PRELIMINARY

Z I IO g Technical Manual

July 1987

Z280™ MPU
Microprocessor Unit

Table of Contents

Chapter 1+ Z280 Architectural Overview

I R 1 0 o o U £ o 1 I OSSR
1.2 MU Architectural Features

1.2.1 System and User MOdESccccoevemernienierieninns 1-2
1.2.2 AJAreSS SPACES ...eercveeiriiiiieitiiiiee sttt sttt nres 1-2
1.2.3 Data TYPES .oocoeeeiiieeiiiieeiieee e 1-2
1.2.4 Addressing Modes « 1-3
1.2.5 INSErUCLION S @l.iiiiiiiiiiiiiiicie e 1-3
1.2.6 Exception Conditions ... 1-3
1.2.7 Memory Management
1.2.8 Cache Memory
1.2.9 Refresh..cne ..
1.2.10 On-Chip Peripheralscccooiiiiiiininicieiens e . 14
1.2.11 Multiprocessor Mode.........ccceeveerveriieenenennnn. 1-4
1.2.12 Extended Instruction Facilityccocomimmiiiiiiiniiiiiiienieeeee 1-4
1.3 Benefits of the Architecture N 1-5
1.4.1 High Throughput, 1-5
1.4.2 Integration of SystemFunctions 1-5
1.4.3 Operating System SUPPOrtccccocevvererenneennn 1-5
1.4.4 COOE D @NSItY coiiiiiiiiiiiiieie ettt et 1-5
1.4.5 Compiler EffiCi@NCY oo 1-5
1.4 SUMIMAIY e 1-6

Chapter 2. Address Spaces

2.1 Introduction

2.2 U Register File ...

2.3 (PU Control Registersccccceeveninnes S 2-2

2.4 Memory AdAreSs SPACEScccccevvvveeivniiniesienes vee e 2-3

2.5 1/O AJAreSS SPaCe i e e 2-4

Chapter 3* CPU Control Registers

3.1 INtroducCtion .o 31

3.2 System Configuration Registers 31

v 3.2.1Bus Timing and Initialization Registercccccoviniiiiiicnenennennn. 31
3.2.2 Bus Timing and ControlRegIStercccoovveverenneenenineenn 3-2
3.2.3 Local Address Register.............. 3-3
3.2.4 Cache Control Registerccccvvcceee i . 33

Table of Contents (Continued)

3.3 System Status ReQiStErS ..o 0 o o e 3-4
3.3.1 Master Status ReQgIStercccviiiiiiiiiiiiins e 3-4
3.3;2 Interrupt Status ReQISTer, ..ccciiiiiiiiiiiiiies e 3-4
3.3.3 Interrupt/Trap Vector Table Pointer 3-5
3.3.4 1/O Page Register.......... .35
3.3.5 Trap Control Register 35
3.3.6 System Stack Limit RegiStercccccviiiiieniiniieieeeeeeereee 3-6

Chapter A. Addressing Modes and Data Types

4.1 Introductioncceeiininns e 4-1

4.2 Addressing Mode D @S CIIPLIONS .cc.iiiiiiiiiiiieiieciieeeee e e 4-1
4.2.1 Register (R, R . . . e 4-1
4.2.2 Immediate (IM) / 4-1
4.2.3 Indirect Register (IR) i 4-2
4.2.4 Direct Address (DA) ..c.cccvevrieriierieenieenns 4-2
4.25 Indexed (X) i 4-3
4.2.6 ShOrt INAEX (S X) coeeeiiiiieieieiie sttt 4-3
4.2.7 Relative AJAress (RA) . oo e .. 44
4.2.8 Stack Pointer Relative (SR)c.cccceoene 4-5
4.2.9 Base INAEX (B X) ittt ettt 4-5

4.3 DAt TYPES . oot e 4-6

Chapter 5. Instruction Set

5.1 INtroducCtion . ® . o e e 51

5.2 ProCeSSOr F 1@ G S uuiiiiiiiiiieiiiieiiie sttt ettt e ne e 5-1
521 Carry Flag (C) .o 51
5.2.2 Add/Subtract Flag (N) 5-1
,5.2.3 Parity/Overflow Flag (P/V) . . i o oo oo 5-2
5.2.4 Half-Carry Flag (H e . 52
5.2.5 Zero Flag (2) 5-2
5.2.6 SigN FIAag (S) ceereriemiiieieieenie sttt 5-2
5.2.7 Condition CO0ES . .ioceeiiieriricie e . 52

5.3 Instruction Execution and EXCEPLIONSccccccvvieiiiiiiniiieniieciie e . 53
5.3.1 Instruction Execution and Interrupts 5-3
5.3.2 Instruction Execution and TrapsScccccocevvieeriienienneeniesieeennes 5-3

5.4 Instruction Set Functional GrouUPSccccceoeiirmiienieneneene e 5-4

5.4. T 8-bit Load Group . ® . oot e e 5-4
5.4.2 16-bit Load and Exchange Group

5.4.3 Block Transfer and Search Group .
5.4.4 8-bit Arithmetic and LOGIC Groupccccevveeiieiiieeniieniie e, 5-6
5.4.5 16-bit Arithmetic Groupcccoceviiieiie e 5-6
5.4.6 Bit Manipulation, Rotate and Shift Groupcccccccc.u. 5-7

5.4.7 Program CONtrol GrOUP ...cccevereeiiriiiesiineeie st sesvesieeneseesienns
5.4.8 Input/Output Instruction Group .
5.4.9 U Control Group . . e

5.4.10 Extended Instruction Groupc......
5.5 Notation and Binary ENCOING ..ooceeviieriiiriiiiiins e e 5-10
5.6 INSTIUCHION S € Tt s e e e 5-13

Chapter 6. Interrupts and Traps

6.t Introduction............ LRSS 6-1
6.2 Interrupts .., 6-1
6.2.1 Interrupt 6-2
6.2.2 Interrupt i . 6-2
6.2.3 Interrupt . 6-2
6.2.4 interrupt 6-3
6.3 TrAPS ittt e 6-4
6.3.1 Extended INStruction Trap......c... 6-4
6.3.2 Privileged Instruction Trap 6-4
6.3.3 System Call Trap ...cccoveieiiiiiceeeee e 6-5
6.3.4 Access Violation Trapcccccvvvvrienne 6-5
6.3.5 System Stack Overflow Warning Trapcccceevrvnerinnns 6-5
6.3.6 Division EXCeption Trap......cocoeerieeriueennes w 6-5
6.3.7 SiNGIE-StEP Trap ocoeeiieeciieiee e s . 6-5
6.3.8 Breakpoint-on-Halt Trap * 6-6
6.4 Interrupt and Trap Handling.......c.......... 6-6
i
6.4.1 Interrupt Acknowledgec.cccroiriinenns 6-6
6.4.2 StatuS SaViNg....cooririiiiiiiieie e 6-7
6.4.3 Loading New Program Status 6-7
6.4.4 Executing the Service ROULINEccoceeriieinienieeniie e 6-9
6.4.5 Returning from a Service Routine.......c.ccceceenee. 6-9
6.5 Interrupt/Trap Vector Table 6-9
6.6 The Fatal ConditioN.....cccccoveviit veviveiieiiccieeie s e ——— . 611

Table of Contents (Continued)

Chapter 7. Memory Management Uhit

7.1 INrOAUCTION oo et 71
7.2 MW Architecture e e e e e 7-1
7.3 Page Description Registers e o 7-2

7.4 Address Translation

7.4.1 Address Translation without Program/DataSeparation 7-3
7.4.2 Address Translation with Program/DataSeparation e . T4

7.5 MW CoNtrol REQISIEIS iiiiiiiiecieicie ettt e e 7-5
7.6 Accessing Page Descriptor RegiSterS....ccoiiiiiiiieiiiieiiiiie e 7-6
7.6.1 * Descriptor Select P O It 7-6

7.6.2 Block Movwe Port .
7.6.3 Invalidation Port

7.7 Instruction ADOIS v 0 o L Lo 7-7
Chapter 8. On-Chip Memory

8.1 INTrOAUCTION coiiiiiiiiie ettt s 8-1
8.2 Cache MeMOY MOE........ccoiiiiiiiiiiiis e ettt et ees ean 8-1
8.3 Fixed-Address Mode........ccoveeveannns e 8-4

Chapter 9. On-Chip Peripherals

9.1 Introductionccceiiiiiienen.

9.2 Clock Oscillator
9.3 Refresh Controller
9.4 Counter/Tiirters

9.4.1 Counter/Timer Operating Modesccccverennen.
9.4.2 Gates and TrigUerS .cciriieiiineriie et e
9.4.3 Terminal Count Condition
9.4.4 Counter/Timer Registers

9.4.5 Linking Counter/Timers
9.4.6 Counter/Timer. Sequenceo fEvents
\Y,
9.5 DVA ChaNnNEIS ooiiiiiiciiiiiiiiis cer 0 o ettt ettt 9-9
9.5.1 Types of DOVA OPErationScccocvvveevcveniiniiniies ce o+ o o o 9-10
9.5.2 DVA Transfer Modesccoveeerinieeneninece e F s 9-10

9.5.3 End-of-Process
9.5.4 Priority Resolution
9.5.5 DVA LINKING ciiiiiiie e s
9.5.6 DVA REQISTEIS iiiiiiiiiieiis vttt
9.5.7 DVA Sequence Of EVENTS ..ot vt e e
9.5.8 DVA Programming: LinkedDMAs............
9.5.9 [MA Programming: DVPsLinked to UART

Vi

%

9.6 UART e+ v v e e e s *.9-17
9.6.1 Transmitter Operation
9.6.2 Receiver Operation ... 9-18
9.6.3 UART Registers
9.6.4 UART Operation

9.7 UART BoOtStrapping OPtioN . .oooociiiiiiiiiieieeiice et e e sre e 9-21
Chapter 10. Multiprocessor Configurations
10.1 INtrOAUCHION . oo tes & eeert et 102

10.2 SlIAVE PrOCESSOIS ciuiiiiiiiiieieis citeetteeie e st eetteerteeseesteesseesaes saeeseeesseessseanneanns 10-1

10.3 Tightly Coupled Multiple Processors 10-2
10.3.1 The Local Address RegiSterccoooiiiiviinis o voieieeeeieeeeeine 10-2
10.3.2 Bus Request Protocols 10-2
10.3.3 Examples of the Use of the Global Bus 10-4

10.4 Loosely Coupled Multiple QPUS ..ooooiiiiiieriieeeese e 10-6

10.5 Coprocessors and the Extended Processing Architecture 10-6
10.5.1 Extended Instructions 10-6
10.5.2 Extended Instruction Execution Sequencecc.cccceenn 10-7

Chapter 11. ReSet i 111

Chapter 12. Z80 Bus External Interface

12,1 IntroducCtion e e 12-1

12.2 BUS OPEIAtIONS ...oviiiiiiieieiiiee ettt ettt st 12-2

12.3 Pin DESCHPLONS .ioiiiiiiicieciieiieisee e ie ¢+ et 12-3

12.4 Bus Configuration and TimMiNgccccccoiimrienie o 12-4

125 Transactions % s s 12-4

12.5.1 Memory TranSacCtiONS ...cccccceveriiirenenieenee et
12.5.2 RETN Transactions

12.5.3 Halt and Refresh Transactions
12.5.4 1/0 Transactions

12.5.5 Interrupt Acknowledge Transactions, 12-12
12.5.6 DVA Flyby TransactionS......cccceceeeeene e 12-13
12.6 ReQUESEScccoviiiiiiiiiiiiccies 12-14
12.6.1 Interrupt ReqUestS.......ccccceciiiiiicieiiiiciie e, 12-14
12.6.2 Local Bus Requests.... 12-15
12.6.3 Global Bus Requests 1245

10

11

12

Table of Contents (Continued)

Chapter 13.

Z-BUS External Interface

131 INtrOAUCTION oeiiiiiice e e

13.2 Bus Operations
13.3 Pin Descriptions......ccceeue e
13.4 Bus Configuration and Timing . .

135 TranSaACHONS . ..cccoiiiieieiireee e e e
13.5.1 Memory Transactions PSP R VRO
13.5.2 Halt and Refresh Transactions
13.5.3 1/O TranSactionScccccceremeriieiuereneeneeniesiee e
13.5.4 Interrupt Acknowledge Transactions »
13.5.5 Extended Processing Unit (EPU) Transactions . . .
13.5.6 DVA Flyby TransactionS ...« 0 0 o .
13.6 Requests L. e,
13.6.1 Interrupt Requests
13.6.2 Local Bus Requests ...
13.6.3 Global Bus Requests

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.

Appendix F.

Glossary

Index

viii

Z80/Z280 Compatibility
7280 MPU Instruction FOrmatscccocevvevencnennennens
Instructions in AlphSbetic Ordercccoocviieiiennnen.
Instructions in Numeric Order cccceeene wee

InStruction TiMING .oooooiiiiiiie e

Compatible Peripheral Families

G1

11

13

LIST OF ILLUSTRATIONS AND TABLES

Figure Page
Number Number
1- 1. Block Diagram................. 1-1
2- 1. Register File Organization............ 2-1
2-2. CPU Control RegiStersS2-3
2-3. Numbering of Bits Within @ BYte . 2-3
2- 4. Formats, Multiple-Byte Data Elements in MemoOry......n. 2-4
3- 1. Bus Timing and Initialization RegiSter. ... 3-1
3-2 Bus Timing and Control Register......... 5-2
3-3 Local Address R egisSter.....iiniininnns .3-3
3-4. Cache Control Register...
3-5." Master StatuUS R EgISTE I . e
3-6. Interrupt Status R @ giSte e 3-5
3-7. Interrupt/Trap Vector Table P Ointer. ... 3-5
3-8. 1/0 Page R egiSter.* e 5-5
3-9. "Trap Control Register......... 3-5
3-10. System Stack Limit R @ QiSTe I .. i v et e s e 3-6
5- 1. Flag RegiSter e . 5-1
6- 1. Mode 2 Interrupt Processing...........6-3
6- 2. Instruction EXeCUtiON SeQUENCE...cccoiiiieiiiciiee ettt 6-6
6r3e Format of Saved Status on System Stack

Due to0 @ Mode 3 ITNTEITUP bt e+ e e .6-8
7- 1. Page Descriptor Register......cooeene.
7-2. Address Translation Without Program/Data Separation.
7-3. Address Translation With Program/Data Separation.............
7- 4. MMJ Master Control Register... .
8- 1. Cache Organization ...
9- 1. Refresh Rate Register.....innns
9-2. MPU Counter/Timer® Block Diagram...........
9-3. Counter Operation With Gate Only.........
9-4. Counter Operation With Trigger Only......
9-5. Counter Operation With Gate and Trigger. ..
9-6. Counter/Timer Configuration Register......
9-7. Counter/Timer Command/Status Register......inainnn
9-8. Modes of Operation.......ee oo .
9-9. DMA Master Control Register........
9-10. Transaction Descriptor Register.....ens
9-11. Source & Destination Address Registers Format..........
9-12. General Format, Asynchronous TransmiSSiON.......
9-13. Byte Assembled by Receiver for 5-bit Character with Parity...9-18
9-14. UART Configuration RegiSter....iiiiiiiiieiciiees e 9-18
9-15. Transmitter Centrol/Status R eQISTeI . i et 9-19
9- 16. Receiver Control/Status Register. . 9-20
10- 1.Multipropessor ConfigUIratioN S . i 10-1
10-2. Local Address R EQiSTe Tt + e e e e 10-2
10-3. State Diagram for CPU Bus Request ProtocoOl.........10-3
10-4. Tightly Coupled Processors With Shared Global Memory......... 10-4
10-5. Tightly Coupled. Processors Without Global Memory............. 10-5

10-6. ,Z280 MPU as £n 1/0 P rOCESS Ol ... iieeiiiiiiieeeeeeeeesinnenns 10-5

Table of Contents (Continued)

10-7. EPU Connection in Z280 MPU SYSIEM ..ccciiiriiiien it e e 10-6
10-8. CPU-EPU Instruction EXecution SeqUENCE.ccccmimimiiniierenieeiienenne .10-7
12-1. 780 Bus Configuration (Input OPT tied to GND)

@) PiN FUN CHIO NS i e sttt eee 12-1

D) PiN ASSIGNMENTS .ottt e e ebe e e e o 124
12-2. MemMOry REAA T iM NG . iiuiiiiieiieiie ettt ettt et et e e steen 2eseesneesnseennes
12-3. Memory Write Timing
12-4. Memory Read Timing W/One ExternalWait State 12-6
12-5. Memory Write Timing W/One ExternalWait State............. 12—+
12-6. Memory Read Timing W/One InternalWaitS tateo 12-7
12-7. RETI Read Timing........... e s 12-8
12-8. Halt Timing....... 12-9
12-9. Memory Refresh Timing .12-10
12-10. 1/O Read Timing......... . .12-11
12-11. O WIIte T iM iN G ittt ries + eeeteesteees s e sibeebe e st e sse s b eesaeesenes 12-11
12-12. Interrupt Acknowledge SeQUENCE......cciiiiiiriiiieiiieiie s 12-12
12-13. On-Chip DVMA Channel Flyby Memory ReadTransaction ... 12-13
12-14. On-Chip DMA Channel Flyby MemoryWriteTransaction........cceeeeene 12-14
12- 15.Multiprocessor Mode TimM iN g ... e 12-15
13- 1. Z-BUS Configuration (Input OPT tied to +5V or not connected)

) PiN FUNCEION S .. s e et 13-1

D) Pin ASSIONM ENTS ittt e et s 134
13—2¢ Memory Read T M IN G ... bt 13-6
13-3. Memory Write T iM 0N g ...ttt e cebesieee e eee seraenreens o 13—+
13-4. Memory Read Timing With External Wait Cycle.....iinnnn 1 13—+
13-5. Memory Write Timing With External Wait Cycle...coonviiiiicniennnns 13-8

13-6. Memory Read Timing With Internal Wait Cycle...

13-7. Burst Memory Read TimMiNg ..ot et eeriee e see e sene e 13-9

13-8. [= L 100 1 o o O TSP OPRPRPPN 13-10
13-9. Memory Refresh T im inN g e 13-11
13-210. 1O ReAA T iM N g ettt ettt ene e s 13-12
13-11. 1/O Write Timing ..oeierieneeens 13-12
13-12. Interrupt Acknowledge Tim iNg ... 133
13-13. Memory to EPU Timing...........

13-14. EPU Write To Memory..

13-15. EPU To CPU Timing.....cceennne

13-16. PAUSE Timing.........

13-17. On-Chip DMA Channel Flyby Memory ReadTransaction..........

13-18. On-Chip DMA Channel Flyby Memory Write Transaction.

13—19. Multiprocessor Mode TimMiNg .. e

Table Page

Number Number
3-1. CS Field, Bus Timing & Initialization Register............ e 3-1
3-2. LM Field, Bus Timing & Initialization Register.. 3-1
3-3. 1/0 Field of Bus Timing and Control Register.. . 3-2
3-4. HM Field of Bus Timing and Control RegiSter......... 3-2
3-5. DC Field of Bus Timing and Control RegiSter...3-2
5-1. Condition COdeS....ccoiiiriiiiieiereeie e e 5-3
5-2. 8-Bit Load Group INStructions 5-4
5-3. 16-Bit Load and Exchange Group INStrucCtionNs ..., 5-5
5-4. Block Transfer and Search Group........ ..., 5-5
5-5. 8-Bit Arithmetic and LOQIC GroUP....ccccoimiiiiiiiiiiiniienienie e 5-6
5-6. 16-Bit Arithmetic Operation Instructions........... 5-7
5-7. Bit Manipulation, Rotate and Shift Group.......ccoeuennen. ..5-8
5-8. Program Control Group INStrucCtionN so 5-8
5-9. Input/Output Instruction Group Instructions.. ..5-9
5-10. CPU CoONtrol GroUP ..t st eieeeenieeieeees 5-10
5-11. EXxtended TN STrUCTIO NS .o e e 5-10
5- 12. Encoding of 8-Bit Registersininstruction OpcodesS......ccccevriieruenne 5-11
6- 1.Grouping of Maskable Interrupt RequestS......conene. ..6-1
6-2. Interrupt ModeS.....ccocmmimnieniiininnnns6-4
6-3. Trap TYPeS . -7
6-4. Interrupt Acknowledge Encoding for Z80 Bus PartS...... 6-7
6- 5 Interrupt/Trap Vector TableFormat....is e 6-10
7- 1.Page Descriptor Register AddresSSesS ... 7-5
7-2. MW Invalidation PoOrt...... 7-6
7- 3.1/0 Port Addresses for MV Control RegiStersS. .. 7-6
8- 1.CPU Accesses to On-Chip Memory as Cache.......coiiiiininieneiineeieee .8-2
8-2 On-Chip DVA Accesses (Both Flowthrough and Flyby) Effect

on ON-Chip Memory as CaChe.....cccciiiiue i e s .8-3
8- 3.DMA/CPU Accesses to On-Chip Memory as Fixed Memory Locatione..8-4
9- 1.Encoding, IPA Field in C/T Configuration Register........ 9-5
9-2. 1/0 Addresses of Counter/Timer Registers
9-3. Chbnfiguration and Command/Status Registers

for Linked Counter/TiM er . s 9-8
9-4 Encoding of DAD & SAD Fields in DVA Transaction

DESCrIPtOr R @ g IS T8 Ittt et 2eseeesteeseeas 9-13
9-5. Encoding of Type Field in Transaction Descriptor Register
9-6. Encoding of BRP Field in Transaction Descriptor Register......
9-7. Encoding of ST Field in Transaction Descriptor Register.......
9-8. 1/0 Addresses OfDMA REQIStEIS . o0 . o e
9-9. R Field of UARTConfiguration Register.....
9-10. BC Field of UART,CONtrol R EQISTeI .
9-11. 1/0 Addresses OfUART R EQISTETIS it
9-12. Reset Value of UART and DVA Registers

When Bootstrap Mode IS SelecCted ... oo e 9-21

Table of Contents (Continued)

10-1. Bus Transactions Involved in Fetch of

Extended Instruction Template. ... i 10-8
10- 2. Sequence of Transactions for Data Transfers
Between an EPU and MEMOIY....oocoiiiiiiiieiie it e e e .10-9

..11-2
...11-3

11- 1l.Effectof a Reset on Z280 CPU & MMJ Registers...
11-2. Effectof a.Reset on Z280 On-ChipPeripheral Registe

13-1. ST Status LiNe D eCOUE ... e e esreie e 13-4
B-1. Format 1 Instruction ENCOdiNngS eieeseee o 1 .B-2
B-2. Format 2 Instruction Encodings

B-3. Format3 Instruction Encodings

B-4. Format4 Instruction Encodings

E-1. Instruction Execution Times

E-2. Extended Instruction EXecution TiMeS.....eeees E-11
E-3. Interrupt, Trap, and Special Condition Execution Times...... i.E-12
E-4. Instruction Fetch and Decode Timing........ E-13
E-5. Data Read Tim ingeeeeeens E-14
E-6. Data Write Timing.......rnens E-14
E-7. 1/O Read and Write TimMiNg ..o o LI E-15
E-8. EPU Read and Write Timing..... E-15
E-9. Interrupt Acknowledge Timing ... e s e E-13
E-10. Miscellaneous Transaction Timing E-16
F-1. Z8400 Peripheral Family.............

F-2. Z78000/28300 Peripheral Family

1*1 INTRODUCTION

The Z280" microprocessor unit (MPU) features an
advanced 16-bit CPU that is object-code compatible
with the Z80* CPU. The Z280 microprocessor unit
includes memory management, peripherals, memory
refresh logic, cache memory, wait state
generators, and a clock oscillator on the same
integrated circuit as the CPU The on-chip
peripheral devices include 4 DVA (Direct Menory
Access) channels, 3 counter/timers, and a UART
(Universal Asynchronous Receiver/Transmitter). A
block diagram of the Z280 MAU is shown in Figure
1-1. This chapter presents some of the features
of the 72280 MU family, with detailed descriptions

Chapter 1.
2280 Architectural Overview

of the various aspects of the processor provided
in succeeding chapters.

The 7280 MU has a multiplexed address/data bus
for communication with external memory and
peripheral devices. Two different bus structures
are supported by the 2280: an 8-bit data bus that
uses Z80 Bus control signals, and a 16-bit data
bus that uses Z-BUS* bus control signals. Zilog's
Z80 and Z8500 families of peripherals are easily
interfaced to the Z80 Bus; Zilog*s Z8000* family
of peripherals are easily interfaced to the Z-BUS.

1.2 WU ARCHITECTURAL FEATURES

The central processing unit of the Z280 MPU is a
binary-compatible extension of the 780 CRU
architecture. High throughput rates for the Z280
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be scaled down to
provide for slower speed bus transaction timing.
A programmable refresh mechanism for dynamic RAVs
and a clock oscillator are provided on-chip.

1.2.1 System and User Modes

Two modes of CPU operation, system and user, are
provided to facilitate operating system design.
In system mode, all of the instructions can be
executed and all of the CPU registers can be
accessed. This mode is intended for use by
programs performing operating system functions.
In user mode, certain instructions that affect the
state of the machine cannot be executed and the
control registers in the CPU are inaccessible. In
general, user mode is intended for use by
applications programs. This separation of CPU
resources promotes the integrity of the system,
since programs executing in user mode cannot
access those aspects of the CPU that deal with
time-dependent or system-interface events.

The register structure has been extended to
include separate Stack Pointer registers, one for
a system-mode stack and one for a user-mode
stack. The system-mode stack is used for saving
program status on the occurrence of an interrupt
or trap condition, thereby ensuring that the user
stack is free of system information. The
isolation of the system stack from user-mode
programs further promotes system integrity.

1.2.2 Address Spaces

Addressing spaces in the 7280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the 1/O address
space. The CPU register file is identical to the
Z80 register set, with the exception of the
separate system- and user-mode Stack Pointers.
The A register acts as an 8-bit accumulator; the
HL register is the 16-bit accumulator. These are

1-2

supplemented by four other 8-bit registers (B, C,
D, E) and two other 16-bit registers (IX, 1Y);
the 8-bit registers can be paired for 16-bit
operation, and each 16-bit register can be treated
as two 8-bit registers. The Flag register (F)
contains information about the result of the last
operation. The A, F, B, C, D, E, H, and L
registers are replicated in an auxiliary bank of
registers. These auxiliary registers can be
exchanged with the primary register bank for fast
context switching.

Several CPU control registers determine the
operation of the Z280 MPU. For example, the
contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers
are accessible in system-mode operation only.

The 7280 CPU's logical memory address space is the
same as that of the 780 CPU: 16-bit addresses are
used to reference up to 64K bytes of memory.
However, the on-chip Memory Management Unit (MVU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
MW, Optionally, the MW can be programmed to
distinguish between instruction fetches and data
accesses; thus, the Z280 CPU can have up to four
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes.

The Z280 CPU architecture also distinguishes
between the memory and 1/O address spaces and,
therefore, requires specific 1/0 instructions.
I/0 addresses in the 7280 CPU are 24 bits long,
with the upper 8 bits provided by an 1/0O page
register in the CPU.

1.2.3 Data Types

Many data types are supported by the Z280 CPU
architecture. The basic data type is the 8-bit
byte, which is also the basic addressable memory
element. The architecture also supports opera-
tions on bits, BCD digits, 2-byte words, and byte
strings.

1.2.4 Addressing Nodes

The operand addressing node is the method by which
a data operand's location is specified. The 72280
QU supports nine addressing modes, including the
five modes available on the Z80 CPU. The
addressing modes of the 7280 CPU are:

a Register

e Immediate

e Indirect Register

e Direct Address

e Indexed (with a 16-bit displacement)

a Short Index (with an 8-bit displacement)
a Program Counter (PC) Relative
a Stack Pointer (SP) Relative
a Base Index

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
8-bit shift, rotate, and bit manipulation
instructions are limited to the Register, Indirect
Register, and Short Index addressing modes. The
16-bit loads on the addressing registers support

all addressing modes except Short Index, while
other 16-bit operations are limited to the
Register, Immediate, Indirect Register, Index,

Direct Address, and FC Relative addressing modes.

1.2.5 Instruction Set

The 7280 CPU instruction set is an expansion of
the Z80 instruction set; the enhancements include
support for additional addressing modes for the
Z80 instructions as well as the addition of new

instructions. The Z280 (CPU instruction set
provides a full complement of 8- and 16-bit
arithmetic operations, including signed and
unsigned multiplication and division. Additional

8-bit computational instructions support logical
and decimal operations. Bit manipulation, rotate,
and shift instructions round out the data
manipulation capabilities of the Z280 CPU. The
Jump, Call, and Return instructions have both
conditional and unconditional versions; Relative

addressing is provided for the Jump and Call
instructions to support position-independent
programs. Block move, search, and 1/O
instructions provide powerful data movement
capabilities. In addition, special instructions
have been included to facilitate multitasking,
multiple processor configurations, and typical
high-level language and operating system
functions.

1.2.6 Exception Conditions

The 7280 MU supports three types of exceptions
(conditions that alter the normal flow of program
execution): interrupts, traps, and resets.

Interrupts are asynchronous events typically
triggered by peripherals requiring attention. The
7280 MU interrupt structure has been signi-
ficantly enhanced by increasing the number of
interrupt request lines and by adding an efficient
means for handling nested interrupts. There are
four modes for handling interrupts:

a 8080 compatible, in which the
device provides the first
interrupt routine.

interrupting
instruction of the

a Dedicated interrupts, in which the CPU jumps to
a dedicated address when an interrupt occurs.

a Vectored interrupt mode, in which the
interrupting peripheral provides a vector into
a table of jump addresses.

a Enhanced vectored interrupt mode, wherein the
(U handles traps and multiple interrupt
sources, saving control information as well as
the Program Counter when an interrupt occurs.

The first three modes are compatible with the Z80
QU interrupt modes; the fourth mode provides more

flexibility, with support for nested interrupts
and a sophisticated vectoring scheme.
Traps are synchronous events that trigger a

special QU response when certain conditions occur

during instruction execution. The 2280 QU
supports a sophisticated complement of traps
including Division Exception, System Call,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, and System Stack Overflow Warning
traps.

Hardware resets occur when the RR3TT line is

activated and override all other conditions. A
reset causes certain CGPU control registers to be
initialized.

1.2.7 Memory Management

Memory management consists primarily of dynamic
relocation, protection, and sharing of memory.

1-3

Proper memory management ‘can provide a logical
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to execute data), prevent unauthorized accesses to
memory, and protect the operating system from
disruption by users.

The 16-bit addresses manipulated by the pro-
grammer, used by instructions, and output by the
QU are called logical addresses. The on-chip
Memory Management Unit (MMJ) transforms the
logical addresses into the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from
specifying where information is actually located
in physical memory.

Status information generated by the CGPU allows the
MW to monitor the intended use of each memory
access. lllegal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
areas of memory can be protected from unintended
or unwanted modes of use. Also, the MW records
which memory areas have been modified and can
inhibit copies of data from being retained in the
on-chip cache.

When a memory access violation is detected by the
MW a trap condition is generated in the CPU and
execution of the current instruction is auto-
matically aborted. This mechanism facilitates the
easy implementation of virtual memory systems
based on the 7280 MPU.

1.2.8 Cache Memory

Cache memories are small high-speed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
see if the data at that memory location is
currently stored in the cache. If so, the access
is made to the high-speed cache; if not, the
access is made to main memory, and the cache
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

The 7280 MU includes on-chip memory that can be
used as a cache for programs, data, or both.
Cache operations, including updating, are
performed automatically and are completely trans-

parent to the user. Optionally, this on-chip
memory can be dedicated to a set of menoy
locations that are specified under program

control, instead of being used as a cache.

1-4

1.2.9 Refresh

The 2280 MU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control. If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register. A 10-bit refresh
address is generated for each refresh operation.

1.2.10 On-Chip Peripherals

Several programmable peripheral devices are
included on-chip in the 27280 MPUs: four DVA
channels, three 16-bit counter/timers, and a
UART. Optionally, one of the DVA channels can be
used with the UART as a bootstrap loader for the
2280 MPUs memory after a reset.

1.2.11 Multiprocessor Mode

A special node of operation allows the 72280 MU to
operate i>n environments that have a global bus,
wherein the 7280 MU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the Zz280 MPU and
another set of addresses is used for the global
bus. The 2280 MU is required to meke a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the 7280 MU in multiple-processor configura-
tions. For example, a 7280 MPU could be used as
an 1/0 processor in a Z80000-, Z8000-, or
Z280-based system.

