 1s. If thevalues are not equal, theresultisall Os. Thefirst
source/destination operand isan MM X register and the second source operand is another MM X
register or 64-bit memory location.

The PCMPEQW instruction isan MM X ™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic

PCMPEQW mmx1, mmx2/mem64

mmx1

63 48 47 32 31 16 15

| pcmpeqw-64.eps

Related Instructions

PCMPEQB, PCMPEQD, PCMPGTB, PCMPGTD, PCMPGTW

rFLAGS Affected

None

Opcode Description
OF 75 Ir Compares packed 16-bit values in an MMX register
and an MMX register or 64-bit memory location.
mmx2/memé64
0 63 4847 3231 1615 0
compare ‘ ‘
I compare
all 1s or 0s ‘
| all 1s or 0s

78

[AMD PUBHE Use]

64-Bit Media

Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID

Fn0000_0001 or Fn8000_0001.

5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit

Stack, #5S X X X or was non-canonical.

. X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memaory.

A page fault resulted from the execution of the

Page fault, #PF X X instruction.

x87 floating-point An unmasked x87 floating-point exception was

exception pending, X X X di 9-p P

#MF pending.

Alignment check. #AC X X An unaligned memory reference was performed while

9 ’ alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD PUBHE Use] "

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PCMPGTB Packed Compare Greater Than Signed Bytes

Compares corresponding packed signed bytes in the first and second source operands and writes the
result of each compare in the corresponding byte of the destination (first source). For each pair of
bytes, if the valuein thefirst source operand is greater than the value in the second source operand, the
result isall 1s. If the value in the first source operand is less than or equal to the value in the second
source operand, the result is all 0s. The first source/destination operand isan MM X register and the
second source operand is another MM X register or 64-bit memory location.

The PCMPGTB instruction isan MMX™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Compares packed signed bytes in an MMX register
PCMPGTB mmx1, mmx2/mem64 OF 64 /r and an MMX register or 64-bit memory location.

mmx]1 mmx2/memé64

| compare | ‘
i compare

all 1s or 0s |
| all 1sor 0s

| pcmpgtb-64.eps

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTD, PCMPGTW

rFLAGS Affected

None

” [AM [jDWU% T(B: Use] Instructio?l4l-?8eiftel\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s-'I[3riL}cl\t/:(ca)?1iaReference [AM [f%ﬂl'ﬂj TCB Use] o

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PCMPGTD Packed Compare Greater Than Signed
Doublewords

Compares corresponding packed signed 32-bit values in the first and second source operands and
writesthe result of each compare in the corresponding 32 bits of the destination (first source). For each
pair of doublewords, if the value in the first source operand is greater than the value in the second
source operand, the result isal 1s. If the value in the first source operand is less than or equal to the
value in the second source operand, theresult isall Os. Thefirst source/destination operandisan MM X
register and the second source operand is another MM X register or 64-bit memory location.

The PCMPGTD instruction isan MM X ™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description
Compares packed signed 32-bit values in an MMX
PCMPGTD mmx1, mmx2/mem64 OF 66 /r register and an MMX register or 64-bit memory
location.
mmx1 mmx2/memé64
63 l 32 3] l 0 63 32 3] 0
| | |
compare I
compare
all 1s or 0s |
I all 1s or 0s
| pcmpgtd-64.eps

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTW

rFLAGS Affected

None

. [AM [jDWU% -i—é) Use] Instructio?l4l-?8eiftel\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s-'I[3riL}cl\t/:(ca)?1iaReference [AM [f%ﬂl'ﬂj TCD Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PCMPGTW Packed Compare Greater Than Signed Words

Compares corresponding packed signed 16-bit values in the first and second source operands and
writesthe result of each compare in the corresponding 16 bits of the destination (first source). For each
pair of words, if the value in the first source operand is greater than the value in the second source
operand, theresult isall 1s. If the valuein the first source operand isless than or equal to the value in
the second source operand, theresult isall 0s. The first source/destination operand isan MM X register
and the second source operand is another MM X register or 64-bit memory location.

The PCMPGTW instruction isan MMX™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description
Compares packed signed 16-bit values in an MMX
PCMPGTW mmx1, mmx2/mem64 OF 65 /r register and an MMX register or 64-bit memory
location.
mmx1 mmx2/memé64
63 14847'3231'16 15l 0 63 4847 3231 1615 0
| compare |
I compare
all 1s or 0s |
| all 1s or 0s
| pcmpgtw-64.eps

Related Instructions

PCMPEQB, PCMPEQD, PCMPEQW, PCMPGTB, PCMPGTD

rFLAGS Affected

None

o [AM [5%/'58[1—8/ Use] Instru Cti0?14|-?Beiftel:’/leend(iZ

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

?n4s-'I[3riL}cl\t/:(ca)?1i??eference [AM [5%/{5)8'1'-8/ Use] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PEXTRW Extract Packed Word

Extracts a 16-bit value from an MM X register, as selected by the immediate byte operand (as shownin
Table 1-1) and writesit to the low-order word of a32-bit general-purpose register, with zero-extension
to 32 hits.

The PEXTRW instruction isamember of both the AMD MMX™ extensions and the SSE1 instruction
set. Support for the SSE1 instruction subset is indicated by CPUID FnO0O00_0001 EDX[SSE] = 1.
Support for AMD’s extensions to the MM X instruction subset is indicated by CPUID
Fn8000 0001 EDX[MmXxExt] = 1. See“CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description
Extracts a 16-bit value from an MMX register and
PEXTRW reg32, mmx, imm8 OF C5/rib writes it to low-order 16 bits of a general-purpose
register.
reg32 mmx
31 15 ¢o 63 4847 3231 1615 0
0| | Ll [[|
imm8
7 0
| » mux
pextrw-64.eps

Table 1-1. Immediate-Byte Operand Encoding for 64-Bit PEXTRW

Immediate-Byte
Bit Field Value of Bit Field Source Bits Extracted
0 15-0
1 31-16
1-0
2 47-32
3 63-48

Related Instructions

PINSRW

rFLAGS Affected

86 PEXTRW 64-Bit Media
[AMD UtlﬁlC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSEL1 instructions are not supported, as
Invalid opcode, #UD indicated by CPUID Fn0000_0001_EDX[SSE] = 0;
X X X and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by
CPUID Fn8000_0001_ EDX[MmxExt] = 0.
gﬁ\,\l/ilce not available, X X X The task-switch bit (TS) of CRO was set to 1.
x87 floating-point X X X An unmasked x87 floating-point exception was

exception pending, #MF

pending.

64-Bit Media
Instruction Reference

[AMDBUBIE Use] o

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
PF2ID Packed Floating-Point to Integer Doubleword
Converson

Converts two packed single-precision floating-point values in an MM X register or a 64-bit memory
location to two packed 32-bit signed integer values and writes the converted values in another MM X
register. If the result of the conversion is an inexact value, the value is truncated (rounded toward
zero). The numeric range for source and destination operands is shown in Table 1-2 on page 89.

The PF2ID instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

CVTTPS2DQ
Mnemonic Opcode Description
Converts packed single-precision floating-point values in an
PF2ID mmx1, OF OF /r . . '
mmx2/meme64 1D MMX register or memory location to a doubleword integer value

in the destination MMX register.

mmx]1 mmx2/mem64

63 32 31 0 63 32 31 0

convert
| convert

pf2id.eps

” [AMD ﬁll:”ﬂ‘l)[rlc Use] Instructio?l4l-:28(—:‘i1:[e'\r/leendcig

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Table 1-2. Numeric Range for PF2ID Results

Source 2

Source 1 and Destination

0

0

Normal, abs(Source 2) < 1

0

Normal, —23! < Source 2 <= -1 Round to zero (Source 2)
Normal, 1 <= Source 2 < 231 Round to zero (Source 2)
Normal, Source 2 >= 231 7FFF_FFFFh
Normal, Source 2 <= —231 8000_0000h
Unsupported Undefined
Related Instructions
PF2IW, PI2FD, PI2FW
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
gﬁ\l\//ilce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD Biific Use] %

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PF2IW Packed Floating-Point to Integer Word Conversion

Converts two packed single-precision floating-point valuesin an MM X register or a 64-bit memory
location to two packed 16-bit signed integer values, sign-extended to 32 bits, and writes the converted
values in another MM X register. If the result of the conversion is an inexact value, the value is
truncated (rounded toward zero). The numeric range for source and destination operandsis shown in
Table 1-3 on page 91. Arguments outside the range representable by signed 16-bit integers are
saturated to the largest and smallest 16-bit integer, depending on their sign.

The PF2IW instruction is an extension to the AMD 3DNow! ™ instruction set. The presence of this
instruction set isindicated by CPUID feature bits. See “CPUID” in Volume 3 for more information
about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

CVTTPS2DQ
Mnemonic Opcode Description
Converts packed single-precision floating-point values in an
PF2IW mmx1, OF OF /r ; ; ! -
mmx2/memé4 1C MMX register or memory location to word integer values in the

destination MMX register.

mmx1 mmx2/memé64

o

63 32 31 0 63 32 31 0

convert
| convert

pf2iw.eps

” [AMD ﬁlilzbvﬁc Use] Instructio?]4l-?8ei1}e'\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Table 1-3. Numeric Range for PF2IW Results

Source 2

Source 1 and Destination

0

0

Normal, abs(Source 2) < 1

0

Normal, 1 <= Source 2 < 2

Normal, —215 < Source 2 <= -1

15

Round to zero (Source 2)

Round to zero (Source 2)

Normal, Source 2 >= 21° 0000_7FFFh
Normal, Source 2 <= —215 FFFF_8000h
Unsupported Undefined
Related Instructions
PF2ID, PI2FD, PI2FW
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD extensions to 3DNow!™ are not supported,
X X X as indicated by
CPUID Fn8000_0001_EDX[3DNowEXxt] = 0.
5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD Biblic Use] o

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFACC Packed Floating-Point Accumulate

Addsthe two single-precision floating-point valuesin thefirst source operand and adds the two single-
precision values in the second source operand and writes the two results to the low-order and high-
order doubleword, respectively, of the destination (first source). Thefirst source/destination operand is
an MMX register. The second source operand is another MM X register or 64-bit memory location.

The PFACC instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

HADDPS

Mnemonic Opcode Description

Accumulates packed single-precision floating-point values in
PFACC mmx1, mmx2/mem64 OF OF /r an MMX register or 64-bit memory location and another MMX

AE register and writes each result in the destination MMX
register.
mmx]1 mmx2/memé64
63 32 31 0 63 32 31 0

I I | I I
| |
add add
|

pfacc.eps

The numeric range for operandsis shown in Table 1-4 on page 93.

> [AMD Eﬂ:@ﬁﬁc Use] Instructio?]4l-?BeIfteI\r/IeenchZ

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Table 1-4. Numeric Range for PFACC Results

High Operand?

Source Operand 0 Normal Unsupported
0 +- 03 High Operand High Operand
Normal Low Operand Normal, +/— 0% Undefined
Low Operand? Unsupported® Low Operand Undefined Undefined

Note:

precise result is greater than or equal to 2
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

1. Least-significant floating-point value in first or second source operand.

2. Most-significant floating-point value in first or second source operand.

3. The sign of the result is the logical AND of the signs of the low and high operands.
4,

If the absolute value of the infinitely precise result is less than 27126 (but not zero), the result is a zero
with the sign of the operand (low or high) that is larger in magnitude. If the infinitely precise result is
exactly zero, the result is zero with the sign_of the low operand. If the absolute value of the infinitely
8 the result is the largest normal number with the sign of

Related Instructions

PFADD, PFNACC, PFPNACC

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX|[3DNow] =
0.
gﬁ\&ce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memaory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media

Instruction Reference

[AMD PBfific Use]

93

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFADD Packed Floating-Point Add

Adds each packed single-precision floating-point value in the first source operand to the
corresponding packed single-precision floating-point value in the second operand and writes the result
of each addition in the corresponding doubleword of the destination (first source). The first
source/destination operand is an MM X register. The second source operand is another MM X register
or 64-bit memory location. The numeric range for operandsis shown in Table 1-5 on page 95.

The PFADD instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

ADDPS

Mnemonic Opcode Description

Adds two packed single-precision floating-point values in an
PFADD mmx1, mmx2/mem64 OF OF /r MMX register or 64-bit memory location and another MMX

9E register and writes each result in the destination MMX
register.
mmx]1 mmx2/memé64
63 l 32 3] l 0 63 32 31 0
- |
| add
| pfadd.eps

> [AMD Eﬂ:@Bh}C Use] Instructio?]4l-?Beifte'\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Table 1-5. Numeric Range for the PFADD Results

Most-Significant Doubleword
Source Operand 0 Normal Unsupported
0 +/— 0t Source 2 Source 2
Normal Source 1 Normal, +/— 07 Undefined
Source 1 and
Destination Unsupported? Source 1 Undefined Undefined
Note:

1. The sign of the result is the logical AND of the signs of the source operands.

2. If the absolute value of the infinitely precise result is less than 27126 (but not zero), the result is a zero
with the sign of the source operand that is larger in magnitude. If the infinitely precise result is exactly
zero, the result is zero with the sign of source 1. If the absolute value of the infinitely precise result is
greater than or equal to 2128 theresult is the largest normal number with the sign of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFACC, PFNACC, PFPNACC

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX|[3DNow] =
0.
Eﬁ\,(/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memaory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media

Instruction Reference

[AMD BiBlic Use] %

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFCMPEQ Packed Floating-Point Compare Equal

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the values are equal, theresult isall 1s. If the values are not
equal, theresult isall Os. The first source/destination operand isan MM X register. The second source
operand isanother MM X register or 64-bit memory location. The numeric range for operandsis shown
in Table 1-6 on page 97.

The PFCMPEQ instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

CMPSS

Mnemonic Opcode Description

Compares two pairs of packed single-precision floating-
PFCMPEQ mmx1, mmx2/mem64 OF OF /r BO point values in an MMX register and an MMX register or
64-bit memory location.

mmx]1 mmx2/memé64
63 l 32 31 l 0 63 32 31 0
| compare |
|
compare
3 p
all 1s or Os l
| all 1s or 0s
| pfcmpeq.eps

” [AM [jDFﬁllj/EﬁS Use] Instructio?l4l-?8ei1fe'\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Table 1-6. Numeric Range for the PFCMPEQ Instruction

Source 2
Operand Value 0 Normal Unsupported
0 FFFF_FFFFh1 0000_0000h 0000_0000h
0000_0000h or
Normal 0000_0000h FFFF_FFFFhZ 0000_0000h
Source 1 and
Destination Unsupported? 0000_0000h 0000_0000h Undefined
Note:

1. Positive zero is equal to negative zero.

2. The result is FFFF_FFFFh if source 1 and source 2 have identical signs, exponents, and mantissas.

Otherwise, the result is 0000_0000h.

3. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFCMPGE, PFCMPGT

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memaory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD PUBIE Use]

97

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFCMPGE Packed Floating-Point Compare Greater or Equal

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the valuein thefirst source operand is greater than or equal to
the value in the second source operand, theresult isall 1s. If the valuein thefirst source operand isless
than the value in the second source operand, the result isall Os. Thefirst source/destination operand is
an MMX register. The second source operand is another MM X register or 64-bit memory location.
The numeric range for operandsis shown in Table 1-7 on page 99.

The PFCMPGE instruction isa 3DNow! ™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

CMPPS
Mnemonic Opcode Description
Compares two pairs of packed single-precision floating-
ralr:T%g/I:nGelrEnngXl’ OF OF /r90 point values in an MMX register and an MMX register or

64-bit memory location.

mmx]1 mmx2/memé64
63 l 32 31 l 0 63 32 31 0
| compare |
| compare
' }
all 1sor Os
| all 1s or 0s
| pfcmpge.eps

> [AM [jDFﬁllj/Bﬁ;ICE Use] Instructio?l4l-?Bei1:[e'\rAeendciZ

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology

Table 1-7. Numeric Range for the PFCMPGE Instruction

Source 2
Operand Value 0 Normal Unsupported
0000_0000h
1 —) .
0 FFFF_FFFFh FFFF_FFFFh2 Undefined
0000_0000h, 0000_0000h, Undefined
Normal FFFF_FFFFh3 FFFF_FFFFh*
Source 1 and
Destination Unsupported® Undefined Undefined Undefined
Note:
1. Positive zero is equal to negative zero.

2.
3.
4,

5.

The result is FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.

The result is FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative
and source 1 is smaller than or equal in magnitude to source 2, or if source 1 and source 2 are both
positive and source 1 is greater than or equal in magnitude to source 2. The result is 0000_0000h in all
other cases.

“Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFCMPEQ, PFCMPGT

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX|3DNow] =
0.
5&‘,\'}'% not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memaory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.

?n4s-'I[3riL}cl\t/:?)?1iaReference [AM [jDFﬁlIEI/BﬁICE Use] >

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Virtual
Exception Real | 8086 |Protected Cause of Exception
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

100

[AM J'PUbRE Use] 64-Bit Media

Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFCMPGT Packed Floating-Point Compare Greater Than

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each comparison in the corresponding doubleword of the destination (first source).
For each pair of floating-point values, if the valuein thefirst source operand is greater thanthevaluein
the second source operand, the result is all 1s. If the value in the first source operand is less than or
equal to the valuein the second source operand, theresult isall Os. Thefirst source/destination operand
isan MM X register. The second source operand is another MM X register or 64-bit memory location.
The numeric range for operandsis shown in Table 1-8 on page 102.

The PFCMPGT instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

CMPPS
Mnemonic Opcode Description
Compares two pairs of packed single-precision floating-
ElinC)l(l\éI/Fr’nGJnrngl OF OF /rA0 point values in an MMX register and an MMX register or

64-bit memory location.

mmx]1 mmx2/memé64
63 1 32 3] l 0 63 32 31 0
‘ compare ‘ ‘
| compare
v
all 1sor 0s l
| all 1sor Os
| pfcmpgt.eps

Fn4s-'I[3riJcl\t/:i?1iaReference [AM [jsllz:?mljjﬁg Use] o

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

Table 1-8. Numeric Range for the PFCMPGT Instruction

Source 2
Operand Value 0 Normal Unsupported
0000_0000h, '
0 0000_0000h FFFF_FFFFh! Undefined
0000_0000h, 0000_0000h, Undefined
Normal FFFF_FFFFh? FFFF_FFFFh?
Source 1 and
Destination Unsupported® Undefined Undefined Undefined
Note:

1. The resultis FFFF_FFFFh, if source 2 is negative. Otherwise, the result is 0000_0000h.
2. The result is FFFF_FFFFh, if source 1 is positive. Otherwise, the result is 0000_0000h.

3. Theresultis FFFF_FFFFh, if source 1 is positive and source 2 is negative, or if they are both negative
and source 1 is smaller in magnitude than source 2, or if source 1 and source 2 are positive and source
1 is greater in magnitude than source 2. The result is 0000_0000h in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFCMPEQ, PFCMPGE

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by ECPUID Fn8000_0001_EDX[3DNow]
=0.
Eﬁ\,\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

64-Bit Media
Instruction Reference

102 [AMD PUBHRE Use]

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFMAX Packed Single-Precision Floating-Point Maximum

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the maximum of the two values for each comparison in the corresponding doubleword of the
destination (first source). The first source/destination operand isan MM X register. The second source
operand is another MM X register or 64-bit memory location.

Any operation with a zero and a negative number returns positive zero. An operation consisting of two
zeros returns positive zero. If either source operand is an undefined value, the result is undefined. The
numeric range for source and destination operands is shown in Table 1-9 on page 104.

The PFMAX instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

MAXPS

Mnemonic Opcode Description

Compares two pairs of packed single-precision values in an
OF OF /r MMX register and another MMX register or 64-bit memory
PFMAX mmx1, mmx2/mem&4 A4 location and writes the maximum value of each comparison
in the destination MMX register.

mmx1 mmx2/memé64

63 l 32 31 l 0 63 32 31 0

maximum ! ‘ ‘
I maximum
|

pfmax.eps

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD Ell,\l/bArfC Use] 10

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Table 1-9. Numeric Range for the PFMAX Instruction

Source 2
Operand Value 0 Normal Unsupported
0 +0 Source 2, +01 Undefined
Normal Source 1, +0° Source 1/Source 2° Undefined
Source 1 and
Destination Unsupported?® Undefined Undefined Undefined
Note:

1. The resultis source 2, if source 2 is positive. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is positive. Otherwise, the result is positive zero.

3. Theresultis source 1, if source 1 is positive and source 2 is negative. The result is source 1, if both are
positive and source 1 is greater in magnitude than source 2. The result is source 1, if both are negative
and source 1 is lesser in magnitude than source 2. The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFMIN
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
5,3\,(}'% not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

104

[AMD Pilbfic Use]

64-Bit Media
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFMIN Packed Single-Precision Floating-Point Minimum

Compares each of the two packed single-precision floating-point values in the first source operand
with the corresponding packed single-precision floating-point value in the second source operand and
writes the minimum of the two values for each comparison in the corresponding doubleword of the
destination (first source). The first source/destination operand isan MM X register. The second source
operand is another MM X register or 64-bit memory location.

Any operation with azero and a positive number returns positive zero. An operation consisting of two
zeros returns positive zero. If either source operand is an undefined value, the result is undefined. The
numeric range for source and destination operands is shown in Table 1-10 on page 106.

The PFMIN instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

MINPS

Mnemonic Opcode Description

Compares two pairs of packed single-precision values in an
OF OF /r MMX register and another MMX register or 64-bit memory
PFMIN mmx1, mmx2/mem64 94 location and writes the minimum value of each comparison in
the destination MMX register.

mmx1 mmx2/memé64
63 1 32 31 l 0 63 32 31 0
minimum ! ‘ ‘
minimum

pfmin.eps

Fn4s-'I[3riL}cl\t/:?)?1iaReference [AMD ﬁFUI\f)ITiC Use] 10

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Table 1-10. Numeric Range for the PFMIN Instruction

Source 2
Operand Value 0 Normal Unsupported
0 +0 Source 2, +01 Undefined
Normal Source 1, +0° Source 1/Source 2° Undefined
Source 1 and
Destination Unsupported?® Undefined Undefined Undefined
Note:

1. The result is source 2, if source 2 is negative. Otherwise, the result is positive zero.
2. The result is source 1, if source 1 is negative. Otherwise, the result is positive zero.

3. The resultis source 1, if source 1 is negative and source 2 is positive. The result is source 1, if both are
negative and source 1 is greater in magnitude than source 2. The result is source 1, if both are positive
and source 1 is lesser in magnitude than source 2. The result is source 2 in all other cases.

4. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFMAX
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
5'\el\'\//|lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

106

[AMD Piffic Use]

64-Bit Media
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFMUL Packed Floating-Point Multiply

Multiplies each of the two packed single-precision floating-point valuesin the first source operand by
the corresponding packed single-precision floating-point value in the second source operand and
writes the result of each multiplication in the corresponding doubleword of the destination (first
source). The numeric range for source and destination operands is shown in Table 1-11 on page 108.
Thefirst source/destination operand isan MM X register. The second source operand is another MM X
register or 64-bit memory location.

The PFMUL instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

MULPS

Mnemonic Opcode Description

Multiplies packed single-precision floating-point values in an
PEMUL mmx1, mmx2/mem64 OF OF /r MMX register and another MMX register or 64-bit memory

B4 location and writes the result in the destination MMX
register.
mmx]1 mmx2/mem64
63 l 32 31 l 0 63 32 31 0
multiply | ‘ ‘
I multiply

pfmul.eps

Fn4s-'I[3ril;[cl\t/:i?1i??eference [AMD Emlihc Use] o7

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Table 1-11. Numeric Range for the PFMUL Instruction

source operands.

Source 2
Operand Value 0 Normal Unsupported
0 +/- 01 +/- 01 +/- 0t
Normal +—- 01 Normal, +/— 07 Undefined
Source 1 and
Destination Unsupported® +/- 0t Undefined Undefined
Note:

1. The sign of the result is the exclusive-OR of the signs of the source operands.

2. If the absolute value of the result is less than 2~
OR of the signs of the source operands. If the absolute value of the product is greater than or equal to
2128 the result is the largest normal number with the sign being the exclusive-OR of the signs of the

3. “Unsupported” means that the exponent is all ones (1s).

126 the result is zero with the sign being the exclusive-

Related Instructions

None
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was setto 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

108

- 64-Bit Medi
[AMD EMSJHC Use] Instruction Relfereenchr:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFNACC Packed Floating-Point Negative Accumulate

Subtractsthefirst source operand’ s high-order single-precision floating-point value from its low-order
single-precision floating-point value, subtracts the second source operand’ s high-order single-
precision floating-point value from its low-order single-precision floating-point value, and writes each
result to the low-order or high-order doubleword, respectively, of the destination (first source). The
first source/destination operand is an MM X register. The second source operand is another MM X
register or 64-bit memory location.

The numeric range for operandsis shown in Table 1-12 on page 110.

