
An Company

Co

Z8 Encore!® Microcontrollers

eZ8™ CPU Core
User Manual
UM012821-1115
pyright © 2015 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.ZiLOG.com

eZ8™ CPU Core
User Manual

ii
DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2015 by Zilog, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L EC T U A L PRO P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

Z8 and eZ8 are trademarks or registered trademarks of Zilog, Inc. All other product or
service names are the property of their respective owners.

Warning:
 UM012821-1115

eZ8™ CPU Core
User Manual

iii
Revision History
Each instance in the Revision History reflects a change to this document
from its previous revision. For more details, refer to the corresponding
pages or appropriate links given in the table below.

Date
Revision
Level Description Page No.

November
2015

21 Added last sentence in Description
section of ATM.

91

August
2010

20 Updated first sentence of Escaped
Mode Addressing.

182

August
2010

19 Updated the logos.
Changed the attributes for LDX with
the code 0x96 from RR1, @R2 to
@RR1, R2.
Changed the attributes for LDX with
the code 0x97 from LDX @RR1,
@.ER(R2) to LDX @.ER(RR1), @R2.

181

181

May 2008 18 Updated Table 20, LDX, Table 25,
and Figure 20.

59,181,
259, 260

February
2008

17 Updated Zilog logo, Disclaimer section,
and implemented style guide.

All

February
2007

16 Updated Op Code Maps section and
added Note to Table 26.

258, 262

June
2006

15 Updated BIT, BCLR, BSET, Escaped
Mode Addressing with 8-bit
Addresses, Escaped Mode
Addressing with 12-bit Addresses

95, 93,
98, 50,
50

December
2005

14 Updated BIT section; Replaced 3AH
with 3ch.

95
UM012821-1115 Revision History

eZ8™ CPU Core
User Manual

iv
Table of Contents
Revision History .iii

Table of Contents .iv

Manual Objectives. x
About This Manual . x
Intended Audience . x
Manual Organization . x

Architectural Overview . x
Z8® Compatibility . x
Address Space . xi
Addressing Modes . xi
Interrupts . xi
Illegal Instruction Traps . xi
eZ8™ CPU Instruction Set Summary . xi
Op Code Maps . xi
Op Codes Listed Numerically . xii
Sample Program Listing . xii

Manual Conventions . xii
Courier Typeface . xii
Hexadecimal Values . xii
Brackets . xii
Braces . xiii
Parentheses . xiii
Parentheses/Bracket Combinations . xiii
Use of the Words Set, Reset, and Clear xiii
Notation for Bits and Similar Registers xiii
Use of the Terms LSB, MSB, lsb, and msb xiv
Use of Initial Uppercase Letters . xiv
Bit Numbering . xiv
UM012821-1115 Table of Contents

eZ8™ CPU Core
User Manual

v

Safeguards . xiv
Abbreviations/Acronyms . xv

Architectural Overview. 1
Processor Description . 1

Fetch Unit . 2
Execution Unit . 3

eZ8™ CPU Control Registers . 4
Stack Pointer Registers . 4
Register Pointer . 5
Flags Register . 5
Condition Codes . 8
Arithmetic Logic Unit . 9
Byte Ordering . 10

Z8® Compatibility . 11
Assembly Language Compatibility . 11
New Instructions . 11

New Function Instructions . 12
Extended Addressing Instructions . 13
Alternate Function Op Code . 14
Moved Instructions . 14
Removed Instructions . 14

Relocation of eZ8 CPU Control Registers 15
Stack Pointer High and Low Byte Registers 15
Register Pointer . 15
Flags Register . 15

Compatibility with Z8 CPU . 15
Stack Pointer Compatibility . 16
Reset Compatibility . 16
Interrupt Compatibility . 16

Address Space . 17
Register File . 17
UM012821-1115 Table of Contents

eZ8™ CPU Core
User Manual

vi
CPU Control Registers . 18
General-Purpose Registers . 18
Register File Organization . 18
Register File Precautions . 23

Program Memory . 23
Data Memory . 24
Stacks . 25

Interrupts . 38
Interrupt Enable and Disable . 38
Interrupt Priority . 39
Vectored Interrupt Processing . 39
Nesting of Vectored Interrupts . 42
Polled Interrupt Processing . 42
Software Interrupt Generation . 43

Addressing Modes . 46
Register Addressing . 47

Register Addressing Using 12-Bit Addresses 47
Register Addressing Using 8-Bit Addresses 48
Register Addressing Using 4-Bit Addresses 48
Escaped Mode Addressing . 49

Indirect Register Addressing . 51
Indexed Addressing . 53
Direct Addressing . 54
Relative Addressing . 55
Immediate Data Addressing . 56

Illegal Instruction Traps . 45
Symbolic Operation of an Illegal Instruction Trap 45

Linear Programs That Do Not Employ The Stack 46

eZ8
™

 CPU Instruction Set Summary. 47
Assembly Language Source Program Example 48
UM012821-1115 Table of Contents

eZ8™ CPU Core
User Manual

vii
Assembly Language Syntax . 48
eZ8 CPU Instruction Notation . 50
eZ8 CPU Instruction Classes . 52
eZ8 CPU Instruction Summary . 58

eZ8
™

 CPU Instruction Set Description . 71
ADC . 73
ADCX . 77
ADD . 80
ADDX . 83
AND . 86
ANDX . 89
ATM . 91
BCLR . 93
BIT . 95
BRK . 97
BSET . 98
BSWAP . 100
BTJ . 102
BTJNZ . 106
BTJZ . 109
CALL . 112
CCF . 115
CLR . 117
COM . 119
CP . 121
CPC . 124
CPCX . 127
CPX . 129
DA . 131
DEC . 135
DECW . 137
DI . 139
UM012821-1115 Table of Contents

eZ8™ CPU Core
User Manual

viii
DJNZ . 141
EI . 144
HALT . 146
INC . 148
INCW . 151
IRET . 153
JP . 155
JP cc . 157
JR . 160
JR cc . 162
LD . 164
LDC . 169
LDCI . 171
LDE . 174
LDEI . 176
LDWX . 179
LDX . 181
LEA . 187
MULT . 189
NOP . 191
OR . 192
ORX . 195
POP . 197
POPX . 199
PUSH . 201
PUSHX . 203
RCF . 205
RET . 207
RL . 209
RLC . 211
RR . 213
RRC . 215
UM012821-1115 Table of Contents

eZ8™ CPU Core
User Manual

ix
SBC . 217
SBCX . 220
SCF . 222
SRA . 224
SRL . 226
SRP . 228
STOP . 230
SUB . 232
SUBX . 235
SWAP . 237
TCM . 239
TCMX . 242
TM . 244
TMX . 247
TRAP . 249
WDT . 251
XOR . 253
XORX . 256

Op Code Maps . 258

Op Codes Listed Numerically . 262

Assembly and Object Code Example . 276

Index. 290

Customer Support. 299
UM012821-1115 Table of Contents

eZ8™ CPU Core
User Manual

x

Manual Objectives
This user manual describes the architecture and instruction set of Zilog’s
eZ8™ CPU.

About This Manual

Zilog® recommends that you read and understand all the chapters and
instructions provided in this manual before setting up and using the prod-
uct. This manual is designed to be used as a reference guide to important
data.

Intended Audience

This document is written for Zilog customers who are familiar with
microprocessors or with writing assembly code or compilers.

Manual Organization

The User Manual is divided into the following sections. A brief descrip-
tion of each chapter is provided below.

Architectural Overview

This chapter presents an overview of the eZ8 CPU’s features and benefits,
and a description of its architecture.

Z8® Compatibility

This chapter provides information for users who are familiar with pro-
gramming Zilog’s classic Z8 CPU or who are planning to use existing Z8
code with the eZ8 CPU.
UM012821-1115 Manual Objectives

eZ8™ CPU Core
User Manual

xi
Address Space

This chapter describes the three address spaces accessible by the eZ8
CPU—Register File, Program Memory, and Data Memory.

Addressing Modes

This chapter details the eZ8 CPU’s seven addressing modes:

• Register (R)

• Indirect Register (IR)

• Indexed (X)

• Direct (DA)

• Relative (RA)

• Immediate Data (IM)

• Extended Register (ER)

Interrupts

This chapter describes eZ8 CPU operation in response to interrupt
requests from either internal peripherals or external devices.

Illegal Instruction Traps

This chapter describes the consequences of executing undefined Op
Codes.

eZ8™ CPU Instruction Set Summary

This chapter lists assembly language instructions, including mnemonic
definitions and a summary of the User Manual instruction set.

Op Code Maps

This chapter presents a detailed diagram of each Op Code table.
UM012821-1115 Manual Objectives

eZ8™ CPU Core
User Manual

xii
Op Codes Listed Numerically

This chapter provides an easy reference for locating instructions by their
operational codes.

Sample Program Listing

A sample program shows how the instructions, using many of the avail-
able memory modes, will translate into object code after assembly.

Manual Conventions

The following assumptions and conventions are adopted to provide clarity
and ease of use:

Courier Typeface

Commands, code lines and fragments, bits, equations, hexadecimal
addresses, and various executable items are distinguished from general
text by the use of the Courier typeface. Where the use of the font is not
indicated, as in the Index, the name of the entity is presented in upper
case.

• Example: FLAGS[1] is smrf.

Hexadecimal Values

Hexadecimal values are designated by lowercase h and appear in the
Courier typeface.

• Example: R1 is set to F8h.

Brackets

The square brackets, [], indicate a register or bus.

• Example: for the register R1[7:0], R1 is an 8-bit register, R1[7] is the
most significant bit, and R1[0] is the least significant bit.
UM012821-1115 Manual Objectives

eZ8™ CPU Core
User Manual

xiii
Braces

The curly braces, { }, indicate a single register or bus created by concate-
nating some combination of smaller registers, buses, or individual bits.

• Example: the 12-bit register address {0h, RP[7:4], R1[3:0]} is com-
posed of a 4-bit hexadecimal value (0h) and two 4-bit register values
taken from the Register Pointer (RP) and Working Register R1. 0h is
the most significant nibble (4-bit value) of the 12-bit register, and
R1[3:0] is the least significant nibble of the 12-bit register.

Parentheses

The parentheses, (), indicate an indirect register address lookup.

• Example: (R1) is the memory location referenced by the address con-
tained in the Working Register R1.

Parentheses/Bracket Combinations

The parentheses, (), indicate an indirect register address lookup and the
square brackets, [], indicate a register or bus.

• Example: Assume PC[15:0] contains the value 1234h. (PC[15:0])
then refers to the contents of the memory location at address 1234h.

Use of the Words Set, Reset, and Clear

The word set implies that a register bit or a condition contains a logical 1.
The word reset or clear implies that a register bit or a condition contains a
logical 0. When either of these terms is followed by a number, the word
logical may not be included; however, it is implied.

Notation for Bits and Similar Registers

A field of bits within a register is designated as: Register[n:n].

• Example: ADDR[15:0] refers to bits 15 through bit 0 of the Address.
UM012821-1115 Manual Objectives

eZ8™ CPU Core
User Manual

xiv
Use of the Terms LSB, MSB, lsb, and msb

In this document, the terms LSB and MSB, when appearing in upper case,
mean least significant byte and most significant byte, respectively. The
lowercase forms, lsb and msb, mean least significant bit and most signifi-
cant bit, respectively.

Use of Initial Uppercase Letters

Initial uppercase letters designate settings, modes, and conditions in gen-
eral text.

• Example 1: Stop Mode Recovery

• Example 2: The receiver forces the SCL line to Low

Use of All Uppercase Letters

The use of all uppercase letters designates the names of states and com-
mands.

• Example 1: The bus is considered busy after the START condition

• Example 2: The CPU enters STOP mode

Bit Numbering

Bits are numbered from 0 to n–1 where n indicates the total number of
bits. For example, the 8 bits of a register are numbered from 0 to 7.

Safeguards

It is important that you understand the following safety terms, which are
defined here.

Indicates a procedure or file may become corrupted if you do
not follow directions.

Caution:
UM012821-1115 Manual Objectives

eZ8™ CPU Core
User Manual

xv
Abbreviations/Acronyms

This document uses the following abbreviations or acronyms.

Abbreviations/
Acronyms Expansion

ADC Analog-to-Digital Converter

LPO Low-Power Operational Amplifier

SPI Serial Peripheral Interface

WDT Watchdog Timer

GPIO General-Purpose Input/Output

OCD On-Chip Debugger

POR Power-On Reset

LVD Low-Voltage Detection

VBO Voltage Brownout

ISR Interrupt Service Routine

ALU Arithmetic Logic Unit
UM012821-1115 Manual Objectives

eZ8™ CPU Core
User Manual

1

Architectural Overview
Zilog’s eZ8™ CPU is the latest 8-bit central processing unit (CPU)
designed to meet the continuing demand for faster and more code-effi-
cient microcontrollers. The eZ8 CPU executes a superset of the original
Z8 instruction set. The features of the eZ8 CPU include:

• Direct register-to-register architecture, which allows each register to
function as an accumulator to improve execution time and decrease
the amount of required program memory

• A software stack that allows much greater depth in subroutine calls
and interrupts than hardware stacks

• Compatibility with the Z8 assembly instruction set.

• An expanded internal register file that allows access of up to 4 KB.

• New instructions that improve execution efficiency for code devel-
oped using higher-level programming languages, including C.

• Pipelined instruction fetch and execution

Processor Description

The eZ8 CPU consists of the following two major functional blocks:

• Fetch Unit

• Execution Unit

The Execution Unit is further divided into the Instruction State Machine,
Program Counter, CPU Control Registers, and Arithmetic Logic Unit
(ALU). Figure 1 displays the eZ8 CPU architecture.
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

2

Fetch Unit

The Fetch Unit controls the memory interface. Its primary function is to
fetch Op Codes and operands from memory. The Fetch Unit also fetches
interrupt vectors or reads and writes memory in the Program or Data
Memory.

The Fetch Unit performs a partial decoding of the Op Code to determine
the number of bytes to fetch for the operation. The Fetch Unit operation
sequence is as follows:

1. Fetch the Op Code.

2. Determine the operand size (number of bytes).

3. Fetch the operands.

Figure 1. eZ8 CPU Block Diagram

Fetch Unit
Instruction

State Machine

CPU Control
Registers

Program
Counter

Arithmetic Logic Unit
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

3

4. Present the Op Code and operands to the Instruction State Machine.

The Fetch Unit is pipelined and operates semi-independently from the rest
of the eZ8 CPU.

Execution Unit

The eZ8 CPU Execution Unit is controlled by the Instruction State
Machine. After the initial operation decode by the Fetch Unit, the Instruc-
tion State Machine takes control and completes the instruction. The
Instruction State Machine performs register read and write operations,
and generates addresses.

Instruction Cycle Time

The instruction cycle times varies from instruction to instruction, allow-
ing higher performance given at a specific clock speed. Minimum instruc-
tion execution time for standard CPU instructions is two clock cycles
(only the BRK instruction executes in a single cycle). Because of the vari-
ation in the number of bytes required for different instructions, delay
cycles can occur between instructions. Delay cycles are added any time
the number of bytes in the next instruction exceeds the number of clock
cycles the current instruction takes to execute. For example, if the eZ8
CPU executes a 2-cycle instruction while fetching a 3-byte instruction, a
delay cycle occurs because the Fetch Unit has only two cycles to fetch
three bytes. The Execution Unit is idle during a delay cycle.

Program Counter

The Program Counter contains a 16-bit counter and a 16-bit adder. The
Program Counter monitors the address of the current memory address and
calculates the next memory address. The Program Counter increments
automatically according to the number of bytes fetched by the Fetch Unit.
The 16-bit adder increments and handles Program Counter jumps for rela-
tive addressing.
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

4

eZ8™ CPU Control Registers

The eZ8 CPU contains four CPU control registers that are mapped into
the Register File address space. These four eZ8 CPU control registers are:

• Stack Pointer High Byte

• Stack Pointer Low Byte

• Register Pointer

• Flags

The eZ8 CPU register bus can access up to 4K (4096) bytes of register
space. In all eZ8 CPU products, the upper 256 bytes are reserved for con-
trol of the eZ8 CPU, the on-chip peripherals, and the I/O ports. The eZ8
CPU control registers are always located at addresses from FFCh to FFFh
as listed in Table 1.

Stack Pointer Registers

The eZ8 CPU allows you to relocate the stack within the Register File.
The stack can be located at addresses from 000h to EFFh. The 12-bit
Stack Pointer value is provided by {SPH[3:0], SPL[7:0]}. The Stack
Pointer has a 12-bit increment/decrement capability for stack operations,
allowing the Stack Pointer to operate over more than one page 

Table 1. eZ8 CPU Control Registers

Register
Mnemonic Register Description

Address
(Hex)

FLAGS Flags FFC

RP Register Pointer FFD

SPH Stack Pointer High Byte FFE

SPL Stack Pointer Low Byte FFF
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

5

(256 byte boundary) of the Register File. The Stack Pointer Register val-
ues are undefined after Reset.

Register Pointer

The Register Pointer contains address information for the current Work-
ing Register Group and the Register File Page. The Page Pointer is the
lower 4-bits of the Register Pointer, RP[3:0], and points to the current
Page. There are sixteen 256-byte Pages available. The Working Register
Group Pointer is the upper 4 bits of the Register Pointer, RP[7:4], and
points to one of sixteen 16-byte Working Register Groups. There are 16
Working Register Groups per page. For more information on the Register
File, see Address Space on page 17.

Flags Register

The Flags Register contains the status information regarding the most
recent arithmetic, logical, bit manipulation or rotate and shift operation.
The Flags Register contains six bits of status information that are set or
cleared by CPU operations. Four of the bits (C, V, Z, and S) can be tested
with conditional jump instructions. Two flags (H and D) cannot be tested
and are used for Binary-Coded Decimal (BCD) arithmetic.

The two remaining bits, User Flags (F1 and F2), are available as general-
purpose status bits. User Flags are unaffected by arithmetic operations
and must be set or cleared by instructions. The User Flags cannot be used
with conditional Jumps. They are undefined at initial power-up and are
unaffected by Reset. Figure 2 on page 6 displays the flags and their bit
positions in the Flags Register.
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

6

Interrupts, the Software Trap (TRAP) instruction, and Illegal Instruction
Traps all write value of the Flags Register to the stack. Executing an Inter-
rupt Return (IRET) instruction restores the value saved on the stack into
the Flags Register.

Carry Flag

The Carry flag (C) is 1 when the result of an arithmetic operation gener-
ates a carry out or a borrow into the most significant bit (Bit 7) of the data.
Otherwise, the Carry flag is 0. Some bit rotate or shift instructions also
affect the Carry flag. There are three instructions available for directly
changing the value of the Carry Flag:

• Complement Carry Flag (CCF)

• Reset Carry Flag (RCF)

• Set Carry Flag (SCF)

Figure 2. Flags Register

C Z S V D H F2 F1 Flags Register

Bit
0

Bit
7

Half Carry Flag

Decimal Adjust Flag

Overflow Flag

Sign Flag

Zero Flag

Carry Flag

User Flags
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

7

Zero Flag

For arithmetic and logical operations, the Zero (Z) flag is 1 if the result is
0. Otherwise, the Zero flag is 0. If the result of testing bits in a register is
00h, the Zero flag is 1; otherwise, the Zero flag is 0. Also, if the result of
a rotate or shift operation is 00h, the Zero flag is 1; otherwise, the Zero
flag is 0.

Sign Flag

The Sign (S) flag stores the value of the most-significant bit of a result
following an arithmetic, logical, rotate or shift operation. For signed num-
bers, the eZ8 CPU uses binary two’s complement to represent the data
and perform the arithmetic operations. A 0 in the most significant bit
position (Bit 7) identifies a positive number; therefore, the Sign flag is
also 0. A 1 in the most significant position (Bit 7) identifies a negative
number; therefore, the Sign flag is also 1.

Overflow Flag

For signed arithmetic, rotate or shift operations, the Overflow (V) flag is 1
when the result is greater than the maximum possible number (>127) or
less than the minimum possible number (<–128) that can be represented
with 8-bits in two’s complement form. The Overflow flag is 0 if no over-
flow occurs. Following logical operations, the Overflow flag is 0.

Following addition operations, the Overflow flag is 1 when the operands
have the same sign, but the result has the opposite sign. Following sub-
traction operations, the Overflow flag is 1 if the two operands are of
opposite sign and the sign of the result is same as the sign of the source.
Following rotation operations, the Overflow flag is 1 if the sign bit of the
destination operand changed during rotation.

Decimal Adjust Flag

The Decimal Adjust (D) flag is used for Binary-Coded Decimal (BCD)
arithmetic operations. Because the algorithm for correcting BCD opera-
tions is different for addition and subtraction, this flag specifies the type
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

8

of instruction that was last executed, enabling the subsequent decimal
adjust (DA) operation. Normally, the Decimal Adjust flag cannot be used
as a test condition. After a subtraction, the Decimal Adjust flag is 1. Fol-
lowing an addition, it is 0.

Half Carry Flag

The Half Carry (H) flag is 1 when an addition generates a carry from Bit 3
or a subtraction generates a borrow from Bit 4. The DA instruction con-
verts the binary result of a previous addition or subtraction into the correct
BCD result using the Half Carry flag. As in the case of the Decimal
Adjust flag, the user does not normally access this flag directly.

Condition Codes

The C, Z, S and V flags control the operation of the conditional jump (JP
cc and JR cc) instructions. Sixteen frequently useful functions of the flag
settings are encoded in a 4-bit field called the condition code (cc), which
forms Bits 7:4 of the first Op Code of conditional jump instructions.
Table 2 summarizes the condition codes. Some binary condition codes
can be created using more than one assembly code mnemonic. The result
of the flag test operation determines if the conditional jump executes.

Table 2. Condition Codes

Binary Hex
Assembly
Mnemonic Definition Flag Test Operation

0000 0 F Always False –

0001 1 LT Less Than (S XOR V) = 1

0010 2 LE Less Than or Equal (Z OR (S XOR V)) = 1

0011 3 ULE Unsigned Less Than or Equal (C OR Z) = 1

0100 4 OV Overflow V = 1

0101 5 Ml Minus S = 1
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

9

Arithmetic Logic Unit

The Arithmetic Logic Unit (ALU) performs arithmetic and logical opera-
tions on the data. The arithmetic operations include addition, subtraction,
and multiplication. The logical functions include binary logic operations,
bit shifting, and bit rotation.

0110 6 Z Zero Z = 1

0110 6 EQ Equal Z = 1

0111 7 C Carry C = 1

0111 7 ULT Unsigned Less Than C = 1

1000 8 T (or blank) Always True –

1001 9 GE Greater Than or Equal (S XOR V) = 0

1010 A GT Greater Than (Z OR (S XOR V)) = 0

1011 B UGT Unsigned Greater Than (C = 0 AND Z = 0)

1100 C NOV No Overflow V = 0

1101 D PL Plus S = 0

1110 E NZ Non-Zero Z = 0

1110 E NE Not Equal Z = 0

1111 F NC No Carry C = 0

1111 F UGE Unsigned Greater Than or
Equal

C = 0

Table 2. Condition Codes (Continued)

Binary Hex
Assembly
Mnemonic Definition Flag Test Operation
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

10
Byte Ordering

For multibyte data, the eZ8 CPU stores the most significant byte in the
lowest memory address. For example, the value 1 can be stored as a 2-
byte (16-bit) number in Register Pair 122h and 123h. The value is stored
as 0001h. The most-significant byte (00h) is stored in the lowest memory
address at 122h. The least-significant byte (01h) is stored in the higher
memory address at 123h. This ordering of multibyte data is often referred
to as big endian.
UM012821-1115 Architectural Overview

eZ8™ CPU Core
User Manual

11
Z8® Compatibility
The eZ8™ CPU is an extension and improvement of Zilog’s popular,
easy-to-use, and powerful Z8 CPU architecture. If you have experience
programming the Z8 CPU, then you will have no difficulty adapting to the
eZ8 CPU. The new instructions improve execution for programs
developed in high-level programming languages such as C.

Assembly Language Compatibility

The eZ8 CPU executes all Z8 assembly language instructions except for
the Watchdog Timer Enable During HALT Mode instruction, WDh, at Op
Code 4Fh). With the existing Z8 assembly code you can easily compile
the code using the eZ8 CPU. The assembler for the eZ8 CPU is available
for download at www.zilog.com.

New Instructions

When compared to the Z8 CPU instruction set, the eZ8 CPU features
many new instructions that increase processor efficiency and allow access
to the expanded 4 KB Register File. There are two classes of new
instructions available in the eZ8 CPU, and described in this 
document—new function instructions and extended addressing
instructions.
UM012821-1115 Z8® Compatibility

http://www.zilog.com

eZ8™ CPU Core
User Manual

12
New Function Instructions

Table 3 lists the instructions that provide new functionality.

Table 3. New Function Instructions*

Mnemonic Instruction Description

ATM Atomic Execution

BCLR Bit Clear

BIT Bit Set or Clear

BRK Break

BSET Bit Set

BSWAP Bit Swap

BTJ Bit Test and Jump

BTJNZ Bit Test and Jump if Non-Zero

BTJZ Bit Test and Jump if Zero

CPC Compare with Carry

LDC Load Constant

LDCI Load Constant and Auto-Increment Addresses

LEA Load Effective Address

MULT 8-bit x 8-bit multiply with 16-bit result

SRL Shift Right Logical

TRAP Software Trap

*For details on each of these instructions, see eZ8™ CPU Instruction Set
Description on page 71.
UM012821-1115 Z8® Compatibility

eZ8™ CPU Core
User Manual

13
Extended Addressing Instructions

New Extended Addressing instructions allow data movement between
Register File pages. These instructions allow the generation of a 12-bit
address and direct access to any register value in the 4 KB Register File
address space. Table 4 lists the new Extended Addressing instructions.

Table 4. New Extended Addressing Instructions*

Mnemonic Instruction Description

ADCX Add with Carry using Extended Addressing

ADDX Add using Extended Addressing

ANDX Logical AND using Extended Addressing

CPCX Compare with Carry using Extended Addressing

CPX Compare using Extended Addressing

LDWX Load Word using Extended Addressing

LDX Load using Extended Addressing

ORX Logical OR using Extended Addressing

POPX Pop using Extended Addressing

PUSHX Push using Extended Addressing

SBCX Subtract with Carry using Extended Addressing

SUBX Subtract using Extended Addressing

TCMX Test Complement Under Mask using Extended Addressing

TMX Test Under Mask using Extended Addressing

XORX Logical XOR using Extended Addressing

*For details about each of these instructions, see eZ8™ CPU Instruction Set De-
scription on page 71.
UM012821-1115 Z8® Compatibility

eZ8™ CPU Core
User Manual

14
Alternate Function Op Code

To accommodate the new instructions, the Op Code 1Fh refers to a new
second Op Code map. The 1Fh is prepended to an Op Code to select the
alternate functions available on the second Op Code map. The CPC,
CPCX, SRL, LDWX and PUSH (immediate) instructions use this second
Op Code map. You can employ the CPC, CPCX, SRL, LDWX and PUSH
(immediate) instructions directly when writing assembly language code.
The eZ8 CPU assembler automatically inserts the 1Fh Op Code as neces-
sary.

Moved Instructions

Some of the existing Z8 CPU instructions have been moved to new 
Op Codes in the eZ8 CPU. Table 5 lists the moved instruction.

Removed Instructions

The instruction types LD r1, R2 and LD R1, r2 are removed from the Op
Code map because they are now subsets of the LD instruction (Op Code
E4h) using Escaped mode addressing. In the Z8 CPU, these instructions
used Op Codes 08h–F8h and 09h–F9h. The assembler for the eZ8 CPU

Table 5. Instructions with New Op Codes

Instruction
eZ8 CPU

Op Code (Hex)
Z8 CPU

Op Code (Hex)

SRP 01 31

DEC R1 30 00

DEC IR1 31 01

JP IRR1 C4 30

NOP 0F FF
UM012821-1115 Z8® Compatibility

eZ8™ CPU Core
User Manual

15
continues to support these instructions. For more information, see the
Addressing Modes on page 46 and the LD on page 164.

The Watchdog Timer Enable During HALT mode instruction, WDH, is
also removed. For information on the Watchdog Timer, refer to the Zilog
Product Specification specific to your Z8 Encore!®® device.

Relocation of eZ8 CPU Control Registers

Four control registers within the eZ8 CPU feature new addresses to take
advantage of the larger Register File.

Stack Pointer High and Low Byte Registers

The Stack Pointer Low Byte (SPL) now resides at address FFFh in the
Register File. The Stack Pointer High Byte (SPH) now resides at address
FFEh.

Register Pointer

The Register Pointer (RP) now resides at address FFDh in the Register
File.

Flags Register

The Flags Register (FLAGS) now resides at address FFCh in the Register
File.

Compatibility with Z8 CPU

Certain changes to the eZ8 CPU improve over the Z8 CPU but are still
compatible if you choose to migrate to the eZ8 CPU.
UM012821-1115 Z8® Compatibility

eZ8™ CPU Core
User Manual

16
Stack Pointer Compatibility

The stack pointer is now 12 bits in length and provided by {SPH[3:0],
SPL[7:0]}. This change allows the origin of the stack to be placed at any
address from 000h to EFFh where general-purpose registers are available.
Refer to the Zilog Product Specification specific to your Z8 Encore!®
device for available Register File addresses. All stack pointer operations
occur within the Register File address space.

Reset Compatibility

Unlike the Z8 CPU which uses a fixed reset address of 00Ch, the 
eZ8 CPU uses a vectored reset. Program Memory stores the RESET vec-
tor at addresses 0002h and 0003h (most significant byte at 0002h and
least significant byte at 0003h). When the eZ8 CPU is reset it fetches the
RESET vector at addresses 0002h and 0003h. The eZ8 CPU writes the
RESET factor to the Program Counter and executes code at the new Pro-
gram Counter address.

Interrupt Compatibility

The interrupt table now resides at starting address 0008h in Program
Memory to accommodate the increased number of interrupts available
with the eZ8 CPU.
UM012821-1115 Z8® Compatibility

eZ8™ CPU Core
User Manual

17
Address Space
The eZ8™ CPU can access three distinct address spaces:

• The Register File contains addresses for the general-purpose registers
and the eZ8 CPU, peripheral, and I/O port control registers.

• The Program Memory contains addresses for all memory locations
having executable code and/or data.

• The Data Memory contains addresses for all memory locations that
hold data only.

Register File

The eZ8 CPU supports a maximum of 4096 consecutive bytes (registers)
in the Register File. The Register File is composed of two sections:

1. Control Registers

2. General-Purpose Registers

The upper 256 bytes are reserved for control of the eZ8 CPU, the on-chip
peripherals, and the I/O ports. These 256 registers are always located at
addresses from F00h to FFFh.

When instructions execute, registers are read from when defined as
sources and written to when defined as destinations. The architecture of
the eZ8 CPU allows all general-purpose registers to function as
accumulators, address pointers, index registers, stack areas, or scratch pad
memory.

Some eZ8 CPU products contain a register file that is less than the
maximum of 4096 bytes. For eZ8 CPU products with less than 4096B in
the Register File, reading from an unavailable Register File addresses
returns an undefined value. Writing to an unavailable Register File
addresses produces no effect. Refer to the Zilog Product Specification
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

18
specific to your Z8 Encore!® device to determine the number of registers
available in the Register File as well as descriptions of the peripheral and
I/O control registers.

CPU Control Registers

Within the 256 registers reserved for control, there are four eZ8 CPU con-
trol registers that are always at the same register addresses. These four
eZ8 CPU control registers (see Table 6) are the Stack Pointer High Byte,
Stack Pointer Low Byte, Register Pointer and Flags registers. For more
information on the operation of the eZ8 CPU control registers, see Archi-
tectural Overview on page 1.