1.2.12 Extended Instruction Facility

The 7280 MRU architecture has a mechanism for
extending the basic instruction set through the
use of external devices called Extended Processing
Units (EPUs). Special opcodes have been set aside
to implement this feature. When the 7280 MU
encounters an instruction with one of these
opcodes, it performs any indicated address calcu-
lations and data transfers; otherwise, it treats
the "extended instruction" as if it were executed
by the EPU.

If an BPU is not present, the Z280 MU can be
programmed to trap when an extended instruction is
encountered so that system software can emulate
the EPUs activity.

1.3 BENEFTS OF THE ARCHITECTURE

The features of the 7280 MU architecture provide
several significant benefits, including increased
program throughput, increased integration of
system functions, support for operating systems,
and improvements in compiler efficiency and code
density.

1.3.1 High Throughput

Very high throughput rates can be achieved with
the 72280 MPU, due to the cache memory, instruction
pipelining, and high clock rates achievsble with
this processor. The CPU clock rate can be scaled
down to provide the bus clock rate, allowing the
designer to use slower, less-expensive memory and
/0 devices. Use of the on-chip cache memory
further increases throughput by minimizing the
number of accesses to the slower, off-chip memory
devices. The high code density achievsble with
the Z280 CPUs expanded instruction set also
contributes to program throughput, since fewer
instructions are needed to accomplish a given
task.

1.3.2 Integration of System Functions

Besides a powerful CPU, the Z280 MU includes
many on-chip devices that previously had to be
implemented in logic external to the micro-
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state
generators, the MMJ cache memory, DVA channels,
counter/timer8, and a UART. Integration of all
these functions onto a single chip results in a
reduced parts count in a system design, accom

panied by a resulting reduction in design and
debug time, power requirements, and printed
circuit board space. This increased level of

integration also, contributes to system throughput,
since the on-chip devices can be accessed quickly
without the need of an external bus transaction.

1.3.3 Operating System Support
Several of the Z280 MPUs architectural features
facilitate the implementation of multitasking

operating systems for Z280-based systems.

The inclusion of user and system operating modes

improves operating system organization. User-mode
programs are automatically inhibited from per-
forming operating-system type functions. System-

mode memory can be separated from user-mode memory
and separate stacks can be maintained for system-
mode and user-mode operations. The System Call

instruction and the trap mechanism provide a
controlled means of accessing operating system
functions during user-mode execution.

The interrupt- and trap-handling mechanisms are
well suited for operating system implementations.
Several levels of interrupts are provided,
allowing for separate control of various peripher-
al devices (both on and off the chip). A new
interrupt mode is provided, wherein status infor-
mation about the currently executing task is saved
on the stack and new program status information
for the service routine is automatically loaded
from a special memory area. Traps result in the
same type of program status saving. In both
cases, status is always saved on the system stack,
leaving the user stack undisturbed.

Allocation of resources within the operating
system can be accomplished using a special Test
and Set inetruction. Other instructions, such as
the Purge Cache instruction, are provided to aid
in task switching and other operating system
chores.

The on-chip MWJ supports a multitasking environ-
ment by providing both a means of quickly
allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage.

1.3.4 Code Density

Code density affects both processor speed and
memory utilization. Code compaction saves memory
space and improves processor speed by reducing the
number of instructions that must be fetched and
decoded. The largest reduction in program size
results from the powerful instruction set, where
instructions such as Multiply and Divide help
substantially reduce the nunber of instructions
required to complete a task.

The efficiency of the instruction set is enhanced
by the addition of new addressing modes. For
example,- all nine addressing modes are available
for all the 8-bit load, arithmetic, and logical
instructions.

1.3.5 Compiler Efficiency

For microprocessor users, the transition from
assembly language to high-level languages allows
greater freedom from architectural dependency and
improves ease of programming. For the Z280 MPUs,
high-level language support is provided through
the inclusion of features designed to minimize
typical compilation and code-generation problems.

1-5

Among these features is the variety and the power
of the 7280 instruction set, allowing the 7280 CRU
to easily handle a large amount and variety of
data types. The 7280 CPU's ability to manipulate
many different data types aids in compiler
efficiency; since data structures are high-level
constructs frequently used in programming,
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

Examples of commonly used data structures include
arrays, strings, and stacks. Arrays are supported
in the Z280 CPU by the Indirect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move|] and Compare instructions; since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Nuneric strings of BOD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
the Stack Pointer Relative addressing node is

1-6

especially useful for accessing parameters and
local variables stored on the stack.

1.4 SUMVARY

The 7280 MU is a high-performance 16-bit micro-
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the Z80 CPU,
the 7280 MU architecture has been expanded to
include features such as multiple memory address
spaces, efficient handling of nested interrupts,
system and user operating modes, and support for
multiprocessor configurations. Additional
functions such as memory management, clock
generation, wait state generation, and cache
memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture—including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency—
greatly enhance the power and versatility of the
7280 PU. Thus, the 7280 MAU provides both a
growth path for existing Z80-based designs and a
high-performance processor for future
applications.

2.1

INTRODUCTION

The 72280 MAU supports four address spaces corre-
sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha-

nisms
physical

used to address into

address spaces

mep the logical
locations. These four

are:

a

CPU register apace. This consists of the
addresses of all registers in the CPU register
file .

This consists of
registers in the CU

CPU control register space.
the addresses of all

control register file.
i
Memory address space. This consists of the

addresses of all locations in the main memory.

/0 address space. This consists of the
addresses of all 1/0 ports through which
peripheral devices are accessed, including
on-chip peripherals and MU registers.

Figure 2-1.

Chapter 2.
Address Spaces

2.2 CPU REGISTER SPACE

The Z280 QU register file is illustrated in
Figure 2-1. The primary register file, consisting
of the A, F, B, C, D, E, H, and L registers, is
augmented by an auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at any one time. Special exchange instructions
are provided for switching between the primary and
auxiliary registers.

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register
in the auxiliary file):

a Flag and accunulator registers (F, A, F', A"

a Byte/word registers (B, C, D, E, H, L, B', C',
o', E', H', L")

a Index registers (IX, IY)

Stack Pointers (SSP, USP)

a Program Counter, Interrupt
Refresh register (PC, I, R)

Q

register, and

Register File Organization

?-1

Register addresses are either specified explicitly
in the instruction or are implied by the semantics
of the instruction.
*

The flag registers (F, F') contain eight status
flags. Four can be individually used for control
of program branching, two are used*to support
decimal arithmetic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i.e., where the result is stored) for
the 8-bit arithmetic and logical instructions.
Two sets of flag and accumulator registers exist
in the 7280 CPU, with only one set accessible as
the flag register and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag register and accumulator.

The byte/word registers can be accessed either as
8-bit byte registers or 16-bit word registers.
Bits within these registers can also be accessed
individually. For 16-bit accesses, the registers
are paired B with C, D with E, and Hwith L. Two
sets of byte/word registers exist in the 7280 CPU,
although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange instruction.

The index registers IX and IY can be accessed as
16-bit registers or their upper and lower bytes
(IXH, IXL IYH, and IYL) can be individually
accessed.

The 7280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
node operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
trap occurs and for supporting subroutine calls
and returns in system mode. The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through
instructions in the currently executing program
and for generating relative addresses. The Inter-
rupt register is used in interrupt node 2 to
generate a 16-bit logical address from an 8-bit
vector returned by a peripheral during an inter-
rupt acknowledge. The Refresh register is used by
the Z80 QU to indicate the current refresh
address, but does not perform this function in the
7280 CPU; instead, it is another 8-bit register
available for the programmer.

2-2

The explicit or implicit register specified by an
instruction is mapped into the QAU register file
based on the state of three control bits. One of
the three control bits is used to mep the flag and
accumulator registers, selecting either F, A or
F', A" whenever the instruction specifies the flag
register or the accumulator. Another control bit
is used to mep the byte/word registers, selecting
the B, C, D, E, H, L registers or the B', C', D',
E', H', L' registers. These two control bits are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
respectively. At any time the program can sense
the state of these control bits by special jump

instructions. The third control bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack
Pointer register or the User Stack Pointer
register is selected whenever an instruction
specifies the Stack Pointer register. In

addition, the User Stack Pointer register also has
an address in the CPU control register space via a
special Load Control instruction.

2.3 CPU CONTROL REGISTER SPACE

The 7280 CPU status and control registers govern
the operation of the CPU. They are accessible
only by the privileged Load Control (LDCTL)
instruction.

Control register addresses are specified by the
contents of the C register. No translation is
performed in mapping this 8-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization register, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the 1/0O Page
register, the System Stack Limit register, the
Trap Control register, the Interrupt Status
register, the Cache Control register, and the
Local Address register (Figure 2-2). The CRU
control registers are described in detail in
Chapter 3.

Figure 2-2.
2.4 |EMORY ADDRESS SPACES

Two memory address spaces, one for system and one
for user mode operation, are supported by the 7280
MPU. They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MU during address translation.

Each address space can be viewed as a string of
64K bytes nunbered consecutively in ascending
order. The 8-bit byte is the basic addressable
element in the 7280 MU memory address spaces.
However, there are other addressable data ele-
ments: bits, 2-byte words, byte strings, and
multiple-byte BPU operands.

The size of the data element being addressed
depends on the instruction being executed. A bit
can be addressed by specifying a byte and a bit
within that byte. Bits are numbered from right to
le ft, with the least significant bit being bit 0,
as illustrated in Figure 2-3.

Figure 2-3." Numbering of Bits within a Byte

CPU Control Registers

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
address within the entity. Multiple-byte entities
can be stored beginning with either even or odd
memory addresses.. A word (2-byte entity) is
aligned if its address is even; otherwise it is
unaligned. Multiple bus transactions, which may
be required to access multiple-byte entities, can
be minimized if alignment is maintained.

The formats of multiple byte data types in memory
are given in Figure 2-4.

Note that when a word is stored in memory, the
least significant byte precedes the most
significant byte of the word, as in the Z80 CRU
architecture.

The 16-bit logical addresses generated by a
program can be translated into 24-bit" physical
addresses by the on-chip MW When the
translation mechanism is disabled, the 24-bit
physical address consists of the logical address
for bits Ag-A-5 and zeros for A-|g-A23«

2-3

Figure 2-4.

2.5 1/0 ADDRESS SPACE

/0 addresses are generated only by /O
instructions. The 8-bit logical port address
specified in the instruction appears on ADD-AD7;
this is concatenated with the contents of the A
register on lines Ag-A" for Direct addressing
mode, or by the contents of the B register for
Indirect Register addressing node or block 1/O
instructions. -The contents of the /O Page
register are appended to this address on lines
Al6" A23* Thus, the 24-bit 1/O port address

2-4

Formats of Multiple-Byte Data Elements in Memory

\Y

consists of the 8-bit address specified in the
instruction, the contents of the A or B register,
and the contents of the I/O Page register.

An 1/0O read or write is always one transaction,
regardless of the bus size and the type of 1/O
instruction. On-chip peripherals with word
registers are always accessed with word
instructions, regardless of the size of the
external bus.

3.1 INTRODUCTION

Several CPU control and status registers specify
the operating mode of the 2280 MPU. There are two
types of QU control registers: system
configuration registers and system status regis-
ters. The system configuration registers contain
information about the physical configuration of
the Z280-based system, such as bus timing infor-
mation. Typically, the system configuration
registers are loaded once during system initial-
ization and are not altered during subsequent

operations. The system status registers contain
information that may change during system
operation, such as the current I/O page. Access

to the QU control registers is restricted to
system mode operation only, using the privileged
Load Control (LDCTL) instruction. Resets ini-
tialize the control registers so that a Z80 object
program w ill execute successfully on the 27280
MPU. (Z80 programs do not affect these registers,
since the Load Control instruction is not part of
the Z80 CPUs instruction set.) Unused bits in
these registers should always be loaded with
zeros.

3.2 SYSTEM CONFIGURATION REGISTERS

There are four 8-bit system configuration regis-
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the Local
Address register, and the Cache Control register.

3.2.1 Bus Timing and Initialization Register

The Bus Timing and Initialization register
controls the scaling of the processor clock for
bus timing, the duration of bus transactions to
the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap
modes. Figure 3-1 illustrates the bit fields in
this register.

Figure 3-1. Bus Timing and Initialization Register

Chapter 3.

CPU Control Registers
Clock Scaling (CS) Field. This 2-bit field
governs the scaling of the QU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table 3-1. This
field is initialized during a reset operation, as
described below, and cannot be modified via
software.

Table 3-1. CS Field of Bus Timing and Initialization Register
CS Field Bus Clock Frequency

00 Bus clock frequency equals CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)

a Bus clock frequency equals CPU clock frequency
(one bus clock cycle for every one CPU clock cycle)

10 Bus clock frequency equals ¥4 CPU clock frequency
(one bus clock cycle for every four CPU clock
cycles)

n Reserved

Low Mnory Wait Insertion (LM) Field. This 2-bit
field specifies the number of automatic wait <
states to insert in memory transactions to the
lower 8 megabytes of physical memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2. Additional
wait states can s till be added to any given memory
transaction via control of the WAT input.

Table 3-2. LM Field of Bus Timing and Initialization Register

Number of WWt States for

LM Field Lower8M Bytes of Memory
00 0
o1 1
10 2
n 3

Multiprocessor Configuration Enable (M>) Biit.
This 1-bit field enables the multiprocessor node
of operation, wherein the 7280 MU is connected to
both a local and a global bus. Transactions to

addresses on the global bus require a special bus
request and acknowledgement before the bus trans-
action can occur. (See Chapter 10 for details
concerning this mode of operation.) Setting this
bit to 1 enables the multiprocessor mode, and
clearing this bit to 0 disables this mode.

Bootstrap Mode Enable (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper-
ation, memory is automatically initialized via the
UART after the reset; the UART receiver and DVA
channel 0 are used to transfer 256 bytes of data
into the first 256 memory locations; execution
then begins from memory location 0. (See Chapter
9 for further details.) Setting this bit to 1
enables the bootstrap node and clearing this bit
to O disables this mode. The BS bit can be set to
1 only during a reset operation, as described
below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this
register is read.

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with a zero when writing
to this register. When this register is read,
bits 4 and 7 mey return a 1.

The Bus Timing and Initialization register can be
initialized with either of two methods during a
reset operation. If the MPUs WIT input is not
asserted during reset, this register is auto-
matically initialized to all zeros, thereby
specifying a bus clock frequency of one-half the
internal QU clock, no automatic wait states
during transactions to the lower 8M bytes of
memory, and disabling of the multiprocessor and
bootstrap modes. If the WAT input is asserted
during reset, the Bus Timing and Initialization
register is set to the contents of the ADQAD7 bus
lines, as read during the reset operation (see
Chapter 12); this form of initialization is the
only way to specify the bootstrap mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the LM and MP
fields can be written using the LDCIL instruction.

3.2.2 Bus Timing and Control Register

The 8-bit Bus Timing and Control register deter-
mines the timing of bus transactions to the upper
8Mbytes of memory and to all 1/O devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

Figure 3*2. Bus Timing and Control Register

I/10 Wait Insertion (I/O) Field. This 2-bit field
specifies the number of automatic wait states (in
addition to the one wait state always present
during /O transactions) to be inserted during
each 1/0 read or write transaction, as per Table
3-3. The specified number of wait states is also
added to the vector read portion of an interrupt
acknowledge cycle.

Table 3-3. 1/0 Field of Bus Timing and Control Register

Number of Walt States

/0 Field forI/O

High Memory Wait Insertion (HM) Field. This 2-bit
field specifies the number of automatic wait
states to be inserted during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1), as per Table 3-4.

Daisy Chain Timing (DC). This 2-bit field
determines the number of automatic wait states to
be inserted during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)
or between the assertion of RT and the assertion

of Ib#Q (for the Z80 Bus). The value of the DC
field determines if any additional clocks are to

be added between the Address Strobe and Data
Strobe (or RT and 1GRQ) assertions.

Table 3-5. DC Field of Bus Timing and Control Register

Number of Walt States for

DC Field Interrupt Acknowledge

The contents of the Bus Timing and Control
register govern the number of automatic wait
states to be inserted during various bus trans-

actions. Additional wait states can be added to
any bus transaction via control of the WAT
input.

The Bus Timing and Control register is set to 30H by a
reset. Bits 4 and 5 should always be written with 0.
When this register is read, bits 4 and 5 may return a
1.

3.2.3 Local Address Register

The 8-bit Local Address register is used while in
multiprocessor mopde to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor node is disabled (that is,
if there is a 0 in bit 5 of the Bus Timing and

Initialization register), the contents of the
Local Address register have no effect on MU
operation.

If multiprocessor mode is enabled, the MU auto-
matically uses the Local Address register during
each memory access to determine if the global bus
is required. The Local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the wupper four bits of the

physical memory address during memory trans-
actions. The 4-bit match field specifies which
bits of the physical memory address are of
interest; for those bit positions specified in

the match field, if all the corresponding address
bits match the Local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions* then the global
bus is requested, and the transaction cannot
proceed until the global bus acknowledge signal is

asserted. (See Chapter 10 for further discussion
of the Multiprocessor mode.)
The format of the Local Address register is

illustrated in Figure 3-3.

Figure 3-3. Local Address Register

Base bit (Bf]): For each ME that is set to 1, the
corresponding value of Bn must match the value of
address bit An in order for the local bus to be
used; otherwise, the transaction requires the use
of the global bus.

Match Enable bit (HE~i |f Mm is set to 1, then
the corresponding physical address bit An is
compared to base bit Bn to determine if the
address requires the use of the global bus. If
MEn is a zero, then any values for An and Bn
produce a match, signifying a local bus access.
If every M is cleared to 0, then all memory
transactions are performed on the local bus.

The Local Address register is cleared to all zeros
by a reset.

3.2.4 Cache Control Register

The 8-bit Cache Control register controls the
operation of the on-chip memory. The contents of
the Cache Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
data fetches. This register is also used to
determine if burst-mode memory transactions are
supported. (See Chapter 8 for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

The Cache Control register contains five control
bits, as described below. The format for this
register is shown in Figure 3-4.

Figure 3-4. Cache Control Register

Memory/Cache (M/O B it. While this bit is set to
1, the on-chip memory is accessed as physical
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which the on-chip memory will respond. While
this bit is cleared to 0, the on-chip memory is
accessed associatively as a cache.

Cache Instruction Disable (I) Bit. While this bit

and the MC bit are cleared to 0, the on-chip
menory is used as a cache during instruction
fetches. While this bit is set to 1, instruction

fetches do not use the cache. If the MC bit is a
1, the state of this bit is ignored.

Cache Data Disable (D) Bit. While this bit and
the MC bit are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is sst to 1, data fetches do not use the
cache. (The cache can be enabled for both

3-3

instruction and data fetches by clearing both the
| and O bits.) [If the MC bit is a 1, the state
of this bit is ignored.

Low Memory Burst Capability (LMB) Bit. This 1-bit
field specifies whether burst-mode memory
transactions wiill occur during memory transactions
to the lower 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 0). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to 0
disables burst node transactions.

High Memory Burst Capability (HVB) Bit. This
1-bit field specifies whether burst-mode memory
transactions w ill occur during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to 0
disables burst-mode transactions.

The Cache Control register is set to a 200
(hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches
only and disabling burst node transactions. Bits
0, 1, and 2 of this register are not used.

3.3 SYSIEM STATUS REGISTERS

There are six system status registers in the 7280
CPU. the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, 1/O
Page register, Trap Control register, and System
Stack Limit register.

3.3.1 Master Status Register

The 16-bit Master Status register (MSR) contains
status information about the currently executing
program. Typically, the MR changes when a new
programming task is dispatched; it changes
automatically when an interrupt or trap occurs.
For all traps and for interrupts processed using
interrupt node 3, the old value of the MR is
saved on the system stack and a new MR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

The format of the Master Status register is showmn
in Figure 3-3.

Figure 3-5. Master Status Register

3-4

While this bit is cleared
to 0, the Z280 MU is in the system node of
operation; while set to 1, the MU is in the user
mode of operation. The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged
instructions can be executed only while in system
mode.

User/System (U/5) Biit.

Breakpoint-on-Halt Enable (BH) Bit. While this
bit is set to 1, the QU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed normally.

Single-Step Pending (SSP) Bit. The QU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this
bit is set to 1. The Single-Stpp bit s
automatically copied into this field at the

completion of an instruction. This bit is
automatically cleared when a Single-Step, Division
Exception, Access Violation, Privileged

Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MR has a 0 in this
bit position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.)

Single-Step (SS) Bit. This bit is the enable for
the single-step operating mode. While this bit is
set to 1, the QU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled.

Interrupt Request Enable (En) Bit. There are
seven interrupt enable bits in the MSR one for
each type of maskable interrupt source. The 7280
MPUs interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit En is set to 1,
interrupt requests from sources at level n are
accepted by the CPU;, while En is cleared to O,
interrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with all
zeros by a reset. Bits 7, 10, 11, 13, and 13 of
the MR always should be written with zeros.

3.3.2 Interrupt Status Register

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

enable bits are writeable; all other bits in this
register are read-only status bits. The fields in
the Interrupt Status register are shown in Figure
3-6.

Figure 3-6. Interrupt Status Register

Interrupt Vector' Enable (In) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While In is set to 1,
interrupts on the Interrupt n line are vectored
when the GRU is in interrupt node 3; while In is
cleared to 0, that interrupt is not vectored.
These bits are ignored when not in interrupt node
3.

Interrupt Mode (IM) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this field denoting interrupt
mode n. This field can be changed by executing
the IM instruction.

Interrupt Request Pending (IPn) Bits. When bit
IPn is a 1, an interrupt request from a source at
level n is pending.

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode 0 is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. Bits 7, 10, and
11 of this register are not used.

3.3.3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer
contains the twelve most significant bits of the
physical memory address of the start of the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table is a memory area that holds the
values that are loaded into the Master Status
register and Program Counter during trap and
interrupt processing under interrupt mode 3, as
described in Chapter 6. The twelve low-order bits
of the 24-bit physical address are assumed to be
all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory. The low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7).

The contents of the Interrupt/Trap Vector Table
Pointer are wunaffected by a reset and are
undefined after power-up. When this register is
read, bits 3,2,1 and O may return a 1.

3.3.4 I/O Page Register

The 8-bit I/O Page register determines the upper
eight bits of the 24-bit peripheral address output
during execution of an 1/O transaction (Figure
3-8). /0 pages FEH and HH are reserved for
on-chip peripheral addresses.

Figure 3-9. Trap Control Register

Inhibit User This bit determlnes

WKetné (f”&er”tﬁot /otP‘en stV@ctuoPnage alé 95iF e g &G

Fr%es"fructlons 6\?th Bl? is set to 1, all I/O
instructions are treated as privileged
?gtguculorap c ntro?rheatt%rt%pt to execute an 1/O
instruction” w in ““user node results in
ﬂ{é""ﬁgbe‘i 9% C€8ﬁkréfa”re |sté\”ec*h'r3am%" %ﬁ%
geared 4.0 110 e T b ST
ﬁTuslftrales theSForm A o f thlls reI |s¥er

ays be executed in system) regardless of

the state of this bit.

EPU Enable (E) Bit. This bit indicates whether or
not an Extended Processor Unit (EPU) is available
in the -system for execution of extended in-
structions. If this bit is cleared to O,
indicating that no EPUs are present, the QU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit
is set to 1, the QU performs whatever data
transfers are indicated by the extended in-
struction opcode, and assumes that the BU is
present to execute the instruction.

3-3

System Stack Overflow Warning (S) Bit. This is
the enable bit for the System Stack Overflow
Warning trap. While it is set to 1, Stack
Overflow Warning traps can occur during a stack
access while in system mode, as determined by the
contents of the Stack Limit register. While this
bit is cleared to 0, Stack Overflow Warning traps
are disabled. This bit is automatically cleared
when a System Stack Overflow Warning trap is
generated.

The Trap Control register is cleared to all zeros
by a reset, indicating that I/O instructions are
not privileged, EPUs are not present in the

system, and Stack Overflow Warning traps are
disabled. Bits 3 through 7 of this register are
not used.

3-6

3.3.6 System Stack Limit Register

The 16-bit System* Stack Limit register determines
when a System Stack Overflow Warning trap is to be
generated. Pushes onto the system-mode stack
cause the 12 most significant bits of the logical
address of the System Stack Pointer to be compared
to the 12 most significant bits of this register;
a System Stack Overflow Warning trap is generated
if they match. The low-order four bits of this
register must be zeros (Figure 3-10). This
register has no effect on MU operation if the
System Stack Overflow Warning enable bit in the
Trap Control register is cleared to 0.

Figure 3*10. System Stack Limit Register

The contents of the System Stack Limit register
are cleared to zeros by a reset.

4.1 INTRODUCTION

An instruction is a consecutive list of one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon. For Z280 CPU instructions,
operands can reside in CPU registers, memory
locations, or /O ports. The methods used to
designate the location of the operands for an

instruction are called addressing modes. The Z280
QU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative

Address, Stack Pointer Relative, and Base Index.
A wide variety of data types can be accessed using
these addressing modes.

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the
addressing modes for the 27280 CPU. Each
description explains how the operand*s location is
calculated, indicates which address spaces can be
accessed with that particular addressing ncyde, and
gives an example of an instruction using that
mode, illustrating the assembly language format
for the addressing mode. The examples using
memory addresses use logical memory addresses; if
the MW is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

4.2.1 Register (R9 RX)

When this addressing node is used, the instruction
processes data taken from one of the 8-bit
registers A, B, C, D, E, H, L, IXH, IXL, IYH, IYL,
or one of the 16-bit registers BC, DE, HL, IX, 1Y,
SP, or one of the special byte registers | or R

Storing data in a register allows shorter
instructions and faster execution than occur with
instructions that access memory.

Chapter 4.
Addressing Modes and Data Types

INSTRUCTION REGISTER

| OPERATION | REGISTERM OPERAND |

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register address
space. The register length (byte or word) is
specified by the instruction opcode.

Example of R modes

LD BC,HL load the contents of H. into BC

Before instruction execution: Afterinstruction execution:

4.2.2 Immediate (IN)

When the Immediate addressing mode is used, the
data processed is in the instruction.

The Immediate addressing mode is the only mode
that does not indicate a register or memory
address as the source operand.

INSTRUCTION
OPERATION

OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers.

Example of IN mode:
LD A55H ;Jload hex 55 into the accumulator

Before instruction execution: After instruction execution:

4.2.3 Indirect Register (IR)

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the H. register
for memory accesses or the C register for I/O and
control register space accesses. For the Load
Byte instruction, BC and CE can also be used in
addition to HL.

Depending on the instruction, the operand
specified by IR node is located in either the 1/O
address space (I/O instructions), control register
space (Load Control instruction), or data memory
address space (all other instructions).

The Indirect Register nmode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed.

Example of IR mode:

LD A,(HL) ;load the accunulator with the data

;addressed by the contents of H-

Before instruction execution: After instruction execution:

Data memory:

170C:

4-2

4.2.4 Direct Address (DA)

When the Direct Address addressing nmode is used,
the data processed is at the location whose memory
or 1/0O port address is in the instruction.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Depending on the instruction, the operand
specified by DA mode is either in the 1/0 address
space (I/O instructions) or in the data memory
address space (all other instructions).

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

Example of DA mode:

:Jload BC with the data in
;address 5E22

LD BC,(5E22H)

Before instruction execution: After instruction execution.

4.2.5 Indexed (X)

For this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX, or
Y.

The indexed address is computed by Ridding the
address specified in the instruction to a

twos-complement “index" contained in the HL, IX or
IY register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data 8tructures where the address
Of the base of the table i8 known, but the
particular element index must be computed by the
program.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Operands specified by X mode are always in the
data memory address space.

Example of X mode:
LD A,(IX ¥ 231AH) :Jload into the accumulator
jthe contents of the memory

;location whose address
;is 231AH + the value in IX

Address calculation:

231A
+01FE
2518

4.2.6 Short Index (SX)

When the Short Index addressing node is used, the
data processed is at the location whose address is
the contents of IX or IY offset by an 8-bit signed
displacement in the instruction. (Note that this
addressing node was called "Indexed" in the Z80
CPU literature.)

Before instruction execution: After instruction execution:

Data memory:

2518: |3 D

The short indexed address is computed by adding
the 8-bit twos-complement signed displacement
specified in the instruction to the contents of
the IX or 1Y register, also specified by the
instruction. Short Index addressing allows random
access to tables or other complex data structures
where the address of the base of the table is
known, but the particular element index nMt be
computed by the program.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THp ADDRESS IN THE INSTRUCTION,
OFFSET BY THE CONTENTS OF THE REGISTER.

Operands specified by SX mode are always in the
data memory address space.

Example of SX mode:
LD A,(IX - 1) jload into the accunulator the
;contents of the memory location

2whose address is one less than
;the contents of IX

Before instruction execution:

After instruction execution:

4-3

Address calculation: H- encoding in the instruc-
tion is sign-extended before

the address calculation.

+FFFF
2039

4.2.7 Program Counter (PC) Relative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an
8- or 16-bit displacement given in the
instruction.

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Program Counter value used is
the address of the first instruction following the
currently executing instruction. For extended
instructions, the address used to calculate the
displacement is the address of the template.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

An operand specified by RA node is always in the
program memory address space.

The Program Counter Relative Addressing node is
used by certain program control instructions to
specify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and
for Loads that access constants in the program
address space.

Example o f RA mode:

LD A<LABEL> ;Jload the accunulator with the
;contents of the memory location

;whose address is LABEL

This format implies that the assembler wiill
calculate the displacement from the current RC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this
example can also be written in the following
manner:

LD A<$ + 6> ;load the accunulator with the
;contents of the memory location
:whose address is six more than
;the address of the start of this
;LD instruction
or
LD A(PC + 2) jload the accumulator with the

;contents of the memory location
;whose address is two more than
;the current PC, which now points
;to the next instruction

Because the Program Counter is advanced to point
to the next instruction when the address

calculation is performed, the constant that occurs
in the instruction is +2.

Before instruction execution: Afterinstruction execution:

Program memory-

instruction

Address calculation:

0206
+ 2
0208

4.2.8 Stack Pbinter Relative (SR)

For the Stack Pointer Relative addressing mode,
the data processed is at the location whose
address is the contents of the Stack Pointer
offset by a 16-bit displacement in the
instruction.

The instruction specifies a twos-complement
displacement that is added to the contents of the
Stack Pointer register to form the address. An
operand specified by R mode is always in the data
memory address space.

The SR addressing mode is used to specify data
items to be found in the stack such as parameters
passed to subroutines. The System Stack Pointer
or User Stack Pointer is selected depending on the
state of the User/System bit in the Master Status
register.

4.2.9 Base Index (BX)

For the Base Index addressing mode, the data
processed is at the location whose address is the

Example of SR mode:

LD A,(SP +2) {load into the accunulator

' {the contents of the memory
{location whose address is
;two more than the contents
;of SP

Before instruction execution: Afterinstruction execution:

Data memory:

Top of stack 8200
8201
8202
8203

=

Address calculation:

8200
+ 2
8202

contents of HL, IX, or 1Y, offset by the contents

of another of these three registers.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF THE ONE REGISTER
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

This mode allows access to memory locations whose
physical addresses are computed at run time and
are not fully known at assembly time. An operand
specified by BX node is always in the data memory
address space.

Example of BX mode:

LD A(HL + IX) ;load into the accunulator the
{contents of the memory location
{whose address is the sum of the
{Contents of the H. and IX
{register

Before instruction execution: Afterinstruction execution:

Address calculation:

1502
+FFE
1500

4-5

4.3 DATA TYPES

Many data types are supported by the 27280 MU
architecture; that is, many data types have a
hardware representation in a 7280 MU system and
instructions that directly apply to them. The
2280 MAU supports operations on bytes, words,
bits, BD digits, and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the register, memory,

and /0O address spaces. The 8-bit load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as logical, signed

numeric, or unsigned numeric values.

Operations on two-byte words are also supported.
Sixteen-bit load and arithmetic instructions
operate on words in registers or memory; words
can be treated as signed or unsigned numeric
values. /O reads and writes can be 8-bit or
16-bit. operations. Sixteen-bit logical memory
addresses can be held and manipulated in 16-bit
registers.

Bits are fully supported and addressed by nunber
within a byte (see Figure 2-2). Bits within byte
registers or byte memory locations can be tested,
set, or cleared.

Operations on binary-coded decimal (BCD) digits

are supported by the Decimal Adjust Accunulator
and Rotate Digit instructions. BXD digits are
stored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in-
struction is wused after a binary addition or
subtraction of BCD numbers. The Rotate Digit
instructions are used to shift BOD digit strings
in memory.