The PFNACC instruction is an extension to the AMD 3DNow! ™ instruction set. The presence of this
instruction set isindicated by CPUID Fn8000_0001 EDX[3DNowEXxt] =1. See“CPUID” inVolume 3
for moreinformation about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

HSUBPS

Mnemonic Opcode Description

Subtracts the packed single-precision floating-point values
PENACC mmx1, mmx2/mem64 OF OF /r in an MMX register or 64-bit memory location and another

8A MMX register and writes each value in the destination MMX
register.
mmx1 mmx2/memé64
63 32 31 0 63 32 31 0

] 4,
subtract subt|ract
|

pfnacc.eps

64-Bit Media RENAGC 109
Instruction Reference [AMD U/EﬁlC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Table 1-12. Numeric Range of PFNACC Results

High Operand?
Source Operand 0 Normal Unsupported
0 +/-03 - High Operand - High Operand
Normal Low Operand Normal, +/— 0% Undefined
Low Operand? Unsupported® Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The signis the logical AND of the sign of the low operand and the inverse of the sign of the high operand.
4,

If the absolute value of the infinitely precise result is less than 2-126 (but not zero), the result is a zero.
If the low operand is larger in magnitude than the high operand, the sign of this zero is the same as the
sign of the low operand, else it is the inverse of the sign of the high operand. If the infinitely precise result
is exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

5. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFSUB, PFACC, PFPNACC

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD extensions to 3DNow!™ are not supported,
X X X as indicated by
CPUID Fn8000_0001_EDX[3DNowEXxt] = 0.
Eﬁ\,\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.

110 RENAGC 64-Bit Media
[AMD Ulbmc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Virtual
Exception Real | 8086 |Protected Cause of Exception
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMDPlibiic Use] o

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFPNACC Packed Floating-Point Positive-Negative
Accumulate

Subtractsthefirst source operand’ s high-order single-precision floating-point value fromits low-order
single-precision floating-point value, adds the two single-precision values in the second source
operand, and writes each result to the low-order or high-order doubleword, respectively, of the
destination (first source). The first source/destination operand isan MM X register. The second source
operand is another MM X register or 64-bit memory location.

The numeric range for operands is shown in Table 1-13 (for the low result) and Table 1-14 (for the
high result), both on page 113.

The PFPNACC instruction isan extension to the AMD 3DNow! ™ instruction set. The presence of this
instruction set isindicated by CPUID feature bits. See “CPUID” in Volume 3 for more information
about the CPUID instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

ADDSUBPS

Mnemonic Opcode Description

Subtracts the packed single-precision floating-point values
in an MMX register, adds the packed single-precision
PFPNACC mmx1, OF OF /r floating-point values in another MMX register or 64-bit

mmx2/mem64 8E memory location, and writes each value in the destination
MMX register.
mmx1 mmx2/memé64
63 32 31 0 63 32 3] 0

I I | I I
] |
subtract add
|

pfpnacc.eps

He [AI\/I DDIE?ITS&E UseI Instructi06n4I-?BeiI:IeI\r/IeenOIcIZ1

AMDZU

26569—Rev. 3.16—November 2021

Table 1-13. Numeric Range of PFPNACC Result (Low Result)

AMDG64 Technology

High Operand?
Source Operand 0 Normal Unsupported
0 +/-03 - High Operand - High Operand
Normal Low Operand Normal, +/— 0% Undefined
Low Operand? Unsupported® Low Operand Undefined Undefined

Note:
1.

2
3.
4

5.

Least-significant floating-point value in first or second source operand.

. Most-significant floating-point value in first or second source operand.

The sign is the logical AND of the sign of the low operand and the inverse of the sign of the high operand.

. If the absolute value of the infinitely precise result is less than 2-126 (but not zero), the result is a zero.

If the low operand is larger in magnitude than the high operand, the sign of this zero is the same as the
sign of the low operand, else it is the inverse of the sign of the high operand. If the infinitely precise result
is exactly zero, the result is zero with the sign of the low operand. If the absolute value of the infinitely
precise result is greater than or equal to 2128, the result is the largest normal number with the sign of
the low operand.

“Unsupported” means that the exponent is all ones (1s).

Table 1-14. Numeric Range of PFPNACC Result (High Result)

High Operand?

Source Operand 0 Normal Unsupported
0 +-0° High Operand High Operand
Normal Low Operand Normal, +/— 0% Undefined
Low Operand? Unsupported® Low Operand Undefined Undefined

Note:
1. Least-significant floating-point value in first or second source operand.
2. Most-significant floating-point value in first or second source operand.
3. The sign is the logical AND of the signs of the low and high operands.
4

. Ifthe absolute value of the infinitely precise result is less than 2728 (but not zero), the result is zero with
the sign of the operand (low or high) that is larger in magnitude. If the infinitely precise result is exactly
zero, the result is zero with the sigln of the low operand. If the absolute value of the infinitely precise
result is greater than or equal to 2 28 the result is the largest normal number with the sign of the low
operand.

5. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFADD, PFSUB, PFACC, PFNACC

rFLAGS Affected

None

64-Bit Media
Instruction Reference

[AM DplE?UNﬁﬁ(% Use] 113

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD extensions to 3DNow!™ are not supported,
X X X as indicated by
CPUID Fn8000_0001_EDX[3DNowEXxt] = 0.
5§\I\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

114

[AM [jDIE-?lTSﬁ(Q, Use] Instructi06n4I-?Bei;[e'\r/leendci(:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFRCP Floating-Point Reciprocal Approximation

Computes the approximate reciprocal of the single-precision floating-point value in the low-order 32
bits of an MMX register or 64-bit memory location and writes the result in both doublewords of
another MM X register. The result is accurate to 14 bits.

The PFRCPresult can be forwarded to the Newton-Raphson iteration step 1 (PFRCPIT1) and Newton-
Raphson iteration step 2 (PFRCPIT?2) instructions to increase the accuracy of the reciprocal. The first
stage of this refinement in accuracy (PFRCPITL1) requires that the input and output of the previously
executed PFRCP instruction be used asinput to the PFRCPIT1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

PFRCP(x) returns O for x >= 2°126. The numeric range for operands is shown in Table 1-15 on
page 116.

The PFRCP instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

RCPSS

Mnemonic Opcode Description

Computes approximate reciprocal of single-precision
OF OF /r floating-point value in an MMX register or 64-bit memory
PFRCP mmx1, mmx2/mem64 96 location and writes the result in both doublewords of the
destination MMX register.

Fn4s-'I[3riJcl\t/:E?1i??eference [AMD Eﬁ?ﬁﬁC Use] e

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
mmx1 mmx2/memé64
63 l 32 3 l 0 63 32 3] 0
|
approximate
reciprocal
|

pfrcp.eps

Table 1-15. Numeric Range for the PFRCP Result

Operand Source 1 and Destination
0 +/— Maximum Normal'
Normal Normal, +/— 07
Source 2 Unsupported® Undefined

Note:
1. The result has the same sign as the source operand.

2. If the absolute value of the result is less than 2726, the result is zero with the sign being the sign of the
source operand. Otherwise, the result is a normal with the sign being the same sign as the source
operand.

3. “Unsupported” means that the exponent is all ones (1s).

Examples

The general Newton-Raphson recurrence for the reciprocal 1/bis:
Zi +1%Zi b (Z—b' Zi)

The following code sequence shows the computation of a/b:

Xo = PFRCP(b)
X; = PFRCPI T1(b, Xo)
X, = PFRCPIT2(X;, Xo)

g = PFMUL(a, X))

The 24-bit final reciprocal value is X,. The quotient is formed in the last step by multiplying the
reciprocal by the dividend a.

Related Instructions

PFRCPIT1, PFRCPIT2

rFLAGS Affected

None

Ho [AMD Eﬁ?ﬁﬁC Use] Instructi06314I-?Bei1:(e|\r/|eendcifa1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
5§\I\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD Pifilic Use]

117

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFRCPIT1 Packed Floating-Point Reciprocal Iteration 1

Performs the first step in the Newton-Raphson iteration to refine the reciprocal approximation
produced by the PFRCP instruction. The first source/destination operand is an MM X register
containing the results of two previous PFRCP instructions, and the second source operand is another
MM X register or 64-bit memory location containing the source operands from the same PFRCP
instructions.

Thisinstruction is only defined for those combinations of operands such that the first source operand
(mmx1) is the approximate reciprocal of the second source operand (mmx2/mem64), and thus the
range of the product, mmx1* mmx2/mem64, is (0.5, 2). Theinitial approximation of an operand is
accurate to about 12 bits, and the length of the operand itself is 24 bits, so the product of these two
operands is greater than 24 bits. PFRCPIT1 applies the one's complement of the product and rounds
the result to 32 bits. It then compresses the result to fit into 24 bits by removing the 8 redundant most-
significant bits after the hidden integer bit.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRCPIT1 instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

PFRCP

Mnemonic Opcode Description
PFRCPIT1 mmx1, OF OF /r Refine approximate reciprocal of result from previous
mmx2/mem64 A6 PFRCP instruction.

He [AM DDIEB[%H& Use] Instructi0?14I-?Bei1:[e'\r/|eendciZ1

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
mmx1 mmx2/mem64
63 l 32 31 l 0 63 32 31 0
| PFRCP Result | PFRCP Result | | PFRCP Source | PFRCP Source |
Newton-
Raphson
| reciprocal
Newton- step 1
Raphson
reciprocal
step 1
pfrcpitl.eps
Operation

nmx1[31: 0] = Conpress (2 - mx1[31:0] * (mmx2/ menb4[31:0]) - 231);
nmx1[63: 32] = Conpress (2 - mmx1[63:32] * (mx2/ nenb4[63:32]) - 231);

where:

“Compress’ means discard the 8 redundant most-significant bits after the hidden integer bit.

Examples

The general Newton-Raphson recurrence for the reciprocal 1/bis:
Zi vp < Z + (2 -Db+ Z)

The following code sequence computes a 24-bit approximation to a/b with one Newton-Raphson
iteration:

PFRCP(b)

PFRCPI T1(b, Xp)
PFRCPI T2(X1, Xp)
g = PFMJL(a, X))

32 3¢
I

albisformed in thelast step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT2

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:§?1i??eference [AM dDIEBL(I:bPhTCl Use] Ho

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

120

[AM [ffﬁl%h% Use] Instructi0(314I-?Beiftel\r/leendci{:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFRCPIT2 Packed Floating-Point Reciprocal or Reciprocal
Square Root Iteration 2

Performs the second and final step in the Newton-Raphson iteration to refine the reciprocal
approximation produced by the PFRCP instruction or the reciprocal square-root approximation
produced by the PFSQRT instruction. PFRCPIT2 takes two paired elements in each source operand.
These paired elements are the results of a PFRCP and PFRCPIT1 instruction sequence or of a
PFRSQRT and PFRSQITL1 instruction sequence. The first source/destination operand is an MM X
register that contains the PFRCPIT1 or PFRSQIT1 results and the second source operand is another
MMX register or 64-bit memory location that contains the PFRCP or PFRSQRT results.

The PFRCPIT2 instruction expands the compressed PFRCPIT1 or PFRSQIT1 results from 24 to 32
bits and multiplies them by their respective source operands. An optimal correction factor is added to
the product, which is then rounded to 24 bits.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRCPIT2 instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3DNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

PFRCP
Mnemonic Opcode Description

OF OF /r Refines approximate reciprocal result from previous

PFRCPIT2 mmx1, mmx2/mem64 B6 PFRCP and PFRCPIT1 instructions or from previous

PFRSQRT and PFRSQIT1 instructions.

Fn4s-'I[3riJcl\t/:?)?1iaReference [AM DDIEB[%HCZ Use] e

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
mmx]1 mmx2/mem64
63 l 32 31 l 0 63 32 31 0
| Iteration-1 Result | Iteration-1 Result | | Reciprocal Result | Reciprocal Result |
Newton-
Raphson
| reciprocal
2
Newton- step
Raphson
reciprocal
step 2
pfrepit2.eps
Operation

mmx1[31: 0] = Expand(nmx1[31:0]) * mmx2/ nmenb4[31:0];
mx1[63: 32] = Expand(nmmx1[63:32]) * mx2/ mend64[63: 32];

where;

“Expand”’ means convert a 24-bit significand to a 32-bit significand according to the following rule:
tenp[31:0] = {1'bl, 8{mmx1[22]}, mMx1[22:0]};

Examples

The general Newton-Raphson recurrence for the reciprocal 1/bis:
Zi 1 < Z » (2-Db - Z)

The following code sequence computes a 24-bit approximation to a/b with one Newton-Raphson
iteration:

PFRCP(b)

PFRCPI T1(b, Xp)
PFRCPI T2(X1, Xp)
g = PFMJL(a, X))

<2< 3¢
I n

albisformed in thelast step by multiplying the reciprocal approximation by a.

Related Instructions

PFRCP, PFRCPIT1, PFRSQRT, PFRSQIT1

rFLAGS Affected

None

e [AM [fﬁﬁbpﬁcz Use] Instructio(ng":‘rI-?Bei1:(e|\r/leendci(:a1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD BUblié Use] 123

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
PFRSQIT1 Packed Floating-Point Reciprocal Square Root
lteration 1

Performs the first step in the Newton-Raphson iteration to refine the reciprocal square-root
approximation produced by the PFSQRT instruction. The first source/destination operand isan MM X
register containing the result from a previous PFRSQRT instruction, and the second source operand is
another MM X register or 64-bit memory location containing the source operand from the same
PFRSQRT instruction.

Thisinstruction is only defined for those combinations of operands such that the first source operand
(mmx1) is the approximate reciprocal of the second source operand (mmx2/mem64), and thus the
range of the product, mmx1* mmx2/mem64, is (0.5, 2). The length of both operandsis 24 bits, so the
product of these two operandsis greater than 24 bits. The product is normalized and then rounded to 32
bits. The one's complement of the result is applied, a1l is added as the most-significant bit, and the
result re-normalized. The result is then compressed to fit into 24 bits by removing 8 redundant most-
significant bits after the hidden integer bit, and the exponent is reduced by 1 to account for the division
by 2.

The PFRSQIT1 instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

PFRSQRT

Mnemonic Opcode Description
PFRSQIT1 mmx1, OF OF /r Refines reciprocal square root approximation of previous
mmx2/mem64 A7 PFRSQRT instruction.

e [AM [flli:gﬁBhTé Use] Instructi0?14I-?Beiftel\r/leendciZ1

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
mmx]1 mmx2/mem64
63 l 32 31 l 0 63 32 31 0
| PFSQRT Result | PFSQRT Result | | PFSQRT Source | PFSQRTSourcel
Newton-
Raphson
| reciprocal
are root
Newton- square roo
step 1
Raphson
reciprocal
square root
step 1

pfrsqitl.eps

Operation

mmx1[31: 0] = Conpress ((3 - mmx1[31:0] * (mmx2/ nenb4[31:0]) - 231)/2);
mmx1[63: 32] = Compress ((3 - mmx1[63:32] * (nmx2/ nenb64[63: 32]) - 231)/2) ;
where:

“Compress’ means discard the 8 redundant most-significant bits after the hidden integer bit.

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can be used to
compute a = 1/sgrt (b):

Xo = PFRSQRT(b)
X; = PFMUL(X0, X0)
X, = PFRSQ T1(b, X;)

a = PFRCPI T2(Xy, Xo)

Related Instructions

PFRCPIT2, PFRSQRT

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:3?1iaReference [AM DDB&BW& Use] 1

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

126

[AM DDIﬁg%ﬁBIIT& Use] Instructi06314I-?Bei1:[e|\r/|eendci{:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PFRSQRT Packed Floating-Point Reciprocal Square Root
Approximation

Computes the approximate reciprocal square root of the single-precision floating-point value in the
low-order 32 bits of an MM X register or 64-bit memory location and writes the result in each
doubleword of another MM X register. The source operand is single-precision with a 24-bit
significand, and the result is accurate to 15 bits. Negative operands are treated as positive operands for
purposes of reciprocal square-root computation, with the sign of the result the same as the sign of the
source operand.

This instruction can be used together with the PFRSQIT1 and PFRCPIT2 instructions to increase
accuracy. Thefirst stage of thisrefinement in accuracy (PFRSQIT1) requires that the input and output
of the previously executed PFRSQRT instruction be used asinput to the PFRSQI T1 instruction.

The estimate contains the correct round-to-nearest value for approximately 99% of all arguments. The
remaining arguments differ from the correct round-to-nearest value for the reciprocal by 1 unit-in-the-
last-place (ulp). For details, see the data sheet or other software-optimization documentation relating
to particular hardware implementations.

The PFRSQRT instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

The numeric range for operandsis shown in Table 1-16 on page 128.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

RSQRTSS

Mnemonic Opcode Description
PFRSQRT mmx1, OF OF /r Computes approximate reciprocal square root of a packed
mmx2/mem64 97 single-precision floating-point value.

Fn4s-{Bril}cl\t/:3?1iaReference [AM [jsgﬁﬁﬁ% Use] e

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
mmx1 mmx2/memé64
63 l 3231 l 0 63 3231 0
|
reciprocal
squareroot
|

pfrsqrt.eps

Table 1-16. Numeric Range for the PFRCP Result

Operand Source 1 and Destination
0 +/— Maximum Normal®
Normal Normalt
Source 2 Unsupported? Undefined*

Note:
1. The result has the same sign as the source operand.
2. “Unsupported” means that the exponent is all ones (1s).

Examples

The following code sequence shows how the PFRSQRT and PFMUL instructions can be used to
compute a = 1/sgrt (b):

PFRSQRT(b)

PFMUL(Xo, Xo)
PFRSQ T1(b, X;)
PFRCPI T2(Xy, Xo)

i OItas
I

Related Instructions

PFRCPIT2, PFRSQIT1

rFLAGS Affected

None

1 [AM DDBQL?S'T-CF Use] Instructi06314I-?Bei1:(e|\r/leendci(:a1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
5§\I\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AM O PUbiic Use] 129

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFSUB Packed Floating-Point Subtract

Subtracts each packed single-precision floating-point value in the second source operand from the
corresponding packed single-precision floating-point value in the first source operand and writes the
result of each subtraction in the corresponding doubleword of the destination (first source). The first
source/destination operand is an MM X register. The second source operand is another MM X register
or 64-bit memory location. The numeric range for operandsis shown in Table 1-17 on page 131.

The PFSUB instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

SUBPS

Mnemonic Opcode Description

Subtracts packed single-precision floating-point values in
OF OF /r an MMX register or 64-bit memory location from packed

PFSUB mmx1, mmx2/mem64 9A single-precision floating-point values in another MMX
register and writes the result in the destination MMX
register.

mmx]1 mmx2/mem64
63 32 3 l 0 63 32 31 0
I
subtract ! |
4, subtract
|

pfsub.eps

0 [AMD E’:L?BHC Use] Instructi0?14I-?Beiftel\r/leendciZ1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

Table 1-17. Numeric Range for the PFSUB Results

Source 2
Source Operand 0 Normal Unsupported
0 +/—01 - Source 2 - Source 2
Normal Source 1 Normal, +/— 02 Undefined
Source 1 and
Destination Unsupported3 Source 1 Undefined Undefined

Note:
1. The sign of the result is the logical AND of the sign of source 1 and the inverse of the sign of source 2.
2. If the absolute value of the infinitely precise result is less than 27126 (but not zero), the result is a zero.
If the source operand that is larger in magnitude is source 1, the sign of this zero is the same as the sign
of source 1, else it is the inverse of the sign of source 2. If the infinitely precise result is exactly zero, the
result is zero with the sign of source 1. If the absolute value of the infinitely precise result is greater than
or equal to 2 28 the result is the largest normal number with the sign of source 1.

3. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFSUBR
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX|3DNow] =
0.
gﬁ\,\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memaory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

Fn4s-'I[3riJcl\t/:i?1i??eference [AMD E’:L?HHC Use] e

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PFSUBR Packed Floating-Point Subtract Reverse

Subtracts each packed single-precision floating-point value in the first source operand from the
corresponding packed single-precision floating-point value in the second source operand and writes
the result of each subtraction in the corresponding dword of the destination (first source). The first
source/destination operand is an MM X register. The second source operand is another MM X register
or 64-bit memory location. The numeric range for operandsis shown in Table 1-18 on page 133.

The PFSUBR instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

SUBPS
Mnemonic Opcode Description
Subtracts packed single-precision floating-point values in
OF OF /r an MMX register from packed single-precision floating-
PFSUBR mmx1, mmx2/mem64 AA point values in another MMX register or 64-bit memory
location and writes the result in the destination MMX
register.
mmx1 mmx2/memé64
63 l 32 31 l 0 63 32 31 0
| I
subtract
subtract

pfsubr.eps

132 RESWUBR 64-Bit Media
[AMD ULbE“C Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

Table 1-18. Numeric Range for the PFSUBR Results

Source 2
Source Operand 0 Normal Unsupported
0 +/—01 Source 2 Source 2
Normal - Source 1 Normal, +/— 02 Undefined
Source 1 and
Destination Unsupported? - Source 1 Undefined Undefined

Note:
1. The sign is the logical AND of the sign of source 2 and the inverse of the sign of source 1.
2. If the absolute value of the infinitely precise result is less than 27126 (but not zero), the result is a zero.
If the source operand that is larger in magnitude is source 2, the sign of this zero is the same as the sign
of source 2, else it is the inverse of the sign of source 1. If the infinitely precise result is exactly zero, the
result is zero with the sign of source 2. If the absolute value of the infinitely precise result is greater than
or equal to 2 28 the result is the largest normal number with the sign of source 2.

3. “Unsupported” means that the exponent is all ones (1s).

Related Instructions

PFSUB
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by ECPUID Fn8000_0001_EDX[3DNow]
=0.
gﬁ\,\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memaory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

64-Bit Media RESUBR 133
Instruction Reference [AMD ULbE“C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
PI12FD Packed Integer to Floating-Point Doubleword
Conversion

Converts two packed 32-bit signed integer valuesin an MM X register or a 64-bit memory location to
two packed single-precision floating-point values and writes the converted values in another MM X
register. If the result of the conversion is an inexact value, the value is truncated (rounded toward
Zero).

The PI2FD instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

AMD no longer recommends the use of 3DNow! instructions, which have been superceded by their
more efficient 128-bit media counterparts. For a complete list of recommended instruction
substitutions, see Appendix A, “Recommended Substitutions for 3BDNow! ™ Instructions” on
page 333.

Recommended Instruction Substitution

CVTDQ2PS
Mnemonic Opcode Description
Converts packed doubleword integers in an MMX register or 64-
PI2FD mmx1, OF OF /Ir f . . = . . .
mmx2/meme64 oD bit memory location to single-precision floating-point values in

the destination MMX register. Inexact results are truncated.

mmx]1 mmx2/memé64

63 32 31 0 63 32 31 0

convert

| convert

pi2fd.eps

Related Instructions

PF2ID, PF2IW, PI2FW

rFLAGS Affected

None

4 [AMD ﬁﬁB[nC Use] Instructi0?14I-?Bei1‘te|\r/|eendciZ1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
5§\I\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD Blibfic Use] 135

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PI2FW Packed Integer to Floating-Point Word Conversion

Converts two packed 16-bit signed integer valuesin an MM X register or a 64-bit memory location to
two packed single-precision floating-point values and writes the converted values in another MM X
register.

The PI2FW instruction is an extension to the AMD 3DNow! ™ instruction set. The presence of this
instruction set isindicated by CPUID feature bits. See “CPUID” in Volume 3 for more information
about the CPUID instruction.

Mnemonic Opcode Description

Converts packed 16-bit integers in an MMX register or 64-bit

r?]lr%i\grr%rpnxeslzl 82 OF /r memory location to packed single-precision floating-point
values in the destination MMX register.
mmx1 mmx2/memé64
63 32 31 0 63 4847 3231 1615 0

convert
| convert

pi2fw.eps

Related Instructions

PF2ID, PF2IW, PI2FD

64-Bit Media

136 [AMD IEIIBIﬁC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD extensions to 3DNow!™ are not supported,
X X X as indicated by
CPUID Fn8000_0001_EDX[3DNowEXxt] = 0.
5§\I\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMD Bfblic Use] o

AMDZU

AMDG64 Technology

PINSRW

26569—Rev. 3.16—November 2021

Packed Insert Word

Inserts a 16-bit value from the low-order word of a 32-bit general purpose register or a 16-bit memory
location into an MM X register. The location in the destination register is selected by the immediate
byte operand, a shown in Table 1-19. The other words in the destination register operand are not

modified.

The PINSRW instruction isan AMD extension to MM X ™ instruction set and is an SSE1 instruction.
The presence of thisinstruction set isindicated by CPUID feature bits. See“CPUID” in Volume 3 for
more information about the CPUID instruction.

Mnemonic

PINSRW mmyx, reg32/mem16,
imm8

mmx

63 48 47 32 31

Opcode Description
Inserts a 16-bit value from a general-purpose
OFC4/rib register or memory location into an MMX
register.
reg32/mem16
1615 0 3] 15 0
imm8
70

[]
|

select word position for insert

pinsrw-64.eps

Table 1-19. Immediate-Byte Operand Encoding for 64-Bit PINSRW

Immediate-Byte
Bit Field Value of Bit Field Destination Bits Filled
0 15-0
1 31-16
1-0
2 47-32
3 63-48

Related Instructions

PEXTRW

rFLAGS Affected

None

138

[AM D Plﬂ\ll"ﬁgaﬁ\é Use] Instructio?]4l-?8eifte'\r/leendciz

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as

Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxEXxt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Fn4s-'I[3riJcl\t/:i?1i??eference [AM D Pl-_li\llﬁﬁ\lc Use] 9

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

PMADDWD Packed Multiply Words and Add Doublewords

Multiplies each packed 16-bit signed valuein the first source operand by the corresponding packed 16-
bit signed value in the second source operand, adds the adjacent intermediate 32-bit results of each
multiplication (for example, the multiplication results for the adjacent bit fields 63—48 and 47-32, and
31-16 and 15-0), and writes the 32-hit result of each addition in the corresponding doubleword of the
destination (first source). The first source/destination operand is an MM X register and the second
source operand is another MM X register or 64-bit memory location.

