
xCORE-200: The XMOS XS2 Architecture

2015/04/01 REV 1.0

XMOS © 2015, All Rights Reserved



xCORE-200: The XMOS XS2 Architecture 2/289

Table of Contents

Table of Contents 2
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Concurrent Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 The xCORE Tile Instruction Set . . . . . . . . . . . . . . . . . . . . . . 7
5 Instruction Issue and Execution . . . . . . . . . . . . . . . . . . . . . . 9
6 Instruction Set Notation and Definitions . . . . . . . . . . . . . . . . . 12
7 Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 Expression Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9 Branching, Jumping and Calling . . . . . . . . . . . . . . . . . . . . . . 17
10 Resources and the Thread Scheduler . . . . . . . . . . . . . . . . . . . 20
11 Concurrency and Thread Synchronisation . . . . . . . . . . . . . . . . 21
12 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
13 Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
14 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15 Ports, Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . 28
16 Events, Interrupts and Exceptions . . . . . . . . . . . . . . . . . . . . . 37
17 Initialisation and Debugging . . . . . . . . . . . . . . . . . . . . . . . . 44
18 Specialised Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
19 XCore XS2 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
20 XS2 Instruction Format Specification . . . . . . . . . . . . . . . . . . . 249
21 XS2 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
22 XS2 Lanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

REV 1.0



xCORE-200: The XMOS XS2 Architecture 3/289

1 Introduction

xCORE-200 products combine a number of xCORE Tile processors, each with
its own memory, on a single chip. The programmable processors are general
purpose in the sense that they can execute languages such as C; they also have
direct support for concurrent processing (multi-threading), communication and
input-output. A high-performance switch supports communication between the
processors, and inter-chip xConnect Links are provided so that systems can easily
be constructed from multiple chips.

xCORE-200 products are intended to make it practical to use software to perform
many functions which would normally be done by hardware; an important example
is interfacing and input-output controllers.

xCORE-200 products are based on the XS2 architecture. The XS2 architecture is a
evolution of the XS1 architecture. The main differences with the XS1 architecture
are:

· Dual issue (Section 5.2).

· 64-bit load and store (Section 7.3).

· High priority threads (Section 5.3).

There are also extra instructions for bit manipulation, DSP, and real time manage-
ment.

2 Interconnect

The interconnect provides communication between all xCORE Tiles on the chip (or
system if there is more than one chip). In conjunction with simple programs, it can
also be used to support access to the memory on any xCORE Tile from any other
xCORE Tile, and to allow any xCORE Tile to initiate programs on any other xCORE
Tile.

The interface between an xCORE Tile and the interconnect is a group of xConnect
Links which carry control tokens and data tokens. The data tokens are simply bytes
of data; the control tokens are as follows.

· Tokens 0-127 (Application tokens). These are intended for use by compilers or
applications software to implement streamed, packetised and synchronised com-
munications, to encode data-structures and to provide run-time type-checking
of channel communications.

· Tokens 128-191 (Special tokens) are architecturally defined and may be inter-
preted by hardware or software. They are used to give standard encodings of
common data types and structures.

· Tokens 192-223 (Privileged tokens) are architecturally defined and may be
interpreted by hardware or privileged software. They are used to perform
system functions including hardware resource sharing, control, monitoring and

REV 1.0



xCORE-200: The XMOS XS2 Architecture 4/289

debugging. An attempt to transfer one of these tokens to or from unprivileged
software will cause an exception.

· Tokens 224-255 (Hardware tokens) are only used by hardware; they control the
physical operation of the link. An attempt to transfer one of these tokens using
an output instruction will cause an exception.

Four links connect each xCORE Tile directly to an on-chip switch which provides
non-blocking communication between the xCORE Tiles. The switch also provides
off-chip xConnect Links allowing multiple XS2 or XS1 chips to be combined in a
system. The structure and performance of the xConnect Link connections in a
system can be varied to meet the needs of applications.

The links between xCORE Tiles and switches and the xConnect Links can be
partitioned into independent networks. This can be used, for example, to provide
independent networks carrying long and short messages or to provide independent
networks for control and data messages.

Messages are routed to channel-ends on a specific processor through the xConnect
Links using a message header which contains the number of the destination chip,
the number of the destination processor and the number of a destination channel-
end within the processor. These can be encoded using either 24 bits (16 bits chip
and processor address, 8 bits channel address) or 8 bits (3 bits chip and processor
address, 5 bits channel address).

Each switch has a configurable identifier and can also be configured to route
messages according to the first component of each message header. It compares
this bit-by-bit with its own switch identifier; if all bits match it then uses the second
component to route the message to the destination xCORE Tile. If the bits do not
match, then it uses the number of the first non-matching bit to select an outgoing
direction. The direction of each xConnect Link is set when the switch is configured
and it is possible for several xConnect Links to share the same direction thereby
providing several independent routes between two switches.

The header establishes a route through the interconnect and subsequent tokens
will follow the same route until one of two special control tokens is sent: these are
end-of-message (END) and pause (PAUSE).

2.1 xConnect Link Ports

The ports used for inter-chip xConnect Link communication use a transition-based
non return-to-zero signalling scheme. Bits are sent at a rate derived from the XS2
clock; this rate can be programmed to meet applications requirements.

The xConnect Links can be switched between a fast, wide mode and a slower, serial
mode. Two encoding schemes are used.

2.2 Serial xConnect Link

The serial xConnect Link uses two data wires in each direction. A transition on Wire
1 represents a one bit and a transition on Wire 0 represents a zero bit. The first bit
of a control token is a one; the first bit of a data token is a zero; the next 8 bits

REV 1.0



xCORE-200: The XMOS XS2 Architecture 5/289

are the token value. The two signal wires are both at rest between tokens and the
final bit of each token is chosen to return the non-zero signal wire to the rest state;
one of the signal wires must be non-zero at this point as nine bits have been sent.

On the serial link, the END and PAUSE tokens are coded directly as application
tokens 1 and 2.

The link also uses several hardware tokens. The credit tokens are transmitted by
the receiver to control the flow of data; each CREDITn token issues credit to the
sender to allow it to send n tokens. The HELLO token solicits initial credits, setting
up a half-duplex link. To bring up a link, both sides have to issue a HELLO, and
both sides have to respond to the HELLO with a CREDITn token.

token use

224 CREDIT8

225 CREDIT64

228 CREDIT16

230 HELLO

2.3 Fast xConnect Link

The fast xConnect Link uses 1-of-5 codes with five data wires in each direction; a
symbol is transmitted by changing the state of one of the wires. Each symbol has
the following meaning:

symbol meaning

Wire 0 changes value 00

Wire 1 changes value 01

Wire 2 changes value 10

Wire 3 changes value 11

Wire 4 changes escape

A sequence of four symbols are used to encode each token. In the following e is
an escape and v is one of the values 00, 01, 10, 11.

symbol sequence use

v v v v 256 data tokens

e v v v 64 control tokens 192-255

v e v v 64 control tokens 128-191

v v e v 64 control tokens 64-127

v v v e 64 control tokens 0-63

REV 1.0



xCORE-200: The XMOS XS2 Architecture 6/289

There are some additional codes in which more than one symbol is an escape.
These are used to code certain control tokens.

symbol sequence use

e e v v END tokens

v v e e PAUSE tokens

e v v e NOP (return to zero) tokens

e 11 11 v NOP (return to zero) tokens

e 00 e 00 CREDIT8

e 01 e 01 CREDIT64

e 10 e 10 HELLO

e 11 e 11 CREDIT16

Because each token contains four symbols, at the end of each token there are
always an even number of signal wires in a non-zero state. To send an END or
PAUSE, one of the END or PAUSE tokens is chosen to leave at most two signal wires
in a non-zero state; this can be followed by a NOP token which is chosen to leave
all of the signal wires in a zero state.

The encoding of the credit and reset tokens has been chosen so that the state of
the signal wires after the token is the same as it was before the token.

3 Concurrent Threads

A single XCore enables a number of tasks to execute concurrently in threads. Each
thread executes a series of instructions that follow a conventional three register
operand model. Threads have access to resources that enable a thread to interact
with other threads or the outside world.

Each xCORE Tile has hardware support for executing a number of concurrent
threads. This includes:

· a set of registers for each thread.

· a thread scheduler which dynamically selects which thread to execute.

· a set of synchronisers to synchronise thread execution.

· a set of channels used for communication with other threads.

· a set of ports used for input and output.

· a set of timers to control real-time execution.

· a set of clock generators to enable synchronisation of the input-output with an
external time domain.

· a set of hardware locks to enable low level locking

REV 1.0



xCORE-200: The XMOS XS2 Architecture 7/289

Instructions are provided to support initialisation, termination, starting, synchro-
nising and stopping threads; also there are instructions to provide input-output
and inter-thread communication.

The set of threads on each xCORE Tile can be used:

· to implement input-output controllers executed concurrently with applications
software.

· to allow communications or input-output to progress together with processing.

· to allow latency hiding in the interconnect by allowing some threads to continue
whilst others are waiting for communication to or from remote xCORE Tiles.

The instruction set includes instructions that enable the threads to communicate
and perform input and output. These:

· provide event-driven communications and input-output with waiting threads
automatically descheduled.

· support streamed, packetised or synchronised communication between threads
anywhere in a system.

· enable the processor to idle with clocks disabled when all of its threads are
waiting so as to save power.

· allow the interconnect to be pipelined and input-output to be buffered.

4 The xCORE Tile Instruction Set

The main features of the instruction set used by the xCORE Tile processors are as
follows.

· Short instructions are provided to allow efficient access to the stack and other
data regions allocated by compilers; these also provide efficient branching and
subroutine calling. The short instructions have been chosen on the basis of
extensive evaluation to meet the needs of modern compilers.

· The memory is byte addressed; however all accesses must be aligned on natural
boundaries so that, for example, the addresses used in 32-bit loads and stores
must have the two least significant bits zero. The memory is little endian.

· The processor supports a number of threads each of which has its own set of
registers. Some registers are used for specific purposes such as accessing the
stack, the data region or large constants in a constant pool.

· Input and output instructions allow very fast communications between threads
within an xCORE Tile and between xCORE Tiles. They also support high speed,
low-latency, input and output. They are designed to support high-level concur-
rent programming techniques.

Most instructions are 16-bit. Many instructions use operands in the range 0 . . .11 as
this allows sufficient three-address instructions to be encoded using 16 bit instruc-

REV 1.0



xCORE-200: The XMOS XS2 Architecture 8/289

tions. Instruction prefixes are used to extend the range of immediate operands
and to provide more inter-register operations (and inter-register operations with
more operands). The prefixes are:

· PFIX which concatenates its 10-bit immediate with the immediate operand of the
next 16-bit instruction.

· EOPR which concatenates its 11-bit operation set with the following instruction.

The prefixes are inserted automatically by compilers and assemblers.

The normal state of a thread is represented by 12 operand registers, 4 access
registers and 2 control registers.

The twelve operand registers r0 . . . r11 are used by instructions which perform
arithmetic and logical operations, access data structures, and call subroutines.

The access registers are:

register number use

cp 12 constant pool pointer

dp 13 data pointer

sp 14 stack pointer

lr 15 link register

The control registers are:

register number use

pc 16 program counter

sr 17 status register

Each thread has seven additional registers which have very specific uses:

register number use

spc 18 saved pc

ssr 19 saved status

et 20 exception type

ed 21 exception data

sed 22 saved exception data

kep 23 kernel entry pointer

ksp 24 kernel stack pointer

The status register sr contains the following information:

REV 1.0



xCORE-200: The XMOS XS2 Architecture 9/289

bit number use

eeble 0 event enable

ieble 1 interrupt enable

inenb 2 thread is enabling events

inint 3 thread is in interrupt mode

ink 4 thread is in kernel mode

reserved 5 do not use

waiting 6 thread waiting to execute current instruction

fast 7 thread enabled for fast input-output

di 8 thread is running in dual issue mode

kedi 9 thread switches to dual issue on kernel entry

hipri 10 thread is in high priority mode

5 Instruction Issue and Execution

The processor is implemented using a short pipeline to maximise responsiveness.
It is optimised to provide deterministic execution of multiple threads. There
is no need for forwarding between pipeline stages and no need for speculative
instruction issue and branch prediction. The memory is 128-bit wide, enabling
sufficient instructions to be fetched simultaneously to enable the processor to run
at full speed using a unified memory system. Long sequences of memory accesses
require an occassional instruction fetch, consuming one extra thread cycle.

5.1 Scheduler Implementation

The threads in an xCORE Tile are intended to be used to perform several simulta-
neous real-time tasks such as input-output operations, so it is important that the
performance of an individual thread can be guaranteed. The scheduling method
used allows any number of threads to share a single unified memory system and
input-output system whilst guaranteeing that with n threads able to execute, each
will get at least 1/n processor cycles. In fact, it is useful to think of a thread cycle
as being n processor cycles.

From a software design standpoint, this means that the minimum performance
of a thread can be calculated by counting the number of concurrent threads at
a specific point in the program. In practice, performance will almost always be
higher than this because individual threads will sometimes be delayed waiting for
input or output and their unused processor cycles can be taken by other threads.
Further, the time taken to re-start a waiting thread is always at most one thread
cycle. (Note that the use of priority threads will cause a slightly different but still
predictable performance pattern, see Section 5.3.)

The set of n threads can therefore be thought of as a set of virtual processors
each with clock rate at least 1/n of the clock rate of the processor itself. The only
exception to this is that if the number of threads is less than the pipeline depth p,
the clock rate is at most 1/p.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 10/289

Each thread has a 256-bit instruction buffer which is able to hold sixteen short
instructions or eight long ones. Instructions are issued from the runnable threads
in a round-robin manner, ignoring threads which are not in use or are paused
waiting for a synchronisation or input-output operation.

The pipeline has a memory access stage which is available to all instructions. The
rules for performing an instruction fetch are as follows.

· Any instruction which requires data-access performs it during the memory access
stage.

· Branch instructions fetch their branch target instructions during the memory
access stage unless they also require a data access (in which case they will leave
the instruction buffer empty).

· Conditional branches only ever fetch instructions around the target address.

· Any other instruction (such as ALU operations) uses the memory access stage to
perform an instruction fetch. This is used to load the thread’s own instruction
buffer unless it is full.

· If the instruction buffer is empty when an instruction should be issued, a special
fetch no-op is issued; this will use its memory access stage to load the issuing
thread’s instruction buffer.

There are very few situations in which a fetch no-op is needed, and these can
often be avoided by simple instruction scheduling in compilers or assemblers. An
obvious example is to break long sequences of loads or stores by interspersing
ALU operations.

Certain instructions cause threads to become non-runnable because, for example,
an input channel has no available data. When the data becomes available, the
thread will continue from the point where it paused.

To achieve this, each thread has an individual ready request signal. The thread
identifier is passed to the resource (port, channel, timer etc) and used by the
resource to select the correct ready request signal. The assertion of this will
cause the thread to be re-started, normally by re-entering it into the round-robin
sequence and re-issuing the input instruction. In most situations this latency is
acceptable, although it results in a response time which is longer than the virtual
cycle time because of the time for the re-issued instruction to pass through the
pipeline.

To enable the virtual processor to perform one input or output per virtual cycle,
a fast-mode is provided. When a thread is in fast-mode, it is not de-scheduled
when an instruction can not complete; instead the instruction is re-issued until it
completes.

Events and interrupts are slightly different from normal input and output, because
a vector must also be supplied and the target instruction fetched before execution
can proceed. However, the same ready request system is used. The result will be
to make the thread runnable but with an empty instruction buffer.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 11/289

A variation on the fetch no-op is the event no-op; this is used to access the resource
which generated the event (or interrupt) using the thread identifier; the resource
can then supply the appropriate vector in time for it to be used for instruction
fetch during the event no-op memory access stage. This means that at most one
virtual cycle is used to process the vector, so there will be at most two virtual cycles
before instruction issue following an event or interrupt.

The xCORE Tile scheduler therefore allows threads to be treated as virtual pro-
cessors with performance predicted by tools. There is no possibility that the
performance can be reduced below these predicted levels when virtual processors
are combined.

5.2 Single and Dual Issue

An XS2 has two lanes: the memory lane can execute all memory instructions,
branches, and basic arithmetic, and the resource lane can execute all resource
instructions and basic arithmetic. Each thread can chose to execute in dual issue
mode, in which case the processor will execute two 16-bit instructions or a single
32-bit instruction in a single thread cycle. In dual issue mode, all instructions
must be aligned: 32-bit instructions must be 32-bit aligned and pairs of 16-bit
instructions must be aligned on a 32-bit boundary. The program counter is
always aligned two a 32-bit boundary and points to an issue slot rather than to
an individual instruction. The 16 bit value stored at addresses 4n+ 2 and 4n+ 3
encodes an instruction for the memory lane. The 16-bit value stored at at addresses
4n+ 0 and 4n+ 1 encodes an instruction for the resource lane. Long instructions
are stored in a word at addresses 4n+ 0...4n+ 3.

Where two instructions are executed simultaneously, any destination operands
should be disjoint. If they are not disjoint, an exception will be raised.

When the resource lane stalls a thread, the other lane will be stalled also. This is
normally not observable, except when an interrupt or an exception is raised. On
an interrupt or exception, no registers will be overwritten, and the PC will point to
the instruction to be reexecuted.

If an instruction in one of the two lanes causes an exception, then this exception is
reported. If the other lane is executing an instruction then this second instruction
is aborted. If the instructions in both lanes cause an exception, then only one
exception is reported, and both instructions are aborted, but any memory store
which is in progress will complete. On an exception, the savedPC value is set to
the instruction that caused the exception.

A single bit in the status register, DI, enables dual-issue. If this bit is not set, then
instructions flow through one lane at a time, and mis-aligned 32-bit instructions
are allowed. The dual-issue-bit is set and cleared on a per function basis. The bit is
saved in the lowest bit of LR when a function call is taken. It is restored on a RETSP
instruction. The dual-issue-bit is set on executing a DUALENTSP x instruction, and
cleared on executing an ENTSP x instruction. This enables functions to be dual or
single issue.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 12/289

5.3 High priority threads

Threads can be set to be high priority. If no high priority threads are runnable,
then a low priority thread will be scheduled if one is runnable. If high priority
threads are runnable, then they will be scheduled, but at least one low priority
thread will be executed on every iteration of the high priority queue. This means
that all threads are always guaranteed progress.

Threads start as low-priority and only threads that require a very short turn around
time or maximum throughput will be high priority.

6 Instruction Set Notation and Definitions

In the following description

Bpw is the number of bytes in a word

bpw is the number of bits in a word

mem represents the memory

pc represents the program counter

sr represents the status register

sp represents the stack pointer

dp represents the data pointer

cp represents the constant pool pointer

lr represents the link register

r0 . . . r11 represent specific operand registers

x (a single small letter) represents one of r0 . . . r11

X (a single large letter) represents one of r0 . . . r11, sp, dp, cp, lr
us is a small unsigned source operand in the range 0 . . .11

bitp is one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, 32 encoded as a us
u16 is a 16-bit source operand in the range 0 . . .65535

u20 is a 20-bit source operand in the range 0 . . .1048575

iw is the issue-width in bytes, 2 (for single issue) or 4 (for dual issue)

Note that when the program counter (pc) is used by an instruction, it is always
pointing to the next instruction. Instructions that access the location of the current
instruction use pcold.

The operators used in this manual are:

REV 1.0



xCORE-200: The XMOS XS2 Architecture 13/289

∨ logical or

∨bit bitwise or

∧ logical and

∧bit bitwise and

+,−,×,÷,mod arithmetic operations; full precision unsigned integer,
unless specified as signed

2n integer power

l← r assignment of r to l; if r has more bits than l, then the
most significant bits of r will be ignored

¬ logical not

¬bit bitwise not

⊕ bitwise xor

mem[x] An entity at memory address x

y[bit x] A single bit of y
y[bits x..z] A slice of y comprising x − z + 1 bits; x ≥ z
x : y Concatenates x and y, ie, x << bpw ∨bit y
∀x ∈ y for each value x in the set y

Some useful functions are

zext(x,n) = x ∧ (2n − 1) zero extend

sext(x,n) = −(2n−1 ∧ x)∨ x sign extend

6.1 Instruction Prefixes

If the most significant 10 bits of a u16 or u20 instruction operand are non-zero, a
16-bit prefix (PFIX) preceding the instruction is used to encode them. The least
significant bits are encoded within the instruction itself.

A different kind of 16-bit prefix (EOPR) is used to encode instructions with more
than three operands, or to encode the less common instructions.

7 Data Access

7.1 Access to words

The data access instructions fall into several groups. One of these provides access
via the stack pointer.

LDWSP D ←mem[sp +u16 × Bpw] load word from stack

STWSP mem[sp +u16 × Bpw]← S store word to stack

LDAWSP D ← sp +u16 × Bpw load address of word in stack

Another is similar, but provides access via the data pointer.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 14/289

LDWDP D ←mem[dp +u16 × Bpw] load word from data

STWDP mem[dp +u16 × Bpw]← S store word to data

LDAWDP D ← dp +u16 × Bpw load address of word in data

Access to constants and program addresses is provided by instructions which
either load values directly or load them from the constant pool.

LDC D ← u16 load constant

LDWCP D ←mem[cp +u16 × Bpw] load word from constant pool

LDAWCP r11← cp +u16 × Bpw] load word address in constant pool

LDWCPL r11←mem[cp +u20 × Bpw] load word from constant pool long

LDAPF r11← pc +u20 × iw load address in program forward

LDAPB r11← pc −u20 × iw load address in program backward

Access to data structures is provided by instructions which use any of the operand
registers as a base address, and combine this with a scaled offset. In the case of
word accesses, the operand may be a small constant or another operand register,
and the instructions are as follows:

LDWI d←mem[b +us × Bpw] load word

STWI mem[b +us × Bpw]← s store word

LDAWFI d← b +us × Bpw load address of word forward

LDAWBI d← b −us × Bpw load address of word backward

LDW d←mem[b + i× Bpw] load word

STW mem[b + i× Bpw]← s store word

LDAWF d← b + i× Bpw load address of word forward

LDAWB d← b − i× Bpw load address of word backward

7.2 Access to sub-words

In the case of access to 16-bit quantities, the base address is combined with a
scaled operand, which must be an operand register. The least significant bit of the
resulting address must be zero. The 16-bit item is loaded and sign extended into
a word.

LD16S d← sext(mem[b + i× 2],16) load 16-bit signed item

ST16 mem[b + i× 2]← s store 16-bit item

LDA16F d← b + i× 2 load address of 16-bit item forward

LDA16B d← b − i× 2 load address of 16-bit item backward

In the case of access to 8-bit quantities, the base address is combined with an
unscaled operand, which must be an operand register. The 8-bit item is loaded
and zero extended into a word.

LD8U d← zext(mem[b + i],8) load byte unsigned

ST8 mem[b + i]← s store byte

REV 1.0



xCORE-200: The XMOS XS2 Architecture 15/289

Access to part words, including bit-fields, is provided by a small set of instructions
which are used in conjunction with the shift and bitwise operations described
below. These instructions provide for mask generation of any length up to 32 bits,
sign extension and zero-extension from any bit position, and clearing fields within
words prior to insertion of new values.

MKMSK d← 2s − 1 make mask

MKMSKI d← 2bitp − 1 make mask immediate

SEXT d← sext(d, s) sign extend

SEXTI d← sext(d, bitp) sign extend immediate

ZEXT d← zext(d, s) zero extend

ZEXTI d← zext(d, bitp) zero extend immediate

ANDNOT d← d∧¬s and not (clear field)

The SEXTI and ZEXTI instructions can also be used in conjunction with the LD16S
and LD8U instructions to load unsigned 16-bit and signed 8-bit values.

7.3 Access to double words

Pairs of words can be accessed in a single instruction. This requires the address to
be aligned on a two-word boundary; it must be a multiple of Bpw × 2. For store
operations two destination registers must be specified, for load operations two
source registers must be specified:

LDDSP d←mem[sp +us × Bpw × 2] load two words from stack

e ←mem[sp +us × Bpw × 2+ Bpw]
STDSP mem[sp +us × Bpw × 2]← x store two words to stack

mem[sp +us × Bpw × 2+ Bpw]← y
LDDI d←mem[b +us × Bpw × 2] load two words

e ←mem[b +us × Bpw × 2+ Bpw]
STDI mem[b +us × Bpw × 2]← x store two words

mem[b +us × Bpw × 2+ Bpw]← y
LDD d←mem[b + i× Bpw × 2] load two words

e ←mem[b + i× Bpw × 2+ Bpw]
STD mem[b + i× Bpw × 2]← x store two words

mem[b + i× Bpw × 2+ Bpw]← y

Note that the stack pointer should be double word aligned if double loads and
double stores are used. The LDDSP and STDSP instructions can be used for saving
context efficiently.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 16/289

8 Expression Evaluation

ADDI d← l+us add immediate

ADD d← l+ r add

SUBI d← l−us subtract immediate

SUB d← l− r subtract

NEG d← −s negate

EQI d← l = us equal immediate

EQ d← l = r equal

LSU d← l < r less than unsigned

LSS d← l <sgn r less than signed

AND d← l∧bit r and

OR d← l∨bit r or

XOR d← l⊕ r exclusive or

XOR4 d← l⊕ r ⊕ s ⊕ t exclusive or

NOT d← (−1)⊕ s not

SHLI d← l << bitp logical shift left immediate

SHL d← l << r logical shift left

SHRI d← l >> bitp logical shift right immediate

SHR d← l >> r logical shift right

ASHRI d← l >>sgn bitp arithmetic shift right immediate

ASHR d← l >>sgn r arithmetic shift right

MUL d← l× r multiply

DIVU d← l÷ r divide unsigned

DIVS d← l÷sgn r divide signed

REMU d← l mod r remainder unsigned

REMS d← l modsgn r remainder signed

NOP no operation

REV 1.0



xCORE-200: The XMOS XS2 Architecture 17/289

BITREV d : ∀ix d[bit ix] = s[bit bpw − ix − 1] bit reverse

BYTEREV d : ∀ix d[byte ix] = s[byte Bpw − ix − 1] byte reverse

CLZ d : first d : s[bit bpw − d] = 1 count leading zeros

ZIP w ← 2s zip double word

z ← d[bpw − 1..bpw −w − 1] :

e[bpw − 1..bpw −w − 1] :

d[bpw −w − 1..bpw − 2×w − 1] :

e[bpw −w − 1..bpw − 2×w − 1] : ... :
d[w − 1..0] :

e[w − 1..0] :

d← z[2bpw − 1..bpw]
e ← z[bpw − 1..0]

UNZIP w ← 2s unzip double word

z ← d : e
d← z[2× bpw − 1..2× bpw −w − 1] :

z[2× bpw − 2w − 1..2× bpw − 3w − 1] : ... :
z[2w − 1..w]

e ← z[2× bpw −w − 1..2× bpw − 2w − 1] :

z[2× bpw − 3w − 1..2× bpw − 4w − 1] : ... :
z[w − 1..0]

9 Branching, Jumping and Calling

The branch instructions include conditional and unconditional relative branches. A
branch using the address in a register is provided; a relative branch which adds a
scaled register operand to the program counter is provided to support jump tables.