Strings of up to 65,536 bytes can be manipulated
by the 7280 CPUs block move, block search, and
block 1/0 instructions. The block move
instructions allow strings of bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings
of bytes in memory to locate a particular value.
The block I/0 instructions allow strings of bytes
or words to be transferred between memory and a
peripheral device.

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Return, Push, and Pop.
A special stack write warning feature aids in the
allocation of system stack memory space.

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended instruction.

5.1 INTRODUCTION

The Z280 CPUs instruction.set is a superset of
the Z80's; the Z280 CPU is opcode compatible with
the Z80 CPU. Thus, a Z80 program can be executed
on a Z280 MU without modification. The
instruction set is divided into ten groups by
function:

8-bit load

16-bit load and exchange

Block transfer and search

8-bit arithmetic and logical

16-bit arithmetic

Rotate, shift, and bit manipulation
Program control

Input/Output

QU control

Extended instructions

I O A R R)

Thie chapter describes the instruction set of the

7280 CPUs. First, flags and condition codes are
discussed in relation to the instruction set.
Then, interruptibility of instructions s

discussed and traps are described. The last part
of this chapter is a detailed description of each

instruction, listed in alphabetic order by
mnemonic. This section is intended to be used as
a reference for 7280 MU programmers. The entry
for each instruction contains a complete
description of the instruction, including
addressing modes, assembly language mnemonics,

instruction opcode formats, and simple examples
illustrating the use of the instruction.

5.2 PROCESSOR HAGS

The Flag register contains six bits of status
information, that are set or cleared by U
operations (Figure 5-1). Four of these bits are
testable (C, P/, Z, and S) for wuse with
conditional jump, call, or return instructions.
Two flags are not testable (H, N) and are used for
binary-coded decimal (BCD) arithmetic.

Chapter 5.
Instruction Set

The flags provide a link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting value of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Junp Relative, subroutine Call, and
subroutine Return instructions; these instructions
are referred to as conditional instructions.

5.2.1 Carry Flag (C)

The Carry flag is set or cleared depending on the
operation being performed. For add instructions
that generate a carry and subtract instructions
that generate a borrow, the Carry flag is set to
1. The Carry flag is cleared.to O by an add that
does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the
precision of the result. Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set
to 1if a carry occurs when adding BID quantities.

For the rotate instructions, the Carry flag is
used as a link between the least significant and
most significant bits for any register or memory
location. During shift instructions, the Carry
flag contains the last value shifted out of any
register or memory location. For logical in-
structions the Carry flag is cleared. The Carry
flag can also be set and complemented with
explicit instructions.

5.2.2 Add/Subtract Flag (N)

The Add/Subtract flag is used for BOD arithmetic.
Since the algorithm for correcting BD operations
is different for addition and subtraction, this
flag is used to record whether an add or subtract
was last executed, allowing a subsequent Decimal
Adjust Accumulator instruction to perform
correctly. See the discussion of the DAA in-
struction for further information.

5.2.3 Parity/Overflow Flag (PA)

This flag is set to a particular state depending
on the operation being performed.

For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on
twos-complement numbers has exceeded the largest
number, or is less than the smallest number, that
can be represented using twos-complement
notation. This overflow condition can be
determined by examining the sign bits of the
operands and the result.

The P/V flag is also used with logical operations
and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are counted. If the total is odd, odd parity (P =
0) is flagged. |If the total is even, even parity
is flagged (P =1).

During block search and block transfer
instructions, the P/V flag monitors the state of
the byte count register (BC). When decrementing
the byte counter results in a zero value, the flag
is cleared to 0, otherwise the flag is set to 1.

During the Load Accumulator with I or R register
instructions, the PN flag is loaded with the
contents of ,the Interrupt A enable bit in the
Master Status register.

When inputting a byte to a register from an 1/O
device addressed by the C register, the flag is
adjusted to indicate the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to
0 depending on the carry and borrow status between
bits 3 and 4 of an 8-bit arithmetic operation and
between bits 11 and 12 of a 16-bit arithmetic
operation. This flag is wused by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on
packed BOD data.

5.2.5 Zero Flag (2)

The Zero flag (Z) is set to 1 if the result
generated by the execution of certain instructions
is a zero.

For arithmetic and logical operations, the Zero

flag is set to 1 if the result is zero. |If the
result is not zero, the Zero flag is cleared to O.

5-2

For the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location
pointed to by the contents of the register pair
HL.

When testing a bit in a register or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is
set to 1 if the tested bit is a 0, and
vice-versa).

For the block I/O instructions, if the result of
decrementing B is zero, the Zero flag is set to 1;
otherwise, it is cleared to O. Also for byte
inputs to registers from 1/0 devices addressed by
the C register, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most
significant bit of the result. When the 72280 CGRU
performs arithmetic operations on signed numbers,
binary twos-complement notation is used to
represent and process numeric information. A
positive number is identified by a zero ip the
most significant bit. A negative number is
identified by a 1 in the most significant bit.

When inputting a byte from an 1/0 device addressed
by the Cregister to a CPU register, the Sign flag
indicates either positive (S =0) or negative (S =
1) data.

For the Test and Set instruction, the Sign bit is
set to 1 if the tested bit is 1, otherwise it is
cleared to 0.

5.2.7 Condition Codes
The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con-
ditional instructions. The operation of these in-
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into
a 3-bit field in the instruction opcode itself.

Table 5-1 lists the condition code mnemonic, the
flag setting it represents, and the binary
encoding for each condition code.

Table 5-1. Condition Codes

Flag Binary

Mnemonic Meaning Setting Code

Condition Codes for Jump, Call, and Return Instructions

NZ Not Zero z=0 000
z Zero Z=1 001
NC No Carry cC=0 010
C Carry c=1 o011
NV No Overflow V=0 100
PO Parity Odd V=0 .100
\% Overflow V=1 101
PE Parity Even V=1 101
NS No Sign S=0 110
P Plus S=0 110
S Sign S=1 111
M Minus S=1 111

Condition Codes for Jump Relative Instruction

NZ Not Zero Z=0 100
z Zero zZ=1 101
NC No Carry cC=0 110
C Carry c=1 11

5.3 INSTRUCTION EXECUTION AND EXCEPTIONS

Two types of exception conditions, interrupts and
traps, can alter the normal flow of- program
execution. Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use interrupts to request
service from the CPU. Traps are synchronous
events generated internally in the QU by
particular conditions that occur during
instruction execution. Interrupts and traps are
discussed in detail in Chapter 6. This section
examines the relationship between instructions and
the exception conditions.

5.3.1 Instruction Execution and Interrupts

When the CQPU receives an interrupt request, and it
is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are designed to be inter-
ruptible so as to minimize the length of time it
takes the CGRU to respond to an interrupt. If an
interrupt request is received during a block move,
block search, or block 1/0O instruction, the in-
struction is suspended after the current iter-
ation. The address of the instruction itself,
rather than the address of the following in-
struction, is saved on the system stack, so that
the same instruction is executed again when the
interrupt handler executes an interrupt return

instruction. The contents of the repetition
counter and the registers that index into the
block operands® are such that, after each iter-
ation, when the instruction is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers.

5.3.2 Instruction Execution and Traps

Traps are synchronous events that result from the
execution of an instruction. The action of the
QU in response to a trap condition is similar to
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All traps except for Extended
Instruction, System Stack Overflow Warning,
Single Step and Breakpoint-on-Halt are nonmask-
able.

The 7280 MPU supports eight kinds of traps:

Division Exception

Extended Instruction

Privileged Instruction

System Call

Access Violation (page fault and write protect)
System Stack Overflow Warning

Single Step

Breakpoint-on-Halt

QO D®»D® DD D

The Division Exception trap occurs when executing
a divide instruction if either the divisor is zero
or the result cannot be represented in the
destination (overflow).

The Extended Instruction trap occurs when an
extended instruction is encountered, but the
Extended Processor Architecture is disabled,

(the BPA bit in the Trap Control register should
be cleared to 0 if there is no BRU in the system
or if the Z280 MU is configured with an 8-bit
bus). This allows the same software to be run on
7280 MU system configurations with or without
Extended Processing Units (EPUSs). For systems
without EPUs, the desired extended instructions
can be emulated by software that is invoked by the
Extended Instruction trap. For systems with an
8-bit data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
/0 instructions to access the EPU. The
information saved on the system stack during this
trap is designed to facilitate 'the 8-bit I/O
interface to an BEPU by providing address
calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an 1/O
interface trap handler.

5-3

The Privileged Instruction trap serves to protect
the integrity of a system from erroneous or
unauthorized actions of wuser mode processes.

Certain instructions, called privileged
instructions, can be executed only in system
mode. An attempt to execute one of these

instructions in user
Instruction trap.

node causes a Privileged

The System Call instruction always causes a trap.
This instruction is used to transfer control to
system nmode software in a controlled way,
typically to request operating system services.

The Access Violation trap occurs whenever the 2280
MPUs on-chip MW detects an illegal memory
access. Access Violation traps cause instructions
to be aborted. When Access Violation traps occur,
the logical address of the instruction is pushed
onto the system stack along with the Master Status
register; part of the logical address that caused
the page fault is latched in the MW to indicate
which page frame caused the fault; and the QU
registers are unmodified, i.e., their contents are
the same as just before the instruction execution
began. (For block move, block search, or block
/0 instructions, the registers are the same as
just before the iteration in which the page fault
occurred.)

The System Stack Overflow Warning trap arises
when pushing information onto the system stack
causes the Stack Pointer to reference a specified
16-byte area of memory. Use of this facility
protects the system from system stack overflow
errors.

The Single Step trap occurs with the execution of
each instruction, provided the Single-Step control
bit in the Master Status register is set to 1.
This facilitates software debugging of programs.

The Breakpoint-on-Halt trap occurs whenever the
Halt instruction is encountered and the
Breakpoint-on-Halt control bit in the Master
Status reqister is set to 1. This facilitates
software debugging of programs.

5.4 INSTRUCTION SET FUNCTIONAL GROUPS

This section presents an overview of the 27280
instruction set, arranged by functional groups.
(See Section 5.5 for an explanation of the
notation used in Tables 5-2 through 5-11.)

5.4.1 8-Bit Load Group

This group of instructions (Table 5-2) includes
load instructions for transferring data between
byte registers, transferring data between a byte
register and memory, and loading immediate data
into byte registers or memory. All addressing
modes are supported for loading between the
accumulator and memory or for loading immediate
values into memory. Loads between other registers
and memory use the IR and SX addressing modes. An
exchange instruction is available for swapping the
contents of the accumulator with another register
or with memory.

The LDUD and LDUP instructions are available for
loading to or from the user-mode memory address
space while executing in system mode. The CRU
flags are used to indicate if the transfer was
successfully completed. LDUD and LDUP are
privileged instructions. The other instructions
in this group do not affect the flags, nor can
their execution cause exception conditions.

Table 5-2. 8-Bit Load Group Instructions

Instruction Name Format
Exchange Accumulator EX Assrc
Exchange H,L EXH.L
Load Accumulator LD A.src
LD dstA
Load Immediate LD dst.n
Load Register (Byte) LD R,src
LD-dst.R
Load in'User Data Space LDUD Assrc
LDUD dst.A
Load in User Program Space LDUP A.src
e LDUP dstA

Addressing Modes Available
RX M IR DA X SX RA SR BX

5.4.2 16-Bit Load and Exchange Group

This group of load and exchange instructions
(Table 5-3:) allows words of data (two bytes equal
one word) to be transferred between registers and
memory. The exchange instructions allow for
switching between the primary and alternate
reqister files, exchanging the contents of two
16-bit registers, or exchanging the contents of an
addressing register with the top word on the
stack. The 16-bit loads include transfers between

reqisters and memory and immediate loads of
registers or memory. The Load Address instruction
facilitates the loadinqg of the address registers
with a calculated address. The Push and Pop stack
instructions are also included in this group.
None of these instructions affect the CPU flags,
except for EX AF, AF'. The Push instruction can
cause a System Stack Overflow Warning trap;
otherwise, no exceptions can arise from the
execution of these instructions.

Table 5-3. 16-Bit Load and Exchange Group Instructions

Instruction Name

* Restricted to an addressing register (HL, IX, or 1Y).

5.4.3 Block Transfer and Search Group

This group of instructions (Table 5-4) supports
block transfer and strinq search functions. Using
these instructions, a block of up to 65,536 bytes
can bd moved in memory, or a byte string can be
searched until a given value is found. All the
operations can proceed through the data in either
direction. Furthermore, the operations can be
repeated automatically while decrementing a length
counter until it reaches zero, or they can operate
on one storage unit per execution with the length
counter decremented by one and the source and
destination pointer reqisters properly adjusted.
The latter form is useful for implementing more
complex operations in software by adding other
instructions within a loop containing the block
instructions.

Various 272280 MU registers are dedicated to
specific functions for these instructions: the BC
register for a counter, the DE and H. registers
for memory pointers, and the accumulator for
holding the byte value being sought. The repeti-
tive forms of these instructions are

Format

Addressing Modes Available
R IM IR DA X SX RA SR BX

interruptible; this is essential since the
repetition count can be as high as 65,536.# The
instruction can be interrupted after any
iteration, in which case the address of the
instruction itself, rather than the next one, is
saved on the system stack; the contents of the
operand pointer registers, as well as the
repetition counter, are such that the instruction
can simply be reissued after returning from the
interrupt without any visible difference in the
instruction execution.

Table 5-4. Block Transfer and Search Group

5-5

5.4.4 8-Bit Arithmetic and Logic Group

This group of instructions (Table 5-5) performs
8-bit arithmetic and logical operations. The Add,
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned Multiply take one input operand from the
accumulator and the other from a register, from
immediate data in the instruction itself, or from
memory. All memory addressing modes are
supported: Indirect Register, Short Index, Direct
Address,PC Relative Address, Stack 'Pointer
Relative, Indexed, and Base Index. Except for the
multiplies, which return the 16-bit result to the
H. register, these instructions return the
computed result to the accumulator. Both signed

and unsigned division are provided. All memory
addressing modes except Indirect Register can be
used to specify the divisor.

The Increment and Decrement instructions operate
on data in a register or in memory; all memory
addressing modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The final
instruction in this group, Extend Sign, takes its
8-bit input from the accumulator and returns its
16-bit result to the H. register.

All these instructions except Extend Sign set the
QU flags according to the computed result. Only
the Divide instructions can generate an exception.

Table 5-5. 8-Bit Arithmetic and Logic Group

5.4.5 16-Bit Arithmetic Operations

This group of instructions (Table 5-6) provides
16-bit arithmetic operations. The Add, Add with
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing register and the other from a 16-bit
register or from the instruction itself; the
result is returned to the addressing register.
The 16-bit Increment and Decrement instructions
operate on data found in a register or in memory;
the Indirect Register, Direct Address or FC
Relative addressing mode can be used to specify
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices
into tables or arrays in memory.

5-6

The remaining 16-bit instructions provide general
arithmetic capability using the H. register as one
of the input operands. The word Add, Subtract,
Compare, and signed and unsigned Multiply
instructions take one input operand from the H.
register and the other from a 16-bit register,
from the instruction itself, or from memory using
Indexed, Direct Address, or Relative addressing
mode. The 32-bit result of a multiply is returned
to the CE and H. registers, with the [CE register
containing the most significant bits. The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and H. registers (the [E
register containing the most significant bits) and
a 16-bit divisor from a register, from the
instruction, or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

16-bit quotient is returned to the H. register and
the 16-bit remainder' is returned to the [E
register. The Extend Sign instruction takes the
contents of the H. register and delivers the
32-bit result to the CE and H. registers, with the
CE reqister containing the most significant bits
of the result. The Negate H. instruction negates

the contents of the H. register.

Except for Increment, Decrement, and Extend Sign,
all the instructions in this group set the CRU
flags to reflect the computed result. The only
instructions that can generate exceptions are the
Divide instructions.

Table 5-6. 16-Bit Arithmetic Operation Instructions

5.4.6 Bit Manipulation, Rotate andsShift Group

Instructions in this group (Table 5-7) test, set,
and reset bits within bytes and rotate and shift
byte data one bit position. Bits to be
manipulated are specified by a field within the
instruction. Rotation can optionally concatenate
the Carry flag to the byte to be manipulated.
Both left and right shifting is supported. Right
shifts can either shift 0 into bit 7 (logical
shifts) or can replicate the sign in bits 6 and 7
(arithmetic shifts). The Test and Set instruction
is useful in multiprogramming and multiprocessing
environments for implementing synchronization
mechanisms between processes. All these
instructions except Set Bit and Reset Bit set the
(U flags according to the calculated result; the
operand can be a register or a memory location
specified by the Indirect Register or Short
Index addressing modes.

The RD and RRD instructions are provided for
manipulating strings of B digits; these rotate
4-bit quantities in memory specified by the
indirect register. The low-order four bits of the
accumulator are used as a link between rotations
*of successive bytes.

None of these instructions generate exceptions.

Addressing Modes Available

5.4.7 Program Control Group

This group (Table 5-8) consists of the
instructions that affect the Program Counter (PC)
and thereby control program flow. The U
registers and memory are not altered except for
the Stack Pointer and the stack, which play a
significant role in procedures and interrupts.
(An exception is Decrement and Jump if Non-Zero
[DINZ], which uses a register as a loop counter.)
The flags are also preserved except for the two
instructions specifically designed to set and
complement the Carry flag.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to anew
location if the processor flags satisfy the
condition specified in the instruction. Jump
Relative is a 2-byte instruction that jumps to any
instruction within the range -126 to +129 bytes
from the location of this instruction. Most
conditional jumps in programs are mede to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to improve
code compactness and efficiency.

A special Junp instruction tests whether thee
primary or auxiliary register file is being used

and branches if the auxiliary file is in use.' In

5-7

Table 5-7. Bit Manipulation, Rotate and Shift Group

Instruction Name Format

systems that reserve the auxiliary register file
for interrupt handlers only (via a software
convention), this instruction can be used to
decide whether registers must be saved.

Call and Restart are used for calling subroutines;
the current contents of the RC are pushed onto the
processor stack and the effective address
indicated by the instruction is loaded into the
PC. The use of a procedure address stack in this
manner allows straightforward implementation of
nested and recursive procedures. Call, Jump, and
Junp Relative can be unconditional or based on the
setting of a CPU flag.

Addressing Modes Available
R IR SX

Jump and Call instructions are available with the
Indirect Register and FC Relative Address modes in
addition to the Direct Address mode. These can be
useful for implementing complex control structures
such as dispatch tables. When using Direct
Address mode for a Junp or Call, the operand is
used as an immediate value that is loaded into the
FC to specify the address of the next instruction
to be executed.

The conditional Return instruction is a companion
to the Call instruction; if the condition
specified in the instruction is satisfied, it
loads the RC from the stack and pops the stack.

A special instruction, Decrement and Jump if
Non-Zero (DJNZ), implements the control part of
the basic Pascal FOR loop in a one-word
instruction.

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt
in interrupt mode 3: the current program status
is pushed onto the system stack, and a new program
status is loaded from a dedicated part of memory.

5.4.8 Input/Output Instruction Group

This group (Table 5-9) consists of instructions
for transferring a byte, a word, or a string of
bytes or words between peripheral devices and the
CPU registers or memory. Byte 1/0O port addresses
transfer bytes on ADQAD7 only. Thus in a 16-bit
data bus environment, 8-bit peripherals must be
connected to bus lines ADgrADy. In an 8-bit data
bus environment, word I/O instructions to external
peripherals should not be used; however, on-chip
peripherals can still be accessed by word 1/O
instructions.

The instructions for transferring a single byte
(IN, QUT) can transfer data between any 8-bit GPU
register or memory address specified in the
instruction and the peripheral port specified by
the contents of the C reqister. The IN
instruction sets the CPU flags according to the
input data; however, special cases of these
instructions, restricted to using the QU
accumulator and Direct Address mode, do not affect
the CRU flags. Another variant tests an input
port specified by the contents of the C register
and sets the QU flags without modifying CPU
registers or memory.

The instructions for transferring a single word
(INW, QUW can transfer data between the H.
register and the peripheral port specified by the
contents of the C reqister. For word 1/0, the
contents of H appear on ADQAD7 and the contents
of L appear as ADD-AD15. These instructions do
not affect the CRU flags.

The remaining instructions in this qgroup form a
powerful and complete complement of instructions
for transferring blocks of data between /O ports
and memory. The operation of these instructions
is very similar to that of the block move instruc-
tions described earlier, with the exception that
one operand is always an I/O port whose address
remains unchanged while the address of the other
operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

repeating forms of these instructions are inter-
ruptible.

/0 instructions are not privileged if the Inhibit
User 1/0 bit in the Trap Control register is
clear; they can be executed in either system or
user mode, so that [|/O service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals’ control and status
registers are accessed using the 110
instructions. The contents of the 1/O Page
register are output on with the 1/O port
address and can be used by external decoding to
select specific devices. Pages FF and FE are
reserved for on-chip I/O and no external bus
transaction id generated. 1/0 devices can be
protected from unrestricted access by using the
/0 Page register to select among 1/0 peripherals.

Table 5-9. Input/Output Instruction Group Instructions

Instruction Name Format
Input IN dst,(C) .
Input Accumulator IN A/n)
Input HL INW HL,(C)
Input and Decrement (Byte) IND

Input and Decrement (Word) INDW
Input, Decrement and Repeat (Byte) INDR
Input, Decrement and Repeat (Word) INDRW
Input and Increment (Byte) INI

Input and Increment (Word) INIW

Input, Increment and Repeat (Byte) INIR

Input, Increment and Repeat (Word) INIRW
Output OUT (C),src
Output Accumulator OUT (n),A
Output HL OUTW (C),HL
Output and Decrement (Byte) OuUTD
Output and Decrement (Word) OuTDW
Output, Decrement and Repeat (Byte) OTDR
Output, Decrement and Repeat (Word) OTDRW
Output and Increment (Byte) OuTI
Output and Increment (Word) OTIRW
Output, Increment and Repeat (Byte) OTIR
Output, Increment and Repeat (Word) OTIRW
Test Input TSTI (©

5.4.9 CPU Control Group

The instructions in this group (Table 5-10) act
upon the CPU control and status registers or
perform other functions that do not fit into any
of the other instruction groups. There are three
instructions used for returning from an interrupt
or trap service routine. Return from Nonmaskable
Interrupt (REIN) and Return from Interrupt (RETI)

are used in interrupt modes 0, 1, and 2 to pop the
Program Counter from the stack and manipulate the
Interrupt Mask reqister, or to signal a reset to
28400 Family peripherals. The Return from
Interrupt Long (RETIL) instruction pops a 4-byte
program status from the System stack, and is used
in interrupt mode 3 and trap processing.

Two of these instructions are not privileged: No

Operation (NOP) and Purge Cache (PCACHE). The
remaining instructions are privileged.

Table 5-10. CPU Control Group

Instruction Name Format
Disable Interrupt DI mask
Enable Interrupt El mask
Halt HALT
Interrupt Mode Select IMp
Load Accumulator From | or R Register LD Asrc
Load | or R Register From Accumulator LDdst.A
Load Control LDCTL dst.src
No Operation NOP
Purge Cache PCACHE
Return From Interrupt RETI
Return From Interrupt Long RETIL
Return From Nonmaskable Interrupt RETN

5.4.10 Extended Instruction Group

The 27280 MU architecture contains a powerful
mechanism for extending the basic instruction set
through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes is dedicated for the implementation of
extended instructions using this facility. The
extended instructions (Table 5-11) are intended
for use on a 16-bit data bus; thus, this facility
is available only on the ZBUS configuration of
the 7280 MPU.

There are four types of extended instructions in
the 27280 MU instruction set: BU internal
operations, data transfers from an BPU to memory,
data transfers from memory to an EPU, and data
transfers between an HBU and the CPUs
accumulator. The extended instructions that
access memory can use any of the six basic memory
addressing modes (Indexed, Base Index, FC
Relative, SP Relative, Indirect Register, and
Direct Address). Transfers between the BEPU and
QU accumulator are useful when the program must
branch based on conditions generated by an BHU
operation.

5-10

A 4-byte long "template" is embedded in each of
the extended instruction opcodes. These templates
determine the operation to be performed in the BU
itself. The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is, only CRU activities are described.
The operation of thfe BPU is implied, but the full
specification of the instruction template depends
on the implementation of the EPU, and is beyond
the scope of this manual. Fields in the template
that are ignored by the CPU are indicated by
asterisks, and would typically contain opcodes
that determine any operation to be performed by
the BEUJ in addition to the data transfers
specified by the instruction. A 2-bit
identification field is included in each template,
for use in selecting one of up to four EPUs in a
multiple-EPU system.

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
bit in the CPUs Trap Control reqister. When this
bit is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed. If this bit is cleared to 0, indicating
that there are no EPUs in the system, the QU
executes an extended instruction trap whenever an
extended instruction is encountered; this allows a
trap service routine to emulate the desired
operation in software.

Table 5-11. Extended Instructions

Instruction Name Format
Load EPU From Memory EPUM src
Load Memory From EPU MEPU dst
Load Accumulator From EPU EPUF
EPU Internal Operation EPUI

5.5 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the 2Z280 MU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary
encoding for register fields within instruction's
dperation codes (opcodes).

The description of each instruction begins on a
new page. The instruction mnemonic and name is
printed in bold letters at the top of each page to
enable the reader to easily locate a desired

description. The assembly language syntax is then
given in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes. This is followed by
a description of the operstion performed by the
instruction, a listing of ail the flags that are
affected by the instruction, a listing of ex-
ception conditions thst may be caused by execution
of the instruction, illustrations of the opcodes
for all variants of the instruction, and a simple
example of the use of the instruction.

The following notation is wused throughout the
descriptions of the instructions:

(addr) Adirect sddress

<addr> An address to be encoded using relative
addressing

b A 3-bit field specifying the position of

a bit within a byte
BX Base Index addressing mode
cc A condition code specifying whether a
flag is sejt to 1 or cleared to 0
An 8-bit signed displacement
Direct Address addressing mode'
A 16-bit signed displacement
The displacement calculated from the
address in relative addressing
Destination location or contents
Immediate addressing node
Indirect Register addressing node
The Master Status register
8-bit immediate data
16-bit immediate data
An interrupt node
The Program Counter
The program status registers (the Program
Chbunter and Master Status register)
A single 8-bit register of the set
(A,B,C,D,E,H,L); also, Rl and R2 are used
when two different registers are
specified in the same instruction. (Note
that the R register itself is accessed by
a single instruction and violates this
convention.)
R The corresponding 8-bit or 16-bit
register in the alternate register file,
such as A’
FC Relative Address addressing mode
A 16-bit register of the set (BC,DE,
HL,SP); also, RRA and RB are used when
two different registers are specified in
the same instruction
RX A single byte in the IX or IY registers;
that is, a register in the set (IXH,IXL,
IYH,IYL); also, RXA and R®B are used when
two different registers are specified in
the same instruction
The current Stack Pointer in use
Stack Pointer Relative addressing mode

Pyl aﬂtgjﬁiii %&ga
he]

33

B8

src Source location or contents

X Short Index addressing nmode

usP The User Stack Pointer

X Indexed addressing node

XX Oe of the 16-bit addressing registers

HL, IX, or *Y; also XXA and XXB are used
when two different registers are speci-
fied in the same instruction

XY Oe of the 16-bit index registers IX or
Y

In the binary encoding of the instruction, lower
case is used for the corresponding encoding of the
assembler syntax.

Brackets ([and]) are used in the assembly
language syntax to indicate an optional field.
For example, the 16-bit addition instruction for
adding word data to the H. register is described
a3:

ADWN [HL,]src

This format means the instruction can be written
as:

ADN HL,src
or
ADN src

Assignment of a value is indicated by the symbol
"<—". For example,

dst <-- dst + src

indicates that the source data is added to the
destination data and the result is stored in the
destination location.

The notation Maddr(n)" is used to refer to bit M"
of 8 given location, for example, dst(7).

The register field in the binary encoding of an
instruction opcode is encoded as shown in Table
5-12.

Table 5-12. Encoding of 8-Bit Registers in
Instruction Opcodes

Register Encoding
A 111
B 000
C 001
D 010
E 011
H 100
L 101

The remainder of this chapter consists of the
individual descriptions of each 7280 MU
instruction.

5-11

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

ADC

Add with Carry (Byte)

ADC [A]src src = R, RXfIM, IR, DA, X, SX, RA, SR, BX
A A + src + C

The source operand together with the Carry flag is added to the accumulator and the
sum is stored in the accumulator. The contents of the source are unaffected. Twos-
complement addition is performed.

S: Set if the result is negative; cleared otherwise

Zi Set if the result is zero; cleared otherwise

H: Set if there is a carry from bit 3 of the result; cleared otherwise

V. Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise

N: Cleared

C: Set if there is a carry from the most significant bit of the result; cleared otherwise

None

Syntax Instruction Format

ADC AR 11010011 r 1

ADC ARX | 11<M111011110]0011rx |

ADC An | 11)001liiol]. n |

ADC A,(HL) | 10)001]110]

ADC A,(addr) 1111011110111lolo0i[1111l addiflow) | | addifhigh) |
ADC A,(XX +dd) 1111111 |1011110]00i | xx 11 d(low) | 1 d(hlah) |
ADC A,(XY + d) |11]<M1]101[|10]001]110]| d I

ADC A,<addr> 111111111011110]0011000] | disp(low) | | dlapfhigh) |
ADC A,(SP + dd) 111101111011110]0011000] 1 d@low) | 1 d(high) |
ADC A,(XXA + XXB) 11110111101111010011bx |

0: OforIX 1forly

rx: 100 for high byte, 101 for low byte
XX: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1%), 010 for (HL + 1Y), 011 for (IX + 1Y)

ADC A,(HL)
Before instruction execution: After instruction execution:
AF: 8 szxhxvnl AF: 6 1 00x1x000
HL: I 4 5 4 HL 2 4 5 4
Data memory Data memory:
2454: 1 2454: 1 8

5-13

ADC

Add With Carry (Word)

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

5-14

ADC dst,src dst = HL 1
src = BC, DE, HL, SP
or
dst = IX
src = BC, DE, IX, SP
or
dst = 1Y

src = BC, DE, IY, SP

dst dst + src + C

The source operand together with the Carry flag is added to the destination and the sum
is stored in the destination. The contents of the source.are unaffected. Twos-complement
addition is performed.

. Set if the result is negative; cleared otherwise
Set if the result is zero; cleared otherwise

. Set if there is a carry from bit 11 of the result; cleared otherwise
Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
result is of the opposite sign; cleared otherwise

. Cleared

Set if there is a carry from the most significant bit of the result; cleared otherwise.

<SINOD

oz

None

Syntax Instruction Format

ADC HL,RR 111 101110111011 rr 10101
ADC XY,RR 111j«¢>1111011111110111011101 1 rr | 010]

0: o for ;x, 1foriy
rr: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

ADC HL,BC
Before instruction execution: After instruction execution:
F szxhxvnl F 00x0x001
BC: 2 3 0 8 BC: 2 3 0 8
HL: F O 3 8 HL: 1 3 4 1

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encoding:

Example:

ADD

Add Accumulator to Addressing Register

ADD dst,A dst = HL, IX, IY
dstdst + A

The contents of the accumulator are added to the contents of the destination and the
result is stored in the destination. The contents of the accumulator are unaffected. The
contents of the accumulator are treated as a signed binary integer and are sign-
extended to 16 bits; twos-complement addition is performed.

S: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a carry from bit 11 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
s result is of the opposite sign from the operands; cleared otherwise

N: Cleared

C: Set ifthere is a carry from the most significant bit of the result; cleared otherwise
None

Syntax Instruction Format

ADD HLA 111 10111011101 110112011

ADD XY,A)11k11210111101h01Mo1iorio1l

. Ofor IX 1for IY

ADD HL,A

Before instruction execution: After instruction execution:
AF: E 2 szxhxvnc AF: E 2 00x1x001
HL 2 3 8 4 HL 2 3 6 6

Computation: accumulator is sign-extended.

FFE2
+ 2384

2366

ADD

Add (Byte)

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

ADD [AJsrc src = R, RXtIM, IR, DA, X, SX, RA, SR, BX

A A + src

The source operand is added to the accumulator and the sum is stored in the ac-
cumulator. The contents of the source are unaffected. Twos-complement addition is
performed.