General-Purpose Registers

Other than the upper 256 registers reserved for control functions, all other
available addresses within the Register File are available for 
general-purpose use. Refer to the Zilog Product Specification specific to
your Z8 Encore!® device to determine the addresses available.

Register File Organization

The Register File can be accessed as a 4096 byte linear address space
using 12-bit addressing mode, as sixteen 256-byte Register Pages using 
8-bit addressing mode, or as sixteen 16-byte Working Register Groups per

Table 6. eZ8 CPU Control Registers

Register
Mnemonic Register Description

Address
(Hex)

FLAGS Flags FFC

RP Register Pointer FFD

SPH Stack Pointer High Byte FFE

SPL Stack Pointer Low Byte FFF
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

19
Register Page using 4-bit addressing mode. Figure 3 on page 19 displays
the organization of the Register File. Attempts to read unavailable
Register File addresses return an undefined value. Attempts to write to
unavailable Register File addresses produce no effect.

Figure 3. Register File Organization

0

16
256B Pages

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

16
16B Working Register

Groups Per Page

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

000h

FFFh

4096B
Linear Addressable

Register File

16
Working Registers

Per Group

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

20
Linear Addressing of Register File

Using 12-bit linear addressing, the eZ8 CPU can directly access any 8-bit
registers or 16-bit register pairs within the 4096B Register File. The
instructions that support 12-bit addressing allow direct register access to
most registers without requiring a change to the value of the Register
Pointer (RP). To accommodate the increase in the register address space
relative to the Z8 architecture, new Extended Addressing instructions
are added to allow easier register access across page boundaries.

Page Mode Addressing of Register File

In Page mode, the Register File is divided into sixteen 256-Byte register
Pages. The current page is determined by the Page Pointer value,
RP[3:0]. Registers can be accessed by Direct, Indirect, or Indexed
Addressing using 8-bit addresses. The full 12-bit address is provided by
{RP[3:0], Address[7:0]}. All 256 registers on the current page can
be referenced or modified by any instruction that uses 8-bit addressing. To
change to a different page, use the Set Register Pointer (SRP) instruction
to change the value of the Register Pointer. (Load instructions, LD or
LDX, can also be used but require more bytes of code space).

Working Register Addressing of Register File

Each Register File page is logically divided into 16 Working Register
Groups of 16 registers each. The Working Registers within each Working
Register Group are accessible using 4-bit addressing. The high nibble of
the eZ8 CPU Register Pointer (RP) contains the base address of the active
Working Register Group, referred to as the Working Group Pointer. When
accessing one of the Working Registers, the 4-bit address of the Working
Register is combined within the Page Pointer and the Working Group
Pointer to form the full 12-bit address {RP[3:0], RP[7:4],
Address[3:0]}. Figure 4 on page 21 displays this operation.
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

21
Because Working Registers can be specified using fewer operand bytes,
there are fewer bytes of code needed, which reduces execution time. In
addition, when processing interrupts or changing tasks, the Register
Pointer speeds context switching. The Set Register Pointer (SRP)
instruction sets the contents of the Register Pointer.

16-Bit Register Pairs

Register data may be accessed as a 16-bit word using Register Pairs. In
this case, the most significant byte (MSB) of the data is stored in the even
numbered register, while the least significant byte (LSB) is stored in the
next higher odd numbered register (see Figure 5 on page 22). Address the
register pair using the address of the MSB.

Figure 4. Working Register Addressing Example

0 1 1 1 0 0 1 1

Register Pointer

0 1 1 0 1 1 1 0

INC R6

0 1 1 1 0 1 1 0

Bit
0

Bit
7

0 0 1 1

Full 12-bit Register Address (376h)

Bit
11

Bit
0

Working Group Page

Working Register
4-bit Address
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

22
Bit Addressing

Many eZ8 CPU instructions allow access to individual bits within regis-
ters. Figure 6 displays how the instruction AND R15, MASK can clear an
individual bit.

Figure 5. 16-Bit Register Pair Addressing

Figure 6. Bit Addressing Example

MSB LSB

Rn Rn+1

n = Even Address

0 1 1 1 0 0 0 0 R15

1 1 0 1 1 1 1 1 MASK = DFh

0 1 0 1 0 0 0 0 R15

Bit
0

Bit
7

AND R15, DFh ; Clear Bit 5 of Working Register 15
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

23
Register File Precautions

Some control registers within the Register File provide Read-Only or
Write-Only access. When accessing these Read-Only or Write-Only
registers, insure that the instructions do not attempt to read from a Write-
Only register or, conversely, write to a Read-Only register. To determine
which control registers allow either Read-Only or Write-Only access,
refer to the Zilog Product Specification specific to your Z8 Encore!®
device.

Program Memory

The eZ8 CPU can access 64 KB (65,536 bytes) of Program Memory. The
Program Memory provides storage for both executable program code and
data. For each product within the eZ8 CPU family, a block of Program
Memory beginning at address 0000h is reserved for option bits, Reset
vector, Watchdog Timer time-out vector, Illegal Instruction Trap vector,
and the Interrupt vectors. The rest of the Program Memory stores code
and data. Program Memory is accessed using Op Code fetches, operand
fetches, and LDC/LDCI instructions. Table 7 provides an example of a
Program Memory map for a eZ8 CPU product with 64 KB of Program
Memory and 16 interrupt vectors.

Table 7. Program Memory Map Example

Program Memory
Address (Hex) Description

0000–0001 Option bits.

0002–0003 Reset vector.

0004–0005 Watchdog Timer vector.

0006–0007 Illegal Instruction Trap vector.
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

24
Individual products containing the eZ8 CPU support varying amounts of
Program Memory. Refer to the Zilog Product Specification that is specific
to your Z8 Encore!® device for your product to determine the amount of
Program Memory available. Attempts to read or execute from unavailable
Program Memory addresses return FFh. Attempts to write to unavailable
Program Memory addresses produce no effect.

Data Memory

In addition to the Register File and the Program Memory, the eZ8 CPU
also accesses a maximum of 64 KB (65,536 bytes) of Data Memory. The
Data Memory space provides data storage only. Op Code and operand
fetches cannot be executed out of this space. Access is obtained by the use
of the LDE and LDEI instructions. Valid addresses for the Data Memory
are from 0000h to FFFFh.

Individual products containing the eZ8 CPU support varying amounts of
Data Memory. Refer to the Zilog Product Specification specific to your
Z8 Encore!® device for your product to determine the amount of Data
Memory available. Attempts to read unavailable Data Memory addresses
returns FFh. Attempts to write to unavailable Data Memory addresses
produce no effect.

0008–0027 Interrupt vector.

0028–FFFF Program code and data.

Table 7. Program Memory Map Example (Continued)

Program Memory
Address (Hex) Description
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

25
Stacks

Stack operations occur in the general-purpose registers of the Register
File. The Register Pair FFEh and FFFh form the 16-bit Stack Pointer (SP)
used for all stack operations. The Stack Pointer holds the current stack
address. The Stack Pointer must be always be set to point to a section of
the Register File that does not cause user program data to be overwritten.
Even for linear program code that does not employ the stack for Call and/
or Interrupt routines, the Stack Pointer must be set to prepare for possible
Illegal Instruction Traps.

The stack address decrements prior to a PUSH operation and increments
after a POP operation. The stack address always points to the data stored
at the top of the stack. The stack is a return stack for interrupts and CALL
and TRAP instructions. It can also be employed as a data stack.

During a CALL instruction, the contents of the Program Counter are
saved on the stack. The Program Counter is restored during execution of a
Return (RET). Interrupts and Traps (either the TRAP instruction or an
Illegal Instruction Trap) save the contents of the Program Counter and the
Flags Register on the stack. The Interrupt Return (IRET) instruction
restores them. Figure 7 on page 26 displays the contents of the Stack and
the location of the Stack Pointer following Call, Interrupt and Trap opera-
tions.
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

26
An overflow or underflow can occur when stack address is incremented
or decremented beyond the available address space. This occurrence must
be prevented otherwise it results in an unpredictable operation.

Figure 7. Stack Operations

PC[15:8]

PC[7:0]

Top of Stack Flags

PC[15:8]

PC[7:0]

Top of Stack

Stack Contents
After an

Interrupt or Trap

Stack Contents
After a

Call Instruction
UM012821-1115 Address Space

eZ8™ CPU Core
User Manual

38
Interrupts
Interrupt requests (IRQs) allow peripheral devices to suspend CPU
operation and force the CPU to start an interrupt service routine (ISR).
The interrupt service routine exchanges data, status information, or
control information between the CPU and the interrupting peripheral.
When the service routine finishes, the CPU returns to the previous
operation.

The eZ8™ CPU supports both vectored-and polled-interrupt handling.
Interrupts are generated from internal peripherals, external devices
through the port pins, or software. The Interrupt Controller prioritizes and
handles individual interrupt requests before passing them on to the eZ8
CPU.

The interrupt sources and trigger conditions are device dependent. Refer
to the Zilog Product Specification specific to your Z8 Encore!® device to
determine available interrupt sources (internal and external), triggering
edge options, and exact programming details.

Interrupt Enable and Disable

Interrupts are globally enabled and disabled by executing the Enable
Interrupts (EI) and Disable Interrupts (DI) instructions, respectively.
These instructions affect the global interrupt enable control bit in the
Interrupt Controller. Enable or disable the individual interrupts using
control registers in the Interrupt Controller. Refer to the Zilog Product
Specification specific to your Z8 Encore!® device for information on the
Interrupt Controller.
UM012821-1115 Interrupts

eZ8™ CPU Core
User Manual

39
Interrupt Priority

The Interrupt Controller prioritizes all interrupts. Refer to the Zilog Prod-
uct Specification specific to your Z8 Encore!® device for information
about the Interrupt Controller.

Vectored Interrupt Processing

Each eZ8 CPU interrupt is assigned its own vector. When an interrupt
occurs, control passes to the interrupt service routine pointed to by the
interrupt’s vector location in Program Memory. The sequence of events
for a vectored interrupt is as follows:

1. Push the low byte of the Program Counter, PC[7:0], on the stack.

2. Push the high byte of the Program Counter, PC[15:8], on the stack.

3. Push the Flags Register on the stack.

4. Fetch the High Byte of the Interrupt Vector.

5. Fetch the Low Byte of the Interrupt Vector.

6. Branch to the Interrupt Service Routine specified by the Interrupt
Vector.

Figure 8 displays the effect of vectored interrupts on the Stack Pointer and
the contents of the stack. Figure 9 provides an example of the Program
Memory during interrupt operation. In Figure 9, the Interrupt Vector is
located at address 0014h in Program Memory. The 2-byte Interrupt
Vector, stored at Program Memory addresses 0014h and 0015h, is loaded
into the Program Counter. Execution of the Interrupt Service Routine
begins at Program Memory address 4567h, as is stored in the Interrupt
Vector.
UM012821-1115 Interrupts

eZ8™ CPU Core
User Manual

40
Figure 8. Effects of an Interrupt on the Stack

Top of StackStack Pointer

Flags[7:0]

PC[15:8]

PC[7:0]

Stack Pointer

Stack Pointer and Stack
Before an Interrupt

Stack Pointer and Stack
After an Interrupt
UM012821-1115 Interrupts

eZ8™ CPU Core
User Manual

41
Figure 9. Interrupt Vectoring in Program Memory Example

Program Memory

Vector Selected by
Interrupt Controller

Interrupt
Vector
Table

Interrupt Service
Routine Origin

Vector[15:8] = 45h

Vector[7:0] = 67h

4567h

Program Memory
Address

0014h

0015h
UM012821-1115 Interrupts

eZ8™ CPU Core
User Manual

42
Nesting of Vectored Interrupts

Vectored interrupt nesting allows higher priority requests to interrupt a
lower priority request. To initiate vectored interrupt nesting, follow the
steps below, during the interrupt service routine:

1. Push the old Interrupt Control and Interrupt Enable Register
information about the stack.

2. Load the Interrupt Enable Register information with new masks to
disable lower priority interrupts.

3. Execute an EI instruction to enable the interrupts.

4. Proceed with the interrupt service routine processing.

5. After processing is complete, execute a DI instruction to disable the
interrupts.

6. Restore the Interrupt Control and Interrupt Enable Register
information from the stack.

7. Execute an IRET instruction to return from the interrupt service
routine.

Polled Interrupt Processing

Polled interrupt processing is supported by individually disabling the
interrupts to be polled. To initiate polled processing, check the interrupt
bits of interest in the Interrupt Request Register(s) using the Test Under
Mask (TM) or similar bit test instruction. If the bit is 1, perform a
software call or branch to the interrupt service routine. Write the service
routine to service the request, reset the Interrupt Request bit in the
Interrupt Request Register, and return or branch back to the main
program. An example of a polling routine follows:

TM IRQ1, #0010000b; Test for
interrupt request in bit 5 of IRQ1
UM012821-1115 Interrupts

eZ8™ CPU Core
User Manual

43
JR Z, NEXT ; If no interrupt
request, go

; to NEXT CALL
SERVICE . If

; interrupt
request, go to the

; interrupt
service routine.
NEXT: ; Other program
code here.
SERVICE: ; Process
interrupt request

; service routine
code here.
AND IRQ1, #1101111b ; Clear the
interrupt request

; in bit 5 of IRQ1
RET ; Return to
address following

; the CALL

Refer to the Z8 Encore!® Product Specification specific to your device for
information on the Interrupt Request Registers.

Software Interrupt Generation

The eZ8 CPU generates Software Interrupts by writing to the Interrupt
Request Registers in the Register File. The Interrupt Controller and 
eZ8 CPU handle these software interrupts in the same manner as
hardware-generated interrupt requests. To generate a Software Interrupt,
write a 1 to the preferred interrupt request bit in the selected Interrupt
Request Register. As an example, the following instruction:

OR IRQ1, #0010000b
UM012821-1115 Interrupts

eZ8™ CPU Core
User Manual

44
writes a 1 to bit 5 of Interrupt Request Register 1. If this interrupt at bit 5
is enabled and there are no higher priority pending interrupt requests,
program control transfers to the interrupt service routine specified by the
corresponding Interrupt Vector.

For more information on Interrupt Controller and Interrupt Request
Registers, refer to the Zilog Product Specification specific to your Z8
Encore!® device.
UM012821-1115 Interrupts

eZ8™ CPU Core
User Manual

45
Interrupts UM012821-1115

eZ8™ CPU Core
User Manual

46
Addressing Modes
The eZ8™ CPU provides six addressing modes:

• Register (R)

• Indirect Register (IR)

• Indexed (X)

• Direct (DA)

• Relative (RA)

• Immediate Data (IM)

With the exception of immediate data and condition codes, all operands
are expressed as either Register File, Program Memory, or Data Memory
addresses. Registers use 12-bit addresses in the range of 000h–FFFh.
Program Memory and Data Memory use 16-bit addresses (register pairs)
in the range of 0000h–FFFFh.

Register pairs can designate 16-bit values or memory addresses. Working
Register Pairs use 4-bit addresses and must be specified as an even-
numbered address in the range of 0, 2, ..., 14. Register Pairs use 8-bit
addresses and must be specified as an even-numbered address in the range
of 0, 2, …, 254.

In the following definitions of Addressing Modes, the use of 'register' can
imply a register, a register Pair, a working register, or a working register
pair, depending on the context.

Refer to the Zilog Product Specification specific to your Z8 Encore!®
device for details on the Program, Data, and Register File memory types
and address ranges available.
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

47
Register Addressing

Extended register addressing, symbol R, is used to directly access any
register in the Register File using either a 12-bit, 8-bit, or 4-bit addressing
methodology.

Register Addressing Using 12-Bit Addresses

The 12-bit address is supplied in the operands. There are two types of
extended mode instructions: Register to Register operations and
Immediate to Register operations. Figure 10 displays Register addressing
using 12-bit addresses.

Figure 10. Register Addressing Using 12-Bit Addresses

Two 12-bit

Program Memory

Addresses
(dst, src)

Three Operand
Instruction
(Example)

Op Code

src[11:4]

{src[3:0},
dst[11:8]}

dst[7:0]

Source

Destination

Register File

Register

Register

12-bit address is
dst[11:0]

12-bit address is
src[11:0]
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

48
Register Addressing Using 8-Bit Addresses

Registers or Register Pairs may be accessed using 8-bit addresses sup-
plied in the operands. Any of the 256 registers on the current Register File
Page can be accessed using 8-bit addressing. The upper 4-bits of the 
12-bit address is provided by the Page Pointer, RP[3:0]. The full 12-bit
address is provided by {RP[3:0], Address[7:0]}.

Figure 11 displays using 8-bit addressing, the destination and/or source
address specified corresponds to a register in the Register File.

Register Addressing Using 4-Bit Addresses

Working Registers or Working Register Pairs can be accessed using 4-bit
addresses supplied in the operands. With 4-bit Addressing, the destination
and/or source addresses point to one of the 16 possible Working Registers

Figure 11. Register Addressing Using 8-Bit Addresses

One 8-bit

Program Memory

Address
(dst)

One Operand
Instruction
(Example)

Op Code

dst[7:0]
Destination

Register File

Register

12-bit address is
{RP[3:0], dst[7:0]}
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

49
within the current Working Register Group. This 4-bit address is com-
bined with the Page Pointer, RP[3:0], and the Working Group Pointer,
RP[7:4], to form the actual 12-bit address in the Register File. The full
12-bit address is provided by {RP[3:0], RP[7:4], Address[3:0]}.
Figure 12 displays 4-bit addressing of the Register File.

Escaped Mode Addressing

Escaped mode addressing is used to directly access any Working Register
in the Register File using either an 8-bit or 4-bit addressing methodology.

Figure 12. Register Addressing Using 4-Bit Addresses

Two 4-bit

Program Memory

Addresses
(dst, src)

One Operand
Instruction
(Example)

Op Code

{dst[3:0],

12-bit address is
{RP[3:0], RP[7:4], dst[3:0]}

src[3:0]}

Source

Destination
Register

Register

Register File

12-bit address is
{RP[3:0], RP[7:4], src[3:0]}
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

50
Escaped Mode Addressing with 8-bit Addresses

Using Escaped Mode Addressing 8-bit addresses can specify a working
register. If the high nibble of the 8-bit address is Eh (1110b), the lower
nibble indicates the working register and the full 12-bit address is
provided by {RP[3:0], RP[7:4], Address[3:0]}. For example, if
ECh is the 8-bit address operand, it implies working register R12 at the
address {RP[3:0], RP[7:4], Ch}. Since addresses E0h to EFh are
used for escaped mode addressing, to access registers with these
addresses, either set the Working Group Pointer, RP[7:4], to Eh or use
indirect addressing.

Escaped Mode Addressing with 12-bit Addresses

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can specify a working register with 4-bit addressing. If the high
byte of the 12-bit source or destination address is EEh(11101110b), the
lower nibble indicates the working register and the full 12-bit address is
provided by {RP[3:0], RP[7:4], Address[3:0]}. For example,
the operand EE3h selects working register R3. The full 12-bit address is
provided by {RP[3:0], RP[7:4], 3h}.

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can also specify a register with 8-bit addressing. If the high nibble
of the 12-bit source or destination address is Eh (1110b), the lower byte
indicates the 8-bit register address and the full 12-bit address is provided
by {RP[3:0], Address[7:0]}. For example, the operand E13h
selects 8-bit register at address 13h on the page indicated by RP[3:0].
The full 12-bit address is provided by {RP[3:0], 13h}. This addressing
mode is sometimes referred to as RP-based page addressing.

Since addresses E00h to EFFh are used for escaped mode addressing, to
access registers on page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

51
Indirect Register Addressing

In Indirect Register Addressing Mode, symbol IR, the contents of the
specified Register provide an address as displayed in Figure 13 and
Figure 14. Depending on the instruction selected, the specified Register
contents point to a register File, Program Memory, or an Data Memory
location. When accessing Program Memory or Data Memory, Register
Pairs or Working Register Pairs hold the 16-bit addresses.

Figure 13. Indirect Register Addressing to Register File

One 8-bit

Program Memory

Address
(dst)

One Operand
Instruction
(Example)

Op Code

dst[7:0]
Destination

Register File

Register

12-bit address is
{RP[3:0], dst[7:0]}

Value used
in execution

Register
contains 8-bit

address (addr[7:0])

1
2-

b
it

ad
dr

es
s

is
{R

P
[3

:0
],
 a

dd
r[

7:
0]

}

UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

52
Figure 14. Indirect Register Addressing to Program or Data Memory

One 8-bit

Program Memory

Address
(dst)

One Operand
Instruction
(Example)

Op Code

dst[7:0]
Destination

Register File

Register MSB

12-bit address is
{RP[3:0], dst[7:0]}

Value used
in execution

Register Pair
contains two
8-bit address

16
-b

it
ad

dr
es

s
is

{a
dd

r[
15

:8
],

ad
dr

[7
:0

]}

Program or Data Memory

Destination
Register LSB

{addr[15:8], addr[7:0]}
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

53
Indexed Addressing

An Indexed Address, symbol X, consists of an 8-bit address in a working
register offset by an 8-bit Signed Index value. Figure 15 displays Indexed
Addressing.

Figure 15. Indexed Register Addressing

Two 4-bit

Program Memory

Address
(dst, src)

Two Operand
Instruction
(Example)

Op Code

{dst[3:0],

Destination

Register File

Register

12-bit address is
{RP[3:0], RP[7:4], dst[3:0]}

Value used
in execution

8-
bi

t v
al

u
e

w
rit

te
n

to
 D

es
itn

at
io

n
R

eg
is

te
r

src[3:0]}

Index

+

Source
Register

Source
Value

12-bit address is
{RP[3:0], Source Value + Index}
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

54
Direct Addressing

Figure 16 displays the Direct Addressing mode, symbol DA. This instruc-
tion specifies the address of the next instruction to be executed. Only the
Jump (JP and JP cc) and Call (CALL) instructions use Direct Addressing.
The 16-bit Direct Address is written to the Program Counter.

Figure 16. Direct Addressing

16-bit Direct

Program Memory

Address

Two Operand
Instruction
(Example)

Op Code

DA[15:8]

DA[7:0]

Next
Op Code

16-bit Program
Memory address

is DA[15:0]

DA[15:0] written to
Program Counter
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

55
Relative Addressing

Figure 17 displays the Relative Addressing mode, symbol RA. The
instruction specifies a two’s complement signed displacement in the range
of –128 to +127. This instruction, added to the contents of the Program
Counter, obtains the address of the next instruction to be executed. Prior
to the addition operation, the Program Counter contains the address of the
instruction immediately following the current relative addressing instruc-
tion. The JR and DJNZ instructions are the only instructions that use this
mode.

Figure 17. Relative Addressing

8-bit Value

Program Memory

–128 to +127

One Operand
Instruction
(Example)

Op Code

Displacement

Next Op Code

Next Op Code
if Jump

16-bit Program
Memory address

is PC[15:0] + d[7:0]

if no Jump

+

PC[15:0]

d If Jump taken,
PC[15:0] = PC[15:0] + d[7:0]

16-bit Program
Memory address

is PC[15:0]
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

56
Immediate Data Addressing

Immediate data, addressing symbol IM, is considered an addressing mode
for this discussion. It is the only addressing mode that does not indicate a
register or memory address as the operand. The operand value used by the
instruction is the value supplied in the operand field itself. Because an
immediate operand is part of the instruction, it is always located in the
Program Memory address space (see Figure 18).

Figure 18. Immediate Data Addressing

Program Memory

Two Operand
Instruction
(Example)

Op Code

dst

Immediate
Data

Register File

12-bit address is
{RP[3:0], dst[7:0]}

Destination
Register

8-bit data written
to Destination
UM012821-1115 Addressing Modes

eZ8™ CPU Core
User Manual

57
Addressing Modes UM012821-1115

eZ8™ CPU Core
User Manual

45
Illegal Instruction Traps
The instruction set of the eZ8™ CPU does not cover all possible
sequences of binary values. Binary values and sequences for which no
operation is defined are illegal instructions. When the eZ8 CPU fetches
one of these illegal instructions, it performs an Illegal Instruction Trap
operation.

The Illegal Instruction Trap functions similarly to a TRAP #%3
instruction (object code F2h 03h). The Flags and Program Counter are
pushed on the stack. When the Program Counter detects an illegal
instruction it does not increment. The Program Counter value that is
pushed onto the stack points to the illegal instruction.

The most significant byte (MSB) of the Illegal Instruction Trap Vector is
stored at Program Memory address 0006h. The least significant byte
(LSB) of the Illegal Instruction Trap Vector is stored at Program Memory
address 0007h. The 16-bit Illegal Instruction Trap Vector replaces the
value in the Program Counter (PC). Program execution resumes from the
new value in the Program Counter.

An IRET instruction must not be performed following an Illegal
Instruction Trap service routine. Because the stack contains the
Program Counter value of the illegal instruction, the IRET
instruction returns the code execution to this illegal instruction.

Symbolic Operation of an Illegal Instruction Trap

SP  SP - 2
@SP  PC
SP  SP - 1
@SP  Flags
PC  Vector

Caution:
UM012821-1115 Illegal Instruction Traps

eZ8™ CPU Core
User Manual

46
Linear Programs That Do Not Employ The Stack

The Stack Pointer must point to a section of the Register File that does not
overwrite user program data. Even for linear program code that may not
employ the stack for Call and/or Interrupt routines, set the Stack Pointer
to prepare for possible Illegal Instruction Traps.
UM012821-1115 Illegal Instruction Traps

eZ8™ CPU Core
User Manual

47
eZ8™ CPU Instruction Set
Summary

eZ8 CPU assembly language enables writing to an application program
without concern about actual memory addresses or machine instruction
formats. A program written in assembly language is called a source
program. Assembly language uses symbolic addresses to identify memory
locations. It also allows mnemonic codes (Op Codes and operands) to
represent the instructions themselves. The Op Codes identify the
instruction while the operands represent memory locations, registers, or
immediate data values.

Each assembly language program consists of a series of symbolic
commands, called statements. Each statement contains labels, operations,
operands and comments.

Labels are assigned to a particular instruction step in a source program.
The label identifies that step in the program as an entry point for use by
other instructions.

The assembly language also includes assembler directives that
supplement the machine instruction. The assembler directives, or pseudo-
operations, are not translated into a machine instruction. The pseudo-
operations are interpreted as directives that control or assist the assembly
process.

The assembler processes the source program to obtain a machine
language program called the object code. The eZ8 CPU executes the
object code. An example segment of an assembly language program is
detailed in the following example.
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

48
Assembly Language Source Program Example

JP START ; Everything after the semicolon
;is a comment.

START: ; A label called "START". The
;first instruction (JP START) in
;this example causes program
;execution to jump to the point
;within the program where the
;START label occurs.

LD R4, R7 ; A Load (LD) instruction with two
;operands. The first operand,
;Working Register R4, is the
;destination. The second operand,
;Working Register R7, is the
;source. The contents of R7 are
;written into R4.

LD 234h, #%01 ; Another Load (LD) instruction
;with two operands. The first
;operand, Extended Mode
;Register Address 234h,
;identifies the destination.
;The second operand, Immediate
;Data value 01h, is the source.
;The value 01h is written into
;the Register at address 234h.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax
requires that the operands be written as ‘destination, source’. After
assembly, the object code usually places the operands in the order ‘source,
destination’, but ordering is Op Code-dependent. The following
instruction examples illustrate the format of some basic assembly
instructions and the resulting object code produced by the assembler. This
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

49
binary format must be followed if you prefer manual program coding or
intend to implement their own assembler.

Example 1

If the contents of Registers 43h and 08h are added and the result is stored
in 43h, the assembly syntax and resulting object code is:

Example 2

In general, when an instruction format requires an 8-bit register address,
that address can specify any register location in the range 0–255 or, using
Escaped Mode Addressing, a working register R0–R15. If the contents of
Register 43h and Working Register R8 are added and the result is stored
in 43h, the assembly syntax and resulting object code is:

Refer to the Zilog Product Specification specific to your Z8 Encore!®
device to determine the exact register file range available. The register
file size varies, depending on the device type.

Table 8. Assembly Language Syntax Example 1

Assembly Language Code ADD 43h, 08h (ADD dst, src)

Object Code 04 08 43 (OPC src, dst)

Table 9. Assembly Language Syntax Example 2

Assembly Language Code ADD 43h, R8 (ADD dst, src)

Object Code 04 E8 43 (OPC src, dst)
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

50
eZ8 CPU Instruction Notation

In the eZ8 CPU Instruction Summary and Description sections, the
operands, condition codes, status flags, and address modes are
represented by a notational shorthand as described on Table 10.

Table 10. Notational Shorthand

Notation Description Operand Range of Operand

b Bit b 0 to 7 (000b to 111b).

cc Condition Code – See the Condition Codes on page 8.

DA Direct Address Addrs 0000h to FFFFh.

ER Extended Addressing
Register

Reg 000h to FFFh.

IM Immediate Data #Data Data is a number between 00h to FFh.

Ir Indirect Working
Register

@Rn n = 0–15.

IR Indirect Register @Reg 00h to FFh.

Irr Indirect Working
Register Pair

@RRp p = 0, 2, 4, 6, 8, 10, 12, or 14.

IRR Indirect Register Pair @Reg 00h to FEh.

p Polarity p p is a single-bit binary value of either 0b or
1b.

r Working Register Rn n = 0–15.

R Register Reg 00h to FFh.

RA Relative Address X Index in the range +127 to –128, which is
an offset relative to the address of the next
instruction.

rr Working Register Pair RRp p = 0, 2, 4, 6, 8, 10, 12, or 14.
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

51
Table 11 contains additional symbols that are used throughout the Instruc-
tion Summary and Instruction Set Description sections.

RR Register Pair Reg 00h to FEh.

Vector Vector Address #Vector 00h to FFh.

X Indexed #Index The register or register pair to be indexed
is offset by the signed Index value (#Index)
in the range +127 to –128.