BRFT if c then pc ← pc +u16 × iw branch relative forward true

BRFF if ¬c then pc ← pc +u16 × iw branch relative forward false

BRBT if c then pc ← pc −u16 × iw branch relative backward true

BRBF if ¬c then pc ← pc −u16 × iw branch relative backward false

BRFU pc ← pc +u16 × iw branch relative forward unconditional

BRBU pc ← pc −u16 × iw branch relative backward unconditional

BRU pc ← pc + s × iw branch relative unconditional via reg

BAU pc ← s branch absolute unconditional via reg

REV 1.0



xCORE-200: The XMOS XS2 Architecture 18/289

In some cases, the calling instructions described below can be used to optimise
branches; as they overwrite the link register they are not suitable for use in leaf
procedures which do not save the link register.

The procedure calling instructions include relative calls, calls via the constant pool,
indexed calls via a dedicated register (r11) and calls via a register. Most calls within
a single program module can be encoded in a single instruction; inter-module
calling requires at most two instructions.

BLRF lr ← pc ∨ sr[bit di]; branch and link relative forward

pc ← pc +u20 × iw
BLRB lr ← pc ∨ sr[bit di]; branch and link relative backward

pc ← pc −u20 × iw

BLACP lr ← pc ∨ sr[bit di]; branch and link absolute via CP

pc ←mem[cp +u20 × Bpw]
BLAT lr ← pc ∨ sr[bit di]; branch and link absolute via table

pc ←mem[r11+u16 × Bpw]
BLA lr ← pc ∨ sr[bit di] branch and link absolute via register

pc ← s

Notice that control transfers which do not affect the link (required for tail calls to
procedures) can be performed using one of the LDWCP, LDWCPL, LDAPF or LDAPB
instructions followed by BAU r11.

Calling may require modification of the stack. Typically, the stack is extended on
procedure entry and contracted on exit. The instructions to support this are shown
below.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 19/289

EXTSP sp ← sp −u16 × Bpw extend stack

EXTDP dp ← dp −u16 × Bpw extend data

ENTSP if u16 > 0 then SI entry and extend stack

mem[sp]← lr ;

sp ← sp −u16 × Bpw
sr[bit di]← false

DUALENTSP if u16 > 0 then DI entry and extend stack

mem[sp]← lr ;

sp ← sp −u16 × Bpw
sr[bit di]← true u6

RETSP if u16 > 0 then contract stack

sp ← sp +u16 × Bpw; and return

lr ←mem[sp];
sr[bit di]← lr ∧ 1

pc ← lr ∧¬1

Functions can be made that can be entered in either single or dual issue:

· A single issue function must start with either a 32-bit aligned, long ENTSP
instruction, or a short 32-bit aligned instruction that is paired with a dual-
issuable instruction. This enables the function to be called from both single and
dual issue contexts.

· A DUALENTSP instruction must either be a long instruction that is 32-bit aligned,
or it must be a short DUALENTSP that is stored in the third and fourth byte of
the word, together with an instruction that can be executed in the resource lane.

A short DUALENTSP executed in single issue stored in the lower 16-bits of a word
will raise an exception in the following instruction, since the PC will be misaligned.

Notice that the stack and data area can be contracted using the LDAWSP and
LDAWDP instructions.

In some situations, it is necessary to change to a new stack pointer, data pointer or
pool pointer on entry to a procedure. Saving or restoring any of the existing point-
ers can be done using normal STWS, STWD, LDWS or LDWD instructions; loading
them from another register can be optimised using the following instructions.

SETSP sp ← s set stack pointer

SETDP dp ← s set data pointer

SETCP cp ← s set pool pointer

REV 1.0



xCORE-200: The XMOS XS2 Architecture 20/289

10 Resources and the Thread Scheduler

Each xCORE Tile manages a number of different types of resource. These include
threads, synchronisers, channel ends, timers and locks. For each type of resource
a set of available items is maintained. The names of these sets are used to identify
the type of resource to be allocated by the GETR (get resource) instruction. When
the resource is no longer needed, it can be released for subsequent use by a FREER
(free resource) instruction.

GETR r ← first res ∈ setof(us) : ¬inuseres ; get resource

inuser ← true

FREER inuser ← false free resource

In the above setof(r) returns the set corresponding to the source operand of r .

The resources are:

resource name set use

THREAD threads concurrent execution

SYNC synchronisers thread synchronisation

CHANEND channel ends thread communication

TIMER timers timing

LOCK locks mutual exclusion

Some resources have associated control modes which are set using the SETC
instruction.

SETC controlr ← u16 set resource control

Many of the mode settings are defined only for a specific kind of resource and are
described in the appropriate section; the ones which are used for several different
kinds of resource are:

mode effect

OFF resource off

ON resource on

START resource active

STOP resource inactive

EVENT resource will cause events

INTERRUPT resource will raise interrupts

Execution of instructions from each thread is managed by the thread scheduler.
This maintains a set of runnable threads, run, from which it takes instructions in

REV 1.0



xCORE-200: The XMOS XS2 Architecture 21/289

turn. When a thread is unable to continue, it is paused by removing it from the
run set. The reason for this may be any of the following.

· Its registers are being initialised prior to it being able to run.

· It is waiting to synchronise with another thread before continuing.

· It is waiting to synchronise with another thread and terminate (a join).

· It has attempted an input from a channel which has no data available, or a port
which is not ready, or a timer which has not reached a specified time.

· It has attempted an output to a channel or a port which has no room for the
data.

· It has executed an instruction causing it to wait for one of a number of events
or interrupts which may be generated when channels, ports or timers become
ready for input.

The thread scheduler manages the threads, thread synchronisation and timing
(using the synchronisers and timers). It is directly coupled to resources such as the
ports and channels so as to minimise the delay when a thread becomes runnable
as a result of a communication or input-output.

11 Concurrency and Thread Synchronisation

A thread can initiate execution on one or more newly allocated threads, and can
subsequently synchronise with them to exchange data or to ensure that all threads
have completed before continuing. Thread synchronisation is performed using
hardware synchronisers, and threads using a synchroniser will move between
running states and paused states. When a thread is first created, its status register
is initialised as follows:

sr[bit eeble] ← 0

sr[bit ieble] ← 0

sr[bit inenb] ← 0

sr[bit inint] ← 0

sr[bit hipri] ← 0

sr[bit fast] ← 0

sr[bit kedi] ← 0

sr[bit waiting] ← 1 the thread is paused

sr[bit di] ← 0

The access registers of the newly created thread can be initialised using the
following instructions.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 22/289

TINITPC pct ← s set thread pc

TINITSP spt ← s set thread stack

TINITDP dpt ← s set thread data

TINITCP cpt ← s set thread pool

TINITLR lrt ← s set thread link

These instructions can only be used when the thread is paused. The TINITLR
instruction is intended primarily to support debugging. On thread initialisation,
the PC must be initialised. DP, SP, and CP will retain their value on freeing and
allocating threads, so they may not have to be reinitialised.

Data can be transferred between the operand registers of two threads using TSETR
and TSETMR instructions, which can be used even when the destination thread is
running.

TSETR dt ← s set thread operand register

TSETMR dmstr(tid) ← s set master thread operand register

To start a synchronised slave thread a master must first acquire a synchroniser.
This is done using a GETR SYNC instruction. If there is a synchroniser available its
resource ID is returned, otherwise the invalid resource ID is returned. The GETST
instruction is then used to get a synchronised thread. It is passed the synchroniser
ID and if there is a free thread it will be allocated, attached to the synchroniser and
its ID returned, otherwise the invalid resource ID is returned.

The master thread can repeat this process to create a group of threads which will
all synchronise together. To start the slave threads the master executes an MSYNC
instruction using the synchroniser ID.

GETST d← first t ∈ threads : ¬inuset ; get synchronised thread

inused ← true;
spaused← spaused∪ {d};
slavess ← slavess ∪ {d}
mstrs ← tid

MSYNC if (slavess \ spaused = ∅) master synchronise

then

spaused← spaused \ slavess
else

mpaused←mpaused∪ {tid};
msyns ← true

The group of threads can synchronise at any point by the slaves executing the
SSYNC and the master the MSYNC. Once all the threads have synchronised they
are unpaused and continue executing from the next instruction. The processor
maintains a set of paused master threads mpaused and a set of paused slave
threads spaused from which it derives the set of runnable threads run:

REV 1.0



xCORE-200: The XMOS XS2 Architecture 23/289

run = {thread ∈ threads : inusethread} \ (spaused∪mpaused)

Each synchroniser also maintains a record msyns of whether its master has
reached a synchronisation point.

SSYNC if (slavessyn(tid) \ spaused = {tid})∧msynsyn(tid) slave

then synchronise

if mjoinsyn(tid)
then

forall t ∈ slavessyn(tid) : inuset ← false;
mjoinsyn(tid) ← false

else

spaused← spaused \ slavessyn(tid);
mpaused←mpaused \ {mstrsyn(tid)};
msynsyn(tid) ← false

else

spaused← spaused∪ {tid}

To terminate all of the slaves and allow the master to continue the master executes
an MJOIN instruction instead of an MSYNC. When this happens, the slave threads
are all freed and the master continues.

MJOIN if (slavess \ spaused = ∅) master join

then

forall t ∈ slavess : inuset ← false;
mjoinsyn(tid) ← false

else

mpaused←mpaused∪ {tid};
mjoins ← true;
msyns ← true

A master thread can also create threads which can terminate themselves. This
is done by the master executing a GETR THREAD instruction. This instruction
returns either a thread ID if there is a free thread or the invalid resource ID. The
unsynchronised thread can be initialised in the same way as a synchronised thread
using the TINITPC, TINITSP, TINITDP, TINITCP, TINITLR and TSETR instructions.

The unsynchronised thread is then started by the master executing a TSTART
instruction specifying the thread ID. Once the thread has completed its task it can
terminate itself with the FREET instruction.

TSTART spaused← spaused \ {tid} start thread

FREET inusetid ← false; free thread

The identifier of an executing thread can be accessed by the GETID instruction.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 24/289

GETID t ← tid get thread identifier

12 Communication

Communication between threads is performed using channels, which provide full-
duplex data transfer between channel ends, whether the ends are both in the
same xCORE Tile, in different xCORE Tiles on the same chip or in xCORE Tiles
on different chips. Channels carry messages constructed from data and control
tokens between the two channel ends. The control tokens are used to encode
communication protocols. Although most control tokens are available for software
use, a number are reserved for encoding the protocol used by the interconnect
hardware, and can not be sent and received using instructions.

A channel end can be used to generate events and interrupts when data becomes
available as described below. This allows a thread to monitor several channels,
ports or timers, only servicing those that are ready.

To communicate between two threads, two channel ends need to be allocated,
one for each thread. This is done using the GETR c, CHANEND instruction. Each
channel end has a destination register which holds the identifier of the destination
channel end; this is initialised with the SETD instruction. It is also possible to use
the identifier of a channel end to determine its destination channel end.

SETD rdest ← s set destination

GETD d← rdest get destination

The identifier of the channel end c1 is used to initialise the channel end for thread
c2, and vice versa. Each thread can then use the identifier of its own channel end
to transfer data and messages using output and input instructions.

The interconnect can be partitioned into several independent networks. This makes
it possible, for example, to allocate channels carrying short control messages to
one network whilst allocating channels carrying long data messages to another.
There are instructions to allocate a channel to a network and to determine which
network a channel is using.

SETN cnet ← s set network

GETN d← cnet get network

In the following, c / s represents an output of s to channel c and c . d represents
an input from channel c to d.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 25/289

OUTT c / dtoken(s) output token

OUTCT c / ctoken(s) output control token

OUTCTI c / ctoken(us) output control token immediate

INT if hasctoken(c) input token

then trap
else c . d

INCT if hasctoken(c) input control token

then c . d
else trap

CHKCT if hasctoken(c)∧ (s = token(c)) check control token

then skiptoken(c)
else trap

CHKCTI if hasctoken(c)∧ (s = token(c)) check control token immediate

then skiptoken(c)
else trap

OUT c / s output data word

IN if containsctoken(c) input token

then trap
else c . d

TESTCT d← hasctoken(c) test for control token

TESTWCT d← containsctoken(c) test word for control token

The channel connection is established when the first output is executed. If the
destination channel end is on another xCORE Tile, this will cause the destination
identifier to be sent through the interconnect, establishing a route for the subse-
quent data and control tokens. The connection is terminated when an END control
token is sent. If a subsequent output is executed using the same channel end, the
destination identifier will be used again to establish a new route which will again
persist until another END control token is sent.

A destination channel end can be shared by any number of outputting threads;
they are served in a round-robin manner. Once a connection has been established
it will persist until an END is received; any other thread attempting to establish a
connection will be queued. In the case of a shared channel end, the outputting
thread will usually transmit the identifier of its channel end so that the inputting
thread can use it to reply.

The OUT and IN instructions are used to transmit words of data through the
channel; to transmit bytes of data the OUTT and INT instructions are used. Control
tokens are sent using OUTCT or OUTCTI and received using INCT. To support
efficient runtime checks that the type, length or structure of output data matches
that expected by the inputer, CHKCT and CHKCTI instructions are provided. The

REV 1.0



xCORE-200: The XMOS XS2 Architecture 26/289

CHKCT instruction inputs and discards a token provided that the input token
matches its operand; otherwise it traps. The normal IN and INT instructions trap if
they encounter a control token. To input a control token INCT is used; this traps if
it encounters a data token.

The END control token is one of the 12 tokens which can be sent using OUTCTI
and checked using CHKCTI. By following each message output with an OUTCTI c,
END and each input with a CHKCTI c, END it is possible to check that the size of
the message is the same as the size of the message expected by the inputting
thread. To perform synchronised communication, the output message should be
followed with (OUTCTI c, END; CHKCTI c, END) and the input with (CHKCTI c, END;
OUTCTI c, END).

Another control token is PAUSE. Like END, this causes the route through the
interconnect to be disconnected. However the PAUSE token is not delivered to the
receiving thread. It is used by the outputting thread to break up long messages or
streams, allowing the interconnect to be shared efficiently. The remaining control
tokens are used for runtime checking and for signalling the type of message being
received; they have no effect on the interconnect. Note that in addition to END and
PAUSE, ten of these can be efficiently handled using OUTCTI and CHKCTI.

A control token takes up a single byte of storage in the channel. On the receiving
end the software can test whether the next token is a control token using the
TESTCT instruction, which waits until at least one token is available. It is also
possible to test whether the next word contains a control token using the TESTWCT
instruction. This waits until a whole word of data tokens has been received (in
which case it returns 0) or until a control token has been received (in which case
it returns the byte position after the position of the byte containing the control
token).

Channel ends have a buffer able to hold sufficient tokens to allow at least one
word to be buffered. If an output instruction is executed when the channel is too
full to take the data then the thread which executed the instruction is paused.
It is restarted when there is enough room in the channel for the instruction to
successfully complete. Likewise, when an input instruction is executed and there
is not enough data available then the thread is paused and will be restarted when
enough data becomes available.

Note that when sending long messages to a shared channel, the sender should
send a short request and then wait for a reply before proceeding as this will
minimise interconnect congestion caused by delays in accepting the message.

When a channel end c is no longer required, it can be freed using a FREER c
instruction. Otherwise it can be used for another message.

It is sometimes necessary to determine the identifier of the destination channel
end c2 stored in channel end c1. For example, this enables a thread to transmit
the identifier of a destination channel end it has been using to a thread on another
processor. This can be done using the GETD instruction. It is also useful to be able
to determine quickly whether a destination channel end c2 stored in channel end c1
is on the same processor as c1; this makes it possible to optimise communication
of large data structures where the two communicating threads are executed by the
same processor.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 27/289

TESTLCL d← islocal(c) test destination local

13 Locks

Mutual exclusion between a number of threads can be performed using locks. A
lock is allocated using a GETR l, LOCK instruction. The lock is initially free. It can
be claimed using an IN instruction and freed using an OUT instruction.

When a thread executes an IN on a lock which is already claimed, it is paused
and placed in a queue waiting for the lock. Whenever a lock is freed by an OUT
instruction and the lock’s queue is not empty, the next thread in the queue is
unpaused; it will then succeed in claiming the lock.

When inputting from a lock, the IN instruction always returns the lock identifier,
so the same register can be used as both source and destination operand. When
outputting to a lock, the data operand of the OUT instruction is ignored.

When the lock is no longer needed, it can be freed using a FREER l instruction.

14 Timers

Each xCORE Tile executes instructions at a speed determined by its own clock input.
In addition, it provides a reference clock output which ticks at a standard frequency
of 100MHz. A set of programmable timers is provided and all of these can be used
by threads to provide timed program execution relative to the reference clock.

14.1 Using timers

The processor has a set of timers that can be used to wait for a time. The current
time can be input from any timer, or it can be obtained by using GETTIME:

GETTIME d← current time get current time

Each timer can be used by a thread to read its current time or to wait until a
specified time. A timer is allocated using the GETR t, TIMER instruction. It can be
configured using the SETC instruction; the only two modes which can be set are
UNCOND and AFTER.

mode effect

UNCOND timer always ready; inputs complete immediately

AFTER timer ready when its current time is after its DATA value

In unconditional mode, an IN instruction reads the current value of the timer. In
AFTER mode, the IN instruction waits until the value of its current time is after (later
than) the value in its DATA register. The value can be set using a SETD instruction.
Timers can also be used to generate events as described below.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 28/289

A set of programmable clocks is also provided and each can be used to produce a
clock output to control the action of one or more ports and their associated port
timers. The ports are connected to a clock using the SETCLK instruction.

SETCLK clockd ← s set clock source

Each port p which is to be clocked from a clock c can be connected to it by
executing a SETCLK p, c instruction.

Each clock can use a one bit port as its clock source. A clock c which is to use a port
p as its clock source can be connected to it by executing a SETCLK p, c instruction.
Alternatively, a clock may use the reference clock as its clock source (by SETCLK p,
REF). In either case the clock can be configured to divide the frequency using an
8-bit divider. When this is set to 0, the clock passes directly to the output. The
falling edge of the clock is used to perform the division. Hence a setting of 1 will
result in an output from the clock which changes each falling edge of the input,
halving the input frequency f ; and a setting of n will produce an output frequency
of f/2n. The division factor is set using the SETD instruction. The lowest eight
bits of the operand are used and the rest ignored.

To ensure that the timers in the ports which are attached to the same clock all
record the same time, the clock should be started using a SETC c, START instruction
after the ports have all been attached to the clock. All of the clocks are initially
stopped and a clock can be stopped by a SETC c, STOP instruction.

The data output on the pins of an output port changes state synchronously with
the port clock. If several output ports are driven from the same clock, they will
appear to operate as a single output port, provided that the processor is able to
supply new data to all of them during each clock cycle. Similarly, the data input by
an input port from the port pins is sampled synchronously with the port clock. If
several input ports are driven from the same clock they will appear to operate as a
single input port provided that the processor is able to take the data from all of
them during each clock cycle.

The use of clocked ports therefore decouples the internal timing of input and
output program execution from the operation of synchronous input and output
interfaces.

15 Ports, Input and Output

Ports are interfaces to physical pins. A port can be used for input or output. It can
use the reference clock as its port clock or it can use one of the programmable
clocks. Transfers to and from the pins can be synchronised with the execution of
input and output instructions, or the port can be configured to buffer the transfers
and to convert automatically between serial and parallel form. Ports can also be
timed to provide precise timing of values appearing on output pins or taken from
input pins. When inputting, a condition can be used to delay the input until the
data in the port meets the condition. When the condition is met the captured data
is time stamped with the time at which it was captured.

The port clock input is initially the reference clock. It can be changed using the
SETCLK instruction with a clock ID as the clock operand. This port clock drives the

REV 1.0



xCORE-200: The XMOS XS2 Architecture 29/289

port timer and can also be used to determine when data is taken from or presented
to the pins.

A port can be used to generate events and interrupts when input data becomes
available as described below. This allows a thread to monitor several ports,
channels or timers, only servicing those that are ready.

15.1 Input and Output

Each port has a transfer register. The input and output instructions used for
channels, IN and OUT, can also be used to transfer data to and from a port transfer
register. The IN instruction zero-extends the contents of a port transfer register
and transfers the result to an operand register. The OUT instruction transfers the
least significant bits from an operand register to a port transfer register.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 30/289

Two further instructions, INSHR and OUTSHR, optimise the transfer of data. The
INSHR instruction shifts the contents of its destination register right, filling the
left-most bits with the data transferred from the port. The OUTSHR instruction
transfers the least significant bits of data from its source register to the port and
shifts the contents of the source register right.

OUTSHR p / s[bits 0 for trwidth(p)]; output to port

s ← s >> trwidth(p) and shift

INSHR s ← s >> trwidth(p); shift and

p . s[bits (bpw − trwidth(p)) for trwidth(p)] input from port

The transfer register is accessed by the processor; it is also accessed by the port
when data is moved to or from the pins. When the processor writes data into the
transfer register it fills the transfer register; when the processor takes data from
the transfer register it empties the transfer register.

15.2 Port Configuration

A port is initially OFF with its pins in a high impedance state. Before it is used,
it must be configured to determine the way it interacts with its pins, and set
ON, which also has the effect of starting the port. The port can subsequently be
stopped and started using SETC p, STOP and SETC p, START; between these the
port configuration can be changed.

The port configuration is done using the SETC instruction which is used to define
several independent settings of the port. Each of these has a default mode and
need only be configured if a different mode is needed. The effect of the SETC mode
settings is described below. The bold entry in each setting is the default mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 31/289

mode effect

NOREADY no ready signals are used

HANDSHAKEN both ready input and ready output signals are used

STROBED one ready signal is used (output on master, input on slave)

SYNCHRONISED processor synchronises with pins

BUFFERED port buffers data between pins and processor

SLAVE port acts as a slave

MASTER port acts as a master

NOSDELAY input sample not delayed

SDELAY input sample delayed half a clock period

DATAPORT port acts as normal

CLOCKPORT the port outputs its source clock

READYPORT the port outputs a ready signal

DRIVE pins are driven both high and low

PULLDOWN pins pull down for 0 bits, are high impedance otherwise

PULLUP pins pull up for 1 bits, but are high impedance otherwise

NOINVERT data is not inverted

INVERT data is inverted

The DRIVE, PULLDOWN and PULLUP modes determine the way the pins are driven
when outputting, and the way they are pulled when inputting. The CLOCKPORT,
READYPORT and INVERT settings can only be used with 1-bit ports.

Initially, the port is ready for input. Subsequently, it may change to output data
when an output instruction is executed; after outputting it may change back to
inputting when an input instruction is executed.

It is sometimes useful to read the data on the pins when the port is outputting;
this can be done using the PEEK instruction:

PEEK d← pins(p) read port pins

15.3 Configuring Ready and Clock Signals

A port can be configured to use ready input and ready output signals.

A port’s ready input signal is input by an associated one-bit port. This association
is made using the SETRDY instruction.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 32/289

SETRDY readyp ← s set source of port ready input

A port’s ready output signal is output by another associated one-bit port. A one-bit
port r which is to be used as a ready output must first be configured in READYPORT
mode by SETC r , READYPORT. This ready port r can then be associated with a port
p by SETRDY r , p.

A one-bit port can be used to output a clock signal by setting it into CLOCKPORT
mode; its clock source is set using the SETCLK instruction.

When a 1-bit port is configured to be in CLOCKPORT or READYPORT mode, the
drive mode and invert mode are configurable as normal.

15.4 NOREADY mode

If the port is in NOREADY mode, no ready signals are used and data is moved to
and from the pins either asynchronously (at times determined by the execution of
input and output instructions) or synchronously with the port clock, irrespective of
whether the port is in MASTER or SLAVE mode.

At most one input or output is performed per cycle of the port clock.

15.5 HANDSHAKEN mode

In HANDSHAKEN mode, ready signals are used to control when data is moved to or
from a port’s pins.

A port in MASTER HANDSHAKEN mode initiates an output cycle by moving data
to the pins and asserting the ready output (request); it then waits for the ready
input (reply) to be asserted. It initiates an input cycle by asserting the ready output
(request) and waiting for the ready input (reply) to be asserted along with the data;
it then takes the data.

A port in SLAVE HANDSHAKEN mode waits for the ready input (request) to be
asserted. It performs an input cycle by taking the data and asserting the ready
output (reply); it performs an output cycle by moving data to the pins and asserting
the ready output (reply).

The ready signals accompany the data in each cycle of the port clock. The falling
edge of the port clock initiates the set up of data or a change of port direction; the
port timer also advances on this edge. On output, the data and the ready output
will be valid on the rising edge of the port clock. On input, data and the ready input
will be sampled on the rising edge of the port clock unless the port is configured
as SDELAY, in which case they are sampled on the falling edge.

15.6 STROBED mode

In STROBED mode only one ready signal is used and the port can be in MASTER or
SLAVE mode. A MASTER port asserts its ready output and the slave has to keep up;
a SLAVE port has to keep up with the ready input.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 33/289

Note that a port in NOREADY mode behaves in the same way as a port in STROBED
mode which is always ready.

15.7 The Port Timer

A port has a timer which can be used to cause the transfer of data to or from
the pins to take place at a specified time. The time at which the transfer is to be
performed is set using the SETPT (set port time) instruction. Timed ports are often
used together with timestamping as this allows precise control of response times.

SETPT porttimep ← s set port time

CLRPT clearporttime(p) clear port time

GETTS d← timestampp get port timestamp

The CLRPT instruction can be used to cancel a timed transfer.