S: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a carry from bit 3 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise

N: Cleared

C. Set ifthere is a carry from the most significant bit of the result; cleared otherwise

None

Syntax Instruction Format

ADD AR 110[000j r |

ADD ARX |11|<*>1111011110|000 | rx |

ADD An 1111000111011 n

ADD A,(HL) | 10/0001110 1

ADD A,(addr) 111101111011110|000 |11111 addr(low) | | addr(high) |

ADD A,(XX + dd) 111111111011110{000 | xx Il d(low) | | cKhigh) |

ADD A,(XY + d) 111|<S>1111011110[000 110 I d" |

ADD A,<addr> 111|111|101]|10]000]000|| disp(low) | | dl«p(high) |

ADD A,(SP + dd) | 111011 1101 1110[000 0001 | d(low) | I dfhigh) 'j

ADD A,(XXA + XXB) | 11101111011110|000 | bx |

€L oforIX Lforly

rx: 100 for high byte, 101 for low byte

XX: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

ADD A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvnc AF: 6 0 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:
2454: 1 8 2454: 1 8

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

ADD

Add (Word)
ADD dst,src dst = HL
src = BC, DE, HL, SP
or
dst = IX
src = BC, DE, IX, SP
or
dst = 1Y
src = BC, DE, lY, SP
dst dst + src .

The source operand is added to the destination and the sum is stored in the destination.
The contents of the source are unaffected. Twos-complement addition is performed.

S: Unaffected

Z: Unaffected

H: Set if there is a carry from bit 11 of the result; cleared otherwise

V: Unaffected

N: Cleared

C: Set ifthere is a carry from the most significant bit of the result; cleared otherwise
None

Syntax Instruction Format

ADD HL,RR | 00| it 20011

ADD XY.RR |11]*11]101||00] wr 10011

L 2 0 for IXVL for IY

rr: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

ADD HL,BC

Before instruction execution:

F:
BC: 2 3
HL F O

After instruction execution:

szxhxvnc F: szx0xv0l
0 8 BC: 2 3 0 8
3 8 HL 1 3 4 0

ADDW

Add Word

Operation:

Flags:

Exceptions:

Addressing
Mode

R

IM:
DA:

X
RA:
IR

Field Encodings:

Example:

5-18

ADDW [HLJsrc src = R, IM, DA, X, RA
HL«-HL + src

The source operand is added to the HL register and the sum is stored in the HL register.
The contents of the source are unaffected. Twos-complement addition is performed.

S: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a carry from bit 11 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise

N: Cleared

C: Set if there is a carry from the most significant bit of the result; cleared otherwise

None

Syntax Instruction Format

ADDW HL,RR 111|101|101}|111 rr 11101

ADDW HL.XY | 11101111011111110111011111110011101

ADDW HL,nn | 11111111011111110111011111111011101 n(low byte) 1Ln(high byte)]
ADDW HL,(addr) | 1101111011111{10111011111|010] 110 [i addr(low) j| addr(high) |
ADDW HL,(XY + dd) [11]11111011111|10111011111] xy 111011 dflow) 1 dfhigh) 1
ADDW HL,<addr> | 111011110111111101110111111110111011 disp(low) || disp(high) |
ADDW HL,(HL) | 113011 1101 1111 [101 1101 111110001110 |

*: oforix. 1foriy
rr: 000 for BC, 010 for DE, 100 for HL. 110 for SP

xy: 000for (X + od), 010 for (1Y + dd

ADDW HL,DE

Before instruction execution: After instruction execution:
F szxhxvnc 10x0x000
DE 00 10 00 10
HL. A1l 2 3 A1l 3 3

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

AND

AND

AND [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
A A AND src

A logical AND operation is performed between the corresponding bits of the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are both 1s; otherwise a 0
bit is stored. The contents of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise

H: set

P: Set if the parity is even; cleared otherwise

N: Cleared

C: Cleared

None

Syntax Instruction Format

AND AR IIfILIPpl r.J

AND ARX Inl<M1110111101100I rx |

AND An |11]100]110]| n |

AND A,(HL) 110 10011101

AND A,(addr) 111(0111101111011001 11111 addiflow) |

AND A,(XX + dd) 111/ 1111101111011001 xx 11 d(low) | 1 «Khigh) |
AND A,(XY + d) 111[0111101111011Q01110] | d |

AND A,<addr> 111]11111011110]100|000] | dtepdow) | | dtep(hlfih) |
AND A,(SP + dd) 111101111011110{ 1001000 (| ddow) | 1 1
AND A,(XXA + XXB) 111]01111011110|100] bx |

<+ OofprIX 1forly

rx: 100 for high byte, 101 for low byte
XX: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + X, 010 for (HL + 1Y), 011 for (IX + 1Y)

AND A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxpnc AF: 0 8 00x1x000
HL 2 4 5 4 HL 2 4 5 4
Data memory: Data memory:
2454: 1 8 2454: 1 8

BIT

Bit Test

Operation:

Flags:

Exceptions:

Addressing
Mode

R
IR:
SX:

Field Encoding:

Example:

BIT b,dst dst = R, IR, SX

Z NOT dst(b)

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is zero, otherwise the Zero flag is cleared to 0. The contents of the
destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruc-
tion; this field contains the binary encoding for the bit number to be tested. The bit
number must be between 0 and 7.

S: Unaffected

Z: Set if the specified bit is zero; cleared otherwise

H: Set

P: Unaffected

N: Cleared

C: Unaffected

None

Syntax Instruction Format

BIT bR |11j001[011|j01] b | r |

BIT b,(HL) 121]001]011[|011 b 11101

BIT b,(XY + d) |11]4>11]101|11|001|011]| d 1mo11b 1110

e: 0 for IX 1for IY

BIT 1A

Before instruction execution: After instruction execution:

00010110 szxhxpnc AF: 00010110 sOx1xpOc

Operation:

Flags:
Exceptions:

Addressing
Mode
IR:
DA:

RA:

Field Encoding:

Example:

CALL

Call

CALL [cc,]dst dst = IR, DA, RA

If the cc is satisfied then: SP ¢- SP - 2
(SP)- PC
PC dst

A conditional call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an uncondi-
tional call always transfers control to the destination address. The current contents of
the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the
address of the first instruction byte following the Call instruction. The destination address
is then loaded into the PC and points to the first instruction of the called procedure. At
the end of a procedure a return instruction (RET) can be used to return to the original
program.,

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.

When using DA mode with the CALL instruction, the operand is not enclosed in paren-
theses.

No flags affected

System Stack Overflow Warning

Syntax Instruction Format

CALL cc,(HL) 111 011 1011111 cc 1001 \

CALL (HL) 111 011 101111 001 1011 | “unconditional call” |
CALL cc.addr 111 cc 10011 addrQow) |

CALL addr 111 001 1011] addiflow) Il addrthigh) I I “unconditional call” |
CALL cc,<addr> 111 111 1011|111 cc 100|| dlap(low) 11 disp(high) J

CALL <addr> 111 111 1011f11 001 1011 s g |IES S SH S IM | “unconditional call” |

cc: Q00for NZ, 001 for Z, 010 for NC, 011 for C, 100 for POor NV, 101 for PEorV,
110for Por NS, 111 forMor S

CALL 2520H
Before instruction execution: ' After instruction execution:
PC: 16 30 PC: 2 5 2 0
SP: F F 2 6 SP: F F 2 4
Data memory: Data memory:
FF24: 00 FF24:

3 3
FF25: 0 0 FF25: 16

CCF

Complement Carry Flag

CCF
Operation: C NOTC

The Carry flag is inverted.

Flags: S: Unaffected
Z: Unaffected
H: The previous state of the Carry flag
P: Unaffected '
N: Cleared
C: Set if the Carry flag was clear before the operation; cleared otherwise

Exceptions: None

Addressing)

Mode Syntax Instruction Format

CCF |00[112217]

Example: CCF
Before instruction execution: After instruction execution:

F: szxmO F: SO0l

5-22

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

CP
Compare (Byte)

CP [A,]src src = R, RX, IM, IB, DA, X, SX, RA, SR, BX
A - src

The source operand is compared with the accumulator and the flags are set according-
ly. The contents of the accumulator and the source are unaffected. Twos-complement
subtraction is performed.

S: Set if the result is negative; cleared otherwise

Z:. Set if the result is zero; cleared otherwise

H: Set if there is a borrow from bit 4 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and
the result is the same sign as the source; cleared otherwise

N: Set

C: Set ifthere is a borrow from the most significant bit of the result; cleared otherwise

None

Syntax Instruction Format

CP AR Troln11y y

CP ARX I 11]<MLTioil 1toll-ill rx 1

CP An INl111T11014 = I

CP A,(HL) 1101111 Tiiol

CP A, (addr) 1111011 Tjoil 110[111|111J[addr(low) 1L addr(high) |

CP A,(XX + dd) Inl111 Tioil <Kow) || digh) |

CP A,(XY + d) I n|eiiTioil 1101111IN0 ir

CP A,<addr> iiilm Boijliioim loooir

CP A,SP + dd) 1111011 Tipil i ioimioooir «flow) || d(high) |

CP A,(XXA + XXB) | 111011 Tijoijl | 10/1111bx |

] oforix. 1foriy

rx: 100 for high byte, 101 for lowbyte

xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

CP A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvnc AF: 4 8 00x0x010
HL 2 4 5 4 HL 2 4 5 4
Data memory: Data memory:
2454: 1 8 2454: 1 8

5-23

CPD

Compare and Decrement

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-24

CPD

A - (HL)
HL«-HL - 1
BC«-BC-1

This instruction is used for searching strings of byte data. The byte of data at the loca-
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. Next the HL register is decremented by one, thus moving the pointer to the
previous element in the string. The BC register, used as a counter, is then decremented
by one.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the
memory byte are equal; cleared otherwise

'H: Set if there is a borrow from bit 4 of the result; cleared otherwise

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise

N: Set

C. Unaffected

None

Syntax Instruction Format

CPD liilioilioi id]ioi|loOi |

Before instruction execution: After instruction execution:
AF: 3 B szxhxvnc AF: 3 B 01x0x01c
HL: 1 2 15 HL: 1 2 1 4
BC: 00 01 BC: 00 00

Data memory: Data memory:

1215: 3 B 1215: 3 B

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

CPDR

Compare, Decrement and Repeat

CPDR

Repeat until BC = 0 or match: A - (HL)
HL~-HL - 1
BC~ BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator until either an exact match is found or the string length is exhausted. The Sign
and Zero flags are set to reflect the result of the last comparison. The contents of the
accumulator and the memory bytes are unaffected. Twos-complement subtraction is per-
formed.

After each comparison, the HL register is decremented by one, thus moving the pointer
to the previous element in the string. The BC register, used as a counter, is then de-
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.

This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

S: Set if the last result is negative; cleared otherwise
Z. Set if the last result is zero, indicating that the contents of the accumulator and
the memory byte are equal; cleared otherwise

H: Set if there is a borrow from bit 4 of the last result; cleared otherwise

V. Set if the result of decrementing BC is not equal to zero; cleared otherwise

N: Set

C: Unaffected

None

Syntax Instruction Format

CPDR |11]101]101||10]111|001 |

CPDR

Before instruction execution: After instruction execution:
AF: F 3 szxhxvnc AF: F 3 01x0x11c
HL 11 18 HL 11 15
BC: 00 0 7 BC: 00 0 4

Data memory: Data memory:

1116: F 3 1116: F 3

1117: 00 1117: 00

1118: 5 2 1118: 5 2

5-25

CPI

Compare and Increment

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

CPI

A-(HL)
HL«-HL + 1
BC BC — 1

This instruction is used for searching strings of byte data. The byte of data at the loca-
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.

Next the HL register is incremented by one, thus moving the pointer to the next element
in the string. The BC register, used as a counter, is then decremented by one.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the
memory byte are equal; cleared otherwise

H: Set if there is a borrow from bit 4 of the result; cleared otherwise

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise

N: Set

C: Unaffected

None

Syntax Instruction Format

CPI 111]101| 1011110J200]001 |

CPI

Before instruction execution: After instruction execution:
AF: 3 B szxhxvnc AF: 3 B 01x0x01c
HL 1 2 15 HL: 2 1 6
BC: 00 01 BC: 00 00

Data memory: Data memory:

1215: 3 B 1215: 3 B

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

CPIR

Compare, Increment and Repeat

CPIR

Repeat until BC = 0 or match: A - (HL)
HLA-HL + 1
BC«-BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator until either an exact match is found or the string length is exhausted. The
Sign and Zero flags are set to reflect the result of the comparison. The last contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.

After each comparison, the HL register is incremented by one, thus moving the pointer
to the next element in the string. The BC register, used as a counter, is then de-
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.

This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

. Set if the last result is negative; cleared otherwise
Set if the last result is zero, indicating that the contents of the accumulator and
the memory byte are equal; cleared otherwise

H: Set if there is a borrow from bit 4 of the last result; cleared otherwise

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise

N

C

N n

. Set

Unaffected
None
Syntax Instruction Format
CPIR [11]101]101 ||10]110|001 |
CPIR
Before instruction execution: After instruction execution:
AF: F 3 szxhxvnc AF: F 3 01x0x11c
HL 11 18 HL 11 1 B
BC: 00 07 BC: 00 0 4
Data memory: Data memory:
1118: 2 5 1118: 2 5
1119: 0 0 v 1119: 0 0
111A: F 3 111A:

CPL

Complement Accumulator

CPL [A]
Operation: A NOTA

The contents of the accumulator are complemented (ones complement)* all 1 bits are
changed to 0 and vice-versa.

Flags: S: Unaffected
Z: Unaffected n ' vV m
H: Set
V. Unaffected
N: Set
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
CPL A | oojrori111
Example: CPL A
Before instruction execution: After instruction execution:
2 8 szxhxvnc AF: D 7 szxlIxvlc

5-28

Operation:

Flags: ,

Exceptions:

Addressing
Mode

R

IM:

Field Encodings:

Example:

CPW

Compare (Word)

CPW [HLJsrc src = R, IM, DA, X, RA
HL - src

The source operand is compared with the HL register and the flags are set accordingly.
The contents of the source and HL are unaffected. Twos-complement subtraction'is
performed.

S. Set if the result is negative; cleared otherwise

Z. Set if the result is zero; cleared otherwise

H: Set if there is a borrow from bit 12 of the result; cleared otherwise

V. Set if arithmetic overflow occurs, that is, if the operands are of different signs and the
result is the same sign as the source; cleared otherwise

N: set

C:. Set ifthere is a borrow from the most significant bit of the result; cleared otherwise

None

Syntax Instruction Format

CPW HL,RR |11|101|101||11] rr |111]

CPW HL,XY laz|en hoilli11101011l1111000211

CPW HL,nn 111]11111011111 [101 [1011111|110]11111n(lowbyt.) Hnfhigh byte) |

CPW HL,(addr) |11]011]101]|11|101|101[|11|010|111|| addr(low) || addr(Mgh) |

CPW HL,(XY + dd) 111|m 11011111110111011M1 jom |h i]| ddow) |[(Khigh) 1

CPW HL,<addr> |11/011|101/|11]101|101||11|110]|111|| dtepQow) 1ldI*p(Mgh) |

CPW HL,(HL) liilon [ioil|ti]ioi |ioi |[tilooo]iti]

0: oforiXiforiy
rr: 000 for BC. 010 for DE. 100 for H_, 110 for SP

CPW HL.DE
Before instruction execution: After instruction execution:
F szxhxvnc F: 10x0x010
DE 00 10 DE: 00 10
HL A1l 2 3 HL A 1 2 3

5-29

DAA

Decimal Adjust Accumulator

DAA

Operation: A Decimal Adjust A

The accumulator is adjusted to form two 4-bit BCD digits following a binary,
twos-complement addition or subtraction on two BCD-encoded bytes. The table below
indicates the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC,

DEC, NEG).
Operation of DAA Instruction
Hex Value in Hex Value in Number
C Before Upper Digit H Before Lower Digit Added CAfter H After
Operation DAA (Bits 7-4) DAA (Bits 3-0) to Byte DAA DAA
0 0-9 0 0-9 00 0 0
0 0-8 0 A-F 06 0 1
ADD 0 0-9 1 0-3 06 0 0
ADC 0 A-F 0 0-9 60 1 0
INC 0 9-F 0 A-F 66 1 1
(N = 0) 0 A-F 1 0-3 66 1 0
1 0-2 0 0-9 60 1 0
1 0-2 0 A-F 66 1 1
' 1 0-3 1 0-3 66 1 0
SuUB 0 0-9 0 0-9 00 0 0
SBC 0 0-8 1 6-F FA 0 1
DEC 1 7-F 0 0-9 A0 1 0
NEG 1 6-F 1 6-F 9A 1 1
N=1
The operation is undefined ifthe accumulator was not the result of a binary addition or sub-
traction of BCD digits.
FlagS: * S: Set ifthe most significant bit of the result is set; cleared otherwise
Z: Setifthe result is zero; cleared otherwise
H: See table above
P: Set ifthe parity of the result is even; cleared otherwise
N: Not affected
C: See table above
Exceptions: None
Addressing
Mode Syntax Instruction Format
DAA 1001001111

5-30

Example:

DAA

Before instruction execution:

AF: | 2 8

szxOxpOl

After instruction execution:

AF: 8 8

00x0x001

-31

DEC

Decrement (Byte)
DEC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: dst e“dst - 1

The destination operand is decremented by one and the result is stored in the destina-
tion. Twos-complement subtraction is performed.

Flags: S. Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 80h; cleared otherwise
N: Set
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R DEC R Mj imj
RX: DEC RX liijeiilioi|loo] x 11011
IR: DEC (HL) | 00]110j1011
DA DEC (addr) O LI[101]|0O[IL1]IO1|r
X DEC (XX +dd) l11]111 ho1MooIxx no1dr dflow) |l (Khifihy |
SX: DEC (XY + d) liileiilioi]loo|nolioilr.. <. 3
RA: DEC <addr> | 12]211212011100 Joo0| 1012r di#p(low) 11 disp(high) |
SR: DEC (SP + dd) | 11j01111011001000 1011t dfiow) Il dfiiigh) |
BX: DEC (XXA + XXB) j 11101111013 00[bx 11011

Field Encodings: & OforlX 1forly
IX 100 for high byte, 101 for low byte
xx 001 for (IX + dd), 010 for (IY + dd), 011 for(HL + dd)
bx 001 for (HL + 1X), 010 for (HL + 1Y), OLL for (X + 1Y)

Example: DEC (HL)
Before instruction execution: Vv After instruction execution:
F szxhxvnc F 10x0x01c
HL 2 4 5 4 HL 2 4 5 4
Data memory: Data memory:
2454: 8 8 2454: 8 7

Operation:

Flags:

Exceptions:

Addressing
Mode

R:

IR:
DA:
X:
RA:

Field Encodings:

Example:

DEC(W] dst
or
DECW dst

dst e*-dst - 1

dst = R

dst = IR, DA, X, RA

DEC[W]

Decrement (Word)

The destination operand is decremented by one. Twos-complement subtraction is

performed.

No flags affected _

None

Syntax

DECW RR
DECW XY
DECW (HL)
DECW (addr)
DECW (XY + dd)
DECW <addr>

O 0 for IX, 1for IY

Instruction Format

lool nr 10111
I'n [*1l] 1011roolioil Oil 1
111|# 1| toi | oolooil 0111

[ljoil]l01][oo|0Llloil|| addition®) || addrQilgh) |

111]111] 1011] oo| xy 10111 d(low) ||

dfhigty 1

|11lail]101|foo|m]oii|| disp(low) || dlap(Mg>«l

rr: 001 for BC, 011 for DE, 101 for HL, 111 for SP
Xy: 001 for (IX + dd), 011 for (IY + dd)

DECW HL

Before instruction execution:

HL 2 30 8 |

After instruction execution:

HL: | 2 3 0 7

Pl

Disable Interrupt

Operation:

Flags:
Exceptions:

Addressing
Mode

Mask =

Example:

5-34

DI mask Mask = Hex value between 0 and 7Fh

If mask(i) = 1then MSR(i) O

The designated interrupt control bits in the Master Status register (MSR) are cleared to
0, thus disabling all interrupts on these inputs; all other interrupt enables in the MSR are
unaffected. If no mask is present then all interrupts are disabled.

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i.

No flags affected e

Privileged Instruction

Syntax Instruction Format
DI T11111010111
Dl mask 111 lioil1011Mo1 [iilo|m 11 mask [

byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
mask(7) must be zero.

Df 23H
Before instruction execution: After instruction execution:
MSR: 00 7 F MSR: 0 0 5 C

Operation:

Exceptions:

Addressing
Mode
R
RX:
IM:

DA:

X
SX:
RA:
SR:
BX:
IR:

DIV

Divide (Byte)

DIV [HL,]src src = R, RX, IM, DA, X, SX, RA, SR, BX

A HL -+ src
L remainder

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H registef are unaffected. Both operands are treated as
signed, twos-complement integers and division is performed so that the remainder is of
the same sign as the dividend.

There are three possible outcomes of the DIV instruction, depending on the division and
the resulting quotient:

CASE 1: If the quotient is within the range - 27 to 27-1 inclusive, then the quotient is
left in the accumulator, the Overflow flag is cleared to 0, and the Sign and Zero flags are
set according to the value of the quotient.

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is outside the range -27 to 27-1, the accumulator remains un-
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.

S. Cleared if V flag is set; else set if the quotient is negative, cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise

H: Unaffected

V. Set if the divisor is zero or if the computed quptient lies outside the range from -27
to 27-1; cleared otherwise

N: Unaffected

C. Unaffected

Division Exception

Syntax Instruction Format

DIV HLR 111]101110111111 r 11001

DIV HL,RX | 11*111101 111111011101 1 11111X liool

DIV HL,n 117] 1117101~ 11 1012101 | 11]11111001

DIV HL,(addr) [11]010t01 11 1011101 | 1111111001 addfttow) 11 addrffrigh)
DIV HL,(XX +dd) 111)1111101 11 101 101 Hixxliooirfl0) ir*higty-
DIV HL,(XY + d) 111j4>11]101 11 1011101 | 11111010011

DIV HL,<addr> 11111111101 11 1011101 11100011001 dlapfiow)

DIV HL,(SP + dd) 11110111101 11 1011101 11100011001 dQuw) Il djhjjgj) J
DIV HL,(XXA + XXB) 111)0111101 11 1011101 11111bx 11001

DIV HL,(HL) til 1011101 100 100

5-35

Field Encodings:

Example:

5-36

0: 0 for IX, 1 for 1Y

rx: 100 for high byte, 101 for low byte

XX 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + [X), 010 for (HL + 1Y), OL1 for (IX + 1Y)

DIV HL,C
Before instruction execution:

AF: 5 5 szxhxvnc AF: 0 1
C. F E C:
HL: F F E m HL F F

After instruction execution:

m T

mm

Operation:

Flags:

Exceptions:

Addressing
Mode
R
RX:
IM:

DA:

X
SX:
RA:
SR:
BX:
IR:

DIVU

Divide Unsigned (Byte)

DIVU [HLJsrc src = R, RX, IM, DA, X, SX, RA, SR, BX

A HL src
L remainder

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are not affected. Both operands are treated as
unsigned, binary integers.

There are three possible outcomes of the DIVU instruction, depending on the division
and the resulting quotient:

CASE 1 If the quotient is less than 28, then the quotient is left in the accumulator, the
Overflow and Sign flag? are cleared to 0 and the Zero flag is set according to the value
of the quotient.

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1 and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is greater than or equal to 28, the accumulator remains un-
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.

Cleared
Set if the quotient or divisor is zero; cleared otherwise

. Unaffected

. Set if the divisor is zero or if the computed quotient is greater than or equal to
28; cleared otherwise

. Unaffected

. Unaffected

Nz <INW®W

Division Exception '

Syntax Instruction Format

DIVU HLR 111101110111111 r 1101 |

DIVU HL,RX 1 1 101 111111012101 1j11| rx |101]

DIVU HL,n |11]111]10111111101[101 1[11]111]101 NI no

DIVU HL,(addr) [11]011]101(]11]10]|101 |iiiiiniioi ir addr(low) 11 adddhigh) |
DIVU HL,(XX + dd) [H]I21]101 11111101101 |[11] xx 1101 |[f dlow) HI d(hloh) |
DIVU HL,(XY + d) [11]<M1]101 111111001 HOL |[11]1101201 1 d]

DIVU HL,<addr> ||11]201]101 ||11]000|101 Il dispdow) || dtop(high) |
DIVU HLf(SP + dd) |11]011/101 111111011101 1|11|000|101 Il d(low) || dfhigh) |
DIVU HL,(XXA + XXB) |11]011|201 11111101101 1]11| bx 1101 J

DIVU HL,(HL) I'n ho1*1101 |11 [no [ioi |

5-37

Field Encodings:

Example:

5-38

0: 0 for iX, 1tor iy

nc: 100 for high byte, 101 for low byte

XX 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Dliu HLC
Before instruction execution: After instructionexecution:
AF: 5 5 szxhxvnc AF: 8 0
C. 0 2 C
HL 01 01 HL 0 1

DIVUW

Divide Unsigned (Word)

DIVUW [DEHLJsrc src = R, IM, DA, X, RA

Operation: HL«-DEHL + src
DE remainder

The contents of the DE and HL registers (with the most significant bits of the dividend in
the DE register) are divided by the source operand (divisor) and the quotient is stored in
the HL register and the remainder in the DE register. The contents of the source are
unaffected. Both operands are treated as unsigned, binary integers.

There are three possible outcomes of the DIVUW instruction, depending on the division
and the resulting quotient:

CASE 1: If the quotient is less than 216, then the quotient is left in the HL register and
the remainder is left in the DE register, the Overflow and Sign flags are cleared to 0, and
the Zero flag is set according to the value of the quotient.

CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is greater than 216- 1, then the DE and HL registers remain un-
changed, the Overflow flag is set to 1, and the Zero and Sign flags are cleared to 0.
Then the Division Exception trap is taken. t

Flags: _ S Cleared
" 2i Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected

V. Set if the divisor is zero or if the computed quotient is greater than or equal to
cleared otherwise
N: Unaffected ,
C. Unaffected
Exceptions: Division Exception
Addressing
Mode Syntax Instruction Format
R DIVUW DEHL.RR 111/ 101110121111 rr 2011 |
DIVUW DEHL,XY |ii[*121]101[|11)201|101111lioil 0111
IM: DIVUW DEHL,nn 111]1111101111111011101 1111 !'m | 01111 nflow) "Il "QH) |
DA: DIVUW DEHL,(addr) [l0il110111111101110111111011] 01111 addrflow)
X: DIVUW DEHL,(XY + dd) |111111i101111111011101 11111xy 10117 dispflow)]| dtyXMgty |
RA: DIVUW DEHL, <addr> 111]0111101111111011101 1111111110111 ditixiow) 1| dtepOW 1
IR: DIVUW DEHL.(HL) |tl |Ootl 1 101||tl 1201 | wa ||22 jooL | Ot |
Field Encodings: ¢ 0forix 1forIY

rr: 001 for BC, 011 for DE, 101 for HL, 111 for SP
Xy: 001 for(1X +'dd), 011 for(lY + dd)

Example:

5-40

DIVUW DEHL.6

Before instruction execution:

ft szxhixvne
DE 00 00
HL 00 2 2

After instruction execution:

F
DE 00
HL 00

Operation:

Flags:

Exceptions:

Addressing
Mode

R

IM:
DA:
X
RA:
IR:

Field Encodings:

DIVW

Divide (Word)

DIVW [DEHL,]src src —R, IM, DA, X, RA

HL DEHL src
DE remainder

The contents of the DE and HL registers (with the DE register containing the most signifi-
cant bits of the dividend) are divided by the source operand (divisor) and the quotient is
stored in the HL register. The contents of the source are unaffected. Both operands are
treated as signed, twos-complement integers and division is performed so that the re-
mainder is of the same sign as the dividend.

There are three possible outcomes of the DIVW instruction, depending on the division
and the resulting quotient:

CASE 1: If the quotient is within the range - 215to 215-1 inclusive, then the quotient is
left in the HL register and the remainder is left in the DE register, the Overflow flag is
cleared to 0, and the Sign and Zero flags are set according to the value of the quotient.

CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is outside the range - 215to 215-1, the DE and HL registers re-
main unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to
0. Then the Division Exception trap is taken.

S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise

Z: Set if the quotient or divisor is zero; cleared otherwise

H: Unaffected

V. Set if the divisor is zero or if the computed quotient lies outside the range from - 215
to 215-1; cleared otherwise

N: Unaffected

C. Unaffected

Division Exception

Syntax Instruction Format

DIVW DEHL,RR | 11]201]101|| 11| rr |010|

DIVW DEHL.XY | 11<4>11| 10171 11] 101110111 1010

DIVW DEHL,nn [1) 11111012 11110111011111111110101 nfiow) || nehigh) |
DIVW DEHL,(addr) [11101111011} 11]1011101111110111010|| addifiow) || addifnigh) |
DIVW DEHL,(XY + dd) 111111111011(11|10111011] 111xy 101011 ddow) Il dChigh) |
DIVW DEHL,<addr> 111]011]101]| 111101110111111111101011 dlapflow) 1| disp(high) |
DIVW DEHL,(HL) | 12j012 [KM || t1]i0I]101 111110011010 |

<+ oforix tforly
it: 001 for BC, 011 for DE, 101 for HL, 111 for SP
Xy: 001 for (IX + dd), 011 for (IY + dd)

5-41

Example: DIVW DEHL.6
Before instruction execution:

F: szxhxvnc
DC 0 0 0 0
HL 0 0 2 2

5-42

After instruction execution:

DC
HL

0

0OOxhxOnc
0 4
0 5

Operation:

Flags:

Exceptions:

Addressing
Mode

RA:

Example:

DJNZ

Decrement and Jump if Non-Zero

DJINZ dst dst = RA

B B- 1
if B# 0 then PC dst

The B register is decremenjted by one. If the result is hon-zero, then the destination ad-
dress is calculated and theh loaded into the Program Counter (PC). Control then passes
to the instruction whose address is pointed to by the PC. When the B register reaches
zero, control falls through to the instruction following DJINZ. This instruction provides a
simple method of loop control.

The destination address is calculated using Relative addressing. The displacement inthe
instruction isadded to the PC; the PC value used isthe address of the instruction following
the DJINZ instruction. The 8-bit displacement istreated as a signed, twos-complement
integer. Thus the branching range from the location of this instruction is -12 6 to «+129
bytes.

No flags affected

None
Syntax Instruction Format
DJINZ addr |ooloiojooo|| disp |
DJNZ 1050H
Before instruction execution: After instruction execution:
B: B:
PC: 10 7 6 PC: 10 50

5-43

El

Enable Interrupt

Operation:

Flags:
Exceptions:

Addressing
Mode

Mask =

Example:

5-44

El mask Mask = Hex value between 0 and 7Fh
If mask(i) = 1then MSR(i) 1

The designated control bits in the Master Status register (MSR) are set to 1, thus enabl-
ing interrupts on these inputs; all other interrupt enables in the MSR are unaffected.
Note that during the execution of this instruction and the following instruction, all
maskable interrupts (whether previously enabled or not) are automatically disabled for
the duration of these two instructions.

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i. If no mask is present, all interrupts are enabled.

No flags affected %

Privileged Instruction

Syntax Instruction Format
B 1111111011l
H mask 111110111011101]111]11111 mask |

byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
mask(7) must be zero.

El 49H
Before instruction execution: After instruction execution:
MSR: 00 0 0 MSR: 0 0 4 9

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

EX

Exchange Accumulator/Flag with Alternate Bank

EX AF.AF'
AF«*AF'

The control bit mapping the accumulator and flag registers into the primary bank or the
auxiliary bank is complemented, thus effectively exchanging the accumulator and flag
registers between the two banks.

Loaded from F'

None

Syntax Instruction Format

EX AF.AF | 00100110001

EX AF AF'

Before instruction execution: After instruction execution:
2 3 F 3 AF: 1 0 B O
10 BO AF" 2 3 F 3

EX

Exchange Addressing Register with Top of Stack

Operation:

Flags:
Exceptions:

Addressing
Mode

Field Encoding:

Example:

5-46

EX (SP)dst dst = HL, IX IY

(SP)~dst

The contents of the destination register are exchanged with the contents of the top of
stack. That is, the low-order byte contained in the register is exchanged with the con-
tents of the memory address specified by the Stack Pointer (SP), and the high-order byte
of the register is exchanged with the contents of the next highest memory address

(SP + 1).

No flags affected

None

Syntax Instruction Format

EX (SP),HL [11]200]011 |

EX (SP),XY 1111*1111011111110010111

*: 0 for IX t for IY

EX (SP),HL

Before instruction execution: After instruction execution:
HL 2 1 9 3 HL B 3 2 A
SP: 8 200 SP: 8 2 0O

Data memory: Data memory:

8200: 2 A 8200: 9 3

8201: B 3 8201 2 1

Operation:

Flags:

Exceptions:

Addressing
Mode

Exampls:

EX

Exchange Hand L

EX'H.L
H*»> L

The contents of the H and L registers are exchanged.