Table 11. Additional Symbols

Symbol Definition

dst Destination Operand

src Source Operand

@ Indirect Address Prefix

C Carry Flag

SP Stack Pointer

PC Program Counter

FLAGS Flags Register

RP Register Pointer

Immediate Operand Prefix

b Binary Number Suffix

% Hexadecimal Number Prefix

h Hexadecimal Number Suffix

Table 10. Notational Shorthand (Continued)

Notation Description Operand Range of Operand
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

52
An arrow (indicates assignment of a value. For example:

dst  dst + src

indicates the source data is added to the destination data and the result is
stored in the destination location.

eZ8 CPU Instruction Classes

eZ8 CPU instructions is divided functionally into the following groups:

• Arithmetic

• Bit Manipulation

• Block Transfer

• CPU Control

• Load

• Logical

• Program Control

• Rotate and Shift

Table 12 through Table 19 contain the instructions belonging to each
group and the number of operands required for each instruction. Some
instructions appear in more than one table as these instructions can be
considered as a subset of more than one category. Within these tables, the
source operand is identified as ‘src’, the destination operand is ‘dst’ and a
condition code is ‘cc’.
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

53
Table 12. Arithmetic Instructions

Mnemonic Operands Instruction

ADC dst, src Add with Carry

ADCX dst, src Add with Carry using Extended Addressing

ADD dst, src Add

ADDX dst, src Add using Extended Addressing

CP dst, src Compare

CPC dst, src Compare with Carry

CPCX dst, src Compare with Carry using Extended Addressing

CPX dst, src Compare using Extended Addressing

DA dst Decimal Adjust

DEC dst Decrement

DECW dst Decrement Word

INC dst Increment

INCW dst Increment Word

MULT dst Multiply

SBC dst, src Subtract with Carry

SBCX dst, src Subtract with Carry using Extended Addressing

SUB dst, src Subtract

SUBX dst, src Subtract using Extended Addressing
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

54
Table 13. Bit Manipulation Instructions

Mnemonic Operands Instruction

BCLR bit, dst Bit Clear

BIT p, bit, dst Bit Set or Clear

BSET bit, dst Bit Set

BSWAP dst Bit Swap

CCF – Complement Carry Flag

RCF – Reset Carry Flag

SCF – Set Carry Flag

TCM dst, src Test Complement Under Mask

TCMX dst, src Test Complement Under Mask using Extended Addressing

TM dst, src Test Under Mask

TMX dst, src Test Under Mask using Extended Addressing

Table 14. Block Transfer Instructions

Mnemonic Operands Instruction

LDCI dst, src Load Constant to/from
Program Memory and Auto-
Increment Addresses

LDEI dst, src Load External Data to/from
Data Memory and Auto-
Increment Addresses
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

55
Table 15. CPU Control Instructions

Mnemonic Operands Instruction

ATM – Atomic Execution

CCF – Complement Carry Flag

DI – Disable Interrupts

EI – Enable Interrupts

HALT – HALT Mode

NOP – No Operation

RCF – Reset Carry Flag

SCF – Set Carry Flag

SRP src Set Register Pointer

STOP – STOP Mode

WDT – Watchdog Timer Refresh

Table 16. Load Instructions

Mnemonic Operands Instruction

CLR dst Clear

LD dst, src Load

LDC dst, src Load Constant to/from
Program Memory

LDCI dst, src Load Constant to/from
Program Memory and Auto-
Increment Addresses

LDE dst, src Load External Data to/from
Data Memory
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

56
LDEI dst, src Load External Data to/from
Data Memory and Auto-
Increment Addresses

LDWX dst, src Load Word using Extended
Addressing

LDX dst, src Load using Extended
Addressing

LEA dst, X(src) Load Effective Address

POP dst Pop

POPX dst Pop using Extended
Addressing

PUSH src Push

PUSHX src Push using Extended
Addressing

Table 17. Logical Instructions

Mnemonic Operands Instruction

AND dst, src Logical AND

ANDX dst, src Logical AND using Extended Addressing

COM dst Complement

OR dst, src Logical OR

ORX dst, src Logical OR using Extended Addressing

Table 16. Load Instructions (Continued)

Mnemonic Operands Instruction
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

57
XOR dst, src Logical Exclusive OR

XORX dst, src Logical Exclusive OR using Extended
Addressing

Table 18. Program Control Instructions

Mnemonic Operands Instruction

BRK – On-Chip Debugger Break

BTJ p, bit, src, DA Bit Test and Jump

BTJNZ bit, src, DA Bit Test and Jump if Non-Zero

BTJZ bit, src, DA Bit Test and Jump if Zero

CALL dst Call Procedure

DJNZ dst, RA Decrement and Jump Non-Zero

IRET – Interrupt Return

JP dst Jump

JP cc dst Jump Conditional

JR DA Jump Relative

JR cc DA Jump Relative Conditional

RET – Return

TRAP vector Software Trap

Table 17. Logical Instructions (Continued)

Mnemonic Operands Instruction
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

58
eZ8 CPU Instruction Summary

Table 20 summarizes the eZ8 CPU instructions. The table identifies the
addressing modes employed by the instruction, the effect upon the Flags
register, the number of CPU clock cycles required for the instruction
fetch, and the number of CPU clock cycles required for the instruction
execution.

Table 19. Rotate and Shift Instructions

Mnemonic Operands Instruction

BSWAP dst Bit Swap

RL dst Rotate Left

RLC dst Rotate Left through Carry

RR dst Rotate Right

RRC dst Rotate Right through Carry

SRA dst Shift Right Arithmetic

SRL dst Shift Right Logical

SWAP dst Swap Nibbles
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

59
Table 20. eZ8 CPU Instruction Summary

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

ADC dst, src dst  dst + src + C r r 12 * * * * 0 * 2 3

r Ir 13 2 4

R R 14 3 3

R IR 15 3 4

R IM 16 3 3

IR IM 17 3 4

ADCX dst,
src

dst  dst + src + C ER ER 18 * * * * 0 * 4 3

ER IM 19 4 3

ADD dst, src dst  dst + src r r 02 * * * * 0 * 2 3

r Ir 03 2 4

R R 04 3 3

R IR 05 3 4

R IM 06 3 3

IR IM 07 3 4

ADDX dst,
src

dst  dst + src ER ER 08 * * * * 0 * 4 3

ER IM 09 4 3
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

60
AND dst, src dst  dst AND src r r 52 – * * 0 – – 2 3

r Ir 53 2 4

R R 54 3 3

R IR 55 3 4

R IM 56 3 3

IR IM 57 3 4

ANDX dst,
src

dst  dst AND src ER ER 58 – * * 0 – – 4 3

ER IM 59 4 3

ATM Block all interrupt
and DMA requests
during execution of
the next 3
instructions

2F – – – – – – 1 2

BCLR bit, dst dst[bit]  0 r E2 – – – – – – 2 2

BIT p, bit, dst dst[bit]  p r E2 – – – – – – 2 2

BRK Debugger Break 00 – – – – – – 1 2

BSET bit, dst dst[bit]  1 r E2 – – – – – – 2 2

BSWAP dst dst[7:0]  dst[0:7] R D5 X * * 0 – – 2 2

BTJ p, bit,
src, dst

if src[bit] = p
 PC  PC + X

r F6 – – – – – – 3 3

Ir F7 3 4

BTJNZ bit,
src, dst

if src[bit] = 1
 PC  PC + X

r F6 – – – – – – 3 3

Ir F7 3 4

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

61
BTJZ bit, src,
dst

if src[bit] = 0
 PC  PC + X

r F6 – – – – – – 3 3

Ir F7 3 4

CALL dst SP  SP -2
@SP  PC
PC  dst

IRR D4 – – – – – – 2 6

DA D6 3 3

CCF C  ~C EF * – – – – – 1 2

CLR dst dst  00h R B0 – – – – – – 2 2

IR B1 2 3

COM dst dst  ~dst R 60 – * * 0 – – 2 2

IR 61 2 3

CP dst, src dst – src r r A2 * * * * – – 2 3

r Ir A3 2 4

R R A4 3 3

R IR A5 3 4

R IM A6 3 3

IR IM A7 3 4

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

62
CPC dst, src dst – src – C r r 1F A2 * * * * – – 3 3

r Ir 1F A3 3 4

R R 1F A4 4 3

R IR 1F A5 4 4

R IM 1F A6 4 3

IR IM 1F A7 4 4

CPCX dst,
src

dst – src – C ER ER 1F A8 * * * * – – 5 3

ER IM 1F A9 5 3

CPX dst, src dst – src ER ER A8 * * * * – – 4 3

ER IM A9 4 3

DA dst dst  DA(dst) R 40 * * * X – – 2 2

IR 41 2 3

DEC dst dst  dst – 1 R 30 – * * * – – 2 2

IR 31 2 3

DECW dst dst  dst – 1 RR 80 – * * * – – 2 5

IR 81 2 6

DI Disable Interrupts
IRQCTL[7]  0

8F – – – – – – 1 2

DJNZ dst, RA dst  dst – 1
if dst  0
 PC  PC + X

r 0A–FA – – – – – – 2 Z/NZ
3/4

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

63
EI Enable Interrupts
IRQCTL[7]  1

9F – – – – – – 1 2

HALT Halt Mode 7F – – – – – – 1 2

INC dst dst  dst + 1 R 20 – * * * – – 2 2

IR 21 2 3

r 0E–FE 1 2

INCW dst dst  dst + 1 RR A0 – * * * – – 2 5

IR A1 2 6

IRET FLAGS  @SP
SP  SP + 1
PC  @SP
SP  SP + 2
IRQCTL[7]  1

BF * * * * * * 1 5

JP dst PC  dst DA 8D – – – – – – 3 2

IRR C4 2 3

JP cc, dst if cc is true
 PC  dst

DA 0D–FD – – – – – – 3 2

JR dst PC  PC + X RA 8B – – – – – – 2 2

JR cc, dst if cc is true
 PC  PC + X

RA 0b–FB – – – – – – 2 2

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

64
LD dst, src dst  src r IM 0C–FC – – – – – – 2 2

r X(r) C7 3 3

X(r) r D7 3 4

r Ir E3 2 3

R R E4 3 2

R IR E5 3 3

R IM E6 3 2

IR IM E7 3 3

Ir r F3 2 3

IR R F5 3 3

LDC dst, src dst  src r Irr C2 – – – – – – 2 5

Ir Irr C5 2 9

Irr r D2 2 5

LDCI dst, src dst  src
r  r + 1
rr  rr + 1

Ir Irr C3 – – – – – – 2 9

Irr Ir D3 2 9

LDE dst, src dst  src r Irr 82 – – – – – – 2 5

Irr r 92 2 5

LDEI dst, src dst  src
r  r + 1
rr  rr + 1

Ir Irr 83 – – – – – – 2 9

Irr Ir 93 2 9

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

65
LDWX dst,
src

dst  src ER ER 1FE8 – – – – – – 5 4

LDX dst, src dst  src r ER 84 – – – – – – 3 2

Ir ER 85 3 3

R IRR 86 3 4

IR IRR 87 3 5

r X(rr) 88 3 4

X(rr) r 89 3 4

ER r 94 3 2

ER Ir 95 3 3

IRR R 96 3 4

IRR IR 97 3 5

ER ER E8 4 2

ER IM E9 4 2

LEA dst,
X(src)

dst  src + X r X(r) 98 – – – – – – 3 3

rr X(rr) 99 3 5

MULT dst dst[15:0]  
 dst[15:8] * dst[7:0]

RR F4 – – – – – – 2 8

NOP No operation 0F – – – – – – 1 2

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

66
OR dst, src dst  dst OR src r r 42 – * * 0 – – 2 3

r Ir 43 2 4

R R 44 3 3

R IR 45 3 4

R IM 46 3 3

IR IM 47 3 4

ORX dst, src dst  dst OR src ER ER 48 – * * 0 – – 4 3

ER IM 49 4 3

POP dst dst  @SP
SP  SP + 1

R 50 – – – – – – 2 2

IR 51 2 3

POPX dst dst  @SP
SP  SP + 1

ER D8 – – – – – – 3 2

PUSH src SP  SP – 1
@SP  src

R 70 – – – – – – 2 2

IR 71 2 3

IM 1F70 3 2

PUSHX src SP  SP – 1
@SP  src

ER C8 – – – – – – 3 2

RCF C  0 CF 0 – – – – – 1 2

RET PC  @SP
SP  SP + 2

AF – – – – – – 1 4

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

67
RL dst R 90 * * * * – – 2 2

IR 91 2 3

RLC dst R 10 * * * * – – 2 2

IR 11 2 3

RR dst R E0 * * * * – – 2 2

IR E1 2 3

RRC dst R C0 * * * * – – 2 2

IR C1 2 3

SBC dst, src dst  dst – src – C r r 32 * * * * 1 * 2 3

r Ir 33 2 4

R R 34 3 3

R IR 35 3 4

R IM 36 3 3

IR IM 37 3 4

SBCX dst,
src

dst  dst – src – C ER ER 38 * * * * 1 * 4 3

ER IM 39 4 3

SCF C  1 DF 1 – – – – – 1 2

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

68
SRA dst R D0 * * * 0 – – 2 2

IR D1 2 3

SRL dst R 1F C0 * * 0 * – – 3 2

IR 1F C1 3 3

SRP src RP  src IM 01 – – – – – – 2 2

STOP Stop Mode 6F – – – – – – 1 2

SUB dst, src dst  dst – src r r 22 * * * * 1 * 2 3

r Ir 23 2 4

R R 24 3 3

R IR 25 3 4

R IM 26 3 3

IR IM 27 3 4

SUBX dst,
src

dst  dst – src ER ER 28 * * * * 1 * 4 3

ER IM 29 4 3

SWAP dst dst[7:4]  dst[3:0] R F0 X * * X – – 2 2

IR F1 2 3

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

69
TCM dst, src (NOT dst) AND src r r 62 – * * 0 – – 2 3

r Ir 63 2 4

R R 64 3 3

R IR 65 3 4

R IM 66 3 3

IR IM 67 3 4

TCMX dst,
src

(NOT dst) AND src ER ER 68 – * * 0 – – 4 3

ER IM 69 4 3

TM dst, src dst AND src r r 72 – * * 0 – – 2 3

r Ir 73 2 4

R R 74 3 3

R IR 75 3 4

R IM 76 3 3

IR IM 77 3 4

TMX dst, src dst AND src ER ER 78 – * * 0 – – 4 3

ER IM 79 4 3

TRAP Vector SP  SP – 2
@SP  PC
SP  SP – 1
@SP  FLAGS
PC  @Vector

Vect
or

F2 – – – – – – 2 6

WDT 5F – – – – – – 1 2

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

70
XOR dst, src dst  dst XOR src r r B2 – * * 0 – – 2 3

r Ir B3 2 4

R R B4 3 3

R IR B5 3 4

R IM B6 3 3

IR IM B7 3 4

XORX dst,
src

dst  dst XOR src ER ER B8 – * * 0 – – 4 3

ER IM B9 4 3

Note: Flags Notation: * = Value is a function of the result of the operation, — = Unaffected, 
X = Undefined, C = Carry Flag; 0 = Reset to 0, 1 = Set to 1.

Table 20. eZ8 CPU Instruction Summary (Continued)

Assembly
Mnemonic

Symbolic
Operation

Address
Mode Op

Code(s)
(Hex)

Flags
Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 eZ8™ CPU Instruction Set Summary

eZ8™ CPU Core
User Manual

71
eZ8™ CPU Instruction Set
Description

This chapter describes the assembly language instructions available with
the eZ8 CPU. The instruction set available with the eZ8 CPU is a superset
of the original Z8 instruction set.

Each instruction in this chapter is organized alphabetically by mnemonic,
and follows the convention of the example on the next page.
UM012821-1115 eZ8™ CPU Instruction Set Description

eZ8™ CPU Core
User Manual

72
INSTRUCTION MNEMONIC

Definition

Definition of instruction mnemonic.

Syntax

Simplified description of assembly coding.

Operation

Symbolic description of the operation performed.

Description

Detailed description of the instruction operation.

Flags

Information about how the CPU Flags are affected by the instruction
operation.

Attributes

Table providing information about assembly coding, Op Code value, and
operand ordering.

Escaped Mode Addressing

Description of Escaped Mode addressing applicable to this instruction.

Sample Usage

A simple code example using the instruction.
UM012821-1115 eZ8™ CPU Instruction Set Description

eZ8™ CPU Core
User Manual

73
ADC

Definition

Add with Carry.

Syntax

ADC dst, src

Operation

dst  dst + src + C

Description

The source operand and the Carry (C) flag are added to the destination
operand. Two’s-complement addition is performed. The sum is stored in
the destination operand. The contents of the source operand are not
affected. In multiple-precision (multibyte) arithmetic, this instruction per-
mits the carry from the addition of low-order byte operations to be carried
into the addition of high-order bytes.

Flags

C Set if there is a carry from bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Reset to 0

H Set if there is a carry from bit 3 of the result; reset otherwise
UM012821-1115 ADC Instruction

eZ8™ CPU Core
User Manual

74
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the high nibble of the source or destination address is
Eh (1110b), a working register is inferred. For example, if Working Reg-
ister R12 (Ch) is the preferred destination operand, use ECh as the destina-
tion operand in the Op Code. To access registers with addresses E0h to
EFh, either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

Example 1

If Working Register R3 contains the value 16h, the Carry flag is 1, and
Working Register R11 contains the value 20h, the following statement
leaves the value 37h in Working Register R3 and clears the C, Z, S, V, D,
and H flags:

ADC R3, R11
Object Code: 12 3B

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

ADC r1, r2 12 {r1, r2} — —

ADC r1, @r2 13 {r1, r2} — —

ADC R1, R2 14 R2 R1 —

ADC R1, @R2 15 R2 R1 —

ADC R1, IM 16 R1 IM —

ADC @R1, IM 17 R1 IM —
UM012821-1115 ADC Instruction

eZ8™ CPU Core
User Manual

75
Example 2

If Working Register R15 contains the value 16h, the Carry flag is not set,
Working Register R10 contains the value 20h, and Register 20h contains
the value 11h, the following statement leaves the value 27h in Working
Register R15 and clears the C, Z, S, V, D, and H flags:

ADC R15, @R10
Object Code: 13 FA

Example 3

If Register 34h contains the value 2Eh, the Carry flag is set, and Register
12h contains the value 1bh, the following statement leaves the value 4Ah
in Register 34h, sets the H flag, and clears the C, Z, S, V, and D flags:

ADC 34h, 12h
Object Code: 14 12 34

Example 4

Using Escaped Mode Addressing, if Working Register R4 contains the
value 2Eh, the Carry flag is set, and Register 12h contains the value 1bh,
the following statement leaves the value 4Ah in Working Register R4, sets
the H flag, and clears the C, Z, S, V, and D flags:

ADC E4h, 12h
Object Code: 14 12 E4

Example 5

Using Escaped Mode Addressing, if Register 4Bh contains the value 82h,
the Carry flag is set, Working Register R3 contains the value 10h, and
Register 10h contains the value 01h, the following statement leaves the
value 84h in Register 4Bh, sets the S flag, and clears the C, Z, V, D, and H
flags:

ADC 4Bh, @R3
Object Code: 15 E3 4B
UM012821-1115 ADC Instruction

eZ8™ CPU Core
User Manual

76
Example 6

If Register 6Ch contains the value 2Ah, and the Carry flag is not set, the
following statement leaves the value 2Dh in Register 6Ch and clears the
C, Z, S, V, D, and H flags:

ADC 6Ch, #03h
Object Code: 16 6C 03

Example 7

If Register D4h contains the value 5Fh, Register 5Fh contains the value
4Ch, and the Carry flag is set, the following statement leaves the value
4Fh in Register 5Fh and clears the C, Z, S, V, D, and H flags:

ADC @D4h, #02h
Object Code: 17 D4 02
UM012821-1115 ADC Instruction

eZ8™ CPU Core
User Manual

77
ADCX

Definition

Add with Carry using Extended Addressing.

Syntax

ADCX dst, src

Operation

dst  dst + src + C

Description

For this new eZ8 extended addressing instruction, add the source operand
and the Carry (C) flag to the destination operand. Perform two’s-comple-
ment addition. Store the sum in the destination operand. The contents of
the source operand are not affected. In multiple-precision (multibyte)
arithmetic, this instruction permits the carry from the addition of low-
order byte operations to be carried into the addition of high-order bytes.
The destination and source operands use 12-bit addresses to access any
address in the Register File.

Flags

C Set if there is a carry from bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Reset to 0

H Set if there is a carry from bit 3 of the result; reset otherwise
UM012821-1115 ADCX Instruction

eZ8™ CPU Core
User Manual

78
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can specify a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by
{RP[3:0],RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register 634h contains the value 2Eh, the Carry flag is set, and Regis-
ter B12h contains the value 1bh, the following statement leaves the value
4Ah in Register 634h, sets the H flag, and clears the C, Z, S, V, and D
flags:

ADCX 634h, B12h
Object Code: 18 B1 26 34

Using Escaped Mode Addressing, if Working Register R4 contains the
value 2Eh, the Carry flag is set, and Register B12h contains the value
1bh, the following statement leaves the value 4Ah in Working Register
R4, sets the H flag, and clears the C, Z, S, V, and D flags:

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

ADCX ER1, ER2 18 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

ADCX ER1, IM 19 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 ADCX Instruction

eZ8™ CPU Core
User Manual

79
ADCX EE4h, B12h
Object Code: 18 B1 2E E4

If Register 46Ch contains the value 2Ah, and the Carry flag is not set, the
following statement leaves the value 2Dh in Register 46Ch and clears the
C, Z, S, V, D, and H flags:

ADCX 46Ch, #03h
Object Code: 19 03 04 6C
UM012821-1115 ADCX Instruction

eZ8™ CPU Core
User Manual

80
ADD

Definition

Add

Syntax

ADD dst, src

Operation

dst  dst + src

Description

Add the source operand to the destination operand. Perform two’s-com-
plement addition. Store the sum in the destination operand. The contents
of the source operand are not affected.

Flags

Attributes

C Set if there is a carry from bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Reset to 0

H Set if there is a carry from bit 3 of the result; reset otherwise

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

ADD r1, r2 02 {r1, r2} — —

ADD r1, @r2 03 {r1, r2} — —
UM012821-1115 ADD Instruction

eZ8™ CPU Core
User Manual

81
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the high nibble of the source or destination address is
Eh (1110b), a working register is inferred. For example, if Working Reg-
ister R12 (Ch) is the preferred destination operand, use ECh as the destina-
tion operand in the Op Code. To access registers with addresses E0h to
EFh, either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R3 contains the value 16h and Working Register R11
contains the value 20h, the following statement leaves the value 36h in
Working Register R3 and clears the C, Z, S, V, D, and H flags:

ADD R3, R11
Object Code: 02 3B

If Working Register R15 contains the value 16h, Working Register R10
contains 20h, and Register 20h contains the value 11h, the following
statement leaves the value 27h in Working Register R15 and clears the C,
Z, S, V, D, and H flags:

ADD R15, @R10
Object Code: 03 FA

ADD R1, R2 04 R2 R1 —

ADD R1, @R2 05 R2 R1 —

ADD R1, IM 06 R1 IM —

ADD @R1, IM 07 R1 IM —

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3
UM012821-1115 ADD Instruction

eZ8™ CPU Core
User Manual

82
If Register 34h contains the value 2Eh and Register 12h contains the
value 1bh, the following statement leaves the value 49h in Register 34h,
sets the H flag, and clears the C, Z, S, V, and D flags:

ADD 34h, 12h
Object Code: 04 12 34

Using Escaped Mode Addressing, if Register 4Bh contains the value 82h,
Working Register R3 contains the value 10h, and Register 10h contains
the value 01h, the following statement leaves the value 83h in Register
4Bh, sets the S flag, and clears the C, Z, V, D, and H flags:

ADD 4Bh, @R3
Object Code: 05 E3 4B

If Register 6Ch contains the value 2Ah, the following statement leaves the
value 2Dh in Register 6h. The C, Z, S, V, D, and H flags clear.

ADD 6Ch, #03h
Object Code: 06 6C 03

If Register D4h contains the value 5Fh and Register 5Fh contains the
value 4Ch, the following statement leaves the value 4Eh in Register 5Fh
and clears the C, Z, S, V, D, and H flags:

ADD @D4h, #02h
Object Code: 07 D4 02
UM012821-1115 ADD Instruction

eZ8™ CPU Core
User Manual

83
ADDX

Definition

Add using Extended Addressing.

Syntax

ADDX dst, src

Operation

dst  dst + src

Description

For this new eZ8 extended addressing instruction, the source operand is
added to the destination operand, and two’s-complement addition is per-
formed. The sum is stored in the destination operand. The contents of the
source operand are not affected.

Flags

C Set if there is a carry from bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Reset to 0

H Set if there is a carry from bit 3 of the result; reset otherwise
UM012821-1115 ADDX Instruction

eZ8™ CPU Core
User Manual

84
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination specifies a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register 634h contains the value 2Eh and Register B12h contains the
value 1bh, the following statement leaves the value 49h in Register
634h, sets the H flag, and clears the C, Z, S, V, and D flags:

ADDX 634h, B12h
Object Code: 08 B1 26 34

Using Escaped Mode Addressing, if Working Register R4 contains the
value 2Eh and Register B12h contains the value 1bh, the following state-
ment leaves the value 49h in Working Register R4, sets the H flag, and
clears the C, Z, S, V, and D flags:

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

ADDX ER1, ER2 08 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

ADDX ER1, IM 09 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 ADDX Instruction

eZ8™ CPU Core
User Manual

85
ADDX EE4h, B12h
Object Code: 08 B1 2E E4

If Register 46Ch contains the value 2Ah the following statement leaves
the value 2Dh in Register 46Ch and clears the C, Z, S, V, D, and H flags:

ADDX 46Ch, #03h
Object Code: 09 03 04 6C
UM012821-1115 ADDX Instruction

eZ8™ CPU Core
User Manual

86
AND

Definition

Logical AND.

Syntax

AND dst, src

Operation

dst  dst AND src

Description

The source operand is logically ANDed with the destination operand. An
AND operation stores a 1 when the corresponding bits in the two oper-
ands are both 1; otherwise the operation stores a 0. The destination oper-
and stores the result. The contents of the source bit are unaffected.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 AND Instruction

eZ8™ CPU Core
User Manual

87
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the high nibble of the source or destination address is Eh
(1110b), a working register is inferred. For example, if Working Register
R12 (Ch) is the preferred destination operand, use ECh as the destination
operand in the Op Code. To access registers with addresses E0h to EFh,
either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R1 contains the value 38h (00111000b) and Work-
ing Register R14 contains the value 8Dh (10001101b), the following
statement leaves the value 08h (00001000b) in Working Register R1 and
clears the Z, V, and S flags:

AND R1, R14
Object Code: 52 1E

If Working Register R4 contains the value F9h (11111001b), Working
Register R13 contains the value 7Bh, and Register 7Bh contains the value
6Ah (01101010b), the following statement leaves the value 68h
(01101000b) in Working Register R4 and clears the Z, V, and S flags:

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

AND r1, r2 52 {r1, r2} — —

AND r1, @r2 53 {r1, r2} — —

AND R1, R2 54 R2 R1 —

AND R1, @R2 55 R2 R1 —

AND R1, IM 56 R1 IM —

AND @R1, IM 57 R1 IM —
UM012821-1115 AND Instruction

eZ8™ CPU Core
User Manual

88
AND R4, @R13
Object Code: 53 4D

If Register 3Ah contains the value F5h (11110101b) and Register 42h
contains the value 0Ah (00001010b), the following statement leaves the
value 00h (00000000b) in Register 3Ah, sets the Z flag, and clears the V
and S flags:

AND 3Ah, 42h
Object Code: 54 42 3A

Using Escaped Mode Addressing, if Working Register R5 contains the
value F0h (11110000b), Register 45h contains the value 3Ah, and Reg-
ister 3Ah contains the value 7Fh (01111111b), the following statement
leaves the value 70h (01110000b) in Working Register R5 and clears the
Z, V, and S flags:

AND R5, @45h
Object Code: 55 45 E5

If Register 7Ah contains the value F7h (11110111b), the following state-
ment leaves the value F0h (11110000b) in Register 7Ah, sets the S flag
is set and clears the Z and V flags:

AND 7Ah, #F0h
Object Code: 56 7A F0

Using Escaped Mode Addressing, if Working Register R3 contains the
value 3Eh and Register 3Eh contains the value ECh (11101100b), the
following statement leaves the value 04h (00000100b) in Register 3Eh
and clears the Z, V, and S flags:

AND @R3, #05h
Object Code: 57 E3 05
UM012821-1115 AND Instruction

eZ8™ CPU Core
User Manual

89
ANDX

Definition

Logical AND using Extended Addressing.

Syntax

ANDX dst, src

Operation

dst  dst AND src

Description

For this new eZ8 extended addressing instruction, the source operand is
ANDed with the destination operand. An AND operation stores a 1 when
the corresponding bits in the two operands are both 1; otherwise this oper-
ation stores a 0. The destination operand stores the result. The contents of
the source operand are unaffected.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 ANDX Instruction

eZ8™ CPU Core
User Manual

90
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can specify a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0] to Eh and set the Working Group Pointer, RP[7:4] to
the preferred Working Group.

Sample Usage

If Register 93Ah contains the value F5h (11110101b) and Register 142h
contains the value 0Ah (00001010b), the following statement leaves the
value 00h (00000000b) in Register 93Ah, sets the Z flag, and clears the
V and S flags:

ANDX 93Ah, 142h
Object Code: 58 14 29 3A

If Register D7Ah contains the value F7h (11110111b), the following
statement leaves the value F0h (11110000b) in Register 7Ah, sets the S
flag, and clears the Z and V flags:

ANDX D7Ah, #F0h
Object Code: 59 F0 0D 7A

Mnemonic
Destination,
Source

Op Code
(Hex) Operand 1 Operand 2 Operand 3

ANDX ER1, ER2 58 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

ANDX ER1, IM 59 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 ANDX Instruction

eZ8™ CPU Core
User Manual

91
ATM

Definition

Atomic Execution.

Syntax

ATM

Operation

This new eZ8 instruction blocks all interrupt and DMA requests during
execution of the next 3 instructions.

Description

The Atomic instruction forces the eZ8 CPU to execute the next 3 instruc-
tions as a single block (that is, atom) of operations. During execution of
these next 3 instructions, all interrupts and DMA requests are prevented.
This allows operations to be performed on multibyte registers and mem-
ory locations that could be changed or used by interrupts or DMA. One
example of potential use of the ATM instruction is during adjustment of
multibyte stack pointer value. Do not place another ATM among the 3
subsequent instructions as this will result in an illegal instruction interrupt
when executed.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

MIE Unaffected
UM012821-1115 ATM Instruction

eZ8™ CPU Core
User Manual

92
Attributes

Mnemonic
Destination,
Source Byte 1 Byte 2 Byte 3 Byte 4

ATM — 2F — — —
UM012821-1115 ATM Instruction

eZ8™ CPU Core
User Manual

93
BCLR

Definition

Bit Clear.

Syntax

BCLR bit, dst

Operation

dst[bit]  0

Description

For this new eZ8 instruction, the selected bit in the destination operand is
0. All other bits are unaffected.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Bit,
Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BCLR bit, r1 E2 {0b, bit, r1} — —
UM012821-1115 BCLR Instruction

eZ8™ CPU Core
User Manual

94
Sample Usage

If Working Register R7 contains the value 38h (00111000b), the follow-
ing statement leaves the value 28h (00101000b) in Working Register R7
and clears the V flag.

BCLR 4, R7
Object Code: E2 47
UM012821-1115 BCLR Instruction

eZ8™ CPU Core
User Manual

95
BIT

Definition

Bit Set/Reset.

Syntax

BIT p, bit, dst

Operation

dst[bit]  p

Description

For his new eZ8 instruction, the selected bit in the destination operand is
the binary value p (0 or 1). All other bits are unaffected.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Polarity, Bit,
Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BIT p, bit, r1 E2 {p, bit, r1} — —
UM012821-1115 BIT Instruction

eZ8™ CPU Core
User Manual

96
Sample Usage

If Working Register R7 contains the value 38h (00111000b), the follow-
ing statement leaves the value 28h (00101000b) in Working Register R7
and clears the V flag.

BIT 0, 4, R7
Object Code: E2 47

If Working Register R7 contains the value 38h (00111000b), the follow-
ing statement leaves the value 3Ch (00111100b) in Working Register R7
and clears the V flag.

BIT 1, 2, R7
Object Code: E2 A7
UM012821-1115 BIT Instruction

eZ8™ CPU Core
User Manual

97
BRK

Definition

On-Chip Debugger Break.

Syntax

BRK

Operation

None.

Description

This new eZ8 instruction executes an on-chip debugger break at a speci-
fied address. Refer to the Zilog Product Specification specific to your Z8
Encore!® device for information regarding the on-chip debugger.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BRK — 00 — — —
UM012821-1115 BRK Instruction

eZ8™ CPU Core
User Manual

98
BSET

Definition

Bit Set.

Syntax

BSET bit, dst

Operation

dst[bit]  1

Description

For this new eZ8 instruction, the selected bit in the destination operand is
set to 1. All other bits are unaffected.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Bit,
Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BSET bit, r1 E2 {1b, bit, r1} — —
UM012821-1115 BSET Instruction

eZ8™ CPU Core
User Manual

99
Sample Usage

If Working Register R7 contains the value 38h (00111000b), the follow-
ing statement leaves the value 3Ch (00111010b) in Working Register R7
and clears the V flag.