The timestamp which is set when a port becomes ready for input can be read using
the GETTS instruction.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 34/289

15.8 Conditions

A port has an associated condition which can be used to prevent the processor
from taking input from the port when the condition is not met. The conditions
are set using the SETC instruction. The value used for comparison in some of
the conditions is held in the port data register, which can be set using the SETD
instruction.

mode port ready condition

NONE no condition

EQ value on pins equal to port data register value

NEQ value on pins not equal to port data register value

The simplest condition is NONE. The other conditions all involve comparing the
value from the pins with the value in the port data register.

When the condition is met a timestamp is set and the port becomes ready for input.

When a port is used to generate an event, the data which satisfied the condition
is held in the transfer register and the timestamp is set. The value returned
by a subsequent input on the port is guaranteed to meet the condition and to
correspond to the timestamp even if the value on the port has changed.

15.9 Synchronised Transfers

A port in SYNCHRONISED mode ensures that the signalling operation of the port
pins is synchronised with the processor instruction execution.

When a SETPT instruction is used, the movement of data between the pins and the
transfer register takes place when the current value of the port timer matches the
time specified with the SETPT instruction.

If the port is used for output and the transfer register is full, the SETPT instruction
will pause until the transfer register is empty. This ensures that the port time is
not changed until the pending output has completed.

If a condition other than NONE is used the port will only be ready for input when
the data in the transfer register matches the condition. If an input instruction is
executed and the specified condition is not met, the thread executing the input
will be paused until the condition is met; the thread then resumes and completes
the input. The value of the port timer corresponding to the data in the transfer
register when a port condition is met is recorded in the port timestamp register.
The timestamp register is read at any time using the GETTS instruction.

15.10 Buffered Transfers

A port in BUFFERED mode buffers the transfer of data between the processor and
the pins through the use of a shift register, which is situated between the transfer
register and the pins. A buffered port can be used to convert between parallel and
serial form using its shift register. The number of bits in the transfer register and

REV 1.0



xCORE-200: The XMOS XS2 Architecture 35/289

the shift register determines the width of the transfers (the transfer width) between
the processor and the port; this is a multiple of the port width (the number of pins)
and can be set by the SETTW instruction.

SETTW widthp ← s set port transfer width

For a 32-bit wordlength, the transfer width is normally 32, 8, 4 or 1 bit.

Note that in contrast to a synchronised transfer, where the transfer width and the
port width are equal, the transfer width of a buffered transfer can differ from the
port width.

On input, the shift register is full when n values have been taken from the p pins,
where n× p is the transfer width; it will then be emptied to the transfer register
ready for an input instruction. On output the shift register is filled from the transfer
register and will be empty when n values have been moved to the p pins, where
n× p is the transfer width.

The port operates as follows:

· HANDSHAKEN: A handshaken transfer only shifts data from the pins to the shift
register on input when the shift register is not full; on output it only shifts data
from the shift register to the pins when the shift register is not empty. On input,
the shift register will become full if the processor does not input data to empty
the transfer register; when the processor inputs the data, the transfer register is
filled from the shift register and the shift register will start to be re-filled from
the pins. On output, the shift register will become empty if the processor does
fill the transfer register; when the processor outputs data to fill the transfer
register, the shift register will be filled from the transfer register and the shift
register will then start to be emptied to the pins.

· STROBED SLAVE Input: Data is shifted into the shift register from the pins
whenever the ready input is asserted. Provided that the transfer register is
empty, when the shift register is full the transfer register is filled from the shift
register. When the processor executes an input instruction to take data from
the transfer register, the transfer register is emptied.

If the processor does not take the data from the transfer register by the time the
shift register is next full, data will continue to be shifted into the shift register
and only the most recent values will be kept; as soon as an input instruction
empties the transfer register the transfer register will be filled from the shift
register.

· STROBED SLAVE Output: Data is shifted out to the pins whenever the ready
input is asserted. Provided that the transfer register is full, when the shift
register is empty, it is filled from the transfer register. When the processor
executes an output instruction it fills the transfer register.

If the processor has not filled the transfer register by the time the shift register
is next empty, the data is held on the pins. As soon as the processor executes
and output instruction it fills the transfer register; the shift register is then filled
from the transfer register and the it will start to be emptied to the pins.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 36/289

· STROBED MASTER: The transfer operates in the same way as a handshaken
transfer in which the ready input is always asserted.

The SETPT instruction can be used to delay the movement of data between the shift
register and the transfer register until the current value of the port timer matches
the time specified.

Note that this can be used to provide synchronisation with a stream of data in a
BUFFERED port in NOREADY mode, because exactly one item will be shifted to or
from the pins in each clock cycle.

If the port is outputting and the transfer register is full the SETPT instruction will
pause until it is empty. This ensures that the port time is not changed until the
pending output has completed.

The port condition can be used to locate the first item of data on the pins that
matches a condition. If the condition is different from NONE, data will be held in
the shift register until the data meets the condition; the data is then moved to the
transfer register, the timestamp is set and the port changes the condition to NONE
so that data can continue to fill the shift register in the normal way. Only the top
port-width bits of the shift register are used for comparison when the condition is
checked.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 37/289

15.11 Partial Transfers

Buffered transfers permit data of less than the transfer width to be moved between
the shift register and the transfer register. The length of the items in a buffered
transfer can be set by a SETPSC instruction, which sets the port shift register count.
On input, this will cause the shift register contents to be moved to the transfer
register when the specified amount of data has been shifted in; on output it will
cause only the specified amount of data to be shifted out before the shift register
is ready to be re-loaded. This is useful for handling the first and last items in a
long transfer.

SETPSC shif tcountp ← s set port shift register count

A buffered input can be terminated by executing an ENDIN instruction which returns
the number of items buffered in the port (which will include the shift register and
transfer register contents) and also sets the port shift register count to the amount
of data remaining in the shift register, enabling a following input to complete.

ENDIN d← buffercountp end input

To optimise the transfer of partwords two further instructions are provided:

OUTPW shif tcountp ← q; output part word

p / s
OUTPWI shif tcountp ← bitp; output part word

p / s
INPW shif tcountp ← bitp; input part word

p . d

These encode their immediate operand in the same way as the shift instructions.

15.12 Changing Direction

A SYNCHRONISED port can change from input to output, or from output to input.
The direction changes at the start of the next setup period. For a transfer initiated
by a SETPT instruction, the direction will be input unless an output is executed
before the time specified by the SETPT instruction.

A BUFFERED port can change direction only after it has completed a transfer. This is
done by stopping and re-starting the port using SETC p, STOP and SETC p, START
instructions.

16 Events, Interrupts and Exceptions

Events and interrupts allow timers, ports and channel ends to automatically transfer
control to a pre-defined event handler. The resources generate events by default
and must be reconfigured using a SETC instruction in order to generate interrupts.
The ability of a thread to accept events or interrupts is controlled by information

REV 1.0



xCORE-200: The XMOS XS2 Architecture 38/289

held in the thread status register (sr ), and may be explicitly controlled using SETSR
and CLRSR instructions with appropriate operands.

SETSR sr ← sr ∨u16 set thread state

CLRSR sr ← sr ∧¬u16 clear thread state

GETSR r11← sr ∧u16 get thread state

The operand of these instructions should be one (or more) of

EEBLE enable events

IEBLE enable interrupts

INENB determine if thread is enabling events

ININT determine if thread is in interrupt mode

HIPRI set thread to high priority mode

FAST set thread to fast mode

KEDI set thread to switch to dual issue on kernel entry

16.1 Events

A thread normally enables one or more events and then waits for one of them to
occur. Hence, on an event all the thread’s state is valid, allowing the thread to
respond rapidly to the event. The thread can perform input and output operations
using the port, channel or timer which gave rise to an event whilst leaving some
or all of the event information unchanged. This allows the thread to complete
handling an event and immediately wait for another similar event.

Timers, ports and channel ends all support events, the only difference being the
ready conditions used to trigger the event. The program location of the event
handler must be set prior to enabling the event using the SETV instruction. The
SETEV instruction can be used to set an environment for the event handler; this will
often be a stack address containing data used by the handler. Timers and ports
have conditions which determine when they will generate an event; these are set
using the SETC and SETD instructions. Channel ends are considered ready as soon
as they contain enough data.

Event generation by a specific port, timer or channel can be enabled using an
event enable unconditional (EEU) instruction and disabled using an event disable
unconditional (EDU) instruction. The event enable true (EET) instruction enables
the event if its condition operand is true and disables it otherwise; conversely
the event enable false (EEF) instruction enables the event if its condition operand
is false, and disables it otherwise. These instructions are used to optimise the
implementation of guarded inputs.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 39/289

SETV vectorr ← s set event vector

SETEV envectorr ← s set event environment vector

SETD datar ← s set resource data

GETD d← datar get resource data

SETC condr ← s set event condition

EET enbr ← c; threadr ← tid event enable true

EEF enbr ← ¬c; threadr ← tid event enable false

EDU enbr ← false; threadr ← tid event disable

EEU enbr ← true; threadr ← tid event enable

Having enabled events on one or more resources, a thread can use a WAITEU,
WAITET or WAITEF instruction to wait for at least one event. The WAITEU instruction
waits unconditionally; the WAITET instruction waits only if its condition operand is
true, and the WAITEF waits only if its condition operand is false.

WAITET if c then eebletid ← true event wait if true

WAITEF if ¬ c then eebletid ← true event wait if false

WAITEU eebletid ← true event wait

This may result in an event taking place immediately with control being transferred
to the event handler specified by the corresponding event vector with events
disabled by clearing the thread’s eeble flag. Alternatively the thread may be
paused until an event takes place with the eeble flag enabled; in this case the
eeble flag will be cleared when the event takes place, and the thread resumes
execution.

event ed← evres ;
pc ← vres ;
sr[bit inenb]← false;
sr[bit eeble]← false;
sr[bit waiting]← false

Note that the environment vector is transferred to the event data register, from
where it can be accessed by the GETED instruction. This allows it to be used to
access data associated with the event, or simply to enable several events to share
the same event vector.

To optimise the responsiveness of a thread to high priority resources the SETSR
EEBLE instruction can be used to enable events before starting to enable the ports,
channels and timers. This may cause an event to be handled immediately, or as
soon as it is enabled. An enabling sequence of this kind can be followed either by
a WAITEU instruction to wait for one of the events, or it can simply be followed
by a CLRSR EEBLE to continue execution when no event takes place. The WAITET
and WAITEF instructions can also be used in conjunction with a CLRSR EEBLE to
conditionally wait or continue depending on a guarding condition. The WAITET and

REV 1.0



xCORE-200: The XMOS XS2 Architecture 40/289

WAITEF instructions can also be used to optimise the common case of repeatedly
handling events from multiple sources until a terminating condition occurs.

All of the events which have been enabled by a thread can be disabled using a
single CLRE instruction. This disables event generation in all of the ports, channels
or timers which have had events enabled by the thread. The CLRE instruction also
clears the thread’s eeble flag.

CLRE eebletid ← false; disable all

inenbtid ← false; events

forall res for thread

if (threadres = tid∧ eventres) then enbres ← false

Where enabling sequences include calls to input subroutines, the SETSR INENB
instruction can be used to record that the processor is in an enabling sequence;
the subroutine body can use GETSR INENB to branch to its enabling code (instead
of its normal inputting code). INENB is cleared whenever an event occurs, or by the
CLRE instruction.

16.2 Interrupts

In contrast to events, interrupts can occur at any point during program execution,
and so the current pc and sr (and potentially also some or all of the other
registers) must be saved prior to execution of the interrupt handler. Interrupts are
taken between instructions, which means that in an interrupt handler the previous
instruction will have been completed, and the next instruction is yet to be executed
on return from the interrupt. This is done using the spc and ssr registers. Any
interrupt and exception causes the pc and sr registers to be saved into spc and
ssr , and the status register to be modified to indicate that the processor is running
in kernel mode:

kernelentry ssr ← sr ;

sed← ed;

sr[bit di]← sr[bit kedi];
sr[bit eeble]← false;
sr[bit ieble]← false;

On an interrupt generated by resource r the following occurs automatically:

interrupt spc ← pc
kernelentry ; “kernelentry” is defined above

ed← evres
pc ← vres ;
sr[bit inint]← true;
sr[bit waiting]← false;

On kernel entry the DI bit is saved in the ssr register, whereupon DI is set according
to the KEDI (dual-issue-in-kernel) bit in the status register. This enables exception

REV 1.0



xCORE-200: The XMOS XS2 Architecture 41/289

handlers to be written in either SI or DI code as required. When in kernel mode,
the kernel can switch between SI and DI mode as usual using DUALENTSP/ENTSP.
On return from the kernel call, KRET, the DI bit is restored from ssr .

REV 1.0



xCORE-200: The XMOS XS2 Architecture 42/289

When the handler has completed, execution of the interrupted thread can be
performed by a KRET instruction, this restores the DI bit from spc.

KRET pc ← spc ∧¬1; return from interrupt

sr ← ssr
ed← sed

16.3 Exceptions

Exceptions which occur when an error is detected during instruction execution are
treated in the same way as interrupts except that they transfer control to a location
defined relative to the thread’s kernel entry point kep register.

except spc ← pcold; any exception

kernelentry ; defined on page 40

pc ← kep;

et ← exceptiontype;
ed← exceptiondata;

The exception handler resides on the address stored in kep. The handler can run
in dual or single issue mode, depending on the kedi bit in the status register.
Exception types are listed below:

Exception et Meaning

ET_LINK_ERROR 1 Incorrect use of channel

ET_ILLEGAL_PC 2 Unaligned program counter

ET_ILLEGAL_INSTRUCTION 3 Illegal opcode

ET_ILLEGAL_RESOURCE 4 Illegal use of resource

ET_LOAD_STORE 5 Unaligned memory access

ET_ILLEGAL_PS 6 Undefined PS register

ET_ARITHMETIC 7 Arithmetic error

ET_ECALL 8 Assertion failed

ET_RESOURCE_DEP 9 Illegal resource use

ET_KCALL 15 KCALL executed

When in dual issue mode, an exception in one lane will abort any instruction in
the other lane. If two instructions would both cause an exception, then only one
exception is taken. The et register will hold the data as specified above, but the
lane in which the exception occurred is encoded in bit 4 of et. If the thread is in
dual-issue mode, and two instructions were issued, and the exception occurred in
the resource lane, then this bit is set to 1. In all other cases bit 4 of et will be set
to 0.

A program can force an exception as a result of a software detected error condition
using ECALLT, ECALLF, or ELATE:

REV 1.0



xCORE-200: The XMOS XS2 Architecture 43/289

ECALLT if e then error on true

except(ET_ECALL, e); “except” is defined on page 42

ECALLF if ¬e then error on true

except(ET_ECALL, e); “except” is defined on page 42

ELATE if s after tcurrent then error if late, 1r

except(ET_ECALL, s); “except” is defined on page 42

These have the same effect as hardware detected exceptions, transferring control
to the same location and indicating that an error has occurred in the exception
type (et) register. If in dual issue mode, any instruction in the other lane will be
aborted on taking an exception.

A program can explicitly cause entry to a handler using one of the kernel call
instructions. These have a similar effect to exceptions, except that they transfer
control to a location defined relative to the thread’s kep register.

KCALLI kernelentry ; defined on page 40

spc ← pc
et ← ET_KCALL;

ed← u6;

pc ← kep + 64;

KCALL kernelentry ; defined on page 40

spc ← pc
et ← ET_KCALL;

ed← s;
pc ← kep + 64;

In dual issue mode KCALL will complete as normal; it is safe to dual-issue a KCALL
instruction with any other instruction. If the instruction in the other lane causes an
exception, the thread will continue with the exception and abort the KCALL.

The spc, ssr , et and sed registers can be saved and restored directly to the stack.

LDSPC spc ←mem[sp + 1×Bpw] load exception pc

STSPC mem[sp + 1×Bpw]← spc store exception pc

LDSSR ssr ←mem[sp + 2×Bpw] load exception sr

STSSR mem[sp + 2×Bpw]← ssr store exception sr

LDSED sed←mem[sp + 3×Bpw] load exception data

STSED mem[sp + 3×Bpw]← sed store exception data

STET mem[sp + 4×Bpw]← et store exception type

In addition, the et and ed registers can be transferred directly to a register.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 44/289

GETET r11← et get exception type

GETED r11← ed get exception data

A handler can use the KENTSP instruction to save the current stack pointer into
word 0 of the thread’s kernel stack (using the kernel stack pointer ksp) and change
stack pointer to point at the base of the thread’s kernel stack. KRESTSP can then
be used to restore the stack pointer on exit from the handler.

KENTSP n mem[ksp]← sp; switch to kernel stack

sp ← ksp −n×Bpw

KRESTSP n ksp ← sp +n×Bpw ; switch from kernel stack

sp ←mem[ksp]

The kep can be initialised using the SETKEP instruction; the ksp can be read using
the GETKSP instructions.

SETKEP kep ← r11 set kernel entry point

GETKSP r11← ksp get kernel stack pointer

The kernel stack pointer is initialised by the boot-ROM to point to a safe location
near the last location of RAM - the last few locations are used by the JTAG debugging
interface. ksp can be modified by using a sequence of SETSP followed by KRESTSP.

17 Initialisation and Debugging

The state of the processor includes additional registers to those used for the
threads.

register use

dspc debug save pc

dssr debug save sr

dssp debug save sp

dtype debug cause

dtid thread identifier used to access thread state

dtreg register identifier used to access thread state

DEBUG flag that indicates that processor is in debug mode

All of the processor state can be accessed using the GETPS and SETPS instructions:

GETPS d← state[s] get processor state

SETPS state[d]← s set processor state

REV 1.0



xCORE-200: The XMOS XS2 Architecture 45/289

To access the state of a thread, first SETPS is used to set dtid and dtreg to the
thread identifier and register number within the thread state. The contents of the
register can then be accessed by:

DGETREG d← dtregdtid get thread register

The debugging state is entered by executing a DCALL instruction, by an instruction
that triggers a watchpoint or a breakpoint, or by an external asynchronous DEBUG
event (for example caused by asserting a DEBUG pin). During debug, thread 0
executes the debug handler, all other threads are frozen. The debugging state is
exited on DRET, which causes thread 0 to resume at its saved PC, and all other
threads to start where they were stopped. Entry to a debug handler operates in a
manner similar manner to an interrupt:

debugentry dspc ← pct0;

dssr ← srt0;

pct0 ← debugentrypoint
srt0[bit inint]← true
srt0[bit di]← false;
srt0[bit eeble]← false;
srt0[bit ieble]← false
srt0[bit waiting]← false
DEBUG ← 1

On an external, asynchronous, DEBUG event, the processor will always enter the
debug state as follows:

DEBUG event debugentry “debugentry” is defined on page 45

dtype ← debugcause

The DCALL instruction has the same effect:

DCALL debugentry (defined on page 45)

dtype ← dcallcause debug call (breakpoint)

DRET pct0 ← dspc; return from debug

srt0 ← dssr ;

DEBUG ← 0

DENTSP dssp ← sp; debug save stack pointer

sp ← ramend

DRESTSP sp ← dssp debug restore stack pointer

On entering debug mode the DI bit is saved in the dspc register, and it is cleared.
Debug mode is always entered in single issue mode, but the debugger can switch

REV 1.0



xCORE-200: The XMOS XS2 Architecture 46/289

to dual-issue mode if required using DUALENTSP. On return from the debugger, DI
is restored from the dspc

Watchpoints and instruction breakpoints are supported by means of SETPS and
GETPS instructions. An instruction breakpoint is an address that triggers a DCALL
on a PC being equal to the value in the instruction break point. A data watchpoint
is a pair of addresses l and h, and a condition that triggers a DCALL on stores and
or loads to specific memory addresses. If the condition is set to INRANGE, then a
debug is triggered if a thread access address x where l ≤ x ≤ h. If the condition
is set to NOTINRANGE, then a debug is triggered if a thread access address x
where x ≤ l∨ x ≥ h.

· When the processor is not in debug-mode, none of the debug information is
writable, except for the DEBUG registers that brings the processor into debug
mode.

· When the processor is not in debug-mode, none of the debug values can be read
except the PC and SR values, in order to support profiling.

18 Specialised Instructions

18.1 Long arithmetic

The long arithmetic instructions support signed and unsigned arithmetic on multi-
word values. The long subtract instruction (LSUB) enables conversion between long
signed and long unsigned values by subtracting from long 0. The long multiply
and long divide operate on unsigned values.

The long add instruction is intended for adding multi-word values. It has a carry-
in operand and a carry-out operand. Similarly, the long subtract instruction is
intended for subtracting multi-word values and has a borrow-in operand and a
borrow-out operand.

LADD d← l+ r + c[bit 0]; add with carry

e ← carry(l+ r + c[bit 0])

LSUB d← l− r − b[bit 0]; subtract with borrow

e ← borrow(l− r − b[bit 0])

The long multiply instruction multiplies two of its source operands, and adds two
more source operands to the result, leaving the unsigned double length result in its
two destination operands. The result can always be represented within two words
because the largest value that can be produced is (B−1)×(B−1)+(B−1)+(B−1) =
B2 − 1 where B = 2bpw . The two carry-in operands allow the component results
of multi-length multiplications to be formed directly without the need for extra
addition steps.

LMUL d← ((l× r)+ s + t)[bits 2× bpw − 1..bpw]; long multiply

e ← ((l× r)+ s + t)[bits bpw − 1..0]

REV 1.0



xCORE-200: The XMOS XS2 Architecture 47/289

The long division instruction (LDIV) is very similar to the short unsigned division
instruction, except that it returns the remainder as well as the result; it also allows
the remainder from a previous step of a multi-length division to be loaded as the
high part of the dividend.

LDIV d← (l : m)÷ r ; long divide unsigned

e ← (l : m)mod r

An ET_ARITHMETIC exception is raised if the result cannot be represented as a
single word value; this occurs when l ≤ r . Note that this instruction operates
correctly if the most significant bit of the divisor is 1 and the initial high part of the
dividend is non-zero. A (fairly) simple algorithm can be used to deal with a double
length divisor. One method is to normalise the divisor and divide first by the top
32 bits; this produces a very close approximation to the result which can then be
corrected.

The long extract and insert instructions perform long shift and mask operations.
LEXTRACT extracts a selection of bits from two words at a given offset; a sequence
of LEXTRACT instructions can be used to implement a rotate, long shift, and
misaligned loads. An LSATS followed by an LEXTRACT can be used to extract a
word from the result of a MACCS (see the next subsection). LINSERT performs the
inverse operation of LEXTRACT and inserts a bit pattern into a double word.

LEXTRACT d← (l : r)[bit bitp + x − 1..x] extract word

LINSERT m ← ((1 << bitp)− 1) << s insert word

d : e ← ((d : e)∧bit ¬m)∨bit ((x << s)∧bitm)

18.2 Multiply accumulate

The multiply-accumulate instructions perform a double length accumulation of
products of single length operands:

MACCU s ← ((l× r)+ (s : t))[bits 2× bpw − 1..bpw]; long multiply

t ← ((l× r)+ t)[bits bpw − 1..0] acc unsigned

MACCS s ← ((l×sgn r)+ (s : t))[bits 2× bpw − 1..bpw]; long multiply

t ← ((l×sgn r)+ t)[bits bpw − 1..0] acc signed

LSATS if s : t > 2l+bpw − 1 Saturate signed

then s : t ← 2l+bpw − 1;

elsif s : t < −2l+bpw

then s : t ← −2l+bpw ;

LSATSI if s : t > 2bitp+bpw − 1 Saturate signed

then s : t ← 2bitp+bpw − 1; immediate

elsif s : t < −2bitp+bpw

then s : t ← −2bitp+bpw ;

REV 1.0



xCORE-200: The XMOS XS2 Architecture 48/289

The MACCU instruction multiplies two unsigned source operands to produce a
double length result which it adds to its unsigned double length accumulator
operand held in two other operands. Similarly, the MACCS instruction multiplies
two signed source operands to produce a double length result which it adds to its
signed double length accumulator operand held in two other operands. The LSATS
instruction saturates a number that is outside the range −2l+bpw ..2l+bpw − 1.

18.3 Cyclic redundancy check

Cyclic redundancy check is performed using:

CRC32 for step = 0 for bpw word cyclic

if (r[bit 0] = 1) redundancy

then r ← (s[bit step] : r[bits (bpw − 1) . . .1])⊕ p check

else r ← (s[bit step] : r[bits (bpw − 1) . . .1])

CRC8 for step = 0 for 8 8 step cyclic

if (r[bit 0] = 1) redundancy

then r ← (s[bit step] : r[bits 31 . . .1])⊕ p check

else r ← (s[bit step] : r[bits 31 . . .1]);
d← s >> 8

CRCN if n > 32 then cnt ← 32 n step cyclic

else cnt ← n redundancy

for step = 0 for cnt check

if (r[bit 0] = 1)
then r ← (s[bit step] : r[bits 31 . . .1])⊕ p
else r ← (s[bit step] : r[bits 31 . . .1]);

The CRC8 instruction operates on the least significant 8 bits of its data operand,
ignoring the most significant 24 bits. It is useful when operating on a sequence
of bytes, especially where these are not word-aligned in memory. The CRCN
instruction operates on the least significant bytes of its data operand; the fourth
operand of CRCN, t, determines the number of bytes to fold into the CRC. If t > 32
then 32 bits are be processed. This enables CRCN to be passed a bit count in a
loop, and overrun in an unrolled loop.

The CRC32_INC instruction performs a CRC32 and a simultaneous increment on
the second parameter.

CRC32 for step = 0 for bpw word cyclic

if (r[bit 0] = 1) redundancy

then r ← (s[bit step] : r[bits (bpw − 1) . . .1])⊕ p check and

else r ← (s[bit step] : r[bits (bpw − 1) . . .1]) increment

a← a+ bitp register

REV 1.0



xCORE-200: The XMOS XS2 Architecture 49/289

19 XCore XS2 Instructions

This section presents the instructions in alphabetical order. For each instruction we
present a short textual description, followed by the assembly syntax, its meaning
in a more formal notation, its encoding(s) and potential exceptions that can be
raised by this exception.

The processor operates on words - registers are one-word wide, data can be
transferred to ports and channels in words, and most memory operations operate
on words. A word is bpw bits long, or Bpw bytes long.

In the description we use the following notation to describe operands and con-
stants:

b denotes a bit-pattern - one of bpw, 1, 2, 3, 4, 5, 6, 7,
8, 16, 24, and 32; these are encoded using numbers
0...11.

c register used as a conditional.

d, e register used as a destination.

r register used as a resource identifier.

s register used as a source.

t register used as a thread identifier.

us a small unsigned constant in the range 0...11

ux an unsigned constant in the range 0...(2x − 1)
v,w,x,y registers used for two or more sources.