If all four of the 16-bit source operands used to produce a 32-bit multiply-add result have the value
8000h, the 32-bit result is 8000_0000h, which is not the correct 32-bit signed result.

The PMADDWD instruction isan MMX™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic

Opcode

PMADDWD mmx1, mmx2/mem64 OF F5 /r

mmx1

63 4847 3231 1615 0

Description

Multiplies four packed 16-bit signed values in an
MMX register and another MMX register or 64-bit
memory location, adds intermediate results, and
writes the result in the destination MMX register.

mmx2/memé64

63 4847 3231 1615 0

‘ ‘ multiply ‘
i multiply
add —!

multiply

i multiply

add —]

l 32 31

v

pmaddwd-64.eps

Related Instructions

PMULHUW, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

140 64-Bit Media

Instruction Reference

[AMD BUBHC Use]

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

Fn4s-'I[3riJcl\t/:?)?1i??eference [AM [Shﬁ\ﬁﬁﬁvé) Use] .

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PMAXSW Packed Maximum Signed Words

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
maximum of the two values for each comparison in the corresponding word of the destination (first
source). The first source/destination and second source operands are an MM X register and an MM X
register or 64-bit memory location.

The PMAXSW instructionisan AMD extension to MM X ™ instruction set and is an SSE1 instruction.
The presence of thisinstruction set isindicated by CPUID feature bits. See“CPUID” in Volume 3 for
more information about the CPUID instruction.

Mnemonic Opcode Description

Compares packed signed 16-bit integer values in an MMX
register and another MMX register or 64-bit memory
location and writes the maximum value of each compare
in destination MMX register.

PMAXSW mmx1, mmx2/mem64 OF EE Ir

mmx]1 mmx2/mem64

63 4847 3231 1615 0 63 4847 3231 1615 0

maximum ! ‘
L] maximum

| pmaxsw-64.eps

Related Instructions

PMAXUB, PMINSW, PMINUB

rFLAGS Affected

None

142 PMAXSW 64-Bit Media
[AMD Uﬁsnc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as

Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxEXxt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media PMAXSW 143
Instruction Reference [AMD UﬁilC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PMAXUB Packed Maximum Unsigned Bytes

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
maximum of the two values for each comparison in the corresponding byte of the destination (first
source). The first source/destination and second source operands are an MM X register and an MM X
register or 64-bit memory location.

The PMAXUB instructionisan AMD extension to MM X ™ instruction set and is an SSE1 instruction.
The presence of thisinstruction set isindicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Mnemonic Opcode Description

Compares packed unsigned 8-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the maximum value of each
compare in the destination MMX register.

PMAXUB mmx1, mmx2/mem64 OF DE Ir

mmx]1 mmx2/memé64
63 0 63 0
maximum ! ‘ ‘
maximum
| pmaxub-64.eps

Related Instructions

PMAXSW, PMINSW, PMINUB

rFLAGS Affected

None

144 PMAXWB 64-Bit Media
[AMD IMUELnC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as

Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxEXxt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media PMAXWB 145
Instruction Reference [AMD ﬁUBLhC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PMINSW Packed Minimum Signed Words

Compares each of the packed 16-bit signed integer values in the first source operand with the
corresponding packed 16-bit signed integer value in the second source operand and writes the
minimum of the two values for each comparison in the corresponding word of the destination (first
source). The first source/destination and second source operands are an MM X register and an MM X
register or 64-bit memory location.

The PMINSW instruction isan AMD extension to MM X ™ jnstruction set and is an SSE1 instruction.
The presence of thisinstruction set isindicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Mnemonic Opcode Description

Compares packed signed 16-bit integer values in an

OF EA /r MMX register and another MMX register or 64-bit
memory location and writes the minimum value of each
compare in the destination MMX register.

PMINSW mmx1, mmx2/mem64

mmx]1 mmx2/memé64
63 4847 3231 1615 0 63 4847 3231 1615 0
minimum ! ‘
L] minimum
| pminsw-64.eps

Related Instructions

PMAXSW, PMAXUB, PMINUB

rFLAGS Affected

None

146 BMINSW 64-Bit Media
[AMD ﬂul\ﬁhc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as

Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxEXxt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media PMINSW 147
Instruction Reference [AMD ﬁul\ﬁhc Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PMINUB Packed Minimum Unsigned Bytes

Compares each of the packed 8-bit unsigned integer values in the first source operand with the
corresponding packed 8-bit unsigned integer value in the second source operand and writes the
minimum of the two values for each comparison in the corresponding byte of the destination (first
source). The first source/destination operand isan MM X register and the second source operand is
another MM X register or 64-bit memory location.

The PMINUB instruction isan AMD extension to MM X ™ instruction set and is an SSE1 instruction.
The presence of thisinstruction set isindicated by CPUID feature bits. See “CPUID” in Volume 3 for
more information about the CPUID instruction.

Mnemonic Opcode Description

Compares packed unsigned 8-bit integer values in an
MMX register and another MMX register or 64-bit
memory location and writes the minimum value of each
comparison in the destination MMX register.

PMINUB mmx1, mmx2/mem64 OF DA Ir

mmx1 mmx2/mem64
63 0 63 0
minimum ! ‘ ‘
minimum
| pminub-64.eps

Related Instructions

PMAXSW, PMAXUB, PMINSW

rFLAGS Affected

None

148 PMINUB 64-Bit Media
[AMD ﬂU%ilC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as

Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxEXxt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media PMINUB 149
Instruction Reference [AMD |ylul\bL1|C Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PMOVMSKB Packed Move Mask Byte

Movesthe most-significant bit of each bytein the source operand in bitwise order to the low order byte
of the destination operand. The upper 24 bits of the destination operand are cleared to zeros. The
destination operand is a 32-bit general-purpose register and the source operand isan MM X register.

The PMOVMSKB instruction isan AMD extension to MM X ™ jnstruction set and is an SSE1
instruction. The presence of thisinstruction set is indicated by CPUID feature bits. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Moves most-significant bit of each byte in an MMX register

PMOVMSKB reg32, mmx OF D7 /r to the low-order byte of a 32-bit general-purpose register.

reg32 mmx

31 70 63 55 47 39 31 23 15 7 0
o | | IR NIR

copy ‘
| copy
|

pmovmskb-64.eps

Related Instructions

MOVMSKPD, MOVMSKPS

rFLAGS Affected

None

10 [AM BNBM%IWEBU Se] Instructio?14I-?Bei1:(e'\r/|eendcifa1

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSEL1 instructions are not supported, as indicated

Invalid opcode, #UD by CPUID Fn0000_0001_EDX[SSE] = 0 and the AMD

X X X extensions to the MMX™ instruction set are not

supported, as indicated by CPUID
Fn8000_0001_EDX[MmxExt] = 0.

Device not available, X

ZNM X X The task-switch bit (TS) of CRO was set to 1.
x87 floating-point L .
exception pending, X X X Agnlé?rTaSked x87 floating-point exception was
#MF p g.

Fn4s-'I[3riJcl\t/:§?1i??eference [AM BNBM%ﬁPéBU Se] e

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PMULHRW Packed Multiply High Rounded Word

Multiplies each of the four packed 16-bit signed integer values in the first source operand by the
corresponding packed 16-bit integer value in the second source operand, adds 8000h to the lower 16
bits of the intermediate 32-bit result of each multiplication, and writes the high-order 16 bits of each
result in the corresponding word of the destination (first source). The addition of 8000h resultsin the
rounding of the result, providing a numerically more accurate result than the PMULHW instruction,
which truncates the result. The first source/destination operand isan MM X register. The second source
operand is another MM X register or 64-bit memory location.

The PMULHRW instruction isan AMD 3DNow! ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

OF OF /r Multiply 16-bit signed integer values in an MMX register

PMULHRW mmx1, mmx2/mem64 and another MMX register or 64-bit memory location and

B7 write rounded result in the destination MMX register.
mmx]1 mmx2/memé64
63 4847 3231 1615 0 63 4847 3231 1615 0
multiply ! ‘ ‘
| multiply
round |
I round
| pmulhrw.eps

Related Instructions

None

rFLAGS Affected

None

o2 [AM ﬁlﬁﬁﬁﬁ\é\/ Use] Instructi0?14I-?Bei1:(e|\r/leendciZ1

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD 3DNow!™ instructions are not supported,
X X X as indicated by CPUID Fn8000_0001_EDX[3DNow] =
0.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media
Instruction Reference

[AMDBUBIE Use] 153

AMDZU

AMDG64 Technology

PMULHUW

26569—Rev. 3.16—November 2021

Packed Multiply High Unsigned Word

Multiplies each packed unsigned 16-bit valuesin the first source operand by the corresponding packed
unsigned word in the second source operand and writes the high-order 16 bits of each intermediate 32-
bit result in the corresponding word of the destination (first source). The first source/destination
operand is an MM X register and the second source operand is another MM X register or 64-bit
memory location.

The PMULHUW instruction is an AMD extension to MM X ™ instruction set and is an SSE1
instruction. The presence of thisinstruction set isindicated by CPUID feature bits. See “CPUID” in
Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description
Multiplies packed 16-bit values in an MMX register
by the packed 16-bit values in another MMX register
PMULHUW mmx1, mmx2/mem64 OFE4 /Ir or 64-bit memory location and writes the high-order

16 bits of each result in the destination MMX
register.

mmx]1 mmx2/memé64
63 4847 3231 1615 0 63 4847 3231 1615 0
multiply ! ‘
multiply
| pmulhuw-64.eps

Related Instructions

PMADDWD, PMULHW, PMULLW, PMULUDQ

rFLAGS Affected

None

154 64-Bit Media

Instruction Reference

[AMDPUBHE Use]

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as

Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxEXxt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Fn4s-'I[3riJcl\t/:?)?1i??eference [AM [53'15{1_6“"8/ Use] o0

AMDZU

AMDG64 Technology

PMULHW

26569—Rev. 3.16—November 2021

Packed Multiply High Signed Word

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the high-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand isan MM X register and the second source operand is
another MM X register or 64-bit memory location.

The PMULHW instruction isan MMX™ instruction. The presence of thisinstruction set is indicated
by CPUID feature bits. See“ CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic

PMULHW mmx1, mmx2/mem64

mmx1

Opcode Description

Multiplies packed 16-bit signed integer values in an

OF E5 /r MMX register and another MMX register or 64-bit
memory location and writes the high-order 16 bits of
each result in the destination MMX register.

mmx2/memé64

— }

63 4847 3231 1615 0

63 4847 3231 1615 0

multiply !

multiply
|

Related Instructions

PMADDWD, PMULHUW, PMULLW, PMULUDQ

rFLAGS Affected

None

pmulhw-64.eps

156 [AMDPUBI Use]

64-Bit Media
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

64-Bit Media PMULHW 157
Instruction Reference [AMD ﬁulbkhc Use]

AMDZU

AMDG64 Technology

PMULLW

26569—Rev. 3.16—November 2021

Packed Multiply Low Sighed Word

Multiplies each packed 16-bit signed integer value in the first source operand by the corresponding
packed 16-bit signed integer in the second source operand and writes the low-order 16 bits of the
intermediate 32-bit result of each multiplication in the corresponding word of the destination (first
source). The first source/destination operand isan MM X register and the second source operand is
another MM X register or 64-bit memory location.

The PMULLW instruction isan MMX™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic

PMULLW mmx1, mmx2/mem64

Opcode Description

Multiplies packed 16-bit signed integer values in an

OF D5 Ir

MMX register and another MMX register or 64-bit
memory location and writes the low-order 16 bits of

each result in the destination MMX register.

mmx1

B

63 48 47

}

3231 1615 0

mmx2/mem64

63 4847 3231 1615 0

multiply

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULUDQ

rFLAGS Affected

None

pmullw-64.eps

158

[AMDPUblIt Use]

64-Bit Media
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

64-Bit Media PMULLW 159
Instruction Reference [AMD ﬁulbl-hc Use]

AMDZU

AMDG64 Technology

PMULUDQ

26569—Rev. 3.16—November 2021

Packed Multiply Unsignhed Doubleword and Store

Quadword

Multiplies two 32-bit unsigned integer values in the low-order doubleword of the first and second
source operands and writes the 64-bit result in the destination (first source). The first
source/destination operand isan MM X register and the second source operand is another MM X
register or 64-bit memory location.

The PMULUDQ instruction isan SSE2 instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic

Opcode

PMULUDQ mmx1, mmx2/mem64 OF F4 Ir

mmx1
N
|
63 32 31 0
| |
|
multiply

Description

Multiplies low-order 32-bit unsigned integer value in
an MMX register and another MMX register or 64-bit
memory location and writes the 64-bit result in the
destination MMX register.

mmx2/mem64

32 31 0

Related Instructions

PMADDWD, PMULHUW, PMULHW, PMULLW

rFLAGS Affected

None

pmuludg-64.eps

160

[AMD BUBRE Use]

64-Bit Media
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD X ¥ X The SSEZ2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Fn4s-'I[3riJcl\t/:?)?1i??eference [AM ﬁlﬁﬂl_ﬁﬁe Use] ol

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

POR Packed Logical Bitwise OR

Performs a bitwise logical OR of the valuesin the first and second source operands and writes the
result in the destination (first source). Thefirst source/destination operand isan MM X register and the
second source operand is another MM X register or 64-bit memory location.

The POR instruction isan MM X™ instruction. The presence of this instruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Performs bitwise logical OR of values in an MMX register
POR mmx1, mmx2/mem64 OF EB /r and in another MMX register or 64-bit memory location and
writes the result in the destination MMX register.

mmx1 mmx2/memé64

por-64.eps

Related Instructions

PAND, PANDN, PXOR

rFLAGS Affected

None

64-Bit Media

162 [AMD Fﬁ%“C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
. X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point . . :
exception pending, X X X An lér)masked x87 floating-point exception was
#MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

64-Bit Media R: 163
Instruction Reference [AMD Fﬂ%llC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PSADBW Packed Sum of Absolute Differences of Bytes Into
a Word

Computes the absol ute differences of eight corresponding packed 8-bit unsigned integers in the first
and second source operands and writes the unsigned 16-bit integer result of the sum of the eight
differencesin aword in the destination (first source). The first source/destination operand isan MM X
register and the second source operand is another MM X register or 64-bit memory location. The result
is stored in the low-order word of the destination operand, and the remaining bytes in the destination
areclearedto all Os.

The PSADBW instructionisan AMD extension to MM X ™ instruction set and is an SSE1 instruction.
The presence of thisinstruction set isindicated by CPUID feature bits. See*CPUID” in Volume 3 for
more information about the CPUID instruction.

Mnemonic Opcode Description

Compute the sum of the absolute differences of
packed 8-bit unsigned integer values in an MMX

PSADBW mmx1, mmx2/mem64 OF F6 Ir register and another MMX register or 64-bit memory
location and writes the 16-bit unsigned integer result in
the destination MMX register.

mmx]1 mmx2/memé64

‘ absolute ‘
difference

absolute

difference
add 8
pairs

63 15l 0

Lo [|
psadbw-64.eps

rFLAGS Affected

None

o4 [AM DP%%B]Y& Use] Instru cti0?14I-?Bei1:[e'\r/|(-:tendciZ1

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
The SSE1 instructions are not supported, as

Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set

are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmxEXxt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.

A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.

X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

Fn4s-'I[3riJcl\t/:?)?1i??eference [AM DP%%B]Y& Use] 100

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

PSHUFW Packed Shuffle Words

Moves any one of the four packed wordsin an MM X register or 64-bit memory location to a specified
word location in another MM X register. In each case, the selection of the value of the destination word
is determined by atwo-bit field in the immediate-byte operand, with bits 0 and 1 selecting the contents
of the low-order word, bits 2 and 3 selecting the second word, bits 4 and 5 selecting the third word, and
bits 6 and 7 selecting the high-order word. Refer to Table 1-20 on page 167. A word in the source
operand may be copied to more than one word in the destination.

The PSHUFW instruction isan AMD extension to MM X ™ instruction set and is an SSE1 instruction.
The presence of thisinstruction set isindicated by CPUID feature bits. See*CPUID” in Volume 3 for
more information about the CPUID instruction.

Mnemonic Opcode Description
Shuffles packed 16-bit values in an MMX
iPmSnTéJFW mmx1, mmx2/memé4, OF 70 /rib register or 64-bit memory location and puts the

result in another MMX register.

mmx1 mmx2/memé64
63 4847 3231 1615 0 63 4847 3231 1615 0
imm8 ‘
70

pshufw.eps

166 PSHWRW 64-Bit Media
[AMD ULE)F“C Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

Table 1-20. Immediate-Byte Operand Encoding for PSHUFW
Immediate-Byte
Destination Bits Filled Bit Field Value of Bit Field Source Bits Moved
15-0
31-16
47-32
63-48
15-0
31-16
47-32
63-48
15-0
31-16
47-32
63-48
15-0
31-16
47-32
63-48

15-0 1-0

31-16 3-2

47-32 5-4

63-48 7-6

WIN| P Ol W N PO W NP Ol W Nk, O

Related Instructions

PSHUFD, PSHUFHW, PSHUFLW

rFLAGS Affected

None

64-Bit Media PSHWRW 167
Instruction Reference [AMD ULE)F“C Use]

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

X X X The emulate bit (EM) of CRO was set to 1.

The SSE1 instructions are not supported, as
Invalid opcode, #UD indicated by CPUID Fn0O0O00_0001_EDX[SSE] =0

X X X and the AMD extensions to the MMX™ instruction set
are not supported, as indicated by CPUID
Fn8000_0001_EDX[MmXxExt] = 0.

5§K;Ice not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

168

PSHURW 64-Bit Medi
[AMD ULbF“C Use] Instruction Relfereenclfa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSLLD Packed Shift Left Logical Doublewords

L eft-shifts each of the packed 32-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to O. If the shift value is greater
than 31, the destination is cleared to al Os.

The PSLLD instruction isan MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Left-shifts packed doublewords in an MMX register
PSLLD mmx1, mmx2/mem64 OF F2/r by the amount specified in an MMX register or 64-bit
memory location.

Left-shifts packed doublewords in an MMX register

PSLLD mmx, imm8 OF 72/6 ib by the amount specified in an immediate byte value.
mmx]1 mmx2/memé64
& Vv 23 l 0 63 0
| |
shift left « |
— shiftleft
|
mmx imm8
63 l 32 31 l 0 70
| |
shift left « |
— shift left

pslid-64.eps

Related Instructions

PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

64-Bit Media LL 169
Instruction Reference [AMD EﬁUbﬁC Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Eﬁ;\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

170 LL 64-Bit Media
[AMD EﬁUbﬁC Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSLLQ Packed Shift Left Logical Quadwords

L eft-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). Thefirst source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to O. If the shift value is greater
than 63, the destination is cleared to al Os.

The PSLLQ instruction isan MMX™ instruction. The presence of this instruction set is indicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Left-shifts quadword in an MMX register by the
PSLLQ mmx1, mmx2/mem64 OF F3/r amount specified in an MMX register or 64-bit
memory location.

Left-shifts quadword in an MMX register by the

PSLLQ mmx, imm8 OF 73/6 b amount specified in an immediate byte value.
mmx]1 mmx2/memé64
63 v 0 63 0
| |
shift left «
I —
mmx imm8
63 v 0 70
| |
shift left «
|

psllg-64.eps

Related Instructions

PSLLD, PSLLDQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:i?1i??eference [AMD &lﬂl_bﬁC Use] e

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

L [AMD E)Sd_bﬁc Use] Instructio(ns":‘rI-?Beiftel\r/leendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSLLW Packed Shift Left Logical Words

L eft-shifts each of the packed 16-bit values in the first source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.

The low-order bits that are emptied by the shift operation are cleared to O. If the shift value is greater
than 15, the destination is cleared to al Os.

The PSLLW instruction isan MM X ™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Left-shifts packed words in an MMX register by the
PSLLW mmx1, mmx2/mem64 OF F1/r amount specified in an MMX register or 64-bit
memory location.

Left-shifts packed words in an MMX register by the

PSLLW mmyx, imm3 OF71/6 ib amount specified in an immediate byte value.
mmx]1 mmx2/memé64
6374847 3231 1615 0 63 0
| |
shift left « I
] shif} left «
mmx imm8
63 4847 3231 1615 0 70
| |
shift left « |
] shift left «
|

psliw-64.eps

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD E)gﬁbwc Use] e

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Eﬁ;\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

L [AMD &lﬁb\ﬁb Use] Instructio?14I-?Bei1‘te|\r/|eendciZ1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSRAD Packed Shift Right Arithmetic Doublewords

Right-shifts each of the packed 32-hit valuesin thefirst source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.
The high-order bits that are emptied by the shift operation are filled with the sign bit of the

doubleword’ sinitial value. If the shift value is greater than 31, each doubleword in the destination is
filled with the sign bit of the doubleword’ sinitial value.

The PSRAD instruction isan MMX™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Right-shifts packed doublewords in an MMX register
PSRAD mmx1, mmx2/mem64 OF E2 /r by the amount specified in an MMX register or 64-bit
memory location.

Right-shifts packed doublewords in an MMX register

PSRAD mmx, imm8 OF 72 /4 b by the amount specified in an immediate byte value.
mmx1 mmx2/memé64
63 l 32 31 l 0 63 0
| |
shift right « i
S shift right <
mmx imm8
63 l 32 3 l 0 70
| |
shift right « |
shift right «
| psrad-64.eps

Fn4s-'I[3riJcl\t/:§?1i??eference [AMD ﬁﬁﬁﬁc Use] Ho

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAW, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

He [AMD ijlj\)ﬁﬁc Use] Instructio(?14I-?Beiftel\r/leendciZ1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSRAW Packed Shift Right Arithmetic Words

Right-shifts each of the packed 16-bit valuesin thefirst source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding word of the
destination (first source). The first source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.
The high-order bits that are emptied by the shift operation are filled with the sign bit of the word’s

initial value. If the shift valueis greater than 15, each word in the destination is filled with the sign bit
of theword'sinitial value.

The PSRAW instruction isan MMX™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Right-shifts packed words in an MMX register by the
PSRAW mmx1, mmx2/mem64 OF E1/r amount specified in an MMX register or 64-bit
memory location.

Right-shifts packed words in an MMX register by the

PSRAW mmx, Imm8 OF 71/4b amount specified in an immediate byte value.
mmx1 mmx2/memé64
63 4847 231 1615 0 63 0
| . . |
shiftright |
arithmetic shift right
S arithmetic
mmx imm8

— }

63 48 47 3231 1615 0 70

I
shift right « !

arithmetic shift right «
I arithmetic

psraw-64.eps

Fn4s-'I[3riJcl\t/:§?1iaReference [AMD EGBWC Use] L

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRLD, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

1 [AMD lﬁ&ﬁwc Use] Instructi06:14I-?Bei1:(e'\r/|eendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSRLD Packed Shift Right Logical Doublewords

Right-shifts each of the packed 32-hit valuesin thefirst source operand by the number of bits specified
in the second source operand and writes each shifted value in the corresponding doubleword of the
destination (first source). The first source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift valueis greater
than 31, the destinationis cleared to O.

The PSRLD instruction isan MMX™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Right-shifts packed doublewords in an MMX register
PSRLD mmx1, mmx2/mem64 OF D2 /r by the amount specified in an MMX register or 64-bit
memory location.

Right-shifts packed doublewords in an MMX register

PSRLD mmx, imm3 OF 72/2ib by the amount specified in an immediate byte value.
mmx]1 mmx2/memé64
63 l 32 3] l 0 63 0
| |
shift right «
SR shift right <
mmx imm8
63 l 32 31 l 0 70
| |
shift right « |
shift right <
| psrld-64.eps

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD Eﬁﬁ%ﬁC Use] Ho

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLDQ, PSRLQ, PSRLW

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

10 [AMD Eﬁﬁ%ﬁC Use] Instructio(?14I-?Beiftel\r/leendciZ1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSRLQ Packed Shift Right Logical Quadwords

Right-shifts each 64-bit value in the first source operand by the number of bits specified in the second
source operand and writes each shifted value in the corresponding quadword of the destination (first
source). Thefirst source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift valueis greater
than 63, the destination is cleared to O.

The PSRLQ instruction isan MMX ™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description
Right-shifts quadword in an MMX register by the
PSRLQ mmx1, mmx2/mem64 OF D3 /r amount specified in an MMX register or 64-bit memory
location.

Right-shifts quadword in an MMX register by the

PSRLQ mmx, imm8 OF 73/2ib amount specified in an immediate byte value.
mmx]1 mmx2/memé64
63 1 0 63 0
| |
shift right «
I
mmx imm8
63 1 0 70
| |
shift right «
4’ psrlg-64.eps

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLW

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD ﬁﬁ%ﬁc Use] e

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Eﬁ;\//'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

o2 [AMD &LFI%RC Use] Instructi06n4I-?Beiftel\r/leendciZ1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSRLW Packed Shift Right Logical Words

Right-shifts each of the packed 16-bit valuesin thefirst source operand by the number of bits specified
in the second operand and writes each shifted value in the corresponding word of the destination (first
source). Thefirst source/destination and second source operands are:

* an MMX register and another MM X register or 64-bit memory location, or
* an MMX register and an immediate byte value.

The high-order bits that are emptied by the shift operation are cleared to 0. If the shift valueis greater
than 15, the destination is cleared to O.

The PSRLW instruction isan MMX™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Right-shifts packed words in an MMX register by the
PSRLW mmx1, mmx2/mem64 OF D1 /r amount specified in an MMX register or 64-bit
memory location.