BSET 2, R7
Object Code: E2 A7
UM012821-1115 BSET Instruction

eZ8™ CPU Core
User Manual

100
BSWAP

Definition

Bit Swap.

Syntax

BSWAP dst

Operation

dst[7:0]  dst[0:7]

Description

For this new eZ8 instruction, the contents of the register are bit-flipped, as
shown:

dst[7]  dst[0]
dst[6]  dst[1]
dst[5]  dst[2]
dst[4]  dst[3]

Flags

C Undefined

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 BSWAP Instruction

eZ8™ CPU Core
User Manual

101
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode R specifies a working
register. If the destination address is prefixed by Eh (1110b), a working
register is inferred. For example, if Working Register R12 (Ch) is the pre-
ferred destination operand, use ECh as the destination operand in the Op
Code. To access registers with addresses E0h to EFh, either set the Work-
ing Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Register 27h contains the value 53h (01010011b), the following state-
ment leaves the value CAh (11001010b) in Register 27, sets the S flag,
and clears the V flag. The C flag is undefined.

BSWAP 27
Object Code: D5 27

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BSWAP R1 D5 R1 — —
UM012821-1115 BSWAP Instruction

eZ8™ CPU Core
User Manual

102
BTJ

Definition

Bit Test and Jump.

Syntax

BTJ p, bit, src, DA

Operation

if src[bit] = p {
 PC  PC + X
}

In the operation above, the jump offset, X, is calculated by the eZ8 CPU
assembler from Program Counter value, PC, and the Destination Address,
DA.

Description

For this new eZ8 instruction, the selected bit in the source operand or reg-
ister pointed to by the source operand is compared with the p flag. If the
bit in the source is equal to the polarity p, the signed displacement, X, is
added to the Program Counter, which causes a jump. The displacement
value can be from –128 to +127. This instruction tests only a single bit
position. Multiple bits cannot be tested simultaneously.

Table 21. BTJ Operand Description

Polarity Bit (p)

Bit Position Tested Operand[3:0]

Decimal Binary Binary Hexadecimal

0 0 000 0000 0

0 1 001 0001 1

0 2 010 0010 2

0 3 011 0011 3
UM012821-1115 BTJ Instruction

eZ8™ CPU Core
User Manual

103
Flags

0 4 100 0100 4

0 5 101 0101 5

0 6 110 0110 6

0 7 111 0111 7

1 0 000 1000 8

1 1 001 1001 9

1 2 010 1010 A

1 3 011 1011 B

1 4 100 1100 C

1 5 101 1101 D

1 6 110 1110 E

1 7 111 1111 F

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Table 21. BTJ Operand Description (Continued)

Polarity Bit (p)

Bit Position Tested Operand[3:0]

Decimal Binary Binary Hexadecimal
UM012821-1115 BTJ Instruction

eZ8™ CPU Core
User Manual

104
Attributes

Sample Usage

If Working Register R7 contains the value 20h (00100000b), the BTJ
instruction that begins with the following code segment:

It does not cause a Program Counter jump to occur because bit 5 of Work-
ing Register R7 fails the test for a 0. The next instruction executed after
the BTJ is the HALT instruction. The flags are unaffected.

If Working Register R7 contains the value A5h, and register A5h contains
the value 20h (00100000b), the BTJ instruction that begins the follow-
ing code segment causes a Program Counter jump to occur because bit 5
of Register A5h passes the test for a 1.

Mnemonic

Polarity, Bit,
Source,
Address

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BTJ p, bit, r2, DA F6 {p, bit[2:0],
r2}

X —

BTJ p, bit, @r2,
DA

F7 {p, bit[2:0],
r2}

X —

Assembly Code Object Code

BTJ 0, 5, r7, NEXT F6 57 01

HALT 7F

NEXT: This label is not assembled, but used by the
assembler to identify the destination address
(the address of the next instruction)

LD r0, @r2 E3 02
UM012821-1115 BTJ Instruction

eZ8™ CPU Core
User Manual

105
The next instruction executed after the BTJ is the LD instruction. The eZ8
CPU assembler automatically calculates the appropriate displacement
value of 01h, allowing the Program Counter to skip the one byte HALT
instruction and jump to the NEXT label that identifies the LD instruction
address. The flags are unaffected.

Assembly Code Object Code

BTJ 1, 5, @r7, NEXT F7 D7 01

HALT 7F

NEXT: This label is not assembled, but used by the
assembler to identify the destination address
(the address of the next instruction).

LD r0, @r2 E3 02
UM012821-1115 BTJ Instruction

eZ8™ CPU Core
User Manual

106
BTJNZ

Definition

Bit Test and Jump if Non-Zero.

Syntax

BTJNZ bit, src, DA

Operation

if src[bit] = 1 {
 PC  PC + X
}

where the jump offset, X, is calculated by the eZ8 CPU assembler from
the Program Counter (PC) value and the Destination Address (DA).

Description

For this new eZ8 instruction, the selected bit in the source operand or reg-
ister pointed to by the source operand is compared with the a logical 1. If
the selected bit is 1, the signed destination displacement (X) is added to
the Program Counter, that causes a jump. The displacement value can be
from –128 to +127. This instruction tests only a single bit position. Multi-
ple bits cannot be tested simultaneously.

Table 22. BTJNZ Operand Description

Bit Position Tested Operand[3:0]

Decimal Binary Binary Hexadecimal

0 000 1000 8

1 001 1001 9

2 010 1010 A

3 011 1011 B

4 100 1100 C
UM012821-1115 BTJNZ Instruction

eZ8™ CPU Core
User Manual

107
Flags

Attributes

Sample Usage

If Working Register R7 contains the value 20h (00100000b), the BTJNZ
instruction that begins the following code segment

5 101 1101 D

6 110 1110 E

7 111 1111 F

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Bit, Source,
Address

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BTJNZ bit, r2, DA F6 {1b, bit, r2} X —

BTJNZ bit, @r2, DA F7 {1b, bit, r2} X —

Table 22. BTJNZ Operand Description (Continued)

Bit Position Tested Operand[3:0]

Decimal Binary Binary Hexadecimal
UM012821-1115 BTJNZ Instruction

eZ8™ CPU Core
User Manual

108
causes a Program Counter jump to occur because bit 5 of Working Regis-
ter R7 passes the test for a 1. The next instruction executed after the
BTJNZ is the LD instruction. The eZ8 CPU assembler automatically cal-
culates the appropriate displacement value of 01h, allowing the Program
Counter to skip the one byte HALT instruction and jump to the NEXT
label that identifies the LD instruction address. The flags are unaffected.

If Working Register R7 contains the value A5h, and register A5h contains
the value 20h (00100000b), the BTJNZ instruction that begins the fol-
lowing code segment:

It does not cause a Program Counter jump to occur because bit 3 of Regis-
ter A5h fails the test for a 1. The next instruction executed after the
BTJNZ is the HALT instruction. The flags are unaffected.

Assembly Code Object Code

BTJNZ 5, r7, NEXT F6 D7 01

HALT 7F

NEXT: This label is not assembled, but used by the
assembler to identify the destination address (the
address of the next instruction).

LD r0, @r2 E3 02

Assembly Code Object Code

BTJNZ 3, @r7, NEXT F7 B7 01

HALT 7F

NEXT: This label is not assembled, but used by the
assembler to identify the destination address
(the address of the next instruction).

LD r0, @r2 E3 02
UM012821-1115 BTJNZ Instruction

eZ8™ CPU Core
User Manual

109
BTJZ

Definition

Bit Test and Jump if Zero.

Syntax

BTJZ bit, src, DA

Operation

if src[bit] = 0 {
 PC  PC + X
}

where the jump offset, X, is calculated by the eZ8 CPU assembler from
the Program Counter (PC) value and the Destination Address (DA).

Description

For this new eZ8 instruction, the selected bit in the source operand or reg-
ister pointed to by the source operand is compared with a logical 0. If the
selected bit is 0, the signed destination displacement (X) is added to the
Program Counter, that causes a jump. The displacement value can be from
–128 to +127. This instruction tests only a single bit position. Multiple
bits cannot be tested simultaneously.

Table 23. BTJZ Operand Description

Bit Position Tested Operand[3:0]

Decimal Binary Binary Hexadecimal

0 000 0000 0

1 001 0001 1

2 010 0010 2

3 011 0011 3

4 100 0100 4
UM012821-1115 BTJZ Instruction

eZ8™ CPU Core
User Manual

110
Flags

Attributes

Sample Usage

If Working Register R7 contains the value 20h (00100000b), the BTJZ
instruction that begins the following code segment:

5 101 0101 5

6 110 0110 6

7 111 0111 7

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Bit, Source,
Address

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

BTJZ bit, r2, DA F6 {0b, bit, r2} X —

BTJZ bit, @r2, DA F7 {0b, bit, r2} X —

Table 23. BTJZ Operand Description (Continued)

Bit Position Tested Operand[3:0]

Decimal Binary Binary Hexadecimal
UM012821-1115 BTJZ Instruction

eZ8™ CPU Core
User Manual

111
It causes a Program Counter jump to occur because bit 3 of Working Reg-
ister R7 passes the test for a 0. The next instruction executed after the BTJ
is the LD instruction. The CPU assembler automatically calculates the
appropriate displacement value of 01h to allow the Program Counter to
skip the one byte HALT instruction and jump to the NEXT label that
identifies the LD instruction address. The flags are unaffected.

If Working Register R7 contains the value A5h, and register A5h contains
the value 20h (00100000b), the BTJZ instruction that begins the follow-
ing code segment does not cause a Program Counter jump to occur
because bit 5 of Register A5h fails the test for a 0.

The next instruction executed after the BTJZ is the HALT instruction. The
flags are unaffected.

Assembly Code Object Code

BTJZ 3, r7, NEXT F6 37 01

HALT 7F

NEXT: This label is not assembled, but used by the
assembler to identify the destination address
(the address of the next instruction).

LD r0, @r2 E3 02

Assembly Code Object Code

BTJZ 5, @r7, NEXT F7 57 01

HALT 7F

NEXT: This label is not assembled, but used by the
assembler to identify the destination address (the
address of the next instruction).

LD r0, @r2 E3 02
UM012821-1115 BTJZ Instruction

eZ8™ CPU Core
User Manual

112
CALL

Definition

CALL procedure.

Syntax

CALL dst

Operation

SP  SP – 2
@SP  PC
PC  dst

Description

The Stack Pointer decrements by two, the current contents of the Program
Counter, which is the address of the first instruction following the CALL
instruction, are pushed onto the top of the stack and the specified destina-
tion address is then loaded into the Program Counter. The Program Coun-
ter now points to the first instruction of the procedure.

At the end of the procedure, a RET instruction returns to the original pro-
gram flow. RET pops the top of the stack and replaces the original value
into the Program Counter.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 CALL Instruction

eZ8™ CPU Core
User Manual

113
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode IR specifies a working
register. If the destination address is prefixed by Eh (1110b), a working
register is inferred. For example, if Working Register R12 (Ch) is the pre-
ferred destination operand, use ECh as the destination operand in the Op
Code. To access registers with addresses E0h to EFh, either set the Work-
ing Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If the contents of the Program Counter are 1A47h and the contents of the
Stack Pointer are 3002h, the following statement causes the Stack Pointer
to be decremented to 3000h, 1A4Ah (the address following the CALL
instruction) to be stored in Program Memory locations 3001h and 3000h,
and the Program Counter to be loaded with 3521h:

CALL 3521h
Object Code: D6 35 21

The Program Counter now points to the address of the first statement in
the called procedure to be executed. The flags are unaffected.

If the contents of Program Counter are 1A47h and the contents of the
Stack Pointer are 3724h, the contents of Register A4h are 34h, and the
contents of the Register Pair 34h are 3521h, the following statement
causes the Stack Pointer to decrement to 3722h, stores 1A4Ah (the
address following the CALL instruction) in Program Memory locations
3723h and 3722h, and loads the Program Counter with 3521h:

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

CALL @RR1 D4 RR1 — —

CALL DA D6 DA[15:8] DA[7:0] —
UM012821-1115 CALL Instruction

eZ8™ CPU Core
User Manual

114
CALL @A4h
Object Code: D4 A4

The Program Counter now points to the address of the first statement in
the called procedure to be executed. The flags are unaffected.
UM012821-1115 CALL Instruction

eZ8™ CPU Core
User Manual

115
CCF

Definition

Complement Carry Flag.

Syntax

CCF

Operation

C  ~C

Description

The Carry (C) flag is complemented. If C = 1, it is 0. If C = 0, it is 1.

Flags

Attributes

C Complemented

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

CCF — EF — — —
UM012821-1115 CCF Instruction

eZ8™ CPU Core
User Manual

116
Sample Usage

If the Carry flag contains a 0, the following statement sets the Carry flag
to 1:

CCF
Object Code: EF
UM012821-1115 CCF Instruction

eZ8™ CPU Core
User Manual

117
CLR

Definition

Clear

Syntax

CLR dst

Operation

dst  00h

Description

The destination operand is cleared to 00h.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

CLR R1 B0 R1 — —

CLR @R1 B1 R1 — —
UM012821-1115 CLR Instruction

eZ8™ CPU Core
User Manual

118
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

Using Escaped Mode Addressing, if Working Register R6 contains AFh,
the following statement leaves the value 00h in Working Register R6:

CLR R6
Object Code: B0 E6

If Register A5h contains the value 23h, and Register 23h contains the
value FCh, the following statement leaves the value 00h in Register 23h:

CLR @A5h
Object Code: B1 A5
UM012821-1115 CLR Instruction

eZ8™ CPU Core
User Manual

119
COM

Definition

Complement.

Syntax

COM dst

Operation

dst  ~dst

Description

The contents of the destination operand are complemented (one’s comple-
ment). All 1 bits are changed to 0 and all 0 bits are changed to 1.

Flags

Attributes

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

COM R1 60 R1 — —

COM @R1 61 R1 — —
UM012821-1115 COM Instruction

eZ8™ CPU Core
User Manual

120
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Register 08h contains 24h (00100100b), the following statement
leaves the value DBh (11011011b) in Register 08h, sets the S flag, and
clears the Z and V flags:

COM 08h
Object Code: 60 08

If Register 08h contains the value 24h, and Register 24h contains the
value FFh (11111111b), the following statement leaves the value 00h
(00000000b) in Register 24h, sets the Z flag is set and clears the V and S
flags:

COM @08h
Object Code: 61 08
UM012821-1115 COM Instruction

eZ8™ CPU Core
User Manual

121
CP

Definition

Compare.

Syntax

CP dst, src

Operation

dst - src

Description

The source operand is compared to (subtracted from) the destination oper-
and and the flags are set according to the results of the operation. The
contents of both the source and destination operands are unaffected.

Flags

Attributes

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

CP r1, r2 A2 {r1, r2} — —

CP r1, @r2 A3 {r1, r2} — —
UM012821-1115 CP Instruction

eZ8™ CPU Core
User Manual

122
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the high nibble of the source or destination address is Eh
(1110b), a working register is inferred. For example, if Working Register
R12 (Ch) is the preferred destination operand, use ECh as the destination
operand in the Op Code. To access registers with addresses E0h to EFh,
either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R3 contains the value 16h and Working Register R11
contains the value 20h, the following statement sets the C and S flags,
and clears the Z and V flags:

CP R3, R11
Object Code: A2 3B

If Working Register R15 contains the value 16h, Working Register R10
contains the value 20h, and Register 20h contains 11h, the following
statement clears the C, Z, S, and V flags:

CP R15, @R10
Object Code: A3 FA

If Register 34h contains the value 2Eh and Register 12h contains the
value 1bh, the following statement clears the C, Z, S, and V flags:

CP R1, R2 A4 R2 R1 —

CP R1, @R2 A5 R2 R1 —

CP R1, IM A6 R1 IM —

CP @R1, IM A7 R1 IM —

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3
UM012821-1115 CP Instruction

eZ8™ CPU Core
User Manual

123
CP 34h,12h
Object Code: A4 12 34

If Register 4Bh contains the value 82h, Working Register R3 contains the
value 10h, and Register 10h contains the value 01h, the following state-
ment sets the S flag, and clears the C, Z, and V flags:

CP 4Bh, @R3
Object Code: A5 E3 4B

If Register 6Ch contains the value 2Ah, the following statement sets the Z
flag, and clears the C, S, and V flags:

CP 6Ch, #2Ah
Object Code: A6 6C 2A

If Register D4h contains the value FCh, and Register FCh contains the
value 8Fh, the following statement sets the V flag, and clears the C, Z,
and S flags:

CP @D4h, #FFh
Object Code: A7 D4 FF
UM012821-1115 CP Instruction

eZ8™ CPU Core
User Manual

124
CPC

Definition

Compare with Carry.

Syntax

CPC dst, src

Operation

dst - src - C

Description

For this new eZ8 instruction, the source operand with the C bit is com-
pared to (subtracted from) the destination operand. The contents of both
operands are unaffected. For multiprecision operation, repeating this
instruction enables multibyte compares. The Zero flag is set only if the
initial state of the Zero flag is 1 and the result of the compare is 0.

Flags

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero and the initial Zero flag is 1; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected
UM012821-1115 CPC Instruction

eZ8™ CPU Core
User Manual

125
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the high nibble of the source or destination address is
Eh (1110b), a working register is inferred. For example, if Working Reg-
ister R12 (Ch) is the preferred destination operand, use ECh as the destina-
tion operand in the Op Code. To access registers with addresses E0h to
EFh, either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R3 contains the value 16h, Working Register R11
contains the value 20h and the Carry flag is 1, the following statement
sets the C and S flags, and clears the Z and V flags:

CPC R3, R11
Object Code: 1F A2 3B

If Working Register R15 contains the value 16h, Working Register R10
contains the value 20h, Register 20h contains the value 11h and the
Carry flag is 0, the following statement clears the C, Z, S, and V flags:

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

CPC r1, r2 1F A2 {r1, r2} — —

CPC r1, @r2 1F A3 {r1, r2} — —

CPC R1, R2 1F A4 R2 R1 —

CPC R1, @R2 1F A5 R2 R1 —

CPC R1, IM 1F A6 R1 IM —

CPC @R1, IM 1F A7 R1 IM —
UM012821-1115 CPC Instruction

eZ8™ CPU Core
User Manual

126
CPC R15, @R10
Object Code: 1F A3 FA

If Register 34h contains the value 2Eh and Register 12h contains the
value 1bh, and the Carry Flag is 1, the following statement clears the C,
Z, S, and V flags:

CPC 34h,12h
Object Code: 1F A4 12 34

If Register 4Bh contains the value 82h, Working Register R3 contains the
value 10h, Register 10h contains the value 81h, the Carry flag is 1, and
the Zero flag is 0, the following statement sets the Z flag, and clears the C,
S, and V flags:

CPC 4Bh, @R3
Object Code: 1F A5 E3 4B

If Register 6Ch contains the value 2Ah, the Carry flag is 0, and the Zero
flag is 1, the following statement clears the C, Z, S, and V flags:

CPC 6Ch, #2Ah
Object Code: 1F A6 6C 2A

If Register D4h contains the value FCh, Register FCh contains the value
8Fh, and the Carry Flag is 0, the following statement sets the V flag, and
clears the C, Z, and S flags:

CPC @D4h, #FFh
Object Code: 1F A7 D4 FF
UM012821-1115 CPC Instruction

eZ8™ CPU Core
User Manual

127
CPCX

Definition

Compare with Carry using Extended Addressing.

Syntax

CPCX dst, src

Operation

dst - src - C

Description

For this new eZ8 extended addressing instruction, the source operand
with the C bit is compared to (subtracted from) the destination operand
and the appropriate flags are set accordingly. The contents of both oper-
ands are unaffected. For multiprecision operation, repeating this instruc-
tion enables multibyte compares. Only if the initial state of the Zero flag
is 1 and the result of the compare is 0 is the Zero flag set.

Flags

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero and the initial Zero flag is 1; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected
UM012821-1115 CPCX Instruction

eZ8™ CPU Core
User Manual

128
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can specify a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register AB3h contains the value 16h, Register 911h contains the
value 20h and the Carry flag is 1, the following statement sets the C and S
flags, and clears the Z and V flags:

CPCX %AB3, %911
Object Code: 1F A8 91 1A B3

If Register 26Ch contains the value 2Ah, the Carry flag is 0, and the Zero
flag is 0, the following statement sets the Z flag, and clears the C, S, and
V flags:

CPCX 26Ch, #2Ah
Object Code: 1F A9 2A 02 6C

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

CPCX ER1, ER2 1F A8 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

CPCX ER1, IM 1F A9 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 CPCX Instruction

eZ8™ CPU Core
User Manual

129
CPX

Definition

Compare using Extended Addressing.

Syntax

CPX dst, src

Operation

dst - src

Description

For this new eZ8 extended addressing instruction, the source operand is
compared to (subtracted from) the destination operand and the appropri-
ate flags are set accordingly. The contents of both operands are unaf-
fected.

Flags

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected
UM012821-1115 CPX Instruction

eZ8™ CPU Core
User Manual

130
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can specify a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register AB3h contains 16h and Register 911h contains 20h, the fol-
lowing statement sets the C and S flags, and clears the Z and V flags:

CPX %AB3, %911
Object Code: A8 3B

If Register 26Ch contains 2Ah, the following statement sets the Z flag,
and clears the C, S, and V flags:

CPX 26Ch, #2Ah
Object Code: A9 6C 2A

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

CPX ER1, ER2 A8 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

CPX ER1, IM A9 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 CPX Instruction

eZ8™ CPU Core
User Manual

131
DA

Definition

Decimal Adjust.

Syntax

DA dst

Operation

dst  DA(dst)

Description

The destination operand is adjusted to form two 4-bit BCD digits follow-
ing a binary addition or subtraction operation on BCD encoded bytes. For
addition (ADD and ADC) or subtraction (SUB and SBC), Table 24 indi-
cates the operation performed. If the destination operand is not the result
of a valid addition or subtraction of BCD digits, the operation is unde-
fined.
UM012821-1115 DA Instruction

eZ8™ CPU Core
User Manual

132
Flags

Table 24. Operation of the DAA Instruction

Instruction
Carry

Before DA

Bits 7–4
Value
(Hex)

H Flag
Before DA

Bits 3–0
Value
(Hex)

Number
Added To

Byte
Carry

After DA

ADD\ADC 0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

SUB\SBC 0 0-9 0 0-9 00 0

0 0-8 1 6-F FA 0

1 7-F 0 0-9 A0 1

1 6-F 1 6-F 9A 1

C Set if there is a carry from bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Undefined

D Unaffected

H Unaffected
UM012821-1115 DA Instruction

eZ8™ CPU Core
User Manual

133
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If addition is performed using the BCD value 15 and 27, the result should
be 42. The sum is incorrect, however, when the binary representations are
added in the destination location using standard binary arithmetic.

If the result of the addition is stored in Register 5Fh, the following state-
ment adjusts this result to obtain the correct BCD representation.

DA 5Fh
Object Code: 40 5F

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

DA R1 40 R1 — —

DA @R1 41 R1 — —

0001 0101 = 15h

0010 0111 = 27h

0011 1100 = 3Ch
UM012821-1115 DA Instruction

eZ8™ CPU Core
User Manual

134
Register 5Fh contains the value 42h and clears the C, Z, and S flags: V is
undefined.

0011 1100 = 3Ch

0000 0110 = 06h

0100 0010 = 42h
UM012821-1115 DA Instruction

eZ8™ CPU Core
User Manual

135
DEC

Definition

Decrement.

Syntax

DEC dst

Operation

dst  dst - 1

Description

The contents of the destination operand are decremented by one.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected
UM012821-1115 DEC Instruction

eZ8™ CPU Core
User Manual

136
Attributes1

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Working Register R10 contains 2Ah, the following statement leaves the
value 29h in Working Register R10 and clears the Z, V, and S flags:

DEC R10
Object Code: 30 EA

If Register B3h contains CBh, and Register CBh contains 01h, the follow-
ing statement leaves the value 00h in Register CBh, sets the Z flag, and
clears the V and S flags:

DEC @B3h
Object Code: 31 B3

1. The location of the DEC R1 instruction has been moved from its former Z8 CPU Op Code lo-
cation at 00h. The location of the DEC IR1 instruction has been moved from its former Z8 CPU Op
Code location at 01h.

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

DEC R1 30 R1 — —

DEC @R1 31 R1 — —
UM012821-1115 DEC Instruction

eZ8™ CPU Core
User Manual

137
DECW

Definition

Decrement Word.

Syntax

DECW dst

Operation

dst  dst - 1

Description

The 16-bit value indicated by the destination operand is decremented by
one. Only even addresses can be used for the register pair. For indirect
addressing, the indirect address can be any value, but the effective address
can only be an even address.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected
UM012821-1115 DECW Instruction

eZ8™ CPU Core
User Manual

138
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes RR can specify a work-
ing register Pair or IR can specify a working register. If the high nibble of
the source or destination address is Eh (1110b), a working register (or
Pair) is inferred. For example, if Working Register Pair R12 and R13
(with base address Ch) is the preferred destination operand, use ECh as the
destination operand in the Op Code. To access Register Pairs with
addresses E0h to EFh, either set the Working Group Pointer, RP[7:4], to
Eh or use indirect addressing.

Sample Usage

If Register Pair 30h and 31h contain the value 0AF2h, the following
statement leaves the value 0AF1h in Register Pair 30h and 31h and clears
the Z, V, and S flags:

DECW 30h
Object Code: 80 30

If Working Register R0 contains 30h and Register Pair 30h and 31h con-
tain the value FAF3h, the following statement leaves the value FAF2h in
Register Pair 30h and 31h, sets the S flag, and clears the. Z and V flags:

DECW @R0
Object Code: 81 E0

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

DECW RR1 80 RR1 — —

DECW @R1 81 R1 — —
UM012821-1115 DECW Instruction

eZ8™ CPU Core
User Manual

139
DI

Definition

Disable Interrupts.

Syntax

DI

Operation

Disable Interrupts: IRQCTL[7]  0

Description

Bit 7 of the Interrupt Control Register is reset to 0. This disables the Inter-
rupt Controller.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

DI — 8F — — —
UM012821-1115 DI Instruction

eZ8™ CPU Core
User Manual

140
Sample Usage

If IRQCTL (Interrupt Control Register FCFh) contains 80h
(10000000b), interrupts are globally enabled. Upon execution of the DI
command, the following statement the IRQCTL (Interrupt Control regis-
ter FCFh) contains 00h (00000000b) and globally disables interrupts.

DI
Object Code: 8Fh
UM012821-1115 DI Instruction

eZ8™ CPU Core
User Manual

141
DJNZ

Definition

Decrement and Jump if Non-Zero.

Syntax

DJNZ dst, RA

Operation

dst  dst - 1
if dst  0 {
 PC  PC + X
}

where the jump offset, X, is calculated by the eZ8 CPU assembler from
the Program Counter (PC) value and the Destination Address (DA).

Description

The Working Register used as a counter is decremented. If the contents of
the Working Register are not zero after being decremented, then the rela-
tive address is added to the Program Counter and control passes to the
statement whose address is now in the Program Counter. The range of the
relative address is +127 to –128. The original value of Program Counter is
the address of the instruction byte following the DJNZ statement. When
the specified Working Register counter reaches zero, control falls through
to the statement following the DJNZ instruction.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected
UM012821-1115 DJNZ Instruction

eZ8™ CPU Core
User Manual

142
Attributes

D Unaffected

H Unaffected

Mnemonic
Destination,
Address

Op Code
(Hex) Operand 1 Operand 2 Operand 3

DJNZ r0, RA 0A X — —

DJNZ r1, RA 1A X — —

DJNZ r2,RA 2A X — —

DJNZ r3, RA 3A X — —

DJNZ r4, RA 4A X — —

DJNZ r5, RA 5A X — —

DJNZ r6, RA 6A X — —

DJNZ r7, RA 7A X — —

DJNZ r8, RA 8A X — —

DJNZ r9, RA 9A X — —

DJNZ r10, RA AA X — —

DJNZ r11, RA BA X — —

DJNZ r12, RA CA X — —

DJNZ r13, RA DA X — —

DJNZ r14, RA EA X — —

DJNZ r15, RA FA X — —
UM012821-1115 DJNZ Instruction

eZ8™ CPU Core
User Manual

143
Sample Usage

DJNZ typically controls a loop of instructions. In this example, 18 bytes
are moved from one buffer area in the Register File to another and the
steps involved are:

1. Load the R6 counter with 18d (12h).

2. Load the R4 source pointer.

3. Load the R2 destination pointer.

4. Set up the loop to perform moves.

5. End loop with DJNZ.

The assembly listing required for this routine is as follows:

Ld R6, #12h ;Load counter with 12h (18d)

Ld R4, #36h ;Load source pointer

Ld R2, #24h ;Load destination pointer

LOOP: Ld R3, @R4 ;Load byte in R3 from source

Ld @R2, R3 ;Write byte to destination

dec R4 ;Decrement source pointer

dec R2 ;Decrement destination pointer

djnz R6, loop ;Decrement and loop until count =
0

UM012821-1115 DJNZ Instruction

eZ8™ CPU Core
User Manual

144
EI

Definition

Enable Interrupts.

Syntax

EI

Operation

Enable Interrupts: IRQCTL[7]  1

Description

Bit 7 of the Interrupt Control Register is 1. This value enables the Inter-
rupt Controller.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

EI — 9F — — —
UM012821-1115 EI Instruction

eZ8™ CPU Core
User Manual

145
Sample Usage

If IRQCTL (Interrupt Control register FCFh) contains the value 00h
(00000000b), interrupts are globally disabled. Upon execution of the EI
command, the following statement the IRQCTL (Interrupt Control regis-
ter FCFh) contains the value 80h (10000000b) and globally enable inter-
rupts.

EI
Object Code: 9Fh
UM012821-1115 EI Instruction

eZ8™ CPU Core
User Manual

146
HALT

Definition

Halt mode.

Syntax

HALT

Operation

HALT mode

Description

The HALT instruction places the eZ8 CPU into HALT mode. Refer to the
Zilog Product Specification specific to your Z8 Encore!® device for infor-
mation about HALT mode operation.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

HALT — 7F — — —
UM012821-1115 HALT Instruction

eZ8™ CPU Core
User Manual

147
Sample Usage

The following statement places the eZ8 CPU in HALT mode.

HALT
Object Code: 7F
UM012821-1115 HALT Instruction

eZ8™ CPU Core
User Manual

148
INC

Definition

Increment.

Syntax

INC dst

Operation

dst  dst + 1

Description

The contents of the destination operand are incremented by one.

Flags

Attributes

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

INC R1 20 R1 — —

INC @R1 21 R1 — —

INC r0 0E — — —
UM012821-1115 INC Instruction

eZ8™ CPU Core
User Manual

149
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

INC r1 1E — — —

INC r2 2E — — —

INC r3 3E — — —

INC r4 4E — — —

INC r5 5E — — —

INC r6 6E — — —

INC r7 7E — — —

INC r8 8E — — —

INC r9 9E — — —

INC r10 AE — — —

INC r11 BE — — —

INC r12 CE — — —

INC r13 DE — — —

INC r14 EE — — —

INC r15 FE — — —

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3
UM012821-1115 INC Instruction

eZ8™ CPU Core
User Manual

150
Sample Usage

If Working Register R10 contains the value 2Ah, the following statement
leaves the value 2Bh in Working Register R10 and clears the Z, V, and S
flags:

INC R10
Object Code: AE

If Register B3h contains the value CBh, the following statement leaves the
value CCh in Register CBh, sets the S flag, and clears the Z and V flags:

INC B3h
Object Code: 20 B3

If Register B3h contains CBh and Register CBh contains FFh, the follow-
ing statement leaves the value 00h in Register CBh, sets the Z flag, and
clears the V and S flags:

INC @B3h
Object Code: 21 B3
UM012821-1115 INC Instruction

eZ8™ CPU Core
User Manual

151
INCW

Definition

Increment Word.