All mathematical operators are assumed to work on Integers (Z) and, unless
otherwise stated, bit patterns found in registers are interpreted unsigned. Signed
numbers are represented using two’s complement, and if an operand is interpreted
as a signed number, this is denoted by a subscript signed. In addition to the
standard numerical operators we assume the following bitwise operators:

∨bit Bitwise or.

∧bit Bitwise and.

⊕bit Bitwise xor.

¬bit Bitwise complement.

Square brackets are used for two purposes. When preceded with the word mem
square brackets address a memory location. Otherwise, they indicate that one or
more bits are sliced out of a bit pattern. Bits can be spliced together using a “:”
operator. The bit pattern x : y is a pattern where x are the higher order bits and
y are the lower order bits.

The notationmem[x] represents word-based access to memory, and the address x
must be word-aligned (that is, the address must be a multiple of Bpw). Instructions
that read or write data to memory that is not a word in size (such as a byte or a
16-bit value) explicitly specify which bits in memory are accessed.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 50/289

The instruction encoding specifies the opcode bits of the encoding - the way that
the operands are encoded is specified by the corresponding page in the chapter
on instruction formats (if you access this document electronically there should
be a hyperlink). Each operand in the instruction chapter maps positionally on an
operand in the format chapter.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 51/289

ADD Integer unsigned add

Adds two unsigned integers together. There is no check for overflow. Where it
occurs, overflow is ignored.

To add with carry the LADD instruction should be used instead.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

ADD d,x,y

Operation:

d ← (x +y) mod 2bpw

Encoding:

0 0 0 1 0 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 52/289

ADDI Integer unsigned add immediate

Adds two unsigned integers together. There is no check for overflow. Where it
occurs, overflow is ignored.

To add with carry the LADD instruction should be used instead.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 us An integer in the range 0...11

Mnemonic and operands:

ADDI d,x,us
Operation:

d ← (x +us) mod 2bpw

Encoding:

1 0 0 1 0 . . . . . . . . . . .2rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 53/289

AND Bitwise and

Produces the bitwise AND of two words.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

AND d,x,y

Operation:

d ← x ∧bit y

Encoding:

0 0 1 1 1 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 54/289

ANDNOT And not

ANDNOT clears bits in a word. Given the bits set a bit pattern (s), ANDNOT clears
the equivalent bits in the destination operand (d). ANDNOT is a two operand
instruction where the first operand acts as both source and destination.

ANDNOT can be used to efficiently operate on bit patterns that span a non-integral
number of bytes.

See MKMSK for how to build masks efficiently.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

ANDNOT d, s

Operation:

d ← s ∧bit ¬bits

Encoding:

0 0 1 0 1 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 55/289

ASHR Arithmetic shift right

Right shifts a signed integer and performs sign extension. The shift distance (y)
is an unsigned integer. If the shift distance is larger than the size of a word, the
result will only be the sign extension.

If sign extension is not required, the SHR instruction should be used instead. Note
that ASHR is not the same as a DIVS by 2y because ASHR rounds towards minus
infinity, whereas DIVS rounds towards zero.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

ASHR d,x,y

Operation:

d ←


0 < y < bpw, x[bpw − 1] : ... : x[bpw − 1] : x[bpw − 1...y]
y = 0, x
y ≥ bpw, x[bpw − 1] : ... : x[bpw − 1]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 56/289

ASHRI Arithmetic shift right immediate

Right shifts a signed integer and performs sign extension. The shift distance (bitp)
is an unsigned integer. If the shift distance is larger than the size of a word, the
result will only be the sign extension.

If sign extension is not required, the SHR instruction should be used instead. Note
that ASHR is not the same as a DIVS by 2bitp because ASHR rounds towards minus
infinity, whereas DIVS rounds towards zero.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

ASHRI d,x, bitp

Operation:

d ←


0 < bitp < bpw, x[bpw − 1] : ... : x[bpw − 1] : x[bpw − 1...bitp]
bitp = 0, x
bitp ≥ bpw, x[bpw − 1] : ... : x[bpw − 1]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0l2rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 57/289

BAU Branch absolute unconditional register

Branches to the address given in a general purpose register. The register value
must be even, and should point to a valid memory location.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

BAU s

Operation:

pc ← s

Encoding:

0 0 1 0 0 1 1 1 1 1 1 1 . . . .1r M

Conditions that raise an exception:

ET_ILLEGAL_PC The address specified was not 16-bit aligned or did not
point to a memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 58/289

BITREV Bit reverse

Reverses the bits in a word; the most significant bit of the source operand will be
produced in the least significant bit of the destination operand, the value of the
least significant bit of the source operand will be produced in the most significant
bit of the destination operand.

This instruction can be used in conjunction with BYTEREV in order to translate
between different ordering conventions such as big-endian and little-endian.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

BITREV d, s

Operation:

d[bpw − 1...0] ← s[0] : s[1] : s[2] : ... : s[bpw − 1]

Encoding:

0 0 0 1 0 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 59/289

BLA Branch and link absolute via register

This instruction implements an procedure call to an absolute address. The program
counter is saved in the link-register (lr ) and the program counter is set to the
given address. This address must be even and point to a valid memory address,
otherwise an exception is raised. On execution of BLA, the processor will read the
target instruction so that the invoked procedure will start without delay.

On entry to the procedure, the Link Register can be saved on the stack using the
ENTSP instruction. RETSP performs the opposite of this instruction, returning from
a procedure call.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

BLA s

Operation:

lr ← pc
pc ← s

Encoding:

0 0 1 0 0 1 1 1 1 1 1 0 . . . .1r M

Conditions that raise an exception:

ET_ILLEGAL_PC The address specified was not 16-bit aligned or did not
point to a memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 60/289

BLACP Branch and link absolute via constant pool

This instruction implements a call to a procedure via the constant pool lookup
table. The program counter is saved in the link-register (lr ). The program counter
is loaded from the constant pool table. The constant pool register (cp) is used as
the base address for the table. An offset (u20) specifies which word in the table
to use. Because the instruction requires access to memory, the execution of the
target instruction may be delayed by one instruction in order to fetch the target
instruction.

On entry to the procedure, the Link Register can be saved on the stack using the
ENTSP instruction. RETSP performs the opposite of this instruction, returning from
a procedure call.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575. If u20 <
1024, the instruction requires no prefix

Mnemonic and operands:

BLACP u20

Operation:

lr ← pc
pc ← mem[cp +u20 × Bpw]

Encoding:

1 1 1 0 0 0 . . . . . . . . . .u10 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

1 1 1 0 0 0 . . . . . . . . . .lu10 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC Loaded value was not 16-bit aligned or did not point to a
memory location (trapped during next cycle).

ET_LOAD_STORE Register cppoints to an unaligned address, or the indexed
address does not point to a valid memory address.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 61/289

BLAT Branch and link absolute via table

This instruction implements a call to a procedure via a lookup table. The program
counter is saved in the link-register (lr ). The program counter is loaded from the
lookup table. The lookup table base address is taken from r11. An offset (u16)
specifies which word in the table to use. Because the instruction requires access to
memory, the execution of the target instruction may be delayed by one instruction
in order to fetch the target instruction.

On entry to the procedure, the Link Register can be saved on the stack using the
ENTSP instruction. RETSP performs the opposite of this instruction, returning from
a procedure call.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

BLAT u16

Operation:

lr ← pc
pc ← mem[r11+u16 × Bpw]

Encoding:

0 1 1 1 0 0 1 1 0 1 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 0 1 1 0 1 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC Loaded value was not 16-bit aligned or did not point to a
memory location (trapped during the next cycle).

ET_LOAD_STORE Register r11 points to an unaligned address, or the in-
dexed address does not point to a valid memory address.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 62/289

BLRB Branch and link relative backwards

This instruction performs a call to a procedure: the address of the next instruction
is saved in the link-register (lr ) An unsigned offset is subtracted from the program
counter. This implements a relative jump.

On entry to the procedure, the Link Register can be saved on the stack using the
ENTSP instruction. RETSP performs the opposite of this instruction, returning from
a procedure call. The counterpart forward call is called BLRF.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575. If u20 <
1024, the instruction requires no prefix

Mnemonic and operands:

BLRB u20

Operation:

lr ← pc
pc ← pc −u20 × iw

Encoding:

1 1 0 1 0 1 . . . . . . . . . .u10 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

1 1 0 1 0 1 . . . . . . . . . .lu10 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 63/289

BLRF Branch and link relative forwards

This instruction performs a call to a procedure: the address of the next instruction
is saved in the link-register (lr ) An unsigned offset is added to the program counter.
This implements a relative jump.

On entry to the procedure, the Link Register can be saved on the stack using the
ENTSP instruction. RETSP performs the opposite of this instruction, returning from
a procedure call. The counterpart backward call is called BLRB.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575. If u20 <
1024, the instruction requires no prefix

Mnemonic and operands:

BLRF u20

Operation:

lr ← pc
pc ← pc +u20 × iw

Encoding:

1 1 0 1 0 0 . . . . . . . . . .u10 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

1 1 0 1 0 0 . . . . . . . . . .lu10 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 64/289

BRBF Branch relative backwards false

This instruction implements a conditional relative jump backwards. A condition
(c) is tested whether it represents 0 (false) and if this is the case an offset (u16) is
subtracted from the program counter.

This instruction is part of a group of four instructions that conditionally jump
forwards or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0... r11
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

BRBF c,u16

Operation:

if c = 0 then pc ← pc −u16 × iw

Encoding:

0 1 1 1 1 1 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 1 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 65/289

BRBT Branch relative backwards true

This instruction implements a conditional relative jump backwards. A condition (c)
is tested whether it is not 0 (true) and if this is the case an offset (u16) is subtracted
from the program counter.

This instruction is part of a group of four instructions that conditionally jump
forwards or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0... r11
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

BRBT c,u16

Operation:

if c 6= 0 then pc ← pc −u16 × iw

Encoding:

0 1 1 1 0 1 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 1 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 66/289

BRBU Branch relative backwards unconditional

This instruction implements a relative jump backwards. The operand specifies the
offset that should be subtracted from the program counter.

The counterpart forward relative jump is BRFU.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

BRBU u16

Operation:

pc ← pc −u16 × iw

Encoding:

0 1 1 1 0 1 1 1 0 0 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 1 1 1 0 0 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 67/289

BRFF Branch relative forward false

This instruction implements a conditional relative jump forwards. A condition (c) is
tested whether it represents 0 (false) and if this is the case an offset (u16) is added
to the program counter.

This instruction is part of a group of four instructions that conditionally jump
forwards or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0... r11
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

BRFF c,u16

Operation:

if c = 0 then pc ← pc +u16 × iw

Encoding:

0 1 1 1 1 0 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 0 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 68/289

BRFT Branch relative forward true

This instruction implements a conditional relative jump forwards. A condition (c)
is tested whether it is not 0 (true) and if this is the case an offset (u16) is added to
the program counter.

This instruction is part of a group of four instructions that conditionally jump
forwards or backwards on true or false conditions: BRBF, BRBT, BRFF, and BRFT.

The instruction has two operands:

op1 c Operand register, one of r0... r11
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

BRFT c,u16

Operation:

if c 6= 0 then pc ← pc +u16 × iw

Encoding:

0 1 1 1 0 0 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 0 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 69/289

BRFU Branch relative forward unconditional

This instruction implements a relative jump forwards. The operand specifies the
offset that should be added to the program counter.

The counterpart backward relative jump is BRBU.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

BRFU u16

Operation:

pc ← pc +u16 × iw

Encoding:

0 1 1 1 0 0 1 1 0 0 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 0 1 1 0 0 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 70/289

BRU Branch relative unconditional register

This instruction implements a jump using a signed offset stored in a register.
Because instructions are aligned on 16-bit boundaries, the offset in the register is
multiplied by 2. Negative values cause backwards jumps.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

BRU s

Operation:

pc ← pc + ssigned × iw

Encoding:

0 0 1 0 1 1 1 1 1 1 1 0 . . . .1r M

Conditions that raise an exception:

ET_ILLEGAL_PC The new PC is not pointing to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 71/289

BYTEREV Byte reverse

This instruction reverses the bytes of a word.

Together with the BITREV instruction this can be used to resolve requirements of
different ordering conventions such as little-endian and big-endian.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

BYTEREV d, s

Operation:

d[bpw − 1...0] ← s[7...0] : s[15...8] : ... : s[bpw − 1 : bpw − 8]

Encoding:

0 0 0 0 0 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 72/289

CHKCT Test for control token

If the next token on a channel is the specified control token, then this token is
discarded from the channel. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token available to be read.

This instruction can be used together with OUTCT in order to implement robust
protocols on channels; each OUTCT must have a matching CHKCT or INCT. TESTCT
tests for a control token without trapping, and does not discard the control token.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

CHKCT r , s

Operation:

if hasctoken(r)∧ (s = token(r)) then
skiptoken(r)

1

raiseexception

Encoding:

1 1 0 0 1 . . . . . . 0 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a channel resource, or the resource is
not in use.

ET_ILLEGAL_RESOURCE r contains a data token.

ET_ILLEGAL_RESOURCE r contains a control token different to s.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 73/289

CHKCTI Test for control token immediate

If the next token on a channel is the specified control token, then this token is
discarded from the channel. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token available to be read.

This instruction can be used together with OUTCT in order to implement robust
protocols on channels; each OUTCT must have a matching CHKCT or INCT. TESTCT
tests for a control token without trapping, and does not discard the control token.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 us An integer in the range 0...11

Mnemonic and operands:

CHKCTI r ,us
Operation:

if hasctoken(r)∧ (us = token(r)) then
skiptoken(r)

1

raiseexception

Encoding:

1 1 0 0 1 . . . . . . 1 . . . .rus R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a channel resource, or the resource is
not in use.

ET_ILLEGAL_RESOURCE r contains a data token.

ET_ILLEGAL_RESOURCE r contains a control token different to us .

REV 1.0



xCORE-200: The XMOS XS2 Architecture 74/289

CLRE Clear all events

Clears the thread’s Event-Enable and In-Enabling flags, and disables all individual
events for the thread. Any resource (port, channel, timer) that was enabled for this
thread will be disabled.

The instruction has no operands.

Mnemonic and operands:

CLRE

Operation:

sr[eeble]← 0

sr[inenb]← 0

forall res
if (threadres = tid)∧ eventres then enbres ← 0

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 10r R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 75/289

CLRPT Clear the port time

Clears the timer that is used to determine when the next output on a port will
happen.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

CLRPT r

Operation:

clearporttime(r)

Encoding:

1 0 0 0 0 1 1 1 1 1 1 0 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resource is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 76/289

CLRSR Clear bits SR

Clear bits in the thread’s status register (sr ). The mask supplied specifies which
bits should be cleared. CLRSR can only be used to clear the EEBLE, IEBLE, INENB,
ININT and INK bits.

SETSR is used to set bits in the status register. The value of these bits are
documented on the SETSR page

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

CLRSR u16

Operation:

sr ← sr ∧bit ¬bitu16

Encoding:

0 1 1 1 1 0 1 1 0 0 . . . . . .u6 R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 0 1 1 0 0 . . . . . .lu6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 77/289

CLZ Count leading zeros

Counts the number of leading zero bits in its operand. If the operand is zero, then
bpw is produced. If the operand starts with a ’1’ bit (ie, a negative signed integer,
or a large unsigned integer), then 0 is produced. This instruction can be used to
efficiently normalise integers.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

CLZ d, s

Operation:

d ←


s = 0 bpw
s[bpw − 1] = 0, bpw − 1− blog2 sc
s[bpw − 1] = 1, 0

Encoding:

0 0 0 0 1 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 78/289

CRC8 8-step CRC

Incorporates the CRC over 8-bits of a 32-bit word into a Cyclic Redundancy Check-
sum. The instruction has four operands. Similar to CRC the first operand is used
both as a source to read the initial value of the checksum and a destination to
leave the updated checksum, and there are operands to specify the the polynomial
(p) to use when computing the CRC, and the data (e) to compute the CRC over.
Since on completion of the instruction the part of the data that has not yet been
incorporated into the CRC, the most significant 24-bits of the data are stored in a
second destination register (x). This enables repeated execution of CRC8 over a
part-word. Executing Bpw CRC8 instructions in a row is identical to executing a
single CRC instruction.

The instruction has four operands:

op1 d Operand register, one of r0... r11
op4 x Operand register, one of r0... r11
op2 e Operand register, one of r0... r11
op3 p Operand register, one of r0... r11

Mnemonic and operands:

CRC8 d,x, e, p

Operation:

for step = 0 for 8

if (r[0] = 1) then
r ← (d[step] : r[31...1])⊕bit p

else
r ← (d[step] : r[31...1])

d[bpw − 1...0]← 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : e[bpw − 1 : 8]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 0 1 1 1 1 1 1 0 . . . .l4r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 79/289

CRC Word CRC

Incorporates a word into a Cyclic Redundancy Checksum. The instruction has three
operands. The first operand (d) is used both as a source to read the initial value
of the checksum and a destination to leave the updated checksum. The other
operands are the data to compute the CRC over (x) and the polynomial to use
when computing the CRC (p).

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 p Operand register, one of r0... r11

Mnemonic and operands:

CRC d,x,p

Operation:

for step = 0 for bpw
if (r[0] = 1) then
r ← (d[step] : r[bpw − 1...1])⊕bit p

else
r ← (d[step] : r[bpw − 1...1])

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 80/289

CRC32_INC Word CRC with address increment

Incorporates a word into a Cyclic Redundancy Checksum. The instruction has three
operands. The first operand (d) is used both as a source to read the initial value
of the checksum and a destination to leave the updated checksum. The other
operands are the data to compute the CRC over (x) and the polynomial to use
when computing the CRC (p).

Simultaneously, the instruction increments a register with the specified value.

The instruction has five operands:

op1 d Operand register, one of r0... r11
op4 a Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 p Operand register, one of r0... r11
op5 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

CRC32_INC d,a,x,p, bitp

Operation:

for step = 0 for bpw
if (r[0] = 1) then
r ← (d[step] : r[bpw − 1...1])⊕bit p

else
r ← (d[step] : r[bpw − 1...1])

a← a+ bitp;

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 1 0 1 ××××× . 1 . . . .l4rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 81/289

CRCN Variable step CRC

Incorporates the CRC over N-bits of a 32-bit word into a Cyclic Redundancy Check-
sum. The instruction has four operands. Similar to CRC the first operand is used
both as a source to read the initial value of the checksum and a destination to
leave the updated checksum, and there are operands to specify the the polynomial
(p) to use when computing the CRC, the data (d) to compute the CRC over, and the
number of bits (n).

The CRCN instruction is provided to complete the checksum over messages that
have a number of bytes that is not a multiple of Bpw, or for messages where the
start is not aligned.

The instruction has four operands:

op1 x Operand register, one of r0... r11
op4 d Operand register, one of r0... r11
op2 p Operand register, one of r0... r11
op3 n Operand register, one of r0... r11

Mnemonic and operands:

CRCN x,d,p,n

Operation:

for step = 0 for (if n < bpw then n else bpw)
if (r[0] = 1) then
r ← (d[step] : r[bpw − 1...1])⊕bit p

else
r ← (d[step] : r[bpw − 1...1])

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 1 1 1 1 1 1 1 1 . . . .l4r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 82/289

DCALL Call a debug interrupt

Switches to debug mode, saving the current program counter and stack pointer
of thread 0 in debug registers. Thread 0 is deemed to have taken an interrupt
and is therefore removed from the multicycle unit and lock resources, and all
of its resources are informed such that it is removed from any resources it was
inputting/outputting/eventing on.

DRET returns from a debug interrupt. DENTSP and DRESTSP instructions are used
to switch to and from the debug SP.

The instruction has no operands.

Mnemonic and operands:

DCALL

Operation:

dspc ← pct0
dssr ← srt0
pct0 ← debugentry

dtype ← dcallcause
srt0[inint] ← 1

srt0[ink] ← 1

srt0[eeble] ← 0

srt0[ieble] ← 0

srt0[inenb] ← 0

srt0[waiting] ← 0

dbgint[indbg] ← 1

Encoding:

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 00r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 83/289

DENTSP Save and modify stack pointer for debug

Causes thread 0 to use the Debug SP rather than the SP in debug mode. Saves the
SP in debug saved stack pointer (DSSP), and loads the SP with the top word location
in RAM.

DRESTSP is used to use the restore the original SP from the DSSP.

The instruction has no operands.

Mnemonic and operands:

DENTSP

Operation:

dssp ← sp
sp ← ramend

Encoding:

1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0l0r M&R

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION not in debug mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 84/289

DGETREG Debug read of another thread’s register

The contents of any thread’s register can then be accessed for debugging purpose.
To access the state of a thread, first used SETPS to set dtid and dtreg to the
thread identifier and register number within the thread state.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

DGETREG s

Operation:

s ← dtregdtid

Encoding:

0 0 1 1 1 1 1 1 1 1 1 0 . . . .1r M

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION not in debug mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 85/289

DIVS Signed division

Produces the result of dividing two signed words, rounding the result towards zero.
For example 5÷ 3 is 1, −5÷ 3 is −1, −5÷−3 is 1, and 5÷−3 is −1.

This instruction does not execute in a single cycle, and multiple threads may share
the same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

DIVS d,x,y

Operation:

dsigned ← xsigned ÷ysigned

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_ARITHMETIC Division by 0.

ET_ARITHMETIC Division of −2bpw−1 by −1

REV 1.0



xCORE-200: The XMOS XS2 Architecture 86/289

DIVU Unsigned divide

Computes an unsigned integer division, rounding the answer down to 0. For
example 5÷ 3 is 1.

This instruction does not execute in a single cycle, and multiple threads may share
the same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

DIVU d,x,y

Operation:

d ← x ÷y

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_ARITHMETIC Division by 0.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 87/289

DRESTSP Restore non debug stack pointer

Causes thread 0 to use the original SP rather than the debug SP. Restores the SP
from the debug saved stack pointer (DSSP)

DENTSP is used to use the save the original SP to the DSSP.

The instruction has no operands.

Mnemonic and operands:

DRESTSP

Operation:

sp ← dssp

Encoding:

1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0l0r M&R

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION not in debug mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 88/289

DRET Return from debug interrupt

Exits debug mode, restoring thread 0’s program counter and stack pointer from
the start of the debug interrupt.

DCALL calls a debug interrupt. DENTSP and DRESTSP instructions are used to
switch to and from the debug SP.

The instruction has no operands.

Mnemonic and operands:

DRET

Operation:

pct0 ← dspc
srt0 ← dssr

Encoding:

1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0l0r M&R

Conditions that raise an exception:

ET_ILLEGAL_INSTRUCTION not in debug mode.

ET_ILLEGAL_PC The return address is invalid.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 89/289

DUALENTSP Adjust stack and save link register

Stores the link register on the stack then adjusts the stack pointer creating enough
space for the procedure call that has just been entered.

See RETSP for the operation that restores the link-register.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

DUALENTSP u16

Operation:

if u16 > 0 then
mem[sp]← lr
sp ← sp −u16 × Bpw

sr[bit di]← true

Encoding:

0 1 1 1 1 1 1 1 1 0 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 1 1 1 1 0 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_LOAD_STORE The indexed address is unaligned, or does not point to a
valid memory address.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 90/289

ECALLF Throw exception if zero

This instruction checks whether the operand is 0 (false) and raises an exception
if it is the case. It can be used to implement assertions, and to implement array
bound checks together with the LSU instruction.

The instruction has one operand:

op1 c Operand register, one of r0... r11

Mnemonic and operands:

ECALLF c

Operation:

nop

Encoding:

0 1 0 0 1 1 1 1 1 1 1 0 . . . .1r M+R

Conditions that raise an exception:

ET_ECALL c = 0.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 91/289

ECALLT Throw exception if non-zero

This instruction checks whether a condition is not 0, and raises an exception if it is
the case. It can be used to implement assertions.

The instruction has one operand:

op1 c Operand register, one of r0... r11

Mnemonic and operands:

ECALLT c

Operation:

nop

Encoding:

0 1 0 0 1 1 1 1 1 1 1 1 . . . .1r M+R

Conditions that raise an exception:

ET_ECALL c 6= 0.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 92/289

EDU Unconditionally disable event

Clears the event enabled status of a resource, disabling events and interrupts from
that resource.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

EDU r

Operation:

enbr ← 0

threadr ← tid

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not referring to a legal resource, or the resource is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 93/289

EEF Enables events conditionally

Sets or clears the enabled event status of a resource. If the condition is 0 (false),
events and interrupts are enabled, if the condition is not 0, events and interrupts
are disabled.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

EEF d, r

Operation:

enbr ← d = 0

threadr ← tid

Encoding:

0 0 1 0 1 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not referring to a legal resource, or the resource is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 94/289

EET Enable events conditionally

Sets or clears the enabled event status of a resource. If the condition is 0 (false),
events and interrupts are disabled, if the condition is not 0, events and interrupts
are enabled.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

EET d, r

Operation:

enbr ← d 6= 0

threadr ← tid

Encoding:

0 0 1 0 0 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not referring to a legal resource, or the resource is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 95/289

EEU Unconditionally enable event

Sets the event enabled status of a resource, enabling events and interrupts from
that resource.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

EEU r

Operation:

enbr ← 1

threadr ← tid

Encoding:

0 0 0 0 0 1 1 1 1 1 1 1 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE op2 is not referring to a legal resource, or the resource is
not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 96/289

ELATE Throw exception if too late

This instruction checks whether the operand is in the past, and raises an exception
if it is the case. It can be used to implement timing assertions.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

ELATE s

Operation:

nop

Encoding:

1 0 0 0 1 1 1 1 1 1 1 1 . . . .1r M+R

Conditions that raise an exception:

ET_ECALL s is in the past.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 97/289

ENDIN End a current input

Allows any remaining input bits to be read of a port, and produces an integer
stating how much data is left. The produced integer is the number of bits of data
remaining; ie, This assumes that the port is buffering and shifting data.

The port-shift-count is set to the number of bits present, so an ENDIN instruction
can be followed directly by an IN instruction without having to perform a SETPSC.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

ENDIN d, r

Operation:

d ← buffercountr

Encoding:

1 0 0 1 0 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not referring to a legal resource, or the resource is not
in use.