No flags affected

None

Syntax Instruction Format

EX HL 1111011101 1111J1011111 |

EX H,L

Before instruction execution: After instruction execution:

HL 12 3 4 HL 3412

EX

Exchange HL with Addressing Register

EX src.HL src = DE, IX, IY
Operation: src HL

The contents of the HL register are exchanged with the contents of the source.

Flags: No flags affected *
Exceptions: None
Addressing
Mode Syntax Instruction Format
EX DE.HL [11/101]011]
EX XY.HL 1 1 1011mina
Field Encoding: Or OforIX 1forlY
Example: EX DE,HL
Before instruction execution: After instruction execution:
8 2 EO DE 38 F F
3 8 F F HL: 8 2 EO

5-48

EX

Exchange with Accumulator

EX Asrc src = R, RX IR, DA, X, SX, RA, SR, BX
Operation: Src™A

The contents of the accumulator are exchanged with the contents of the source.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R EX AR | 11]201] 1017l0d r 1111
RX: EX ARX | 11/*11|101|| 1111011101 ||oo] IX [111]
IR: EX A(HL) | 11 10111011 00l1101111
DA: EX A (addr) | L1joil]lO]]| 11110111011100/111111111 addr(low) || addrhigh) |
X: EX A (XX + dd) | 11j211] 1011 11M011I01 1100) xx 1111 dlow) 1l <) |
SX: EX AXY + d) liileiilioi|| 1110111011100110]11111 ~d H
RA: EX A<addr> | 11j211] 1011 1111011101] 1001000111111 dlaplon) 1 dispthigh) |
SR: EX A,(SP + dd) | 1llon| 1o1)1 al|lol|1011100/000| 1111 dkm) H ~w | 1
BX: EX A,(XXA + XXB) | 1l|oil] 1011 1111011101 1001bx 11111

Field Encodings: o: oforix 1foriy
nc: 100 for high byte, 101 for-low byte
xx: 001 for(IX + dd), 010 for (IY + dd), 011 for (HL + dd)
*bx: 001 for(HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example: EX AB
Before instruction execution: After instruction execution:
A 0 3 A 8 2
B: 8 2 B: 0 3

5-49

EXTS

Extend Sign (Byte)
EXTS [A]
Operation: L A

Flags:

Exceptions:

Addressing
Mode

Example:

5-50

IfA(7) = 0,then H 00 else H FF

The contents of the accumulator, considered as a signed, twos-complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed
operands to longer signed operands. P

No flags affected

None

Syntax
EXTS A

EXTS A

Before instruction execution:

A
HL: 5 5 5

Instruction Format

111110111011101110011001

After instruction execution:

A 8
5 HL: F F 8

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

EXTS

Extend Sign (Word)

EXTS HL
If H(7) = O, then DE 0000 else DE FFFF

The contents of the HL register, considered as a signed, twos-complement integer, are
sign-extended to 32 bits and the result is stored in the DE and HL registers, with the DE
register containing the most significant bits. This instruction is useful for conversion of
signed operands to larger signed operands.

No flags affected

None

Syntax ’ Instruction Format

EXTS HL 111110111011 0111011100 |

EXTS HL

Before instruction execution: After instruction execution:
DE: 0 3 2 F DE F F F F
HL E F 30 HL E F 30

5-51

EXX

Exchange Byte/Word Registers with Alternate Bank

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-52

EXX

BC BC
DENDE'
HL HL'

The control bit mapping the byte/word registers into the primary or auxiliary bank of the
CPU registers is complemented, thus effectively exchanging the B, C, D, E, H, and L
registers between the two banks.

No flags affected

None

Syntax Instruction Format

EXX 11110111001 |

EXX

Before instruction execution: After instruction execution:
BC: 2 3 A0 BC: 3 8 0 F
DE: 16 5 3 DE: E 2 00
HL: 2 4 F F HL: 1 F A 3
BC" 3 80 F BC: 2 3 A0
DE" E 2 0O DE": 16 5 3
HL" 1 F A 3 HL": 2 4 F F

Operation:

Flags:

Exceptions:

Addressing
Mode

HALT

HALT

HALT
CPU Halts

The CPU operation is suspended until an interrupt or reset request is received. This in-
struction is used to synchronize the Z280 MPU with external events, preserving its state
until an interrupt or reset request is accepted. After an interrupt is serviced, the instruc-
tion following HALT is executed. While halted, memory refresh cycles still occur, and bus
requests are honored.

For the Z80 Bus configuration of the Z280 MPU, the HALT signal is asserted when the
Halt instruction is executed and remains asserted until an interrupt or reset request is
accepted. For the Z-BUS configurations of the Z280 MPU, a special Halt bus transaction is
performed when the halt instruction is executed.

If the Breakpoint-on-Halt control bit inthe Master Status register is set to 1, the Halt
instruction is not executed, and Breakpoint-on-Halt trap istaken instead.

No flags affected

Breakpoint, Privileged Instruction

Syntax Instruction Format

HALT |01]110]110]

5-53

IM

Interrupt Mode Select

%

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

M p p=2012 3

Interrupt Mode p

The interrupt mode of operation is set to one of four modes (see Chapter 6 for a descrip-
tion of the various modes for responding to interrupts). The current interrupt mode can
be read from the Interrupt Status register.

No flags affected

Privileged Instruction

Syntax Instruction Format
M p |111j201]101}j01] t 11101

P t

mode encoding

0 000

1 010

2 011

3 001
M 3
Before instruction execution: After instruction execution:
Interrupt Status register: Interrupt Status register:

F O 0 0 F 3 0o

Operation:

Flags:

Exceptions:

Addressing
Mode

R:
RX:

BX:

Field Encodings:

Example:

IN

Input

IN dst,(C) dst = R RX, DA, X, RA, SR, BX
dst(C)

The byte of data from the selected peripheral is loaded into the destination. During the /O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines A8-Al5and the
contents of the I/O Page register are placed on address lines A16-A23. The byte of data from
the peripheral isthen loaded ihto the destination.

. Set if the input data is negative; cleared otherwise
Set if the input data is zero; cleared otherwise
. Cleared
. Set if the input data has even parity; cleared otherwise
. Cleared
. Unaffected

0OzZz<IN®W

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format

IN R,(C) 111)101)1011101] r 10001

IN RX,(C) 111]«11]1011111110111012|0i | n 10001

IN (addr),(C) 111)0111101111111011101 ||oi|m | 0001 addrflow) 11 addiflilgh) |
IN (XX + dd),(C) 111]1111101111111011101 11011xx 100011 ddow) || cKkhgH) |
IN <addr>,(C) 11111111101111111011101 11011000/00011 dlapOow) || dlap<high) |
IN (SP + dd),[C) 111101111011111101110111011000| 00011 ddow) Il <Xvgh> 1
IN (XXA + XXB),(C) 1111011110111111101110111011bx |ooo|

*: o for ix. 1 for iy

rx: 100 for high byte, 101 for low byte

xx: 00L for (IX + dd), 010 for (Y + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010for (HL + 1Y), 011 for (IX + IY)

IN L,(C)
Before instruction execution: After instruction execution:
F szxhxvnc F: 00x0x00c
BC: 1 6 50 BC: 1 6 50
HL 00 2 3 HL 00 7 6

1/0 Page register:
11

Byte 76h available at I/O port 111 650h

IN

Input Accumulator

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-56

IN A(n)

A «-(n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the 8-bit peripheral address from the instruction is placed on the low
byte of the address bus, the contents of the accumulator are placed on address lines
As8-A-i5 and the contents of the 1/0 Page register are placed on address lines A16-A 23.
The byte of data from the selected port is written into the accumulator.

No flags affected

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Syntax Instruction Format

IN A,(n) |11]011]011]| n |

IN A,(66H)

Before instruction execution: After instruction execution:
A 4 2 A F D

1/0 Page register:

Byte FDh available at I/O port 114266h

Operation:

Flags:

Exceptions:

Addressing
Mode
R
RX:
IR:
DA:

SX:
RA:
SR:
BX:

Field Encodings:

Example:

INC

Increment (Byte)

INC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX
J

dstdst +1

The destination operand is incremented by one and the sum is stored in the destination.
Twos-complement addition is performed.

S: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a carry from bit 3 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the destination was 7Fh; cleared
otherwise

N: Cleared

C: Unaffected

None

Syntax Instruction Format

INC R tool r LG

INC RX [H*1 110 1|00 rx 1100]

INC (HL) looliio| 100 |

INC (addr) 111101111011100] 111 110011 addrQow) | | addriMfih) |

INC (XX +dd) 111|m | 1011100| xx 110011 dfiow) | | dfhloh) |

INC (XY + d) |11]*11j10220llIOICON. d |

INC <addr> T11j2111101 lloolooal 1001f dispoow) | | dtep(high) |

INC (SP + dd) 111j011] 1011100j000]20011 dpow) | | <KMvgh) |

INC (XXA + XXB) liabi1lo1ltool bx Mool

@ OforiX 1foriy

rx: 100 for high byte, 101 for low byte

xx: 001 for(IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

INC (HL)
Before instruction execution: After instruction execution:
F: szxhxvnc F 10x0x00c
HL 2 4 5 4 HL | 24 5 4
Data memory: * Data memory:
2454: 8 8 2454: 8 9

5-57

INC[W]

Increment (Word)

Operation:

Flags:
Exceptions:

Addressing
Mode

R

IR:
DA:
X
RA:

Field Encodings:

Example:

5-58

INC[W] dst dst = R

or

INCW dst dst = IR, DA, X, RA
dst dst + 1

The destination operand is incremented by one. Twos-complement addition is performed.

No flags affected

None

Syntax Instruction Format

INCW RR [00] rr 10111

INCW XY 111|<M1]101||00|100[011 |

INCW (HL) 111101111011100|0001011 |

INCW (addr) 111j011 [101 11 00]010]01111 addr(low) || addr(high) |
INCW (XY + dd) 1111111110111001xy 10111 dfiow) [T dfhigh) |
INCW <addr> 11101111011roo|110[011 I dispflow) 1! disp<high) |

< OforiX 1foriy
rr: 000 for BC, 010 for DE, 100 for H, 110 for SP
Xy: 000 for (IX + dd), 010 for (IY + dd)

INCW BC
Before instruction execution: After instruction execution:
BC: F 1 2 BC: 3 F 1 3

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

IND

Input and Decrement (Byte, Word)

IND
INDW

(HL) == (C)
B b—1

HL AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. During the 1/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A”, and the contents of the
I/O Page register are placed on address lines A16-A 23 The byte or word of data from
the selected peripheral is then loaded into the memory location addressed by the HL
register. The HL register is then decremented by one for byte transfers or by two for
word transfers, thus moving the memory pointer to the next destination for the input. The
B register, used as a counter, is then decremented by one.

. Unaffected

Set if the result of decrementing B is zero; cleared otherwise
. Unaffected

. Unaffected

Set

: Unaffected

NzZ<ING

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
IND Ta1l10111011110120110101
INDW |11]ioi|101||10l001|010]
INDW

Before instruction execution:

F szxhxvnc
BC: 15 6 4
HLa 50 0 2

I/0 Page register:

Word 8D07h available at I/0O port 331564H

After instruction execution:

F sOxhxvic
BC: 6 4
HL 0 00

Note: Example assumesthat a 16-bit data bus configuration of the 2280 MPU is used.

INDR

Input, Decrement and Repeat (Byte, Word)

Operation:

Flags:

Exceptions:

Addressing
Mode

5-60

%

INDR
IN DRW

Repeat until B = 0: (HL) (C)
B«-B - 1
HL AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transactions, the
peripheral address from the‘C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A8-A 15, and the contents of the
I/O Page register are placed on address lines A18-A 23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then decremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in-
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

w

Unaffected
Z&

. Unaffected
Unaffected
Set

Unaffected

0z=sT

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
INDR 11111011101 1110J1111010 |
INDRW 11111011101 [11010111010 |

Example: INDR

Before instruction execution:

F szxhxvnc
BC: 0 3 4 6
HL 5 2 1 8

1/0 Page register:

Byte 9Ah available at
/O port 170346h,
then byte 3BHavailable at
1/Oport 170246h,
then byte FFHavailable at
I/O port 170146h.

After instruction execution:

F sIxhxvic
BC: 00 4 6
HL 5 2 15

Data memory:
5216: F
5217: 3 B

5218: 9 A 1

INI

Input and Increment (Byte, Word)

Operation:

Flags:

Exceptions:

Addressing
Mode ~

Example:

INI
INIW

(HL)«-(C)
B B- 1

"HL AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. During the /O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A-is, and the contents of the
I/O Page register are placed on address lines A16-A 23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one.

: Unaffected

Set if the result of decrementing B is zero; cleared otherwise
. Unaffected

: Unaffected

Set

. Unaffected

NZ<SINW®

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Syntax Instruction Format

INI 111110111201112011001010 |

INIW 11111011101 1110j000J010 |

INI

Before instruction execution: After instruction execution:

F szxhxvnc F: sOxhxvtc
BC: 15 6 4 BC: 1 4 6 4
HL: 50 0 2 HL: 5 0 0 3

1/O Page register: Data memory:
3 3 5002: 7 A
Byte 7Ah available at
I/O port 331564h

Operation:

Flags:

Exceptions:

Addressing
Mode

INIR

Input, Increment and Repeat

INIRW

Repeat until B = 0: (HL) — (C)
BeB—1
HL — AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A is, and the contents of the
I/O Page register are placed on address lines A16-A 23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in-
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

S. Unaffected
7i Set
. Unaffected
. Unaffected
Set
. Unaffected

0z<zT

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
INIR l11110111201M10l110l0101
INIRW |11]201|1011110]010]0101

5-63

Example: INIRW
Before instruction execution: After instruction execution:

Word 66D7h available at

1/0 port310255h
then word A8FFh available

at 1/0 port 3101 55h-
Note: Example assumes that a 16-hit data bus configuration of the 2280 MPU s used.

5-64

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

IN[W]

Input HL

INMWI HL,(C)
HL ©

The word of data from the selected peripheral is loaded into the HL register. During the
1/0 transaction, the 8-bit peripheral address from the C register is placed on the low byte
of the address bus, the contents of the B register are placed on address lines Ae-A-15
and the contents of the 1/0O Page register are placed on address lines A16-A 23. Then one
word of data from the selected port is written into the HL register. For 8-bit data buses,
the contents of L are undefined for external peripherals.

No flags affected

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
IN HL.(C) l11110111201 ljiolliolm |
INW HL,(C)
Before instruction execution: After instruction execution:
BC: 2 6 50 BC: 2 6 50
HL: 3 3 3 3 HL:
I/O Page register:
10

Word 4D87h available at I/O port 102650h

Note: Example assurmes that a 16-hit data bus configuration of the 2280 MPU s used.

JAP

Jump On Auxiliary Accumulator/Flag

JAF dst dst = RA
Operation: If auxiliary AF then PC dst

A conditional jump is performed if the auxiliary Accumulator/Flag registers are in use. If
the jump is taken, the Program Counter is loaded with the destination address; otherwise
the instruction following the JAF instruction is executed. This instruction employs an 8-bit
signed, twos-complement displacement from the Program Counter to permit jumps
within the range -125 to +130 bytes from the location of this instruction.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
RA: JAF addr |11|011)101[|00J101j000|] dsp |
Example: JAF 5000H
Before instruction execution: After instruction execution:

Auxiliary Accumulator/Flag inuse

4 F E 6 PC: 50 00

5-66

Operation:

Flags:

Exceptions:

Addressing
Mode

RA:

Example:

JAR

Jump On Auxiliary Register File In Use

JAR dst dst = RA
If auxiliary file then PC dst

A conditional jump is performed if the auxiliary register file is in use. If the jump is taken,
the Program Counter is loaded with the destination address/otherwise the instruction
following the JAR instruction is executed. This instruction employs an 8-bit signed, twos-
complement displacement from the Program Counter to permit jumps within the range
-125 to +130 bytes from the location of this instruction.

No flags affected

None

Syntax Instruction Format

JAR addr li1lo1111011100l100l0001 disp 1
JAR 42DOH

Before instruction execution: After instruction execution:

Auxiliary file inuse

PC: 4 2 F 6 PC: 4 2 D O

5-67

JP

Jump

Operation:

Flags:
Exceptions:

Addressing
Mode

IR:

DA:

Field Encodings:

Example:

5-68

JP [ccjdst dst = IR, DA, RA

If cc is satisfied then PC dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an uncondi-
tionai jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump instruction is executed. For the Relative Address mode, the PC value
used to calculate the destination address is the address of the next instruction following
the Jump instruction; a 16-bit signed twos-complement displacement from the PC per-
mits jumps within the range -32764 to +32771 bytes from the location of this instruc-
tion.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.

When using DA mode with the JP instruction, the operand is not enclosed in paren-
theses.

No flags affected

None

Syntax Instruction Format

JP CC,(HL) [11]011]101 11111cc 1010 |

JP (HL) 11111011001 | | “unconditional jump” |
JP (XY) 1111*111101 111111011001 | | “unconditional jump” |
JP CC.addr 1111cc 1010 1 addr(low) 11 addr(high) |

JP addr 1111000| 011 1 addr(low) || addr(high) | | “unconditional jump” |
JP CC,<addr> 1111111101 11111cc 1010 1 disp(low) || disp(high) |

JP <addr> 11111111101 11111000{ 011 11 dispQow) 1 disp(high)] | “unconditional jump” |

0N oforix 1toriy
cc: 000 for Nz, 001 for Z, 010 for NC, 011 for C, 100 for POor Nv, 101 for PEor V,
¢ 110for Por NS 111 for Mor S

JP C.5000H
Before instruction execution: After instruction execution:
szxhxvnl E szxhxvnl
| 2 6 8 4 pc:I' 5 0 00

Operation:

Flags:
Exceptions:

Addressing
Mode

RA:

Field Encoding:

Example:

JR

Jump Relative

JR [cc,Idst dst = RA
If the cc Is satisfied then PC dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an uncondi-
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump Relative instruction is executed. These instructions employ an 8-bit
signed, twos-complement displacement from the PC to permit jumps within the range
-126 to +129 bytes from the location of this instruction.

Either the Zero or Carry flag can be tested and a jump performed conditionally on the
setting of the flag.

No flags affected

None

Syntax Instruction Format

JR CC.addr 1001cc 100011 disp |

JR addr 100]011]000|] dip | | *“unconditional jump” |

cc: 100 for NZ, 101 for Z, 110 for NC, 111 for C

JR NZ,6000H
Before instruction execution: After instruction execution:
sOxhxvnc F sOxhxvnc
5 F D 4 PC: & o 00

5-69

LD

Load Accumulator

Operation:

Flags:

Exceptions:

LD dst,src dst
src
dst
src

dst src

R, RX, IR, DA, X, SX, RA, SR, BX
A
or
A
R, RX, IM, IR, DA, X, SX, RA, SR, BX

The contents of the source are loaded Into the destination. The contents of the source
are not affected. Special instructions are provided so that the BC and DE registers can

also be used in the IR addressing mode.

No flags affected

None

Load into Accumulator

Addressing
Mode

R:
RX:

DA:

SX:
RA:
SR:
BX:

Syntax Instruction Format

LD AR loilm| r |

LD ARX 11llen]|lOl[|OII121] m |

LD An 100]11111101r n | '
LD A(HL) |o1|m 11101

LD A(RR) | 001rra 10101

LD A(addr) |00]111101011 addr(low) 11 addr(high) |

LD A(X + dd) 1111111101110111111xxa]| dlow) || d(high) |
LD A(XY + d |11/*11]10111011111111011 d |

LD A<addr> 1111111110111011111 looo 11 disp(low) 11 disp(high) |
LD A(SP + dd) 11110111101110111111000 1 d(low) 11 d(high) |

LD A(XXA + XXB) 11110111101110111111 bx |

toad from Accumulator

Addressing
Mode Syntax Instruction Format
R LD RA lo1] r |111)
RX LD RXA 11#11[101.][01] IX [1111
IR: LD (HL),A |o1j110]1121
LD (RR)A | ooint> o101
DA LD (addr)A |00[110]010j| addrflow) || addr(high) |
X LD (XX + dd)A 11110111011100|xxb|011 11 dflow) || d(high) |
SX LD (XY + d)A |iile»ii io1llo1 Jiio |m 1L d |
RA: LD <addr>A |11]101]|101||p0J100|011 || dispflow) 11dlsp(high) |
SR LD (SP + dd)A [11f10 1l1011j00j000j011 11 d(low) || d<high) |
BX: LD (XXA + XXB)A 111]10111011100 bx 1011 1
Reid Encodings: e 0 for IX, 1 for IY
rx 100 for high byte, 101 for low byte
nra 001 for BC, 011 for DE
rrb 000 for BC, 010 for DE
Xxa 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
xxb 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Examples: LD A(HL)
Before instruction execution: After instruction execution:
A: 0 F A: 0 B
HL 1 7 0 C HL 1 7 0 C
Data memory: Data memory:
170C: 0 B 170C: 0 B

-71

LD

Load from | or R Register

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-72

LD A,src src = IR

AN src

The contents of the source are loaded into the accumulator. The contents of the source
are not affected. The Sign and Zero flags are set according to the value of the data
transferred; the Overflow flag is set according to the state of the Interrupt A Enable bit in
the Master Status register. Note: The R register does not contain the refresh address
and is not modified by refresh transactions.

Set if the data loaded into the accumulator is negative; cleared otherwise
Set if the data loaded into the accumulator is zero; cleared otherwise

: Cleared

. Set when loading the accumulator if the interrupt A Enable bit is set; cleared
otherwise

: Cleared

Unaffected

<INO®

0z

Privileged Instruction

Syntax Instruction Format
LD Al |11]101]1011101|010]111 1
LD AR 11111011101 1101j0111111 |
LD AR
Before instruction execution: After instruction execution:
AF: 10 szxhxvnc AF: 4 2 00x0x10c
R 4 2 R 4 2
MSB: 4 0 7 F MSR: 4 0 7 F

Operation:

Flags:
Exceptions:

Addressing
Mode
R:
RX:
IR:

DA:

X:
SX:
RA:
SR:
BX:

Field Encodings:

Example:

LD dstn

dst *- n

dst = R, RX, IR, DA, X, SX, RA, SR, BX

The byte of immediate data is loaded into the destination.

No flags affected

None

Syntax

LD Rn

LD RXn

LD (HL),n

LD (addr),n

LD (XX + dd),n
LD (XY + dyin
LD <addr>,n

LD (SP + dd),n
LD (XXA + XXB),n

*: Ofor |X1 1 for iy

Instruction Format

lool r 11101 n |
1111*1111011tool ix 111011 n |
loolliol110l n 1
1111011110111001111111011 addrtlow)

111111111011 lool xx 111011 diew) 1 VD> 11
1y o1 1oolizonion d r-\-3

111111 11101 I looloool 11011 (HwOowt liwhsmill 1
[11/011]101 1100[000[1101 dflow) 1 dough) 1[

[11/011]101 1100 bx 111011 n

rx: 100 for high byte, 101 for low byte
XX: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + Iy> 011 for (IX + 1Y)

LD A.55H

Before instruction execution:

A: 6 7

After instruction execution:

A: 5 5

_J

1

1

LD

Load Immediate (Byte)

-73

LD

Load Register (Byte)

LD dst,src dst = R
src = R, RX, IM, IR, SX
or
dst = R, RX, IR, SX
src = R

Operation: dstsrc

The contents of the source are loaded Into the destination.

Flags: No flags affected

Exceptions: None

Load into Register

Addressing
Mode Syntax Instruction Format
R LD RL,R2 10il r1 17121
RX: LD R*RX 111U 11H 0111011 r* L eJ
LD RXARXB 11l|<t>11] 1011101 |nca |rxbj
LD RXR* 1111011110111011rx | |
M LD Rn loot r 11101 n |
LD RXn 111|<M1| 1011001 X 11107 L
IR: LD R(HL) [01] r 1110 |
SX: LD R(XY + d) [1UM10110L I r 5 E ¢ |

Load from Register

IR: LD (HHR [01]110] > |
SX: LD (XY + d,R [11]<M1|201 110111201 r L d*
Field Encodings: w: OforJX 1for IY

rx: 100 for high byte, 101 for lowhyte
rxa: 100 for high byte, 101 for lowbyte

rxb: 100 for high byte, 101 for lowbyte .
nxa and nd refer to the same index register

r*: Onlyregisters A B C D, and E can be accessed
rLr2: See Table 512

Example: LD AB
Before instruction execution: After instruction execution:
0 8
B. B: 8 2

5-74

Operation:

Flags:
Exceptions:

Addressing
Mode

Example:

LD

Load to | or R Register

LD dstA dst = |, R
dst A

The contents of the accumulator are loaded into the destination. Note: the R register
does not contain the refresh address and is not modified by refresh transactions.

No flags affected

Privileged Instruction

Syntax Instmction Format

LD LA 111110111011101l00011111

LD RA 111110111011101100111111

LD LA

Before instruction execution: After instruction execution:
A 0 D A
I: 2 2 T

5-75

LDA

Load Address

Operation:

Flags:

Exceptions:

Addressing
Mode

DA:

SR:

BX:

Field Encodings:

Example:

LDA dst.src dst =

sre =

HL, IX, IY
DA, X, RA, SR, BX

dstaddress(src)

The address of the source operand is computed and loaded into the destination. The

contents of the source are not affected. The address translation mechanism in the MMU

is not used to determine if the address is valid.

No flags affected

None '

Syntax Instruction Format

LDA HL,(addr) lod 100100111 addr(low) | addr(high) |

LDA XY, (addr) [n|eiilioi © © w | add(low) || add(high)1

LDA HL,(XX + dd) l111101|101 Moo xx 1010| dlow) 1r dhigh)

LDA XY,(XX + dd) l112101111Q111111012101 000 xx 1o ir dlon) 1l d(high)J
LDA HL,<addr> |11]201]12011100|100]010 |1 disp(lon) | f disp(high)

LDA XY,<addr> Inlenlioil]ll[tOI[101 | o — ool displon) 1 dspligh) |
LDA HL,(SP + dd) |11]201]101 1100j000|010 11 CHOWY i dhigh

LDA XY,(SP + dd) [11/012101 MIMONIAL | 0 _ oo J dlon) 11 <kHd) |
LDA HL,(XXA + XXB) |11]102]201 11001bx 1010 |

LDA XY,(XXA + XXB) 11/011J101"1[11 112011101 1]00] bx 010 |

0: oforix 1foriy

XX: 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + X, 010 for (HL + 1Y), 011 for (IX + 1Y)
LDA HL,(IX + 4)

Before instruction execution: After instruction execution:

2 3 0 8 HL: E 3 2 8
E 3 2 4 IX: E 3 2 4
Address calculation:
E324
+ IS

E328

Operation:

Flags:

Exceptions:

LDCTL

Load Control

LDCTL dst,src dst = (C), USP
src = HL, IX IY
or
dst = HL, IX IY
src = (C), USP
dstsrc

This instruction loads the contents of a CPU control register into an addressing register,
or the contents of an addressing register into a CPU control register. The contents of the
source are loaded into the destination; the source register is unaffected. The address of
the control register is specified by the contents of the C register, with the exception of
the User Stack Pointer. The various CPU control registers have the following addresses:

Address
Register (HexadeclmaO
Master Status register (MSR) 00
Interrupt Status register 16
Interrupt/Trap Vector Table Pointer 06
I/O Page register * 08
Bus Timing and Initialization register * FF
Bus Timing and Control register * 02
Stack Limit register 04
Trap Control register * 10
Cache Control register * 12
Local Address register * 14

*8hit control register

When writing to an 8-bit CPU control register, only the low-order byte of the specified
source addressing register is written to the control register. When reading from an 8-bit
CPU control register, the control registeroontents are loaded into the low-order byte of
the destination addressing register, and the upper byte of the destination is undefined.

Note that the User Stack Pointer control register is accessed using special opcodes; the
contents of the C register are not used for these opcodes. This form of the Load Control
instruction allows the user-mode Stack Pointer to be accessed while in system-mode
operation.

No flags affected

Privileged Instruction

5-77

Addressing
Mode

Field Encoding:
Example:

5-78

Syntax instruction Format

LDCTL HL,(©) Tnailo1l101 o1 liool 110 i

LDCTL XY,(© l112l01212Q M11l101l101 101110011101
LDCTL (C),HL 111110111011101110111101

LDCTL (QXY Tunkn] 101 |[n]ioilioi llo1l101k101
LDCTL HL.USP 111710111011110l00011111

LDCTL XY,USP I KRA1101 111112017101 1110l000%11 |
LDCTL USP.HL 11111017101 1110l002 1111 |

LDCTL USP.XY 11 <1101 111111011101 Niojooi |111 |

0: 0 for IX 1for IY

LDCTL (C),HL

Before instruction execution:

C, 0 8 C:
HU 55 3 A HU 5 5
1/O Page register: 1/O Page register:
0O 3 A

After instruction execution:

w o

>

Operation:

Flags:

Exceptions:

Addressi
IVbdeng

Example:

Load and Decrement

LDD

(DE) (HL)
DE ~-DE -
HL—HL - 1
BC-BC - 1

This instruction is used for block transfers of strings of data. The byte of data at the loca-
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then decremented by one, thus moving the
pointers to the preceding elements in the string. The BC register, used as a counter, is
then decremented by one.

Unaffected

Zhaffected

. Cleared

Set if the result of decrementing BC is not equal to zero; cleared otherwise
. Cleared

: Unaffected

NOz<xIT ®

None

Syntax Instruction Format

LDD Inliot|ioi||iolioilooo|

LDD

Before instruction execution: After instruction execution:

F szxhxvnc F: 570,000
HL 11 11 HL 11 10
DE 2 2 2 2 DE 21
BC: 0 7 BC. 0 0 8
Data memory: Data memory:
1111: 8 8 1111: 8 8
9099- 8 6 2222:

LDDR

Load, Decrement and Repeat

LDDR
Operation: Repeat until BC = 0;(DE)«-(HL)
DE DE- 1
HL HL - 1
BC~ BC- 1

This instruction is used for block transfers of strings of data. The bytes of data starting at the
location addressed by HL are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Exceptions: None

Addressing

Mode Syntax Instruction Format

LDDR l11l20111011110l111l000I

Example: LDDR
Before instruction execution: After instruction execution:

F szxhxvnc E s2Ox0Cc

HL 11 17 HL 11 1 4
DE: 2 2 2 5 DE: 2 2 2 2
BC: 00 0 3 BC: 00 00
Data memory: Data memory:
1115: 8 8 1115: 8 8
1116: 3 6 1116: 3 6
1117: A5 1117: A5
2223 9 6 2223: 8 8
2224, 11 2224: 3 6

Operation:

Hags:

Exceptions:

Addressing
Mode

Example:

LDI

Load and Increment

LDI

(DE)«-(HL)

DE—DE + 1
HL HL+ 1
BC”~-BC - 1

This instruction is used for block transfers of strings of data. The byte of data at the loca-
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then incremented by one, thus moving the
pointers to the next elements in the strings. The BC register, used as a counter, is then
decremented by one.

Unaffected

Unaffected

. Cleared

Set if the result of decrementing BC is not equal to zero; cleared otherwise
: Cleared

. Unaffected

0z<INW®

None

Syntax Instruction Format

LDI [11]101]i01 |]10]200/000 |

LDI

Before instruction execution: After instruction execution:

F szxhxvnc F: soxXOx0Cc
HL 11 11 HL 11 1 2
DE: 2 2 2 2 DE- 2 3
BC 0 7 BC. 0 0 6
Data memory: Data memory:
1111: 8 8 1111: 8 8
poop- 8 8 PPPP-. 8

5-81

LDIR

Load, Increment and Repeat

Operation:

Flags:

Exceptions:

Addressing

5-82

Mode

LDIR

Repeat until BC = 0: (DE) (HL)

-DE«-DE + 1
HL HL + 1
BC—BC- 1

This instruction is used for block transfers of strings of data. The bytes of data starting at
the location addressed by the HL register are loaded into memory starting at the location
addressed by the DE register. The number of bytes moved is determined by the contents
of the BC register. If the BC register contains zero when this instruction is executed,
65,536 bytes are transferred. The effect of incrementing the pointers during the transfer
is important if the source and destination strings overlap with the source string starting
at a higher memory address. Placing the pointers at the lowest address of the strings
and incrementing the pointers ensures that the source string is copied without destroy-
ing the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Unaffected
Unaffected
. Cleared
Cleared
. Cleared
Unaffected

OzZz<IN®

None

Syntax Instruction Format

LDIR 11 |ioi Tr011110I110l000 |

Example:

LDIR

Before instruction execution:

F
HL 1

DE
BC: 0
Data memory:
1125: 5
1126: B
1127 7

2210:
2211: 9
2212: 2

o

szxhxvnc
2 5
10
0 3

After instruction execution:

FE
HL 1

DE
BG 0
Data memory:
1125: 5

1126:
1127: 7
2210: 5
2211 B

2212: 7

O N

o

o

O L N

o w ©

LDUD

Load in User Data Space (Byte)

Operation:

Flags:

Exceptions:

LDUD dst,src dst = A
src = IR or SX in user data space
or
dst 5 IR or SX in user data space
src = A
dstsrc

The destination is loaded with the contents of the source. In loading from the user data
space into the accumulator, the memory-mapping mechanism used in translating logical
addresses for data in user mode operation is used to translate the source address. In
loading into the user data space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for data in user-mode operation is used to translate
the destination address. See Chapter 7 for an explanation of this mechanism. The con-
tents of the source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared to 0O; if the transfer is unsuccessful, the Carry flag
is set to 1. The other flags are unaffected if the transfer is successful. If the transfer is
unsuccessful, the value of the Write Protect (WP) bit in the Page Descriptor register
used by the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid
bit is loaded into the V flag.