Syntax

INCW dst

Operation

dst  dst + 1

Description

The 16-bit value indicated by the destination operand is incremented by
one. Only even addresses can be used for the register pair. For indirect
addressing, the indirect address can be any value, but the effective address
can only be an even address.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected
UM012821-1115 INCW Instruction

eZ8™ CPU Core
User Manual

152
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes RR can specify a work-
ing register Pair or IR can specify a working register. If the high nibble of
the source or destination address is Eh (1110b), a working register (or
Pair) is inferred. For example, if Working Register Pair R12 and R13
(with base address Ch) is the preferred destination operand, use ECh as the
destination operand in the Op Code. To access Register Pairs with
addresses E0h to EFh, either set the Working Group Pointer, RP[7:4], to
Eh or use indirect addressing.

Sample Usage

If Register Pair 30h and 31h contain the value 0AF2h, the following
statement leaves the value 0AF3h in Register Pair 30h and 31h and clears
the Z, V, and S flags:

INCW 30h
Object Code: A0 30

If Working Register R0 contains 30h, and Register Pair 30h and 31h con-
tain the value FAF3h, the following statement leaves the value FAF4h in
Register Pair 30h and 31h, sets the S flag, and clears the Z and V flag.

INCW @R0
Object Code: A1 E0

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

INCW RR1 A0 RR1 — —

INCW @R1 A1 R1 — —
UM012821-1115 INCW Instruction

eZ8™ CPU Core
User Manual

153
IRET

Definition

Interrupt Return.

Syntax

IRET

Operation

FLAGS  @SP
SP  SP + 1
PC  @SP
SP  SP + 2
IRQCTL[7]  1

Description

This instruction is issued at the end of an interrupt service routine. Execu-
tion of IRET restores the Flags Register and the Program Counter. The
Interrupt Controller is enabled by setting Bit 7 of the Interrupt Control
Register to 1.

Flags

C Restored to original setting before the interrupt occurred

Z Restored to original setting before the interrupt occurred

S Restored to original setting before the interrupt occurred

V Restored to original setting before the interrupt occurred

D Restored to original setting before the interrupt occurred

H Restored to original setting before the interrupt occurred
UM012821-1115 IRET Instruction

eZ8™ CPU Core
User Manual

154
Attributes

Sample Usage

If Stack Pointer High register, FFEh, contains the value EFh, Stack
Pointer Low register FFFh contains the value 45h, Register 45h contains
the value 00h, Register 46h contains 6Fh, and Register 47h contains
E4h, the following statement restores the Flags Register FCh with the
value 00h, restores the PC with the value 6FE4h, re-enables the inter-
rupts, and sets the Stack Pointer Low to the value 48h. The Stack Pointer
High register remains unchanged with the value EFh. The next instruction
to be executed is at 6FE4h.

IRET
Object Code: BF

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

IRET — BF — — —
UM012821-1115 IRET Instruction

eZ8™ CPU Core
User Manual

155
JP

Definition

Jump.

Syntax

JP dst

Operation

PC  dst

Description

The unconditional jump replaces the contents of the Program Counter
with the contents of the destination. Program control then passes to the
instruction addressed by the Program Counter.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 JP Instruction

eZ8™ CPU Core
User Manual

156
Attributes2

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode RR can specify a work-
ing register Pair. If the high nibble of the source or destination address is
Eh (1110b), a Working Register Pair is inferred. For example, if Working
Register Pair R12 and R13 (with base address Ch) is the preferred destina-
tion operand, use ECh as the destination operand in the Op Code. To
access Register Pairs with addresses E0h to EFh, either set the Working
Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Working Register Pair RR2 contains the value 3F45h, the following
statement replaces the contents of the PC with the value 3F45h and trans-
fers program control to that location.

JP @RR2
Object Code: C4 E2

2. The location of the JP IRR1 instruction is moved from its former Z8 CPU Op Code location at
30h.

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

JP DA 8D DA[15:8] DA[7:0] —

JP IRR1 C4 RR1 — —
UM012821-1115 JP Instruction

eZ8™ CPU Core
User Manual

157
JP CC

Definition

Jump Conditionally.

Syntax

JP cc, dst

Operation

if cc (condition code) is true (1){
 PC  dst
}

Description

A conditional jump transfers program control to the destination address if
the condition specified by cc is true. Otherwise, the instruction following
the JP instruction is executed. For more information, see the Condition
Codes on page 8.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 JP cc Instruction

eZ8™ CPU Core
User Manual

158
Attributes

Sample Usage

If the Carry flag is set, the following statement replaces the contents of
the Program Counter with the value 1520h and transfers program control
to that location:

JP C, 1520h
Object Code: 7D 15 20

Mnemonic

Condition
Code,
Destination
Address

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

JP F, DA 0D DA[15:18] DA[7:0] —

JP LT, DA 1D DA[15:8] DA[7:0] —

JP LE, DA 2D DA[15:8] DA[7:0] —

JP ULE, DA 3D DA[15:8] DA[7:0] —

JP OV, DA 4D DA[15:8] DA[7:0] —

JP MI, DA 5D DA[15:8] DA[7:0] —

JP Z, DA 6D DA[15:8] DA[7:0] —

JP C, DA 7D DA[15:8] DA[7:0] —

JP T, DA 8D DA[15:8] DA[7:0] —

JP GE, DA 9D DA[15:8] DA[7:0] —

JP GT, DA AD DA[15:8] DA[7:0] —

JP UGT, DA BD DA[15:8] DA[7:0] —

JP NOV, DA CD DA[15:8] DA[7:0] —

JP PL, DA DD DA[15:8] DA[7:0] —

JP NE, DA ED DA[15:8] DA[7:0] —

JP NC, DA FD DA[15:8] DA[7:0] —
UM012821-1115 JP cc Instruction

eZ8™ CPU Core
User Manual

159
If the Carry flag is not set, control would have passed through to the state-
ment following the JP instruction.
UM012821-1115 JP cc Instruction

eZ8™ CPU Core
User Manual

160
JR

Definition

Jump Relative.

Syntax

JR DA

Operation

PC  PC + X

where the jump offset, X, is calculated by the eZ8 CPU assembler from
the Program Counter (PC) value and the Destination Address (DA).

Description

The relative address offset is added to the Program Counter and control
passes to the instruction located at the address specified by the Program
Counter. The range of the relative address is +127 to –128 and the original
value of the Program Counter is taken to be the address of the first
instruction byte following the JR instruction.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 JR Instruction

eZ8™ CPU Core
User Manual

161
Attributes

Mnemonic

Condition
Code,
Address

Op Code
(Hex) Operand 1 Operand 2 Operand 3

JR DA 8B X — —
UM012821-1115 JR Instruction

eZ8™ CPU Core
User Manual

162
JR CC

Definition

Jump Relative Conditionally.

Syntax

JR cc, DA

Operation

If cc (condition code) is true (1){
 PC  PC + X
}

where the jump offset, X, is calculated by the eZ8 CPU assembler from
the Program Counter (PC) value and the Destination Address (DA).

Description

If the condition specified by the cc is true, the relative address offset is
added to the Program Counter and control passes to the instruction
located at the address specified by the Program Counter. For control code
information, see Condition Codes on page 8. Otherwise, the instruction
following the JR instruction is executed. The range of the relative address
is +127 to –128 and the original value of the Program Counter is taken to
be the address of the first instruction byte following the JR instruction.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 JR cc Instruction

eZ8™ CPU Core
User Manual

163
Attributes

Mnemonic

Condition
Code,
Address

Op Code
(Hex) Operand 1 Operand 2 Operand 3

JR F, DA 0b X — —

JR LT, DA 1b X — —

JR LE, DA 2B X — —

JR ULE, DA 3B X — —

JR OV, DA 4B X — —

JR MI, DA 5B X — —

JR Z, DA 6B X — —

JR C, DA 7B X — —

JR T, DA 8B X — —

JR GE, DA 9B X — —

JR GT, DA AB X — —

JR UGT, DA BB X — —

JR NOV, DA CB X — —

JR PL, DA DB X — —

JR NE, DA EB X — —

JR NC, DA FB X — —
UM012821-1115 JR cc Instruction

eZ8™ CPU Core
User Manual

164
LD

Definition

Load.

Syntax

LD dst, src

Operation

dst  src

Description

The contents of the source operand are loaded into the destination oper-
and. The contents of the source operand are unaffected.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LD r1, @r2 E3 {r1, r2} — —

LD R1, R2 E4 R2 R1 —

LD R1, @R2 E5 R2 R1 —
UM012821-1115 LD Instruction

eZ8™ CPU Core
User Manual

165
LD R1, IM E6 R1 IM —

LD @R1, IM E7 R1 IM —

LD @r1, r2 F3 {r1, r2} — —

LD @R1, R2 F5 R2 R1 —

LD r1, X(r2) C7 {r1, r2} X —

LD X(r1), r2 D7 {r2, r1} X —

LD r0, IM 0C IM — —

LD r1, IM 1C IM — —

LD r2, IM 2C IM — —

LD r3, IM 3C IM — —

LD r4, IM 4C IM — —

LD r5, IM 5C IM — —

LD r6, IM 6C IM — —

LD r7, IM 7C IM — —

LD r8, IM 8C IM — —

LD r9, IM 9C IM — —

LD r10, IM AC IM — —

LD r011 IM BC IM — —

LD r12, IM CC IM — —

LD r13, IM DC IM — —

LD r14, IM EC IM — —

LD r15, IM FC IM — —

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3
UM012821-1115 LD Instruction

eZ8™ CPU Core
User Manual

166
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the high nibble of the source or destination address is
Eh (1110b), a working register is inferred. For example, if Working Reg-
ister R12 (Ch) is the preferred destination operand, use ECh as the destina-
tion operand in the Op Code. To access registers with addresses E0h to
EFh, either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

The following statement loads the value 34h into Working Register R15.

LD R15, #34h
Object Code: FC 34

If Register 34h contains the value FCh, the following statement loads the
value FCh into Working Register R14.

LD R14, 34h
Object Code: E4 34 EE

The contents of Register 34h are not affected.

If Working Register R14 contains the value 45h, the following statement
loads the value 45h into Register 34h:

LD 34h, R14
Object Code: E4 EE 34

The contents of Working Register R14 are not affected.

If Working Register R12 contains the value 34h, and Register 34h con-
tains the value FFh, the following statement loads the value FFh into
Working Register R13:

LD R13, @R12
Object Code: E3 DC

The contents of Working Register R12 and Register R34 are not affected.
UM012821-1115 LD Instruction

eZ8™ CPU Core
User Manual

167
If Working Register R13 contains the value 45h, and Working Register
R12 contains the value 00h the following statement loads the value 00h
into Register 45h:

LD @R13, R12
Object Code: F3 DC

The contents of Working Register R12 and Working Register R13 are not
affected.

If Register 45h contains the value CFh, the following statement loads the
value CFh into Register 34h:

LD 34h, 45h
Object Code: E4 45 34

The contents of Register 45h are not affected.

If Register 45h contains the value CFh and Register CFh contains the
value FFh, the following statement loads the value FFh into Register 34h:

LD 34h, @45h
Object Code: E5 45 34

The contents of Register 45h and Register CFh are not affected.

The following statement loads the value A4h into Register 34h.

LD 34h, #A4h
Object Code: E6 34 A4

If Working Register R14 contains the value 7Fh, the following statement
loads the value FCh into Register 7Fh.

LD @R14, #FCh
Object Code: E7 EE FC

The contents of Working Register R14 are not affected.

If Register 34h contains the value CFh and Register 45h contains the
value FFh, the following statement loads the value FFh into Register CFh:

LD @34h, 45h
Object Code: F5 45 34
UM012821-1115 LD Instruction

eZ8™ CPU Core
User Manual

168
The contents of Register 34h and Register 45h are not affected.

If Working Register R0 contains the value 08h and Register 2Ch (24h +
08h = 2Ch) contains the value 4Fh, the following statement loads Work-
ing Register R10 with the value 4Fh:

LD R10, 24h(R0)
Object Code: C7 A0 24

The contents of Working Register R0 and Register 2Ch are not affected.

If Working Register R0 contains the value 0bh and Working Register R10
contains 83h the following statement loads the value 83h into Register
FBh (F0h + 0bh = FBh):

LD F0h(R0), R10
Object Code: D7 A0 F0

The contents of Working Registers R0 and R10 are unaffected by the
load.
UM012821-1115 LD Instruction

eZ8™ CPU Core
User Manual

169
LDC

Definition

Load Constant to/from Program Memory.

Syntax

LDC dst, src

Operation

dst  src

Description

This new eZ8 instruction loads a byte constant from Program Memory
into a Working Register or vice versa. The address of the Program Mem-
ory location is specified by a Working Register Pair. The contents of the
source operand is unaffected.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 LDC Instruction

eZ8™ CPU Core
User Manual

170
Attributes

Sample Usage

If Working Register Pair R6 and R7 contain the value 30A2h and Pro-
gram Memory location 30A2h contains the value 22h, the following
statement loads the value 22h into Working Register R2:

LDC R2, @RR6
Object Code: C2 26

The value of Program Memory location 30A2h is unchanged by the load.

If Working Register R3 contains the value A5h, Working Register Pair R8
and R9 contain the value 2A72h, and Program Memory location 2A72h
contains the value 42h, the following statement loads the value 42h into
Register A5h:

LDC @R3, @RR8
Object Code: C5 38

The value of Program Memory location 2A72h is unchanged by the load.

If Working Register R2 contains the value 22h, and Working Register
Pair R6 and R7 contains the value 10A2h, the following statement loads
the value 22h into Program Memory location 10A2h:

LDC @RR6, R2
Object Code: D2 26

The value of Working Register R2 is unchanged by the load.

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LDC r1, @rr2 C2 {r1, rr2} — —

LDC @r1, @rr2 C5 {r1, rr2} — —

LDC @rr1, r2 D2 {r2, rr1} — —
UM012821-1115 LDC Instruction

eZ8™ CPU Core
User Manual

171
LDCI

Definition

Load Constant to/from Program Memory and Auto-Increment Addresses.

Syntax

LDCI dst, src

Operation

dst  src
r  r + 1
rr  rr + 1

Description

This new eZ8 instruction performs block transfers of data between Pro-
gram Memory and the Register File. The address of the Program Memory
location is specified by a Working Register Pair and the address of the
Register File location is specified by Working Register. The contents of
the source location are loaded into the destination location. Both
addresses in the Working Registers are then incremented automatically.
The contents of the source operand is unaffected.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 LDCI Instruction

eZ8™ CPU Core
User Manual

172
Attributes

Sample Usage

If Working Register Pair R6–R7 contains 30A2h, Program Memory loca-
tions 30A2h and 30A3h contain 22h and BCh respectively, and Working
Register R2 contains 20h, the following statement loads the value 22h
into Register 20h:

LDCI @R2, @RR6
Object Code: C3 26

Working Register Pair RR6 increments to 30A3h and Working Register
R2 increments to 21h. A second instruction loads the value BCh into Reg-
ister 21h, as follows:

LDCI @R2, @RR6
Object Code: C3 26

Working Register Pair RR6 increments to 30A4h and Working Register
R2 increments to 22h.

If Working Register R2 contains 20h, Register 20h contains 22h, Regis-
ter 21h contains BCh, and Working Register Pair R6–R7 contains 30A2h,
the following statement loads the value 22h into Program Memory loca-
tion 30A2h:

LDCI @RR6, @R2
Object Code: D3 26

Working Register R2 increments to 21h and Working Register Pair
R6–R7 increments to 30A3h.

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LDCI @r1, @rr2 C3 {r1, rr2} – –

LDCI @rr1, @r2 D3 {r2, rr1} – –
UM012821-1115 LDCI Instruction

eZ8™ CPU Core
User Manual

173
A second instruction loads the value BCh into Program Memory location
30A3h:

LDCI @RR6, @R2
Object Code: D3 26

Working Register R2 increments to 22h and Working Register Pair
R6–R7 increments to 30A4h.
UM012821-1115 LDCI Instruction

eZ8™ CPU Core
User Manual

174
LDE

Definition

Load External Data to/from Data Memory.

Syntax

LDE dst, src

Operation

dst  src

Description

This instruction loads a byte from Data Memory into a working register or
vice versa. The address of the Data Memory location is specified by a
Working Register Pair. The contents of the source operand are unaffected.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LDE r1, @rr2 82 {r1, rr2} — —

LDE @rr1, r2 92 {r2, rr1} — —
UM012821-1115 LDE Instruction

eZ8™ CPU Core
User Manual

175
Sample Usage

If Working Register Pair R6 and R7 contain the value 40A2h and Data
Memory location 40A2h contains the value 22h, the following statement
loads the value 22h into Working Register R2:

LDE R2, @RR6
Object Code: 82 26

The value of Data Memory location 40A2h is unchanged by the load.

If Working Register Pair R6 and R7 contain the value 404Ah and Work-
ing Register R2 contains the value 22h, the following statement loads the
value 22h into Data Memory location 404Ah.

LDE @RR6, R2
Object Code: 92 26
UM012821-1115 LDE Instruction

eZ8™ CPU Core
User Manual

176
LDEI

Definition

Load External Data to/from Data Memory and Auto-Increment
Addresses.

Syntax

LDEI dst, src

Operation

dst  src
r  r + 1
rr  rr + 1

Description

This instruction performs block transfers of data between Data Memory
and the Register File. The address of the Data Memory location is speci-
fied by a Working Register Pair and the address of the Register File loca-
tion is specified by a working register. The contents of the source location
are loaded into the destination location. Both addresses in the Working
Registers increment automatically. The contents of the source are unaf-
fected.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 LDEI Instruction

eZ8™ CPU Core
User Manual

177
Attributes

Sample Usage

If Working Register Pair RR6 (R6 and R7) contains the value 404Ah,
Data Memory location 404Ah and 404Bh contain the values ABh and C3h
respectively, and Working Register R2 contains the value 22h, the follow-
ing statement loads the value ABh into Register 22h.

LDEI @R2, @RR6
Object Code: 83 26

Working Register Pair RR6 increments to 404Bh and Working Register
R2 increments to 23h. A second instruction loads the value C3h into Reg-
ister 23h:

LDEI @R2, @RR6
Object Code: 83 26

Working Register Pair RR6 increments to 404Ch and Working Register
R2 increments to 24h.

If Working Register R2 contains the value 22h, Register 22h contains the
value ABh, Register 23h contains the value C3h, and Working Register
Pair R6 and R7 contains the value 404Ah, the following statement loads
the value ABh into Data Memory location 404Ah:

LDEI @RR6, @R2
Object Code: 93 26

Working Register R2 increments to 23h and Working Register Pair RR6
increments to 404Bh. A second instruction,

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LDEI @r1, @rr2 83 {r1, rr2} — —

LDEI @rr1, @r2 93 {r2, rr1} — —
UM012821-1115 LDEI Instruction

eZ8™ CPU Core
User Manual

178
LDEI @RR6, @R2
Object Code: 93 26

loads the value C3h into Data Memory location 404Bh. Working Register
R2 increments to 24h and Working Register Pair RR6 increments to
404Ch.
UM012821-1115 LDEI Instruction

eZ8™ CPU Core
User Manual

179
LDWX

Definition

Load Word using Extended Addressing.

Syntax

LDWX dst, src

Operation

dst  src

Description

For this new eZ8 extended addressing instruction, two bytes from the
source operand are loaded into the destination operand. The contents of
the source operand are unaffected. The destination and source addresses
need to be on even boundaries (that is, bit 0 of the address must be zero).

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 LDWX Instruction

eZ8™ CPU Core
User Manual

180
Attributes

Escaped Mode Addressing

Address mode ER for the source or destination can specify a working reg-
ister with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE2h selects
Working Register R2. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 2h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LDWX ER1, ER2 1F E8 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1 [7:0]
UM012821-1115 LDWX Instruction

eZ8™ CPU Core
User Manual

181
LDX

Definition

Load using Extended Addressing.

Syntax

LDX dst, src

Operation

dst  src

Description

For this new eZ8 extended addressing instruction, the contents of the
source operand are loaded into the destination operand. The contents of
the source operand are unaffected. As mentioned in the Extended
Addressing Instructions on page 13, the primary purpose of this instruc-
tion is to allow data movement between pages of the Register File.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 LDX Instruction

eZ8™ CPU Core
User Manual

182
Attributes

Escaped Mode Addressing

For the LDX instruction, Escaped Mode Addressing for ER addressing
mode can only be used with Op Codes E8h and E9h. Address mode ER
for the source or destination can specify a working register with 4-bit
addressing.

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LDX r1, ER2 84 {r1,
ER2[11:8]}

ER2[7:0] —

LDX @r1, ER2 85 {r1,
ER2[11:8]}

ER2[7:0] —

LDX R1, @RR2 86 RR2 R1 —

LDX @R1,
@.ER(RR2)

87 RR2 R1 —

LDX r1, X(rr2) 88 {r1, rr2} X —

LDX X(rr1), r2 89 {rr1, r2} X —

LDX ER1, r2 94 {r2,
ER1[11:8]}

ER1[7:0] —

LDX ER1, @r2 95 {r2,
ER1[11:8]}

ER1[7:0] —

LDX @RR1, R2 96 R2 RR1 —

LDX @.ER(RR1),
@R2

97 R2 RR1 —

LDX ER1, ER2 E8 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

LDX ER1, IM E9 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 LDX Instruction

eZ8™ CPU Core
User Manual

183
If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

.ER Notation

The .ER notation is used with Op Codes 87h and 97h, to distinguish
between these two cases, which might otherwise be ambiguous. The
potential ambiguity arises because in both these Op Codes, the two oper-
ands are both indirect registers, to be prefixed with the @ symbol. How-
ever, one of these is to be treated as an indirect Register Pair, which are
combined to give a 16-bit address, while the other is to be treated as a sin-
gle register which yields an 8-bit address. Without some way of distin-
guishing between the two cases, it would be impossible for the assembler
to determine whether the user’s purpose was to treat the destination oper-
and as a Register Pair and the source as a single register, or vice versa.
The .ER notation resolves this ambiguity. The operand which is prefaced
with .ER is taken to be a Register Pair, and the other is treated as a single
register. For detailed information, see the examples provided for Op
Codes 87 and 97 in the Sample Usage section.

Sample Usage

If Register 702h contains the value B3h, the following statement loads
the value B3h into Working Register R1:

LDX R1, 702h

Object Code: 84 17 02

The contents of register 702h are not affected.
UM012821-1115 LDX Instruction

eZ8™ CPU Core
User Manual

184
If Working Register R1 contains the value B3h, and Register 702h con-
tains the value 46h, the following statement loads the value 46h into Reg-
ister B3h:

LDX @R1, 702h

Object Code: 85 17 02

The contents of Working Register R1 and Register 702h are not affected.

If Register Pair (22h, 23h) contains the value 0655h, and Register
0655h contains the value 1Ch, the following statement loads the value
1Ch into Register 96h:

LDX 96h, @22h

Object Code: 86 22 96

The contents of Register Pair (22h, 23h) and Register 0655h are not
affected.

If Register 20h contains the value 28h, and Register Pair (F2h, F3h)
contains the value 0167h, and Register 0167h contains the value 9Bh,
the following statement loads the value 9Bh into Register 28h:

LDX @20h, @.ER(F2h)

Object Code: 87 F2 20

The contents of Register 20h, Register Pair (F2h, F3h), and Register
0167h are not affected.

The .ER notation is used in this case to resolve the ambiguity that
would otherwise be present as to which operand (20h or F2h) is to be
treated as a Register Pair.

If Working Register Pair RR10 contains the value 0529h, and Register
0530h (0529h + 07h = 0530h) contains the value C1h, the following
statement loads the value C1h into Working Register R1:

LDX R1, 7(RR10)

Object Code: 88 1A 07

Note:
UM012821-1115 LDX Instruction

eZ8™ CPU Core
User Manual

185
The contents of Working Register Pair RR10, Register 0529h, and Regis-
ter 0530h are not affected.

If Working Register Pair RR10 contains the value 0529h, and Working
Register R2 contains the value E8h, the following statement loads the
value E8h into Register 0530h (0529h + 07h = 0530h):

LDX 7(RR10), R2

Object Code: 89 A2 07

The contents of Working Register Pair RR10, Register 0529h, and Work-
ing Register R2 are not affected.

If Working Register R6 contains the value B4h, the following statement
loads the value B4h into Register 700h:

LDX 700h, R6

Object Code: 94 67 00

The contents of Working Register R6 are not affected.

If Working Register R6 contains the value B4h, and Register B4h contains
the value 6Ah, the following statement loads the value 6Ah into Register
700h:

LDX 700h, @R6

Object Code: 95 67 00

The contents of Working Register R6 and Register B4h are not affected.

If Register Pair (F0h, F1h) contains the value 0296h, and Register 21h
contains the value 78h, the following statement loads the value 78h into
Register 296h:

LDX @F0h, 21h

Object Code: 96 21 F0

The contents of Register Pair (F0h, F1h) and Register 21h are not
affected.
UM012821-1115 LDX Instruction

eZ8™ CPU Core
User Manual

186
If Register Pair (20h, 21h) contains the value 0456h, and Register F2h
contains the value BBh, and Register BBh contains the value 5Fh, the fol-
lowing statement loads the value 5Fh into Register 0456h:

LDX @.ER(20h), @F2h

Object Code: 97 F2 20

The contents of Register Pair (20h, 21h), Register F2h, and Register
BBh are not affected.

The .ER notation is used in this case to resolve the ambiguity that
would otherwise be present as to which operand (20h or F2h) is to be
treated as a Register Pair.

If Register 29Ch contains the value 22h, the following statement loads
the value 22h into Register 702h:

LDX 702h, 29Ch

Object Code: E8 29 C7 02

The contents of Register 29Ch are not affected.

The following statement loads the value 56h into Register 703h:

LDX 703h, #56h

Object Code: E9 56 07 03

Note:
UM012821-1115 LDX Instruction

eZ8™ CPU Core
User Manual

187
LEA

Definition

Load Effective Address.

Syntax

LEA dst, X(src)

Operation

dst  src + X

Description

This new eZ8 instruction loads the destination Working Register with a
value of the Source Register plus the signed displacement (X, where X is
a signed displacement from +127 to –128).

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic Dest, Src, d

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

LEA r1, X(r2) 98 {r1, r2} X —

LEA rr1, X(rr2) 99 {rr1, rr2} X —
UM012821-1115 LEA Instruction

eZ8™ CPU Core
User Manual

188
Sample Usage

If Working Register R3 contains the value 16h, the following statement
leaves the value 2Bh in Working Register R11:

LEA R11, %15(R3)
Object Code: 98 B3 15

The flags are unaffected.

If Working Register R8 contains the value 22h and Working Register R9
contains the value ABh (16-bit value of 22ABh stored in Working Register
Pair RR8), the following statement leaves the 16-bit result of 2324h in
Working Register Pair RR12, stores the most significant byte value 23h
in Working Register R12 and stores the least significant byte value 24h in
Working Register R13:

LEA RR14, %79(RR8)
Object Code: 99 E8 79

The flags are unaffected.
UM012821-1115 LEA Instruction

eZ8™ CPU Core
User Manual

189
MULT

Definition

Multiply.

Syntax

MULT dst

Operation

dst[15:0]  dst[15:8] * dst[7:0]

Description

This new eZ8 instruction performs a multiplication of two unsigned 8-bit
values with an unsigned 16-bit result. The 16-bit result replaces the two 8-
bit values in the Register Pair.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

MULT RR1 F4 RR1 — —
UM012821-1115 MULT Instruction

eZ8™ CPU Core
User Manual

190
Escaped Mode Addressing

Using Escaped Mode Addressing, address mode RR can specify a work-
ing register Pair. If the high nibble of the source or destination address is
Eh (1110b), a working register Pair is inferred. For example, if Working
Register Pair R12 and R13 (with base address Ch) is the preferred destina-
tion operand, use ECh as the destination operand in the Op Code. To
access Register Pairs with addresses E0h to EFh, either set the Working
Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

Using Escaped Mode Addressing, if Working Register R4 contains the
value 86h and Working Register R5 contains the value 53h, the following
statement provides a result of 2B72h, stores the most significant byte of
the result (2Bh) in Working Register R4 and stores the least significant
byte of the result (72h) in Working Register R5:

MULT E4h
Object Code: F4 E4

The flags are unaffected.
UM012821-1115 MULT Instruction

eZ8™ CPU Core
User Manual

191
NOP

Definition

No Operation.

Syntax

NOP

Operation

None.

Description

No action is performed by this instruction. It is used as a cycle timing
delay.

Flags

Attributes3

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

3. The location of the NOP instruction has been moved from its former Z8 CPU Op Code location
at FFh.

Mnemonic
Destination,
Source

Op Code
(Hex) Operand 1 Operand 2 Operand 3

NOP — 0F — — —
UM012821-1115 NOP Instruction

eZ8™ CPU Core
User Manual

192
OR

Definition

Logical OR.

Syntax

OR dst, src

Operation

dst  dst OR src

Description

The source operand is logically ORed with the destination operand and
the destination operand stores the result. The contents of the source oper-
and are unaffected. An OR operation stores a 1 bit when either of the cor-
responding bits in the two operands is a 1. Otherwise, the OR operation
stores a 0 bit.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 OR Instruction

eZ8™ CPU Core
User Manual

193
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the high nibble of the source or destination address is
Eh (1110b), a working register is inferred. For example, if Working Reg-
ister R12 (Ch) is the preferred destination operand, use ECh as the destina-
tion operand in the Op Code. To access registers with addresses E0h to
EFh, either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R1 contains the value 38h (00111000b) and Work-
ing Register R14 contains the value 8Dh (10001101b), the following
statement leaves the value BDh (10111101b) in Working Register R1,
sets the S flag, and clears the Z and V flags:

OR R1, R14
Object Code: 42 1E

If Working Register R4 contains the value F9h (11111001b), Working
Register R13 contains 7Bh, and Register 7Bh contains the value 6Ah
(01101010b), the following statement leaves the value FBh

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

OR r1, r2 42 {r1, r2} — —

OR r1, @r2 43 {r1, r2} — —

OR R1, R2 44 R2 R1 —

OR R1, @R2 45 R2 R1 —

OR R1, IM 46 R1 IM —

OR @R1, IM 47 R1 IM —
UM012821-1115 OR Instruction

eZ8™ CPU Core
User Manual

194
(11111011b) in Working Register R4, sets the S flag, and clears the Z
and V flags:

OR R4, @R13
Object Code: 43 4D

If Register 3Ah contains the value F5h (11110101b) and Register 42h
contains the value 0Ah (00001010b), the following statement leaves the
value FFh (11111111b) in Register 3Ah, sets the S flag, and clears the Z
and V flags:

OR 3Ah, 42h
Object Code: 44 42 3A

If Working Register R5 contains 70h (01110000b), Register 45h con-
tains the value 3Ah, and Register 3Ah contains the value 7Fh
(01111111b), the following statement leaves the value 7Fh
(01111111b) in Working Register R5 and clears the Z, V, and S flags:

OR R5, @45h
Object Code: 45 45 E5

If Register 7Ah contains the value F7h (11110111b), the following state-
ment leaves the value F7h (11110111b) in Register 7Ah, sets the S flag,
and clears the Z and V flags:

OR 7Ah, #F0h
Object Code: 46 7A F0

If Working Register R3 contains the value 3Eh and Register 3Eh contains
the value 0Ch (00001100b), the following statement leaves the value
0Dh (00001101b) in Register 3Eh and clears the Z, V, and S flags:

OR @R3, #05h
Object Code: 47 E3 05
UM012821-1115 OR Instruction

eZ8™ CPU Core
User Manual

195
ORX

Definition

Logical OR using Extended Addressing.