ET_ILLEGAL_RESOURCE r is referring to a port which is not in BUFFERS mode.

ET_ILLEGAL_RESOURCE r is referring to a port which is not in INPUT mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 98/289

ENTSP Adjust stack and save link register

Stores the link register on the stack then adjusts the stack pointer creating enough
space for the procedure call that has just been entered.

See RETSP for the operation that restores the link-register.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

ENTSP u16

Operation:

if u16 > 0

mem[sp]← lr
sp ← sp −u16 × Bpw

sr[bit di]← false

Encoding:

0 1 1 1 0 1 1 1 0 1 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 1 1 1 0 1 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_LOAD_STORE The indexed address is unaligned, or does not point to a
valid memory address.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 99/289

EQ Equal

Performs a test on whether two words are equal. If the two operands are equal, 1
is produced in the destination register, otherwise 0 is produced.

The instruction has three operands:

op1 c Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

EQ c,x,y

Operation:

c ←
{
x = y, 1

x 6= y, 0

Encoding:

0 0 1 1 0 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 100/289

EQI Equal immediate

Performs a test on whether two words are equal. If the two operands are equal, 1
is produced in the destination register, otherwise 0 is produced.

The instruction has three operands:

op1 c Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 us An integer in the range 0...11

Mnemonic and operands:

EQI c,x,us
Operation:

c ←
{
x = us , 1

x 6= us , 0

Encoding:

1 0 1 1 0 . . . . . . . . . . .2rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 101/289

EXTDP Extend data

Extends the data area by moving the data pointer to a lower address

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

EXTDP u16

Operation:

dp ← dp −u16 × Bpw

Encoding:

0 1 1 1 0 0 1 1 1 0 . . . . . .u6 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 0 1 1 1 0 . . . . . .lu6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 102/289

EXTSP Extend stack

Extends the stack by moving the stack pointer to a lower address.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

EXTSP u16

Operation:

sp ← sp −u16 × Bpw

Encoding:

0 1 1 1 0 1 1 1 1 0 . . . . . .u6 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 1 1 1 1 0 . . . . . .lu6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 103/289

FREER Free a resource

Frees a resource so that it can be reused. Only resources that have been previously
allocated with GETR can be freed; in particular, ports and clock-blocks cannot be
freed since they are not allocated.

FREER pauses when freeing a channel end that has outstanding transmit data.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

FREER r

Operation:

inuser ← 0

Encoding:

0 0 0 1 0 1 1 1 1 1 1 0 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not referring to a legal resource

ET_ILLEGAL_RESOURCE r is referring to a resource that cannot be freed

ET_ILLEGAL_RESOURCE r is referring to a running thread

ET_ILLEGAL_RESOURCE r is referring to a channel end on which no terminating
CT_END token has been input and/or output, or which has
data pending for input, or which has a thread waiting for
input or output.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 104/289

FREET Free unsynchronised thread

Stops the thread that executes this instruction, and frees it. This must not be used
by synchronised threads, which should terminate by using a combination of an
SSYNC on the slave and an MJOIN on the master.

The instruction has no operands.

Mnemonic and operands:

FREET

Operation:

sr[inuse] ← 0

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 10r R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 105/289

GETD Get resource data

Gets the contents of the data/dest/divide register of a resource. This data register
is set using SETD. The way that a resource depends on its data register is resource
dependent and described at SETD.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

GETD d, r

Operation:

d ← datar

Encoding:

1 1 1 1 1 . . . . . . 1 . . . .

0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE d is not referring to a legal resource, or a resource which
doesn’t have a DATA register.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 106/289

GETED Get ED into r11

Obtains the value of ed, exception data, into r11. In the case of an event, edis set
to the environment vector stored in the resource by SETEV. The data that is stored
in edin the case of an exception is given in Chapter 21.

The instruction has no operands.

Mnemonic and operands:

GETED

Operation:

r11 ← ed

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 00r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 107/289

GETET Get ET into r11

Obtains the value of ET (exception type) into r11.

The instruction has no operands.

Mnemonic and operands:

GETET

Operation:

r11 ← et

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 10r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 108/289

GETID Get the thread’s ID

Get the thread ID of this thread into r11.

The instruction has no operands.

Mnemonic and operands:

GETID

Operation:

r11 ← tid

Encoding:

0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 00r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 109/289

GETKEP Get the Kernel Entry Point

Get the kernel entry point of this thread into r11.

The instruction has no operands.

Mnemonic and operands:

GETKEP

Operation:

r11 ← kep

Encoding:

0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 10r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 110/289

GETKSP Get Kernel Stack Pointer

Gets the thread’s Kernel Stack Pointer kspinto r11. There is no instruction to set
kspdirectly since it is normally not moved. SETSP followed by KRESTSP will set
both spand ksp. By saving spbeforehand, kspcan be set to the value found in r0
by using the following code sequence:

LDAWSP r1, sp[0] // Save SP into R1
SETSP r0 // Set SP, and place old SP...
STW r1, sp[0] // ...where KRESTSP expects it
KRESTSP 0 // Set KSP, restore SP

The kernel stack pointer is initialised by the boot-ROM to point to a safe location
near the last location of RAM - the last few locations are used by the JTAG debugging
interface. If debugging is not required, then the KSP can safely be moved to the
top of RAM.

The instruction has no operands.

Mnemonic and operands:

GETKSP

Operation:

r11 ← ksp

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 00r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 111/289

GETN Get network

Gets the network identifier that this channel-end belongs to.

The network identifier is set using SETN.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

GETN d, r

Operation:

d ← netr

Encoding:

1 1 1 1 1 . . . . . . 1 . . . .

0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE d is not referring to a legal channel end, or the channel
end is not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 112/289

GETPS Get processor state

Obtains internal processor state; used for low level debugging. The operand is a
processor state resource; the register to be read is encoded in bits 15...8, and bits
7...0 should contain the resource type associated with processor state.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

GETPS d, r

Operation:

d ← PS[r]

Encoding:

1 1 1 1 1 . . . . . . 1 . . . .

0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_ILLEGAL_PS d is not referring to a legal processor state register

REV 1.0



xCORE-200: The XMOS XS2 Architecture 113/289

GETR Get a resource

Gets a resource of a specific type. This instruction dynamically allocates a resource
from the pools of available resources. Not all resources are dynamically allocated;
resources that refer to physical objects (IO pins, clock blocks) are used without
allocating. The resource types are:

RES_TYPE_PORT Ports 0 cannot be allocated

RES_TYPE_TIMER Timers 1

RES_TYPE_CHANEND Channel ends 2

RES_TYPE_SYNC Synchronisers 3

RES_TYPE_THREAD Threads 4

RES_TYPE_LOCK Lock 5

RES_TYPE_CLKBLK Clock source 6 cannot be allocated

RES_TYPE_PS Processor state 11 cannot be allocated

RES_TYPE_CONFIG Configuration messages 12 cannot be allocated

The returned identifier comprises a 32-bit word, where the most significant 16-
bits are resource specific data, followed by an 8-bit resource counter, and 8-bits
resource-type. The resource specific 16 bits have the following meaning:

Port
The width of the port.

Timer
Reserved, returned as 0.

Channel end
The node id (8-bits) and the core id (8-bits).

Synchroniser
Reserved, returned as 0.

Thread
Reserved, returned as 0.

Lock
Reserved, returned as 0.

Clock source
Reserved, should be set to 0.

Processor state
Reserved, should be set to 0.

Configuration
Reserved, should be set to 0.

If no resource of the requested type is available, then the destination operand is
set to zero, otherwise the destination operand is set to a valid resource id .

REV 1.0



xCORE-200: The XMOS XS2 Architecture 114/289

If a channel end is allocated, a local channel end is returned. In order to connect
to a remote channel end, a program normally receives a channel-end over an
already connected channel, which is stored using SETD. To connect the first remote
channel, a channel-end identifier can be constructed (by concatenating a node id,
core id, channel-end and the value ’2’).

When allocated, resources are freed using FREER to allow them to be available for
reallocation.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 us An integer in the range 0...11

Mnemonic and operands:

GETR d,us
Operation:

d ← first res ∈ setof(us) : ¬inuseres
inused ← 1

Encoding:

1 0 0 0 0 . . . . . . 0 . . . .rus R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 115/289

GETSR Get bits from SR

Get bits from the thread’s Status Register. The mask supplied specifies which bits
should be extracted.

SETSR is used to set bits in the status register. The value of these bits are
documented on the SETSR page.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

GETSR u16

Operation:

r11 ← sr ∧bit u16

Encoding:

0 1 1 1 1 1 1 1 0 0 . . . . . .u6 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 1 1 1 0 0 . . . . . .lu6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 116/289

GETST Get a synchronised thread

Gets a new thread and binds it to a synchroniser. The synchroniser ID is passed as
an operand to this instruction, and the destination register is set to the resulting
thread ID. If no threads are available then the destination register is set to 0.

The thread is started on execution of MSYNC by the master thread.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

GETST d, r

Operation:

d ← first thread ∈ threads : ¬inusethread
inused ← 1

spaused ← spaused∪ {d}
slavesr ← slavesr ∪ {d}
mstrr ← tid

Encoding:

0 0 0 0 0 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not referring to a synchroniser that is in use

REV 1.0



xCORE-200: The XMOS XS2 Architecture 117/289

GETTIME Get the reference time

Gets the current value of the reference time and loads it into the specified register

The instruction has one operand:

op1 d Operand register, one of r0... r11

Mnemonic and operands:

GETTIME d

Operation:

d← reference-time

Encoding:

1 0 0 0 1 1 1 1 1 1 1 0 . . . .1r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 118/289

GETTS Get the time stamp

Gets the time stamp of a port. This is the value of the port timer at which the
previous transfer between the Shift and Transfer registers for input or output
occurred. The port timer counts ticks of the clock associated with this port, and
returns a 16-bit value. In the case of a conditional input, this instruction should be
executed between a WAITEU and its associated IN instruction; the value returned by
GETTS will be the timestamp of the data that will be input using the IN instruction.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

GETTS d, r

Operation:

d ← timestampr

Encoding:

0 0 1 1 1 . . . . . . 0 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not referring to a port, or the port is not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 119/289

IN Input data

Inputs data from a resource (r ) into a destination register (d). The precise effect
depends on the resource type:

Port
Read data from the port. If the port is buffered, a whole word of data is
returned. If the port is unbuffered, the most significant bits of the data will
be set to 0. The thread pauses if the data is not available.

Timer
Reads the current time from the timer, or pauses until after a specific time
returning that time.

Channel end
Reads Bpw data tokens from the channel, and concatenate them to a single
word of data. The bytes are assumed to be transmitted most significant byte
first. The thread pauses if there are not enough data tokens available.

Lock
Lock the resource. The instruction pauses if the lock has been taken by
another thread, and is released when the out is released.

This instruction may pause.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

IN d, r
Operation:

r . d

Encoding:

1 0 1 1 0 . . . . . . 0 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a valid resource, not in use, or it does not support
IN.

ET_ILLEGAL_RESOURCE r is a channel end which contains a Control Token in the
first Bpw tokens in its input buffer.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 120/289

INCT Input control tokens

If the next token on a channel is a control token, then this token is input to the
destination register. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token of data available to
input.

This instruction can be used together with OUTCT in order to implement robust
protocols on channels.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

INCT d, r

Operation:

if hasctoken(r) then
r . d

else
raiseexception

Encoding:

1 0 0 0 0 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a channel resource, or the resource is
not in use.

ET_ILLEGAL_RESOURCE r is a channel end which contains a data token in the first
entry in its input buffer.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 121/289

INPW Input a part word

Inputs an incomplete word that is stored in the input buffer of a port. Used in
conjunction with ENDIN. ENDIN is used to determine how many bits are left on the
port, and this number is passed to INPW in order to read those remaining bits.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11
op3 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

INPW d, r , bitp

Operation:

shif tcountr ← bitp
r . d

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0l2rus M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resource is not
in use, or bitp is an unsupported width, or the port is not
in BUFFERS mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 122/289

INSHR Input and shift right

Inputs a value from a port, and shifts the data read into the most significant bits of
the destination register. The bottom port-width bits of the destination register are
lost.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

INSHR d, r

Operation:

r . x
d ← x : d[bpw − 1...portwidthr ]

Encoding:

1 0 1 1 0 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resource is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 123/289

INT Input a token of data

If the next token on a channel is a data token, then this token is input into the
destination register. If not, the instruction raises an exception.

This instruction pauses if the channel does not have a token of data available to
input.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

INT d, r

Operation:

if hasctoken(r) then
raiseexception

else
r . d

Encoding:

1 0 0 0 1 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a channel resource, or the resource is
not in use.

ET_ILLEGAL_RESOURCE r contains a control token in the first entry in its input
buffer.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 124/289

KCALL Kernel call

Performs a kernel call. The program counter, status register and exception data
are stored in save-registers spc, ssr , and sedand the program continues at the
kernel entry point. Similar to exceptions, the program counter that is saved on
KCALL is the program counter of this instruction - hence an kernel call handler
using KRET has to adjust spcprior to returning.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

KCALL s

Operation:

spc ← pc
ssr ← sr
et ← ET_KCALL
sed ← ed
ed ← s
pc ← kep + 64

sr[ink] ← 1

sr[ieble] ← 0

sr[eeble] ← 0

Encoding:

0 1 0 0 0 1 1 1 1 1 1 0 . . . .1r M

Conditions that raise an exception:

ET_KCALL Kernel call.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 125/289

KCALLI Kernel call immediate

Performs a kernel call. The program counter, status register and exception data
are stored in save-registers spc, ssr , and sedand the program continues at the
kernel entry point. Similar to exceptions, the program counter that is saved on
KCALL is the program counter of this instruction - hence an kernel call handler
using KRET has to adjust spcprior to returning.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

KCALLI u16

Operation:

spc ← pc
ssr ← sr
et ← ET_KCALL
sed ← ed
ed ← u16

pc ← kep + 64

sr[ink] ← 1

sr[ieble] ← 0

sr[eeble] ← 0

Encoding:

0 1 1 1 0 0 1 1 1 1 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 0 1 1 1 1 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_KCALL Kernel call.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 126/289

KENTSP Switch to kernel stack

Saves the stack pointer on the kernel stack, then sets the stack pointer to the
kernel stack.

KRESTSP is used to use the restore the original stack pointer from the kernel stack.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

KENTSP u16

Operation:

mem[ksp] ← sp
sp ← ksp −n× Bpw

Encoding:

0 1 1 1 1 0 1 1 1 0 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 0 1 1 1 0 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_LOAD_STORE Register ksppoints to an unaligned address, or does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 127/289

KRESTSP Restore stack pointer from kernel stack

Restores the stack pointer from the address saved on entry to the kernel by KENTSP.
This instruction is also used to initialise the kernel-stack-pointer.

KENTSP is used to save the stack pointer on entry to the kernel.

The instruction has one operand:

op1 u16 A 16-bit mask

Mnemonic and operands:

KRESTSP u16

Operation:

ksp ← sp +n× Bpw
sp ← mem[ksp]

Encoding:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 0 1 1 1 1 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_LOAD_STORE The indexed address points to an unaligned address, or
the indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 128/289

KRET Kernel Return

Returns from the kernel after an interrupt, kernel call, or exception.

The instruction has no operands.

Mnemonic and operands:

KRET

Operation:

pc ← spc
sr ← ssr
ed ← sed

Encoding:

1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0l0r M&R

Conditions that raise an exception:

ET_ILLEGAL_PC The register spcwas not 16-bit aligned or did not point to
a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 129/289

LADD Long unsigned add with carry

Adds two unsigned integers and a carry, and produces both the unsigned result
and the possible carry. For this purpose, the instruction has five operands, two
registers that contain the numbers to be added (x and y); the carry which is stored
in the last bit of a third source operand (v); one destination register which is used
to store the carry (e), and a destination register for the sum (d).

The instruction has five operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11
op5 v Operand register, one of r0... r11

Mnemonic and operands:

LADD d, e,x,y,v

Operation:

d ← r[bpw − 1...0]
e ← r[bpw]

where r ← x +y + v[0]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 0 . . . . . . 1 . . . .l5r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 130/289

LD8U Load unsigned 8 bits

Loads an unsigned 8-bit value from memory. The address is computed using a
base address (b) and index (i).

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LD8U d,b, i

Operation:

d ← 0 : ... : 0 : word[bnum+ 7...bnum]
where ea← b + i

bytenum ← ea mod Bpw
bnum ← 8× bytenum
word←mem[ea− bytenum]

Encoding:

1 0 0 0 1 . . . . . . . . . . .3r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 131/289

LD16S Load signed 16 bits

Loads a signed 16-bit integer from memory extending the sign into the whole word.
The address is computed using a base address (b) and index (i). The base address
should be word-aligned.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LD16S d,b, i

Operation:

d ← word[bnum+ 15] : ... : word[bnum+ 15] : word[bnum+ 15...bnum]
where ea← b + i× 2

bytenum ← ea mod Bpw
bnum ← 16× (bytenum÷ 2)
word←mem[ea− bytenum]

Encoding:

1 0 0 0 0 . . . . . . . . . . .3r M

Conditions that raise an exception:

ET_LOAD_STORE b is not 16-bit aligned (unaligned load), or does not point
to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 132/289

LDA16B Subtract from 16-bit address

Load effective address for a 16-bit value based on a base-address (b) and an index
(i)

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LDA16B d,b, i

Operation:

d ← b − i× 2

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 133/289

LDA16F Add to a 16-bit address

Load effective address for a 16-bit value based on a base-address (b) and an index
(i)

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LDA16F d,b, i

Operation:

d ← b + i× 2

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 134/289

LDAPB Load backward pc-relative address

Load effective address relative to the program counter. This operation scales the
index (u20) so that it counts 16-bit entities.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575. If u20 <
1024, the instruction requires no prefix

Mnemonic and operands:

LDAPB u20

Operation:

r11 ← pc −u20 × iw

Encoding:

1 1 0 1 1 1 . . . . . . . . . .u10 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

1 1 0 1 1 1 . . . . . . . . . .lu10 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 135/289

LDAPF Load forward pc-relative address

Load effective address relative to the program counter. This operation scales the
index (u20) so that it counts 16-bit entities.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575. If u20 <
1024, the instruction requires no prefix

Mnemonic and operands:

LDAPF u20

Operation:

r11 ← pc +u20 × iw

Encoding:

1 1 0 1 1 0 . . . . . . . . . .u10 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

1 1 0 1 1 0 . . . . . . . . . .lu10 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 136/289

LDAWB Subtract from word address

Load effective address for word given a base-address (b) and an index (i)

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LDAWB d,b, i

Operation:

d ← b − i× Bpw

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 137/289

LDAWBI Subtract from word address immediate

Load effective address for word given a base-address (b) and an index (us )

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 us An integer in the range 0...11

Mnemonic and operands:

LDAWBI d,b,us
Operation:

d ← b −us × Bpw

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0l2rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 138/289

LDAWCP Load address of word in constant pool

Loads the address of a word relative to the constant pointer.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

LDAWCP u16

Operation:

r11 ← cp +u16 × Bpw

Encoding:

0 1 1 1 1 1 1 1 0 1 . . . . . .u6 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 1 1 1 0 1 . . . . . .lu6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 139/289

LDAWDP Load address of word in data pool

Loads the address of a word relative to the data pointer.

The instruction has two operands:

op1 D Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

LDAWDP D,u16

Operation:

D ← dp +u16 × Bpw

Encoding:

0 1 1 0 0 0 . . . . . . . . . .ru6 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 0 0 0 . . . . . . . . . .lru6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 140/289

LDAWF Add to a word address

Load effective address for word given a base-address (b) and an index (i).

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LDAWF d,b, i

Operation:

d ← b + i× Bpw

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 141/289

LDAWFI Add to a word address immediate

Load effective address for word given a base-address (b) and an index (i).

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i An integer in the range 0...11

Mnemonic and operands:

LDAWFI d,b, i

Operation:

d ← b + i× Bpw

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0l2rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 142/289

LDAWSP Load address of word on stack

Loads the address of a word relative to the stack pointer.

The instruction has two operands:

op1 D Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

LDAWSP D,u16

Operation:

D ← sp +u16 × Bpw

Encoding:

0 1 1 0 0 1 . . . . . . . . . .ru6 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 0 0 1 . . . . . . . . . .lru6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 143/289

LDC Load constant

Load a constant into a register

The instruction has two operands:

op1 D Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

LDC D,u16

Operation:

D ← u16

Encoding:

0 1 1 0 1 0 . . . . . . . . . .ru6 M+R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 0 1 0 . . . . . . . . . .lru6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 144/289

LDD Load double word

Loads two words from memory, using a base and an index. The index is scaled in
order to translate the double-word-index into a byte-index. The base address must
be double-word-aligned. The immediate version, LDDI, implements a load from a
structured data type; the version with registers only, LDD, implements a load from
an array.

The instruction has four operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LDD d, e, b, i

Operation:

d ← mem[b + i× Bpw × 2]
e ← mem[b + i× Bpw × 2+ Bpw]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 1 0 0 1 1 1 1 1 1 0 . . . .l4r M&R

Conditions that raise an exception:

ET_LOAD_STORE b is not double word aligned, or the indexed address does
not point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 145/289

LDDI Load double word immediate

Loads two words from memory, using a base and an index. The index is scaled in
order to translate the double-word-index into a byte-index. The base address must
be double-word-aligned. The immediate version, LDDI, implements a load from a
structured data type; the version with registers only, LDD, implements a load from
an array.

The instruction has four operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i An integer in the range 0...11

Mnemonic and operands:

LDDI d, e, b, i

Operation:

d ← mem[b + i× Bpw × 2]
e ← mem[b + i× Bpw × 2+ Bpw]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 1 0 0 1 1 1 1 1 1 1 . . . .l3rus M&R

Conditions that raise an exception:

ET_LOAD_STORE b is not double word aligned, or the indexed address does
not point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 146/289

LDDSP Load double word from stack

Loads two words relative to the stack pointer. The stack pointer must be double-
word aligned.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 e Operand register, one of r0... r11
op3 us An integer in the range 0...11

Mnemonic and operands:

LDDSP d, e,us
Operation:

d ← mem[sp +us × Bpw × 2]
e ← mem[sp +us × Bpw × 2+ Bpw]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0l2rus M&R

Conditions that raise an exception:

ET_LOAD_STORE sp is not double-word aligned, or the indexed address
does not point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 147/289

LDET Load ET from the stack

Restores the value of ET from the stack from offset 4.

The value was typically saved using STET. Together with LDSPC, LDSSR, and LDSED
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDET

Operation:

set ← mem[sp + 4× Bpw]

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 00r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 148/289

LDIVU Long unsigned divide

Divides a double word operand by a single word operand. This will result in a
single word quotient and a single word remainder. This instruction has three
source operands and two destination operands. The LDIVU instruction can take up
to bpw thread-cycles to complete; the divide unit is shared between threads.

The operation only works if the division fits in a 32-bit word, that is, if the higher
word of the double word input is less than the divisor. This operation is intended
to be used for the implementation of long division.

The instruction has five operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11
op5 v Operand register, one of r0... r11

Mnemonic and operands:

LDIVU d, e,x,y,v

Operation:

d ← (v : x)÷y
e ← (v : x) mod y

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 0 . . . . . . 0 . . . .l5r M&R

Conditions that raise an exception:

ET_ARITHMETIC y = 0∨ v ≥ y.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 149/289

LDSED Load SED from stack

Restores the value of SED from the stack from offset 3.

The value was typically saved using STSED. Together with LDSPC, LDSSR, and LDET
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSED

Operation:

sed ← mem[sp + 3× Bpw]

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 1 1 0 10r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 150/289

LDSPC Load the SPC from the stack

Restores the value of SPC from the stack from offset 1.

The value was typically saved using STSPC. Together with LDSED, LDSSR, and LDET
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSPC

Operation:

spc ← mem[sp + 1× Bpw]

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 00r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 151/289

LDSSR Load SSR from stack

Restores the value of SSR from the stack from offset 2.

The value was typically saved using STSSR. Together with LDSED, LDSPC, and LDET
all or part of the state can be restored.

The instruction has no operands.

Mnemonic and operands:

LDSSR

Operation:

ssr ← mem[sp + 2× Bpw]

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 00r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 152/289

LDW Load word

Loads a word from memory, using two registers as a base register and an index
register. The index register is scaled in order to translate the word-index into a
byte-index. The base address must be word-aligned. The immediate version, LDWI,
implements a load from a structured data type; the version with registers only,
LDW, implements a load from an array.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

LDW d,b, i

Operation:

d ← mem[b + i× Bpw]

Encoding:

0 1 0 0 1 . . . . . . . . . . .3r M

Conditions that raise an exception:

ET_LOAD_STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 153/289

LDWI Load word immediate

Loads a word from memory, using two registers as a base register and an index
register. The index register is scaled in order to translate the word-index into a
byte-index. The base address must be word-aligned. The immediate version, LDWI,
implements a load from a structured data type; the version with registers only,
LDW, implements a load from an array.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i An integer in the range 0...11

Mnemonic and operands:

LDWI d,b, i

Operation:

d ← mem[b + i× Bpw]

Encoding:

0 0 0 0 1 . . . . . . . . . . .2rus M

Conditions that raise an exception:

ET_LOAD_STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 154/289

LDWCP Load word from constant pool

Loads a word relative to the constant pool pointer.

The instruction has two operands:

op1 D Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

LDWCP D,u16

Operation:

D ← mem[cp +u16 × Bpw]

Encoding:

0 1 1 0 1 1 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 0 1 1 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_LOAD_STORE cpis not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 155/289

LDWCPL Load word from large constant pool

Loads a word relative to the constant pool pointer into r11. The offset can be
larger than the offset specified in LDWCP.

The instruction has one operand:

op1 u20 A 20-bit immediate in the range 0...1048575. If u20 <
1024, the instruction requires no prefix

Mnemonic and operands:

LDWCPL u20

Operation:

r11 ← mem[cp +u20 × Bpw]

Encoding:

1 1 1 0 0 1 . . . . . . . . . .u10 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

1 1 1 0 0 1 . . . . . . . . . .lu10 M&R

Conditions that raise an exception:

ET_LOAD_STORE cpis not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 156/289

LDWDP Load word form data pool

Loads a word relative to the data pointer.

The instruction has two operands:

op1 D Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

LDWDP D,u16

Operation:

D ← mem[dp +u16 × Bpw]

Encoding:

0 1 0 1 1 0 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 0 1 1 0 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_LOAD_STORE dpis not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 157/289

LDWSP Load word from stack

Loads a word relative to the stack pointer.