Right-shifts packed words in an MMX register by the

PSRLW mmx, imm8 OF 71/2ib amount specified in an immediate byte value.
mmx]1 mmx2/mem64
63 4847 3231 1615 0 63 0
| . . |
shift right < |
I shift right
|
mmx imm8

— l

63 48 47 3231 1615 0 70

| |
shift right |
S shift right <

| psriw-64.eps

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD F&[TbWC Use] 18

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Related Instructions

PSLLD, PSLLDQ, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLDQ, PSRLQ

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

o4 [AMD lﬁ?&bwc Use] Instructio?14I-?Beiftel\r/leendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSUBB Packed Subtract Bytes

Subtracts each packed 8-bit integer value in the second source operand from the corresponding packed
8-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding byte of the destination (first source). The first source/destination operand isan MM X
register and the second source operand is another MM X register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 8 bits of each
result are written in the destination.

The PSUBB instruction isan MM X™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Subtracts packed byte integer values in an MMX register
or 64-bit memory location from packed byte integer

PSUBB mmx1, mmx2/memé4 OF F8 /r values in another MMX register and writes the result in
the destination MMX register.

mmx1 mmx2/memé64
u }
63 0 63 0
LI LI
| \
subtract |
- subtract
| psubb-64.eps

Related Instructions

PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

64-Bit Media uUB 185
Instruction Reference [AMD ﬁUbﬁC Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

100 [AMD Ip}l%ﬁc Use] Instructio(?14I-?Beiftel\r/leendciZ1

AMDZU

26569—Rev. 3.16—November 2021

PSUBD

AMDG64 Technology

Packed Subtract Doublewords

Subtracts each packed 32-bit integer value in the second source operand from the corresponding
packed 32-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding doubleword of the destination (first source). The first source/destination operand is an
MMX register and the second source operand is another MM X register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written in the destination.

The PSUBD instruction isan MMX™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Subtracts packed 32-bit integer values in an MMX
register or 64-bit memory location from packed 32-bit
integer values in another MMX register and writes the
result in the destination MMX register.

PSUBD mmx1, mmx2/mem64 OF FAr

mmx]1 mmx2/mem64

63 i 32 31 l 0 63 32 31 0

subtract ! | ‘

| subtract
|

psubd-64.eps

Related Instructions

PSUBB, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

64-Bit Media
Instruction Reference

[AMD PUBfic Use] o

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

18 [AMD Ip}l%ﬁc Use] Instructio(?14I-?Beiftel\r/leendciZ1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSUBQ Packed Subtract Quadword

Subtracts each packed 64-bit integer value in the second source operand from the corresponding
packed 64-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding quadword of the destination (first source). The first source/destination and source
operands are an MM X register and another MM X register or 64-bit memory location.

The PSUBQ instruction is an SSE2 instruction; check the status of EDX bit 26 returned by CPUID
function 0000_0001h. See “CPUID” in Volume 3 for more information about the CPUID instruction.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written in the destination.

Mnemonic Opcode Description

Subtracts packed 64-bit integer values in an MMX
register or 64-bit memory location from packed 64-bit

PSUBQ mmx1, mmx2/memé4 OF FB /r integer values in another MMX register and writes the
result in the destination MMX register.

mmx]1 mmx2/mem64
63 l 0 63 0
subtract |
— psubg-64.eps

Related Instructions

PSUBB, PSUBD, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD lla:ﬁjjgﬁc Use] 169

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD X ¥ X The SSEZ2 instructions are not supported, as
indicated by CPUID Fn0000_0001_EDX[SSE2] = 0.
Es\lclce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #55 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

190 RSUB 64-Bit Media
[AMD ﬁUbﬁC Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSUBSB Packed Subtract Signed With Saturation Bytes

Subtracts each packed 8-bit signed integer value in the second source operand from the corresponding
packed 8-bit signed integer in the first source operand and writes the signed integer result of each
subtraction in the corresponding byte of the destination (first source). The first source/destination
operand is an MMX register and the second source operand is another MM X register or 64-bit
memory location.

For each packed value in the destination, if the valueislarger than the largest signed 8-bit integer, it is
saturated to 7Fh, and if the value is smaller than the smallest signed 8-bit integer, it is saturated to 80h.

The PSUBBSB instruction isan MMX ™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Subtracts packed byte signed integer values in an
MMX register or 64-bit memory location from packed
byte integer values in another MMX register and writes
the result in the destination MMX register.

PSUBSB mmx1, mmx2/mem64 OF E8 Ir

mmx]1 mmx2/mem64
63 0 63 0
subtract ! | ‘
| subtract
saturate |
— saturate
| psubsb-64.eps

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSW, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

64-Bit Media RSUBSB 191
Instruction Reference [AMD |§UTﬁ|C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

192 PSUBSB 64-Bit Media
[AMD ﬁU%ﬁlC Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSUBSW Packed Subtract Signed With Saturation Words

Subtracts each packed 16-bit signed integer value in the second source operand from the
corresponding packed 16-bit signed integer in the first source operand and writes the signed integer
result of each subtraction in the corresponding word of the destination (first source). The first
source/destination and source operands are an MM X register and another MM X register or 64-bit
memory location.

For each packed value in the destination, if the valueislarger than the largest signed 16-bit integer, itis
saturated to 7FFFh, and if the value is smaller than the smallest signed 16-bit integer, it is saturated to
8000h.

The PSUBSW instructionisan MM X ™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Subtracts packed 16-bit signed integer values in an
MMX register or 64-bit memory location from packed
16-bit integer values in another MMX register and
writes the result in the destination MMX register.

PSUBSW mmx1, mmx2/mem64 OF E9 /r

mmx]1 mmx2/memé64

63 48 47 3231 1615 0 63 4847 3231 1615 0

| | |
subtract |
l subtract
saturate |
saturate

| psubsw-64.eps

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBUSB, PSUBUSW, PSUBW

rFLAGS Affected

None

64-Bit Media PSUBSW 193
Instruction Reference [AMD UEme Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

194 PSUBSW 64-Bit Media
[AMD UEme Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSUBUSB Packed Subtract Unsigned and Saturate Bytes

Subtracts each packed 8-bit unsigned integer value in the second source operand from the
corresponding packed 8-bit unsigned integer in the first source operand and writes the unsigned
integer result of each subtraction in the corresponding byte of the destination (first source). The first
source/destination operand isan MM X register and the second source operand is another MM X
register or 64-bit memory location.

For each packed value in the destination, if the value is smaller than the smallest unsigned 8-bit
integer, it is saturated to O0h.

The PSUBUSB instruction isan MM X ™ instruction. The presence of this instruction set is indicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Subtracts packed byte unsigned integer values in an
MMX register or 64-bit memory location from packed
byte integer values in another MMX register and
writes the result in the destination MMX register.

PSUBUSB mmx1, mmx2/mem64 OF D8 Ir

mmx]1 mmx2/memé64

— ..

63 0 63 0

subtract ! ‘ ‘
I

subtract
|

saturate
|

saturate

psubusb-64.eps

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSW, PSUBW

rFLAGS Affected

None

Fn4s_'I[3rEc'\t/:f)?1i??eference [AM [fﬂﬁb"ﬁ‘('% Use] 19

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

190 [AM ﬁﬁﬁgﬁg Use] InstructioEr514I-?Bei1:(e'\r/|eendci(:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSUBUSW Packed Subtract Unsigned and Saturate Words

Subtracts each packed 16-bit unsigned integer value in the second source operand from the
corresponding packed 16-bit unsigned integer in the first source operand and writes the unsigned
integer result of each subtraction in the corresponding word of the destination (first source). The first
source/destination operand isan MM X register and the second source operand is another MM X
register or 64-bit memory location.

For each packed value in the destination, if the value is smaller than the smallest unsigned 16-bit
integer, it is saturated to 0000h.

The PSUBUSW instruction isan MM X ™ instruction. The presence of thisinstruction set isindicated
by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Subtracts packed 16-bit unsigned integer values in

an MMX register or 64-bit memory location from
PSUBUSW mmx1, mmx2/mem64 OF D9 /r packed 16-bit integer values in another MMX register

and writes the result in the destination MMX register.

mmx]1 mmx2/mem64
63 48 47 3231 16 15l 0 63 48 47 3231 1615 0
subtract ! ‘ ‘
l subtract
saturate |
L | saturate
| psubusw-64.eps

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBW

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:?)?1i??eference [AM [f%ﬁBﬁ\év Use] o

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

19 [AM [f%ﬁtiﬁ\év Use] Instructi06314I-?Bei1:(e|\r/|eendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PSUBW Packed Subtract Words

Subtracts each packed 16-bit integer value in the second source operand from the corresponding
packed 16-bit integer in the first source operand and writes the integer result of each subtraction in the
corresponding word of the destination (first source). The first source/destination operand isan MM X
register and the second source operand is another MM X register or 64-bit memory location.

This instruction operates on both signed and unsigned integers. If the result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of the
result are written in the destination.

The PSUBW instruction isan MM X ™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See“CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Subtracts packed 16-bit integer values in an MMX

register or 64-bit memory location from packed 16-bit
PSUBW mmx1, mmx2/mem64 OF F9/r integer values in another MMX register and writes the

result in the destination MMX register.

mmx1 mmx2/memé64

63 48 47 3231 1615 0 63 48 47 3231 1615 0

subtract I | ‘

L subtract
|

psubw-64.eps

Related Instructions

PSUBB, PSUBD, PSUBQ, PSUBSB, PSUBSW, PSUBUSB, PSUBUSW

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD PﬁHBWC Use] 199

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

20 [AMD IlDfHBWC Use] Instructi06:14I-?Bei1:[e'\r/|eendci(:a1

AMDZU

26569—Rev. 3.16—November 2021

PSWAPD

AMDG64 Technology

Packed Swap Doubleword

Swaps (reverses) the two packed 32-bit valuesin the source operand and writes each swapped valuein
the corresponding doubleword of the destination. The source operand isan MM X register or 64-bit
memory location. The destination is another MM X register.

The PSWAPD instruction is an extension to the AMD 3DNow! ™ instruction set. The presence of this
instruction set isindicated by CPUID feature bits. See “CPUID” in Volume 3 for more information

about the CPUID instruction.

Mnemonic

PSWAPD mmx1, mmx2/mem64 OF OF /r BB

mmx1

63 32 31

Opcode

Description

Swaps packed 32-bit values in an MMX register or 64-
bit memory location and writes each value in the
destination MMX register.

mmx2/mem64

63 32 31 0

7/
copy copy

_—

Related Instructions

None

rFLAGS Affected

None

63

32 31 0 pswapd.eps

64-Bit Media
Instruction Reference

[AMDPURIE Use] 201

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The AMD Extensions to 3DNow!™ are not supported,
X X X as indicated by
CPUID Fn8000_0001_EDX[3DNowEXxt] = 0.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

202

PSWAPRD 64-Bit Medi
[AMD U/E\)TlC Use] Instruction Relfereenclfa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PUNPCKHBW Unpack and Interleave High Bytes

Unpacks the high-order bytes from the first and second source operands and packs them into
interleaved-byte words in the destination (first source). The low-order bytes of the source operands are
ignored. The first source/destination operand isan MM X register and the second source operand is
another MM X register or 64-bit memory location.

If the second source operand is all Os, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHBW instruction isan MM X ™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description
Unpacks the four high-order bytes in an MMX register
PUNPCKHBW mmx1, OF 68 /r and another MMX register or 64-bit memory location

mmx2/mem64 and packs them into interleaved bytes in the
destination MMX register.

mmx]1 mmx2/memé64

63 32 31 0 63 32 31 0

copy copy copy

punpckhbw-64.eps

Related Instructions

PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDAQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

Fn4s_'I[3riL;[c'\t/:§(rjliaReference [A Mlﬁ) ﬁﬁﬁn%m Se] 208

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

204 [AMIﬁJlﬁﬁﬁngmse] Instructi06n4I-?Beiftel\r/leendci(:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PUNPCKHDQ Unpack and Interleave High Doublewords

Unpacks the high-order doublewords from the first and second source operands and packs them into
interleaved-doubleword quadwordsin the destination (first source). The low-order doublewords of the
source operands are ignored. The first source/destination operand is an MM X register and the second
source operand is another MM X register or 64-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKHDQ instruction isan MM X ™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Unpacks the high-order doubleword in an MMX register

OF 6A /r and another MMX register or 64-bit memory location
and packs them into interleaved doublewords in the
destination MMX register.

PUNPCKHDQ mmx1,
mmx2/mem64

mmx]1 mmx2/memé64

63 32 31 0 63 32 31 0

copy copy

63 32 31 0 punpckhdg-64.eps

Related Instructions

PUNPCKHBW, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW, PUNPCKLDQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

Fn4s_'I[3riL;[c'\t/:§(rjliaReference [AM%JI#?&SHBCUSe] 200

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

20 [AM%JI]BD&S HE% Se] Instructi06n4I-?Beiftel\r/leendci(:a1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PUNPCKHWD Unpack and Interleave High Words

Unpacks the high-order words from the first and second source operands and packs them into
interleaved-word doublewords in the destination (first source). The low-order words of the source
operands are ignored. The first source/destination operand isan MM X register and the second source
operand is another MM X register or 64-bit memory location.

If the second source operand is all Os, the destination contains the words from the first source operand
zero-extended to 32 bits. This operation isuseful for expanding unsigned 16-bit valuesto unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKHWD instruction isan MM X™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Unpacks two high-order words in an MMX register
PUNPCKHWD mmx1, OF 69 /r and another MMX register or 64-bit memory
mmx2/mem64 location and packs them into interleaved words in
the destination MMX register.

mmx]1 mmx2/mem64
63 48 47 32 31 0 63 48 47 32 31 0
~ ~— - e
copy copy copy copy

63 48 47 32 31 16 15 0 punpckhwd-64.eps

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKLBW, PUNPCKLDQ, PUNPCKLQDQ,
PUNPCKLWD

rFLAGS Affected

None

Fn4s_'I[3riL;[c'\t/:§(rjli??eference [A Mlﬁ) Iﬁﬁﬁn\é\/[b Se] 201

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

20 [A MTB) IEﬁBH\éV[U Se] Instru cti0?14I-?Bei1:[e'\r/|(-:tendciZ1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PUNPCKLBW Unpack and Interleave Low Bytes

Unpacks the low-order bytes from the first and second source operands and packs them into
interleaved-byte words in the destination (first source). The high-order bytes of the source operands
areignored. Thefirst source/destination operand isan MM X register and the second source operand is
another MM X register or 32-bit memory location.

If the second source operand is all Os, the destination contains the bytes from the first source operand
zero-extended to 16 bits. This operation is useful for expanding unsigned 8-bit values to unsigned 16-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLBW instruction isan MM X™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Unpacks the four low-order bytes in an MMX

register and another MMX register or 32-hit
PUNPCKLBW mmx1, mmx2/mem32 OF 60 /r memory location and packs them into interleaved

bytes in the destination MMX register.

mmx]1 mmx2/memé64
63 32 31 0 63 32 31 0
| HEEN | HEER
NS "

copy copy copy copy

63 32 31 0 punpcklbw-64.eps

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLDAQ,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

Fn4s_'I[3riL;[c'\t/:§(rjliaReference [AMlﬁJlﬁﬁEh%vbse] 209

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5&‘&06 not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

710 [AMﬁjlﬁﬁSh%vbse] Instructi06n4I-:zBei1‘te|\r/|eendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PUNPCKLDQ Unpack and Interleave Low Doublewords

Unpacks the low-order doublewords from the first and second source operands and packs them into
interleaved-doubleword quadwords in the destination (first source). The high-order doublewords of
the source operands are ignored. The first source/destination operand is an MM X register and the
second source operand is another MM X register or 32-bit memory location.

If the second source operand is all 0s, the destination contains the doubleword(s) from the first source
operand zero-extended to 64 bits. This operation is useful for expanding unsigned 32-bit values to
unsigned 64-bit operands for subsequent processing that requires higher precision.

The PUNPCKLDQ instruction isan MM X™ instruction. The presence of thisinstruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Unpacks the low-order doubleword in an MMX register
PUNPCKLDQ mmx1, OF 62 /r and another MMX register or 32-bit memory location
mmx2/mema32 and packs them into interleaved doublewords in the
destination MMX register.

mmx1 mmx2/memé64

63 32 31 0 63 32 31 0

copy copy

63 32 31 0 punpckldq-64.eps

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCKLBW,
PUNPCKLQDQ, PUNPCKLWD

rFLAGS Affected

None

Fn4s-'I[3riL;[c'\t/:g(:1iaReference [AM Ej‘”iiﬁ%h&)%se] “t

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

2 [AM le%hg%se] Instructi06n4I-:zBei1‘te|\r/|eendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PUNPCKLWD Unpack and Interleave Low Words

Unpacks the low-order words from the first and second source operands and packs them into
interleaved-word doublewords in the destination (first source). The high-order words of the source
operands are ignored. The first source/destination operand isan MM X register and the second source
operand is another MM X register or 32-bit memory location.

If the second source operand is all Os, the destination contains the words from the first source operand
zero-extended to 32 hits. This operation isuseful for expanding unsigned 16-bit valuesto unsigned 32-
bit operands for subsequent processing that requires higher precision.

The PUNPCKLWD instruction isan MM X™ instruction. The presence of this instruction set is
indicated by CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID
instruction.

Mnemonic Opcode Description

Unpacks the two low-order words in an MMX
register and another MMX register or 32-bit memory

PUNPCKLWD mmx1, mmx2/mem32 OF 61 /r location and packs them into interleaved words in
the destination MMX register.

mmx]1 mmx2/memé64
63 231 1615 0 63 3231 1615 0
N ~ _— —
copy copy copy copy

63 48 47 3231 1615 0 punpckiwd-64.eps

Related Instructions

PUNPCKHBW, PUNPCKHDQ, PUNPCKHQDQ, PUNPCKHWD, PUNPCK L BW, PUNPCKLDQ,
PUNPCKLQDQ

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMﬁjlﬁ?ﬁﬁh\é\/[{Jse] o

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
gﬁ\l\l/'lce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
General protection, #GP was non-canonical.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point X X X An unmasked x87 floating-point exception was
exception pending, #MF pending.
; An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.

21 [AMﬁJlﬁl%h\éV[Use] Instructio?:‘rI-?Beiftel\r/leendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

PXOR Packed Logical Bitwise Exclusive OR

Performs a bitwise exclusive OR of the valuesin the first and second source operands and writes the
result in the destination (first source). Thefirst source/destination operand isan MM X register and the
second source operand is another MM X register or 64-bit memory location.

The PXOR instruction isan MMX™ instruction. The presence of thisinstruction set isindicated by
CPUID feature bits. See “CPUID” in Volume 3 for more information about the CPUID instruction.

Mnemonic Opcode Description

Performs bitwise logical XOR of values in an MMX register
PXOR mmx1, mmx2/mem64 OF EF /r and in another MMX register or 64-bit memory location
and writes the result in the destination MMX register.

mmx]1 mmx2/memé64

4, pxor-64.eps

Related Instructions

PAND, PANDN, POR

rFLAGS Affected

None

Fn4s-'I[3riJcl\t/:?)?1i??eference [AMD IB)CI%IT'C Use] 7

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X The emulate bit (EM) of CRO was set to 1.
Invalid opcode, #UD The MMX™ instructions are not supported, as
X X X indicated by EDX[MMX] = 0, returned by CPUID
Fn0000_0001 or Fn8000_0001.
5§\|\I/IIce not available, X X X The task-switch bit (TS) of CRO was set to 1.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
. X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
x87 floating-point . . :
exception pending, X X X An lér)masked x87 floating-point exception was
#MF pending.
Alignment check, #AC X X An unaligned memory reference was performed while

alignment checking was enabled.

710 [AMD ﬁﬁ%lﬁc Use] Instructi06n4I-?Beiftel\r/leendcifa1

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

2 x87 Floating-Point Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, condition codes, affected flags, and
possible exceptions generated by the x87 floating-point instructions. The x87 floating-point
instructions are used in legacy floating-point applications. Most of these instructions load, store, or
operate on data located in the x87 ST(0)-ST(7) stack registers (the FPRO—FPR7 physical registers).
The remaining instructions within this category are used to manage the x87 floating-point
environment.

The AMD64 architecture requires support of the x87 floating-point instruction subset including the
floating-point conditional moves and the FCOMI(P) and FUCOMI(P) instructions. On compliant
processor implementations both the FPU and the CM OV feature flags are set. These are indicated by
EDX[FPU] (bit 0) and EDX[CMQV] (bit 15) respectively returned by CPUID FnO000_0001 or
CPUID Fn8000_0001.

Thisis augmented by instructions that are members of the MM X, 3DNow! ™, SSE3, and FXSR
subsets. Support for the following instructions isimplementation-specific:

« EMMS, which is an MMX instruction. Support for this instruction is indicated by
CPUID Fn0000_0001_EDX[MMX] =1 or CPUID Fn8000_0001_EDX[MMX] = 1.

« FEMMS, which is a 3DNow!™ instruction. Support for this instruction is indicated by
CPUID Fn8000_0001_EDX[3DNow] = 1.

« FISTTP, which is an SSE3 instruction. Support for this instruction is indicated by
CPUID Fn0000_0001_ECX[SSE3] = 1.

* FXSAVE /| FXRSTOR. Support for these instructions is indicated by
CPUID Fn8000_0001_EDX[FXSR] =1 or CPUID Fn0000_0001 _EDX[FXSR] =1

EMMS and FEMMS are described in Chapter 1, “64-Bit MediaInstruction Reference”, on page 1.

The x87 instructions can be used in legacy mode or long mode. Their usein long mode is available if
thefollowing feature bit is set:

* LongMode, asindicated by CPUID Fn8000 0001 _EDX[LM] =1.

Compilation of x87 media programs for execution in 64-bit mode offers two primary advantages:
access to the 64-bit virtual address space and access to the RIP-rel ative addressing mode.

For further information about the x87 floating-point instructions and register resources, see:
» “x87 Floating-Point Programming” in Volume 1.

* “SSE, MMX, and x87 Programming” in VVolume 2.

* “Summary of Registersand Data Types’ in Volume 3.

* “Notation” in Volume 3.

* “Instruction Prefixes” in Volume 3.

For information on using the CPUID instruction, see the instruction description in Volume 3.

x87 Floating-Point . 217
Instruction Reference [AMD PUb“C Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

F2XM1 Floating-Point Compute 2*-1

Raises 2 to the power specified by the value in ST(0), subtracts 1, and stores the result in ST(0). The
source value must be in the range —1.0 to +1.0. The result is undefined for source values outside this
range.

This instruction, when used in conjunction with the FYL2X instruction, can be applied to calculate
z =xY by taking advantage of the log property x¥ = 2Y*109.x.

Mnemonic Opcode Description
F2XM1 D9 FO Replace ST(0) with (257 — 1).
Related Instructions

FYL2X, FYL2XP1

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

218 X x87 Floating-Point
[AMD E)Zuglﬁc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) were set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.

Precision exception X X X Aresult could not be represented exactly in the destination
(PE) format.

x87 Floating-Point X 219
Instruction Reference [AMD E)ZUHﬁC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FABS Floating-Point Absolute Value

Convertsthe valuein ST(0) to its absolute value by clearing the sign bit. The resulting value depends
upon the type of number used as the source value:

Source Value (ST(0)) Result (ST(0))
—co +oo
-FiniteReal +FiniteReal
-0 +0
+0 +0
+FiniteReal +FiniteReal
+oo +oo
NaN NaN

This operation applies even if the value in ST(0) is negative zero or negative infinity.

Mnemonic Opcode Description
FABS D9 E1 Replace ST(0) with its absolute value.

Related Instructions
FPREM, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co]
C1 0
Cc2 U
C3 0]
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

220 ABS: x87 Floating-Point
[AMD rljlﬁﬁm Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0O) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)

x87 Floating-Point ABS- 221
Instruction Reference [AMD ﬁU%ﬁlC Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FADD Floating-Point Add
FADDP
FIADD

Adds two values and stores the result in afloating-point register. If two operands are specified, the
values are in ST(0) and another floating-point register and the instruction stores the result in the first
register specified. If one operand is specified, the instruction adds the 32-bit or 64-bit value in the
specified memory location to the valuein ST(0).

The FADDPInstruction adds the value in ST(0) to the value in another floating-point register and pops
the register stack. If two operands are specified, the first operand is the other register. If no operand is
specified, then the other register isST(1).

The FIADD instruction reads a 16-bit or 32-bit signed integer value from the specified memory
location, convertsit to double-extended-real format, and addsit to the valuein ST(0).

Mnemonic Opcode Description
FADD ST(0),ST(i) D8 CO+i Replace ST(0) with ST(0) + ST(i).
FADD ST(i),ST(0) DC CO+i Replace ST(i) with ST(0) + ST(i).
FADD mem32real D8 /0 Replace ST(0) with ST(0) + mem32real.
FADD mem64real DC /0 Replace ST(0) with ST(0) + mem64real.
FADDP DE C1 Replace ST(1) with ST(0) + ST(1), and pop the x87 register stack.
FADDP ST(i),ST(0) DE CO+i Replace ST(i) with ST(0) + ST(i), and pop the x87 register stack.
FIADD mem16int DE /0 Replace ST(0) with ST(0) + mem16int.
FIADD mem32int DA/O Replace ST(0) with ST(0) + mem32int.

Related Instructions

None

rFLAGS Affected

None

222 D x87 Floating-Point
[AMD B\L[IbﬁC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

x87 Condition Code

AMDG64 Technology

x87 Condition Code | Value Description
Co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0) was set to 1.

A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.

i X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.