Syntax

ORX dst, src

Operation

dst  dst OR src

Description

For this new eZ8 extended addressing instruction, the source operand is
ORed with the destination operand. The destination operand stores the
result. An OR operation stores a 1-bit when either of the corresponding
bits in the two operands is a 1.The contents of the source operand are
unaffected.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 ORX Instruction

eZ8™ CPU Core
User Manual

196
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can specify a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register 93Ah contains the value F5h (11110101b) and Register 142h
contains the value 0Ah (00001010b), the following statement leaves the
value FFh (11111111b) in Register 93Ah, sets the S flag, and clears the
Z and V flags:

ORX 93Ah, 142h
Object Code: 48 14 29 3A

If Register D7Ah contains the value 07h (00000111b), the following
statement leaves the value 67h (01100111b) in Register D7Ah and clears
the S, Z, and V flags:

ORX D7Ah, #01100000b
Object Code: 49 60 0D 7A

Mnemonic
Destination,
Source

Op Code
(Hex) Operand 1 Operand 2 Operand 3

ORX ER1, ER2 48 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

ORX ER1, IM 49 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 ORX Instruction

eZ8™ CPU Core
User Manual

197
POP

Definition

POP.

Syntax

POP dst

Operation

dst  @SP
SP  SP + 1

Description

Execution of the POP instruction loads the source value into the destina-
tion. The Stack Pointer provides the Register file address of the source
data.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic Destination
Op Code
(Hex) Operand 1 Operand 2 Operand 3

POP R1 50 R1 — —

POP @R1 51 R1 — —
UM012821-1115 POP Instruction

eZ8™ CPU Core
User Manual

198
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specifies a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If the Stack Pointer (control Registers FFEh and FFFh) contains the value
70h and Register 70h contains the value 44h, the following statement
loads the value 44h into Register 34h. After the POP operation, the Stack
Pointer contains 71h:

POP 34h
Object Code: 50 34

The contents of Register 70h are not affected.

If the Stack Pointer (control Registers FFEh and FFFh) contains the value
0080h, memory location 0080h contains the value 55h, and Working
Register R6 contains the value 22h, the following statement loads the
value 55h into Register 22h:

POP @R6
Object Code: 51 E6

After the POP operation, the Stack Pointer contains the value 0081h. The
contents of Working Register R6 are not affected.
UM012821-1115 POP Instruction

eZ8™ CPU Core
User Manual

199
POPX

Definition

POP using Extended Addressing.

Syntax

POPX dst

Operation

dst  @SP
SP  SP + 1

Description

For this new eZ8 extended addressing instruction, the location specified
by the Stack Pointer is loaded into the destination operand. The Stack
Pointer is incremented automatically.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 POPX Instruction

eZ8™ CPU Core
User Manual

200
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER specifies a working
register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If the Stack Pointer (control Registers FFEh and FFFh) contains the value
D70h and Register D70h contains the value 44h, the following statement
loads the value 44h into Register 345h:

POPX 345h
Object Code: D8 34 50

After the POP operation, the Stack Pointer contains the value D71h. The
contents of Register D70h are not affected.

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

POPX ER1 D8 ER1[11:4] {ER1[3:0],
0h}

—

UM012821-1115 POPX Instruction

eZ8™ CPU Core
User Manual

201
PUSH

Definition

Push.

Syntax

PUSH src

Operation

SP  SP - 1 
@SP  src

Description

The Stack Pointer contents decrement by one. The source operand con-
tents are loaded into the location addressed by the decremented Stack
Pointer, adding a new element to the stack.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic Source
Op Code
(Hex) Operand 1 Operand 2 Operand 3

PUSH R2 70 R2 — —

PUSH @R2 71 R2 — —

PUSH IM 1F70 IM — —
UM012821-1115 PUSH Instruction

eZ8™ CPU Core
User Manual

202
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the source address is prefixed by Eh (1110b), a work-
ing register is inferred. For example, if Working Register R12 (Ch) is the
preferred source operand, use ECh as the source operand in the Op Code.
To access registers with addresses E0h to EFh, either set the Working
Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If the Stack Pointer contains the value D20h, the following statement
stores the contents of Register FCh in location D1Fh:

PUSH FCh
Object Code: 70 FC

After the PUSH operation, the Stack Pointer contains the value D1Fh.

If the Stack Pointer contains the value E61h and Working Register R4
contains FCh, the following statement stores the contents of Register FCh
in location E60h:

PUSH @R4
Object Code: 71 E4

After the PUSH operation, the Stack Pointer contains the value E60h.

If the Stack Pointer contains the value D20h, the following statement
stores the value FCh in location D1Fh:

PUSH #FCh
Object Code: 1F70FC

After the PUSH operation, the Stack Pointer contains the value D1Fh.
UM012821-1115 PUSH Instruction

eZ8™ CPU Core
User Manual

203
PUSHX

Definition

Push using Extended Addressing.

Syntax

PUSHX src

Operation

SP  SP - 1 
@SP  src

Description

For this new eZ8 extended addressing instruction, the Stack Pointer con-
tents decrement by one. The source operand contents are loaded into the
location addressed by the decremented Stack Pointer, adding a new ele-
ment to the stack.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 PUSHX Instruction

eZ8™ CPU Core
User Manual

204
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER can specify a work-
ing register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If the Stack Pointer contains D24h, the following statement stores the
contents of Register FCAh in location D23h:

PUSHX FCAh
Object Code: C8 FC A0

After the PUSHX operation, the Stack Pointer contains the value D23h.

Mnemonic Source
Op Code
(Hex) Operand 1 Operand 2 Operand 3

PUSHX ER2 C8 ER2[11:4] {ER2[3:0],
0h}

—

UM012821-1115 PUSHX Instruction

eZ8™ CPU Core
User Manual

205
RCF

Definition

Reset Carry Flag.

Syntax

RCF

Operation

C  0

Description

The Carry (C) flag resets to 0, regardless of its previous value.

Flags

Attributes

C Reset to 0

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

RCF — CF — — —
UM012821-1115 RCF Instruction

eZ8™ CPU Core
User Manual

206
Sample Usage

If the Carry flag is currently set, the following statement resets the Carry
flag to 0:

RCF
Object Code: CF
UM012821-1115 RCF Instruction

eZ8™ CPU Core
User Manual

207
RET

Definition

Return.

Syntax

RET

Operation

PC  @SP
SP  SP + 2

Description

This instruction returns from a procedure entered by a CALL instruction.
The contents of the location addressed by the Stack Pointer are loaded
into the Program Counter. The next statement executed is the one
addressed by the new contents of the Program Counter. The Stack Pointer
also increments by two.

Flags

Any PUSH instruction executed within the subroutine must be countered
with a POP instruction to guarantee the Stack Pointer is at the correct
location when the RET instruction is executed. Otherwise, the wrong
address loads into the Program Counter and the program cannot oper-
ate properly.

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Note:
UM012821-1115 RET Instruction

eZ8™ CPU Core
User Manual

208
Attributes

Sample Usage

If Stack Pointer contains the value 01A0h, register memory location
01A0h contains the value 30h and location 01A1h contains the value
15h, the following statement leaves the value 01A2h in the SP, and the
PC contains the value 3015h, the address of the next instruction to be
executed.

RET
Object Code: AF

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

RET — AF — — —
UM012821-1115 RET Instruction

eZ8™ CPU Core
User Manual

209
RL

Definition

Rotate Left.

Syntax

RL dst

Operation

Description

The destination operand contents rotate left by one bit position. The initial
value of Bit 7 is moved to the Bit 0 position and also into the Carry (C)
flag.

Flags

C Set if the bit rotated from the most-significant bit position was 1
(that is, Bit 7 was 1)

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

UM012821-1115 RL Instruction

eZ8™ CPU Core
User Manual

210
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the destination address is prefixed by Eh (1110b), a work-
ing register is inferred. For example, if Working Register R12 (Ch) is the
preferred destination operand, use ECh as the destination operand in the
Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Register C6h contains the value 88h (10001000b), the following state-
ment leaves the value 11h (00010001b) in Register C6h., sets the C and
V flags and clears the S and Z flags:

RL C6h
Object Code: 90 C6

If the contents of Register C6h are 88h, and the contents of Register 88h
are 44h (01000100b), the following statement leaves the value 88h in
Register 88h (10001000b), sets the S and V flags and clears the C and Z
flags:

RL @C6h
Object Code: 91 C6

Mnemonic Destination
Op Code
(Hex) Operand 1 Operand 2 Operand 3

RL R1 90 R1 — —

RL @R1 91 R1 — —
UM012821-1115 RL Instruction

eZ8™ CPU Core
User Manual

211
RLC

Definition

Rotate Left through Carry.

Syntax

RLC dst

Operation

Description

The destination operand contents along with the Carry (C) flag rotate left
by one bit position. The initial value of Bit 7 replaces the Carry flag, and
the initial value of the Carry flag replaces Bit 0.

Flags

C Set if the bit rotated from the most-significant bit position was 1
(that is, Bit 7 was 1)

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

UM012821-1115 RLC Instruction

eZ8™ CPU Core
User Manual

212
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the destination address is prefixed by Eh (1110b), a work-
ing register is inferred. For example, if Working Register R12 (Ch) is the
preferred destination operand, use ECh as the destination operand in the
Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If the Carry flag is reset and Register C6h contains the value 8F
(10001111b), the following statement leaves Register C6h with the value
1Eh (00011110b), sets the C and V flags and clears S and Z flags:

RLC C6
Object Code: 10 C6

If the Carry flag is reset, Working Register R4 contains the value C6h, and
Register C6h contains the value 8F (10001111b), the following state-
ment leaves Register C6h with the value 1Eh (00011110b), sets the C
and V flags and clears the S and Z flags:

RLC @R4
Object Code: 11 E4

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

RLC R1 10 R1 — —

RLC @R1 11 R1 — —
UM012821-1115 RLC Instruction

eZ8™ CPU Core
User Manual

213
RR

Definition

Rotate Right.

Syntax

RR dst

Operation

Description

The destination operand contents rotate to the right by one bit position.
The initial value of Bit 0 is moved to Bit 7 and also into the Carry (C)
flag.

Flags

C Set if the bit rotated from the least-significant bit position was 1
(that is, Bit 0 was 1)

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

UM012821-1115 RR Instruction

eZ8™ CPU Core
User Manual

214
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Working Register R6 contains the value 31h (00110001b), the follow-
ing statement leaves the value 98h (10011000b) in Working Register R6,
sets the C, V, and S flags, and clears the Z flag.

RR R6
Object Code: E0 E6

If Register C6h contains the value 31h and Register 31h contains the
value 7Eh (01111110b), the following statement leaves the value 3Fh
(00111111b) in Register 31h and clears the C, Z, V, and S flags:

RR @C6h
Object Code: E1 C6

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

RR R1 E0 R1 — —

RR @R1 E1 R1 — —
UM012821-1115 RR Instruction

eZ8™ CPU Core
User Manual

215
RRC

Definition

Rotate Right through Carry.

Syntax

RRC dst

Operation

Description

The destination operand contents along with the Carry (C) flag rotate
right by one bit position. The initial value of Bit 0 replaces the Carry flag,
and the initial value of the Carry flag replaces Bit 7.

Flags

C Set if the bit rotated from the least-significant bit position was 1
(that is, Bit 0 was 1)

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

UM012821-1115 RRC Instruction

eZ8™ CPU Core
User Manual

216
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the destination address is prefixed by Eh (1110b), a work-
ing register is inferred. For example, if Working Register R12 (Ch) is the
preferred destination operand, use ECh as the destination operand in the
Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Register C6h contains the value DDh (11011101b) and the Carry flag is
reset, the following statement leaves the value 6Eh (01101110b) in Reg-
ister C6h, sets the C and V flags and clears the Z and S flags:

RRC C6h
Object Code: C0 C6

If Register 2Ch contains the value EDh, Register EDh contains the value
00h (00000000b) and the Carry flag is reset, the following statement
leaves the value 00h (00000000b) in Register EDh and resets the C, Z, S,
and V flags:

RRC @2Ch
Object Code: C1 2C

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

RRC R1 C0 R1 — —

RRC @R1 C1 R1 — —
UM012821-1115 RRC Instruction

eZ8™ CPU Core
User Manual

217
SBC

Definition

Subtract with Carry.

Syntax

SBC dst, src

Operation

dst  dst - src - C

Description

This instruction subtracts the source operand and the Carry (C) flag from
the destination. The destination stores the result. The contents of the
source operand are unaffected. The eZ8 CPU performs subtraction by
adding the two’s-complement of the source operand to the destination
operand. In multiple-precision arithmetic, this instruction permits the
carry (borrow) from the subtraction of low-order operands to be sub-
tracted from the subtraction of high-order operands.

Flags

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Set to 1

H Set if a borrow is required by bit 3; reset otherwise
UM012821-1115 SBC Instruction

eZ8™ CPU Core
User Manual

218
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the high nibble of the source or destination address is
Eh (1110b), a working register is inferred. For example, if Working Reg-
ister R12 (Ch) is the preferred destination operand, use ECh as the destina-
tion operand in the Op Code. To access registers with addresses E0h to
EFh, either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R3 contains the value 16h, the Carry flag is 1, and
Working Register R11 contains the value 20h, the following statement
leaves the value F5h in Working Register R3, sets the C, S, and D flags
and clears the Z, V, and H flags:

SBC R3, R11
Object Code: 32 3B

If Working Register R15 contains the value 16h, the Carry flag is not set,
Working Register R10 contains the value 20h, and Register 20h contains
the value 11h, the following statement leaves the value 05h in Working
Register R15, sets the D flag, and clears the C, Z, S, V, and H flags:

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SBC r1, r2 32 {r1, r2} — —

SBC r1, @r2 33 {r1, r2} — —

SBC R1, R2 34 R2 R1 —

SBC R1, @R2 35 R2 R1 —

SBC R1, IM 36 R1 IM —

SBC @R1, IM 37 R1 IM —
UM012821-1115 SBC Instruction

eZ8™ CPU Core
User Manual

219
SBC R15, @R10
Object Code: 33 FA

If Register 34h contains the value 2Eh, the Carry flag is set, and Register
12h contains the value 1bh, the following statement leaves the value 12h
in Register 34h, sets the D flag, and clears the C, Z, S, V, and H flags:

SBC 34h, 12h
Object Code: 34 12 34

If Register 4Bh contains the value 82h, the Carry flag is set, Working
Register R3 contains the value 10h, and Register 10h contains the value
01h, the following statement leaves the value 80h in Register 4Bh, sets
the D and S flags and clears the C, Z, V, and H flags:

SBC 4Bh, @R3
Object Code: 35 E3 4B

If Register 6Ch contains the value 2Ah, and the Carry flag is not set, the
following statement leaves the value 27h in Register 6Ch, sets the D flag,
and clears the C, Z, S, V, and H flags:

SBC 6Ch, #03h
Object Code: 36 6C 03

If Register D4h contains the value 5Fh, Register 5Fh contains the value
4Ch, and the Carry flag is set, the following statement leaves the value
49h in Register 5Fh, sets the D flag, and clears the C, Z, S, V, and H
flags:

SBC @D4h, #02h
Object Code: 37 D4 02
UM012821-1115 SBC Instruction

eZ8™ CPU Core
User Manual

220
SBCX

Definition

Subtract with Carry using Extended Addressing.

Syntax

SBCX dst, src

Operation

dst  dst - src - C

Description

This new eZ8 extended addressing instruction subtracts the source oper-
and and the Carry (C) flag from the destination. The destination stores the
result. The contents of the source are unaffected. The eZ8 CPU performs
subtraction by adding the two’s-complement of the source operand to the
destination operand. In multiple-precision arithmetic, this instruction per-
mits the carry (borrow) from the subtraction of low-order operands to be
subtracted from the subtraction of high-order operands.

Flags

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Set to 1

H Set if a borrow is required by bit 3; reset otherwise
UM012821-1115 SBCX Instruction

eZ8™ CPU Core
User Manual

221
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination specifies a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register 346h contains the value 2Eh, the Carry flag is set, and Regis-
ter 129h contains the value 1bh, the following statement leaves the value
12h in Register 346h, sets the D flag, and clears the C, Z, S, V, and H
flags:

SBCX 346h, 129h
Object Code: 38 12 93 46

If Register C6Ch contains the value 2Ah and the Carry flag is not set, the
following statement leaves the value 27h in Register C6Ch, sets the. D
flag, and clears the C, Z, S, V, and H flags:

SBCX C6Ch, #03h
Object Code: 39 03 0C 6C

Mnemonic
Destination,
Source

Op Code
(Hex) Operand 1 Operand 2 Operand 3

SBCX ER1, ER2 38 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

SBCX ER1, IM 39 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 SBCX Instruction

eZ8™ CPU Core
User Manual

222
SCF

Definition

Set Carry Flag.

Syntax

SCF

Operation

C  1

Description

The Carry (C) flag is 1, regardless of its previous value.

Flags

Attributes

C Set to 1

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SCF — DF — — —
UM012821-1115 SCF Instruction

eZ8™ CPU Core
User Manual

223
Sample Usage

If the Carry flag is currently reset, the following statement sets the Carry
flag to 1:

SCF
Object Code: DF
UM012821-1115 SCF Instruction

eZ8™ CPU Core
User Manual

224
SRA

Definition

Shift Right Arithmetic.

Syntax

SRA dst

Operation

Description

This instruction performs an arithmetic shift to the right by one bit posi-
tion on the destination operand. Bit 0 replaces the Carry (C) flag. The
value of Bit 7 (the Sign bit) does not change, but its value shifts into Bit 6.

Flags

C Set if the bit rotated from the least-significant bit position was 1
(that is, Bit 0 was 1)

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected

D7 D6 D5 D4 D3 D2 D1 D0

dst

C

UM012821-1115 SRA Instruction

eZ8™ CPU Core
User Manual

225
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Working Register R6 contains the value 31h (00110001b), the follow-
ing statement leaves the value 18h (00011000b) in Working Register R6,
sets the Carry flag, and clears the Z, V, and S flags:

SRA R6
Object Code: D0 E6

If Register C6h contains the value DFh, and Register DFh contains the
value B8h (10111000b), the following statement leaves the value DCh
(11011100b) in Register DFh, resets the C, Z and V flags and sets the S
flag:

SRA @C6h
Object Code: D1 C6

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SRA R1 D0 R1 — —

SRA @R1 D1 R1 — —
UM012821-1115 SRA Instruction

eZ8™ CPU Core
User Manual

226
SRL

Definition

Shift Right Logical.

Syntax

SRL dst

Operation

Description

For this new eZ8 instruction, the destination operand contents shift right
logical by one bit position. The initial value of Bit 0 moves into the Carry
(C) flag. Bit 7 resets to 0.

Flags

C Gets value from Bit 0 of the destination

Z Set if the result is zero; reset otherwise

S Reset to 0

V Set if an arithmetic overflow occurs; reset otherwise

D Unaffected

H Unaffected

D7 D6 D5 D4 D3 D2 D1 D0

dst

C0
UM012821-1115 SRL Instruction

eZ8™ CPU Core
User Manual

227
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the destination address is prefixed by Eh (1110b), a work-
ing register is inferred. For example, if Working Register R12 (Ch) is the
preferred destination operand, use ECh as the destination operand in the
Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Working Register R6 contains the value B1h (10110001b), the follow-
ing statement leaves the value 58h (01011000b) in Working Register R6,
sets the Carry flag, and clears the Z, V, and S flags:

SRL R6
Object Code: 1F C0 E6

If Register C6h contains the value DFh, and Register DFh contains the
value F8h (11111000b), the following statement leaves the value 7Ch
(01111100b) in Register DFh and resets the C, Z, S, and V flags:

SRL @C6h
Object Code: 1F C1 C6

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SRL R1 1F C0 R1 — —

SRL @R1 1F C1 R1 — —
UM012821-1115 SRL Instruction

eZ8™ CPU Core
User Manual

228
SRP

Definition

Set Register Pointer.

Syntax

SRP src

Operation

RP  src

Description

The immediate value loads into the Register Pointer (RP). RP[7:4] sets
the current Working Register Group. RP[3:0] sets the current Register
Page.

Flags

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected
UM012821-1115 SRP Instruction

eZ8™ CPU Core
User Manual

229
Attributes4

Sample Usage

The following statement sets the Register Pointer to access Working Reg-
ister Group Fh and Page 0h in the Register File.

SRP F0h 
Object Code: 01 F0

All references to Working Registers now affect this group of 16 registers.
Registers 0F0h to 0FFh can be accessed as Working Registers R0 to
R15.

4. The location of the SRP instruction has been moved from its former Z8 CPU Op Code location
at 31h.

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SRP — 01 IM — —
UM012821-1115 SRP Instruction

eZ8™ CPU Core
User Manual

230
STOP

Definition

Stop Mode.

Syntax

STOP

Operation

STOP mode

Description

This instruction places the eZ8 CPU into STOP mode. Refer to the Zilog
Product Specification that is specific to your Z8 Encore!® device for
details about STOP mode operation.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

STOP — 6F — — —
UM012821-1115 STOP Instruction

eZ8™ CPU Core
User Manual

231
Sample Usage

The following statements place the eZ8 CPU into STOP mode.

STOP
Object Code: 6F
UM012821-1115 STOP Instruction

eZ8™ CPU Core
User Manual

232
SUB

Definition

Subtract.

Syntax

SUB dst, src

Operation

dst  dst - src

Description

This instruction subtracts the source operand from the destination oper-
and. The destination operand stores the result. The source operand con-
tents are unaffected. The eZ8 CPU performs subtraction by adding the
two’s complement of the source operand to the destination operand.

Flags

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Set to 1

H Set if a borrow is required by bit 3; reset otherwise
UM012821-1115 SUB Instruction

eZ8™ CPU Core
User Manual

233
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the high nibble of the source or destination address is Eh
(1110b), a working register is inferred. For example, if Working Register
R12 (Ch) is the preferred destination operand, use ECh as the destination
operand in the Op Code. To access registers with addresses E0h to EFh,
either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R3 contains the value 16h, and Working Register
R11 contains the value 20h, the following statement leaves the value F6h
in Working Register R3, sets the C, S, and D flags and clears the Z, V, and
H flags:

SUB R3, R11
Object Code: 22 3B

If Working Register R15 contains the value 16h, Working Register R10
contains the value 20h, and Register 20h contains the value 11h, the fol-
lowing statement leaves the value 05h in Working Register R15:

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SUB r1, r2 22 {r1, r2} — —

SUB r1, @r2 23 {r1, r2} — —

SUB R1, R2 24 R2 R1 —

SUB R1, @R2 25 R2 R1 —

SUB R1, IM 26 R1 IM —

SUB @R1, IM 27 R1 IM —
UM012821-1115 SUB Instruction

eZ8™ CPU Core
User Manual

234
SUB R15, @R10
Object Code: 23 FA

The D flag is set, and the C, Z, S, V, and H flags are cleared.

If Register 34h contains the value 2Eh, and Register 12h contains the
value 1bh, the following statement leaves the value 13h in Register 34h,
sets the D flag, and clears the C, Z, S, V, and H flags are cleared:

SUB 34h, 12h
Object Code: 24 12 34

If Register 4Bh contains the value 82h, Working Register R3 contains the
value 10h, and Register 10h contains the value 01h, the following state-
ment leaves the value 81h in Register 4Bh, sets the D and S flags and
clears the C, Z, V, and H flags are cleared:

SUB 4Bh, @R3
Object Code: 25 E3 4B

If Register 6Ch contains the value 2Ah, the following statement leaves the
value 27h in Register 6Ch, sets the D flag, and clears the C, Z, S, V, and H
flags are cleared:

SUB 6Ch, #03h
Object Code: 26 6C 03

If Register D4h contains the value 5Fh, Register 5Fh contains the value
4Ch, the following statement leaves the value 4Ah in Register 5Fh, sets
the D flag, and clears the C, Z, S, V, and H flags:

SUB @D4h, #02h
Object Code: 27 D4 02
UM012821-1115 SUB Instruction

eZ8™ CPU Core
User Manual

235
SUBX

Definition

Subtract using Extended Addressing.

Syntax

SUBX dst, src

Operation

dst  dst - src

Description

This new eZ8 extended addressing instruction subtracts the source oper-
and from the destination operand. The destination operand stores the
result. The source operand contents are unaffected. The eZ8 CPU per-
forms subtraction by adding the two’s complement of the source operand
to the destination operand.

Flags

C Set if a borrow is required by bit 7; reset otherwise

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Set if an arithmetic overflow occurs; reset otherwise

D Set to 1

H Set if a borrow is required by bit 3; reset otherwise
UM012821-1115 SUBX Instruction

eZ8™ CPU Core
User Manual

236
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination specifies a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register 234h contains the value 2Eh, and Register 912h contains the
value 1Bh, the following statement leaves the value 13h in Register
234h, sets the D flag, and clears the C, Z, S, V, and H flags:

SUBX 234h, 912h
Object Code: 28 91 22 34

If Register 56Ch contains the value 2Ah, the following statement leaves
the value 27h in Register 56Ch, sets the D flag, and clears the C, Z, S, V,
and H flags:

SUBX 56Ch, #03h
Object Code: 29 03 05 6C

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SUBX ER1, ER2 28 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

SUBX ER1, IM 29 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 SUBX Instruction

eZ8™ CPU Core
User Manual

237
SWAP

Definition

Swap Nibbles.

Syntax

SWAP dst

Operation

dst[7:4]  dst[3:0]

Description

This instruction swaps the contents of the upper nibble of the destination,
dst[7:4], with the lower nibble of the destination, dst[3:0].

Flags

Attributes

C Undefined

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Undefined

D Unaffected

H Unaffected

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

SWAP R1 F0 R1 — —

SWAP @R1 F1 R1 — —
UM012821-1115 SWAP Instruction

eZ8™ CPU Core
User Manual

238
Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR can specify a
working register. If the destination address is prefixed by Eh (1110b), a
working register is inferred. For example, if Working Register R12 (Ch) is
the preferred destination operand, use ECh as the destination operand in
the Op Code. To access registers with addresses E0h to EFh, either set the
Working Group Pointer, RP[7:4], to Eh or use indirect addressing.

Sample Usage

If Register BCh contains the value B3h (10110011b), the following state-
ment leaves the value 3Bh (00111011b) in Register BCh and clears the Z
and S flags:

SWAP BCh
Object Code: F0 BC

If Working Register R5 contains the value BCh and Register BCh contains
the value B3h (10110011b), the following statement leaves the value
3Bh (00111011b) in Register BCh and clears the Z and S flags:

SWAP @R5h
Object Code: F1 E5
UM012821-1115 SWAP Instruction

eZ8™ CPU Core
User Manual

239
TCM

Definition

Test Complement Under Mask.

Syntax

TCM dst, src

Operation

(NOT dst) AND src

Description

This instruction tests selected bits in the destination operand for a logical
1 value. Specify the bits to be tested by setting a 1 bit in the corresponding
bit position in the source operand (the mask). The TCM instruction com-
plements the destination operand and AND’s it with the source mask
(operand). Check the Zero flag to determine the result. If the Z flag is set,
the tested bits were 1. When a TCM operation is completed, the destina-
tion and source operands retain their original values.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 TCM Instruction

eZ8™ CPU Core
User Manual

240
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the high nibble of the source or destination address is Eh
(1110b), a working register is inferred. For example, if Working Register
R12 (Ch) is the preferred destination operand, use ECh as the destination
operand in the Op Code. To access registers with addresses E0h to EFh,
either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R3 contains the value 45h (01000101b) and Work-
ing Register R7 contains the value 01h (00000001b) (testing bit 0 if it is
1), the following statement sets the Z flag indicating bit 0 in the destina-
tion operand is 1 and clears the V and S flags:

TCM R3, R7
Object Code: 62 37

If Working Register R14 contains the value F3h (11110011b), Working
Register R5 contains the value CBh, and Register CBh contains the value
88h (10001000b; testing bits 7 and 3 if they are 1), the following state-

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

TCM r1, r2 62 {r1, r2} — —

TCM r1, @r2 63 {r1, r2} — —

TCM R1, R2 64 R2 R1 —

TCM R1, @R2 65 R2 R1 —

TCM R1, IM 66 R1 IM —

TCM @R1, IM 67 R1 IM —
UM012821-1115 TCM Instruction

eZ8™ CPU Core
User Manual

241
ment resets the Z flag (because bit 3 in the destination operand is not a 1)
and clears the V and S flags:

TCM R14, @R5
Object Code: 63 E5

If Register D4h contains the value 04h (00000100b), and Working Reg-
ister R0 contains the value 80h (10000000b) (testing bit 7 it is 1), the
following statement resets the Z flag (because bit 7 in the destination
operand is not a 1), sets the S flag, and clears the V flag:

TCM D4h, R0
Object Code: 64 E0 D4

If Register DFh contains the value FFh (11111111b), Register 07h con-
tains the value 1Fh, and Register 1Fh contains the value BDh
(10111101b; testing bits 7, 5, 4, 3, 2, and bit 0 if they are 1), the follow-
ing statement sets the Z flag (indicating the tested bits in the destination
operand are 1) and clears the S and V flags:

TCM DFh, @07h
Object Code: 65 07 DF

If Working Register R13 contains the value F2h (11110010b), the fol-
lowing statement tests bit 1 of the destination operand for 1, sets the Z
flag (indicating bit 1 in the destination operand was 1) and clears the S
and V flags:

TCM R13, #02h
Object Code: 66 ED, 02

If Register 5Dh contains the value A0h, and Register A0h contains the
value 0Fh (00001111b), the following statement tests bit 4 of the Regis-
ter A0h for 1, resets the Z flag (indicating bit 4 in the destination operand
was not 1), and clears the S and V flags:

TCM @5D, #10h
Object Code: 67 5D 10
UM012821-1115 TCM Instruction

eZ8™ CPU Core
User Manual

242
TCMX

Definition

Test Complement Under Mask using Extended Addressing.

Syntax

TCMX dst, src

Operation

(NOT dst) AND src

Description

This new eZ8 extended addressing instruction tests selected bits in the
destination operand for a logical 1 value. Specify the bits to be tested by
setting a 1 bit in the corresponding bit position in the source operand (the
mask). The TCMX instruction complements the destination operand and
AND’s it with the source mask (operand). Check the Zero flag to deter-
mine the result. If the Z flag is set, then the tested bits are 1. When a
TCMX operation is completed, the destination and source operands still
contain their original values.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 TCMX Instruction

eZ8™ CPU Core
User Manual

243
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination specifies a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register DD4h contains the value 04h (00000100b), and Register
420h contains the value 80h (10000000b) (testing bit 7 if it is 1), the fol-
lowing statement resets the Z flag (because bit 7 in the destination oper-
and is not a 1), sets the S flag, and clears the V flag.

TCMX DD4h, 420h
Object Code: 68 42 0D D4

If Register B52h contains the value F2h (11110010b), the following
statement tests bit 1 of the destination operand for 1, sets the Z flag (indi-
cating bit 1 in the destination operand is 1) and clears the S and V flags:

TCMX B52h, #02h
Object Code: 66 02 0b 52

Mnemonic
Destination,
Source

Op Code
(Hex) Operand 1 Operand 2 Operand 3

TCMX ER1, ER2 68 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

TCMX ER1, IM 69 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 TCMX Instruction

eZ8™ CPU Core
User Manual

244
TM

Definition

Test Under Mask.