The instruction has two operands:

op1 D Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

LDWSP D,u16

Operation:

D ← mem[sp +u16 × Bpw]

Encoding:

0 1 0 1 1 1 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 0 1 1 1 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_LOAD_STORE spis not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 158/289

LEXTRACT Bitfield extraction from register pair

Extracts a bitfield at position x in a pair of registers l and r into d. A mask bitp
is applied allowing a bitfield of less than bpw bits to be extracted.

The instruction has five operands:

op1 d Operand register, one of r0... r11
op4 l Operand register, one of r0... r11
op2 r Operand register, one of r0... r11
op3 x Operand register, one of r0... r11
op5 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

LEXTRACT d, l, r , x, bitp

Operation:

d ← ((l : r)[bit bpw + x − 1..x])∧bit (2bitp − 1);

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 1 1 ××××× . 0 . . . .l4rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 159/289

LINSERT Inserts a bitfield into a pair of registers

Inserts a bitfield into a pair of registers d and e. The bitfield is stored in register x,
the location of the bitfield is stored in register s (which must be between 0 and
bpw − 1 inclusive), and the length of the bitfield is a short immediate operand
bitp.

The instruction has five operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 s Operand register, one of r0... r11
op5 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

LINSERT d, e,x, s, bitp

Operation:

m ← ((1 << bitp)− 1) << s
d : e ← ((d : e)∧bit ¬m)∨bit ((x << s)∧bitm)

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 1 1 ××××× . 1 . . . .l4rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 160/289

LMUL Long multiply

Multiplies two words to produce a double-word, and adds two single words. Both
the high word and the low word of the result are produced. This multiplication is
unsigned and cannot overflow.

The instruction has six operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11
op5 v Operand register, one of r0... r11
op6 w Operand register, one of r0... r11

Mnemonic and operands:

LMUL d, e,x,y,v,w

Operation:

e ← r[bpw − 1...0]
d ← r[2bpw − 1...bpw]

where r ← x ×y + v +w

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 0 . . . . . . . . . . .l6r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 161/289

LSS Less than signed

Tests whether one signed value is less than another signed value. The test result is
produced in the destination register (c) as 1 (true) or 0 (false).

The instruction has three operands:

op1 c Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

LSS c,x,y

Operation:

c ←
{
xsigned < ysigned, 1

xsigned ≥ ysigned, 0

Encoding:

1 1 0 0 0 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 162/289

LSU Less than unsigned

Tests whether one unsigned value is less than another unsigned value. The result
is produced in the destination register (c) as 1 (true) or 0 (false). It can be used to
perform efficient bound checks against values in the range 0...(y − 1)

The instruction has three operands:

op1 c Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

LSU c,x,y

Operation:

c ←
{
x < y, 1

x ≥ y, 0

Encoding:

1 1 0 0 1 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 163/289

LSUB Long unsigned subtract

Subtracts unsigned integers and a borrow from an unsigned integer, produc-
ing both the unsigned result and the possible borrow. The instruction has five
operands: two registers that contain the numbers to be subtracted (x and y), the
borrow input which is stored in the last bit of a third source operand (v), one
destination register which is used to store the borrow-out (e), and a destination
register for the difference (d).

The instruction has five operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11
op5 v Operand register, one of r0... r11

Mnemonic and operands:

LSUB d, e,x,y,v

Operation:

d ← r[bpw − 1...0]
e ← r[bpw]

where r ← x −y − v[0]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 1 . . . . . . 0 . . . .l5r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 164/289

MACCS Multiply and accumulate signed

Multiplies two signed words, and adds the double word result into a signed double
word accumulator. The double word accumulator comprises two registers that are
used both as a source and destination. Two other operands are the values that are
to be multiplied.

The instruction has four operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

MACCS d, e,x,y

Operation:

e ← tmp[bpw − 1...0]
d ← tmp[2× bpw − 1...bpw]

where tmp ← (dsigned : e)+ xsigned ×ysigned

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 1 1 1 1 1 1 1 0 . . . .l4r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 165/289

MACCU Multiply and accumulate unsigned

Multiplies two unsigned words, and adds the double word result into an unsigned
double word accumulator. The double word accumulator comprises two registers
that are used both as a source and destination. Two other operands are the values
that are to be multiplied.

MACCU can be used to correct word alignment issues by repeatedly operating on
words of a stream. For example, multiplying with 0x00010000 will result in the
high word of the accumulator to produce the same stream of words offset by half
a word.

The instruction has four operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

MACCU d, e,x,y

Operation:

e ← tmp[bpw − 1...0]
d ← tmp[2× bpw − 1...bpw]

where tmp ← (d : e)+ x ×y

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 0 1 1 1 1 1 1 1 . . . .l4r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 166/289

MJOIN Synchronise and join

Synchronises the master thread that executes this instruction with all the slave
threads associated with its synchroniser operand (r ), and frees those slave threads
when the synchronisation completes. This is used to end a group of parallel
threads. Note this clears the EEBLE bit. If the ININT bit is set, then MJOIN will not
block; MJOIN should not be used inside an interrupt handler.

The slaves execute an SSYNC instruction to synchronise. The master can execute
an MSYNC instruction to synchronise without freeing the slave threads.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

MJOIN r

Operation:

sr[eeble]← 0

if (slavesr \ spaused = ∅)
then

forall thread ∈ slavesr : inusethread ← 0

mjoinsyn(tid) ← 0

else

mpaused←mpaused∪ {tid}
mjoinr ← 1

msynr ← 1

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a synchroniser resource, or the resource is not in
use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 167/289

MKMSK Make n-bit mask

Makes an n-bit mask that can be used to extract a bit field from a word. The
resulting mask consists of s1 bits aligned to the right.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

MKMSK d, s

Operation:

d ←
{
s < bpw, 2s − 1

s ≥ bpw, 1 : 1 : ... : 1

Encoding:

1 0 1 0 0 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 168/289

MKMSKI Make n-bit mask immediate

Makes an n-bit mask that can be used to extract a bit field from a word. The
resulting mask consists of bitp1 bits aligned to the right.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

MKMSKI d,bitp

Operation:

d ←
{
bitp < bpw, 2bitp − 1

bitp ≥ bpw, 1 : 1 : ... : 1

Encoding:

1 0 1 0 0 . . . . . . 1 . . . .rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 169/289

MSYNC Master synchronise

Synchronise a master thread with the slave threads associated with its synchroniser
(r ). If the slave threads have just been created (with GETST), then MSYNC starts all
slaves. This clears the EEBLE bit. If the ININT bit is set, then MSYNC will not block;
MSYNC should not be used inside an interrupt handler.

The slaves execute an SSYNC instruction to synchronise. The master can execute
an MJOIN instruction to free the slave threads after synchronisation.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

MSYNC r

Operation:

sr[eeble]← 0

if (slavesr \ spaused = ∅)
then

spaused← spaused \ slavesr
else

mpaused←mpaused∪ {tid}
msynr ← 1

Encoding:

0 0 0 1 1 1 1 1 1 1 1 1 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a synchroniser resource, or the resource is not in
use.

ET_ILLEGAL_PC One or more of the slave threads do not have a legal
program counter.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 170/289

MUL Unsigned multiply

Performs a single word unsigned multiply. Any overflow is discarded, and only the
last bpw bits of the result are produced.

If overflow is important, one of the LMUL, MACCU or MACCS instructions should
be used.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

MUL d,x,y

Operation:

d ← (x ×y) mod 2bpw

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 171/289

NEG Two’s complement negate

Performs a signed negation in two’s complement, ie, it computes 0− s. Overflow
is ignored, ie, Negating −2bpw−1 will produce −2bpw−1.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

NEG d, s

Operation:

dsigned ← 2bpw − s

Encoding:

1 0 0 1 0 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 172/289

NOP No operation

No operation.

The instruction has no operands.

Mnemonic and operands:

NOP

Operation:

No operation

Encoding:

0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 10r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 173/289

NOT Bitwise not

Produces the bitwise not of its source operand.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

NOT d, s

Operation:

d ← ¬bits;

Encoding:

1 0 0 0 1 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 174/289

OR Bitwise or

Produces the bitwise or of its two source operands.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

OR d,x,y

Operation:

d ← x ∨bit y

Encoding:

0 1 0 0 0 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 175/289

OUT Output data

Output data to a resource. The precise effect of this instruction depends on the
resource:

Port
Output a word to the port - if the port is buffered the data will be shifted
out piece-meal, if the port is unbuffered the most significant bits of the data
outputted will be ignored. The instruction pauses if the out data cannot be
accepted.

Channel end
Output Bpw data tokens to the destination associated with this channel-
end (see SETD) - the most significant byte of the word is output first. The
instruction pauses if the out data cannot be accepted.

Lock
Releases the lock.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

OUT r , s

Operation:

r / s

Encoding:

1 0 1 0 1 . . . . . . 0 . . . .r2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a valid resource, not in use, or it does not support
OUT.

ET_LINK_ERROR r is a channel end, and the destination has not been set.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 176/289

OUTCT Output a control token

Outputs a control token to a channel.

The instruction pauses if the control token cannot be accepted by the channel.

Each OUTCT must have a matching CHKCT or INCT

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

OUTCT r , s

Operation:

r / ctoken(s)

Encoding:

0 1 0 0 1 . . . . . . 0 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a channel end, or not in use.

ET_LINK_ERROR r is a channel end, and the destination has not been set.

ET_LINK_ERROR r is a channel end, and the control token is a reserved
hardware token.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 177/289

OUTCTI Output a control token immediate

Outputs a control token to a channel.

The instruction pauses if the control token cannot be accepted by the channel.

Each OUTCT must have a matching CHKCT or INCT

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 us An integer in the range 0...11

Mnemonic and operands:

OUTCTI r ,us
Operation:

r / ctoken(us)

Encoding:

0 1 0 0 1 . . . . . . 1 . . . .rus R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a channel end, or not in use.

ET_LINK_ERROR r is a channel end, and the destination has not been set.

ET_LINK_ERROR r is a channel end, and the control token is a reserved
hardware token.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 178/289

OUTPW Output a part word

Outputs a partial word to a port. This is useful to send the last few port-widths of
data.

The instruction pauses if the out data cannot be accepted.

The instruction has three operands:

op1 s Operand register, one of r0... r11
op2 r Operand register, one of r0... r11
op3 w Operand register, one of r0... r11

Mnemonic and operands:

OUTPW s, r ,w

Operation:

shif tcountr ← w
r / s

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1l3r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resource is not
in use, or w is an unsupported width, or the port is not in
BUFFERS mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 179/289

OUTPWI Output a part word immediate

Outputs a partial word to a port. This is useful to send the last few port-widths of
data.

The instruction pauses if the out data cannot be accepted.

The instruction has three operands:

op1 s Operand register, one of r0... r11
op2 r Operand register, one of r0... r11
op3 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

OUTPWI s, r , bitp

Operation:

shif tcountr ← bitp
r / s

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1l2rus M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resource is not
in use, or bitp is an unsupported width, or the port is not
in BUFFERS mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 180/289

OUTSHR Output data and shift

Outputs the least significant port-width bits of a register to a port, shifting the
register contents to the right by that number of bits.

The instruction pauses if the out data cannot be accepted.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 d Operand register, one of r0... r11

Mnemonic and operands:

OUTSHR r ,d

Operation:

r / d[portwidthr − 1...0]
d ← 0 : ... : 0 : d[bpw − 1...portwidthr ]

Encoding:

1 0 1 0 1 . . . . . . 1 . . . .r2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resoruce is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 181/289

OUTT Output a token

Output a data token to a channel.

The instruction pauses if the output token cannot be accepted.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

OUTT r , s

Operation:

r / dtoken(s)

Encoding:

0 0 0 0 1 . . . . . . 1 . . . .r2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a channel end or not in use.

ET_LINK_ERROR r is a channel end, and the destination has not been set.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 182/289

PEEK Peek at port data

Looks at the value of the port pins, by-passing all input logic. Peek will not pause,
and will not take ownership of the port.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

PEEK d, r

Operation:

d ← pins(r)

Encoding:

1 0 1 1 1 . . . . . . 0 . . . .2r R

Conditions that raise an exception:

ET_ILLEGAL_RESOURCE r is not a port resource, or the resource is not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 183/289

REMS Signed remainder

Computes a signed integer remainder. The remainder is negative if the dividend is
negative. For example 5 rem 3 is 2, -5 rem 3 is -2, -5 rem -3 is -2, and 5 rem -3 is
2.

This instruction does not execute in a single cycle, and multiple threads may share
the same division unit. The remainder may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

REMS d,x,y

Operation:

dsigned ← xsigned mod ysigned

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_ARITHMETIC Remainder by x by 0.

ET_ARITHMETIC Remainder by of −2bpw−1 by −1

REV 1.0



xCORE-200: The XMOS XS2 Architecture 184/289

REMU Unsigned remainder

Computes an unsigned integer remainder.

This instruction does not execute in a single cycle, and multiple threads may share
the same division unit. The division may take up to bpw thread-cycles.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

REMU d,x,y

Operation:

d ← x mod y

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_ARITHMETIC Remainder of x by 0.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 185/289

RETSP Return

Returns to the caller of this procedure, and (optionally) adjusts the stack. This
instruction assumes that the return address is stored in LR (where call instructions
leave the return address).

This instruction is used with ENTSP. The BLA, BLACP, BLAT, BLRB and BLRF instruc-
tions perform the opposite of this instruction, calling a procedure.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

RETSP u16

Operation:

if u16 > 0 then

sp ← sp +u6× Bpw
lr ←mem[sp]

pc ← lr
sr[di]← lr ∧bit 1

Encoding:

0 1 1 1 0 1 1 1 1 1 . . . . . .u6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 0 1 1 1 1 1 . . . . . .lu6 M&R

Conditions that raise an exception:

ET_LOAD_STORE Register sppoints to an unaligned address, or the indexed
address does not point to a valid memory address.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 186/289

LSATS Saturate signed

Perform saturation on a double word value. Given a bit index this operation will
check if any arithmetic has overflowed beyond this bit. If an overflow has occurred,
then the double word will be set to MININT or MAXINT (shifted by the given bit
location). Performing this instruction between a series of MACCS instructions and a
LEXTRACT instruction will cause the extracted word to be either the correct answer
or MAXINT/MININT if the result had overflowed positively or negatively.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

LSATS d,x,y

Operation:

if d : x > 2y+bpw − 1

then d : x ← 2y+bpw − 1

elsif d : x < −2y+bpw

then d : x ← −2y+bpw

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 187/289

SETC Set resource control bits

Sets the resource control bits. The control bits that can be set with SETC are the
following:

CTRL_INUSE_OFF 0x0000 CTRL_RUN_CLRBUF 0x0017
CTRL_INUSE_ON 0x0008 CTRL_MS_MASTER 0x1007
CTRL_COND_NONE 0x0001 CTRL_MS_SLAVE 0x100f
CTRL_COND_FULL 0x0001 CTRL_BUF_NOBUFFERS 0x2007
CTRL_COND_AFTER 0x0009 CTRL_BUF_BUFFERS 0x200f
CTRL_COND_EQ 0x0011 CTRL_RDY_NOREADY 0x3007
CTRL_COND_NEQ 0x0019 CTRL_RDY_STROBED 0x300f
CTRL_COND_GREATER 0x0021 CTRL_RDY_HANDSHAKE 0x3017
CTRL_COND_LESS 0x0029 CTRL_SDELAY_NOSDELAY 0x4007
CTRL_IE_MODE_EVENT 0x0002 CTRL_SDELAY_SDELAY 0x400f
CTRL_IE_MODE_INTERRUPT 0x000a CTRL_PORT_DATAPORT 0x5007
CTRL_DRIVE_DRIVE 0x0003 CTRL_PORT_CLOCKPORT 0x500f
CTRL_DRIVE_PULL_DOWN 0x000b CTRL_PORT_READYPORT 0x5017
CTRL_DRIVE_PULL_UP 0x0013 CTRL_INV_NOINVERT 0x6007
CTRL_RUN_STOPR 0x0007 CTRL_INV_INVERT 0x600f
CTRL_RUN_STARTR 0x000f

The precise effect depends on the resource type:

Port
See the chapter on Ports in the architecture manual for a description of the
port modes.

Timer
Only two of the modes, COND_AFTER and COND_NONE, can be used. When
COND_AFTER is set, the next IN operation on this resource will block until
the timer has reached the value set with SETD. Note that any value between
the set time and the set time - 2bpw−1 is accepted for the after condition.

Clock source
Only the modes INUSE_ON and INUSE_OFF can be used - the resource must
be switched on before it is used, and switch off when the program is finished
with it.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

REV 1.0



xCORE-200: The XMOS XS2 Architecture 188/289

SETC r , s

Operation:

controlr ← s

Encoding:

1 1 1 1 1 . . . . . . 1 . . . .

0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a valid resource, or the resource is not in use, or
not a resource on which SETC can be used

ET_ILLEGAL_RESOURCE s is not a valid mode, or not a mode that can be used on r .

REV 1.0



xCORE-200: The XMOS XS2 Architecture 189/289

SETCI Set resource control bits immediate

Sets the resource control bits. The control bits that can be set with SETC are the
following:

CTRL_INUSE_OFF 0x0000 CTRL_RUN_CLRBUF 0x0017
CTRL_INUSE_ON 0x0008 CTRL_MS_MASTER 0x1007
CTRL_COND_NONE 0x0001 CTRL_MS_SLAVE 0x100f
CTRL_COND_FULL 0x0001 CTRL_BUF_NOBUFFERS 0x2007
CTRL_COND_AFTER 0x0009 CTRL_BUF_BUFFERS 0x200f
CTRL_COND_EQ 0x0011 CTRL_RDY_NOREADY 0x3007
CTRL_COND_NEQ 0x0019 CTRL_RDY_STROBED 0x300f
CTRL_COND_GREATER 0x0021 CTRL_RDY_HANDSHAKE 0x3017
CTRL_COND_LESS 0x0029 CTRL_SDELAY_NOSDELAY 0x4007
CTRL_IE_MODE_EVENT 0x0002 CTRL_SDELAY_SDELAY 0x400f
CTRL_IE_MODE_INTERRUPT 0x000a CTRL_PORT_DATAPORT 0x5007
CTRL_DRIVE_DRIVE 0x0003 CTRL_PORT_CLOCKPORT 0x500f
CTRL_DRIVE_PULL_DOWN 0x000b CTRL_PORT_READYPORT 0x5017
CTRL_DRIVE_PULL_UP 0x0013 CTRL_INV_NOINVERT 0x6007
CTRL_RUN_STOPR 0x0007 CTRL_INV_INVERT 0x600f
CTRL_RUN_STARTR 0x000f

The precise effect depends on the resource type:

Port
See the chapter on Ports in the architecture manual for a description of the
port modes.

Timer
Only two of the modes, COND_AFTER and COND_NONE, can be used. When
COND_AFTER is set, the next IN operation on this resource will block until
the timer has reached the value set with SETD. Note that any value between
the set time and the set time - 2bpw−1 is accepted for the after condition.

Clock source
Only the modes INUSE_ON and INUSE_OFF can be used - the resource must
be switched on before it is used, and switch off when the program is finished
with it.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

REV 1.0



xCORE-200: The XMOS XS2 Architecture 190/289

SETCI r ,u16

Operation:

controlr ← u16

Encoding:

1 1 1 0 1 0 . . . . . . . . . .ru6 R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

1 1 1 0 1 0 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE op1 is not a valid resource, or the resource is not in use,
or not a resource on which SETC can be used

ET_ILLEGAL_RESOURCE op2 is not a valid mode, or not a mode that can be used
on op1.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 191/289

SETCLK Set clock for a resource

Sets the clock for a resource. The precise meaning of this instruction depends on
the resource.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETCLK r , s

Operation:

clkr ← s

Encoding:

1 1 1 1 1 . . . . . . 1 . . . .

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0lr2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a port or clock source resource, or the resource is
not in use.

ET_ILLEGAL_RESOURCE s is not a port or clock source resource.

ET_ILLEGAL_RESOURCE r is a running clock-block.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 192/289

SETCP Set constant pool

Sets the base address of the constant pool, held in cp. The value that is written
into cpshould be word-aligned, otherwise subsequent loads and stores relative to
cpwill raise an exception.

SETCP is used in conjunction with LDWCP and LDAWCP.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

SETCP s

Operation:

cp ← s

Encoding:

0 0 1 1 0 1 1 1 1 1 1 1 . . . .1r M

REV 1.0



xCORE-200: The XMOS XS2 Architecture 193/289

SETD Set event data

Sets the contents of the data/dest/divide register of a resource. Its data register is
read using GETD. The way that a resource depends on the data register is resource
dependent:

Port
specifies the value for the input condition (see SETC)

Timer
specifies the value to wait for (see SETC)

Channel end
specifies the destination channel for OUT operations. The value written
should be a channel identifier, constructed as specified for GETR.

Clock source
specifies the value to divide the clock input by.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETD r , s

Operation:

datar ← s

Encoding:

0 0 0 1 0 . . . . . . 1 . . . .r2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a channel, timer, port or clock resource, or the
resource is not in use.

ET_ILLEGAL_RESOURCE r is a running clock-block.

ET_ILLEGAL_RESOURCE r is a channel-end, and s is not a channel-end or a configu-
ration resource.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 194/289

SETDP Set the data pointer

Sets the base address of the global data area, held in dp. The value that is written
into dpshould be word-aligned, otherwise subsequent loads and stores relative to
dpwill raise an exception.

SETDP is used in conjunction with LDWDP, STWDP, and LDAWDP

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

SETDP s

Operation:

dp ← s

Encoding:

0 0 1 1 0 1 1 1 1 1 1 0 . . . .1r M

REV 1.0



xCORE-200: The XMOS XS2 Architecture 195/289

SETEV Set environment vector

Sets the environment vector related to a resource. When a resource issues an event
to a thread, any address stored in the environment vector will overwrite ed. If
uninitialised, edwill be set to the resource identifier. SETEV can be used to pass an
address specific to a resource to the event handler. SETEV can be used to share a
single handler between multiple resources. Note that SETEV is intended to pass
address information, as such it does not necessarily hold bpw bits.

SETEV is used in conjunction with SETV, and any of the WAITEU instructions.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

SETEV r

Operation:

evr ← r11

Encoding:

0 0 1 1 1 1 1 1 1 1 1 1 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a port, timer or channel resource, or the resource
is not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 196/289

SETKEP Set the kernel entry point

Sets the kernel entry point. The kernel entry point should be aligned on a 128-byte
boundary.

The instruction has no operands.

Mnemonic and operands:

SETKEP

Operation:

kep ← r11

Encoding:

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 10r M

REV 1.0



xCORE-200: The XMOS XS2 Architecture 197/289

SETN Set network

Sets the logical network over which a channel should communicate.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETN r , s

Operation:

netr ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0lr2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a channel end or not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 198/289

SETPS Set processor state

Sets a processor internal register. Only used when configuring the core.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETPS r , s

Operation:

ps[r] ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0lr2r M&R

Conditions that raise an exception:

ET_ILLEGAL_PS s is not referring to a legal processor state register

ET_ILLEGAL_PS s is not referring to a read-only processor state register

ET_ILLEGAL_PS s is referring to RAMBASE and r is set to the ROM address

REV 1.0



xCORE-200: The XMOS XS2 Architecture 199/289

SETPSC Set the port shift count

Sets the port shift count for input and output operations.

OUTPW and INPW can be used instead of a combination of SETPSC and OUT/IN.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETPSC r , s

Operation:

shif tcountr ← s

Encoding:

1 1 0 0 0 . . . . . . 0 . . . .r2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resoruce is not
in use.

ET_ILLEGAL_RESOURCE s is not a valid shift count for the transfer width of the port,
or the port is not in BUFFERED mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 200/289

SETPT Set the port time

Specifies the time when the next port input or output will be performed. The time
is specified in terms of the number of edges of the clock associated with this port.
The port timer stores a 16-bit value hence the largest delay is 65535 edges of the
port-clock.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETPT r , s

Operation:

porttimerr ← s

Encoding:

0 0 1 1 1 . . . . . . 1 . . . .r2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the resource is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 201/289

SETRDY Set ready input for a port

Sets ready input pin to be used by a port for strobing or handshaking.

If r is a clock block, then s should be the 1-bit port to be used as ready input. r
should be associated with a dataport using SETCLK.

Otherwise, if r is a port, then this port should be in mode READY_OUT, and s is
the data port from which the ready out will be generated.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETRDY r , s

Operation:

rdyr ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0lr2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port or clock resource, or the resource
is not in use.

ET_ILLEGAL_RESOURCE s is not pointing to a port resource, or the port is not a
1-bit port.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 202/289

SETSP Set the stack pointer

Sets the end address of the stack, held in sp. The value that is written into spshould
be word-aligned, otherwise subsequent loads and stores relative to spwill raise an
exception.

SETSP is used in conjunction with ENTSP, RETSP, LDWSP and STWSP.

The instruction has one operand:

op1 s Operand register, one of r0... r11

Mnemonic and operands:

SETSP s

Operation:

sp ← s

Encoding:

0 0 1 0 1 1 1 1 1 1 1 1 . . . .1r M

REV 1.0



xCORE-200: The XMOS XS2 Architecture 203/289

SETSR Set bits in SR

Set bits in the thread’s Status Register. The mask supplied specifies which bits
should be set. Note that setting the EEBLE bit may cause an event to be issued,
causing subsequent instructions to not be executed (since events do not save the
program counter). Setting IEBLE may cause an interrupt to be issued. The bits are
defined as follows:

0 EEBLE When 1 events are enabled for the thread.

1 IEBLE When 1 interrupts are enabled for the thread.

2 INENB 1 when in an event enabling sequence.

3 ININT 1 when in an interrupt handler.

4 INK 1 when in kernel mode.

6 WAITING When 1 the thread is paused waiting for events.

7 FAST When 1 the thread will continually issue.

SETSR can only be used to set the EEBLE, IEBLE and INENB bits.

CLRSR is used to clear bits in the status register.

The instruction has one operand:

op1 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,
the instruction requires no prefix

Mnemonic and operands:

SETSR u16

Operation:

sr ← sr ∨bit u16

Encoding:

0 1 1 1 1 0 1 1 0 1 . . . . . .u6 R

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 1 1 1 0 1 1 0 1 . . . . . .lu6 M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 204/289

SETTW Set transfer width for a port

Sets the number of bits that is transferred on an IN or OUT operation on a port
that is buffered. The buffering will shift the data.