A page fault resulted from the execution of the
Page fault, #PF X X instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point

X X X An unmasked x87 floating-point exception was pending.

exception pending,
#MF

x87 Floating-Point

Exception Generated, #MF

A source operand was an SNaN value or an unsupported

(CE)

Invalid-operation X X X format.
exception (IE) — -
X X X +infinity was added to —infinity.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Overflow exception X X X A rounded result was too large to fit into the format of the

destination operand.

x87 Floating-Point

Instruction Reference

[AMD

223

Pitiic Use]

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

(PE)

Virtual
Exception Real | 8086 |Protected Cause of Exception
Underflow exception X X X Arounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the

destination format.

224

[AMD Pfic Use]

x87 Floating-Point
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FBLD Floating-Point Load Binary-Coded Decimal

Converts a 10-byte packed BCD value in memory into double-extended-precision format, and pushes
the result onto the x87 stack. In the process, it preserves the sign of the source value.

The packed BCD digits should beintherange 0 to 9. Attempting to load invalid digits (Ah through Fh)
produces undefined results.

Mnemonic Opcode Description

Convert a packed BCD value to floating-point and push the

FBLD memg0dec DF /4 result onto the x87 register stack.

Related Instructions

FBSTP

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co u
1 x87 stack overflow, if an x87 register stack fault was detected.
“t 0 If no other flags are set.
Cc2 u
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point Bl.D- 225
Instruction Reference [AMD rljulb[hc Use]

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was

General protection, non-canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

226

[AMD Ptitilic Use]

x87 Floating-Point
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FBSTP Floating-Point Store Binary-Coded Decimal and
Pop

Converts the value in ST(0) to an 18-digit packed BCD integer, stores the result in the specified
memory location, and pops the register stack. It rounds a non-integral value to an integer value,
depending on the rounding mode specified by the RC field of the x87 control word.

The operand specifies the memory address of the first byte of the resulting 10-byte value.

Mnemonic Opcode Description

Convert the floating-point value in ST(0) to BCD, store the result in

FBSTP mem80dec DF /6 mem80, and pop the x87 register stack.

Related Instructions

FBLD

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point T 227
Instruction Reference [AMD Eﬁusoﬁc Use]

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
X X X A memory address exceeded a data segment limit or was
. non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
X X X A source operand was an SNaN value, a QNaN value,

Invalid-operation tinfinity or an unsupported format.

exception (IE) X X X A source operand was too large to fit in the destination

format.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Precision exception X X X A result could not be represented exactly in the destination
(PE) format.

228

[AMD PFiidlic Use]

x87 Floating-Point
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FCHS Floating-Point Change Sign

Compliments the sign bit of ST(0), changing the value from negative to positive or vice versa. This
operation applies to positive and negative floating point values, as well as—0 and +0, NaNs, and +eo
and —eo.

Mnemonic Opcode Description

FCHS D9 EO Reverse the sign bit of ST(0).

Related Instructions

FABS, FPREM, FRNDINT, FXTRACT

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co U
C1 0
C2 U
C3 U
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0O) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.

#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

x87 Floating-Point CHS- 229
Instruction Reference [AMD |5UI[Iﬁ|C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FCLEX Floating-Point Clear Flags
(FNCLEX)

Clearsthefollowing flagsin the x87 status word:

» Floating-point exception flags (PE, UE, OE, ZE, DE, and |E)
e Stack fault flag (SF)

» Exception summary statusflag (ES)

* Busyflag (B)

It leaves the four condition-code bits undefined. It does not check for possible floating-point
exceptions before clearing the flags.

Assemblersusually provide an FCLEX macro that expands into the instruction sequence

WAI T ; Opcode 9B
FNCLEX desti nation ; Opcode DB E2

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNCLEX instruction then clears all the relevant x87 exception flags.

Mnemonic Opcode Description

Perform a WAIT (9B) to check for pending floating-point
FCLEX 9B DB E2 exceptions, and then clear the floating-point exception flags.

DB E2 Clear the floating-point flags without checking for pending

FNCLEX unmasked floating-point exceptions.

Related Instructions

WAIT

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
co u
C1 U
C2 U
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

70 [A I\%Eﬁ() &Fb\lﬁé Elj)se] Inst);ﬁZtli:cl)?lalggge-rF;?ligé

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0) was set to 1.

Instruction Reference [AVDPBNC Use] -

AMDZU

AMDG64 Technology

FCMOVcc

26569—Rev. 3.16—November 2021

Floating-Point Conditional Move

Teststheflagsin the rFLAGSregister and, depending upon the values encountered, movesthevaluein
another stack register to ST(0).

This set of instructions includes the mnemonics FCMOVB, FCMOVBE, FCMOVE, FCMOVNB,
FCMOVNBE, FCMOVNE, FCMOVNU, and FCMOV U.

Support for the FCMOV cc instruction is indicated when both EDX[FPU] (bit 0) and EDX[CMOV]
(bit 15) are set, asreturned by either CPUID function 0000_0001h or function 8000_0001h.

Mnemonic Opcode Description
FCMOVB ST(0),ST(i) DA CO+i Move the contents of ST(i) into ST(0) if below (CF = 1).
FCMOVBE ST(0),ST() DA DO+i g/lg\r/eélt:hg i()).ntents of ST(i) into ST(0) if below or equal (CF =
FCMOVE ST(0),ST(i) DA C8+i Move the contents of ST(i) into ST(0) if equal (ZF = 1).
FCMOVNB ST(0),ST(i) DB CO+i Move the contents of ST(i) into ST(0) if not below (CF = 0).
FCMOVNBE ST(0),ST(i) DB DO+i ?/éoni tg:rc]:gnztgn:tsog.f ST(i) into ST(O) if not below or equal
FCMOVNE ST(0),ST(i) DB C8+i Move the contents of ST(i) into ST(0) if not equal (ZF = 0).
FCMOVNU ST(0),ST() DB D8+i (I\)/;(.)ve the contents of ST(i) into ST(0) if not unordered (PF =
FCMOVU ST(0),ST(i) DA D8+i Move the contents of ST(i) into ST(0) if unordered (PF = 1).
Related Instructions
None
rFLAGS Affected
None
x87 Condition Code
x87 Condition Code | Value Description
Co u
C1 0 x87 stack underflow, if an x87 register stack fault was detected.
c2 u
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

232

[AMD Pl Use]

x87 Floating-Point
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual | Protecte
Exception Real | 8086 d Cause of Exception
Invalid opcode The Conditional Move instructions are not supported, as
#UD P ' X X X indicated by EDX[FPU] and EDX[CMOV] returned by CPUID
Fn0O0O00_0001 or Fn8000_0001.

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the control
available, #NM register (CRO) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

x87 Floating-Point

Instruction Reference

[AMD BUDAfE Use] 233

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FCOM Floating-Point Compare
FCOMP

FCOMPP

Comparesthe specified value to the value in ST(0) and setsthe CO, C2, and C3 condition code flagsin
the x87 status word as shown in the x87 Condition Code table below. The specified value can bein a
floating-point register or amemory location.

The no-operand version compares the value in ST(1) with the valuein ST(0).
The comparison operation ignores the sign of zero (-0.0 = +0.0).

After performing the comparison operation, the FCOMP instruction pops the x87 register stack and
the FCOM PP instruction pops the x87 register stack twice.

If either or both of the compared valuesis aNaN or isin an unsupported format, the FCOMXx
instruction sets the invalid-operation exception (1E) bit in the x87 status word to 1, and sets the
condition flags to ‘'unordered.’

The FUCOMX instructions perform the same operations as the FCOMXx instructions, but do not set the
|E bit for QNaNs.

Mnemonic Opcode Description

FCOM D8 D1 Compare the contents of ST(0) to the contents of ST(1) and
set condition flags to reflect the results of the comparison.

. ; Compare the contents of ST(0) to the contents of ST(i) and
FCOM ST() D8 DO+ set condition flags to reflect the results of the comparison.

Compare the contents of ST(0) to the contents of
FCOM mem32real D8 /2 mema32real and set condition flags to reflect the results of
the comparison.

Compare the contents of ST(0) to the contents of
FCOM mem64real DC /2 mem64real and set condition flags to reflect the results of
the comparison.

Compare the contents of ST(0) to the contents of ST(1), set
FCOMP D8 D9 condition flags to reflect the results of the comparison, and
pop the x87 register stack.

Compare the contents of ST(0) to the contents of ST(i), set
FCOMP ST(i) D8 D8+i condition flags to reflect the results of the comparison, and
pop the x87 register stack.

Compare the contents of ST(0) to the contents of
FCOMP mem32real D8 /3 mema32real, set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

234 X x87 Floating-Point
[AMD E?l%/hc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

FCOMP memé64real

FCOMPP

DC /3

DE D9

Related Instructions

FCOMI, FCOMIP, FICOM, FICOMPB, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

x87 Condition Code

AMDG64 Technology

Compare the contents of ST(0) to the contents of
mem64real, set condition flags to reflect the results of the
comparison, and pop the x87 register stack.

Compare the contents of ST(0) to the contents of ST(1), set
condition flags to reflect the results of the comparison, and
pop the x87 register stack twice.

C3 Cc2 C1 Co Compare Result
0 0 0 0 ST(0) > source
0 0 0 1 ST(0) < source
1 0 0 0 ST(0) = source
1 1 0 1 Operands were unordered
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
MF
x87 Floating-Point Exception Generated, #MF
Invalid-operation X X X A source operand was an SNaN value, a QNaN value, or

exception (IE)

an unsupported format.

x87 Floating-Point

Instruction Reference

[AMD Fiibiic Use] 235

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

Virtual
Exception Real | 8086 |Protected Cause of Exception

Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-
operand exception X X X A source operand was a denormal value.

(DE)

x87 Floating-Point

236 [AMD El%/\)l(C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FCOMI Floating-Point Compare and Set Flags
FCOMIP

Compares the value in ST(0) with the value in another floating-point register and sets the zero flag
(ZF), parity flag (PF), and carry flag (CF) in the rFLAGS register based on the result as shown in the
table in the x87 Condition Code section.

The comparison operation ignores the sign of zero (-0.0 = +0.0).
After performing the comparison operation, FCOMIP pops the x87 register stack.

If either or both of the compared valuesis aNaN or isin an unsupported format, the FCOMIx
instruction sets the invalid-operation exception (IE) bit in the x87 status word to 1 and sets the flags to
“unordered.”

The FUCOMIx instructions perform the same operations as the FCOMIx instructions, but do not set
the |E bit for QNaNs.

Support for the FCOMIx instruction can be determined by executing either CPUID Fn0O000_0001 or
CPUID Fn8000_0001. Support isindicated when both EDX[FPU] (bit 0) and EDX[CMOV] (bit 15)
are set.

Mnemonic Opcode Description

: : Compare the contents of ST(0) with the contents of ST(i)
FCOMI ST(0),ST() DB FO+ and set status flags to reflect the results of the comparison.

Compare the contents of ST(0) with the contents of ST(i),
FCOMIP ST(0),ST(i) DF FO+i set status flags to reflect the results of the comparison, and
pop the x87 register stack.

Related Instructions

FCOM, FCOMPP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected
ZF PF CF Compare Result
0 0 0 ST(0) > source
0 0 1 ST(0) < source
1 0 0 ST(0) = source
1 1 1 Operands were unordered

x87 Floating-Point FCOM|xX 237
Instruction Reference [AMD |§UH’|C Use]

AMDZU

AMDG64 Technology

x87 Condition Code

26569—Rev. 3.16—November 2021

x87 Condition Code | Value Description
co
C1 0 x87 stack underflow, if an x87 register stack fault was detected.
C2
C3

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
The conditional move instructions are not supported, as
Invalid opcode, #UD | X X X indicated by EDX[FPU] and EDX[CMOV] returned by
CPUID FnO000_0001 or Fn8000_0001.

Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation X X X A source operand was an SNaN value, a QNaN value, or
exception (IE) an unsupported format.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

238

[AMD PUllit Use]

x87 Floating-Point
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FCOS Floating-Point Cosine

Computes the cosine of the radian value in ST(0) and storesthe result in ST(0).

If the radian value lies outside the valid range of =283 to +2%° radians, the instruction setsthe C2 flagin
the x87 status word to 1 to indicate the value is out of range and does not change the value in ST(0).

Mnemonic Opcode Description
FCOS D9 FF Replace ST(0) with the cosine of ST(0).

Related Instructions

FPTAN, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description

Co U
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.

“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
0 Source operand was in range.

2 1 Source operand was out of range.

C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point COS: 239
Instruction Reference [AMD |5U%T|C Use]

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the destination

(PE)

format.

240

[AMD Ptibiic Use]

x87 Floating-Point

Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology

FDECSTP Floating-Point Decrement Stack-Top Pointer
Decrements the top-of-stack pointer (TOP) field of the x87 status word. If the TOPfield contains O, it

isset to 7. In other words, thisinstruction rotates the stack by one position.

Mnemonic Opcode Description
FDECSTP D9 F6 Decrement the TOP field in the x87 status word.
Before FDECSTP After FDECSTP
Data Register Value Stack Pointer Stack Pointer Value
7 numl ST(7) ST(0) numl
6 num2 ST(6) ST(7) num2
5 num3 ST(5) ST(6) num3
4 num4 ST(4) ST(5) num4
3 num5 ST(3) ST(4) num5
2 nume ST(2) ST(3) nume
1 num?7 ST(@) ST(2) num?7
0 numa3 ST(0) ST(1) numa8

Related Instructions

FINCSTP

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Cco U
C1 0
c2 u
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point F TP
Instruction Reference [AMD E,EuCﬁ“C Use]

241

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0O) was setto 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point

242 F P
[AMD E’EL%“C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FDIV Floating-Point Divide
FDIVP
FIDIV

Dividesthe value in afloating-point register by the value in another register or amemory location and
stores the result in the register containing the dividend. For the FDIV and FDIV P instructions, the
divisor valuein memory can be stored in single-precision or double-precision floating-point format.

If only one operand is specified, theinstruction divides the value in ST(0) by the value in the specified
memory location.

If no operands are specified, the FDIVPinstruction divides the value in ST(1) by the valuein ST(0),
storestheresult in ST(1), and pops the x87 register stack.

The FIDIV instruction converts adivisor in word integer or short integer format to double-extended-
precision floating-point format before performing the division. It treats an integer 0 as +0.

If the zero-divide exception is not masked (ZM bit cleared to 0 in the x87 control word) and the
operation causes a zero-divide exception (sets the ZE bit in the x87 status word to 1), the operation
stores no result. If the zero-divide exception is masked (ZM bit set to 1), a zero-divide exception
causes too to be stored.

The sign of the operands, even if one of the operandsis 0, determines the sign of the result.

Mnemonic Opcode Description
FDIV ST(0),ST(i) D8 FO+i Replace ST(0) with ST(0)/ST(i).
FDIV ST(i),ST(0) DC F8+i Replace ST(i) with ST(i)/ST(0).
FDIV mem32real D8 /6 Replace ST(0) with ST(0)/mem32real.
FDIV mem64real DC /6 Replace ST(0) with ST(0)/mem64real.
EDIVP DE F9 Slig;é:?ce ST(1) with ST(1)/ST(0), and pop the x87 register
FDIVP ST(i),ST(0) DE F8+i ggglfce ST(i) with ST(i)/ST(0), and pop the x87 register
FIDIV mem16int DE /6 Replace ST(0) with ST(0)/mem16int.
FIDIV mem32int DA /6 Replace ST(0) with ST(0)/mem32int.

Related Instructions

FDIVR, FDIVRP FIDIVR

rFLAGS Affected

None

x87 Floating-Point DIV 243
Instruction Reference [AMD |5U%T|C Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

x87 Condition Code

x87 Condition Code | Value Description
Co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
A source operand was an SNaN value or an unsupported
X X X f
. . ormat.
Invalid-operation
exception (IE) X X X xinfinity was divided by infinity.
X X X +zero was divided by tzero.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Zero-divide X X X A non-zero value was divided by tzero
exception (ZE) - :

244

DIV 87 Floating-Point
[AMD U%TlC Use] Inst);uctio?laRIg?erecr)llcr:]e

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

(PE)

Virtual
Exception Real | 8086 |Protected Cause of Exception
Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the destination

format.

x87 Floating-Point
Instruction Reference

[AMD Ptlffic Use] 245

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FDIVR Floating-Point Divide Reverse
FDIVRP
FIDIVR

Divides avalue in afloating-point register or a memory location by the value in a floating-point
register and stores the result in the register containing the divisor. For the FDIVR and FDIVRP
instructions, a dividend value in memory can be stored in single-precision or double-precision
floating-point format.

If one operand is specified, the instruction divides the value at the specified memory location by the
valuein ST(0). If two operands are specified, it divides the value in ST(0) by the value in another x87
stack register or vice versa.

The FIDIVR instruction converts a dividend in word integer or short integer format to double-
extended-precision format before performing the division.

The FDIVRP instruction pops the x87 register stack after performing the division operation. If no
operand is specified, the FDIVRPinstruction divides the valuein ST(0) by thevaluein ST(1).

If the zero-divide exception is not masked (ZM bit cleared to O in the x87 control word) and the
operation causes a zero-divide exception (sets the ZE bit in the x87 status word to 1), the operation
stores no result. If the zero-divide exception is masked (ZM bit set to 1), a zero-divide exception
causes oo to be stored.

The sign of the operands, even if one of the operandsis 0, determines the sign of the resullt.

Mnemonic Opcode Description

FDIVR ST(0),ST(i) D8 F8+i Replace ST(0) with ST(i)/ST(0).

FDIVR ST(i), ST(0) DC FO+i Replace ST(i) with ST(0)/ST(i).

FDIVR mem32real D8 /7 Replace ST(0) with mem32real/ST(0).

FDIVR mem64real DC /7 Replace ST(0) with mem64real/ST(0).

EDIVRP DE F1 Etzeiglfce ST(1) with ST(0)/ST(1), and pop the x87 register
FDIVRP ST(i), ST(0) DE FO +i SRtgg:?ce ST(i) with ST(0)/ST(i), and pop the x87 register
FIDIVR mem16int DE /7 Replace ST(0) with mem16int/ST(0).

FIDIVR mem32int DA /7 Replace ST(0) with mem32int/ST(0).

Related Instructions

FDIV, FDIVP, FIDIV

246 EDIVVRX x87 Floating-Point
[AMD FPU\ﬁm Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

rFLAGS Affected

None

x87 Condition Code

AMDG64 Technology

x87 Condition Code | Value Description
Co U
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
Cc2 u
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0) was set to 1.
A memory address exceeded the stack segment limit or is
Stack, #55 X X X non-canonical.
i X X X A memory address exceeded a data segment limit or is

General protection, non-canonical.

#GP

X A null data segment was used to reference memaory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
A source operand was an SNaN value or an unsupported
X X X f
. . ormat.
Invalid-operation
exception (IE) X X X xinfinity was divided by infinity.
X X X +zero was divided by zero.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

x87 Floating-Point

Instruction Reference

[AMD Puiifc Use]

247

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Virtual
Exception Real | 8086 |Protected Cause of Exception
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Zero-divide o
exception (ZE) X X X A non-zero value was divided by tzero.
Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the destination
(PE) format.

248 EDIVVRX x87 Floating-Point
[AMD FPU\ﬁm Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FFREE Floating-Point Free Register

Frees the specified x87 stack register by marking itstag register entry as empty. The instruction does
not affect the contents of the freed register or the top-of-stack pointer (TOP).

Mnemonic Opcode Description
FFREE ST(i) DD CO+i Set the tag for x87 stack register i to empty (11b).

Related Instructions
FLD, FST, FSTP
rFLAGS Affected

None

x87 Condition Code

x87 Condition Code Value Description
Co U
C1 U
Cc2 U
C3 U
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual

Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point E 249
Instruction Reference [AMD Efl,llQbFiC Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FICOM Floating-Point Integer Compare
FICOMP

Converts a 16-bit or 32-bit signed integer value to double-extended-precision format, compares it to
the value in ST(0), and sets the CO, C2, and C3 condition code flags in the x87 status word to reflect
the results.

The comparison operation ignores the sign of zero (—0.0 = +0.0).
After performing the comparison operation, the FICOM P instruction pops the x87 register stack.

If ST(0) isaNaN or isin an unsupported format, the instruction sets the condition flags to
“unordered.”

Mnemonic Opcode Description

Convert the contents of mem16int to double-extended-
precision format, compare the result to the contents of
ST(0), and set condition flags to reflect the results of the
comparison.

FICOM mem16int DE /2

Convert the contents of mema32int to double-extended-

DA /2 precision format, compare the result to the contents of
ST(0), and set condition flags to reflect the results of the
comparison.

FICOM mem32int

Convert the contents of mem16int to double-extended-
DE /3 precision format, compare the result to the contents of

ST(0), set condition flags to reflect the results of the

comparison, and pop the x87 register stack.

FICOMP mem16int

Convert the contents of mema32int to double-extended-
DA /3 precision format, compare the result to the contents of

ST(0), set condition flags to reflect the results of the

comparison, and pop the x87 register stack.

FICOMP mem32int

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

250 Fr X x87 Floating-Point
[AMD #FU%NhC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

x87 Condition Code

AMDG64 Technology

C3 Cc2 C1 Co Compare Result
0 0 0 0 ST(0) > source
0 0 0 1 ST(0) < source
1 0 0 0 ST(0) = source
1 1 0 1 Operands were unordered
Exceptions
Virtual
Exception Real | 8086 |[Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #SS X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memaory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
Invalid-operation X X X A source operand was an SNaN value, a QNaN value, or
exception (IE) an unsupported format.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)

x87 Floating-Point 251

Instruction Reference

[AMD Pulit Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FILD Floating-Point Load Integer
Converts a signed-integer in memory to double-extended-precision format and pushes the value onto
the x87 register stack. The value can be a 16-bit, 32-bit, or 64- bit integer value. Signed values from
memory can always be represented exactly in x87 registers without rounding.

Mnemonic Opcode Description
FILD mem16int DF /0 Push the contents of mem16int onto the x87 register stack.
FILD mem32int DB /0 Push the contents of mem32int onto the x87 register stack.
FILD mem64int DF /5 Push the contents of meme64int onto the x87 register stack.

Related Instructions

FLD, FST, FSTR FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co U
0 No stack overflow.
C1
1 x87 stack overflow, if an x87 register stack fault was detected.
c2 U
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

252 ILD;- x87 Floating-Point
[AMD FEULB)“C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was

General protection, non-canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
Invalid-operation
exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

x87 Floating-Point

Instruction Reference

[AMD PUiflic Use]

253

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FINCSTP Floating-Point Increment Stack-Top Pointer

Increments the top-of -stack pointer (TOP) field of the x87 statusword. If the TOPfield contains 7, it is
cleared to 0. In other words, thisinstruction rotates the stack by one position.

Mnemonic Opcode Description
FINCSTP D9 F7 Increment the TOP field in the x87 status word.
Before FINCSTP After FINCSTP
Data Register Value Stack Pointer Stack Pointer Value
7 numl ST(7) ST(6) numl
6 num2 ST(6) ST(5) num2
5 num3 ST(5) ST(4) num3
4 num4 ST(4) ST(@3) num4
3 num5 ST(3) ST(2) num5
2 nume ST(2) ST(1) nume
1 num?7 ST() ST(0) num?7
0 numa3 ST(0) ST(7) numa8

Related Instructions

FDECSTP

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co U
C1 0
C2 U
C3 U
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

254 FINCSTP x87 Floating-Point
[AMD ﬁIUBT'C Use] Instruction Reference

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point F CB P 255
Instruction Reference [AMD ﬁlu T|C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FINIT Floating-Point Initialize
FNINIT

Sets the x87 control word register, status word register, tag word register, instruction pointer, and data
pointer to their default states asfollows:

» Setsthe x87 control word to 037Fh—round to nearest (RC = 00b); double-extended-precision (PC
= 11b); al exceptions masked (PM, UM, OM, ZM, DM, and IM all setto 1).

» Clearsall bitsin the x87 statusword (TOPis set to 0, which maps ST(0) onto FPRO).
* Marksall x87 stack registers as empty (11b) in the x87 tag register.
» Clearstheinstruction pointer and the data pointer.

Theseinstructions do not actually zero out the x87 stack registers.

Assemblersusually provide an FINIT macro that expands into the instruction sequence

WAI T ; Opcode 9B
FNINI T destination ; Opcode DB E3

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNINIT instruction then resets the x87 environment to its default state.

Mnemonic Opcode Description

Perform a WAIT (9B) to check for pending floating-point
FINIT 9B DB E3 exceptions and then initialize the x87 unit.

Initialize the x87 unit without checking for unmasked
FNINIT DB E3 floating-point exceptions.

Related Instructions

FWAIT, WAIT

rFLAGS Affected

None

256 = (AENINIT, x87 Floating-Point
[AM [S\I"I)uFb“C Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

x87 Condition Code

x87 Condition Code | Value Description
Co 0
C1 0
c2 0
C3 0

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0) was set to 1.

x87 Floating-Point k= (ANINIT, 257
Instruction Reference [AM [S\IEUFb“C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FIST Floating-Point Integer Store
FISTP

Convertsthe value in ST(0) to a signed integer, rounds it if necessary, and copiesit to the specified
memory location. The rounding control (RC) field of the x87 control word determines the type of
rounding used.

The FIST instruction supports 16-bit and 32-bit values. The FISTPinstructions supports 16-bit, 32-bit,
and 64-bit values.

The FISTPinstruction pops the stack after storing the rounded value in memory.