Syntax

TM dst, src

Operation

dst AND src

Description

This instruction tests selected bits in the destination operand for a 0 logi-
cal value. Specify the bits to be tested by setting a 1 bit in the correspond-
ing bit position in the source operand (the mask). The TM instruction
AND’s the destination operand with the source operand (the mask).
Check the Zero flag can to determine the result. If the Z flag is set, the
tested bits are 0. When a TM operation is completed, the destination and
source operands retain their original values.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 TM Instruction

eZ8™ CPU Core
User Manual

245
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the high nibble of the source or destination address is Eh
(1110b), a working register is inferred. For example, if Working Register
R12 (Ch) is the preferred destination operand, use ECh as the destination
operand in the Op Code. To access registers with addresses E0h to EFh,
either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R3 contains the value 45h (01000101b) and Work-
ing Register R7 contains the value 02h (00000010b) (testing bit 1 if it is
0), the following statement sets the Z flag (indicating bit 1 in the destina-
tion operand is 0), and clears the V and S flags:

TM R3, R7
Object Code: 72 37

Working Register R14 contains the value F3h (11110011b), Working
Register R5 contains the value CBh, and Register CBh contains the value
88h (10001000b) (testing bits 7 and 3 if they are 0), the following state-

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

TM r1, r2 72 {r1, r2} — —

TM r1, @r2 73 {r1, r2} — —

TM R1, R2 74 R2 R1 —

TM R1, @R2 75 R2 R1 —

TM R1, IM 76 R1 IM —

TM @R1, IM 77 R1 IM —
UM012821-1115 TM Instruction

eZ8™ CPU Core
User Manual

246
ment resets the Z flag (because bit 7 in the destination operand is not a 0),
sets the S flag and clears the V flag:

TM R14, @R5
Object Code: 73 E5

If Register D4h contains the value 08h (00001000b), and Working Reg-
ister R0 contains the value 04h (00000100b) (testing bit 2 if it is 0), the
following statement sets the Z flag (because bit 2 in the destination oper-
and is a 0) and clears the S and V flags:

TM D4h, R0
Object Code: 74 E0 D4

If Register DFh contains the value 00h (00000000b), Register 07h con-
tains the value 1Fh, and Register 1Fh contains the value BDh
(10111101b) (testing bits 7, 5, 4, 3, 2, and 0 if they are 0), the following
statement sets the Z flag (indicating the tested bits in the destination oper-
and are 0) and clears the S and V flags:

TM DFh, @07h
Object Code: 75 07 DF

If Working Register R13 contains the value F1h (11110001b), the fol-
lowing statement tests bit 1 of the destination operand for 0, sets the Z
flag (indicating bit 1 in the destination operand is 0) and clears the S and
V flags:

TM R13, #02h
Object Code: 76 ED, 02

If Register 5Dh contains the value A0h, and Register A0h contains the
value 0Fh (00001111b), the following statement tests bit 4 of the Regis-
ter A0h for 0, sets the Z flag (indicating bit 4 in the destination operand
was 0) and clears the S and V flags:

TM @5D, #10h
Object Code: 77 5D 10
UM012821-1115 TM Instruction

eZ8™ CPU Core
User Manual

247
TMX

Definition

Test Under Mask using Extended Addressing.

Syntax

TMX dst, src

Operation

dst AND src

Description

This new eZ8 extended addressing instruction tests selected bits in the
destination operand for a logical 0 value. Specify the bits to be tested by
setting a 1 bit in the corresponding bit position in the source operand (the
mask). The TMX instruction AND’s the destination with the source oper-
and (mask). Check the Zero flag to determine the result. If the Z flag is
set, the tested bits are 0. When a TMX operation is completed, the desti-
nation and source operands retain their original values.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if the result is negative; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 TMX Instruction

eZ8™ CPU Core
User Manual

248
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination can specify a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register 789h contains the value 45h (01000101b) and Register 246h
contains the value 02h (00000010b) (testing bit 1 if it is 0), the following
statement sets the Z flag (indicating bit 1 in the destination operand is 0)
and clears the V and S flags:

TMX 789h, 246h
Object Code: 78 24 67 89

If Register 13h contains the value F1h (11110001b), the following state-
ment tests bit 1 of the destination operand for 0 sets the Z flag (indicating
bit 1 in the destination operand is 0) and clears the S and V flags:

TMX %013, #02h
Object Code: 79 02 00 13

Mnemonic
Destination,
Source

Op Code
(Hex) Operand 1 Operand 2 Operand 3

TMX ER1, ER2 78 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

TMX ER1, IM 79 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 TMX Instruction

eZ8™ CPU Core
User Manual

249
TRAP

Definition

Software Trap.

Syntax

TRAP Vector

Operation

SP  SP - 2
@SP  PC
SP  SP - 1
@SP  Flags
PC  @Vector

Description

This new eZ8 instruction executes a software trap. The Program Counter
and Flags are pushed onto the stack. The eZ8 CPU loads the 16-bit Pro-
gram Counter with the value stored in the Trap Vector Pair. Execution
begins from the new value in the Program counter. Execute an IRET
instruction to return from a trap.

There are 256 possible Trap Vector Pairs in Program Memory. The Trap
Vector Pairs are numbered from 0 to 255. The base addresses of the Trap
Vector Pairs begin at 000h and end at 1FEh (510 decimal). The base
address of the Trap Vector Pair is calculated by multiplying the vector by
2.

Because IRET is used to return from TRAP, interrupts get enabled by
default. If interrupts are not enabled in your program before TRAP, you
need to execute DI after IRET so that the interrupts continue to remain
disabled.

Note:
UM012821-1115 TRAP Instruction

eZ8™ CPU Core
User Manual

250
Flags

Attributes

Sample Usage

If Register 68h contains the value A0h, and Register 69h contains the
value 2Fh, the following statement pushes the Flags and Program Counter
onto the stack. The Program Counter loads the value A02Fh. Program
execution resumes at address A02Fh:

TRAP #%34
Object Code: F2 34

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic Destination

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

TRAP Vector F2 Vector — —
UM012821-1115 TRAP Instruction

eZ8™ CPU Core
User Manual

251
WDT

Definition

Watchdog Timer Refresh.

Syntax

WDT

Operation

None.

Description

Enable the Watchdog Timer by executing the WDT instruction. Each sub-
sequent execution of the WDT instruction refreshes the timer and pre-
vents the Watchdog Timer from timing out. For more information on the
Watchdog Timer, refer to the relevant Product Specification.

Flags

Attributes

C Unaffected

Z Unaffected

S Unaffected

V Unaffected

D Unaffected

H Unaffected

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

WDT — 5F — — —
UM012821-1115 WDT Instruction

eZ8™ CPU Core
User Manual

252
Sample Usage

The first execution of the following statement enables the Watchdog
Timer:

WDT
Object Code: 5F

If the Watchdog Timer is enabled, the following statement refreshes the
Watchdog Timer:

WDT
Object Code: 5F
UM012821-1115 WDT Instruction

eZ8™ CPU Core
User Manual

253
XOR

Definition

Logical Exclusive OR.

Syntax

XOR dst, src

Operation

dst  dst XOR src

Description

The source operand is logically EXCLUSIVE ORed with the destination
operand. An XOR operation stores a 1 in the destination operand when
the corresponding bits in the two operands are different; otherwise XOR
stores a 0. The contents of the source operand are unaffected.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 XOR Instruction

eZ8™ CPU Core
User Manual

254
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address modes R or IR specify a work-
ing register. If the high nibble of the source or destination address is Eh
(1110b), a working register is inferred. For example, if Working Register
R12 (Ch) is the preferred destination operand, use ECh as the destination
operand in the Op Code. To access registers with addresses E0h to EFh,
either set the Working Group Pointer, RP[7:4], to Eh or use indirect
addressing.

Sample Usage

If Working Register R1 contains the value 38h (00111000b) and Work-
ing Register R14 contains the value 8Dh (10001101b), the following
statement leaves the value B5h (10110101b) in Working Register R1,
sets the S flag, and clears the Z and V flags:

XOR R1, R14
Object Code: B2 1E

If Working Register R4 contains the value F9h (11111001b), Working
Register R13 contains the value 7Bh, and Register 7Bh contains the value
6Ah (01101010b), the following statement leaves the value 93h

Mnemonic
Destination,
Source

Op
Code
(Hex) Operand 1 Operand 2 Operand 3

XOR r1, r2 B2 {r1, r2} — —

XOR r1, @r2 B3 {r1, r2} — —

XOR R1, R2 B4 R2 R1 —

XOR R1, @R2 B5 R2 R1 —

XOR R1, IM B6 R1 IM —

XOR @R1, IM B7 R1 IM —
UM012821-1115 XOR Instruction

eZ8™ CPU Core
User Manual

255
(10010011b) in Working Register R4, sets the S flag, and clears the Z
and V flags:

XOR R4, @R13
Object Code: B3 4D

If Register 3Ah contains the value F5h (11110101b) and Register 42h
contains the value 0Ah (00001010b), the following statement leaves the
value FFh (11111111b) in Register 3Ah, sets the S flag, and clears the Z
and V flags:

XOR 3Ah, 42h
Object Code: B4 42 3A

If Working Register R5 contains the value F0h (11110000b), Register
45h contains the value 3Ah, and Register 3Ah contains the value 7Fh
(01111111b), the following statement leaves the value 8Fh
(10001111b) in Working Register R5, sets the S flag, and clears the C
and V flags:

XOR R5, @45h
Object Code: B5 45 E5

If Register 7Ah contains the value F7h (11110111b), the following state-
ment leaves the value 07h (00000111b) in Register 7Ah and clears the Z,
V, and S flags:

XOR 7Ah, #F0h
Object Code: B6 7A F0

If Working Register R3 contains the value 3Eh and Register 3Eh contains
the value 6Ch (01101100b), the following statement leaves the value
69h (01101001b) in Register 3Eh and clears the Z, V, and S flags

XOR @R3, #05h
Object Code: B7 E3 05
UM012821-1115 XOR Instruction

eZ8™ CPU Core
User Manual

256
XORX

Definition

Logical Exclusive OR using Extended Addressing.

Syntax

XORX dst, src

Operation

dst  dst XOR src

Description

For this new eZ8 extended addressing instruction, the source operand is
logically EXCLUSIVE ORed with the destination operand. An XORX
operation stores a 1 in the destination operand when the corresponding
bits in the two operands are different; otherwise it stores a 0. The contents
of the source operand are unaffected.

Flags

C Unaffected

Z Set if the result is zero; reset otherwise

S Set if Bit 7 of the result is set; reset otherwise

V Reset to 0

D Unaffected

H Unaffected
UM012821-1115 XORX Instruction

eZ8™ CPU Core
User Manual

257
Attributes

Escaped Mode Addressing

Using Escaped Mode Addressing, address mode ER for the source or des-
tination specifies a working register with 4-bit addressing.

If the high byte of the source or destination address is EEh (11101110b),
a working register is inferred. For example, the operand EE3h selects
Working Register R3. The full 12-bit address is provided by {RP[3:0],
RP[7:4], 3h}.

To access registers on Page Eh (addresses E00h to EFFh), set the Page
Pointer, RP[3:0], to Eh and set the Working Group Pointer, RP[7:4], to
the preferred Working Group.

Sample Usage

If Register 93Ah contains the value F5h (11110101b) and Register 142h
contains the value 6Ah (01101010b), the following statement leaves the
value 9Fh (10011111b) in Register 93Ah, sets the S flag, and clears the
Z and V flags:

XORX 93Ah, 142h
Object Code: B8 14 29 3A

If Register D7Ah contains the value 07h (00000111b), the following
statement leaves the value 61h (01100001b) in Register 7Ah and clears
the S, Z and V flags:

XORX D7Ah, #01100110b
Object Code: B9 66 0D 7A

Mnemonic
Destination,
Source

Op Code
(Hex) Operand 1 Operand 2 Operand 3

XORX ER1, ER2 B8 ER2[11:4] {ER2[3:0],
ER1[11:8]}

ER1[7:0]

XORX ER1, IM B9 IM {0h,
ER1[11:8]}

ER1[7:0]
UM012821-1115 XORX Instruction

eZ8™ CPU Core
User Manual

258
XORX Instruction UM012821-1115

eZ8™ CPU Core
User Manual

258
Op Code Maps
Figure 19 displays Op Code map cell description and Table 25 provides
the abbreviations displayed in Figure 20 and Figure 21. Whenever a
branch occurs, the pipeline is flushed. It takes one extra cycle to flush the
pipeline. After the flush, no bytes are prefetched.

Figure 19. Op Code Map Cell Description

CP

3.3

R2,R1

A

4

Op Code
Lower Nibble

Second Operand
After Assembly

First Operand
After Assembly

Op Code
Upper Nibble

Instruction CyclesFetch Cycles
UM012821-1115 Op Code Maps

eZ8™ CPU Core
User Manual

259
Table 25. Op Code Map Abbreviations

Abbreviation Description

b Bit position

cc Condition code

X 8-bit signed index or displacement

DA Destination Address

ER Extended Addressing Register

IM Immediate Data Value

Ir Indirect Working Register

IR Indirect Register

Irr Indirect Working Register Pair

IRR Indirect Register Pair

p Polarity (0 or 1)

r 4-bit Working Register

R 8-bit Register

r1, R1, Ir1, Irr1, IR1, rr1, RR1,
IRR1, ER1

Destination Address

r2, R2, Ir2, Irr2, IR2, rr2, RR2,
IRR2, ER2

Source Address

RA Relative

rr Working Register Pair

RR Register Pair
UM012821-1115 Op Code Maps

eZ8™ CPU Core
User Manual

260
Figure 20. First Op Code Map

CP
3.3

R2,R1

CP
3.4

IR2,R1

CP
2.3

r1,r2

CP
2.4

r1,Ir2

CPX
4.3

ER2,ER1

CPX
4.3

IM,ER1

CP
3.3

R1,IM

CP
3.4

IR1,IM

RRC
2.2

R1

RRC
2.3

IR1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Lower Nibble (Hex)

U
p

p
er

 N
ib

b
le

 (
H

ex
)

BRK
1.2

SRP
2.2

IM

ADD
2.3

r1,r2

ADD
2.4

r1,Ir2

ADD
3.3

R2,R1

ADD
3.4

IR2,R1

ADD
3.3

R1,IM

ADD
3.4

IR1,IM

ADDX
4.3

ER2,ER1

ADDX
4.3

IM,ER1

DJNZ
2.3/4

r1,X

JR
2.2

cc,X

LD
2.2

r1,IM

JP
3.2

cc,DA

INC
1.2

r1

NOP
1.2

RLC
2.2

R1

RLC
2.3

IR1

ADC
2.3

r1,r2

ADC
2.4

r1,Ir2

ADC
3.3

R2,R1

ADC
3.4

IR2,R1

ADC
3.3

R1,IM

ADC
3.4

IR1,IM

ADCX
4.3

ER2,ER1

ADCX
4.3

IM,ER1

INC
2.2

R1

INC
2.3

IR1

SUB
2.3

r1,r2

SUB
2.4

r1,Ir2

SUB
3.3

R2,R1

SUB
3.4

IR2,R1

SUB
3.3

R1,IM

SUB
3.4

IR1,IM

SUBX
4.3

ER2,ER1

SUBX
4.3

IM,ER1

DEC
2.2

R1

DEC
2.3

IR1

SBC
2.3

r1,r2

SBC
2.4

r1,Ir2

SBC
3.3

R2,R1

SBC
3.4

IR2,R1

SBC
3.3

R1,IM

SBC
3.4

IR1,IM

SBCX
4.3

ER2,ER1

SBCX
4.3

IM,ER1

DA
2.2

R1

DA
2.3

IR1

OR
2.3

r1,r2

OR
2.4

r1,Ir2

OR
3.3

R2,R1

OR
3.4

IR2,R1

OR
3.3

R1,IM

OR
3.4

IR1,IM

ORX
4.3

ER2,ER1

ORX
4.3

IM,ER1

POP
2.2

R1

POP
2.3

IR1

AND
2.3

r1,r2

AND
2.4

r1,Ir2

AND
3.3

R2,R1

AND
3.4

IR2,R1

AND
3.3

R1,IM

AND
3.4

IR1,IM

ANDX
4.3

ER2,ER1

ANDX
4.3

IM,ER1

COM
2.2

R1

COM
2.3

IR1

TCM
2.3

r1,r2

TCM
2.4

r1,Ir2

TCM
3.3

R2,R1

TCM
3.4

IR2,R1

TCM
3.3

R1,IM

TCM
3.4

IR1,IM

TCMX
4.3

ER2,ER1

TCMX
4.3

IM,ER1

PUSH
2.2

R2

PUSH
2.3

IR2

TM
2.3

r1,r2

TM
2.4

r1,Ir2

TM
3.3

R2,R1

TM
3.4

IR2,R1

TM
3.3

R1,IM

TM
3.4

IR1,IM

TMX
4.3

ER2,ER1

TMX
4.3

IM,ER1

DECW
2.5

RR1

DECW
2.6

IR1

LDE
2.5

r1,Irr2

LDEI
2.9

Ir1,Irr2

LDX
3.2

r1,ER2

LDX
3.3

Ir1,ER2

LDX
3.4

IRR2,R1

LDX
3.5

IRR2,IR1

LDX
3.4

r1,rr2,X

LDX
3.4

rr1,r2,X

RL
2.2

R1

RL
2.3

IR1

LDE
2.5

r2,Irr1

LDEI
2.9

Ir2,Irr1

LDX
3.2

r2,ER1

LDX
3.3

Ir2,ER1

LDX
3.4

R2,IRR1

LDX
3.5

IR2,IRR1

LEA
3.3

r1,r2,X

LEA
3.5

rr1,rr2,X

INCW
2.5

RR1

INCW
2.6

IR1

CLR
2.2

R1

CLR
2.3

IR1

XOR
2.3

r1,r2

XOR
2.4

r1,Ir2

XOR
3.3

R2,R1

XOR
3.4

IR2,R1

XOR
3.3

R1,IM

XOR
3.4

IR1,IM

XORX
4.3

ER2,ER1

XORX
4.3

IM,ER1

LDC
2.5

r1,Irr2

LDCI
2.9

Ir1,Irr2

LDC
2.5

r2,Irr1

LDCI
2.9

Ir2,Irr1

JP
2.3

IRR1

LDC
2.9

Ir1,Irr2

LD
3.3

r1,r2,X

PUSHX
3.2

ER2

SRA
2.2

R1

SRA
2.3

IR1

POPX
3.2

ER1

LD
3.4

r1,r2,X

CALL
2.6

IRR1

BSWAP
2.2

R1

CALL
3.3

DA

LD
3.2

R2,R1

LD
3.3

IR2,R1

BIT
2.2

p,b,r1

LD
2.3

r1,Ir2

LDX
4.2

ER2,ER1

LDX
4.2

IM,ER1

LD
3.2

R1,IM

LD
3.3

IR1,IM

RR
2.2

R1

RR
2.3

IR1

MULT
2.8

RR1

LD
3.3

R2,IR1

TRAP
2.6

Vector

LD
2.3

Ir1,r2

BTJ
3.3

p,b,r1,X

BTJ
3.4

p,b,Ir1,X

SWAP
2.2

R1

SWAP
2.3

IR1

RCF
1.2

WDT
1.2

STOP
1.2

HALT
1.2

DI
1.2

EI
1.2

RET
1.4

IRET
1.5

SCF
1.2

CCF
1.2

Op Code
See 2nd

Map

1,2

 ATM
UM012821-1115 Op Code Maps

eZ8™ CPU Core
User Manual

261
Figure 21. Second Op Code Map after 1Fh

CPC
4.3

R2,R1

CPC
4.4

IR2,R1

CPC
3.3

r1,r2

CPC
3.4

r1,Ir2

CPCX
5.3

ER2,ER1

CPCX
5.3

IM,ER1

CPC
4.3

R1,IM

CPC
4.4

IR1,IM

SRL
3.2

R1

SRL
3.3

IR1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Lower Nibble (Hex)

U
p

p
er

 N
ib

b
le

 (
H

ex
)

3,2
PUSH

IM

5,4

LDWX
ER1,ER2
UM012821-1115 Op Code Maps

eZ8™ CPU Core
User Manual

262
Op Codes Listed Numerically
Table 26 lists the eZ8 CPU instructions, sorted numerically by the Op
Code. The table identifies the addressing modes employed by the instruc-
tion, the effect upon the Flags register, the number of CPU clock cycles
required for the instruction fetch, and the number of CPU clock cycles
required for the instruction execution.

Table 26. eZ8 CPU Instructions Sorted by Op Code

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H

00 BRK – – – – – – 1 2

01 SRP src IM – – – – – – 2 2

02 ADD dst, src r r * * * * 0 * 2 3

03 ADD dst, src r Ir * * * * 0 * 2 4

04 ADD dst, src R R * * * * 0 * 3 3

05 ADD dst, src R IR * * * * 0 * 3 4

06 ADD dst, src R IM * * * * 0 * 3 3

07 ADD dst, src IR IM * * * * 0 * 3 4

08 ADDX dst, src ER ER * * * * 0 * 4 3

09 ADDX dst, src ER IM * * * * 0 * 4 3

0A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

0b JR F, dst DA – – – – – – 2 2

0C LD dst, src r IM – – – – – – 2 2
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

263
0D JP F, dst DA – – – – – – 3 2

0E INC dst r – * * * – – 1 2

0F NOP – – – – – – 1 2

10 RLC dst R * * * * – – 2 2

11 RLC dst IR * * * * – – 2 3

12 ADC dst, src r r * * * * 0 * 2 3

13 ADC dst, src r Ir * * * * 0 * 2 4

14 ADC dst, src R R * * * * 0 * 3 3

15 ADC dst, src R IR * * * * 0 * 3 4

16 ADC dst, src R IM * * * * 0 * 3 3

17 ADC dst, src IR IM * * * * 0 * 3 4

18 ADCX dst, src ER ER * * * * 0 * 4 3

19 ADCX dst, src ER IM * * * * 0 * 4 3

1A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

1b JR LT, dst DA – – – – – – 2 2

1C LD dst, src r IM – – – – – – 2 2

1D JP LT, dst DA – – – – – – 3 2

1E INC dst r – * * * – – 1 2

1F70 PUSH src IM – – – – – – 3 2

1F A2 CPC dst, src r r * * * * – – 3 3

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

264
1F A3 CPC dst, src r Ir * * * * – – 3 4

1F A4 CPC dst, src R R * * * * – – 4 3

1F A5 CPC dst, src R IR * * * * – – 4 4

1F A6 CPC dst, src R IM * * * * – – 4 3

1F A7 CPC dst, src IR IM * * * * – – 4 4

1F A8 CPCX dst, src ER ER * * * * – – 5 3

1F A9 CPCX dst, src ER IM * * * * – – 5 3

1F C0 SRL dst R * * 0 * – – 3 2

1F C1 SRL dst IR * * 0 * – – 3 3

1FE8 LDWX dst, src ER ER – – – – – – 5 4

20 INC dst R – * * * – – 2 2

21 INC dst IR – * * * – – 2 3

22 SUB dst, src r r * * * * 1 * 2 3

23 SUB dst, src r Ir * * * * 1 * 2 4

24 SUB dst, src R R * * * * 1 * 3 3

25 SUB dst, src R IR * * * * 1 * 3 4

26 SUB dst, src R IM * * * * 1 * 3 3

27 SUB dst, src IR IM * * * * 1 * 3 4

28 SUBX dst, src ER ER * * * * 1 * 4 3

29 SUBX dst, src ER IM * * * * 1 * 4 3

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

265
2A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

2B JR LE, dst DA – – – – – – 2 2

2C LD dst, src r IM – – – – – – 2 2

2D JP LE, dst DA – – – – – – 3 2

2E INC dst r – * * * – – 1 2

2F ATM – – – – – – 1 2

30 DEC dst R – * * * – – 2 2

31 DEC dst IR – * * * – – 2 3

32 SBC dst, src r r * * * * 1 * 2 3

33 SBC dst, src r Ir * * * * 1 * 2 4

34 SBC dst, src R R * * * * 1 * 3 3

35 SBC dst, src R IR * * * * 1 * 3 4

36 SBC dst, src R IM * * * * 1 * 3 3

37 SBC dst, src IR IM * * * * 1 * 3 4

38 SBCX dst, src ER ER * * * * 1 * 4 3

39 SBCX dst, src ER IM * * * * 1 * 4 3

3A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

3B JR ULE, dst DA – – – – – – 2 2

3C LD dst, src r IM – – – – – – 2 2

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

266
3D JP ULE, dst DA – – – – – – 3 2

3E INC dst r – * * * – – 1 2

40 DA dst R * * * X – – 2 2

41 DA dst IR * * * X – – 2 3

42 OR dst, src r r – * * 0 – – 2 3

43 OR dst, src r Ir – * * 0 – – 2 4

44 OR dst, src R R – * * 0 – – 3 3

45 OR dst, src R IR – * * 0 – – 3 4

46 OR dst, src R IM – * * 0 – – 3 3

47 OR dst, src IR IM – * * 0 – – 3 4

48 ORX dst, src ER ER – * * 0 – – 4 3

49 ORX dst, src ER IM – * * 0 – – 4 3

4A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

4B JR OV, dst DA – – – – – – 2 2

4C LD dst, src r IM – – – – – – 2 2

4D JP OV, dst DA – – – – – – 3 2

4E INC dst r – * * * – – 1 2

50 POP dst R – – – – – – 2 2

51 POP dst IR – – – – – – 2 3

52 AND dst, src r r – * * 0 – – 2 3

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

267
53 AND dst, src r Ir – * * 0 – – 2 4

54 AND dst, src R R – * * 0 – – 3 3

55 AND dst, src R IR – * * 0 – – 3 4

56 AND dst, src R IM – * * 0 – – 3 3

57 AND dst, src IR IM – * * 0 – – 3 4

58 ANDX dst, src ER ER – * * 0 – – 4 3

59 ANDX dst, src ER IM – * * 0 – – 4 3

5A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

5B JR MI, dst DA – – – – – – 2 2

5C LD dst, src r IM – – – – – – 2 2

5D JP MI, dst DA – – – – – – 3 2

5E INC dst r – * * * – – 1 2

5F WDT – – – – – – 1 2

60 COM dst R – * * 0 – – 2 2

61 COM dst IR – * * 0 – – 2 3

62 TCM dst, src r r – * * 0 – – 2 3

63 TCM dst, src r Ir – * * 0 – – 2 4

64 TCM dst, src R R – * * 0 – – 3 3

65 TCM dst, src R IR – * * 0 – – 3 4

66 TCM dst, src R IM – * * 0 – – 3 3

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

268
67 TCM dst, src IR IM – * * 0 – – 3 4

68 TCMX dst, src ER ER – * * 0 – – 4 3

69 TCMX dst, src ER IM – * * 0 – – 4 3

6A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

6B JR Z, dst DA – – – – – – 2 2

6C LD dst, src r IM – – – – – – 2 2

6D JP Z, dst DA – – – – – – 3 2

6E INC dst r – * * * – – 1 2

6F STOP – – – – – – 1 2

70 PUSH src R – – – – – – 2 2

71 PUSH src IR – – – – – – 2 3

72 TM dst, src r r – * * 0 – – 2 3

73 TM dst, src r Ir – * * 0 – – 2 4

74 TM dst, src R R – * * 0 – – 3 3

75 TM dst, src R IR – * * 0 – – 3 4

76 TM dst, src R IM – * * 0 – – 3 3

77 TM dst, src IR IM – * * 0 – – 3 4

78 TMX dst, src ER ER – * * 0 – – 4 3

79 TMX dst, src ER IM – * * 0 – – 4 3

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

269
7A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

7B JR C, dst DA – – – – – – 2 2

7C LD dst, src r IM – – – – – – 2 2

7D JP C, dst DA – – – – – – 3 2

7E INC dst r – * * * – – 1 2

7F HALT – – – – – – 1 2

80 DECW dst RR – * * * – – 2 5

81 DECW dst IRR – * * * – – 2 6

82 LDE dst, src r Irr – – – – – – 2 5

83 LDEI dst, src Ir Irr – – – – – – 2 9

84 LDX dst, src r ER – – – – – – 3 2

85 LDX dst, src Ir ER – – – – – – 3 3

86 LDX dst, src R IRR – – – – – – 3 4

87 LDX dst, src IR IRR – – – – – – 3 5

88 LDX dst, src r X(rr) – – – – – – 3 4

89 LDX dst, src X(rr) r – – – – – – 3 4

8A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

8B JR dst DA – – – – – – 2 2

8C LD dst, src r IM – – – – – – 2 2

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

270
8D JP dst DA – – – – – – 3 2

8E INC dst r – * * * – – 1 2

8F DI – – – – – – 1 2

90 RL dst R * * * * – – 2 2

91 RL dst IR * * * * – – 2 3

92 LDE dst, src Irr r – – – – – – 2 5

93 LDEI dst, src Irr Ir – – – – – – 2 9

94 LDX dst, src ER r – – – – – – 3 2

95 LDX dst, src ER Ir – – – – – – 3 3

96 LDX dst, src IRR R – – – – – – 3 4

97 LDX dst, src IRR IR – – – – – – 3 5

98 LEA dst, X(src) r X(r) – – – – – – 3 3

99 LEA dst, X(src) rr X(rr) – – – – – – 3 5

9A DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

9B JR GE, dst DA – – – – – – 2 2

9C LD dst, src r IM – – – – – – 2 2

9D JP GE, dst DA – – – – – – 3 2

9E INC dst r – * * * – – 1 2

9F EI – – – – – – 1 2

A0 INCW dst RR – * * * – – 2 5

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

271
A1 INCW dst IRR – * * * – – 2 6

A2 CP dst, src r r * * * * – – 2 3

A3 CP dst, src r Ir * * * * – – 2 4

A4 CP dst, src R R * * * * – – 3 3

A5 CP dst, src R IR * * * * – – 3 4

A6 CP dst, src R IM * * * * – – 3 3

A7 CP dst, src IR IM * * * * – – 3 4

A8 CPX dst, src ER ER * * * * – – 4 3

A9 CPX dst, src ER IM * * * * – – 4 3

AA DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

AB JR GT, dst DA – – – – – – 2 2

AC LD dst, src r IM – – – – – – 2 2

AD JP GT, dst DA – – – – – – 3 2

AE INC dst r – * * * – – 1 2

AF RET – – – – – – 1 4

B0 CLR dst R – – – – – – 2 2

B1 CLR dst IR – – – – – – 2 3

B2 XOR dst, src r r – * * 0 – – 2 3

B3 XOR dst, src r Ir – * * 0 – – 2 4

B4 XOR dst, src R R – * * 0 – – 3 3

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

272
B5 XOR dst, src R IR – * * 0 – – 3 4

B6 XOR dst, src R IM – * * 0 – – 3 3

B7 XOR dst, src IR IM – * * 0 – – 3 4

B8 XORX dst, src ER ER – * * 0 – – 4 3

B9 XORX dst, src ER IM – * * 0 – – 4 3

BA DJNZ dst, R r – – – – – – 2 Z/NZ
3/4

BB JR UGT, dst DA – – – – – – 2 2

BC LD dst, src r IM – – – – – – 2 2

BD JP UGT, dst DA – – – – – – 3 2

BE INC dst r – * * * – – 1 2

BF IRET * * * * * * 1 5

C0 RRC dst R * * * * – – 2 2

C1 RRC dst IR * * * * – – 2 3

C2 LDC dst, src r Irr – – – – – – 2 5

C3 LDCI dst, src Ir Irr – – – – – – 2 9

C4 JP dst IRR – – – – – – 2 3

C5 LDC dst, src Ir Irr – – – – – – 2 9

C7 LD dst, src r X(r) – – – – – – 3 3

C8 PUSHX src ER – – – – – – 3 2

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

273
CA DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

CB JR NOV, dst DA – – – – – – 2 2

CC LD dst, src r IM – – – – – – 2 2

CD JP NOV, dst DA – – – – – – 3 2

CE INC dst r – * * * – – 1 2

CF RCF 0 – – – – – 1 2

D0 SRA dst R * * * 0 – – 2 2

D1 SRA dst IR * * * 0 – – 2 3

D2 LDC dst, src Irr r – – – – – – 2 5

D3 LDCI dst, src Irr Ir – – – – – – 2 9

D4 CALL dst IRR – – – – – – 2 6

D5 BSWAP dst R X * * 0 – – 2 2

D6 CALL dst DA – – – – – – 3 3

D7 LD dst, src X(r) r – – – – – – 3 4

D8 POPX dst ER – – – – – – 3 2

DA DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

DB JR PL, dst DA – – – – – – 2 2

DC LD dst, src r IM – – – – – – 2 2

DD JP PL, dst DA – – – – – – 3 2

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

274
DE INC dst r – * * * – – 1 2

DF SCF 1 – – – – – 1 2

E0 RR dst R * * * * – – 2 2

E1 RR dst IR * * * * – – 2 3

E2 BIT p, bit, dst r – * * 0 – – 2 2

E3 LD dst, src r Ir – – – – – – 2 3

E4 LD dst, src R R – – – – – – 3 2

E5 LD dst, src R IR – – – – – – 3 4

E6 LD dst, src R IM – – – – – – 3 2

E7 LD dst, src IR IM – – – – – – 3 3

E8 LDX dst, src ER ER – – – – – – 4 2

E9 LDX dst, src ER IM – – – – – – 4 2

EA DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

EB JR NZ, dst DA – – – – – – 2 2

EC LD dst, src r IM – – – – – – 2 2

ED JP NZ, dst DA – – – – – – 3 2

EE INC dst r – * * * – – 1 2

EF CCF * – – – – – 1 2

F0 SWAP dst R X * * X – – 2 2

F1 SWAP dst IR X * * X – – 2 3

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

275
F2 TRAP Vector Vector – – – – – – 2 6

F3 LD dst, src Ir r – – – – – – 2 3

F4 MULT dst RR – – – – – – 2 8

F5 LD dst, src IR R – – – – – – 3 3

F6 BTJ p, bit, src,
dst

r – – – – – – 3 3

F7 BTJ p, bit, src,
dst

Ir – – – – – – 3 4

FA DJNZ dst, RA r – – – – – – 2 Z/NZ
3/4

FB JR NC, dst DA – – – – – – 2 2

FC LD dst, src r IM – – – – – – 2 2

FD JP NC, dst DA – – – – – – 3 2

FE INC dst r – * * * – – 1 2

Notes
1. Flags Notation: * = Value is a function of the result of the operation, — = Unaffected, X =

Undefined, C = Carry Flag; 0 = Reset to 0, 1 = Set to 1.
2. Whenever a branch occurs, the pipeline is flushed. It takes one extra cycle to flush the pipeline.