Unaffected

For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;
unaffected otherwise

Unaffected

For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;
unaffected otherwise

Unaffected

Set if the transfer is unsuccessful; cleared otherwise

Privileged Instruction

Load from User Data Space

Addressing
Mode

IR:
SX

Syntax Instruction Format
LDUD A(HL) 111110111011110100011101
LDUD A(XY + d 111j<»111101 1111711011101 11100001110 1 d |

Load into User Data Space

IR:
SX:

LDUD (HL),A 1111101110111101001 I
LDUD (XY + d)A []«11101 ||11]101j101 |mo10011110n1 d |

Field Encoding:

Example:

*: OforiX 1foriy

LDUD A,(HL)
Before instruction execution:

AF: 0 F szxhxvnc
HL: 8 D 0 7

User data memory:

8D07: 55

After instruction execution:

AF: 5 5 szxhxvnO
HL 8 D 0 7
User data memory:
8DO07: 5 5

5-85

LDUP

Load in User Program Space (Byte)

Operation:

Flags:

Exceptions:

LDUP dst,src dst A
src IR or SX in user program space
or
dst IR or SX in user program space
src A
dstsrc

The destination is loaded with the contents of the source. In loading from the user pro-
gram space into the accumulator, the memory-mapping mechanism used in translating
logical addresses for program fetches (instructions or data using PC Relative adddress-
ing mode) in user-mode operation is used to translate the source address. When loading
into the user program space from the accumulator, the memory-mapping mechanism

*used in translating logical addresses for program accesses (instructions or data using
PC Relative addressing mode) in user-mode operation is used to translate the destination
address. See Chapter 7 for an explanation of this mechanism. The contents of the
source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared; if the transfer is unsuccessful, the Carry flag is
set. The other flags are unaffected if the transfer is successful. If the transfer is unsuc-
cessful, the value of the Write Protect (WP) bit in the Page Descriptor register used by
the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid bit is
loaded into the V flag.

Unaffected

For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;
unaffected otherwise

Unaffected

For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;
unaffected otherwise

Unaffected

Set ifthe transfer is unsuccessful; cleared otherwise

Privileged Instruction

Load from User Program Space

Addressing
Mode

IR:
SX:

5-86

Syntax Instruction Format
LDUP A(HL) T11)1011101 1M10l0101110 |
LDUP A(XY + d) 1114111101 111111011101 | 12010101110 I d |

Load into User Program Space

Addressing
Mode Syntax
IR: LDUP (HL)A
SX: LDUP (XY + d)A
Field Encoding: . 0 for IX, 1for IY
Example: LDUP A,(HL)

Before instruction execution:

AF: 0 F

HL 5 3
User program memory:
5390: F F

Instruction Format

In toal1o1ll1olo1il1iol
l111* 1111012111 ioi lioi ||iooii|iio . T |

After instruction execution:

szxhxvnc AF: F F szxhxvnO
9 0 HU 5 3 9 0
User program memory:
5390: F F

5-87

LDW

Load Immediate Word

Operation:

Flags:
Exceptions:

Addressing
Mode

R

IR:
DA:
RA:

Field Encodings:

Example:

LD[W] dst.nn
or
LDW dst.nn

dstnn

dst = R
dst IR, DA,

RA

The two bytes of immediate data are loaded into the destination. For register destina-
tions, the low byte of the immediate operand is loaded into the low byte of the register

and the high byte of the operand is loaded into the high byte of the register. For memory

destinations, the low byte of the operand is loaded into the addressed location and the

high byte of the operand is loaded into the next higher memory byte (addressed location
incremented by one).

No flags affected

None

Syntax

LDW RR,nN
LDW XY,nn
LDW (HL),nn
LDW (addr),nn
LDW <addr>,nn

Instruction Format

100] i« 10011 n(ow) U n(high) |

111101111011] 00]100 00111 n(low) || n(high) |
111011110111 ooloooloo1ll nflow) || ixhigh) |
[-111011110111 00|01Q|.00l|| addiflow) || addrfhigh) 1.

1111011110111 00)11010011 dlapdow) 11 disp(high) 11

IT: 000 for BC, 010 for DE, 100 for HL, 110 for SP

0: Ofor IX 1for IY

LDW (HL),3825H

Before instruction execution:

After instruction execution:

HL: 2 391 HL 2 3
Data memory: Data memory:
2391 1 E 2391: 2 5
2392: A 3 2392 3 8

n(low)
n(low)

n(high)
n(high)

Operation:

Flags:

Exceptions:

LDJW] dst,src

dst

Src

LD[W]

Load Addressing Register

dst = HL, IX, 1Y

src = IM, DA, X, RA, SR, BX
or

dst = DA X, RA SR, BX

src = HL, IX, IY

The contents of the source are loaded Into the destination. The contents of the source
are unaffected. For register-to-memory transfers, the effective address of the memory
operand corresponds to the low byte of the register; and the memory byte at the effective
address incremented by one corresponds to the high byte of the register.

No flags affected

None

Load into Addressing Register

Addressing
Mode

IM:

DA:

pes

2 3 2

Syntax

LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW

HL,nn

XY.nn

HL,(addr)

XY, (addr)

HL,(XX + dd)
XY,(XX + dd)
HL,<addr>
XY,<addr>
HL,(SP + dd)
XY,(SP 4 dd)
HL, (XXA + XXB)
XY, (XXA 4 XXB)

Instruction Format

lool1o0lo01ll nflow) Il n(hkih) |
|11]*11]101||00|100]001|| nflow) ||
10010110101 addrflow) 1 addr(Mgh> |
Ik I1[101]|[00[I0l|oio|| addrflow) || addrfliigh) |
1111101110111001 xx 1100 1L dflow) 1l dOitah) 1
I11+111101111111011101 1100! xx hOOIl dflow) || d(high) |
11l|lo11101100liocrlioo 11 diapflow) || di»p(hi*h) |
1111711101111111011101 1100 10011001 dlapflow) 1 diapfliigh) |
111101110111 00l0001100 11 dflow) 1 dfliigh) |
111|si11101 111111011101 110010001100 1 d(low) 1I
1111101110111001bx 1100 |

111]«11]1011111|1011101 11001bx |100]|

n(high) [

d(high) |

Load from Addressing Register

Addressing

Mode Syntax

DA LDW (addr),HL
LDW (addr),XY

X LDW (XX + dd),HL

LDW (XX + dd),XY

RA: LDW <addr>,HL
LDW <addr>XY

SR: LDW (SP + dd),HL
LDW (SP + dd),XY

BX: LDW (XXA + XxB), HL

LDW (XXA + XXB), XY

Field Encodings: *: OtoriX 1foriy

Instruction Format

lod lool 01011 addr(low) 11 addrfliigh) 1
11110111101 110011001010 || addrflow) || addr(high) |
111110111011100l xx 1101 11 dflow)
111101111011 1111011101 Ilool XX lio1 11 dflow)
11111011101110011001101 1 disp(low) 1l dispflilgh) |
1111* 111101111111011101 110011001101 11 dispflow) |
[11110111011100l0001 101 11 dflow)
1111*111101 | 11111011101 1|oojooo [101 I

11111011101 ||0O| bx 1101 |

1111*111101 111111011101 11001bx [101 |

xx: 101 for (X + oo, 110for (Y « dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), OLL for (IX + 1Y)

Example: LDW HL,HL + IX)

Before instruction execution:

HL: 1 50 2
IX: F F FE
Data memory:
1500: A 2
1501: 0 3
Address calculation:
1502
*FFFE
1500

5-90

d(hifih)

d(high)
dflow)

After instruction execution:

HL: 0 3
IX: F F
Data memory:
1500: A 2
1501: 0 3

A
=

2
E

|
1 dehigh)

LD[W] dst,src

Operation: dst src

LD[W]

Load Register Word

dst = BC, DE, HL, SP
src = IM, IR, DA, SX
or

dst = IR, DA, SX
src = BC, DE, HL, SP

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For transfers between a register and memory, the effective address of
the memory operand corresponds to the low byte of the register and the memory byte at
the effective address incremented by one corresponds to the high byte of the register.

Flags: No flags affected

Exceptions: None

Load Into Register

Addressing
Mode Syntax
IM: LDW RRnn
IR: LDW RR/(HL)
DA: LDW RR,(addr)
SX: LDW RR(XY + o>

Load from Register

IR: LDW (HL),RR
DA: LDW (addr),RR
SX LDW (XY + d),RR

Instruction Format

|00l rra100111 nlow) || nMgh) |
111101]101]]00[rra|lL10]

1111101110111011rrb 101111 addrtyon) 11 addr(high) | (except HL)
111|011]101||11|101[101 [|00]|rra|ll0]] < |

111110111011100| rrb 1110 |
111 10111011101 1rra 1011 1 addr(low) || addr(high) | (exceptHL)
111]2i11101111111011101 11001rrb 11101] d |

Field Encodings: rra: QXDfor BC, 010 for DE, 100 for HL, 110 for SP
rrb: 001 for BC 011 for DE, 101 for HL, 111 for SP

0: OforlX 1forly

Example: LDW BC,3824H

Before Instruction execution:

BC: 2 1 F 3

After instruction execution:

Bfc: 38 2 4

5-V1

LD[W]

Load Stack Pointer

LD[W] dst,src dst = SP
src = HL, IX 1Y, IM, IR, DA, SX
or
dst = IR, DA, SX
src = SP
Operation: dst src

The contents of the source are loaded into the destination, where the source or destina-
tion is the Stack Pointer.

Flags: No flags affected

Exceptions: None

Load into Stack Pointer

Addressing

Mode Syntax Instruction Format

R LDW SP.HL liijm |o o]

LDW SP,XY l11lon 11011111Im 1 0011

IM: LDW SP,nn Lool110[0Q1|| n(ow) || n(high) |

IR: LDW SP,(HL) (11lioil101]]00111011101
DA: LDW SP,(addr) 11111011101110111111011 11 addr(low) || addr(high) |
SX: LDW SP,(XY + d) |11]*11]101]|11|101]101]|00|110]110]| d |

Load from Stack Pointer

IR: LDW (HL),SP |11]101]101||00|111|110|
DA LDW (addr),SP 11111011101110111101011 11 addr(low) 11 addr(high) |
SX: LDW (XY + d),SP 111]*11|1d1[11]1011101||00|111|110]] d |
Field Encoding: 4 OforIX 1for IY
Example: LDW SP.IX
Before instruction execution: After instruction execution:
SP: 2 3 8 D SP: FF FO
IX: FF FO IX: FFFO

5-92

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

MULT

Multiply (Byte)

MULT [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
HL”~A X src

The contents of the accumulator are multiplied by the source operand and the product is
stored in the HL register. The contents of the accumulator and the source are unaffected.
Both operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds sign-extension data.

S. Set if the result is negative; cleared otherwise

Z. Set if the result is zero; cleared otherwise

H: Unaffected

V: Cleared

N: Unaffected

C: Set if the product is less than - 27 or greater than or equal to 27; cleared otherwise
None

Syntax Instruction Format

MULT AR 1111101110111 111 r 1000 |

MULT ARX Tij4>11) 1012112101101 111111 20001

MULT An 111]1111101111111011101 |11111111000lI n J

MULT A,(HL) 111110111011111111010001

MULT A,(addr) 11110111101111111011101 Iin imiooo X addr(low) 11 addr(high) |
MULT A,(XX + dd) 1111111101111 11011101 | |¢c |« [«c>» J| ddow) 11 dhloh) |
MULT A(XY + d) | 11|<m11101 111111011101 | k11110100011 d

MULT A,<addr> 1111111101 411111011101 11 loool 00011 disp(low) 11ditp(high) |
MULT A,(SP + dd) hi1to11ho1Tha1101dior 1111100000001 dflow) 11 dehigh) |
MULT A,(XXA + XXB) 11110111101111111011101 1111 1bx 10001

*: OforiX, 1foriy

rx: 100 for high byte, 101 for lowbyte

xx: 001 for (IX + dd), 010 for (IY + dd), O11 for (HL + dd)
bx: 00 for (HL + 1%, 010 for (HL + 1Y), 011 for (IX + 1Y)

MULT AH
Before instruction execution: After instruction execution:

Alf: F E szxhxvnc AF: F E 10xhx0n0
HL 12 00 HL F F D C

5-VJ

MULTU

Multiply Unsigned (Byte)

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

5-94

MULTU [A]src src = R RX IM, IR, DA, X, SX, RA, SR, BX

HL«-A X src

The contents of the accumulator are multiplied by the source operand and the product
is stored in the HL register. The contents of the accumulator and the source are
unaffected. Both operands are treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds zero.

S: Cleared

Z: Set if the result is zero; cleared otherwise

H: Unaffected

V: Cleared

N: Unaffected

C: Set if the product is greater than or equal to 28; cleared otherwise

None

Syntax Instruction Format

MULTU AR M 1011101 Hu] r |0OL1

MULTU ARX M OL11101 111111011100 [|11] mx 1001 |

MULTU An M 1111101 11111011101 111111111001 || N

MULTU A,(HL) M 1011101 11111110 OOL |

MULTU A, (addr) [n] 0111101 Hill 1011101 [[11]111]001 || addr(low) 1L addr(high) |
MULTU A(XX + dd) M L1100 1111101001 11111 xx 2001 11 d(low) |1 d(hign) |
MULTU AXY + d) N OLLM0L||77101100 NG QL || d |

MULTU A <addr> M 111 101 11117011101 11111000 QL 11 diisp(low) 1 1disp(high) |
MULTU A(SP + dd) [17101)101 111111011400 | [iii ool AL Il dlow) 11 d(hifin) |
MULTU A(XXA + XXB) 0111101 11111 1011101 1111 1001 |

lu

0: 0 for IX 1for fY

rx: 100 for high byte, 101 for lowbyte

XX: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + [X), 010 for (HL + 1V), 011 for (IX + 1Y)

MULTU AH
Before instruction execution: After instruction execution:

AF: F E szxhxvnc AF: F E 00xhx0n1
HL: 0 2 F B HL: 01 F C

Operation:

Flags:

Exceptions:

Addressing
Mode

R

IM:
DA:
X
RA:
IR:

Field Encodings:

Example:

MULTUW

Multiply Unsigned (Word)

MULTUW [HLJsrc - src = R, IM, DA, X, RA

DEHL HL x src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be represented correctly in 16 bits and the DE register
merely holds zero.

Cleared

Set if the result is zero; cleared otherwise

Unaffected

Cleared

Unaffected

Set if the product is greater than or equal to 216; cleared otherwise

None

Syntax Instruction Format

MULTUW HL,RR
MULTUW HL,XY
MULTUW HL,nn
MULTUW HL,(addr)
MULTUW HL,(XY + dd)
MULTUW HL,<addr>
MULTUW HL(HL)

| 111101120110 112 rr |0111
1111#1111011111110111011111110010111

111111111011 11111011101111111101011 2r nGilgh) 1
1111011j1017] 111101110111111010/01111 addr(low) || addr(high) |
1111111101111110111011111xy 10111 dlow) || d(high) |
111]01111011111110111011j 11]110[01111 dltp(low) 1 disp(high) |
In lon lioi]|ti]ioi |x>i|lii |ooolo11l

n(low) Il

Ofor IX 1forIY
rr: 000 for BC 010 for DE, 100 for HL, 110 for SP
Xy: 000 for (IX + dd), 010 for (IY + dd)

MULTUW HL,DE

Before instruction execution: After instruction execution:

F: szxhxvnc F QOO0
DE 00 0 A DE 00 00
HL 00 31 HL 0 1 E A

5-95

MULTW

Multiply (Word)
MULTW [HLJsrc src = R, IM, DA, X, RA
Operation: DEHL HL x src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in 16 bits and the DE register
merely holds sign-extension data.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: uUnaffected
V. Cleared
N: Unaffected
C. Set if the product is less than —215 or greater than or equal to 215; cleared
otherwise
Exceptions: None
Addressing)
Mode Syntax Instruction Format
R: MULTW HL,RR |11]101|101]|11]| rr [010]
MULTW HL,XY 11110111101111111011101 111111001010 | .
IM: MULTW HL,hn 11111111101111111011101 11111110010 1 n(low) || n(high) |
DA: MULTW HL,(addr) 111101111011[1111011101 111110101010 If addr(low)]| addr(high) |
X MULTW HL,(XY + dd) 11111111101111111011101 11111xy [010 1 d(low) 2. d(high) |
RA: MULTW HL,<addr> 11110111101111111011101 1111]110]010 1 disp(low) || disp(high) |
IR: MULTW HLfIHL) In Jon J1011111%h01Ti0il |njooo oio|

Field Encodings: <+ oforix 1foriy
rr: 000 for BC, 01Q for DE .100for HL, 110 for SP
xy: 000for (X + dd), 010 for (IY + od)

Example: MULTW HL,DE
Before instruction execution: After instruction execution:
F szxhxvnc F 0077070
DE 0 0 0 A DE 00 00
HL 00 31 HL 01 E A

5-96

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

NEG

Negate Accumulator

NEG [A]
KA

The contents of the accumulator are negated, that is, replaced by its twos-complement
value. Note that 80h is replaced by Itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

S: Set if the result is negative, cleared otherwise
Z. Set if the result is zero, cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of
"th e result (bit 4); cleared otherwise
V: set if the contents of the accumulator was not 80"
before the operation; cleared otherwise.
N: Set
C: set if the contents of the accumulator was not 00~ before the operation; cleared otherwise.

None
Syntax Instruction Format
NEG A fnlioilioi||oijooo]io0]
NEG A
Before instruction execution: After instruction execution:
AF: 2 8 szxhxvnc AF| D 8 | 10x0x010

NEG

Negate HL

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

NEG HL
HL - HL

The contents of the HL register are negated, that is, replaced by its twos-complement
value. Note that 8000h is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

S. Set if the result is negative, cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there was a borrow from the least significant bit of the high-order four bits of
the result (bit 12); cleared otherwise

V: Set if the contents of HL was 8000h before the operation; cleared otherwise

N: Set

C

. Set if the contents of HL was not 000H before the operation; cleared otherwise.

None

Syntax Instruction Format

NEG HL 11111011101 Jjo1 |ooi 1100 |

NEG HL

Before instruction execution: After instruction execution:

szxhxvnc 10x1x010

0 1 2 1 F E D F

Operation:

Flags:

Exceptions:

Addressing
Mode

NOP

None

No operation.

No flags affected

None

Syntax

NOP

instruction Format

| cojood 00|

NOP

No Operation

OR

OR

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

5-100

OR [AJsrc src = R RX IM, IR, DA, X, SX, RA, SR, BX

A ¢-A OR src

A logical OR operation is performed between the corresponding bits in the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit Is
stored wherever either of the corresponding bits in the two operands is one; otherwise a
0 bit is stored. The contents of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Cleared
None
Syntax Instruction Format
OR AR [10]110] r |
OR ARX 111|<M11101 | 110[1101 rx |
OR An 1111110|1101 n |
OR A,(HL) 110|110J1101
OR A,(addr) 111101111011 110]1101111 I f addr(low) || addr(high) |
OR A (XX + dd) 111]1111101 1]10]110| xx | d(low) 1 d(high) |
OR AXY + d) [11]<M1[101 |iioJiio[noir I
OR A <addr> 1111111101 1|10j110]j000 I f disp(low) || di«p(hlfih) |
OR A,(SP + dd) 11110111101 I|io|no|oooir dfiow) 1 d(high) |
OR A(XXA + XXB) 11110111101 1110|1101 bx |
0for IX 1for IY

rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + X, 010 for (HL + 1Y), OLL for (IX + 1Y)

OR A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxpnc AF: 5 8 00x0x000
HL: 2 4 5 4 HL- 2 4 5 4
Data memory: Data memory:
2454: 18 2454: 1 8

Operation:

Flags:

Exceptions:

Addressi
mmm

OTDR

Output, Decrement and Repeat (Byte, Word)

OTDR
OTDRW

Repeat until B = 0: (C)-*-(HL)
B B—

HL AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the 1/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A-is, and the contents of the
I/0 Page register are placed on address lines A-|6- A 23. The byle or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then
decremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing the B
register is zero, the instruction is terminated, otherwise the output sequence is repeated.
Note that if the B register contains O at the start of the execution of this instruction, 256
bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Unaffected
Set
. Unaffected
Unaffected
Set
. Unaffected

NZSINW®W

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
OTDR 111110111011fiolm1 o011 |
OTDRW 111]101 101 111010111011 |

5-101

Example: OTDR

Before instruction execution: i After instruction execution:

F szxhxvnc F sixhsvic
BC: 0 3 4 6 BC. 00 4 6
HL 5 2 1 8 HL: 5 2 15

1/O Page register: Byte 9Bh writtent0 /O port 170346H,

then byte FFh written to 1/0 port 170246h,

1~ | then byte A3h written to I1/0 port 170146h -

Data memory:

5216: A 3
5217: F F
5218: 9 B

5-102

Operation:

Rags:

Exceptions:

Addressi
Nlodeng

OTIR

Output, Increment and Repeat (Byte, Word)

our

OTIRW

Repeat until B = 0: (C) +-(HL)
B—B- 1
HL AUTOINCREMENT (by one if byte, by two if word)

This instruction is used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A-is, and the contents of the
I/O Page register are placed on address lines A-16-A 23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then in-
cremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing B is zero,
the instruction is terminated, otherwise the output sequence is repeated. Note that if the
B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Unaffected
Set
. Unaffected
. Unaffected
Set
. Unaffected

NZSIN®

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
OTIR 111 hoi l101]jio |iio |oii |
OTIRW 111]ioi 1o11110b10b111

5-103

Example:

5-104

OTIRW
Before instruction execution:

F szxhxvne
BC: 0 2 4 4
HL 50 0 4
1/O Page register:
31
Data memory:
5004: 9 0
5005: 3 A
5006: 6 7
5007: B 8

After instruction execution:

F slxhxvic
BC: 00 4 4
HL 50 0 8

Word 3A90h written to I/O port 310244hn,
then word B867h written to 1/O port
310144h.

Note: Example assumes thet a 16-hit data bus configuration of the 2280 MPU is used.

Operation:

Flags:
Exceptions:

Addressing

§£§x9§x§

Field Encodings:

Example:

ouT

Output

OUT (C),src src = R, RX, DA, X, RA, SR, BX
(C)src

The byte of data from the source is loaded into the selected peripheral. During the 1/0
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Ag-A-is, and the
contents of the I/O Page register are placed on address lines A-l6-A 23. The byte of data
from the source is then loaded into the selected peripheral.

No flags affected

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Syntax Instruction Format

ouT (OR 11111011101 Moil r 10011

OUT (C),RX 111 |enl1011111101 hoi Moil rx 1001 |

OUT (C),(addr) 11110111101111111011101 ||oi |1111001 Il addr(low) 11 addr(high) |
OUT (C),(XX + dd) 1111111101111 1011101 11011 xx 1001 1 dflow)]| d(high) |
OUT (C),<addr> |11]112] 2011111012101 Yotlooofooi || dtap(low) 1! dtep(higli) |
OUT (C),(SP + dd) l11toill101111111011101 jloijooojool]| dOmf) Il d(Mgh)]
OUT (C),(XXA + XXB) 111101111011111)1011101 11011bx [001 |

. Ofor IX 1for IY

rx: 100 for high byte, 101 for low byte
XX: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

OUT (C),IXH
Before instruction execution: After instructionexecution:
BC. 16 50 Byte FDh written to
X F D 07 I/O port 321650m

I/0 Page register:

OouT

Output Accumulator

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-106

OuUT (n),A
(n)«-A

The contents of the accumulator are loaded Into the selected peripheral. During the 1/O
transaction, the 8-bit peripheral address from the instruction is placed on the low byte of
the address bus, the contents of the accumulator are placed on address lines Ag-A-is,
and the contents of the I/0O Page register are placed on address lines A16-A 23. Then the
contents of the accumulator are written into the selected port.

No flags affected

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
OUT (n),A liijoioloiilr n |
OUT (55H),A
Before instruction execution: After instruction execution:
A 4 2 Byte 42h written to
I/O port 114255h

1/0 Page register:

Operation:

Flags:

Exceptions:

Addressi
lVbder‘lg

OuTD

Output and Decrement (Byte, Word)

OUTD
OuUTDW

(C)-(HL)
B<b — 1

HL — AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A8-A15, and the contents of the 1/0
Page register are placed on address lines A16-A23. The byte or word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The B
register, used as a counter, isdecremented by one. The HL register isdecremented by one
for byte transfers or by two for word transfers, thus moving the memory pointer to the next
source for the output.

Unaffected

Set if the result of decrementing B is zero; cleared otherwise
Unaffected

Unaffected

Set

Unaffected

QZSINe

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
OUTD l11l10111011110l20110111
OUTDW liijioi]ioi|]ioJooi|oii |

5-107

Example:

5-108

OuUTDW

Before instruction execution:

F: szxhxvnc
BC: 6 4
HL. 5 0 6

1/O Page register:

Data memory:

0 7

5007: 8 D

After instruction execution:

F sOxhxvic
BC: 1 4 6 4
HL: 50 0 4

Word8D07h written to
1/0 port 331564h

Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

Operation:

Flags:

Exceptions:

Addressi
Nbdeng

Example:

OUTI

Output and Increment (Byte, Word)

OUTI
OUTIW

(C) — (HL)
B w—b

HL — AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A-is, and the contents of the
/O Page register are placed on address lines A16-A 23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then incre-
mented by one for byte transfers or by two for word transfers, thus moving the memory
pointer to the next source for the output.

. Unaffected

Set if the result of decrementing B is zero; cleared otherwise
. Unaffected

. Unaffected

Set

. Unaffected

0OzZz<INW®W

Privileged Instruction (if the inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
ouTI liifio i1101111011001011I
OoUTIW 111)10111011110j000|011 [
ouTI

Before instruction execution:

After instruction execution:

F szxhxvnc F sOxhxvic
BC: 6 4 BC: 1 4 6 4
HL: 0 2 HL 50 0 3

1/O Page register: Byte 7Bh written to

Data memory:

5002: 7 B

1/0 port 331564h

5-109

OUT[W]

Output HL
OUTIW] (c),HL

Operation: (C)-HL
The contents of the HL register are loaded into the selected peripheral. During the 1/0
transaction, the 8-bit peripheral address from the C register is placed on the low byte of
the address bus, the contents of the B register are placed on address lines A8-A 15, and
the contents of the I/O Page register are placed on address lines A16-A 23. Then the con-
tents of the HL register are written into the selected port. For 8-bit data buses, only the
contents of the H register are transferred during a single bus transaction.

Flags: No flags affected

EXCGptiOﬂSZ Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Addressing .

Mode Syntax Instruction Format

OUTW (C),HL l11l10111011110121111211

Example: OUTW (C),HL
Before instruction execution: After instruction execution:

Word 843Ah written
to 1/0 port 172650h

Note: Example assurmes that a 16-it data bus configuration of the 2280 MPU is used.

5-110

Operation:

Flags:

Exceptions:

Addressing
Mode

PCACHE

Purge Cache

pcache —
| o b]

Ail cache entries invalidated

This instruction is used to invalidate all entries in the cache.

No flags affected

None

Syntax Instruction Format

PCACHE 11111011101110111001101 |

POP

POP
POP dst dst = BC, DE, HL, AF, IX IY, IR, DA, RA
Operation: dst (SP)
SP—SP + 2
The content of the memory location addressed by the Stack Pointer (SP) are loaded into the
destination. For register destinations, the byte at the memory location specified by the
contents of the SP is loaded into the low byte of the destination register (or Flag register for
AF) and the byte at the memory location one greater than the contents of the SP is loaded
into the high byte of the destination register. The SP isthen incremented by two. Ifthe
destination isa memory location, the destination and the top of the stack must be
non-overlapping.
Flags: No flags affected (unless dst = AF)
Exceptions: None
Addressing .
Mode Syntax Instruction Format
R POP RR |11] rr 10011
POP XY [11]<M1]|101||21]100]001 |
IR: POP (HL) | 1110111101 1111 |ooo| 001 |
DA: POP (addr) 1111011110111111010] 001 11 addr(low) 11 addr(high) |
RA: POP <addr> 1111011110111111110/ 001 || disp(low) || disp(high) |

Field Encodings: r® OtoriX 1foriy
rr: 000 for BC, 010 for DE, 100 for HL, 110 for AF

Example: POP BC
Before instruction execution: After instruction execution:
BC: 2 3 0 8 BC: 0 9 2 3
SP: F E 3 2 SP: F E 3 4
Data memory: Data memory:
FE32: 2 3 * FE32: 2 3
FE33: 0 9 FE33: 0 9

5-112

Operation:

Flags:
Exceptions:

Addressing
Mode

Field Encodings:

Example: *

PUSH

Push
PUSH src src = BC, DE, HL, AF, IX IY, IM, IR, DA, RA
SP SP- 2
(SP) src

The Stack Pointer (SP) is decremented by two and the source is loaded into the location
addressed by the updated SP; the low byte of the source (or Flag register for AF) is load-
ed into the addressed memory location and the upper byte of the source is loaded into
the addressed memory location incremented by one. The contents of the source are
unaffected. If the source is a memory location, the source and the new top of the stack
must be non-overlapping.

No flags affected

System Stack Overflow Warning

Syntax Instruction Format o
PUSH RR 111 "1Q Il

PUSH XY 111|<M1/101| 11111001101 |

PUSH nn 111111111011111111011011r n(ow) If nehigh) |
PUSH (HL) 11110111101111110001101 |

PUSH (addr) 1111011110111111010]10111 addr(low) || addrfhigh) |
PUSH <addr> 11110111101111111101101 1 disp(low) || disp(high) |

& OforiX 1foriy
rr: 000 for BC, 010 for DE, 100 for HL, 110,for AF

PUSH BC . .
i ,

Before instruction execution: After instruction execution:
BC: 0 9 2 3 BC: 0o 9 2 3
SP: F E 3 4 SP: F E 3 2

Data memory: Data memory:

FE32: 0 0 FE32 2 3

FE33: 0 0 FE33: 0 9

5-113

Reset Bit

RES b.dst dst = R, IR, SX

Operation: dstb) O

The specified bit b within the destination operand is cleared to 0. The other bits in the
destination are unaffected. The bit number b must be between 0 and 7.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R RES bR l1tlooilo11|lOf b 1r 1
IR: RES b,(HL) Ji1loo110111hol b l110l
SX: RES b,(XY + d) [<MIjloljjooljo11d d 1holb 1no|
Field Encoding: *: 0for IX 1for IY
Example: RES 1A
Before instruction execution: After instruction execution:
A 00010110 A 00010100

5-114

Operation:

Hags:
Exceptions:

Addressing
Mode

Field Encodings:

Example:

RET

Return

RET [cc]

If the cc is satisfied then: PC (SP) /
SP-SP + 2

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry,
Sign, or Parity/Overflow flags is checked to see if its setting matches the condition code
“cc” encoded in the instruction; if the condition is not satisfied, the instruction following the
Return instruction is executed, otherwise a value is popped from the stack and loaded into
the Program Counter (PC), thereby specifying the location of the next instruction to be
executed. For an unconditional return, the return is always taken and a condition code is
not specified.

The following figure illustrates the format of the PC on the stack for the Return instruction:

SP before PC (low) low address
PC (high)
SP after high address
1 byte

No flags affected

None

Syntax Instruction Format
RET cc 1111cc |oo0)

RET 11110011001 |

cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for POor NV, 101 for PEorV,
110for Por NS. 111 forMorS

RET NC

Before instruction execution:, After instruction execution:

F soxvnO F soxxvnO
PC: 2 5 2 8 PC: 16 3 3
SP: F F 2 4 SP: F F 2 6
Data memory: Datamemory:
FF24: 3 3 FF24: 3 3
FF25: 16 FF25: 16

5-115

RETI

Return from Interrupt

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-116

RET,
PC (SP)%
SP SP + 2

This instruction is used to return to a previously executing procedure at the end of a pro-
cedure entered by an interrupt while in interrupt mode 0, 1, or 2. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC).