The instruction has two operands:

op1 r Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SETTW r , s

Operation:

transferwidthr ← s

Encoding:

1 1 1 1 1 . . . . . . 1 . . . .

0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0lr2r M&R

Conditions that raise an exception:

ET_ILLEGAL_RESOURCE r is not pointing to a port resource, or the port is not in
use.

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE s is not legal width for the port, or the port is not in
BUFFERS mode.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 205/289

SETV Set event vector

Sets the vector related to a resource. When a resource issues an event to a thread,
this vector is used to determine which instruction to issue. The vector is typically
set up once when all event handlers are installed. Note that if an illegal vector is
supplied, this will not raise an exception until an actual event is handled.

SETV is used in conjunction with SETEV, and any of the WAITEU instructions.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

SETV r

Operation:

vr ← r11

Encoding:

0 1 0 0 0 1 1 1 1 1 1 1 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a port, timer or channel resoruce, or
the resource is not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 206/289

SEXT Sign extend an n-bit field

Sign extends an n-bit field stored in a register. The first operand is both a source
and destination operand. The second operand contains the bit position. All bits
at a position higher or equal are set to the value of the bit one position lower. In
effect, the lower n bits are interpreted as a signed integer, and produced in the
destination register.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

SEXT d, s

Operation:

d ←
{
s ≤ 0∨ s ≥ bpw, d
s > 0∧ s < bpw, d[s − 1] : ... : d[s − 1] : d[s − 1...0]

Encoding:

0 0 1 1 0 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 207/289

SEXTI Sign extend an n-bit field immediate

Sign extends an n-bit field stored in a register. The first operand is both a source
and destination operand. The second operand contains the bit position. All bits
at a position higher or equal are set to the value of the bit one position lower. In
effect, the lower n bits are interpreted as a signed integer, and produced in the
destination register.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

SEXTI d,bitp

Operation:

d ←
{
bitp ≤ 0∨ bitp ≥ bpw, d
bitp > 0∧ bitp < bpw, d[bitp − 1] : ... : d[bitp − 1] : d[bitp − 1...0]

Encoding:

0 0 1 1 0 . . . . . . 1 . . . .rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 208/289

SHL Shift left

Shifts a word left by y bits, filling the least significant y bits with zeros. Shift left
multiplies signed and unsigned integers by 2y .

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

SHL d,x,y

Operation:

d ←
{
y < bpw, x[bpw −y...0] : 0 : ... : 0

y ≥ bpw, 0

Encoding:

0 0 1 0 0 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 209/289

SHLI Shift left immediate

Shifts a word left by bitp bits, filling the least significant bitp bits with zeros.
Shift left multiplies signed and unsigned integers by 2bitp.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

SHLI d,x, bitp

Operation:

d ←
{
bitp < bpw, x[bpw − bitp...0] : 0 : ... : 0

bitp ≥ bpw, 0

Encoding:

1 0 1 0 0 . . . . . . . . . . .2rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 210/289

SHR Shift right

Shifts a word right by y positions, filling the most significant y bits with zeros.
This implements an unsigned divide by 2y .

For signed shifts, use ASHR.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

SHR d,x,y

Operation:

d ←
{
y < bpw, 0 : ... : 0 : x[bpw − 1...y]
y ≥ bpw, 0

Encoding:

0 0 1 0 1 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 211/289

SHRI Shift right immediate

Shifts a word right by bitp positions, filling the most significant bitp bits with
zeros. This implements an unsigned divide by 2bitp.

For signed shifts, use ASHR.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

SHRI d,x, bitp

Operation:

d ←
{
bitp < bpw, 0 : ... : 0 : x[bpw − 1...bitp]
bitp ≥ bpw, 0

Encoding:

1 0 1 0 1 . . . . . . . . . . .2rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 212/289

SSYNC Slave synchronise

Synchronises this thread with all threads associated with a synchroniser. SSYNC is
used together with MSYNC to implement a barrier, or together with MJOIN in order
to terminate a group of processes. SSYNC uses the synchroniser that was used to
create this process in order to establish which other processes to synchronise with.

SSYNC clears the EEBLE bit, disabling any events from being issued; this commits
the thread to synchronising. If the ININT bit is set, then SSYNC will not block;
SSYNC should not be used inside an interrupt handler.

The instruction has no operands.

Mnemonic and operands:

SSYNC

Operation:

sr[eeble]← 0

if (slavessyn(tid) \ spaused = {tid})∧msynsyn(tid) then
if mjoinsyn(tid) then
forall thread ∈ slavessyn(tid) : inusethread ← 0

mjoinsyn(tid) ← 0

else
spaused← spaused \ slavessyn(tid)

mpaused←mpaused \ {mstrsyn(tid)}
msynsyn(tid) ← 0

else
spaused← spaused∪ {tid}

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 00r R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 213/289

ST8 8-bit store

Stores eight bits of a register into memory. The least significant 8 bits of the
register are stored into the address computed using a base address (b) and index
(i).

The instruction has three operands:

op1 s Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

ST8 s, b, i

Operation:

mem[ea− bytenum][bitnum+ 7...bitnum]← s
where ea← b + i

bytenum ← ea mod Bpw
bitnum ← 8× bytenum

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 214/289

ST16 16-bit store

Stores 16 bits of a register into memory. The least significant 16 bits of the register
are stored into the address computed using a base address (b) and index (i). The
base address should be word-aligned, the index is multiplied by 2.

The instruction has three operands:

op1 s Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

ST16 s, b, i

Operation:

mem[ea− bytenum][bitnum+ 15...bitnum]← s[15...0]
where ea← b + i× 2

bytenum ← ea mod Bpw
bitnum ← 16× (bytenum÷ 2)

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_LOAD_STORE b is not 16-bit aligned (unaligned load), or does not point
to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 215/289

STD Store double word

Stores two words in memory, at a location specified by a base address and an
index. The index is multiplied by the size of a double word, the base address must
be double-word aligned.

The immediate version, STDI, implements a store into a structured data type, the
version with registers only, STD, implements a store into an array.

The instruction has four operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

STD d, e, b, i

Operation:

mem[b + i× Bpw × 2] ← d
mem[b + i× Bpw × 2+ Bpw] ← e

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 1 0 1 1 1 1 1 1 0 . . . .l4r M&R

Conditions that raise an exception:

ET_LOAD_STORE b is not double word aligned, or the indexed address does
not point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 216/289

STDI Store double word immediate

Stores two words in memory, at a location specified by a base address and an
index. The index is multiplied by the size of a double word, the base address must
be double-word aligned.

The immediate version, STDI, implements a store into a structured data type, the
version with registers only, STD, implements a store into an array.

The instruction has four operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i An integer in the range 0...11

Mnemonic and operands:

STDI d, e, b, i

Operation:

mem[b + i× Bpw × 2] ← d
mem[b + i× Bpw × 2+ Bpw] ← e

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 1 0 1 1 1 1 1 1 1 . . . .l3rus M&R

Conditions that raise an exception:

ET_LOAD_STORE b is not double word aligned, or the indexed address does
not point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 217/289

STDSP Store double word on stack

Stores two words on the stack, using a constant offset from the stack pointer. The
offset is specified in double words.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 e Operand register, one of r0... r11
op3 us An integer in the range 0...11

Mnemonic and operands:

STDSP d, e,us
Operation:

mem[sp +us × Bpw × 2] ← d
mem[sp +us × Bpw × 2+ Bpw] ← e

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0l2rus M&R

Conditions that raise an exception:

ET_LOAD_STORE sp is not double-word aligned, or the indexed address
does not point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 218/289

STET Store ET on the stack

Stores the value of ET on the stack at offset 4.

The value can be restored using LDET. Together with STSPC, STSSR, and STSED all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STET

Operation:

mem[sp + 4× Bpw] ← set

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 10r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 219/289

STSED Store SED on the stack

Stores the value of SED on the stack at offset 3.

The value can be restored using LDSED. Together with STSPC, STSSR, and STET all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSED

Operation:

mem[sp + 3× Bpw] ← sed

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 00r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 220/289

STSPC Store SPC on the stack

Stores the value of SPC on the stack at offset 1.

The value can be restored using LDSPC. Together with STET, STSSR, and STSED all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSPC

Operation:

mem[sp + 1× Bpw] ← spc

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 10r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 221/289

STSSR Store the SSR to the stack

Stores the value of SSR on the stack at offset 2.

The value can be restored using LDSSR. Together with STET, STSPC, and STSED all
or part of the state copied during an interrupt can be placed on the stack.

The instruction has no operands.

Mnemonic and operands:

STSSR

Operation:

mem[sp + 2× Bpw] ← ssr

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 10r M

Conditions that raise an exception:

ET_LOAD_STORE The indexed address does not point to a valid memory
location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 222/289

STW Store word

Stores a word in memory, at a location specified by a base address and an index.
The index is multiplied by the size of a word, the base address must be word
aligned.

The immediate version, STWI, implements a store into a structured data type, the
version with registers only, STW, implements a store into an array.

The instruction has three operands:

op1 s Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i Operand register, one of r0... r11

Mnemonic and operands:

STW s, b, i

Operation:

mem[b + i× Bpw] ← s

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_LOAD_STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 223/289

STWI Store word immediate

Stores a word in memory, at a location specified by a base address and an index.
The index is multiplied by the size of a word, the base address must be word
aligned.

The immediate version, STWI, implements a store into a structured data type, the
version with registers only, STW, implements a store into an array.

The instruction has three operands:

op1 s Operand register, one of r0... r11
op2 b Operand register, one of r0... r11
op3 i An integer in the range 0...11

Mnemonic and operands:

STWI s, b, i

Operation:

mem[b + i× Bpw] ← s

Encoding:

0 0 0 0 0 . . . . . . . . . . .2rus M

Conditions that raise an exception:

ET_LOAD_STORE b is not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 224/289

STWDP Store word in data pool

Stores a word in the data area, using a constant offset from the data pointer. The
offset is specified in words. STWDP can be used to write to global variables.

The instruction has two operands:

op1 S Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

STWDP S,u16

Operation:

mem[dp +u16 × Bpw] ← S

Encoding:

0 1 0 1 0 0 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 0 1 0 0 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_LOAD_STORE dpis not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 225/289

STWSP Store word on stack

Stores a word on the stack, using a constant offset from the stack pointer. The
offset is specified in words. STWSP is used to write to stack variables.

The instruction has two operands:

op1 S Any of r0... r11, cp, dp, sp, lr
op2 u16 A 16-bit immediate in the range 0...65535. If u16 < 64,

the instruction requires no prefix

Mnemonic and operands:

STWSP S,u16

Operation:

mem[sp +u16 × Bpw] ← S

Encoding:

0 1 0 1 0 1 . . . . . . . . . .ru6 M

or prefixed for long immediates:

1 1 1 1 0 0 . . . . . . . . . .

0 1 0 1 0 1 . . . . . . . . . .lru6 M&R

Conditions that raise an exception:

ET_LOAD_STORE spis not word aligned, or the indexed address does not
point to a valid memory location.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 226/289

SUB Integer unsigned subtraction

Computes the difference between two words. No check on overflow is performed,
and the result is produced modulo 2bpw .

If a borrow is required, then the LSUB instruction should be used. LSU and LSS
should be used to compare signed and unsigned integers.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

SUB d,x,y

Operation:

d ← (2bpw + x −y) mod 2bpw

Encoding:

0 0 0 1 1 . . . . . . . . . . .3r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 227/289

SUBI Integer unsigned subtraction immediate

Computes the difference between two words. No check on overflow is performed,
and the result is produced modulo 2bpw .

If a borrow is required, then the LSUB instruction should be used. LSU and LSS
should be used to compare signed and unsigned integers.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 us An integer in the range 0...11

Mnemonic and operands:

SUBI d,x,us
Operation:

d ← (2bpw + x −us) mod 2bpw

Encoding:

1 0 0 1 1 . . . . . . . . . . .2rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 228/289

SYNCR Synchronise a resource

Synchronise with a port to ensure all data has been output. This instruction
completes once all data has been shifted out of the port, and the last port width of
data has been held for one clock period.

The instruction has one operand:

op1 r Operand register, one of r0... r11

Mnemonic and operands:

SYNCR r

Operation:

syncr(r)

Encoding:

1 0 0 0 0 1 1 1 1 1 1 1 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not a port resource, or the resource is not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 229/289

TESTCT Test for control token

Test whether the next token on a channel (r ) is a control token. If the channel
contains a control token, then 1 (true) will be produced in the destination register,
otherwise 0 (false) will be produced.

This instruction pauses if the channel does not have a token available to be read.

In contrast to CHKCT this test does not trap, and does not discard the control
token. TESTCT can be used to implement complex protocols over channels.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

TESTCT d, r

Operation:

d ←
{
hasctoken(r), 1

¬hasctoken(r), 0

Encoding:

1 0 1 1 1 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a channel resource, or the resource is
not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 230/289

TESTLCL Test local

Tests if a channel end is connected to a local channel end or to a remote channel
end. It produces 1 (true) in the destination register if the channel end is local, and
0 (false) if the channel end is remote. The instruction will raise an exception if the
resource supplied is not a channel end or an unconnected channel end.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

TESTLCL d, r

Operation:

d ←
{
dr [bpw − 1..16] = r[bpw − 1..16], 1

dr [bpw − 1..16] 6= r[bpw − 1..16], 0

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a channel resource, or the resource is
not in use.

ET_ILLEGAL_RESOURCE r is a channel end, and the destination has not been set.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 231/289

TESTWCT Test for position of control token

Test whether the next word contains a control token, and produces the position
(1-4) of the first control token in the word, or 0 if it contains no control tokens.

This instruction pauses if the channel has not received enough tokens to determine
what value to return. So if less than four tokens have been received, but one of
them is a control token, the instruction will not pause.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 r Operand register, one of r0... r11

Mnemonic and operands:

TESTWCT d, r

Operation:

d ←



¬hasctoken(r), 0

firsttokenisctoken, 1

secondtokenisctoken, 2

thirdtokenisctoken, 3

fourthtokenisctoken, 4

Encoding:

1 1 0 0 0 . . . . . . 1 . . . .2r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE r is not pointing to a channel resource, or the resource is
not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 232/289

TINITCP Initialise a thread’s CP

Sets the constant pool pointer for a specific thread. This operation may be used
after a thread has been allocated (using GETST or GETR), but prior to the thread
starting its execution.

The instruction has two operands:

op1 s Operand register, one of r0... r11
op2 t Operand register, one of r0... r11

Mnemonic and operands:

TINITCP s, t

Operation:

cpt ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE t is not pointing to a thread resource, or the thread is not
in use, or the thread is not SSYNC.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 233/289

TINITDP Initialise a thread’s DP

Sets the data pointer for a specific thread. This operation may be used after a
thread has been allocated (using GETST or GETR), but prior to the thread starting
its execution.

The instruction has two operands:

op1 s Operand register, one of r0... r11
op2 t Operand register, one of r0... r11

Mnemonic and operands:

TINITDP s, t

Operation:

dpt ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE t is not pointing to a thread resource, or the thread is not
in use, or the thread is not SSYNC.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 234/289

TINITLR Initialise a thread’s LR

Sets the link register for a specific thread. This operation may be used after a
thread has been allocated (using GETST or GETR), but prior to the thread starting
its execution.

The instruction has two operands:

op1 s Operand register, one of r0... r11
op2 t Operand register, one of r0... r11

Mnemonic and operands:

TINITLR s, t

Operation:

lrt ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE t is not pointing to a thread resource, or the thread is not
in use, or the thread is not SSYNC.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 235/289

TINITPC Initialise a thread’s PC

Sets the program counter for a specific thread. This operation may be used after a
thread has been allocated (using GETST or GETR), but prior to the thread starting
its execution.

The instruction has two operands:

op1 s Operand register, one of r0... r11
op2 t Operand register, one of r0... r11

Mnemonic and operands:

TINITPC s, t

Operation:

pct ← s

Encoding:

1 1 1 1 1 . . . . . . 1 . . . .

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE t is not pointing to a thread resource, or the thread is not
in use, or the thread is not SSYNC.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 236/289

TINITSP Initialise a thread’s SP

Sets the stack pointer for a specific thread. This operation may be used after a
thread has been allocated (using GETST or GETR), but prior to the thread starting
its execution.

The instruction has two operands:

op1 s Operand register, one of r0... r11
op2 t Operand register, one of r0... r11

Mnemonic and operands:

TINITSP s, t

Operation:

spop ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE t is not pointing to a thread resource, or the thread is not
in use, or the thread is not SSYNC.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 237/289

TSETMR Set the master’s register

Writes data to a register of the master thread. This instruction should be used
with care, and only when the other thread is known to be not using that register.
Typically used to transfer results from a slave thread back to the master prior to a
MJOIN.

TSETMR uses the synchroniser that was used to create this process in order to
establish which thread’s register to write to.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

TSETMR d, s

Operation:

mtidd ← s

Encoding:

1 1 1 1 1 . . . . . . 0 . . . .

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1l2r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE Master thread is not in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 238/289

TSETR Set register in thread

Writes data to a register of another thread. This instruction should be used with
care, and only when the other thread is known to be not using that register.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11
op3 t Operand register, one of r0... r11

Mnemonic and operands:

TSETR d, s, t

Operation:

dt ← s

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0l3r M&R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE t is not pointing to a thread resource, or the thread is not
in use.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 239/289

TSTART Start thread

Starts an unsynchronised thread. An unsynchronised thread runs independently
from the starting thread.

The unsynchronised thread must have been allocated with GETR, and the program
counter should have been initialised with TINITPC.

The instruction has one operand:

op1 t Operand register, one of r0... r11

Mnemonic and operands:

TSTART t

Operation:

spaused ← spaused \ {t}
waitingt ← 0

Encoding:

0 0 0 1 1 1 1 1 1 1 1 0 . . . .1r R

Conditions that raise an exception:

ET_RESOURCE_DEP Resource illegally shared between threads

ET_ILLEGAL_RESOURCE t is not pointing to a thread, or the thread is not in use, or
the thread is not SSYNC.

ET_ILLEGAL_PC Thread t does not have a legal program counter.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 240/289

UNZIP Unzips a pair of registers

Unzips a pair registers in bit, bit-pairs, nibbles, bytes or byte-pairs. The granluarity
of zipping is determined by 2s . The pair of registers is split in chunks of 2s bits.
The most significant chunk and every other chunk after that are concatenated and
written back to d. The other chunks in between are written back to e.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 e Operand register, one of r0... r11
op3 s An integer in the range 0...11

Mnemonic and operands:

UNZIP d, e, s

Operation:

w ← 2s

z ← d : e
d← z[2× bpw − 1..2× bpw −w − 1] :

z[2× bpw − 2w − 1..2× bpw − 3w − 1] : ... :
z[2w − 1..w]

e ← z[2× bpw −w − 1..2× bpw − 2w − 1] :

z[2× bpw − 3w − 1..2× bpw − 4w − 1] : ... :
z[w − 1..0]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 1l2rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 241/289

WAITEF If false wait for event

Waits for an event when a condition is false. If the condition is 0 (false), then
the EEBLE is set, and, if no event is ready it will suspend the thread until an
event becomes ready. When an event is available, the thread will continue at the
address specified by the event. If the condition is not 0, the next instruction will
be executed. The current PC is not saved anywhere.

The instruction has one operand:

op1 c Operand register, one of r0... r11

Mnemonic and operands:

WAITEF c

Operation:

if c = 0 then srtid[eeble]← 1

Encoding:

0 0 0 0 1 1 1 1 1 1 1 1 . . . .1r R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 242/289

WAITET If true wait for event

Waits for an event when a condition is true. If the condition not 0, then the EEBLE
is set, and, if no event is ready it will suspend the thread until an event becomes
ready. When an event is available, the thread will continue at the address specified
by the event. If the condition is 0 (false), the next instruction will be executed. The
current PC is not saved anywhere.

The instruction has one operand:

op1 c Operand register, one of r0... r11

Mnemonic and operands:

WAITET c

Operation:

if c 6= 0 then srtid[eeble]← 1

Encoding:

0 0 0 0 1 1 1 1 1 1 1 0 . . . .1r R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 243/289

WAITEU Wait for event

Waits for an event. This instruction sets EEBLE and, if no event is ready it will
suspend the thread until an event becomes ready. When an event is available, the
thread will continue at the address specified by the event. The current PC is not
saved anywhere.

The instruction has no operands.

Mnemonic and operands:

WAITEU

Operation:

srtid[eeble] ← 1

Encoding:

0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 00r R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 244/289

XOR Bitwise exclusive or

Produces the bitwise exclusive-or of two words.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11

Mnemonic and operands:

XOR d,x,y

Operation:

d ← x ⊕bit y

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0l3r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 245/289

XOR4 Bitwise exclusive-or of four words

Produces the bitwise exclusive-or of four words.

The instruction has five operands:

op1 d Operand register, one of r0... r11
op4 e Operand register, one of r0... r11
op2 x Operand register, one of r0... r11
op3 y Operand register, one of r0... r11
op5 v Operand register, one of r0... r11

Mnemonic and operands:

XOR4 d, e,x,y,v

Operation:

d ← x ⊕bit y ⊕bit e⊕bit v

Encoding:

1 1 1 1 1 . . . . . . . . . . .

0 0 0 0 1 . . . . . . 1 . . . .l5r M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 246/289

ZEXT Zero extend

Zero extends an n-bit field stored in a register. The first operand of this instruction
is both a source and destination operand. The second operand contains the bit
position. All bits at a position higher or equal are cleared.

The instruction has two operands:

op1 d Operand register, one of r0... r11
op2 s Operand register, one of r0... r11

Mnemonic and operands:

ZEXT d, s

Operation:

d ←
{
s ≤ 0∨ s ≥ bpw, d
s > 0∧ s < bpw, 0 : ... : 0 : d[s − 1...0]

Encoding:

0 1 0 0 0 . . . . . . 0 . . . .2r M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 247/289

ZEXTI Zero extend immediate

Zero extends an n-bit field stored in a register. The first operand of this instruction
is both a source and destination operand. The second operand contains the bit
position. All bits at a position higher or equal are cleared.

The instruction has two operands:

op1 s Operand register, one of r0... r11
op2 bitp A bit position; one of bpw, 1, 2, 3, 4, 5, 6, 7, 8, 16,

24, 32

Mnemonic and operands:

ZEXTI s, bitp

Operation:

s ←
{
bitp ≤ 0∨ bitp ≥ bpw, s
bitp > 0∧ bitp < bpw, 0 : ... : 0 : s[bitp − 1...0]

Encoding:

0 1 0 0 0 . . . . . . 1 . . . .rus M+R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 248/289

ZIP Zips together a pair of registers

Zips a pair registers in bit, bit-pairs, nibbles, bytes or byte-pairs. The granluarity of
zipping is determined by 2s . Each of d and e are chopped into chunks of 2s bits.
They are then zipped together by starting with the most significant chunk of d, the
most significant chunk of e, then next significant chunk of d and so on until the
least significant chunks of e and d. This results in a bit string of 2× bpw bits, the
most significant bpw bits are written back to d, the least significant bpw bits to
e.

The instruction has three operands:

op1 d Operand register, one of r0... r11
op2 e Operand register, one of r0... r11
op3 s An integer in the range 0...11

Mnemonic and operands:

ZIP d, e, s

Operation:

z ← d[bpw − 1..bpw −w − 1] :

e[bpw − 1..bpw −w − 1] :

d[bpw −w − 1..bpw − 2×w − 1] :

e[bpw −w − 1..bpw − 2×w − 1] : ... :
d[w − 1..0] :

e[w − 1..0] :

d← z[2bpw − 1..bpw]
e ← z[bpw − 1..0]

Encoding:

1 1 1 1 1 . . . . . . . . . . .

1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0l2rus M&R

REV 1.0



xCORE-200: The XMOS XS2 Architecture 249/289

20 XS2 Instruction Format Specification

This section defines the instruction-formats. For each instruction format there is a
name, a short description of its purpose, then a graphical representation of the
encoding, and finally a list of instructions that use this instruction encoding.

The graphical representation shows the bits of the instruction, bits are numbered
from 15 down to 0. If a bit value depends on the opcode, then this is marked with
a “×” symbol. If a bit value depends on an operand this is marked with a “·”, and
the particular encoding for that operand is shown underneath. Otherwise, the bit
will have a value of 0 or 1, in order to differentiate between formats.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 250/289

Three register 3r

Instructions with three operand registers; the last two operands are always source
registers, the first operand is always a destination register

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in one word:

××××× . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

Opcode

This format is used by the following instructions:

ADD LD8U LSS SHL

AND LD16S LSU SHR

EQ LDW OR SUB

REV 1.0



xCORE-200: The XMOS XS2 Architecture 251/289

Three register long l3r

Instructions with three operand registers; the last two operands are always source
operands, the first operand usually refers to the destination register (with the
exception of store instruction)

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1 . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

This format is used by the following instructions:

ASHR LDA16F REMS STW

CRC LDAWB REMU TSETR

DIVS LDAWF LSATS XOR

DIVU MUL ST8

LDA16B OUTPW ST16

REV 1.0



xCORE-200: The XMOS XS2 Architecture 252/289

Two register with immediate 2rus

Instructions with three operands. The last operand is a small unsigned constant
(0..11), the second operand is a source register, the first operand is either a
destination register, or a second source register in the case of memory-store
operations.

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in one word:

××××× . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

Opcode

This format is used by the following instructions:

ADDI LDWI SHRI SUBI

EQI SHLI STWI

REV 1.0



xCORE-200: The XMOS XS2 Architecture 253/289

Two register with immediate long l2rus

Instructions with three operands. The last operand is a small unsigned constant
(0..11), the second operand is a source register, the first operand is either a
destination register, or a second source register in the case of some resource
operations.