If the value is too large for the destination location, isaNaN, or isin an unsupported format, the
instruction sets the invalid-operation exception (1E) bit in the x87 status word to 1. Then, if the
exception is masked (IM bit set to 1 in the x87 control word), the instruction stores the integer
indefinite value. If the exception is unmasked (IM bit cleared to 0), the instruction does not store the
value.

Mnemonic Opcode Description
FIST memi6int DE /2 %onr;\é%tltgﬁt.contents of ST(0) to integer and store the result
FIST mem32int DB /2 %Org\é?rrlti’,tzr}ﬁt?ontents of ST(0) to integer and store the result
FisTPmemisn DF /3 Comuet e contete of ST10) o eger sire th resul i
FiSTP memznt DB 13 Comert thecontents of S10) s Intger, o he esuli
EISTP mem6dint DE /7 Convert the contents of ST(0) to integer, store the result in

mem64int, and pop the x87 register stack.

Table 2-1 showsthe results of storing various types of numbers as integers.

Table 2-1. Storing Numbers as Integers

ST(0) DEST
-00 Invalid-operation (IE) exception

—Integer (Invalid-operation (IE) exception if the integer is too large for the

—Finite-real < — inati
Finite-real < -1 destination)

—1 < —Finite-real< -0 0 or -1, depending on the rounding mode
-0 0
+0 0
+0 < +Finite-real < +1 0 or +1, depending on the rounding mode

258 ST x87 Floating-Point
[AMD |5UbT|C Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

Table 2-1. Storing Numbers as Integers (continued)

ST(0) DEST

+Integer (Invalid-operation (IE) exception if the integer is too large for the
destination)

+Finite-real > +1

+oo Invalid-operation (IE) exception

NaN Invalid-operation (IE) exception

Related Instructions

FLD, FST, FSTR FILD, FBLD, FBSTP, FISTTP

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
Cc2 U
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point IS[x: 259
Instruction Reference [AMD |5Ub)r|C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.

A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.

A memory address exceeded a data segment limit or was

. X X X non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
The source operand was too large for the destination
.) X X X £
Invalid-operation ormat.
exception (IE) X X X A source operand was an SNaN value, a QNaN value,

+-infinity, or an unsupported format.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Precision exception X X X A result could not be represented exactly in the destination
(PE) format.

260 ST x87 Floating-Point
[AMD |5UbT|C Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FISTTP Floating Point Integer Truncate and Store

Converts afloating-point value in ST(0) to an integer by truncating the fractional part of the number
and storing the integer result to the memory address specified by the destination operand. FISTTPthen
pops the floating point register stack. The FISTTP instruction ignores the rounding mode specified by
the x87 control word.

The FISTTPinstruction appliesto 16-bit, 32-bit, and 64-bit operands.

The FISTTP instruction is an SSE3 instruction. Support for thisinstruction subset is indicated by
CPUID Fn0000_0001_ECX[SSE3] = 1. See “CPUID” in Volume 3 for more information about the
CPUID instruction.

Mnemonic Opcode Description

Store the truncated floating-point value in ST(0) in
FISTTP mem16int DF /1 memory location mem16int and pop the floating-point
register stack.

Store the truncated floating-point value in ST(0) in
FISTTP mem32int DB /1 memory location mem32int and pop the floating-point
register stack.

Store the truncated floating-point value in ST(0) in
FISTTP mem64int DD /1 memory location meme64int and pop the floating-point
register stack.

Table 2-2 showsthe results of storing various types of numbers as integers.

Table 2-2. Storing Numbers as Integers

ST(0) DESTINATION
-c0 Invalid-operation (IE) exception
—Finite-real < -1 —Integer (Invalid-operation (IE) exception if the integer is too large for the destination)
-1 < Finite-real<+1 | O
+Finite-real > +1 +Integer (Invalid-operation (IE) exception if the integer is too large for the destination)
+o0 Invalid-operation (IE) exception
NaN Invalid-operation (IE) exception

Related Instructions

FLD, FST, FSTR, FILD, FBLD, FBSTP, FISTP

rFLAGS Affected

None

x87 Floating-Point STT 261
Instruction Reference [AMD ﬁUbﬁC Use]

AMDZU

AMDG64 Technology

x87 Condition Code

26569—Rev. 3.16—November 2021

x87 Condition Code |Value* Description
co u
x87 stack underflow, if an x87 register stack fault was detected.
Cl 0 FP number is rounded down (always done since the instruction forces
truncate mode).
Cc2 U
C3 U

Note: *Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
#UD X X X The SSE3 instructions are not supported, as indicated by
CPUID Fn0000_0001_ECX[SSE3] = 0.
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
X X X A memory address exceeded a data segment limit or was
. non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memaory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
The source operand was too large for the destination
. , X X X f
Invalid-operation ormat.
exception (IE) X X X A source operand was an SNaN value, a QNaN value,+-
infinity, or an unsupported format.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Precision exception X X X A result could not be represented exactly in the destination
(PE) format.

262

[AMD

STT x87 Floating-Point
ﬁUbﬁC Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FLD Floating-Point Load

Pushes avaluein memory or in afloating-point register onto the register stack. If in memory, the value
can be a single-precision, double-precision, or double-extended-precision floating-point value. The
operation converts a single-precision or double-precision value to double-extended-precision format
before pushing it onto the stack.

Mnemonic Opcode Description
FLD ST(i) D9 CO+i Push the contents of ST(i) onto the x87 register stack.
FLD mem32real D9 /0 Push the contents of mem32real onto the x87 register stack.
FLD mem64real DD /0 Push the contents of mem64real onto the x87 register stack.
FLD mem80real DB /5 Push the contents of mem80real onto the x87 register stack.

Related Instructions

FFREE, FST, FSTPR, FILD, FIST, FISTR, FBLD, FBSTP

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description

Co U
0 x87 stack underflow, if an x87 register stack fault was detected.

C1 1 x87 stack overflow, if an x87 register stack fault was detected.
0 No x87 stack fault.

c2 U

C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point LD- 263
Instruction Reference [AMD |j:UB||C Use]

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
- - A source operand was an SNaN value. This exception does
Ienx\éa(lall%gge(lrgt)lon X X X not occur if the source operand was in double-extended-
P precision format.
Invalid-operation X X X An x87 stack underflow occurred.
exception (IE) with
stack fault (SF) X X X An x87 stack overflow occurred.
Denormalized- A source operand was a denormal value. This exception
operand exception X X X does not occur if the source operand was in double-

(DE)

extended-precision format.

264

[AMD Public Use]

x87 Floating-Point
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FLD1 Floating-Point Load +1.0
Pushes the floating-point value +1.0 onto the register stack.

Mnemonic Opcode Description

FLD1 D9 E8 Push +1.0 onto the x87 register stack.

Related Instructions

FLD, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Cco 0]
0 No x87 stack fault occurred.
“ 1 x87 stack overflow, if an x87 register stack fault was detected.
Cc2 U
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) is set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

x87 Floating-Point LDL- 265
Instruction Reference [AMD |5U%]I|C Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FLDCW Floating-Point Load x87 Control Word

Loads a 16-bit value from the specified memory location into the x87 control word. If the new x87
control word unmasks any pending floating point exceptions, then they are handled upon execution of
the next x87 floating-point or 64-bit mediainstruction.

To avoid generating exceptions when loading a new control word, use the FCLEX or FNCLEX
instruction to clear any pending exceptions.

Mnemonic Opcode Description
FLDCW mem2env D9 /5 Load the contents of mem2env into the x87 control word.

Related Instructions

FSTCW, FNSTCW, FSTSW, FNSTSW, FSTENV, FNSTENV, FLDENV, FCLEX, FNCLEX

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code Value Description
Co U
C1 U
Cc2 U
C3 U
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

266 ELD x87 Floating-Point
[AMD Fl)UBWC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
. X X X A memory address exceeded a data segment limit or was

General protection, non-canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

x87 floating-point

X X X An unmasked x87 floating-point exception was pending.

exception pending,
#MF

x87 Floating-Point

Instruction Reference

[AMD PUblic Use]

267

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FLDENV Floating-Point Load x87 Environment

Restores the x87 environment from memory starting at the specified address. The x87 environment
consists of the x87 control, status, and tag word registers, the last non-control x87 instruction pointer,
the last x87 data pointer, and the opcode of the last completed non-control x87 instruction.

The FLDENYV instruction takes a memory operand that specifies the starting address of either a 14-
byte or 28-byte areain memory. The 14-byte operand is required for a 16-bit operand-size; the 28-byte
memory areais required for both 32-bit and 64-bit operand sizes. The layout of the saved x87
environment within the specified memory area depends on whether the processor is operating in
protected or real mode. See “Media and x87 Processor State” in Volume 2 for details on how this
instruction loads the x87 environment from memory. (Because FSTENV does not save the full 64-bit
data and instruction pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than
FSTENV/FLDENV.)

The environment to be loaded is typically stored by a previous FNSTENV or FSTENV instruction.
The FLDENV instruction should be executed in the same operating mode as the instruction that stored
the x87 environment.

If FLDENYV resultsin set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flags in the x87 status word before storing that environment.

Mnemonic Opcode Description

FLDENV
mem14/28env

Load the complete contents of the x87 environment from

D9 /4 mem14/28env.

Related Instructions

FSTENV, FNSTENV, FCLEX, FNCLEX

rFLAGS Affected

None

268 RLDENV x87 Floating-Point
[AMD #U%I\hc Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

x87 Condition Code

x87 Condition Code | Value Description
Co M Loaded from memory.
C1 M Loaded from memory.
Cc2 M Loaded from memory.
C3 M Loaded from memory.
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
MF

x87 Floating-Point FLDENV 269
Instruction Reference [AMD #U%TlC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FLDL2E Floating-Point Load Log, e

Pushes |og,e onto the x87 register stack. The valuein ST(0) isthe result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Mnemonic Opcode Description

FLDL2E D9 EA Push log,e onto the x87 register stack.

Related Instructions
FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDLG2, FLDLN2
rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co u
0 No x87 stack fault occurred.
“ 1 x87 stack overflow, if an x87 register stack fault was detected.
c2 u
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.

MF
x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

270 FLDLZE x87 Floating-Point
[AMD r'l)meC Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FLDL2T Floating-Point Load Log, 10

Pushes log, 10 onto the x87 register stack. The value in ST(0) is the result, in double-extended-
precision format, of rounding an internal 66-bit constant according to the setting of the RC field in the
x87 control word register.

Mnemonic Opcode Description

FLDL2T D9 E9 Push log,10 onto the x87 register stack.

Related Instructions
FLD, FLD1, FLDZ, FLDPI, FLDL2E, FLDLG2, FLDLN2
rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description

Co U

0 No x87 stack fault occurred.

C1

1 x87 stack overflow, if an x87 register stack fault was detected.
Cc2 U
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.

F
x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

x87 Floating-Point FLDLZ2T 271
Instruction Reference [AMD FI)meC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FLDLG2 Floating-Point Load Logqg 2

Pushes log; 2 onto the x87 register stack. The value in ST(0) is the result, in double-extended-
precision format, of rounding an internal 66-bit constant according to the setting of the RC field in the
x87 control word register.

Mnemonic Opcode Description

FLDLG2 D9 EC Push logy2 onto the x87 register stack.

Related Instructions
FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLN2
rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description

co U

0 No x87 stack fault occurred.

C1

1 x87 stack overflow, if an x87 register stack fault was detected.
c2 U
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.

F
x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

272 FL DL G2 x87 Floating-Point
[AMD |5Ulb?|c Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FLDLNZ2 Floating-Point Load Ln 2

Pushes |ogg2 onto the x87 register stack. Thevaluein ST(0) istheresult, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Mnemonic Opcode Description

FLDLN2 D9 ED Push loge2 onto the x87 register stack.

Related Instructions

FLD, FLD1, FLDZ, FLDPI, FLDL2T, FLDL2E, FLDLG2

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co U
0 No x87 stack fault occurred.
“ 1 x87 stack overflow, if an x87 register stack fault was detected.
Cc2 U
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

x87 Floating-Point FLDLN2 273
Instruction Reference [AMD |'_Iiulbl]l|c Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FLDPI Floating-Point Load Pi

Pushes it onto the x87 register stack. The value in ST(0) is the result, in double-extended-precision
format, of rounding an internal 66-bit constant according to the setting of the RC field in the x87
control word register.

Mnemonic Opcode Description

FLDPI D9 EB Push 7t onto the x87 register stack.

Related Instructions

FLD, FLD1, FLDZ, FLDL2T, FLDLZ2E, FLDLG2, FLDLN2

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co u
0 No x87 stack fault occurred.
“ 1 x87 stack overflow, if an x87 register stack fault was detected.
C2 u
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0O) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

274 LDBA x87 Floating-Point
[AMD IBUEbHC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FLDZ Floating-Point Load +0.0
Pushes +0.0 onto the x87 register stack.
Mnemonic Opcode Description

FLDZ D9 EE Push zero onto the x87 register stack.

Related Instructions

FLD, FLD1, FLDPI, FLDL2T, FLDLZ2E, FLDLG2, FLDLNZ2

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
co u
0 No x87 stack fault occurred.
“ 1 x87 stack overflow, if an x87 register stack fault was detected.
C2 u
C3 0]

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0O) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack overflow occurred.

stack fault (SF)

x87 Floating-Point LDZ- 275
Instruction Reference [AMD ﬁU%ﬁlC Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FMUL Floating-Point Multiply
FMULP

FIMUL

Multiplies the value in a floating-point register by the value in a memory location or another stack
register and stores the result in the first register. The instruction converts a single-precision or double-
precision value in memory to double-extended-precision format before multiplying.

If one operand is specified, the instruction multipliesthe value in the ST(0) register by the value in the
specified memory location and stores the result in the ST(0) register.

If two operands are specified, the instruction multiplies the value in the ST(0) register by the valuein
another specified floating-point register and stores the result in the register specified in the first
operand.

The FMULP instruction pops the x87 stack after storing the product. The no-operand version of the
FMULP instruction multiplies the value in the ST(1) register by the value in the ST(0) register and
stores the product in the ST(1) register.

The FIMUL instruction converts a short-integer or word-integer value in memory to double-extended-
precision format, multipliesit by the valuein ST(0), and stores the product in ST(0).

Mnemonic Opcode Description

FMUL ST(0),ST(i) D8 C8+i Replace ST(0) with ST(0) * ST(i).

FMUL ST(i),ST(0) DC C8+i Replace ST(i) with ST(0) * ST(i).

FMUL mem32real D8/1 Replace ST(0) with mema32real = ST(0).

FMUL mem64real DC/1 Replace ST(0) with mem64real = ST(0).

FMULP DE C9 Etgg{?ce ST(1) with ST(0) * ST(1), and pop the x87 register
FMULP ST(i),ST(0) DE C8+i Sli:g:?ce ST(i) with ST(0) * ST(i), and pop the x87 register
FIMUL mem16int DE /1 Replace ST(0) with mem16int = ST(0).

FIMUL mem32int DA/1 Replace ST(0) with mem32int = ST(0).

Related Instructions
None

rFLAGS Affected

None

276 L x87 Floating-Point
[AMD ﬁwuLbﬁC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

x87 Condition Code

AMDG64 Technology

x87 Condition Code | Value Description
co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or was
Stack, #55 X X X non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
i) X X X A source operand was an SNaN value or an unsupported
Invalid-operation format.
exception (IE) — —
X X X xinfinity was multiplied by +zero.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Overflow exception X X X A rounded result was too large to fit into the format of the

(CE)

destination operand.

x87 Floating-Point
Instruction Reference

[AMD Plific Use]

277

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

(PE)

format.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X Aresult could not be represented exactly in the destination

278

[AMD Plific Use]

x87 Floating-Point
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FNOP Floating-Point No Operation

Performs no operation. Thisinstruction affects only the rIP register. It does not otherwise affect the
processor context.

Mnemonic Opcode Description
FNOP D9 DO Perform no operation.

Related Instructions
FWAIT, NOP

rFLAGS Affected

None

x87 Condition Code

None
Exceptions
Virtual

Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point NOR- 279
Instruction Reference [AMD |5U%IT|C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021

FPATAN

Floating-Point Partial Arctangent

Computesthe arctangent of the ordinate (Y) in ST(1) divided by the abscissa (X) in ST(0), whichisthe
angle in radians between the X axis and the radius vector from the origin to the point (X, Y). It then
stores the result in ST(1) and pops the x87 register stack. The resulting value has the same sign as the
ordinate value and a magnitude less than or equal to &.

There is no restriction on the range of values that FPATAN can accept. Table 2-3 shows the results
obtained when computing the arctangent of various classes of numbers, assuming that underflow does

not occur:
Table 2-3. Computing Arctangent of Numbers
X (ST(0))
—o0 —Finite -0 +0 +Finite +0° NaN
—o0 -3m/4 -T2 -T2 -T2 -T2 —Tt/4 NaN
—Finite -7 —Tt to —Tt/2 -T2 -T2 —T/2 to -0 —0 NaN
-0 —TC —TC —TC -0 -0 —0 NaN
+0 +TT +TT +TT +0 +0 +0 NaN
+Finite +T +TC to +70/2 +T0/2 +T0/2 +T0/2 to +0 +0 NaN
+00 +3T/4 +T0/2 +T0/2 +T0/2 +T0/2 +T0/4 NaN
Y (ST(1)) NaN NaN NaN NaN NaN NaN NaN NaN
Mnemonic Opcode Description
EPATAN D9 F3 Compute arctan(ST(1)/ST(0)), store the result in ST(1), and

pop the x87 register stack.

Related Instructions

FCOS, FPTAN, FSIN, FSINCOS

rFLAGS Affected

None

280

FRPATAN 87 Floating-Point
[AMD UB“C Use] Inst);uctio?laRIg?ere?llge

AMDZU

26569—Rev. 3.16—November 2021

x87 Condition Code

AMDG64 Technology

x87 Condition Code | Value Description
co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) is set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the destination

(PE)

format.

x87 Floating-Point
Instruction Reference

[AMD PUbIic Use] 281

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FPREM Floating-Point Partial Remainder

Computes the exact remainder obtained by dividing the value in ST(0) by that in ST(1), and storesthe
result in ST(0). It computes the remainder by an iterative subtract-and-shift long division algorithmin
which one quotient bit is calculated in each iteration.

If the exponent difference between ST(0) and ST(1) islessthan 64, theinstruction computesall integer
bits of the quotient, guaranteeing that the remainder is less in magnitude than the divisor in ST(1). If
the exponent difference is equal to or greater than 64, it computes only the subset of integer quotient
bits numbering between 32 and 63, returns a partial remainder, and sets the C2 condition code bit to 1.

FPREM is supported for software that was written for early x87 coprocessors. Unlike the FPREM 1
instruction, FPREM does not compute the partial remainder as specified in |EEE Standard 754.

Mnemonic Opcode Description

Compute the remainder of the division of ST(0) by ST(1) and
store the result in ST(0).

FPREM D9 F8
Action

ExpDi ff = Exponent (ST(0)) - Exponent (ST(1))
| F (ExpDi ff < 0)

{
SWC =0
{SWQC0, SWC3, SWCl} =0
}
ELSIF (ExpDi ff < 64)
{
Quotient = Truncate(ST(0)/ST(1))
ST(0) = ST(0) - (ST(1) * Quotient)
SWC2 =0
{SWCO, SWC3, SWCl} = Quotient nod 8
}
ELSE
{
N =32 + (ExpDi ff nod 32)
Quotient = Truncate ((ST(0)/ST(1))/2"(ExpDiff-N))
ST(0) = ST(0) - (ST(1) * Quotient * 2" (ExpDiff-N))
swe2 =1
{SWC0, SWC3, SWCl} =0
}

Related Instructions

FPREM1, FABS, FRNDINT, FXTRACT, FCHS

rFLAGS Affected

None

282 R x87 Floating-Point
[AMD IE'?UEWC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

x87 Condition Code

AMDG64 Technology

x87 Condition Code Value Description
Co M Set equal to the value of bit 2 of the quotient.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ M Set equal to the value of bit 0 of the quotient, if there was no fault.
0 FPREM generated the partial remainder.
2 1 The source operands differed by more than a factor of 254, s0 the result
is incomplete.
C3 M Set equal to the value of bit 1 of the quotient.

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the control
available, #NM register (CRO) is set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
A source operand was an SNaN value or an unsupported
X X X f
. . ormat.
Invalid-operation
exception (IE) X X X ST(0) was zinfinity.
X X X ST(1) was *zero.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.

x87 Floating-Point
Instruction Reference

[AMD Piiblic Use] 283

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FPREM1 Floating-Point Partial Remainder

Computes the IEEE Standard 754 remainder obtained by dividing the value in ST(0) by that in ST(1),
and storestheresult in ST(0). Unlike FPREM, it rounds the integer quotient to the nearest even integer
and returns the remainder corresponding to the back multiply of the rounded quotient.

If the exponent difference between ST(0) and ST(1) islessthan 64, the instruction computes all integer
aswell as additional fractional bits of the quotient to do the rounding. The remainder returned is a
complete remainder and islessthan or equal to one half of the magnitude of the divisor. If the exponent
differenceisequal to or greater than 64, it computes only the subset of integer quotient bits numbering
between 32 and 63, returnsthe partial remainder, and sets the C2 condition code bit to 1.

Rounding control has no effect. FPREM 1 results are exact.

Mnemonic Opcode Description

Compute the IEEE standard 754 remainder of the division of

FPREM1 D9 FS ST(0) by ST(1) and store the result in ST(0).

Action

ExpDi ff = Exponent (ST(0)) - Exponent (ST(1))
IF (ExpDiff < 0)

{
SWC2 =0
{SWC0, swC3, SWCl} =0
}
ELSIF (ExpD ff < 64)
{
Quotient = Integer obtained by rounding (ST(0)/ST(1))
to nearest even integer
ST(0) = ST(0) - (ST(1) * Quotient)
SWeC2 =0
{SWC0, SWC3, SWCl} = Quotient nod 8
}
ELSE
{
N =32 + (ExpDi ff npd 32)
Quotient = Truncate ((ST(0)/ST(1))/2"(ExpDiff-N))
ST(0) = ST(0) - (ST(1) * Quotient * 27(ExpDiff-N))
swe2 =1
{SWC0, SWC3, SWCl} =0
}

Related Instructions

FPREM, FABS, FRNDINT, FXTRACT, FCHS

284 RRREM1 x87 Floating-Point
[AMD IBulB\ﬁC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
rFLAGS Affected
None

x87 Condition Code

x87 Condition Code Value Description

Cco M Set equal to the value of bit 2 of the quotient.
0 x87 stack underflow, if an x87 register stack fault was detected.

“ M Set equal to the value of the bit O of the quotient, if there was no fault.
0 FPREML1 generated the partial remainder.

c2 1 The source operands differed by more than a factor of 254 so the result

is incomplete.
C3 M Set equal to the value of bit 1 of the quotient.

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
A source operand was an SNaN value or an unsupported
X X X f
. . ormat.
Invalid-operation
exception (IE) X X X ST(0) was infinity.
X X X ST(1) was *zero.

Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.

x87 Floating-Point RRREM1 285
Instruction Reference [AMD ﬁU%l\ﬁC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FPTAN Floating-Point Partial Tangent

Computes the tangent of theradian value in ST(0), storestheresult in ST(0), and pushesavalue of 1.0
onto the x87 register stack.

The source value must be between —2%3 and +2%2 radians. If the source value lies outside the specified
range, theinstruction setsthe C2 bit of the x87 statusword to 1 and does not change the valuein ST(0).

Mnemonic Opcode Description

Replace ST(0) with the tangent of ST(0), then push 1.0 onto

FPTAN D9 F2 the x87 register stack.

Related Instructions

FCOS, FPATAN, FSIN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code Value Description

Co U
0 x87 stack underflow, if an x87 register stack fault was detected.
1 x87 stack overflow, if an x87 register stack fault was detected.

“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
0 Source operand was in range.

« 1 Source operand was out of range.

C3 U

Note: A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

286 T; x87 Floating-Point
[AMD IE)DUBT‘IC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the control
available, #NM register (CRO) is set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
i) X A source operand was an SNaN value or an unsupported

Invalid-operation format.

exception (IE) —

X X X A source operand was infinity

Invalid-operation X X X An x87 stack underflow occurred.

exception (IE) with

stack fault (SF) X X X An x87 stack overflow occurred.

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.

Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.

Precision exception X X X A result could not be represented exactly in the destination

(PE)

format.

x87 Floating-Point

Instruction Reference

[AMD Publlc Use]

287

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FRNDINT Floating-Point Round to Integer

Rounds the value in ST(0) to an integer, depending on the setting of the rounding control (RC) field of
the x87 control word, and stores the result in ST(0).

If theinitial valuein ST(0) is o, the instruction does not change ST(0). If the valuein ST(0) is not an
integer, it sets the precision exception (PE) bit of the x87 statusword to 1.

Mnemonic Opcode Description
FRNDINT D9 FC Round the contents of ST(0) to an integer.

Related Instructions

FABS, FPREM, FXTRACT, FCHS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 0]

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

288 FRNDINT x87 Floating-Point
[AMD u[blﬁc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) is set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Precision exception X X X The source operand was not an integral value.

(PE)

x87 Floating-Point

Instruction Reference

[AMD BUBNE Use]

289

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FRSTOR Floating-Point Restore x87 and MMX™ State

Restores the complete x87 state from memory starting at the specified address, as stored by a previous
cal to F(N)SAVE.

The FRSTOR instruction takes amemory operand that specifiesthe starting address of either a94-byte
or 108-byte areain memory. The 94-byte operand is required for a 16-bit operand-size; the 108-byte
memory areais required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 state
within the specified memory area depends on whether the processor is operating in protected or real
mode. See “Media and x87 Processor State” in Volume 2 for details on how thisinstruction stores the
x87 environment in memory. (Because FSAVE does not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FSAVE/FRSTOR.)