The following figure illustrates the format of the PC on the stack for the Return from In-
terrupt instruction:

SP before -» PC (low) low address
PC (high)
SP after high address
1 byte

A special sequence of bus transactions is performed when this instruction is
encountered in order to control Z80 family peripherals; see Chapter 12.

No flags affected

Privileged Instruction

Syntax Instruction Format

RETI |lIjiolflolj|oljo0l|l01 |

RETI

Before instruction execution: After instruction execution:
PC: 8 4 10 PC: 19 7 2
SP: F F C 6 SP: F F Cc 8

Data memory: Data memory:

FFC6: 7 2 FFC6: 7 2

FFC7: 19 FFCT: 19

Operation:

Flags:

Exceptions:

Addressing
Mods

Example:

RETIL

Return from Interrupt Long

RETIL

PS +*- (SP)
SP - SP + 4

This instruction is used to return to a previously executing procedure at the end 6f a pro-
cedure entered by an interrupt while in interrupt mode 3 or a trap. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC)

and Master Status register (MSR).

The following figure illustrates the format of the program status (PC and MSR) on the

system stack for the Return from Interrupt Long instruction:

SP before -*» MSR (low) low address

MSR (high)
PC (low)
PC (high)
SP after -* high address
1 byte =
No flags affected
Privileged Instruction
Syntax Instruction Format
RETIL 111j1011101110110101101 |
RETIL
Before instruction execution: After instruction execution:
PC: 8 10 PC: 19
SP: C 6 SP:
MSR: 0 00 MSR:
Data memory: Data memory:
FFCe: 7 F FFC6: 7 F
FFC7: 4 0 FFC7: 4 0
FFC8: 7 2 FFC8: 7 2
FFCO: 19 FFC9: 19

~
N

5-117

RETN

Return from Nonmaskable Interrupt

Operation:

Flags:
Exceptions:

Addressing
Mode

Example:

5-118

RETN
PC (SP)
SP SP+ 2

MSR(0-7) IFF(0-7)

This instruction is used to return to a previously executing procedure at the end of a pro-
cedure entered by a nonmaskable interrupt while in interrupt mode 0,1, or 2. The con-
tents of the location addressed by the Stack Pointer (SP) are popped into the Program
Counter (PC). The previous setting of the interrupt masks in the Master Status register
are restored.

The following figure illustrates the format of the PC on the stack for the Return from Non-
maskable Interrupt instruction:

SP before PC (low) low address
PC (high)
SP after high address
1 byte
No flags affected
Privileged Instruction
Syntax Instruction Format
RETN 111110111017 0110001101 |
RETN
Before instruction execution: After instruction execution:
PC: 8 4 10 PC: 19 7 2
SP: F F C 6 SP: F F C 8
MSR: 4 0 00 MSR: 4 0 7 F

Shadow interrupt register:

7 F
Data memory: Data memory:
FFC6: 7 2 FFC6: 7 2
FFC7: 19 FFCT7: 19

Operation:

Flags:

Exceptions:
Addressi
I\/bderlg
R

IR
X

Field Encoding:

Example:

RL

' Rotate Left

RL dst dst = R, IR, SX

tmp dst

dst(O) «-C 1
C dst(7)

dstn + 1) tmp(n) forn = 0to6

HZHIHH

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated left one bit position. Bit 7 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 0 of the destination.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise

H: Cleared

P: Set if the parity of the result is even; cleared otherwise

N: Cleared

C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

None

Syntax Instruction Format

RL R [llooi 111n000iof r 1

RL (HL) i11j002j0111100j010]11101

RL (XY + d) |11]»11]101}|11|002j011]| d 1j00j010]110f

*: ofor IX 1for IY

RL D

Before instruction execution: After instruction execution:
F soxhxpnO F 00x0x101
D: 10001111 D: 00011110

5-11V

RLA

Rotate Left Accumulator

RLA
Operation: tmp A

A0) C

C A®

A(n + 1) tmp(n)forn = 0to6

A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 0 of the destination.

Flags: Unaffected

Unaffected

. Cleared

Unaffected

. Cleared

. Set if the bit rotated from bit 7 was a 1; cleared otherwise

OZTIN®D

Exceptions: None
Addressing)

Mode Syntax Instruction Format
R RLA [00]010]1111

Example: RLA

Before instruction execution: After instruction execution:

AF: 01110110 szxhxpnl AF: 11101101 sS2OpO0

5-120

Operation:

Flags:

Exceptions:
Addressi
l\/lodeng
R

IR
SX

Field Encoding:

Example:

RLC

Rotate Left Circular

RLC dst dst = R, IR, SX

tmp *- dst

C —dst(7)

dst(0) «*- tmp(7)

dst(n + 1) ¢’ tmp(n)forn = 0to 6

dst

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit 0 position and also replaces the Carry flag.

S. Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise

H: Cleared

P: Set if the parity of the result is even; cleared otherwise

N: Cleared

C. Set if the bit rotated from bit 7 was a 1; cleared otherwise

None

Syntax Instruction Format

RLC R | 11/001|011||00|000| r |

RLC (HL) 11110011011) | oofooo] 1101

RLC (XY + d) 11114>1111011111|001101111 d 1100]000| 110 |

¢ 0for IX 1for IY

RLC B

Before instruction execution: After instruction execution:
F soxpnc F 000101
B 10001000 B 00010001

5-121

RLCA

Rotate Left Circular (Accumulator)

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-122

RLCA

tmp A

C-A(7)

A@) tmp(7)

An + 1) tmp(n)forn= 0to6

The contents of the accumulator are rotated left one bit position. Bit 7 of the
accumulator is moved to the bit 0 position and also replaces the Carry flag.

Unaffected
Unaffected
. Cleared
- Unaffected
. Cleared
. Set if the bit rotated from bit 7 was a 1; cleared otherwise

OZTINW®W

Syntax Instruction Format

RLCA |oojooojm |

RLCA

Before instruction execution: After instruction execution:

AF: 10001000 szxhxpnc AF: 00010001 szxOxp01

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

RLD

Rotate Left Digit
RLD

tmp(0:3) «*- A(0:3)
A(0:3) - dst(4:7)
dst(4:7) — dst(0:3)
dst(0:3) — tmp(0:3)

|7 4I3ro| IX7£TF
A — dst
The tow digit of the.accumulator is logically concatenated to the destination byte whose mem-
ory address is in the HL register. The resulting three-digit quantity is rotated to the left by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the tower digit of
the accumulator is moved to the lower digit of the source! The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the left a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RL instruction.

S: Set if the accumulator is negative after the operation; cleared otherwise

h Set if the accumulator is zero after the operation; cleared otherwise

H: Cleared

P: Set if the parity of the accumulator is even after the operation; cleared otherwise

N: Cleared

C: Unaffected

None

Syntax Instruction Format

RLD li1hoi1l101llo1mo1ln111

RLD

Before instruction execution: After instruction execution:
AF: 3 7 szxhxpnc AF: 30 00x0x10c
HL 5000 HL: 5 000

Data memory: Data memory:

5000: 0 4 5000: 4 7

5-123

RR

Rotate Right

RR dst dst = R IR, SX

Operation: tmp «-dst
dst(7)«-C
C dst(O)
dsth) tmp(n 4)forn= 0to6

L |7 -0o|-*{c}J

dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated right one bit position. Bit 0 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 7 of the destination.

Flags: S: Set if-the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R RR R [11/001/011/|00j011] r |
IR: RR (HL) 11110011011 Nloojon 111011
SX: RR (XY + d) 1117M1001 If 11100110111| d | loofoil]iio]|
Field Encoding: 0: 0for IX 1for IY
Example: RR B
Before instruction execution: After instruction execution:
F szxhxpnO F 00x0x001
B: 11011101 B: 01101110

5-124

Operation:

Flags:

Exceptions:

Addressi
I\/Iodsng

Example:

RRA

Rotate Right (Accumulator)

RRA

tmp dst

A7) C

C A0

A(n) tmp(n + 1)forn= 0to6

7—0

A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated right one bit position. Bit O of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 7 of the accumulator.

S. Unaffected
Z. Unaffected
H: Cleared
P: Unaffected
N: Cleared
C. Set if the bit rotated from bit 0 was a 1; cleared otherwise

None

Syntax Instruction Format
RRA Joolo11l1111

RRA

Before instruction execution: After instruction execution:

11100001 szxhxpnO AF: 01110000 szxOxp01

RRC

Rotate Right Circular

Operation:

Flags:

Exceptions:

Addressing
Mode

R
IR
SX:

Field Encoding:

Example:

5-126

RRC dst dst = R IR, SX

tmp e«- dst

C dst(O)

dst(7) tmp(0)

dsttn) tmp(n + 1)forn= 0to6

LAj7 —01-hLA[*c"]

dst

The contents of the destination operand are rotated right one bit position. Bit O of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

S. Set if the most significant bit of the result is set; cleared otherwise
Z. Set if the result is zero; cleared otherwise

H: Cleared

P: Set if the parity of the result is even; cleared otherwise

N: Cleared

C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

None

Syntax Instruction Format

RRC R 111/001[0111.0010011 r 1

RRC (HL) 111)001101111 00|0011110 |

RRC (XY + d) liiiOiiiioiiin|ooijoiiir d 1100)0011110 |

*: 0for IX 1for IY

RRC A

Before instruction execution: After instruction execution:

00110001 szxhxpnc AF: 10011000 10x0x001

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

RRCA

Rotate Right Circular (Accumulator)

RRCA

tmp A

C«-A(0)

A(7) temp(0)

A(n)*-tmp(n + 1)forn = 0to6

dst

The contents of the accumulator are rotated right one bit position. Bit 0 of the
accumulator is moved to the bit 7 position and also replaces the Carry flag.

Unaffected
Unaffected
. Cleared
Unaffected
. Cleared
. Set If the bit rotated from bit 0 was a 1; cleared otherwise

QOZIVINO®

None

Syntax Instruction Format

RRCA | 00[00111111

RRCA

Before instruction execution: After instruction execution:

00010001 szxhvpnc AF: 10001000 szxOxpOl

/ 5-127

RRD

Rotate Right Digit

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-128

RRD

tmp(0:3) A(0:3)
A(0:3) — dst(0:3)
dst(0:3) dst(4:7)
dst(4:7) - tmp(0:3)

L

Q .
74E3 |7430

dst

The low digit of the accumulator is logically concatenated to the destination byte whose mem-
ory address is in the HL register. The resulting three-digit quantity is rotated to the right by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the right a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in

multiple-precision shifting using the RR instruction.

S: Set if the accumulator is negative; cleared otherwise

Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected
None
Syntax Instruction Format
RRD 11111011101 10111001 |
RRD
Before instruction execution: After instruction execution:
AF: 0 6 szxhxpnc AF: 0 2 00x0x00c
H: 50 00 H: 50 00
Data memory: Data memory:
5000: 3 2 5000: 6 3

Operation:

Flags:
Exceptions:

Addressing
Mode

Field Encoding:

Example:

RST

Restart

RST address

SP SP - 2
(SP) — PC
PC address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table
below. The table also indicates the encoding of the address used in the instruction en-
coding. (The address is in hexadecimal, the encoding in binary.)

Address (encoding

O0H 000
08n 001
10H 010
18n 011
20h 100
28n 101
30rt 110
38n 111
No flags affected
None
Syntax Instruction Format
RST address
t: See table above
RST 18H
Before instruction execution: After instruction execution:
PC: 4 6 20 PC: 00 18
SP: F F C 4 SP: F F CcC 2
Data memory: Data memory:
FFC3: F F FFC3: 20
FFCA4: F F FFCA4: 4 6

5-12V

SBC

Subtract with Carry (Byte)
SBC [AJsrc src = R RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A A- src- C

The source operand together with the Carry flag is subtracted from the accumulator and
the difference is stored in the accumulator. The contents of the source are not affected.
Twos-complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V. Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise
N: Set
C. Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R SBC AR 11000111 r |
RX: SBC ARX | 11|*11]101]| 10j011] rx |
IM: SBC An 11100112110 g g
IR: SBC A(HL) | 1001141101
DA: SBC A,(addr) 11110N 11011r 1010111111 ir addr(low) || addr(high) |
X SBC A,(XX + dd) [11]111]101 if 10[011] xx || =« p «Khifiy) |
SX: SBC A(XY + d) inioiiiioiir 10/0111110 1 3
RA: SBC A,<addr> [11]111[101] iojon |000 11 disp(low) 1T disp(high) |
SR: SBC A(SP + dd) 1111011101 1f 10[0111000 |r d(ow) 11 dthigh) |
BX: SBC A,(XXA + XXB) [11]O11[101|f 100111 bx |

Field Encodings: 0: oforix 1toriy
rx: 100 for high byte, 101 for low byte
xx: 00 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1%, 010 for (HL + 1Y), 011 for (IX + 1Y)

Example: SBC A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvnl AF: 2 F 00x1x010
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:
2454 1 8 2454 1 8

5-130

Operation:

Flags:

Exceptions:

Addressing
Mode

Field Encodings:

Example:

Subtract with Carry (Word)

SBC dst,src dst = HL
src = BC, DE, HL, SP
or
dst = IX
src = BC, DE, IX, SP
or
dst = IY
src = BC, DE, lY, SP

dst dst- src - C

The source operand together with the Carry flag Is subtracted from the destination and
the result is stored in the destination. The contents'of the source are not affected. Twos-
complement subtraction is performed.

Set if the result is negative, cleared otherwise
Set if the result is zero; cleared otherwise
. Set if there is a borrow from bit 12 of the result; cleared otherwise
Set if arithmetic overflow occurs, that is, the operands are of different signs and the
result is of the same sign as the source; cleared otherwise
: Set
. Set if there is a borrow from the most significant bit of the result; cleared otherwise.

<INW®W

0z

None

Syntax Instruction Format

SBC HL.RR 1111201110111011rr loiol
SBC XY.RR 111)4>111101111111011101 11011t | 010 |

¢ Ofor IX 1forlY
rr: 000 for BC, 010 for DE, 100 for subtract register from itself, 110 for SP

SBC HL,DE
Before instruction execution: After instruction execution:
F szxhxvnl F: 00x0x010
DE 00 11 DE 00
HL: 01 00 HL 00 E E

5-131

SC

System Call
SC nn
Operation: SP«-SP- 4
(SP)- PS
SP—SP - 2
(SP)- nn
PS System Call Program Status
This instruction is used for controlled access to operating system software in a manner
similar to a trap or interrupt. The current program status is pushed onto the system
stack followed by a 16-bit constant embedded in the instruction. The program status con-
sists of the Master Status register (MSR) and the updated Program Counter (PC), which
points to the first instruction byte following the SC instruction. Next the 16-bit constant in
the System Call instruction is pushed onto the system stack. The system Stack Pointer is
always used regardless of whether system or user mode is in effect. The new program
status is loaded from the Interrupt/Trap Vector Table entry associated with the SC in-
struction. CPU control is passed to the procedure whose address is the PC value con-
tained in the new program status.
The following figure illustrates the format of the saved program status on the system
stack:
SP after -» n (low) low address
n(high)
MSR (low)
MSR (high)
PC (low)
PC (high)
SP before -** highaddress
1 byte
Flags: No flags affected
Exceptions: System Call Trap, System Stack Overflow Warning
Addressing .
Mode Syntax Instruction Format
SC m 11]101j2011|0I]1210]00L 1L nfiowy 1L njhifit)) |

5-132

Example:

SC 0155H

Before instruction execution:
PC 4

54 F
MSR: 4

oOmo
~NON

Interrupt/Trap Vector Table Poirter:

3 6 5
Physical memory:
365250 2 3
30551 00
8 8
365253; 9 0

Note: The physical memory addresses are 24-hit addresses emitted by the MMU. The data menory addresses are the

16hit addresses fromthe CPU.

m ©o O

After instruction execution:

PC 9 0
. F F
MSR: 0
Data memory:
FC3:
HC4:

ANDMNOOG
OO0OO Tk U

N (O o
w w

5-133

SCF

Set Carry Flag

SCF
Operation: c 1

The Carry flag is set to 1

Flags: S: Unaffected
71 Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set
Exceptions: None
Addressing
Mode Syntax Instruction Format
SCF |00J|110j117]
Example: SCF
Before instruction execution: After instruction execution:
szxhxvnc SzXOxvOl

5-134

Set Bit

SET b,dst dst = R, IR, SX

Operation: dst(b) — 1

The specified bit b within the destination operand is set to 1. The other bits in the
destination are unaffected. The bit to be set is specified by a 3-bit field in the instruction;
this field contains the binary encoding for the bit number to be set. The bit number must
be between 0 and 7.

Flags: No flags affected
Exceptions: None
Addressing .
Mode Syntax Instruction Format
R SET bR |11]001]011|]11] b | r |
IR SET b,(HL) 1111001101111111b 11101
SX SET b,(XY + d) [11j<>11)1011111100110T1 1 d 1111b 1110 |

Field Encoding: S: OforIx 1forlY

Example: SET 1A
Before instruction execution: After instruction execution:
A 00010100 00010110

5-135

SLA

Shift Left Arithmetic

SLA dst dst = R, IR, SX
Operation: tmp dst

C «=- dst(7)

dst©) O

dsth + 1) tmp(n)forn= 0to6

The contents of the destination operand are shifted left one bit position. Bit 7 of the
destination operand is moved to the Carry flag and zero is shifted into bit 0 of the

destination.
Flags: , S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1; cleared otherwise
Exceptions: None
Addressing)
Mode Syntax Instruction Formet
R SLA R 1mjoonoitiey r |
IR SLA (HL) 111J0011011 1t 0Q 200j1101
X SLA (XY + d) [11j11]101)j11j000j011 Il d 21001001101

Field Encoding: 0: oforix 1for Iy

Example: SLA L
Before instruction execution: After instruction execution;
F sodhpne F 00x0x001
L 10110001 L 01100010

5-136

Operation:

Flags:

Exceptions:

Addressing
Mode

R
IR:
SX:

Field Encoding:

Example:

SRA

Shift Right Arithmetic

SRA dst dst = R, IR, SX

tmp *-dst

C — dst(0)

dst(7) tmp(7)

dstn) tmp(n + 1l)forn= 0to6

pPCplsHI]

dst

The contents of the destination operand are shifted right one bit position. Bit O of the
destination operand is moved to the Carry flag and bit 7 remains unchanged.

S: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Cleared

P: Set if the parity of the result is even; cleared otherwise
N: Cleared

C. Set if the bit shifted from bit 0 was 1; cleared otherwise
None

Syntax Instruction Format

SRA R 11110011011110011011 r |

SRA (HL) 1111001101111001101 |

SRA (XY + d) 1111*11110111111001101111 d |]J00|101[I10]|

0: Ofor IX 1for IY

SRA (IX + 3)
Before instruction execution:

F szxhxpnc
IX: 10 00

Data memory:
1003: 10111000
Address calculation:

1000
+ 3

1003

After instruction execution:

F 10x0x000
IX: 10 00
Data memory:
1003: 11011100

5-137

SRL

Shift Right Logical

SRL dst dst = R, IR, SX
Operation: tmp*-dst

C — dst(O)

dst(7) O

Flags:

Exceptions:

Addressing
Mode
R
IR:
SX:

Field Encoding:

Example:

5-138

dst(n) tmp(n + 1)forn = 0to6

7-0

dst

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into bit 7 of the
destination.

S: Cleared

Z: Set if the result is zero; cleared otherwise

H: Cleared

P: Set if the parity of the result is even; cleared otherwise
N: Cleared

C: Set if the bit shifted from bit 0 was 1; cleared otherwise
None

Syntax Instruction Format

SRL R l11loo1lo11 I 0OImI r |

SRL (HL) |11j0011011 || 0011111101

SRL (XY + d) |[12[*21j101] 11001101111 d 1100111111101

$: Ofor IX 1for IY

SRL B

Before instruction execution: After instruction execution:
F szxhxpnc F 00x0x101
B: 10001111 B: 01000111

Operation:

Flags:

Exceptions:

Addressing
Mode

1 Field Encodings:

Example:

SUB

Subtract

SUB [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
A **-A - src

The source operand is subtracted from the accumulator and the difference is stored in
the accumulator. The contents of the source are unaffected. Twos-complement subtrac-
tion is performed.

S: Set if the result is negative; cleared otherwise

2i Set if the result, is zero; cleared otherwise

H: Set if there is a borrow from bit 4 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise

N: Set

G: Set if there is a borrow from the most significant bit of the result; cleared otherwise

None

Syntax Instruction Format

SUB AR 110]0101 r |

SUB ARX 11l|<t>11[101 |]10]0210] rx |

SUB An |11]010]110]| n |

SUB A,(HL) 110(010(110 |

SUB A, (addr) |111011]1011]10]010]111 I addrQow) || addrQilgh) |
SUB A(XX + dd) |l111]201 []iojo10] xx Il dQow) || dQigh) |
SUB A(XY + d) filj<MmIjl01 1110)0101110 1 d |

SUB A,<addr> 11111111101 1110]<MO(ooo 11 disp(low) If disp(high) |
SUB A,(SP + dd) 11110111101 || 10/010]000 11 dQow) || dQigh) |
SUB A,(XXA + XXB) 11110111101 1110]010] bx |

0: oforixX1foriy

rx: TADfor high byte, 101 for lowbyte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), OL1 for (IX + 1Y)

SUB A,(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvnc AR 30 00x0x010
HL 2 4 5 4 HL 2 4 5 4
Data memory: Data memory:
2454 1 8 2454 1 8

5-1>9

SUBW

Subtract (Word)
SUBW [HLJsrc src = R, IM, DA, X, RA
Operation: HL +-HL - src

Flags:

Exceptions:

Addressing
Mode

R

IM:
DA:

x

Field Encodings:

Example:

The source operand is subtracted from the HL register and the difference is stored in
the HL register. The contents of the source are unaffected. Twos-complement subtrac-
tion is performed.

S: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a borrow from bit 12 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
and the result is the same sign as the source; cleared otherwise

N: Set

C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.
None

Syntax Instruction Format

SUBW HL,RR Illioil 1011111 rr lliol

SUBW HL,XY 111]*111101111111011101 1111110111101

SUBW HL,nn Tuadii-tlioi M1hordnoi it Im Liiodl n@low) 11 “(high) |
SUBW HL,(addr) 11110111101111111011101 ||n |01l | | 10ir addr(low) 1 Lladdr(high) |
SUBW HL,(XY + dd) £1111111101111111011101 11111xy |110 |f d(ow) "Il d(high) |
SUBW HL,<addr> 11110111101 111111011101 111111111110 1. disp(low) 1 1disp(high) |
SUBW HL.(HL) I'ti ion 110111ti iioi 11011111 |ooi | tio |

e: Ofor IX 1for IY
rr: 001 for BC. 011 for DE. 101 for HL, 111 for SP
Xy: 001 for (IX + dd), 011 for (IY + dd)

SUBW HL,DE

Before instruction execution: After instruction execution:
F szxhxvnc F 10x0x010
DE: 00 10 DE 00 10
HL: A1l 2 3 HL: Al 1 3

Operation:

Flags:

Exceptions:

Addressing
Mode
R
IR:
SX:

Field Encoding:

Example:

TSET

Test and Set

TSET dst dst = R IR, SX

S ¢- dst(7)
dst FFh

Bit 7 within the destination operand is tested, and the Sign flag is set to 1 if the specified
bit is 1; otherwise the Sign flag is cleared to 0. The contents of the destination are then
set to all 1s. For memory operands, the operand is always fetched from the external
memory; on the Z-BUS interface, the status lines indicate a Test and Set operation dur-
ing the memory read transaction.

Between the data read and subsequent write transactions, bus request is not granted.
The data is read from memory, even if it is also present in the cache.

S: Set if bit 7 is 1; cleared otherwise
Z: Unaffected
H: Unaffected
P: Unaffected
N: Unaffected
C: Unaffected
None

\
Syntax Instruction Format
TSET R |11]001|011llool210! r 1
TSET (HL) [11]001/011({00|110J110 1
TSET (XY + d) li*11[101111looib11l d |[oo]110]110]

. Ofor IX 1for IY

TSET (HL)
Before instruction execution: After instruction execution:
F:. szxhxpnc F Ozxhxpnc
HL 0 3 8 2 HL 0 3 8 2
Data memory: Data memory:
0382: 00010111 0382: 11111111

5-141

TSTI

Test Input

Operation:

Flags:

Exceptions:

Addressing
Mode

Example:

5-142

TSTI (©)

F « test (C)

During the /O transaction, the peripheral address from the C register is placed on the
low byte of the address bus, the contents of the B register are placed on address lines
As8-A-I5, and the contents of the 1/0O Page register are placed on address lines A-ls-A 23*
The byte of data from the selected peripheral is tested and the CPU flags set according-
ly. No CPU register or memory location is modified.

S: Set if the tested byte is negative; cleared otherwise

Z:. Set if the tested byte is zero; cleared otherwise

H: Cleared

P: Set if the parity of the tested byte is even; cleared otherwise
N: Cleared

C: Unaffected

Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Syntax Instruction Format
TSTI (©) 1111101110111011110 [OOP |
TSTI (C)
Before instruction execution:' After instruction execution:
F szxhxpnc 10x0x10c
BC: 5 0 4 6
I/O Page register:
1 2

Byte 93h available at I/O port 125046H.

Operation:

Flags:

Exceptions:

Addressing
Mode

RE98LLx¥32Ra

Field Encodings:

Example:

XOR

Exclusive OR

XOR [AJsrc src = R RX, IM, IR, DA, X, SX, RA, SR, BX
A A XOR src

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bit
is stored wherever the corresponding bits in the two operands are different; otherwise a
0 bit is stored. The contents of the source are unaffected.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise

H: Cleared

P: Set if the parity of the result is even; cleared otherwise

N: Cleared

C: Cleared

None

Syntax Instruction Format

XOR AR 110/2011r |

XOR A,RX 1111*1111011|10(101| IX |

XOR An 1111011n0| f, |

XOR A,(HL) |10]101]110

XOR A,(addr) 11110111101 1110j1011111 1 addroow) 11 addrfhifih) |
XOR A(XX + dd) 11111111101111011011XK 1 doow) JL <+high) |
XOR A(XY + d) 1111*111101 1110(1011110 1 d

XOR A,<addr> [11]111|101 1110]1011000 1 disp(low) || dtepQilgh) |
XOR A,(SP + dd) 1Mllon 110111101011000 11 d(low) 11 1
XOR A,(XXA + XXB) [1110111101 1 110]ioi | bx |

* 0for IX 1for IY

x 100 for high byte, 101 for lowbyte

XX 001 for (IX + dd), 010 for (IY + dd), O11 for (HL + dd)
bx 001 for (HL + 1X), 010 for (HL + 1Y). O11 for (IX + 1Y)

XOR A,(HL)
Before instruction execution: After instruction execiutTor
AF: 4 8 szxhxpnc AF: 50 00x0x100
HU 2 4 5 4 HU 2 4 5 4
Data memory: Data memory:
2454: 1 8 2454: 1 8

5-143

EXTENDED INSTRUCTION

EPU Internal Operation

Operation: EPU template

If the EPU Enable bit In the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is

initiated. The trap causes the following information to be pushed onto the system stack

(in the following order): Program Counter (PC) of the next instruction, Master Status

register (MSR), and template address. The format of the system stack after the trap is in-
. dicated by the following figure:

new SP -* template address (low) low address
template address (high)

MSR (low)

MSR (high)

PC (low)

PC (high)
previous SP high address

1 byte

The format for the EPU template for this instruction is indicated in the following figure:

10001110 low address

****0 1 I D

****0000 high address
1 byte

where ID is the two bit ID humber specifying the EPU to process this instruction
and * indicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned.

Flags: No flags affected
Exceptions: Extended Instruction _
. e
Addressing .)
Mode Operation Instruction Format
EPU Internal 11111011101111010111111 11 template 1 11 template 2 Iltemplate 3 |
Operation (template 4 |

The template is a 4-byte field.

5-144

Operation:

Flags:

Exceptions:

EXTENDED INSTRUCTION

Load Accumulator frovp EPU

EPU template
A- EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
data from the EPU is loaded into the accumulator.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in-
dicated by the following figure:

new SP template address (low) low address
template address (high)
MSR (low)
MSR (high)
PC (low)
PC (high)
previous SP high address
1 byte -»

The format for the EPU template for this instruction is indicated in the following figure:

10001110 low address

****OOI D

****0000

****0000 high address
1 byte

where ID is the 2-bit ID number specifying the EPU to process this instruction and * in-
dicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned. The CPU
places the data on ADs-AD-is into the accumulator.

. Set if the byte loaded into the accumulator has a 1 in bit 7; cleared otherwise
Set if the byte loaded into the accumulator is zero; cleared otherwise
. Cleared
: Set if the parity of the byte loaded into the accumulator is even; cleared otherwise
: Cleared
: Unaffected

OZIUIN®

Extended Instruction

5-145

Addressing

Mode Operation Instruction Format
A EPU 111110111011110|010| 1114 | template 1~|| template 2 [| template 3 |
| template 4+

The template is a 4-byte field.

5-146

Operation:

Flags:

EXTENDED INSTRUCTION

Load EPU from Memory

src = IR, DA, X, RA, SR, BX

EPU template
EPU +- src

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed on
the input operand. Next the data starting at the memory location determined by the
source calculation is fetched from memory and loaded into the EPU; successive trans-
fers are performed until the entire operand has been fetched. The number of bytes in the
source operand is encoded in the fourth byte of the template. For PC Relative
addressing mode, the address of the template is used instead of the address of the next
instruction.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the following instruction, Master Status
register (MSR), operand logical address, and template logical address. The format of the
system stack after the trap is indicated by the following figure:

new SP template address (low) low address
template address (high)
operand address (low)
operand address (high)
MSR (low)
MSR (high)
PC (low)
PC (high)
previous SP -» high address
1 byte

The format for the EPU template for this instruction is indicated in the following figure:

0p001110 low address

ML,

n- 1 high address
1 byte -»

where p encodes whether the data resides in program memory (p = 1; Relative ad-
dressing mode) or data memory; ID is the 2-bit ID number specifying the EPU to process
this instruction, * indicates bits that encode the operation to be performed, and n
specifies the number of bytes of data to be transferred to the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two yvord transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers to the EPU.

No flags affected

Exceptions: Extended Instruction

Addressing)
Mode Operation Instruction Format
IR: EPU (HL) 111li0 11101 1110 1001110 L template 1 I template 2
| template 4
DA EPU (addr) 11111011101 1110100111 Il addr(low) 11 addr(high)
| template 2 1l template 3 I template 4 |
X EPU (XX + dd) 11111011101 || 10| XX 2100 1l d(low) 11 d(high)
| template 2 1l template 3 Wtemplate 4 \
RA: EPU — <addr> | 11/201/101 1110|1001100 1. dispdow)~]|| disp(high)
| template 2]| template 3 L template 4 |
SR: EPU (SP + dd |11]101/201 1110100011001 r d(low) 1L d(high)
| template 2 1 template3 || template 4 |
BX: EPU (XXA + XXB) [11]101]101 11101bx 1100 L template 1 1 template 2
| template 4

Field Encodings: xx: 101 for (X + dd), no for (Y + dd), 111 for (HL + dd)
bx: 001 for (HL + X, 010 for (HL + Iv), Q11 for (IX + 1Y)

All templates are 4-byte fields.

5-148

Tl template 3 |

N template 1 |

Ntemplate 1 |

Ntemplate 1 |

Ntemplate 1 |

Ttemplate 3 |

Operation:

EXTENDED INSTRUCTION

Load Memory from EPU

dst = IR, DA, X, RA, SR, BX

EPU template
dst 'EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
the data from the EPU is stored into memory starting at the location specified by the
destination address; successive transfers are performed until the entire operand has
been stored. The number of bytes in the source operand is encoded in the fourth byte of
the template. For PC Relative addressing mode, the address of the template is used
instead of the address of the next instruction.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), operand address, and template address. The format of the system stack
after the trap is indicated by the following figure:

new SP template address (low) low address
template address (high)
operand address (low)
operand address (high)
MSR (low)
MSR (high)
PC (low)
PC (high)
previous SP high address
1 byte-»

The format for the EPU template for this instruction is indicated in the following figure:

0p001110 low address

000011 ID

*kkkkkkk

n- 1 high address
1 byte -»

where p encodes whether the data resides in program space (p = 1; Relative address-
ing mode) or data memory; ID is the 2-bit ID number specifying the EPU to process this
instruction, * indicates bits that encode the operation to be performed, and n specifies

the number of bytes of data to be transferred from the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers from the, EPU.