After the flush, no bytes are prefetched.

Table 26. eZ8 CPU Instructions Sorted by Op Code (Continued)

Op
Code(s)
(Hex)

Assembly
Mnemonic

Address
Mode Flags

Fetch
Cycles

Instr.
Cyclesdst src C Z S V D H
UM012821-1115 Op Codes Listed Numerically

eZ8™ CPU Core
User Manual

276
Assembly and Object Code
Example

Table 27 provides an example listing file output for an assembled 
eZ8 CPU program. Most of the Op Codes appear in this list. The table is
sorted alphabetically by the instruction mnemonics. Each instruction line
consists of the Program Counter address for the instruction, the object
code, and the assembly code (instruction and operands). The ORG %1000
assembly code is an assembler directive which sets the base Program
Counter value. The labels (LABEL1:, LABEL2:, and LABEL3) are also
assembly directives used to indicate addresses.

Table 27. Assembly and Object Code Example

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4

001000 ORG %1000

001000 12 57 ADC r5, r7

001002 13 68 ADC r6, @r8

001004 14 55 34 ADC %34, %55

001007 15 AA 35 ADC %35, @%AA

00100A 16 36 31 ADC %36, #%31

00100D 173732 ADC @%37, #%32

001010 18 45 63 51 ADCX %351, %456

001014 19 35 03 64 ADCX %364, #%35

001018 02 57 ADD r5, r7

00101A 03 68 ADD r6, @r8
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

277
00101C 04 55 34 ADD %34, %55

00101F 05 AA 35 ADD %35, @%AA

001022 06 36 31 ADD %36, #%31

001025 07 37 32 ADD @%37, #%32

001028 08 45 63 51 ADDX %351, %456

00102C 09 35 03 64 ADDX %364, #%35

001030 52 57 AND r5, r7

001032 53 68 AND r6, @r8

001034 54 55 34 AND %34, %55

001037 55 AA 35 AND %35, @%AA

00103A 56 36 31 AND %36, #%31

00103D 57 37 32 AND @%37, #%32

001040 58 45 63 51 ANDX %351, %456

001044 59 35 03 64 ANDX %364, #%35

001048 E2 35 BCLR 3, r5

00104A E2 35 BIT 0, 3, r5

00104C E2 B5 BIT 1, 3, r5

00104E 00 BRK

00104F E2 B5 BSET 3, r5

001051 D5 54 BSWAP %54

001053 LABEL1:

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

278
001053 F6 27 FD BTJ 0, 2, r7, LABEL1

001056 F6 B6 FA BTJ 1, 3, r6, LABEL1

001059 F7 27 F7 BTJ 0, 2, @r7, LABEL1

00105C F7 B6 F4 BTJ 1, 3, @r6, LABEL1

00105F F7 B6 F1 BTJNZ 3, @r6, LABEL1

001062 F6 B6 EE BTJNZ 3, r6, LABEL1

001065 F6 27 EB BTJZ 2, r7, LABEL1

001068 F7 27 E8 BTJZ 2, @r7, LABEL1

00106B D4 34 CALL @%34

00106D D6 34 56 CALL %3456

001070 EF CCF

001071 B0 98 CLR %98

001073 B1 35 CLR @%35

001075 60 78 COM %78

001077 61 54 COM @%54

001079 A2 57 CP r5, r7

00107B A3 68 CP r6, @r8

00107D A4 55 34 CP %34, %55

001080 A5 AA 35 CP %35, @%AA

001083 A6 36 31 CP %36, #%31

001086 A7 37 32 CP @%37, #%32

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

279
001089 1F A2 57 CPC r5, r7

00108C 1F A3 68 CPC r6, @r8

00108F 1F A4 55 34 CPC %34, %55

001093 1F A5 AA 35 CPC %35, @%AA

001097 1F A6 36 31 CPC %36, #%31

00109B 1F A7 37 32 CPC @%37, #%32

00109F 1F A8 45 63
51

CPCX %351, %456

0010A4 1F A9 35 03
64

CPCX %364, #%35

0010A9 A8 45 63 51 CPX %351, %456

0010AD A9 35 03 64 CPX %364, #%35

0010b1 40 34 DA %34

0010b3 41 43 DA @%43

0010b5 30 56 DEC %56

0010b7 31 41 DEC @%41

0010b9 80 34 DECW %34

0010bB 81 44 DECW @%44

0010bD 8F DI

0010bE LABEL2:

0010bE 0A FE DJNZ r0, LABEL2

0010C0 1A FC DJNZ r1, LABEL2

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

280
0010C2 2A FA DJNZ r2, LABEL2

0010C4 3A F8 DJNZ r3, LABEL2

0010C6 4A F6 DJNZ r4, LABEL2

0010C8 5A F4 DJNZ r5, LABEL2

0010CA 6A F2 DJNZ r6, LABEL2

0010CC 7A F0 DJNZ r7, LABEL2

0010CE 8A EE DJNZ r8, LABEL2

0010D0 9A EC DJNZ r9, LABEL2

0010D2 AA EA DJNZ r10, LABEL2

0010D4 BA E8 DJNZ r11, LABEL2

0010D6 CA E6 DJNZ r12, LABEL2

0010D8 DA E4 DJNZ r13, LABEL2

0010DA EA E2 DJNZ r14, LABEL2

0010DC FA E0 DJNZ r15, LABEL2

0010DE 9F EI

0010DF 7F HALT

0010E0 20 46 INC %46

0010E2 21 34 INC @%34

0010E4 0E INC r0

0010E5 1E INC r1

0010E6 2E INC r2

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

281
0010E7 3E INC r3

0010E8 4E INC r4

0010E9 5E INC r5

0010EA 6E INC r6

0010EB 7E INC r7

0010EC 8E INC r8

0010ED 9E INC r9

0010EE AE INC r10

0010EF BE INC r11

0010F0 CE INC r12

0010F1 DE INC r13

0010F2 EE INC r14

0010F3 FE INC r15

0010F4 A0 34 INCW %34

0010F6 A1 48 INCW @%48

0010F8 BF IRET

0010F9 C4 E4 JP @rr4

0010FB 8D F8 18 JP %F818

0010FE 0D F0 10 JP F, %F010

001101 1D F1 11 JP LT, %F111

001104 2D F2 12 JP LE, %F212

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

282
001107 3D F3 13 JP ULE, %F313

00110A 4D F4 14 JP OV, %F414

00110D 5D F5 15 JP MI, %F515

001110 6D F6 16 JP Z, %F616

001113 7D F7 17 JP C, %F717

001116 8D F8 18 JP T, %F818

001119 9D F9 19 JP GE, %F919

00111C AD FA 1A JP GT, %FA1A

00111F BD FB 1b JP UGT, %FB1b

001122 CD FC 1C JP NOV, %FC1C

001125 DD FD 1D JP PL, %FD1D

001128 ED FE 1E JP NZ, %FE1E

00112B FD FF 1F JP NC, %FF1F

00112E 8B 20 JR LABEL3

001130 0b 1E JR F, LABEL3

001132 1b 1C JR LT, LABEL3

001134 2B 1A JR LE, LABEL3

001136 3B 18 JR ULE, LABEL3

001138 4B 16 JR OV, LABEL3

00113A 5B 14 JR MI, LABEL3

00113C 6B 12 JR Z, LABEL3

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

283
00113E 7B 10 JR C, LABEL3

001140 8B 0E JR T, LABEL3

001142 9B 0C JR GE, LABEL3

001144 AB 0A JR GT, LABEL3

001146 BB 08 JR UGT, LABEL3

001148 CB 06 JR NOV, LABEL3

00114A DB 04 JR PL, LABEL3

00114C EB 02 JR NZ, LABEL3

00114E FB 00 JR NC, LABEL3

001150 LABEL3:

001150 0C 30 LD r0, #%30

001152 1C 31 LD r1, #%31

001154 2C 32 LD r2, #%32

001156 3C 33 LD r3, #%33

001158 4C 34 LD r4, #%34

00115A 5C 35 LD r5, #%35

00115C 6C 36 LD r6, #%36

00115E 7C 37 LD r7, #%37

001160 8C 38 LD r8, #%38

001162 9C 39 LD r9, #%39

001164 AC 3A LD r10, #%3A

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

284
001166 BC 3B LD r11, #%3B

001168 CC 3C LD r12, #%3C

00116A DC 3D LD r13, #%3D

00116C EC 3E LD r14, #%3E

00116E FC 3F LD r15, #%3F

001170 C7 36 03 LD r3, %3(r6)

001173 D7 74 05 LD %5(r4), r7

001176 E3 57 LD r5, @r7

001178 E4 55 34 LD %34, %55

00117B E5 AA 35 LD %35, @%AA

00117E E6 36 31 LD %36, #%31

001181 E7 37 32 LD @%37, #%32

001184 F3 70 LD @r7, r0

001186 F5 71 25 LD @%25, %71

001189 C2 46 LDC r4, @rr6

00118B C5 56 LDC @r5, @rr6

00118D D2 46 LDC @rr6, r4

00118F C3 78 LDCI @r7, @rr8

001191 D3 86 LDCI @rr6, @r8

001193 82 58 LDE r5, @rr8

001195 92 52 LDE @rr2, r5

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

285
001197 83 6A LDEI @r6, @rr10

001199 93 3E LDEI @rr14, @r3

00119B C7 16 E3 LD r1, %E3(r6)

00119E D7 68 10 LD %10(r8), r6

0011A1 E8 87 6E E3 LDX r3, %876

0011A5 85 45 64 LDX @r4, %564

0011A8 86 56 34 LDX %34, @%56

0011AB 87 E8 12 LDX @%12, @.RR(%09)

0011AE 88 42 21 LDX r4, %21(rr2)

0011b1 89 E0 92 LDX %92(rr14), r0

0011b4 94 63 45 LDX %345, r6

0011b7 95 63 47 LDX %347, @r6

0011bA 96 E1 EA LDX @rr10, r1

0011bD 97 B4 E2 LDX @.RR(%13), @%B4

0011C0 E8 45 63 51 LDX %351, %456

0011C4 E9 35 03 64 LDX %364, #%35

0011C8 98 34 F4 LEA r3, %F4(r4)

0011CB 99 24 10 LEA rr2, %10(rr4)

0011CE F4 CC MULT %CC

0011D0 0F NOP

0011D1 42 57 OR r5, r7

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

286
0011D3 43 68 OR r6, @r8

0011D5 44 55 34 OR %34, %55

0011D8 45 AA 35 OR %35, @%AA

0011DB 46 36 31 OR %36, #%31

0011DE 47 37 32 OR @%37, #%32

0011E1 48 45 63 51 ORX %351, %456

0011E5 49 35 03 64 ORX %364, #%35

0011E9 50 46 POP %46

0011EB 51 35 POP @%35

0011ED D8 54 30 POPX %543

0011F0 70 54 PUSH %54

0011F2 71 34 PUSH @%34

0011F4 C8 34 50 PUSHX %345

0011F7 CF RCF

0011F8 AF RET

0011F9 90 35 RL %35

0011FB 91 44 RL @%44

0011FD 10 35 RLC %35

0011FF 11 44 RLC @%44

001201 E0 20 RR %20

001203 E1 46 RR @%46

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

287
001205 C0 20 RRC %20

001207 C1 46 RRC @%46

001209 32 57 SBC r5, r7

00120b 33 68 SBC r6, @r8

00120D 34 55 34 SBC %34, %55

001210 35 AA 35 SBC %35, @%AA

001213 36 36 31 SBC %36, #%31

001216 37 37 32 SBC @%37, #%32

001219 38 45 63 51 SBCX %351, %456

00121D 39 35 03 64 SBCX %364, #%35

001221 DF SCF

001222 D0 43 SRA %43

001224 D1 67 SRA @%67

001226 1F C0 41 SRL %41

001229 1F C1 67 SRL @%67

00122C 01 35 SRP #%35

00122E 6F STOP

00122F 22 57 SUB r5, r7

001231 23 68 SUB r6, @r8

001233 24 55 34 SUB %34, %55

001236 25 AA 35 SUB %35, @%AA

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

288
001239 26 36 31 SUB %36, #%31

00123C 27 37 32 SUB @%37, #%32

00123F 28 45 63 51 SUBX %351, %456

001243 29 35 03 64 SUBX %364, #%35

001247 F0 56 SWAP %56

001249 F1 89 SWAP @%89

00124B 62 57 TCM r5, r7

00124D 63 68 TCM r6, @r8

00124F 64 55 34 TCM %34, %55

001252 65 AA 35 TCM %35, @%AA

001255 66 36 31 TCM %36, #%31

001258 67 37 32 TCM @%37, #%32

00125B 68 45 63 51 TCMX %351, %456

00125F 69 35 03 64 TCMX %364, #%35

001263 72 57 TM r5, r7

001265 73 68 TM r6, @r8

001267 74 55 34 TM %34, %55

00126A 75 AA 35 TM %35, @%AA

00126D 76 36 31 TM %36, #%31

001270 77 37 32 TM @%37, #%32

001273 78 45 63 51 TMX %351, %456

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

289
001277 79 35 03 64 TMX %364, #%35

00127B F2 35 TRAP #%35

00127D 5F WDT

00127E B2 57 XOR r5, r7

001280 B3 68 XOR r6, @r8

001282 B4 55 34 XOR %34, %55

001285 B5 AA 35 XOR %35, @%AA

001288 B6 36 31 XOR %36, #%31

00128B B7 37 32 XOR @%37, #%32

00128E B8 45 63 51 XORX %351, %456

001292 B9 35 03 64 XORX %364, #%35

Table 27. Assembly and Object Code Example (Continued)

Program
Counter
(Hex)

Object
Code
(Hex) Instruction Operand 1 Operand 2 Operand 3 Operand 4
UM012821-1115 Assembly and Object Code Example

eZ8™ CPU Core
User Manual

290
Index

Symbols
@ prefix 51
prefix 51
% prefix 51

A
ADC instruction 53, 73
ADCX instruction 53, 77
add

instruction 53, 80
using extended addressing 53, 83
with carry 53, 73
with carry using extended addressing

53, 77
ADD instruction 53, 80
additional symbols 51
address space 17
ADDX instruction 53, 83
alternate function op code 14
AND instruction 56, 86
ANDX instruction 56, 89
arithmetic instructions 52, 53
arithmetic logic unit (ALU) 1, 9
assembler directives 47
assembly and object code example 276
assembly language

compatibility 11
source program example 48
syntax 48

Z8 compatibility 11
ATM instruction 91
atomic execution instruction 91

B
b operand 50
b suffix 51
BCLR instruction 54, 93
big endian 10
binary number suffix symbol 51
bit

addressing 22
clear 54, 93
manipulation 52, 54
notation 50
set 54, 98
set or clear 54, 95
swap 54, 58, 100
test and jump 57, 102, 109
test and jump if non-zero 106

BIT instruction 54, 95, 98
block diagram, CPU 2
block transfer instructions 52, 54
BRK instruction 57
BSET instruction 54
BSWAP instruction 54, 58, 100
BTJ instruction 102
BTJNZ instruction 57, 106
BTJZ instruction 57, 109
UM012821-1115 Index

eZ8™ CPU Core
User Manual

291
byte ordering 10

C
CALL procedure instruction 57, 112
carry flag 6
cc operand 50
CCF instruction 6, 54, 55, 115
clear instruction 55, 117
CLR instruction 55, 117
COM instruction 56
comments 47
compare

instruction 53, 121
using extended addressing 53, 129
with carry 53, 124
with carry using extended addressing

53, 127
compatibility with Z8 11
complement

carry flag 54, 55, 115
instruction 56, 119

condition code
descriptions 8
notation 50

CP instruction 53, 121
CPC instruction 53, 124
CPCX instruction 53, 127
CPU

alternate functions 14
arithmetic logic unit 9
control instructions 52, 55
control registers 1, 18
fetch unit 2

instruction summary 59
new instructions 11
program counter 3
Z8 compatibility 11

CPX instruction 53, 129

D
DA instruction 53, 131
DA symbol 50
data memory 17, 24
DEC instruction 53, 135
decimal adjust

flag 7
instruction 53, 131

decrement
instruction 53, 135
jump if non-zero 141
jump non-zero 57
word 53, 137

DECW instruction 53, 137
destination operand symbol 51
DI instruction 55, 139
direct address notation 50
disable interrupt instruction 55, 139
DJNZ instruction 57, 141
dst operand symbol 51

E
EI instruction 55, 144
enable interrupts instruction 55, 144
ER symbol 50
exclusive OR
UM012821-1115 Index

eZ8™ CPU Core
User Manual

292
instruction 57, 253
using extended addressing 57, 256

extended addressing register notation 50
eZ8 CPU

block diagram 2
control registers 4
extended addressing instructions 13
function instructions 12
instruction set 71
moved Z8 instructions 14
processor description 1
relocation of control registers 15
removed Z8 instructions 14

F
fetch unit 2
flags

carry 6
decimal adjust 7
FLAGS symbol 51
half carry 8
overflow 7
register 5, 18
sign 7
Z8 compatibility 15
zero 7

FLAGS symbol 51

G
general-purpose registers 18

H
h suffix 51
half carry flag 8
HALT instruction 55, 146
hexadecimal number symbols 51

I
illegal instruction traps 45
IM symbol 50
immediate data

notation 50
prefix symbol 51

INC instruction 53
increment

instruction 53, 148
word 53, 151

INCW instruction 53, 151
indexed notation 51
indirect register

notation 50
pair notation 50
prefix symbol 51
working register notation 50
working register pair notation 50

instruction
classes 52
cycle time 3
notation 50
state machine 1

instruction class
arithmetic 53
bit manipulation 54
block transfer 54
UM012821-1115 Index

eZ8™ CPU Core
User Manual

293
CPU control 55
load 55
logical 56
program control 57
rotate and shift 58

instruction set summary 58
instructions

add 53, 80
add with carry 53, 73
add with carry, extended addressing

53, 77
add, extended addressing 53, 83
and 56, 86
and, extended addressing 56, 89
atomic execution 91
bit clear 54, 93
bit set 54, 98
bit set or clear 54, 95
bit swap 54, 58, 100
bit test and jump 57, 102
bit test and jump, nonzero 57, 106
bit test and jump, zero 57, 109
break, on-chip debugger 57, 97
call procedure 57, 112
clear 55, 117
clear bit 54, 93, 95
compare 53, 121
compare using extended addressing 53,

129
compare with carry 53, 124
compare with carry, extended

addressing 53, 127
complement 56, 119
complement carry flag 54, 55, 115

decimal adjust 53, 131
decrement 53, 135
decrement and jump if non-zero 57,

141
decrement word 53, 137
disable interrupts 55, 139
enable interrupts 55, 144
exclusive or 56, 57, 195, 253
exclusive or, extended addressing 57,

256
halt mode 55, 146
increment 53, 148
increment word 53, 151
interrupt return 57, 153
jump 57, 155
jump conditional 57, 157
jump relative 57, 160
jump relative conditional 57, 162
load 55, 164
load constant 55, 169
load constant and increment 54, 55,

171
load effective address 56, 187
load external data 55, 174
load external data and increment 54,

56, 176
load using extended addressing 56, 181
multiply 53, 189
no operation 55, 191
or, logical 56, 192
pop 56, 197
pop using extended addressing 56, 199
push 56, 201
push using extended addressing 56,
UM012821-1115 Index

eZ8™ CPU Core
User Manual

294
203
reset carry flag 54, 55, 205
return 57, 205
rotate left 58, 209
rotate left with carry 58, 211
rotate right 58, 213
rotate right with carry 58, 215
set bit 54, 95, 98
set carry flag 55, 222
set register pointer 55, 228
shift right arithmetic 58, 224
shift right logical 58, 226
stop mode 55, 230
subtract 53, 232
subtract using extended addressing 53,

235
subtract with carry 53, 217
subtract with carry, extended

addressing 53, 220
swap bits 54, 58, 100
swap nibbles 58, 237
test complement under mask 54, 239
test complement under mask, extended

addressing 54, 242
test under mask 54, 244
test under mask, extended addressing

54, 247
trap 57, 249
watch-dog timer 251
watchdog timer 55

interrupt
effect on the stack 40
enable and disable 38
example of vectoring in program

memory 41
nesting of vectored interrupts 42
priority 39
return 57, 153
software interrupt generation 43
vectored processing 39
Z8 compatibility 16

IR symbol 50
Ir symbol 50
IRET instruction 57, 153
IRR symbol 50
Irr symbol 50

J
JP cc instruction 57, 157
JR cc instruction 57, 162
JR instruction 57, 160
jump

conditional 57, 157
JP 57, 155
relative 57, 160
relative conditional 57, 162

L
labels 47
LD instruction 55, 164
LDC instruction 55, 169
LDCI instruction 54, 55, 171
LDE instruction 55, 174
LDEI instruction 54, 56, 176
LDX instruction 56, 181
LEA instruction 56, 187
UM012821-1115 Index

eZ8™ CPU Core
User Manual

295
linear addressing 20
load

constant and auto-increment 54, 55,
171

constant to/from program memory 55,
169

effective address 56, 187
external data 55, 174
external data and auto-increment 54,

56
external data and increment 176
instruction 55, 164
instruction class 52, 55
using extended addressing 56, 181

logical AND
instruction 86
using extended addressing 89

logical exclusive OR
instruction 253
using extended addressing 256

logical instruction class 52, 56
logical OR

instruction 192
using extended addressing 195

M
MULT instruction 53, 189
multiply instruction 53, 189

N
no operation instruction 55, 191
NOP instruction 55, 191

notation
b operand 50
cc symbol 50
DA symbol 50
ER symbol 50
IM symbol 50
IR symbol 50
Ir symbol 50
IRR symbol 50
Irr symbol 50
p symbol 50
R symbol 50
r symbol 50
RA symbol 50
RR symbol 51
rr symbol 50
Vector 51
X symbol 51

O
object code 47
on-chip debugger break 57, 97
op code maps

abbreviations 259
description 258
first op code 260
second map after 1FH 261

operands 47
operations 47
OR instruction 56, 192
ORX instruction 56, 195
overflow flag 7
UM012821-1115 Index

eZ8™ CPU Core
User Manual

296
P
p operand 50
page mode addressing 20
PC symbol 51
polarity notation 50
polled interrupt processing 42
POP instruction 56, 197
POPX instruction 56, 199
precautions, register file 23
processor description 1
program control

flags 4
instruction class 52, 57

program counter
description 3
processor 1
symbol 51

program memory 17, 23
pseudo-ops 47
PUSH instruction 56, 201
PUSHX instruction 56, 203

R
R symbol 50
r symbol 50
RA symbol 50
RCF instruction 6, 54, 55
register

file 17
general-purpose 18
notation 50
organization 18
pair notation 51

pointer 4, 15, 18
pointer, Z8 compatibility 15
precautions 23
symbol 51

relative address notation 50
reset carry flag instruction 54, 55, 205
reset, Z8 compatibility 16
RET instruction 57, 205
RL instruction 209
RLC instruction 58, 211
rotate and shift instruction 52
rotate and shift instructions 58
rotate left instruction 58, 209
rotate left through carry instruction 58, 211
rotate right instruction 58, 213
rotate right through carry instruction 58,

215
RP symbol 51
RR instruction 51, 58, 213
rr symbol 50
RRC instruction 58, 215

S
SBC instruction 53, 217
SBCX instruction 53, 220
SCF instruction 6, 54, 55, 222
set carry flag 6, 55, 222
set carry flag instruction 54
set register pointer 55, 228
shift right

arithmetic 58, 224
logical 58, 226

sign flag 7
UM012821-1115 Index

eZ8™ CPU Core
User Manual

297
software trap 57, 249
source operand symbol 51
source program 47
SP symbol 51
SRA instruction 58, 224
src symbol 51
SRL instruction 58, 226
SRP instruction 55, 228
stack pointer

compatibility 16
high/low byte 4, 15, 18
registers 4
symbol 51
Z8 compatibility 16

stacks 25
STOP instruction 55, 230
subtract

instruction 53, 232
using extended addressing 53, 235
with carry 53, 217
with carry, extended addressing 53,

220
swap bits 54, 58, 100
swap nibbles instruction 58, 237
symbolic commands 47
symbols

@ prefix 51
prefix 51
% prefix 51
b suffix 51
dst 51
FLAGS 51
h suffix 51
PC 51

RP 51
SP 51
src 51

T
TCM instruction 54, 239
TCMX instruction 54, 242
test

complement under mask 54, 239
complement under mask using

extended addressing 54, 242
under mask 42, 54, 244
under mask using extended addressing

54, 247
TM instruction 54, 244
TMX instruction 54, 247
TRAP instruction 57, 249
traps 45

U
using extended addressing 53

V
vector address notation 51

W
watchdog timer refresh 55, 251
WDT instruction 55, 251
working register

addressing 20
UM012821-1115 Index

eZ8™ CPU Core
User Manual

298
notation 50
pair notation 50

X
X symbol 51
XOR instruction 57, 253
XORX instruction 57, 256

Z
zero flag 7
UM012821-1115 Index

eZ8™ CPU Core
User Manual

299
Index UM012821-1115

eZ8™ CPU Core
User Manual

UM012821-1115 Customer Support

299

Customer Support
For answers to technical questions about the product, documentation, or
any other issues with Zilog’s offerings, please visit Zilog’s Knowledge
Base at http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems,
please visit Zilog’s Technical Support at http://support.zilog.com.

http://www.zilog.com/kb
http://support.zilog.com

	eZ8™ CPU Core User Manual
	Revision History
	Table of Contents
	Manual Objectives
	About This Manual
	Intended Audience
	Manual Organization
	Architectural Overview
	Z8® Compatibility
	Address Space
	Addressing Modes
	Interrupts
	Illegal Instruction Traps
	eZ8™ CPU Instruction Set Summary
	Op Code Maps
	Op Codes Listed Numerically
	Sample Program Listing

	Manual Conventions
	Courier Typeface
	Hexadecimal Values
	Brackets
	Braces
	Parentheses
	Parentheses/Bracket Combinations
	Use of the Words Set, Reset, and Clear
	Notation for Bits and Similar Registers
	Use of the Terms LSB, MSB, lsb, and msb
	Use of Initial Uppercase Letters
	Bit Numbering

	Safeguards
	Abbreviations/Acronyms

	Architectural Overview
	Processor Description
	Fetch Unit
	Execution Unit

	eZ8™ CPU Control Registers
	Stack Pointer Registers
	Register Pointer
	Flags Register
	Condition Codes
	Arithmetic Logic Unit
	Byte Ordering

	Z8® Compatibility
	Assembly Language Compatibility
	New Instructions
	New Function Instructions
	Extended Addressing Instructions
	Alternate Function Op Code
	Moved Instructions
	Removed Instructions

	Relocation of eZ8 CPU Control Registers
	Stack Pointer High and Low Byte Registers
	Register Pointer
	Flags Register

	Compatibility with Z8 CPU
	Stack Pointer Compatibility
	Reset Compatibility
	Interrupt Compatibility

	Address Space
	Register File
	CPU Control Registers
	General-Purpose Registers
	Register File Organization
	Register File Precautions

	Program Memory
	Data Memory
	Stacks

	Interrupts
	Interrupt Enable and Disable
	Interrupt Priority
	Vectored Interrupt Processing
	Nesting of Vectored Interrupts
	Polled Interrupt Processing
	Software Interrupt Generation

	Addressing Modes
	Register Addressing
	Register Addressing Using 12-Bit Addresses
	Register Addressing Using 8-Bit Addresses
	Register Addressing Using 4-Bit Addresses
	Escaped Mode Addressing

	Indirect Register Addressing
	Indexed Addressing
	Direct Addressing
	Relative Addressing
	Immediate Data Addressing

	Illegal Instruction Traps
	Symbolic Operation of an Illegal Instruction Trap
	Linear Programs That Do Not Employ The Stack

	eZ8™ CPU Instruction Set Summary
	Assembly Language Source Program Example
	Assembly Language Syntax
	eZ8 CPU Instruction Notation
	eZ8 CPU Instruction Classes
	eZ8 CPU Instruction Summary

	eZ8™ CPU Instruction Set Description
	ADC
	ADCX
	ADD
	ADDX
	AND
	ANDX
	ATM
	BCLR
	BIT
	BRK
	BSET
	BSWAP
	BTJ
	BTJNZ
	BTJZ
	CALL
	CCF
	CLR
	COM
	CP
	CPC
	CPCX
	CPX
	DA
	DEC
	DECW
	DI
	DJNZ
	EI
	HALT
	INC
	INCW
	IRET
	JP
	JP cc
	JR
	JR cc
	LD
	LDC
	LDCI
	LDE
	LDEI
	LDWX
	LDX
	LEA
	MULT
	NOP
	OR
	ORX
	POP
	POPX
	PUSH
	PUSHX
	RCF
	RET
	RL
	RLC
	RR
	RRC
	SBC
	SBCX
	SCF
	SRA
	SRL
	SRP
	STOP
	SUB
	SUBX
	SWAP
	TCM
	TCMX
	TM
	TMX
	TRAP
	WDT
	XOR
	XORX

	Op Code Maps
	Op Codes Listed Numerically
	Assembly and Object Code Example
	Index
	Customer Support