Because the MM X registers are mapped onto the low 64 bits of the x87 floating-point registers, this
operation also restoresthe MM X state.

If FRSTOR results in set exception flags in the loaded x87 status word register, and these exceptions
are unmasked in the x87 control word register, a floating-point exception occurs when the next
floating-point instruction is executed (except for the no-wait floating-point instructions).

To avoid generating exceptions when loading a new environment, use the FCLEX or FNCLEX
instruction to clear the exception flagsin the x87 status word before storing that environment.

For details about the memory image restored by FRSTOR, see “Media and x87 Processor State” in
Volume 2.

Mnemonic Opcode Description
;Zﬁqgaﬁ%env DD /4 Load the x87 state from mem94/108env.

Related Instructions

FSAVE, FNSAVE, FXSAVE, FXRSTOR

rFLAGS Affected

None

290 FRSTOR x87 Floating-Point
[AMD |Bu-[ﬂ|c Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

x87 Condition Code

x87 Condition Code Value Description
Co M Loaded from memory.
C1 M Loaded from memory.
C2 M Loaded from memory.
C3 M Loaded from memory.
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
i X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
MF

x87 Floating-Point FRSTOR 291
Instruction Reference [AMD |BU_[ﬂ|C Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FSAVE Floating-Point Save x87 and MMX™ State
FNSAVE

Storesthe complete x87 state to memory starting at the specified address and reinitializes the x87 state.

The FSAVE instruction takes a memory operand that specifies the starting address of either a 94-byte
or 108-byte areain memory. The 94-byte operand is required for a 16-bit operand-size; the 108-byte
memory areais required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 state
within the specified memory area depends on whether the processor is operating in protected or real
mode. See “Media and x87 Processor State” in Volume 2 for details on how thisinstruction stores the
x87 environment in memory. (Because FSAVE does not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FSAVE/FRSTOR.)

Because the MM X registers are mapped onto the low 64 bits of the x87 floating-point registers, this
operation also savesthe MM X state.

The FNSAVE instruction does not wait for pending unmasked x87 floating-point exceptions to be
processed.
Assemblers usually provide an FSAV E macro that expandsinto the instruction sequence

VWAI T ; Opcode 9B
FNSAVE desti nati on ; Opcode DD /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler, if
necessary. The FNSAV E instruction then stores the x87 state to the specified destination.

Mnemonic Opcode Description
Copy the x87 state to mem94/108env after checking for
FSAVE mem94/108env 9B DD /6 pending floating-point exceptions, then reinitialize the x87
state.
ENSAVE Copy the x87 state to mem94/108env without checking for

DD /6 pending floating-point exceptions, then reinitialize the x87

mem94/108env state.

Related Instructions

FRSTOR, FXSAVE, FXRSTOR

rFLAGS Affected

None

s [A I\F/@VIE &%\Iﬁé)Se] Inst);ﬁZtli:cL?lalggge-rF;?lig (;

AMDZU

26569—Rev. 3.16—November 2021

x87 Condition Code

AMDG64 Technology

x87 Condition Code | Value Description

Co 0

C1 0

C2 0

C3 0
Exceptions

Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or was
Stack, #SS X X X non-canonical.
X X X A memory address exceeded a data segment limit or was
. non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memaory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

x87 Floating-Point
Instruction Reference

[ANTPUBNC Tse] >

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FSCALE Floating-Point Scale

Multiplies the floating-point value in ST(0) by 2 to the power of the integer portion of the floating-
point valuein ST(1).

This instruction provides an efficient method of multiplying (or dividing) by integral powers of 2
because, typically, it smply adds the integer value to the exponent of the value in ST(0), leaving the
significand unaffected. However, if the value in ST(0) is a denormal value, the mantissais also
modified and the result may end up being a normalized number. Likewise, if overflow or underflow
results from a scal e operation, the mantissa of the resulting value will be different from that of the
source.

The FSCALE instruction performsthe reverse operation to that of the FXTRACT instruction.

Mnemonic Opcode Description

FSCALE D9 FD Replace ST(0) with ST(0) * 2Mdint(ST(1))

Related Instructions

FSQRT, FPREM, FPREM 1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description

Co U Undefined.
0 x87 stack underflow, if an x87 register stack fault was detected.

C1 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.

c2 u Undefined.

C3 u Undefined

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

294 RSCALE x87 Floating-Point
[AMD ﬁu;bl-“C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.

Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.

Precision exception X X X A result could not be represented exactly in the destination

(PE)

format.

x87 Floating-Point

Instruction Reference

[AMD 'Ptibifc Use]

295

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FSIN Floating-Point Sine
Computesthe sine of the radian valuein ST(0) and storesthe result in ST(0).

The source value must be in the range —283 to +2°3 radians. If the value lies outside this range, the
instruction setsthe C2 bit in the x87 status word to 1 and does not change the value in ST(0).

Mnemonic Opcode Description
FSIN D9 FE Replace ST(0) with the sine of ST(0).

Related Instructions

FCOS, FPATAN, FPTAN, FSINCOS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code Value Description

Co U
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.

“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
0 Source operand was in range.

« 1 Source operand was out of range.

C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

296 SIN; - x87 Floating-Point
[AMD FEUb“C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was setto 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
i) X X X A source operand was an SNaN value or an unsupported

Invalid-operation format.

exception (IE) —

X X X A source operand was infinity.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Precision exception X X X A result could not be represented exactly in the destination

(PE)

format.

x87 Floating-Point

Instruction Reference

[AMD Piblic Use] 297

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FSINCOS Floating-Point Sine and Cosine

Computesthe sine and cosine of thevaluein ST(0), storesthesinein ST(0), and pushesthe cosine onto
the x87 register stack. The source value must be in the range —2%2 to +2°2 radians.

If the source operand is outside thisrange, the instruction setsthe C2 bit in the x87 statusword to 1 and
does not change the value in ST(0).

Mnemonic Opcode Description

Replace ST(0) with the sine of ST(0), then push the cosine

FSINCOS D9FB of ST(0) onto the x87 register stack.

Related Instructions

FCOS, FPATAN, FPTAN, FSIN

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code Value Description
co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
c1 1 x87 stack overflow, if an x87 register stack fault was detected.
0 Result in ST(1) was rounded down, if a precision exception was
detected.
1 Result in ST(1) was rounded up, if a precision exception was detected.
0 Source operand was in range.
2 1 Source operand was out of range.
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

2 [AMDPUBHE Use] nstrontion Retoronts

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the control
available, #NM register (CRO) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

A source operand was an SNaN value or an unsupported

Invalid-operation X format.
exception (IE) —
X X X A source operand was zinfinity.
Invalid-operation X X X An x87 stack underflow occurred.
exception (IE) with
stack fault (SF) X X X An x87 stack overflow occurred.
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X Aresult could not be represented exactly in the destination
(PE) format.

T ricton Botatance [AMDPUBHE Use] 29

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FSQRT Floating-Point Square Root

Computes the square root of the valuein ST(0) and storesthe result in ST(0). Taking the square root of
+infinity returns +infinity.

Mnemonic Opcode Description
FSQRT D9 FA Replace ST(0) with the square root of ST(0).

Related Instructions

FSCALE, FPREM, FPREM 1, FRNDINT, FXTRACT, FABS, FCHS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co u
0 x87 stack underflow, if an x87 register stack fault was detected.
C1 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
Cc2 U
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

300 RT x87 Floating-Point
[AMD E)'S “C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF
A source operand was an SNaN value or an unsupported
.) X X X £ t
Invalid-operation ormat.
exception (IE) A source operand was a negative value (not including -
X X X
zero).

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Precision exception X X X A result could not be represented exactly in the destination

(PE)

format.

x87 Floating-Point

Instruction Reference

[AMD Pithilc Use] ot

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FST Floating-Point Store Stack Top
FSTP

Copiesthevaluein ST(0) to the specified floating-point register or memory location.

The FSTP instruction pops the x87 stack after copying the value. The instruction FSTP ST(0) is the
same as popping the stack with no data transfer.

If the specified destination is a single-precision or double-precision memory location, the instruction
converts the value to the appropriate precision format. It does this by rounding the significand of the
source value as specified by the rounding mode determined by the RC field of the x87 control word
and then converting to the format of destination. It aso converts the exponent to the width and bias of
the destination format.

If the valueistoo large for the destination format, the instruction sets the overflow exception (OE) bit
of the x87 status word. Then, if the overflow exception is unmasked (OM bit cleared to 0 in the x87
control word), the instruction does not perform the store.

If the value isa denormal value, the instruction sets the underflow exception (UE) bit in the x87 status
word.

If thevalueis=0, e, or aNaN, the instruction truncatesthe least significant bits of the significand and
exponent to fit the destination location.

Mnemonic Opcode Description
FST ST(i) DD DO+i Copy the contents of ST(0) to ST(i).
FST mem32real D9 /2 Copy the contents of ST(0) to mem32real.
FST mem64real DD /2 Copy the contents of ST(0) to mem64real.
FSTP ST(i) DD D8+i Copy the contents of ST(0) to ST(i) and pop the x87 register stack.
FSTP mem32real D9 /3 Copy the contents of ST(0) to mem32real and pop the x87 register stack
FSTP mem64real DD /3 Copy the contents of ST(0) to mem64real and pop the x87 register stack.
FSTP mem80real DB /7 Copy the contents of ST(0) to mem80real and pop the x87 register stack.

Related Instructions

FFREE, FLD, FILD, FIST, FISTP, FBLD, FBSTP

rFLAGS Affected

None

302 STX: x87 Floating-Point
[AMD §UB1|C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

x87 Condition Code

AMDG64 Technology

x87 Condition Code | Value Description

Co u
0 x87 stack underflow, if an x87 register stack fault was detected.
1 x87 stack overflow, if an x87 register stack fault was detected.

“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.

c2 u

C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or

Stack, #55 X X X was non-canonical.

X X X A memory address exceeded a data segment limit or was

. non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF

Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.
Invalid-operation X X X An x87 stack underflow occurred.
exception (IE) with
stack fault (SF) X X X An x87 stack overflow occurred.
Overflow exception X X X Arounded result was too large to fit into the format of the
(OE) destination operand.
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the

(PE)

destination format.

x87 Floating-Point

Instruction Reference

[AMD Piiblic Use]

303

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FSTCW Floating-Point Store Control Word
(FNSTCW)

Stores the x87 control word in the specified 2-byte memory location. The FNSTCW instruction does
not check for possible floating-point exceptions before copying the image of the x87 status register.

Assemblersusually provide an FSTCW macro that expandsinto the instruction sequence:

WAI T ; Opcode 9B
FNSTCW desti nati on ; Opcode D9 /7

The WAIT (9Bh) instruction checks for pending x87 exception and calls an exception handler, if
necessary. The FNSTCW instruction then stores the state of the x87 control register to the desired
destination.

Mnemonic Opcode Description

Perform a WAIT (9B) to check for pending floating-point
FSTCW memZenv 9B D9 /7 exceptions, then copy the x87 control word to mem2env.

Copy the x87 control word to mem2env without checking for
FNSTCW mem2env Do /7 floating-point exceptions.

Related Instructions

FSTSW, FNSTSW, FSTENV, FNSTENV

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co U
C1 U
Cc2 U
C3 U
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

%04 [A Kﬁﬁ‘% &Fb\lﬁgclwge] Inst);aLthli:cl)?lalgx’i(r;fge-rF:acr)licr:1 (;

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
X X X A memory address exceeded a data segment limit or was
. non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

T acton Reforonce [ARMD BUBTE Wee]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FSTENV Floating-Point Store Environment
(FNSTENV)

Stores the current x87 environment to memory starting at the specified address, and then masks all
floating-point exceptions. The x87 environment consists of the x87 control, status, and tag word
registers, the last non-control x87 instruction pointer, the last x87 data pointer, and the opcode of the
last completed non-control x87 instruction.

The FSTENV instruction takes amemory operand that specifiesthe start of either a 14-byte or 28-byte
areain memory. The 14-byte operand isrequired for a 16-bit operand-size; the 28-byte memory areais
required for both 32-bit and 64-bit operand sizes. The layout of the saved x87 environment within the
specified memory area depends on whether the processor is operating in protected or real mode. See
“Media and x87 Processor State” in Volume 2 for details on how this instruction stores the x87
environment in memory. (Because FLDENV/FSTENV do not save the full 64-bit data and instruction
pointers, 64-bit applications should use FXSAVE/FXRSTOR, rather than FLDENV/FSTENV.)

The FNSTENYV instruction does not check for possible floating-point exceptions before storing the
environment.

Assemblersusually provide an FSTENV macro that expandsinto the instruction sequence

VWAI T ; Opcode 9B
FNSTENV desti nation ; Opcode D9 /6

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler if
necessary. The FNSTENYV instruction then stores the state of the x87 environment to the specified
destination.

Exception handlers often use these instructions because they provide access to the x87 instruction and
data pointers. An exception handler typically saves the environment on the stack. The instructions
mask all floating-point exceptions after saving the environment to prevent those exceptions from
interrupting the exception handler.

Mnemonic Opcode Description

Perform a WAIT (9B) to check for pending floating-point

raseLElN4>/28env 9B D9 /6 exceptions, then copy the x87 environment to mem214/28env
and mask the floating-point exceptions.

ENSTENV Copy the x87 environment to mem14/28env without

mem14/28env D9 /6 checking for pending floating-point exceptions, and mask

the exceptions.

Related Instructions

FLDENV, FSTSW, FNSTSW, FSTCW, FNSTCW

5 [/AI\: ﬁlTﬁle} &Fb\lﬁgEU\é)e] Inst);ELthli:cl)cr)lalix’i(ralfge-rF:acr)licr:1 (;

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
rFLAGS Affected
None

x87 Condition Code

x87 Condition Code | Value Description
Co U
C1 U
c2 U
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CR0) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
X X X A memory address exceeded a data segment limit or was
; non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

Tn837t rlj(?tgilg::gl?\;ggrnetnce [A:I@l-rﬁl\ﬁ l("IFtIJ\II?-CrEU\é)e] >

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FSTSW Floating-Point Store Status Word
(FNSTSW)

Stores the current state of the x87 status word register in either the AX register or aspecified two-byte
memory location. The image of the status word placed in the AX register always reflects the result
after the execution of the previous x87 instruction.

The AX form of theinstruction isuseful for performing conditional branching operations based on the
values of x87 condition flags.

The FNSTSW instruction does not check for possible floating-point exceptions before storing the x87
status word.
Assemblersusually provide an FSTSW macro that expands into the instruction sequence:

VWAI T ; Opcode 9B
FNSTSW desti nati on ; Opcode DD /7 or DF EO

The WAIT (9Bh) instruction checks for pending x87 exceptions and calls an exception handler if
necessary. The FNSTSW instruction then stores the state of the x87 status register to the desired
destination.

Mnemonic Opcode Description

Perform a WAIT (9B) to check for pending floating-point
FSTSW AX 9B DF EO exceptions, then copy the x87 status word to the AX register.

Perform a WAIT (9B) to check for pending floating-point
FSTSW mem2env 9B DD /7 exceptions, then copy the x87 status word to mem12byte.

Copy the x87 status word to the AX register without
FNSTSW AX DF EO checking for pending floating-point exceptions.

Copy the x87 status word to mem12byte without checking
FNSTSW memz2env DD 77 for pending floating-point exceptions.

Related Instructions

FSTCW, FNSTCW, FSTENV, FNSTENV

rFLAGS Affected

None

i [A K]Tbsﬁ &%Vﬁéﬁ\yge] Inst);ﬁZtli:cl)?lalggge-rF;cr)lig (;

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

x87 Condition Code

x87 Condition Code Value Description
Co]
C1 U
Cc2 U
C3]
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
X X X A memory address exceeded a data segment limit or was
. non-canonical.
General protection,
#GP X The destination operand was in a nonwritable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

Tn837t rlfJI((:)tE;1 2 :11 gF\;(Fa)fc;irn(:n ce [A K]TE)S‘S [(JFt')\II”T’(T;SU%e] >0

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FSUB Floating-Point Subtract
FSUBP

FISUB

Subtracts the value in a floating-point register or memory location from the value in another register
and storestheresult in that register.

If no operands are specified, the instruction subtracts the value in ST(0) from that in ST(1) and stores
theresultin ST(1).

If one operand is specified, it subtracts a floating-point or integer value in memory from the contents
of ST(0) and storestheresultin ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another floating-point
register or vice versa.

The FSUBP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some assemblers, the
mnemonic for thisinstruction is FSUB rather than FSUBP.

The FISUB instruction converts a signed integer value to double-extended-precision format before
performing the subtraction.

Mnemonic Opcode Description

FSUB ST(0),ST(i) D8 EO+i Replace ST(0) with ST(0) — ST(i).

FSUB ST(i),ST(0) DC E8+i Replace ST(i) with ST(i) — ST(0).

FSUB mem32real D8 /4 Replace ST(0) with ST(0) — mem32real.

FSUB memé64real DC /4 Replace ST(0) with ST(0) — mem64real.

FSUBP DE E9 SRtggiiace ST(1) with ST(1) — ST(0) and pop the x87 register
FSUBP ST(i),ST(0) DE E8+i Sli:g:f\ce ST(i) with ST(i) — ST(0), and pop the x87 register
FISUB mem16int DE /4 Replace ST(0) with ST(0) — mem16int.

FISUB mema32int DA /4 Replace ST(0) with ST(0) — mem32int.

Related Instructions

FSUBRP, FISUBR, FSUBR

rFLAGS Affected

None

310 B x87 Floating-Point
[AMD E)Sljbﬁc Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology

x87 Condition Code

x87 Condition Code | Value Description
Co u
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) was set to 1.
A memory address exceeded the stack segment limit or
Stack, #55 X X X was non-canonical.
i X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
A source operand was an SNaN value or an unsupported
X X X f
. . ormat.
Invalid-operation
exception (IE) X X X +infinity was subtracted from +infinity.
X X X —infinity was subtracted from —infinity.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.

x87 Floating-Point

Instruction Reference

[AMD Pibfic Use] 311

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

(PE)

format.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X Aresult could not be represented exactly in the destination

312

[AMD PlSlfc Use]

x87 Floating-Point
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FSUBR Floating-Point Subtract Reverse
FSUBRP
FISUBR

Subtracts the value in afloating-point register from the value in another register or amemory location,
and stores the result in the first specified register. Values in memory can be in single-precision or
double-precision floating-point, word integer, or short integer format.

If one operand is specified, the instruction subtracts the value in ST(0) from the value in memory and
storestheresult in ST(0).

If two operands are specified, it subtracts the value in ST(0) from the value in another floating-point
register or vice versa.

The FSUBRP instruction pops the x87 register stack after performing the subtraction.

The no-operand version of the instruction always pops the register stack. In some assemblers, the
mnemonic for thisinstruction is FSUBR rather than FSUBRP.

The FISUBR instruction converts a signed integer operand to double-extended-precision format
before performing the subtraction.

The FSUBR instructions perform the reverse operations of the FSUB instructions.

Mnemonic Opcode Description
FSUBR ST(0),ST(i) D8 E8+i Replace ST(0) with ST(i) - ST(0).
FSUBR ST(i),ST(0) DC EO+i Replace ST(i) with ST(0) - ST(i).
FSUBR mem32real D8 /5 Replace ST(0) with mem32real - ST(0).
FSUBR mem64real DC /5 Replace ST(0) with mem64real - ST(0).
FSUBRP DE E1 Replace ST(1) with ST(0) - ST(1) and pop x87 stack.
FSUBRP ST(i),ST(0) DE EO+i Replace ST(i) with ST(0) - ST(i) and pop x87 stack.
FISUBR mem16int DE /5 Replace ST(0) with mem16int - ST(0).
FISUBR mem32int DA/5 Replace ST(0) with mem32int - ST(0).

Related Instructions

FSUB, FSUBP, FISUB

rFLAGS Affected

None

x87 Floating-Point FSUBRX 313
Instruction Reference [AMD ﬁulﬁﬁc Use]

AMDZU

AMDG64 Technology

x87 Condition Code

26569—Rev. 3.16—November 2021

x87 Condition Code | Value Description
co u
0 x87 stack underflow, if an x87 register stack fault was detected.
C1 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
Cc2 0]
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.
A memory address exceeded the stack segment limit or
Stack, #5S X X X was non-canonical.
. X X X A memory address exceeded a data segment limit or was
General protection, non-canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
A source operand was an SNaN value or an unsupported
X X X f
. . ormat.
Invalid-operation
exception (IE) X X X +infinity was subtracted from +infinity.
X X X —infinity was subtracted from —infinity.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.

314

[AMD

RSUBRx x87 Floating-Point
|§U%IT|C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

(PE)

format.

Virtual
Exception Real | 8086 |Protected Cause of Exception
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X Aresult could not be represented exactly in the destination

x87 Floating-Point

Instruction Reference

[AMD PuBlit Use]

315

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FTST Floating-Point Test with Zero

Compares the value in ST(0) with 0.0, and sets the condition code flags in the x87 status word as
shown in the x87 Condition Code table below. The instruction ignores the sign distinction between
—0.0 and +0.0.

Mnemonic Opcode Description
FTST D9 E4 Compare ST(0) to 0.0.

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FUCOMI, FUCOMIP, FUCOM,
FUCOMPB, FUCOMPP, FXAM

rFLAGS Affected

None

x87 Condition Code

C3 Cc2 C1 Cco Compare Result
0 0 0 0 ST(0) > 0.0
0 0 0 1 ST(0) < 0.0
1 0 0 0 ST(0)=0.0
1 1 0 1 ST(0) was unordered
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
Invalid-operation X X X A source operand was a SNaN value, a QNaN value, or an

exception (IE) unsupported format.

Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)

Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)

316 TS x87 Floating-Point
[AMD |5U%||C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FUCOM Floating-Point Unordered Compare
FUCOMP

FUCOMPP

Compares the value in ST(0) to the value in another x87 register, and sets the condition codes in the
x87 status word as shown in the x87 Condition Code table below.

If no source operand is specified, the instruction comparesthe valuein ST(0) to that in ST(2).

After making the comparison, the FUCOMP instruction pops the x87 stack register and the
FUCOMPPIinstruction pops the x87 stack register twice.

The instruction carries out the same comparison operation as the FCOM instructions, but sets the
invalid-operation exception (1E) bit in the x87 status word to 1 when either or both operands are an
SNaN or arein an unsupported format. If either or both operandsisa QNaN, it sets the condition code
flags to unordered, but does not set the |E bit. The FCOM instructions, on the other hand, raise an IE
exception when either or both of the operands are aNaN value or are in an unsupported format.

Support for the FCOM (P(P)) instruction can be determined by executing either CPUID function
0000_0001h or CPUID function 8000_0001. Support is indicated when both the EDX[FPU] (bit 0)
and EDX[CMOQV] (bit 15) feature flags are set.

Mnemonic Opcode Description

Compare ST(0) to ST(1) and set condition code flags to

FUCOM DD E1 reflect the results of the comparison.

Compare ST(0) to ST(i) and set condition code flags to

FUCOM ST(i) DD E0+ reflect the results of the comparison.

Compare ST(0) to ST(1), set condition code flags to reflect
FUCOMP DD E9 the results of the comparison, and pop the x87 register
stack.

Compare ST(0) to ST(i), set condition code flags to reflect
FUCOMP ST(i) DD E8+i the results of the comparison, and pop the x87 register
stack.

Compare ST(0) to ST(1), set condition code flags to reflect
FUCOMPP DA E9 the results of the comparison, and pop the x87 register stack
twice.

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOMI, FUCOMIP, FXAM

rFLAGS Affected

None

x87 Floating-Point RECOMX 317
Instruction Reference [AMD U%IYiC Use]

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

x87 Condition Code

C3 Cc2 C1 Co Compare Result
0 0 0 0 ST(0) > source
0 0 0 1 ST(0) < source
1 0 0 0 ST(0) = source
1 1 0 1 Operands were unordered
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0O) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)

318 RLCOMX x87 Floating-Point
[AMD U%I“C Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FUCOMI Floating-Point Unordered Compare and Set
FUCOMIP eFLAGS

Compares the contents of ST(0) with the contents of another floating-point register, and sets the zero
flag (ZF), parity flag (PF), and carry flag (CF) as shown in the rFLAGS Affected table below.

Unlike FCOMI and FCOMIP, the FUCOMI and FUCOMIP instructions do not set the invalid-
operation exception (1E) bit in the x87 status word for QNaNs.

After completing the comparison, FUCOMIP pops the x87 register stack.

Support for the FCOMI(P) instruction can be determined by executing either CPUID function
0000_0001h or CPUID function 8000_0001. Support isindicated when both the EDX[FPU] (bit 0)
and EDX[CMOQV] (bit 15) feature flags are set.

Mnemonic Opcode Description

Compare ST(0) to ST(i) and set eFLAGS to reflect the result
of the comparison.

Compare ST(0) to ST(i), set eFLAGS to reflect the result of
the comparison, and pop the x87 register stack.

FUCOMI ST(0),ST(i) DB E8+i
FUCOMIP ST(0),ST() DF E8+i

Related Instructions

FCOM, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM, FUCOMP, FUCOMPP,
FXAM

rFLAGS Affected
ZF PF CF Compare Result
0 0 0 ST(0) > source
0 0 1 ST(0) < source
1 0 0 ST(0) = source
1 1 1 Operands were unordered
x87 Condition Code
x87 Condition Code | Value Description
Co
C1 0

x87 Floating-Point FECOMIX 319
Instruction Reference [AMD U%'\flC Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
x87 Condition Code | Value Description
Cc2
C3
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
The conditional move instructions are not supported, as
Invalid opcode, #UD | X X X indicated by EDX[FPU] and EDX[CMOV] returned by
CPUID function 0000_0001h or 8000_0001h.

Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

320 FILCOMIX x87 Floating-Point
[AMD U%'\flC Use] Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
FWAIT Wait for Unmasked x87 Floating-Point
(WAIT) Exceptions

Forces the processor to test for pending unmasked floating-point exceptions before proceeding.

If there is a pending floating-point exception and CRO.NE = 1, a numeric exception (#MF) is
generated. If there is a pending floating-point exception and CRO.NE = 0, FWAIT asserts the FERR
output signal, then waits for an external interrupt.

Thisinstruction is useful for insuring that unmasked floating-point exceptions are handled before
altering the results of afloating point instruction.

FWAIT and WAIT are synonyms for the same opcode.

Mnemonic Opcode Description

FWAIT 9B Check for any pending floating-point exceptions.
Related Instructions
None

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co U
C1 U
C2]
C3 U
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not available, X X X The monitor coprocessor bit (MP) and the task switch bit
#NM (TS) of the control register (CRO) were both set to 1.
x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

e, (VDRI se

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FXAM Floating-Point Examine

Examinesthevaluein ST(0) and setsthe CO, C2, and C3 condition code flagsin the x87 statusword as
shown in the x87 Condition Code table below to indicate whether the value is a NaN, infinity, zero,
empty, denormal, normal finite, or unsupported value. The instruction also sets the C1 flag to indicate
the sign of thevaluein ST(0) (0 = positive, 1 = negative).

Mnemonic Opcode Description
FXAM D9 E5 Characterize the number in the ST(0) register.

Related Instructions

FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FICOM, FICOMP, FTST, FUCOM, FUCOMI,
FUCOMIP, FUCOMP, FUCOMPP

rFLAGS Affected

None

x87 Condition Code

C3 c2 C1 Co Meaning
0 0 0 0 +unsupported
format
0 0 0 1 +NaN
0 0 1 1 —NaN
0 1 0 0 +normal
0 1 0 1 +infinity
0 1 1 0 —normal
0 1 1 1 —infinity
1 0 0 0 +0
1 0 0 1 +empty
1 0 1 0 -0
1 0 1 1 —empty
1 1 0 0 +denormal
1 1 1 0 —denormal

322 XAM: x87 Floating-Point
[AMD ﬁU%W|C Use] Instruction Reference

AMDZ\
AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CRO) is set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

323

x87 Floating-Point [AMD ﬁﬁ"bl\ﬁc Use]

Instruction Reference

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

FXCH Floating-Point Exchange

Exchanges the value in ST(0) with the value in any other x87 register. If no operand is specified, the
instruction exchanges the valuesin ST(0) and ST(1).

Use thisinstruction to move a value from an x87 register to ST(0) for subsequent processing by a
floating-point instruction that can only operate on ST(0).

Mnemonic Opcode Description
FXCH D9 C9 Exchange the contents of ST(0) and ST(1).
FXCH ST(i) D9 C8+i Exchange the contents of ST(0) and ST(i).

Related Instructions

FLD, FST, FSTP

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co U
C1 0
C2 U
C3 U
Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0O) was set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.

F
x87 Floating-Point Exception Generated, #MF

Invalid-operation

exception (IE) with X X X An x87 stack underflow occurred.

stack fault (SF)

324 XCH- x87 Floating-Point
[AMD |5U%IT|C Use] Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FXTRACT Floating-Point Extract Exponent and Significand

Extracts the exponent and significand portions of the floating-point value in ST(0), stores the exponent
in ST(0), and then pushes the significand onto the x87 register stack. After this operation, the new
ST(0) contains a real number with the sign and value of the original significand and an exponent of
3FFFh (biased value for true exponent of zero), and ST(1) contains a real number that is the value of
the original value' strue (unbiased) exponent.

The FXTRACT instruction isuseful for converting adouble-extended-precision number to its decimal
representation.

If the zero-divide-exception mask (ZM) bit of the x87 control word is set to 1 and the source value is
+0, then the instruction stores +zero in ST(0) and an exponent value of —eo in register ST(1).

Mnemonic Opcode Description

Extract the exponent and significand of ST(0), store the
FXTRACT D9 F4 exponent in ST(0), and push the significand onto the x87
register stack.

Related Instructions

FABS, FPREM, FRNDINT, FCHS

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
co u
0 x87 stack underflow, if an x87 register stack fault was detected.
“ 1 x87 stack overflow, if an x87 register stack fault was detected.
c2 u
C3 U

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point FXTRACT 325
Instruction Reference [AMD ﬁUBﬁC Use]

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception

Device not X X X The emulate bit (EM) or the task switch bit (TS) of the
available, #NM control register (CRO) is set to 1.

x87 floating-point

exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF

x87 Floating-Point Exception Generated, #MF

Invalid-operation X X X A source operand was an SNaN value or an unsupported
exception (IE) format.

Invalid-operation X X X An x87 stack underflow occurred.

exception (IE) with

stack fault (SF) X X X An x87 stack overflow occurred.

Denormalized-

operand exception X X X A source operand was a denormal value.

(DE)

Zero-divide X X X The source operand was *zero.

exception (ZE)

326

[AMD Pl Use]

x87 Floating-Point
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

FYL2X

in ST(0) must be greater than zero.

AMDG64 Technology

Floating-Point y * Log, (X)
Computes (ST(1) * 1og,(ST(0))), storestheresult in ST(1), and pops the x87 register stack. The value

If the zero-divide-exception mask (ZM) bit in the x87 control word is set to 1 and ST(0) contains
*zero, the instruction returns « with the opposite sign of the value in register ST(1).

Mnemonic

FYL2X

Related Instructions

FYL2XP1, F2XM1

rFLAGS Affected

None

x87 Condition Code

Opcode

D9 F1

Description

Replace ST(1) with ST(1) * log,(ST(0)), then pop the x87

register stack.

x87 Condition Code Value Description
Co]
0 No precision exception occurred.
0 x87 stack underflow, if an x87 register stack fault was detected.
“t 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
c2 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point

Instruction Reference

[AMD Plffic Use]

327

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
X X X A source operand was an SNaN value or an unsupported
format.
X X X The source operand in ST(0) was a negative finite value
(not -zero).
Invalid-operation -
: The source operand in ST(0) was +1 and the source
exception (IE) X X X operand in ST(1) was infinity.
X X X The source operand in ST(0) was -infinity.
X X X The source operand in ST(0) was *zero or infinity and the
source operand in ST(1) was zero.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Zero-divide X X X The source operand in ST(0) was tzero and the source
exception (ZE) operand in ST(1) was a finite value.
Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the destination

(PE)

format.

328

[AMD PUffic Use]

x87 Floating-Point
Instruction Reference

AMDZ\
26569—Rev. 3.16—November 2021 AMDG64 Technology

FYL2XP1 Floating-Pointy * Log, (x+1)

Computes (ST(1) * log,(ST(0) + 1.0)), stores the result in ST(1), and pops the x87 register stack. The
valuein ST(0) must be in the range sqrt(1/2)—1 to sgrt(2)-1.

Mnemonic Opcode Description

Replace ST(1) with ST(1) * log,(ST(0) + 1.0), then pop the

FYL2XP1 D9 F9 x87 register stack.

Related Instructions

FYL2X, F2XM1

rFLAGS Affected

None

x87 Condition Code

x87 Condition Code | Value Description
Co 0]
0 x87 stack underflow, if an x87 register stack fault was detected.
C1 0 Result was rounded down, if a precision exception was detected.
1 Result was rounded up, if a precision exception was detected.
Cc2]
C3 u

Note: Aflag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank. Undefined flags are U.

x87 Floating-Point F 1 329
Instruction Reference [AMD ﬁuzﬁﬁc Use]

AMDZU

AMDG64 Technology

26569—Rev. 3.16—November 2021

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Device not available, X X X The emulate bit (EM) or the task switch bit (TS) of the
#NM control register (CR0) was set to 1.
x87 floating-point
exception pending, X X X An unmasked x87 floating-point exception was pending.
#MF
x87 Floating-Point Exception Generated, #MF
i) X X X A source operand was an SNaN or unsupported format.
Invalid-operation -
exception (IE) X X X The source operand in ST(0) was 0 and the source
operand in ST(1) was infinity.
Invalid-operation
exception (IE) with X X X An x87 stack underflow occurred.
stack fault (SF)
Denormalized-
operand exception X X X A source operand was a denormal value.
(DE)
Overflow exception X X X A rounded result was too large to fit into the format of the
(OE) destination operand.
Underflow exception X X X A rounded result was too small to fit into the format of the
(UE) destination operand.
Precision exception X X X A result could not be represented exactly in the destination
(PE) format.

330

[AMDPifdlit Use]

x87 Floating-Point
Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology

x87 Floating-Point F 1 331
Instruction Reference [AMD ﬁuzﬁﬁc Use]

AMDA
AMDG64 Technology 26569—Rev. 3.16—November 2021

332 [AMD PUblIC U&gé: oating-Point Instruction Reference

AMDZU

26569—Rev. 3.16—November 2021

AMDG64 Technology

Appendix A Recommended Substitutions for
3DNow!™ Instructions

Table A-1 lists the deprecated 3DNow! ™ instructions and the recommended substitutions.

Table A-1. Substitutions for 3DNow!™ |nstructions

64-Bit 3DNow!™ 128-Bit SSE 64-Bit MMX™
. ; . Notes
Instruction Instruction Instruction
FEMMS N/A EMMS (MMX)
SSE and MMX™ instructions round according to the
PAVGUSB PAVGB PAVGB current rounding mode; 3DNow!™ instructions always
round up.
PF2ID CVTTPS2DQ
PE2IW CVTTPS2DQ may be used if 16-bit result is not
necessary.
PFACC HADDPS
PFADD ADDPS
PFCMPEQ CMPPS
PFCMPGE CMPPS
PFCMPGT CMPPS
PFMAX MAXPS MAXPS may return -0.0.
PEMIN MINPS MINPS may return -0.0.
PFMUL MULPS
PFENACC HSUBPS
ADDSUBPS expects arguments in different positions
PFPNACC ADDSUBPS from PEPNACC.
RCPSS may be used in conjunction with the Newton-
PFRCP :
Raphson algorithm.
PFRCPIT1 See PFRCP.
PFRCPIT2 See PFRCP.
PFRSQIT1 See PFRSQRT.
PFRSQRT RSQRTSS may be use_d in conjunction with the
Newton-Raphson algorithm.
PFSUB SUBPS
PFSUBR SUBPS may be used.
PIZED CVTDO2PS SSE |.nstruct|on.s round agcordlng to the current
rounding mode; 3DNow! instructions always truncate.
PI2FW
PMULHRW PMULHW may be used if rounding is not necessary.
PSWAPD PSHUFD

Recommended Substitutions for 3B&M|5M Iglﬁttrjtrlcélcwsse]

333

AMDZ\
AMDG64 Technology 26569—Rev. 3.16—November 2021

334 [Aﬁ/rﬁ)rp{&%ﬁﬁdﬁusbes]itutions for 3DNow!™ Instructions

AMDZU

26569—Rev. 3.16—November 2021

Index

AMDG64 Technology

Numerics

16-Dit MOCE.....ciiiieee e
32-DIt MOE....covniiiieiieeeee e,
B64-Dit MOE........ceneiiiiieii e

A

addressing

RIP-TElatiVE ..vvvveiiiiiiiiieeveece e

biased eXPONENtccvveeeeie i

C

(0(0]01011 11 A PP UP PP
compatibility mode.......cocceeeeiiiciiiieee e

condition codes

CVTPDZPl..ccoiiiiiiiirrie i
CVTPIZPD....coviiiiiiriie i
CVTPIZPS ...t
CVTPSZPI ..ot
CVTTPD2PI ...ttt
CVTTPS2PI ..ottt

D

direct referenCing........cccoveeeeiiiciieenee e
displacements......ccuveiicieieiii e
double qUAdWOrdccvveeieeiieiireee e
doublewordc.eeeiiiiii

E

EAX—ESP rEQIStEN v.eeveeiiiiieieee e e e errrrre e e e e e
effective address Size......oovvvveeeiiieeeinie e,
effective operand SIZe.......ccevveeievieeeie e
EFLAGS reQiStEr .uveeieiiiiciieiree e e
ElPrEgIStEN oo
ElOMENt ...eiiiie

EXCEPLIONS ... ivvieeee e e serrere e e e e s e e e s e s sare e e e e e e enaans
EXPONENE «eevieeiereesereesbeesree e e sbeessreessreeesreesnseeens
eXteNded SSEeveiiiiii e

[AMD Public Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
=1 AR 275 BDNOW! ™ oo eeeveeesee e s e s e s e e enens 1
FIUSN et e et e e e e e e e aaeean XiX 64-bit Media.....cceveeieiiiieie e 1
FIMUL et 276 FXSAVE/FXRSTOR.....coiiiiiiiiis 2
FMULP oot ssses s 276 MMX........... s 2
FNCLEX vvtrcesvveevrensssssssssssessessssssssssssssssssssseeees 230 MMXEXIENSONS..corssssvvvrrsesssssvvcnsssss s 2
=TT 256 gg ''' g
= N =R 279 T s ——
=N TNV 2 = 22,292 Tl
= L YA 304 L
= N1 = N Y AR 306
ENSTSW 308 1€08CY MOEuuveeieiiieieieiererer e XX
""" JEOACY SSE ..ottt e e era e
FPATAN oo 280 Ieg e XX
Y 282 CJEY XOD e XX
EPREM1 84 o] 0T 270 T [2SS XX
'' IS RN ¢ (
T 286 | x:
ERNDINT T B I
(==Y) = S 20,290 M
E%XEE -- 22, ggi MBSK 1oveeeoeeeeeeeee oo ee e ees e eeee s eern xxi
PN pog MASKMOVQ oo 28
''' 1Y = 74D 6 (|
FSINCOS. o.eeeeeeeerereseseeesesesesessesssssssssssessssesaes 298 dimineructions
FSQRT o 300 128-Dit .. XVil
[0 [T 302 DBB-Dit oo Xvii
FSTCW e 304 LS T XVii
FSTENV oot 306 memory
FSTP o 302 PHYSICal ...vveeeeciiie et XXii
[y)1 TR 308 modes
FSUB ..ottt 310 COMPALTDIITY ..eveeeeeee e Xviii
[U] =1 = 310 10T o) SRS XX
FSUBR ...ttt ettt en s 313 10N ..ot XX
FSUBRP.....ovvoereveeeseesesssesssssssssnsssssnssssssssssnsssons 313 PrOMECIEA oo Xxii
FTST coeeeeeeeesseeee e 316 MO Xxi
FUCOM 317 ViTUBI=808B......ueeeeeieeeeee et e e et e e eeeeeeans XXV
FUCOMI oo, 319 mgxg-"é ''' ;11
o0 V1 L= T 319 MOVN? Qurvemmssnsmmmsmmmssnsenismnnee -
FUCOMP. oo, a7 oY Qs o
S0 V1= = 317 Querrvsnnsesimmnnri s
FWAIT oo 321 MOVQZDQuiss s 40
EXAM oo, 322 M;B ''' XX
EXCH v eeeeeee e es e ees e es e s s ees s e es e esesenssens 324 msﬁe '' XX
EXRSTOR oo 24 MOR XXVI
FXSAVE c.eieeeeeeeeeeeseeeseseseeeeeeseeeeseeeesesenenseeens 2% O
FXTRACT coeeeeeeeeeeeeeeeeeeesesessesessesesssssessseenns 325
EYL2X 307 (00117170 (o [N XXi
EYLOXPL oo 329 [0S T XXi
[0V 7= Lo V.Y XXi
|
P
] XX
100 (1= ST XX PACKE. oo XX
instructions PACKSSDW ..o eveseveseses e e s s s s enenens 42
BDNOW! e 2 PACKSSWB...ooiiis 44
BDNOW! EXEENSIONS. oo 2 PACKUSWB ...ttt et ee e e e e e s eneenns 46
336 Index

[AMD Public Use]

AMDZU

26569—Rev. 3.16—November 2021 AMDG64 Technology
PADDB . ..ce et 48 PMULHUW ..ot e e ea e e 154
PADDD oot 50 A I Y 156
PADDQ ..ottt e 52 PMULLW oot e e e e e s en e e 158
PADDSB ... oottt 54 PMULUDQ......ciiiiiiiiiiiieee e 160
PADDSW ...ttt 56 POR et 162
PADDUSBcoiiiiiiiieee et 58 ProDe.....e XXii
PADDUSW ...ttt eea e 60 processor modes

PADDWV . ..ottt e e e eee e e e e eeee e e e e raeeeeeeaaaaaees 62 G o XVii
P ettt et e e e XXii 32Dt Xvii
=T N o OO 64 BA-DIt .o xvii
PANDN et ee st ee e s s e eeeneens 66 Protected Modeccovvieiiii xxii
PAVGB ...t es e et eeeeenneneee 68 PSADBW ..o, 164
PAVGUSB oottt eeeee et eee s eeseenne s 70 PSHURW o, 166
PAVGOW oo 72 [I 1 N 169
= 03 [= =0)= TP 74 PSLLQ. . utettieiiiiiieitireieieieteseaes s ssnnns 171
=03 [=/=0)0 TP 76 PSLLW ottt 173
=03 [= =0 Y AT 78 PSRAD ..ottt 175
PCMPGTB oo 80 PSRAW ...ttt eas 177
PCMPGTD oo 82 [I 5 L 179
PCMPGTW oo 84 PSRLQ et 181
PEXTRW oo 86 PSRLW .ottt e s e e eas 183
PF2ID oottt eeeee e e s e et e et e eneene 88 PSUBB oo, 185
PE2IW oottt ese et e e e eneene 90 PSUBD o, 187
PFACC oottt s et e e enn s 92 PSUBQ ., 189
= 7Y 5] 0 ST 94 PSUBSB oo, 191
=LV [= =10 T 96 PSUBSW oo, 193
PECMPGE oo 08 PSUBUSB......ottiiiiiiieieen ettt ea 195
PECMPGT oo 101 PSUBUSW ..ottt ee et e s e e 197
PEMAX vttt eeeeeseeeeseeeeeseseeseese st eseeessesessnseees 103 PSUBW o 199
PEMIN oottt eeee et s seesesseeeeseeeeeeeeesneees 105 PSWAPD oo 201
PEMUL ettt eeeeesee s sees s eeeeesseeeeeenneees 107 PUNPCKHBW ...ooviiiii 203
PENACC oot eeee e eees et eeee e eees e 109 PUNPCKHDQ.....coiiiiiii 205
PEPNACC oot eeeeee et seeseseesesseseeessnenes 112 PUNPCKHWD ..o 207
PERCP. ...ttt eeeeeeee e seeseeseeeeesseeeeeneenes 115 PUNPCKLBW ..o 209
PERCPITL cvvveeeeeeeeeeeeeeeeeeeseeseeseesesseeeesseeeeesseeees 118 PUNPCKLDQ ..ot 211
PERCPITZ oot eeseeeeeese s seessseeeeeseeeees e 121 PUNPCKLWD .o 213
PERSQITL covveeeeeeeeeseeeteeeeeeeeseeseessseeseseseeseeeseeees 124 PXOR ..ottt 215
PFRSQRT ...ttt 127 Q

s U1 130

PESUBR ..o 132 quadword .. XXI1
PhySiCal MEMONYcceeeieeeee e XXii R

24 o I T 134

PIZEW oo 136 (e o 1 1S Y XXVi
PINSRW oo 138 FAXASP oot XXVi
PMADDWD oo 140 RAZ ..o XXii
PMAXSW e eee e e e e eeseeeeees 142 real addressmode. Seereal mode

PMAXUB oo 144 (1272 I 101070 (<X AT XXI1
PMINSW ovvoooeeeeee oo eses e 146 registers

PMINUB oo 148 Z'QZ(A‘ESSP '' o
PMOVMSKB. . B0
PMULHRW ..o 152 (S o 01 1 T XXVI
Index 337

[AMD Public Use]

AMDZU

AMDG64 Technology 26569—Rev. 3.16—November 2021
FAXASP XXVI
FTFLAGS. ... XXVil
Pt XXVil

(1< = (AT XXii

([AV [P XXii

FeVISION NIStOrY ..o Xiii

[) G XXii

FTFLAGSTIegiSter....oooo i XXVii

MIPregiSter .o XXVii

RIP-relative addressingueeeeeeeeeeeeeeeieieieneneeeeenn, XXil

S

OBz e XXili

(o= - SN XXiil

LS, N XXiil

S B et XXili

SIMD e XXili

SSE INSITUCLIONScevveiiieeeieieeeteeeeeeeie e eea e eeeas XXiil
EXEENAEd ... Xix
[EOACY wreeeeee e ettt XX

SSE instructions
AES ..o XViil
AV X i XViil
FIMA e XiX
FIMAA. ... XiX
SO e XXili
SO XXiil
SO e XXiil
SSEA.L .o XXi1i
SSEA.2 oo XXili
SSEAA ..o XXili
SSSOE S XXili
KOP e XXiV

SHCKY DitS..iiiiiiiieeee i XXiv

Streaming SIMD Extensions (SSE)cccveeveeiinnns xXiii

T

T SS i XXiV

U

UNAETIOW...cocveiiicci e XXV

Vv

(V7= o (| SRR XXiV

Virtual-8086 MOGE.........ceeiiiiiiiiieriiiiiiiieeeeeeeeeeeesnann XXV

W

WAL T e e e eraa s 321

X

XOP
INSEIUCLIONScoeveviiiccie e XXV
PrEfiX oot e XXV

338 Index

[AMD Public Use]

	AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87 Floating-Point Instructions
	Contents
	Figures
	Tables
	Revision History
	Preface
	About This Book
	Audience
	Organization
	Conventions and Definitions
	Notational Conventions
	Definitions
	Registers
	Endian Order

	Related Documents

	1 64-Bit Media Instruction Reference
	CVTPD2PI
	CVTPI2PD
	CVTPI2PS
	CVTPS2PI
	CVTTPD2PI
	CVTTPS2PI
	EMMS
	FEMMS
	FRSTOR
	FSAVE (FNSAVE)
	FXRSTOR
	FXSAVE
	MASKMOVQ
	MOVD
	MOVDQ2Q
	MOVNTQ
	MOVQ
	MOVQ2DQ
	PACKSSDW
	PACKSSWB
	PACKUSWB
	PADDB
	PADDD
	PADDQ
	PADDSB
	PADDSW
	PADDUSB
	PADDUSW
	PADDW
	PAND
	PANDN
	PAVGB
	PAVGUSB
	PAVGW
	PCMPEQB
	PCMPEQD
	PCMPEQW
	PCMPGTB
	PCMPGTD
	PCMPGTW
	PEXTRW
	PF2ID
	PF2IW
	PFACC
	PFADD
	PFCMPEQ
	PFCMPGE
	PFCMPGT
	PFMAX
	PFMIN
	PFMUL
	PFNACC
	PFPNACC
	PFRCP
	PFRCPIT1
	PFRCPIT2
	PFRSQIT1
	PFRSQRT
	PFSUB
	PFSUBR
	PI2FD
	PI2FW
	PINSRW
	PMADDWD
	PMAXSW
	PMAXUB
	PMINSW
	PMINUB
	PMOVMSKB
	PMULHRW
	PMULHUW
	PMULHW
	PMULLW
	PMULUDQ
	POR
	PSADBW
	PSHUFW
	PSLLD
	PSLLQ
	PSLLW
	PSRAD
	PSRAW
	PSRLD
	PSRLQ
	PSRLW
	PSUBB
	PSUBD
	PSUBQ
	PSUBSB
	PSUBSW
	PSUBUSB
	PSUBUSW
	PSUBW
	PSWAPD
	PUNPCKHBW
	PUNPCKHDQ
	PUNPCKHWD
	PUNPCKLBW
	PUNPCKLDQ
	PUNPCKLWD
	PXOR

	2 x87 Floating-Point Instruction Reference
	F2XM1
	FABS
	FADD FADDP FIADD
	FBLD
	FBSTP
	FCHS
	FCLEX (FNCLEX)
	FCMOVcc
	FCOM FCOMP FCOMPP
	FCOMI FCOMIP
	FCOS
	FDECSTP
	FDIV FDIVP FIDIV
	FDIVR FDIVRP FIDIVR
	FFREE
	FICOM FICOMP
	FILD
	FINCSTP
	FINIT FNINIT
	FIST FISTP
	FISTTP
	FLD
	FLD1
	FLDCW
	FLDENV
	FLDL2E
	FLDL2T
	FLDLG2
	FLDLN2
	FLDPI
	FLDZ
	FMUL FMULP FIMUL
	FNOP
	FPATAN
	FPREM
	FPREM1
	FPTAN
	FRNDINT
	FRSTOR
	FSAVE FNSAVE
	FSCALE
	FSIN
	FSINCOS
	FSQRT
	FST FSTP
	FSTCW (FNSTCW)
	FSTENV (FNSTENV)
	FSTSW (FNSTSW)
	FSUB FSUBP FISUB
	FSUBR FSUBRP FISUBR
	FTST
	FUCOM FUCOMP FUCOMPP
	FUCOMI FUCOMIP
	FWAIT (WAIT)
	FXAM
	FXCH
	FXTRACT
	FYL2X
	FYL2XP1

	Appendix A Recommended Substitutions for 3DNow!™ Instructions
	Index