The syntax for this instruction is:

MNEMONIC op1, op2, op3

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1 . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

This format is used by the following instructions:

ASHRI LDAWFI STDSP

INPW LDDSP UNZIP

LDAWBI OUTPWI ZIP

REV 1.0



xCORE-200: The XMOS XS2 Architecture 254/289

Register with 6-bit immediate ru6

Instructions with two operands where the first operand is a register and the second
operand is a 6-bit integer constant. This format used, amongst others, for load
and store operations relative to the stack pointer and data pointer.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

×××××× . . . . . . . . . .

op2[5...0]

op1[3...0]

Opcode

Opcode

This format is used by the following instructions:

BRBF LDAWDP LDWDP STWSP

BRBT LDAWSP LDWSP

BRFF LDC SETCI

BRFT LDWCP STWDP

REV 1.0



xCORE-200: The XMOS XS2 Architecture 255/289

Register with 16-bit immediate lru6

Instructions with two operands where the first operand is a register and the second
operand is a 16-bit integer constant. This instruction is a prefixed version of . This
format is used, amongst others, for load and store operations relative to the stack
pointer and data pointer.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in two words:

×××××× . . . . . . . . . .

op2[5...0]

op1[3...0]

Opcode

Opcode

1 1 1 1 0 0 . . . . . . . . . .

op2[15...6]

This format is used by the following instructions:

BRBF LDAWDP LDWDP STWSP

BRBT LDAWSP LDWSP

BRFF LDC SETCI

BRFT LDWCP STWDP

REV 1.0



xCORE-200: The XMOS XS2 Architecture 256/289

6-bit immediate u6

Instructions with a single operand encoding a 6-bit integer.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in one word:

×××××××××× . . . . . .

op1[5...0]

Opcode

Opcode

Opcode

This format is used by the following instructions:

BLAT DUALENTSP GETSR RETSP

BRBU ENTSP KCALLI SETSR

BRFU EXTDP KENTSP

CLRSR EXTSP LDAWCP

REV 1.0



xCORE-200: The XMOS XS2 Architecture 257/289

16-bit immediate lu6

Instructions with a single operand encoding a 16-bit integer. This instruction is a
prefixed version of .

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in two words:

×××××××××× . . . . . .

op1[5...0]

Opcode

Opcode

Opcode

1 1 1 1 0 0 . . . . . . . . . .

op1[15...6]

This format is used by the following instructions:

BLAT DUALENTSP GETSR LDAWCP

BRBU ENTSP KCALLI RETSP

BRFU EXTDP KENTSP SETSR

CLRSR EXTSP KRESTSP

REV 1.0



xCORE-200: The XMOS XS2 Architecture 258/289

10-bit immediate u10

Instructions with a single operand encoding a 10-bit integer.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in one word:

×××××× . . . . . . . . . .

op1[9...0]

Opcode

Opcode

This format is used by the following instructions:

BLACP BLRF LDAPF

BLRB LDAPB LDWCPL

REV 1.0



xCORE-200: The XMOS XS2 Architecture 259/289

20-bit immediate lu10

Instructions with a single operand encoding a 20-bit integer. This instruction is a
prefixed version of .

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in two words:

×××××× . . . . . . . . . .

op1[9...0]

Opcode

Opcode

1 1 1 1 0 0 . . . . . . . . . .

op1[19...10]

This format is used by the following instructions:

BLACP BLRF LDAPF

BLRB LDAPB LDWCPL

REV 1.0



xCORE-200: The XMOS XS2 Architecture 260/289

Two register 2r

Instructions with two operand registers; the last operand is always a source register,
the first operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

××××× . . . . . . × . . . .

op2[1...0]

op1[1...0]

Opcode

(op1[3...2]× 3+ op2[3...2]+ 27)[5]

(op2[3...2]× 3+ op1[3...2]) mod 5+ 27

Opcode

This format is used by the following instructions:

ANDNOT EET INSHR PEEK

BITREV ENDIN INT SEXT

BYTEREV GETST MKMSK TESTCT

CHKCT GETTS NEG TESTWCT

CLZ IN NOT ZEXT

EEF INCT OUTCT

REV 1.0



xCORE-200: The XMOS XS2 Architecture 261/289

Two register reversed r2r

Instructions with two operand registers used for resources; the first operand is
always a source register containing the resource to operate on, the last operand
maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

××××× . . . . . . × . . . .

op1[1...0]

op2[1...0]

Opcode

(op2[3...2]× 3+ op1[3...2]+ 27)[5]

(op1[3...2]× 3+ op2[3...2]) mod 5+ 27

Opcode

This format is used by the following instructions:

OUT OUTT SETPSC

OUTSHR SETD SETPT

REV 1.0



xCORE-200: The XMOS XS2 Architecture 262/289

Two register long l2r

Instructions with two operand registers; the last operand is always a source register,
the first operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1 . . . . . . × . . . .

op2[1...0]

op1[1...0]

Opcode

(op1[3...2]× 3+ op2[3...2]+ 27)[5]

(op2[3...2]× 3+ op1[3...2]) mod 5+ 27

This format is used by the following instructions:

GETD SETC TINITDP TINITSP

GETN TESTLCL TINITLR TSETMR

GETPS TINITCP TINITPC

REV 1.0



xCORE-200: The XMOS XS2 Architecture 263/289

Two register reversed long lr2r

Instructions with two operand registers; the first operand is always a source register
containing a resource identifier, the last operand maybe a destination register.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1 . . . . . . × . . . .

op1[1...0]

op2[1...0]

Opcode

(op2[3...2]× 3+ op1[3...2]+ 27)[5]

(op1[3...2]× 3+ op2[3...2]) mod 5+ 27

This format is used by the following instructions:

SETCLK SETPS SETTW

SETN SETRDY

REV 1.0



xCORE-200: The XMOS XS2 Architecture 264/289

Register with immediate rus

Instructions with two operands. The last operand is a small constant (0..11). The
first operand is a register that may be used as source and or destination.

The syntax for this instruction is:

MNEMONIC op1, op2

Instructions in this format are encoded in one word:

××××× . . . . . . × . . . .

op2[1...0]

op1[1...0]

Opcode

(op1[3...2]× 3+ op2[3...2]+ 27)[5]

(op2[3...2]× 3+ op1[3...2]) mod 5+ 27

Opcode

This format is used by the following instructions:

CHKCTI MKMSKI SEXTI

GETR OUTCTI ZEXTI

REV 1.0



xCORE-200: The XMOS XS2 Architecture 265/289

Register 1r

Instructions with one operand register.

The syntax for this instruction is:

MNEMONIC op1

Instructions in this format are encoded in one word:

××××× 1 1 1 1 1 1 × . . . .

op1[3...0]

Opcode

Opcode

This format is used by the following instructions:

BAU ECALLT KCALL SETSP

BLA EDU MJOIN SETV

BRU EEU MSYNC SYNCR

CLRPT ELATE SETCP TSTART

DGETREG FREER SETDP WAITEF

ECALLF GETTIME SETEV WAITET

REV 1.0



xCORE-200: The XMOS XS2 Architecture 266/289

No operands 0r

These instructions operate on implicit operands.

The syntax for this instruction is:

MNEMONIC

Instructions in this format are encoded in one word:

××××× 1 1 1 1 1 1 ×××××
Opcode

Opcode

Opcode

This format is used by the following instructions:

CLRE GETID LDSPC STET

DCALL GETKEP LDSSR STSED

FREET GETKSP NOP STSPC

GETED LDET SETKEP STSSR

GETET LDSED SSYNC WAITEU

REV 1.0



xCORE-200: The XMOS XS2 Architecture 267/289

No operands l0r

These instructions operate on implicit operands.

The syntax for this instruction is:

MNEMONIC

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 0 ××××
Opcode

Opcode

1 1 1 1 1 1 1 1 1 1 1 ×××××
Opcode

Opcode

This format is used by the following instructions:

DENTSP DRESTSP DRET KRET

REV 1.0



xCORE-200: The XMOS XS2 Architecture 268/289

Four register long l4r

Operations on four registers - the last two operands are source registers, the first
two may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 × . . . .

op4[3...0]

Opcode

Opcode

1 1 1 1 1 . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

This format is used by the following instructions:

CRC8 LDD MACCU

CRCN MACCS STD

REV 1.0



xCORE-200: The XMOS XS2 Architecture 269/289

Three register with immediate long l3rus

Operations on three registers and an immediate - the third operand is a source
register, the first two may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3

Instructions in this format are encoded in two words:

××××× 1 1 1 1 1 1 × . . . .

op4[3...0]

Opcode

Opcode

1 1 1 1 1 . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

This format is used by the following instructions:

LDDI STDI

REV 1.0



xCORE-200: The XMOS XS2 Architecture 270/289

Four registers with immediate long l4rus

Instruction with five operands. The last operand is a small unsigned constant
(0..11), the third and fourth operands are source registers, the first and second
operands may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5

Instructions in this format are encoded in two words:

×××××××××× . × . . . .

op5[1...0]

op4[1...0]

Opcode

(op4[3...2]× 3+ op5[3...2]+ 27)[5]

Opcode

Opcode

1 1 1 1 1 . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

This format is used by the following instructions:

CRC32_INC LEXTRACT LINSERT

REV 1.0



xCORE-200: The XMOS XS2 Architecture 271/289

Five register long l5r

Operations on five registers - the last three operands are source registers, the first
two may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5

Instructions in this format are encoded in two words:

××××× . . . . . . × . . . .

op5[1...0]

op4[1...0]

Opcode

(op4[3...2]× 3+ op5[3...2]+ 27)[5]

(op5[3...2]× 3+ op4[3...2]) mod 5+ 27

Opcode

1 1 1 1 1 . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

This format is used by the following instructions:

LADD LDIVU LSUB XOR4

REV 1.0



xCORE-200: The XMOS XS2 Architecture 272/289

Six register long l6r

Operations on six registers - the last four operands are source registers, the first
two may be used as source and or destination registers.

The syntax for this instruction is:

MNEMONIC op1, op4, op2, op3, op5, op6

Instructions in this format are encoded in two words:

××××× . . . . . . . . . . .

op6[1...0]

op5[1...0]

op4[1...0]

op4[3...2]× 9+ op5[3...2]× 3+ op6[3..2]

Opcode

1 1 1 1 1 . . . . . . . . . . .

op3[1...0]

op2[1...0]

op1[1...0]

op1[3...2]× 9+ op2[3...2]× 3+ op3[3..2]

This format is used by the following instructions:

LMUL

REV 1.0



xCORE-200: The XMOS XS2 Architecture 273/289

21 XS2 Exceptions

Exceptions change the normal flow of control; they may be caused by interrupts,
errors arising during instruction execution and by system calls. On an exception,
the processor will save the pc and sr in spc and ssr , disable events and interrupts,
and start executing an exception handler. The program counter that is saved
normally points to the instruction that raised the exception. Two registers are
also set. The exception-data (ed) and exception-type (et) will be set to reflect the
cause of the exception. The exception handler can choose how to deal with the
exception.

In this chapter the different types of exception are listed, together with their
representation, their meaning, and the instructions that may cause them.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 274/289

ET_LINK_ERROR 1

Ad hardware control token was output to a channel end. Alternatively, a channel
end was used to transmit data without its destination being set first.

When ET_LINK_ERROR is raised:

· et will be set to 1.

· ed will be set to the resource ID of the channel end which generated the
exception.

This exception may be raised by the following instructions:

OUT OUTCT OUTT

REV 1.0



xCORE-200: The XMOS XS2 Architecture 275/289

ET_ILLEGAL_PC 2

The program counter points to a position that could not be accessed, for example,
beyond the end of memory, or a non 16-bit aligned memory location.

This exception is raised on dispatch of the instruction corresponding to the illegal
program counter. The program counter that is saved in spc is the illegal program
counter; the memory address of the instruction that caused the program counter
to become illegal is not known. Note that this exception could be caused by, for
example, loading a resource with an illegal vector (SETV), but that this will not be
known until an event happens.

When ET_ILLEGAL_PC is raised:

· et will be set to 2.

· ed will be set to the PC which generated the exception.

This exception may be raised by the following instructions:

BAU BLRF BRFT MSYNC

BLA BRBF BRFU TSTART

BLACP BRBT BRU

BLAT BRBU DRET

BLRB BRFF KRET

REV 1.0



xCORE-200: The XMOS XS2 Architecture 276/289

ET_ILLEGAL_INSTRUCTION 3

A 16-bit/32-bit word was encountered that could not be decoded. This typically
indicates that the program counter was incorrect and addresses data memory.
Alternatively, a binary is executed that was not compiled for this device.

When ET_ILLEGAL_INSTRUCTION is raised:

· et will be set to 3.

· ed will be set to 0.

This exception may be raised by the following instructions:

DENTSP DGETREG DRESTSP DRET

REV 1.0



xCORE-200: The XMOS XS2 Architecture 277/289

ET_ILLEGAL_RESOURCE 4

A resource operation was performed and failed because either the resource identi-
fier supplied was not a valid resource, it was not allocated, or the operation was
not legal on that resource.

When ET_ILLEGAL_RESOURCE is raised:

· et will be set to 4.

· ed will be set to the resource identifier passed to the instruction.

This exception may be raised by the following instructions:

CHKCT IN PEEK TESTCT

CLRPT INCT SETC TESTLCL

EDU INPW SETCLK TESTWCT

EEF INSHR SETD TINITCP

EET INT SETEV TINITDP

EEU MJOIN SETN TINITLR

ENDIN MSYNC SETPSC TINITPC

FREER OUT SETPT TINITSP

GETD OUTCT SETRDY TSETMR

GETN OUTPW SETTW TSETR

GETST OUTSHR SETV TSTART

GETTS OUTT SYNCR

REV 1.0



xCORE-200: The XMOS XS2 Architecture 278/289

ET_LOAD_STORE 5

A memory operation was performed that was not properly aligned. This could be a
word load or word store to an address where the least significant log2 Bpw bits
were not zero, or access to a 16-bit number using LD16S or ST16 where the least
significant bit of the address was one.

Many load and store operations multiply their operand by Bpw in order to increase
the density of the encoding; even though this part of the address is guaranteed
to be aligned, it is possible for one of sp, cp, or dp to be unaligned, causing any
subsequent load or store which uses them to fail.

When ET_LOAD_STORE is raised:

· et will be set to 5.

· ed will be set to the load or store address which generated the exception.

This exception may be raised by the following instructions:

BLACP LDD LDWCPL STET

BLAT LDDSP LDWDP STSED

DUALENTSP LDET LDWSP STSPC

ENTSP LDSED RETSP STSSR

KENTSP LDSPC ST8 STW

KRESTSP LDSSR ST16 STWDP

LD8U LDW STD STWSP

LD16S LDWCP STDSP

REV 1.0



xCORE-200: The XMOS XS2 Architecture 279/289

ET_ILLEGAL_PS 6

Access to a non existent processor status register was requested by either GETPS
or SETPS.

When ET_ILLEGAL_PS is raised:

· et will be set to 6.

· ed will be set to the processor status register identifier.

This exception may be raised by the following instructions:

GETPS SETPS

REV 1.0



xCORE-200: The XMOS XS2 Architecture 280/289

ET_ARITHMETIC 7

Signals an arithmetic error, for example a division by 0 or an overflow that was
detected.

When ET_ARITHMETIC is raised:

· et will be set to 7.

· ed will be set to 0.

This exception may be raised by the following instructions:

DIVS LDIVU REMU

DIVU REMS

REV 1.0



xCORE-200: The XMOS XS2 Architecture 281/289

ET_ECALL 8

An ECALL instruction was executed, and the associated condition caused an excep-
tion. Indicates that the application program raised an exception, for example to
signal array bound errors or a failed assertion.

When ET_ECALL is raised:

· et will be set to 8.

· ed will be set to 0.

This exception may be raised by the following instructions:

ECALLF ECALLT ELATE

REV 1.0



xCORE-200: The XMOS XS2 Architecture 282/289

ET_RESOURCE_DEP 9

Resources are owned and used by a single thread. If multiple threads attempt to
access the same resource within 4 cycles of each other, a Resource Dependency
exception will be raised.

When ET_RESOURCE_DEP is raised:

· et will be set to 9.

· ed will be set to the resource identifier supplied by the instruction.

This exception may be raised by the following instructions:

CHKCT IN SETC TESTLCL

CLRPT INCT SETCLK TESTWCT

EDU INPW SETD TINITCP

EEF INSHR SETEV TINITDP

EET INT SETN TINITLR

EEU MJOIN SETPSC TINITPC

ENDIN MSYNC SETPT TINITSP

FREER OUT SETRDY TSETMR

GETD OUTCT SETTW TSETR

GETN OUTPW SETV TSTART

GETST OUTSHR SYNCR

GETTS OUTT TESTCT

REV 1.0



xCORE-200: The XMOS XS2 Architecture 283/289

ET_KCALL 15

Indicates that the KCALL or KCALLI instruction was executed.

When ET_KCALL is raised:

· et will be set to 15.

· ed will be set to the kernel call operand.

This exception may be raised by the following instructions:

KCALL

REV 1.0



xCORE-200: The XMOS XS2 Architecture 284/289

ET_IOLANE 16

This value is ORed in with any of the previous exception types to indicate that the
exception took place in the resource lane.

When ET_IOLANE is raised:

· et will be set to 16.

· N/A

This exception is not related to a specific instruction

REV 1.0



xCORE-200: The XMOS XS2 Architecture 285/289

22 XS2 Lanes

When executing in dual-issue mode, instructions are executed in lanes. Some
instructions can only be executed in a specific lane, other instructions can execute
in one of multiple lanes, and yet other instructions required multiple lanes for
execution.

In this chapter the different classes of instructions are explained, together with a
list of instructions for each.

REV 1.0



xCORE-200: The XMOS XS2 Architecture 286/289

MEMORY_LANE

In dual issue mode, these instructions can only be executed in the memory lane,
indicated by M.

Instructions:

BAU(16) BRFU(16) LDSED(16) SETDP(16)

BLA(16) BRU(16) LDSPC(16) SETKEP(16)

BLACP(16) DGETREG(16) LDSSR(16) SETSP(16)

BLAT(16) DUALENTSP(16) LDW(16) STET(16)

BLRB(16) ENTSP(16) LDWI(16) STSED(16)

BLRF(16) KCALL(16) LDWCP(16) STSPC(16)

BRBF(16) KCALLI(16) LDWCPL(16) STSSR(16)

BRBT(16) KENTSP(16) LDWDP(16) STWI(16)

BRBU(16) LD8U(16) LDWSP(16) STWDP(16)

BRFF(16) LD16S(16) RETSP(16) STWSP(16)

BRFT(16) LDET(16) SETCP(16)

REV 1.0



xCORE-200: The XMOS XS2 Architecture 287/289

RESOURCE_LANE

In dual issue mode, these instructions can only be executed in the resource lane,
indicated by R.

Instructions:

CHKCT(16) FREET(16) OUTCT(16) SETV(16)

CHKCTI(16) GETR(16) OUTCTI(16) SSYNC(16)

CLRE(16) GETST(16) OUTSHR(16) SYNCR(16)

CLRPT(16) GETTS(16) OUTT(16) TESTCT(16)

CLRSR(16) IN(16) PEEK(16) TESTWCT(16)

EDU(16) INCT(16) SETCI(16) TSTART(16)

EEF(16) INSHR(16) SETD(16) WAITEF(16)

EET(16) INT(16) SETEV(16) WAITET(16)

EEU(16) MJOIN(16) SETPSC(16) WAITEU(16)

ENDIN(16) MSYNC(16) SETPT(16)

FREER(16) OUT(16) SETSR(16)

REV 1.0



xCORE-200: The XMOS XS2 Architecture 288/289

MEMORY_OR_RESOURCE_LANE

In dual issue mode, these instructions can be executed in either lane, indicated by
M+R.

Instructions:

ADD(16) EQI(16) LDAWCP(16) SEXT(16)

ADDI(16) EXTDP(16) LDAWDP(16) SEXTI(16)

AND(16) EXTSP(16) LDAWSP(16) SHL(16)

ANDNOT(16) GETED(16) LDC(16) SHLI(16)

BITREV(16) GETET(16) LSS(16) SHR(16)

BYTEREV(16) GETID(16) LSU(16) SHRI(16)

CLZ(16) GETKEP(16) MKMSK(16) SUB(16)

DCALL(16) GETKSP(16) MKMSKI(16) SUBI(16)

ECALLF(16) GETSR(16) NEG(16) ZEXT(16)

ECALLT(16) GETTIME(16) NOP(16) ZEXTI(16)

ELATE(16) LDAPB(16) NOT(16)

EQ(16) LDAPF(16) OR(16)

REV 1.0



xCORE-200: The XMOS XS2 Architecture 289/289

MEMORY_AND_RESOURCE_LANE

In dual issue mode, these instructions are executed in both lanes simultaneously,
indicated by M&R.

Instructions:

ASHR(32) EXTSP(32) LDDSP(32) SETSR(32)

ASHRI(32) GETD(32) LDIVU(32) SETTW(32)

BLACP(32) GETN(32) LDWCP(32) ST8(32)

BLAT(32) GETPS(32) LDWCPL(32) ST16(32)

BLRB(32) GETSR(32) LDWDP(32) STD(32)

BLRF(32) INPW(32) LDWSP(32) STDI(32)

BRBF(32) KCALLI(32) LEXTRACT(32) STDSP(32)

BRBT(32) KENTSP(32) LINSERT(32) STW(32)

BRBU(32) KRESTSP(32) LMUL(32) STWDP(32)

BRFF(32) KRET(32) LSUB(32) STWSP(32)

BRFT(32) LADD(32) MACCS(32) TESTLCL(32)

BRFU(32) LDA16B(32) MACCU(32) TINITCP(32)

CLRSR(32) LDA16F(32) MUL(32) TINITDP(32)

CRC8(32) LDAPB(32) OUTPW(32) TINITLR(32)

CRC(32) LDAPF(32) OUTPWI(32) TINITPC(32)

CRC32_INC(32) LDAWB(32) REMS(32) TINITSP(32)

CRCN(32) LDAWBI(32) REMU(32) TSETMR(32)

DENTSP(32) LDAWCP(32) RETSP(32) TSETR(32)

DIVS(32) LDAWDP(32) LSATS(32) UNZIP(32)

DIVU(32) LDAWF(32) SETC(32) XOR(32)

DRESTSP(32) LDAWFI(32) SETCI(32) XOR4(32)

DRET(32) LDAWSP(32) SETCLK(32) ZIP(32)

DUALENTSP(32) LDC(32) SETN(32)

ENTSP(32) LDD(32) SETPS(32)

EXTDP(32) LDDI(32) SETRDY(32)

REV 1.0


	Table of Contents
	Introduction
	Interconnect
	Concurrent Threads
	The xCORE Tile Instruction Set
	Instruction Issue and Execution
	Instruction Set Notation and Definitions
	Data Access
	Expression Evaluation
	Branching, Jumping and Calling
	Resources and the Thread Scheduler
	Concurrency and Thread Synchronisation
	Communication
	Locks
	Timers
	Ports, Input and Output
	Events, Interrupts and Exceptions
	Initialisation and Debugging
	Specialised Instructions
	XCore XS2 Instructions
	ADD
	ADDI
	AND
	ANDNOT
	ASHR
	ASHRI
	BAU
	BITREV
	BLA
	BLACP
	BLAT
	BLRB
	BLRF
	BRBF
	BRBT
	BRBU
	BRFF
	BRFT
	BRFU
	BRU
	BYTEREV
	CHKCT
	CHKCTI
	CLRE
	CLRPT
	CLRSR
	CLZ
	CRC8
	CRC
	CRC32INC
	CRCN
	DCALL
	DENTSP
	DGETREG
	DIVS
	DIVU
	DRESTSP
	DRET
	DUALENTSP
	ECALLF
	ECALLT
	EDU
	EEF
	EET
	EEU
	ELATE
	ENDIN
	ENTSP
	EQ
	EQI
	EXTDP
	EXTSP
	FREER
	FREET
	GETD
	GETED
	GETET
	GETID
	GETKEP
	GETKSP
	GETN
	GETPS
	GETR
	GETSR
	GETST
	GETTIME
	GETTS
	IN
	INCT
	INPW
	INSHR
	INT
	KCALL
	KCALLI
	KENTSP
	KRESTSP
	KRET
	LADD
	LD8U
	LD16S
	LDA16B
	LDA16F
	LDAPB
	LDAPF
	LDAWB
	LDAWBI
	LDAWCP
	LDAWDP
	LDAWF
	LDAWFI
	LDAWSP
	LDC
	LDD
	LDDI
	LDDSP
	LDET
	LDIVU
	LDSED
	LDSPC
	LDSSR
	LDW
	LDWI
	LDWCP
	LDWCPL
	LDWDP
	LDWSP
	LEXTRACT
	LINSERT
	LMUL
	LSS
	LSU
	LSUB
	MACCS
	MACCU
	MJOIN
	MKMSK
	MKMSKI
	MSYNC
	MUL
	NEG
	NOP
	NOT
	OR
	OUT
	OUTCT
	OUTCTI
	OUTPW
	OUTPWI
	OUTSHR
	OUTT
	PEEK
	REMS
	REMU
	RETSP
	LSATS
	SETC
	SETCI
	SETCLK
	SETCP
	SETD
	SETDP
	SETEV
	SETKEP
	SETN
	SETPS
	SETPSC
	SETPT
	SETRDY
	SETSP
	SETSR
	SETTW
	SETV
	SEXT
	SEXTI
	SHL
	SHLI
	SHR
	SHRI
	SSYNC
	ST8
	ST16
	STD
	STDI
	STDSP
	STET
	STSED
	STSPC
	STSSR
	STW
	STWI
	STWDP
	STWSP
	SUB
	SUBI
	SYNCR
	TESTCT
	TESTLCL
	TESTWCT
	TINITCP
	TINITDP
	TINITLR
	TINITPC
	TINITSP
	TSETMR
	TSETR
	TSTART
	UNZIP
	WAITEF
	WAITET
	WAITEU
	XOR
	XOR4
	ZEXT
	ZEXTI
	ZIP

	XS2 Instruction Format Specification
	3r
	l3r
	2rus
	l2rus
	ru6
	lru6
	u6
	lu6
	u10
	lu10
	2r
	r2r
	l2r
	lr2r
	rus
	1r
	0r
	l0r
	l4r
	l3rus
	l4rus
	l5r
	l6r

	XS2 Exceptions
	ETLINKERROR
	ETILLEGALPC
	ETILLEGALINSTRUCTION
	ETILLEGALRESOURCE
	ETLOADSTORE
	ETILLEGALPS
	ETARITHMETIC
	ETECALL
	ETRESOURCEDEP
	ETKCALL
	ETIOLANE

	XS2 Lanes
	MEMORYLANE
	RESOURCELANE
	MEMORYORRESOURCELANE
	MEMORYANDRESOURCELANE