5-14V

Flags: No flags affected

Exceptions: Extended Instruction
Addressing
Mode Operation Instruction Format
IR: (HY) EPU 11111011101 |[10]101|110|| template 1 11 template 2 11 template 3 |
| template 4
DA (addr) —. EPU 11111011101 110[101|111 || addr(low) [| addr(high) 11 template 1 |
[template 2 11 template 3 1 template 4 |
X- XX + dd) EPU |11/101]101 11101xx 1101 1 d(low) 1 d(high) 1 template 1 |
| template 2 11 template 3 11 template 4 |
RA <addr> — EPU | 11/101]101 11101001101 Il disp(low) 11 disp(high) 11 template 1 |
| template 2 11 template 3 11 template 4 |
SR: (SP + dd) EPU | 11/101/101 111010001101 || d(low) 1 dfhigh) 11 template 1 |
| template 2 11 template 3 11 template 4 |
BX (XXA + XXB) r EPU 111[1011101 11101bx |101 Il template 1 11 template 2 11 template 3 |

| template 4

Field Encodings: xx: 101 for (X + dd). 110 for (IY + dd). 111 for (HL + dd)
bx: 00L for (HL + 1X), 010 for (HL + 1Y), 011 for (X + 1Y)

All templates are 4-byte fields.

5-150

6.1 INTRODUCTION

can alter the
The 7280 CRU
interrupts,

Exceptions are conditions that
normal flow of program execution.
supports three kinds of exceptions:
traps, and resets.

Interrupts are asynchronous events generated by a
device external to the CPU, peripheral devices use
interrupts to request service from the CPU. Traps
are synchronous events generated internally in the
QU by particular conditions that can occur during
the attempted execution of an instruction. Thus,
the difference between traps and interrupts is
their origin. A trap condition is always repro-
ducible by re-executing the program that created
the trap, whereas an interrupt is generally inde-
pendent of the currently executing task.

A hardware reset overrides all other conditions,
including interrupts and traps. It occurs when
the RESET line is activated, and it causes certain
(PU control registers to be initialized. Resets
are discussed in detail in Chapter 11.

6.2 INTERRUPTS

Two kinds of interrupts are activated by four dif-
ferent pins on the Z280 MPU. The nonmaskable
interrupt (NMI) is an interrupt that cannot be
disabled (masked) by software. Typically, NM is
reserved vfor high-priority external events that
need immediate attention, such as an imminent
power failure. Maskable interrupts are interrupts
that can be disabled (masked) via software by
clearing the appropriate bits in the Interrupt
Request Enable field of the Master Status regis-
ter.

Chapter 6.
Interrupts and Traps

There are seven maskable interrupts in the Z280
MU architecture. Three of these interrupts are
external inputs to the device (Interrupts A, B,
and C); the other four maskable interrupts are
asserted by the on-chip peripherals. The seven
Interrupt Request Enable bits in the Master Status
register control which of the requested interrupts
are accepted. Interrupt requests are grouped as
listed in Table. 6-1, with each group controlled by
a separate Interrupt Request Enable bit. The list
is presented in order of decreasing priority, with
sources within a group listed in order of
decreasing priority.

The Enable Interrupt (EI) instruction is used to
selectively enable the maskable interrupts (by
setting the appropriate bits in the MR to 1) and
the Disable Interrupt (DI) instruction is used to

selectively disable interrupts (by clearing the
appropriate bits in the MR to 0). When an
interrupt source has been disabled, the QU
ignores any requests from that source. Because
maskable interrupt requests are not retained by
the CPU, the request signal on a maskable
interrupt line must be asserted until the U

acknowledges the request.

When enabling interrupts with the EIl instruction,
all maskable interrupts are automatically disabled
(whether previously enabled or not) for the
duration of the execution of the EI instruction
and the immediately following instruction.

Interrupts are always accepted between instruc-

tions. The block move, block search, and block
/0 instructions can be interrupted after any
iteration.

Table 6-1. Grouping of Maskable Interrupt Requests

Members of Interrupt Group

Maskable Interrupt A line
Counter/Timer 0, DMA Channel 0
Maskable Interrupt B line

Counter/Timer 1, UART Receiver, DMA Channel 1

Maskable Interrupt C line
UART Transmitter, DMA Channel 2
Counter/Timer 2, DMA Channel 3

Enable bit In MSR

o U WN = O

The 2280 CPU has four modes for handling exter-
nally generated interrupts, selectable using the
M instruction. The first three modes extend the
Z80 QAU interrupt modes to accommodate the Z280
MPUs additional interrupt inputs in a compatible
fashion. The fourth node allows more flexibility
in interrupt handling, providing support for
nested interrupts and a sophisticated vectoring
scheme. The on-chip peripherals always use this
fourth interrupt mode, regardless of which mode is
selected for the external interrupts. The current
interrupt mode in effect can be read from the
Interrupt Status register.

6.2.1 Interrupt Mode O

Interrupt node 0 is similar to the 8080 QU
interrupt response mode. For node 0, an exter-
nally generated interrupt (maskable or nonmask-
able) causes the User/System bit and the Single-
Step bit in the Master Status register to be
cleared to 0, thereby placing the CPU in system
mode with single-stepping disabled. All the
Interrupt Request Enable bits in the MR are also

cleared to zero, which disables the maskable
interrupts. The previous condition of the MR is
not saved.

For nonmaskable interrupts, the current value in
the Program Counter is saved on the system stack,
using the System Stack Pointer, and the constant
0066 is loaded into the Program Counter. Loca-
tion 0066 in system program memory is, then,
the starting logical address of the nonmaskable
interrupt service routine; this logical address
can, of course, be translated into a physical nem
ory address by the MvU

For maskable interrupts, the interrupting device
must place a Call or Restart instruction opcode on
the data bus during the interrupt acknowledge bus
transaction. The 7280 CPU reads this opcode and
executes it; thus, the interrupting device,
instead of memory, provides the first instruction
of the service routine. Typically, a Restart
instruction is used, since the Restart opcode is
only one byte long, meaning that the interrupting
peripheral needs to supply only one byte of infor-
mation. Alternatively, a 3-byte call to any loca-
tion can be executed.

6.2.2 Interrupt Mode 1

In interrupt node 1, the 27280 CPU automatically
executes a Restart to a fixed location when ar.
interrupt occurs. An externally generated inter-
rupt (maskable or nonmaskable) causes the User/
System bit, the Single-Step bit, and all Interrupt

6-2

Request Enable bits in the Master Status register
to be cleared to 0, which puts the CGRU in system
mode with single-stepping disabled. The previous
condition of the MR is not saved. The current
value in the Program Counter is pushed onto the
system-mode stack. For nonmaskable interrupts,
the constant 0066" is then loaded into the Pro-
gram Counter; thus, 0066" is the starting
address of the nonmaskable interrupt service rou-
tine. For maskable interrupts, the constant
0038 is loaded into the Program Counter;
0038 will be the starting address of the mask-
able interrupt service routine. These logical
addresses can be converted to physical addresses
by the MU

6.2.3 Interrupt Mode 2

Interrupt nmode 2 is a vectored interrupt response
mode for maskable interrupts, wherein the inter-
rupting device identifies the starting location of
the service routine using an 8-bit vector read by
the CPU during the interrupt acknowledge cycle.

An externally generated interrupt (maskable or
nonmaskable) causes the User/System bit, the Sin-
gle-Step bit, and the Interrupt Enable Request
bits in the Master Status register to be cleared
to 0, which puts the CGU in system mode with
single-stepping disabled. The previous condition
of the MR is not saved. The current value in the
Program Counter is pushed onto the system node
stack.

For nonmaskable interrupts, the constant 0066"
is then loaded into the Program Counter; thus,
0066h is the starting address of the nonmaskable
interrupt service routine. For maskable inter-
rupts, the programmer must maintain a table in
memory of the 16-bit starting addresses for every
maskable interrupt service routine. This table
can be located anywhere in the system mpde data
memory address space, starting on a 256-byte nem
ory boundary. When a maskable interrupt is
accepted, a 16-bit pointer into this table is gen-
erated in order to select the starting address of
the appropriate service routine from the table
entries. The peripheral generating the interrupt
places an 8-bit vector on the data bus in response
to the interrupt acknowledge. This vector becomes
the lower eight bits of the pointer into the
table. The upper eight bits of the pointer are
the contents of the | register. This pointer is
treated as an address in the system data memory
space that can be translated to a physical address
by the MMJU The actual logical address of the
service routine is found by referencing the word
located at the address formed by concatenating the
| register's contents with the vector. Figure 6-1

illustrates the sequence of events for processing
mode 2 maskable interrupts. A reset clears the 1
register to all zeros.

VECTOR
TABLE

NOTES:

Interrupt vector generated by peripheral is read by CPU during interrupt

acknowledge cycle.

. Vector combined with | register contents form 16-bit memory address
pointing to vector table.

3. TWo bytes are read sequentially from vector table. These two bytes are

read into the PC.

Processor control is transferred to interrupt service routine and

execution continues.

N

»

Figure 6-1. Mode 2 Interrupt Processing

The Master Status register is not saved when proc-
essing interrupts under interrupt modes 0, 1, and
2. I.f the 2280 CRU is running in the user mode
when an interrupt occurs, the MR is automatically
changed to system mode when the interrupt is
acknowledged, without recording the previous user
mode of operation. Similarly, the single-step
mode and the maskable interrupts are automatically
disabled during interrupt processing, with no sav-
ing of the previous status. Thus, to resume proc-
essing of an interrupted user-mode program after
the execution of an interrupt service routine, the
operating system must change the Master Status
register in order to switch back to user mode; the
Return from Interrupt Long instruction can be used
for this purpose.

In interrupt modes 0, 1, and 2, a nonmaskable
interrupt automatically disables all maskable
interrupts (as in the Z80 CPU). All of the Inter-
rupt Request Enable bits (bits O through 6 in the
MSR) are copied to a special register in the QAU
called the Interrupt Shadow register. The Inter-
rupt Request Enable bits are then cleared to all
zeros. A Return from Nonmaskable Interrupt
instruction restores the previous settings of the
Interrupt Request Enable bits by copying the con-
tents of the Interrupt Shadow register into bits 0

through 6 of the MSR The nesting is only one
level deep (again, as in the Z80 CPU).

For a Z80 Bus configuration of the 7280 MPU only
one interrupt line (either Interrupt A, Interrupt
B, or Interrupt C) can be used if interrupt modes
0, 1, or 2 and the Z80 family peripherals are
used; Z80 peripherals being serviced on multiple
interrupt lines would all be affected by a Return
from Interrupt (RETI) instruction.

6.2.4 Interrupt Mode 3

Interrupt nmode 3 exploits the advanced features of
the 7280 MAU architecture. When an interrupt
request is accepted (maskable or nonmaskable), the
Master Status register, Program Counter, and a
16-bit "reason code" are automatically stored on
the system-mode stack. Next, new values for the
MR and RC are fetched from a table in memory
called the Interrupt/Trap Vector Table, thereby
determining the operating modes and starting
address of the service routine (see section 6.5).
The reason code for externally generated, inter-
rupts is the contents of the data bus during the
interrupt acknowledge, and is usually supplied by
the interrupting device. For 8-bit data bus con-
figurations of the 2280 MPU, the upper byte of the
reason code is all zeros. For interrupts from the
on-chip peripherals, the reason code is identical
to the vector address in the Interrupt/Trap Vector
Table, thereby identifying the interrupting
device. The Interrupt/Trap Vector Table Pointer
register in the QAU is used to reference the
Interrupt/Trap Vector Table during node 3
interrupt processing.

Interrupt mode 3 is the intended mode of operation
when using the advanced features of the 7280 MU
architecture, such as system and user modes and
single-stepping, since the Master Status register
of the interrupted task is automatically saved and
another loaded for the service routine. This
allows each service routine to be executed in the
appropriate mode without affecting the status of
the interrupted task. Also, vector tables can be
provided for both maskable and nonmaskable inter-
rupts when in mode 3.

Interrupt node 3 is always used for processing
interrupts from the 27280 MPUs on-chip periph-
erals, regardless of which nmode is selected for
the external interrupt requests.

Table 6-2 summarizes interrupt processing for ail
four modes.

6-3

Table 6-2. Interrupt Modes

Interrupt Interrupt Saved Status
Mode Typo Information Effecton MSR Effecton PC
0 Nonmaskable PC System mode, Single-Step Setto 66h
and interrupts disabled

0 Maskable ¥ ¥

1 Nonmaskable PC n Setto66h

1 Maskable PC Setto38H

2 Nonmaskable PC Setto66h

2 Maskable PC Fetched from address formed by |

register and Interrupt vector

3 Nonmaskable MSR, PC, and Fetched from Interrupt/ Fetched from Interrupt/
reason code Trap Vector Table Trap Vector Table

3 Maskable MSR, PC, and n
reason code

*: Depends on Instruction returned by interrupting device during acknowledge cycle.

6.3 TRAPS

The 72280 CRU architecture supports eight types of
traps, all of which are generated internally in
the MPU. The Privileged Instruction, System Call,
Access Violation, and Division Exception traps
cannot be disabled. I/O instructions can be spec-
ified as privileged instructions in the Trap Con-
trol register. The Extended Instruction, System
Stack Overflow Warning, Single-Step, and
Breakpoint-on-Halt traps can be selectively
enabled or disabled in the Trap Control register
and MSR

Traps are processed by saving the current program
status (PC and MSR) on the system stack and load-
ing new program status from the Interrupt/Trap
Vector Table, in a manner similar to interrupts
using interrupt node 3. The current interrupt
node has no effect on trap processing. Thus, the
Interrupt/Trap Vector Table must be present in
memory and the Interrupt/Trap Vector Table Pointer
in the QU must be initialized before executing
any instruction that could generate a trap. Traps
can occur only if executing 7280 MU instructions
that are not part of the Z80 CPU instruction set
or if trap-generating features of the Z280 CRU
(such as stack overflow warnings) have been
explicitly enabled.

6.3.1 Extended Instruction Trap

The Extended Instruction trap occurs when the 7280

U encounters an extended instruction while the
BEU Enable bit in the Trap Control register is a

6-4

zero. For instructions that transfer data between
an BRU and memory, the following information is
pushed onto the system stack when processing the
Extended Instruction trap: the address of the next
instruction, the MSR the address of the memory
operand, and the address of the template portion
of the extended instruction (in that order). For
Load Accumulator from BPU and BPU Internal Opera-
tion instructions, the address of the next
instruction, the MR and the address of the tem-
plate in the extended instruction are saved. The
FC and MR values for the service routine are then
loaded from the Interrupt/Trap Vector Table. The
Interrupt/Trap Vector Table contains four dif-
ferent entries for Extended Instruction traps, one
for each type of extended instruction.

The Extended Instruction trap allows the program
to simulate (in software) the operation of an BU
in a trap service routine when no EPUs are present
in the system.

6.3.2 Privileged Instruction Trap

The Privileged Instruction trap occurs when the
7280 CPU encounters a privileged instruction while
in the user node (the User/System bit in the MR
is set to 1). 1/O instructions can be privileged
instructions, depending on the contents of the
Trap Control register. The following information
is saved on the system stack when processing a
Privileged Instruction trap: the address of the
instruction causing the trap and the MR (in that
order).

The Privileged Instruction trap protects the oper-
ating system environment by preventing user mode
programs from executing instructions that could
disrupt the system.

6.3.3 System Call Trap

The System Call trap occurs whenever a System Call
instruction is executed. The following informa-
tion is saved on, the system stack when processing
a System Call trap: the address of the next
instruction, the MSR and the 16-bit immediate
operand encoded in the System Call instruction (in
that order).

The System Call trap provides a means by which a
user mode program can request an operating system
function, thereby allowing for an orderly transi-
tion between the user and system modes.

6.3.4 Access Violation Trap

The Access Violation trap occurs whenever the
7280 MPUs on-chip MW detects an illegal memory
access. Specifically, this trap occurs when the
MWJs translation mode is enabled and either the
address to be translated implies using a page
descriptor register whose Valid bit is zero or the
access is a write to a page whose Write-Protect
bit is set to 1. The following information is
saved on the system stack when processing an
Access Violation trap: the address of the instruc-
tion causing the trap and the MR (in that
order). Information about the logical address
that caused the fault is saved in the MW (see
Chapter 7).

The Access Violation trap facilitates the imple-
mentation of virtual memory systems using the
Valid bit in the page descriptor registers and
allows information in memory to be write-
protected.

6.3.5 System Stack Overflow Warning Trap

The System Stack Overflow Warning trap can occur
only if the Stack Overflow Warning bit in the Trap
Control register is set to 1. If so, then for
each push to the system stack, the 12 most signif-
icant bits of the Stack Pointer are compared to
the contents of the Stack Limit register and a
trap is generated if they match. The following
information is saved on the system stack when
processing a System Stack Overflow Warning trap
(but no second System Stack Overflow Warning trap
is generated): the address of the next instruction
and the MR (in that order). The Stack Overflow

Warning bit in the Trap Control register is auto-
matically cleared to 0 when this trap occurs in
order to prevent repeated traps.

The System Stack Overflow Warning trap notifies
the operating system of potential stack overflow
problems.

6.3.6 Division Exception Trap

The Division Exception trap occurs while executing
a Divide instruction if the divisor is zero
(divide by zero case) or the quotient cannot be
represented in the destination precision (over-
flow case); the QU flags are set to distinguish
between these two situations (see the descriptions
for the Divide instructions in Chapter 5). The
following information is saved on the system stack
when processing a Division Exception trap: the
address of th8 Divide instruction and the MR (in
that order).

6.3.7 Single-Step Trap.

Two control bits in the Master Status register are
used to control Single-Step traps: the Single-Step
bit (bit 8) and the Single-Step Pending bit (bit
9). The Single-Step trap occurs when the
Single-Step Pending bit in the MR is set to 1.
To enter single-step mode, wherein a Single-Step
trap is executed after each instruction, the
Single-Step bit in the MR is set to 1. At the
beginning of instruction execution, the state of
the Single-Step Pending bit is checked; if it is
set, a Single-Step trap ip executed. Then, the
state of the Single-Step bit is copied into the
Single-Step Pending bit and the instruction is
executed. if the instruction generates another
trap (such as a Privileged Instruction trap), that
trap handling routine is executed before the
Single-Step Pending bit is again checked and the
Single-Step trap is processed. This execution
sequence is illustrated in Figure 6-2. Note that
once the Single-Step bit gets set, a Single-Step
trap does not occur until after the next
instruction, because the Single-Step Pending bit
is checked before being loaded with the state of
the Single-Step bit. Single-Step traps are then
executed after each instruction wuntil the
Single-Step bit in the MR is cleared to 0.

The Single-Step Pending bit in the MR is automat-
ically cleared by a Division Exception, Access
Violation, Privileged Instruction, or
Breakpoint-on-Halt trap, so that the saved MR
value put on the stack as a result of trap
processing will have a 0 in bit position 9. For
each of those trap types, the address of the

6-5

Figure 6-2. Instrucfion Execution Sequence

actual trapping instruction is saved on the stack
(as opposed to the address of the next
instruction). The trapping instruction can be
re-executed upon returning from the trap service
routine, in which case another Single-Step trap is
not desired before instruction execution.
Similarly, the Single-Step Pending bit is
automatically cleared by a Single-Step trap, to
ensure that only one Single-Step trap occurs per
instruction.

When executing a Return From Interrupt Long
(RETXL) instruction to .return from an interrupt or
trap service routine, the Single-Step Pending bit
in the MR for the interrupted program is the R
of the Single-Step Pending bit in the MR of the
service routine and the Single-Step Pending bit in
the MR value that was saved during trap proces-
sing. Thus, if the service routine was being exe-
cuted in single-step mode, a Single-Step trap
occurs after execution of the RETIL instruction,
before resumption of the interrupted program.

The following information is saved on the system
stack when processing a Single-Step trap: the
address of the next instruction and the MR (in
that order).

6-6

The Single*Step trap facilitates the debugging of 7280

CPU code.

for

This method can be used only in

The following text explains four methods
entering single*step operations.

PUSH a PC value for the
jump to.

PUSH an MSR value with the desired combination of
the Single-Step (SS) and Single-Step Pending
(SSP) bits.

Execute and RETIL instruction.

instruction you wish to

Execute a LDCTL instruction with the desired
combination of the SS and SSP bits.

Execute a System Call (SC) with an identifier that
you reserve for a single-step entry.

POP the
single-step code routine.

POP the MSR.

Set the desired combinations of SS and SSP.

PUSH the new MSR.

Execute the RETIL instruction.

identifier and branch to the remaining

the User Mode of

operation.

Use the "Breakpoint-on-Halt" trap by substituting

a HALT opcode for the first byte of an instruction

where single-stepping is to start. The trap service

routine should look something like this:

POP the MSR.

Set the desired combinations of SS and SSP.

PUSH the MSR.

Restore the instruction byte that the HALT opcode
replaced.

Execute the RETIL instruction.

Both interrupt and trap routines can be single-stepped
by setting the appropriate SS and SSP combination in
the MSR entry in the Interrupt/Trap Vector Table.

Instructions that cause a trap but will be re-executed
(ie: privileged, divide, page fault)
clear the SSP bit in the PUSHed MSR.
that only one single-step trap will

automatically
This ensures
occur for these
instructions.

Table6-3. flap Types

Can be -
TtapTVP* Disabled
Extended Instruction s
Privileged Instruction No
SystemCall No
Access Violation No
System Stack Overflow Yes
Division Exception No
Single-Step Yes
Breakpoint-on-Halt \fes

Table 6-4. Interrupt Acknowledge Encoding
for Z80 Bus Configuration

AD2 ADi Interrupt Being Acknowledged
0 0 Interrupt A
0 1 Nonmaskable Interrupt
1 0 Interrupt B
1 1 Interrupt C

6.3.8 Hreakpoint-on-Halt Trap

The Breakpoint-on-Halt trap occurs if a Halt
instruction is encountered while the Breakpoint-
on-Halt Enable bit in the MR is set to 1. The
following information i8 saved on the sy8tem stack
when processing a Breakpoint-on-Halt trap: the
addres8 of the Halt instruction and the MR (in
thst order).

The Breakpoint-on-Halt trap provided a breakpoint
facility that is useful in debugging environments
in which breakpoints on instruction boundaries are
degired.

The trap types and the status saved during the
processing of each trap are summarized in Table
6-3.

Status Saved
Address of next instruction
MSRvalue
Address of operand in memory (if applicable)
Address of EPU template
Address of instruction causing trap
MSR value
Address of next instruction
MSR value
16-hit reason code from SC instruction
Address of instruction causing trap
MSR value
Address of next instruction
MSR value
Address of instruction causing trap
MSRvalue
Address of next instruction
MSR value
Address of Halt instruction
MSRvalue

6.4 INTERRUPT AND TRAP HAIDLING

The 7280 CPU response to an interrupt request or
trap condition consists of up to five steps:
acknowledging the external request (externally-
generated interrupts only), saving current program
gtatu8, loading new program status, executing the
service routine, and returning to the interrupted
program. Interrupts are accepted and processed
between instructions, with the exception of the

block move, search, and 1/O instructions, which
can be interrupted between any iteration. Traps
are detected during instruction execution, with
the exception of the Single-Step trap, as

described previously. Thus, a trap condition is
processed before handling any pending interrupts.

6.4.1 Interrupt Actomledge

An interrupt
required

acknowledge bus transection is
only for externally-generated inter-
rupts. The main effect of the interrupt acknowl-
edge is to establish communication between the
requestor and the Z280 CPU.

For Z80 Bus configurations of the Z280 MPU, the
type of interrupt being acknowledged is indicated
on bus lines ADj and A2 while the Address Strobe
is being asserted during the interrupt acknowledge
cycle, as per Table 6-4.

6-7

For the Z80 Bus configurations of the 7280 MPU no
external acknowledge cycle is generated for
nonmaskable interrupts in interrupt modes 0, 1,
and 2, or for maskable interrupts in interrupt
mode 1. For maskable interrupts in interrupt
modes Oy 2, and 3, and for nonmaskable interrupts
in mode 3, 8-bit data is read from the ADQAD7 bus
lines during the acknowledge cycle; this data is
used as dictated by the interrupt node in effect,
as described in section 6.2. For maskable
interrupts in interrupt nmode 0, successive bytes
are read on ADQAD7 until a complete instruction
has been fetched, via repetition of the
acknowledge cycle.

For ZBUS configurations of the Z280 MPU, any
interrupt from an external source is
acknowledged. The type of interrupt being
acknowledged is indicated by the STg-$T3 status
lines during the acknowledge cycle. A word of
data is read from the address/data bus during the
acknowledge cycle and used as dictated by the
interrupt mode in effect. For interrupt modes 2
and 3, the lower byte of this data is used as the
interrupt vector. For maskable interrupts in
interrupt mode 0, successive bytes are read on
ADQ-AD7 UNtil a complete instruction has been
fetched, via repetition of the acknowledge cycle.

Acknowledge cycles are always executed in system
mode, regardless of the mode of the interrupted
program. The MR of the interrupted program is
not affected by this change in mode. The CPU
stays in system mode until the start of execution
of the service routine. In interrupt modes 0, 1,
and 2, the service routine starts in system mode;
in interrupt node 3, the MR of the service rou-
tine is determined by the contents of the Inter-
ruptsrap Vector Table.

Interrupt requests from the on-chip peripherals
never generate an acknowledge cycle and are always
processed using interrupt mode 3. Similarly,
traps do not generate acknowledges.

6.4.2 Status Saving

During exception processing, the status of the
interrupted program is saved on the system stack.
In interrupt node 0, the Program Counter is auto-
matically saved when processing nonmaskable inter-
rupts; the instruction returned by the peripheral
device will determine what status information is

6-8

saved when processing maskable interrupts. For
interrupts in interrupt mode 1 or 2, the Program
Counter is automatically saved. For interrupts in
interrupt mode 3, the Program Counter and MR of
the interrupted task are saved, followed by the
"reason code" (Figure 6-3). For external inter-
rupt requests, the reason code is the value read
from the data bus during the interrupt acknowledge
cycle; the upper byte of the reason code is all
zeros for 8-bit data bus (Z80 Bus) configurations
of the 2280 MPU. For interrupts from the on-chip
peripherals, the reason code is the offset address
in the Interrupt/Trap Vector Table that
corresponds to the MR value entry for that
interrupt type.

Figure 6-3. Format of Saved Status on
System Stack Due to a Mode 3 Interrupt

The Program Counter value saved during interrupt
processing is the address of the next instruction
in the interrupted routine, except for interrupts
during block move, block search, and block 1/0
instructions. The block instructions can be
interrupted between any one iteration of their
operation, in which case the FC value saved is the
address of the block instruction itself.

The status saved as a result of a trap depends on
the type of trap being executed, as noted in
Figure 6-3. The PC and MR values are always
saved during trap processing, along with other
trap-dependent information.

If any memory write operation involved in saving
status information during interrupt or trap proc-
essing causes a memory access violation, a special
"fatal condition" is entered, as described in sec-
tion 6.6.

6.4.3 Loading New Program Status

After saving the status of the interrupted pro-
gram, new program status values (i.e., new values
for the RC and MSR) are automatically loaded, in
accordance with the interrupt mode and any data
read during the acknowledge cycle. This new pro-
gram status determines the operating modes and
starting address of the service routine.

For externally generated interrupts in interrupt
modes O, 1, and 2, the Master Status register is
automatically modified to specify system mode with
the Single-Step trap and all maskable interrupts
disabled. For externally generated interrupts in
interrupt mode 3, all internally generated inter-
rupts, and all traps, the new MR value is loaded
from the Interrupt/Trap Vector Table.

For externally generated maskable interrupts proc-
essed using interrupt node 0, the first instruc-
tion of the service routine is supplied by the
interrupting device. This must be a Call or
Restart instruction that loads the RC with the
starting address of the service routine. For non-
maskable interrupts in interrupt mode 0, the RCis
set to 0066", and all maskable interrupts are
automatically disabled.

In interrupt nmode 1, the RC is set to 0038" for
externally generated maskable interrupts and to
0066" for nonmaskable interrupts.

For externally qenerated maskable interrupts in
interrupt mode 2, the RCis fetched from an Inter-
rupt Vector table in system data memory; the logi-
cal address of the fetched FC value is formed by
concatenating the contents of the | register with
the 8-bit vector returned by the interrupting
device during the acknowledge cycle. For nonmask-
able interrupts, the RCis set to 0066".

For externally generated interrupts in interrupt
mode 3, all internally generated interrupts, and
all traps, the FCand MR values for the service
routine are fetched from the Interrupt/Trap Vector
Table (see section 6.5). The new value for the
MR is at a fixed location in this table. Exter-
nally generated interrupts can be vectored or
nonvectored in interrupt mode 3, as determined by
the contents of the Interrupt Status register.
For nonvectored interrupts and all traps, the new
RC value is at a fixed location in the Inter-
rupt/Trap Vector Table; for vectored interrupts,
the location of the new FC in the table is depen-
dent on the 8-bit vector read during the acknowl-
edge cycle. ,

The value loaded into the Program Counter during
exception processing is a logical address that can

be translated to a physical address by the MW
when the CPU fetches the first instruction of the
service routine.

6.4.4 Executing the Service Routine

In interrupt mode O, the interrupting device pro-
vides the Restart or Call instruction that begins
the service routine; this instruction saves the
Program Counter value of the interrupted routine
and provides the address of the service routine.
In the other interrupt modes and for traps, the
starting address of the service routine i3 deter-
mined automatically during interrupt processing,
as described in the preceding section. This pro-
gram is now executed.

For externally generated interrupts in interrupt
modes 0, 1, and 2, all maskable interrupts, are
automatically disabled; therefore the service rou-
tine is protected from additional interrupts until
the MR is altered via a Load Control, Enable
Interrupt, Return from Nonmaskable Interrupt, or
Return from Interrupt Long instruction. Inter-
rupts in mode 3 and all traps cause a new MR to
be loaded from the Interrupt/Trap Vector Table;
the value of this MR determines which interrupts
are enabled during the service routine. Service
routines that enable interrupts before exiting
permit interrupts to be handled in a nested fash-
ion.

6.4.5 Returning from a Service Routine

Three different instructions are available for
returning from an interrupt or trap service rou-
tine: Return from Nonmaskable Interrupt, Return
from Interrupt, and Return from Interrupt Long.
All three are privileged instructions, since they
must retrieve values from the system stack.

The Return from Nonmaskable Interrupt (RETN)
instruction is used to return from nonmaskable
interrupts in interrupt modes 0, 1, and 2. This
instruction pops the word on the top of the stack
into the Program Counter, restoring the Program
Counter value present before the interrupt, and
loads the Interrupt Request Enable bits in the MR
with the contents of the Interrupt Shadow regis-
ter.

The Return from Interrupt (RETI) instruction is
used to return from externally generated maskable
interrupts in interrupt modes 0, 1, and 2. This
instruction pops the word on the top of the stack
into the Program Counter, which restores the Pro-
gram Counter value present before the interrupt.
The RETI instruction also causes a special bus

6-9

transaction that fetches this instruction from
external memory (regardless of whether it Is con-
tained io the on-chip cache), with the appropriate
bus control and status signals to indicate that an
instruction fetch is occurring; this is used to
reset the interrupt logic of the Z80 family
peripherals.

The Return from Interrupt Lonq (RETIL) instruction
is used to return from interrupts in interrupt
mode 3 and all traps, since it causes both the MR
and RC values to be popped from the stack. If
thi3 instruction is used to return from an inter-
rupt processed with another interrupt mode (e.g.,
if RETIL is used to return from a mode 2, instead
of a mode 3, interrupt), an MR value must be
pushed onto the stack in the service routine prior
to execution of the RETIL. For interrupts in
interrupt mode 3 and all traps, the service
routine must pop.the reason code or other
trap-dependent information off the stack before
executing RETIL. Unlike RETI, RETIL causes no
special bus activity and, therefore, cannot be
used to automatically reset Z80 family periph-
erals. }

6.5 INTERRUPT/TRAP VECTOR TABLE

During interrupt processing under interrupt nmode 3
and all .trap processing, the PC and MR values
that determine the starting location and operating
modes of the appropriate service routine are
fetched from a table in memory called the Inter-
rupt/Trap Vector Table. This table holds an MR
and RC value for the service routine for every
possible type of interrupt and trap. The particu-
lar values fetched from the table during exception
processing are a function of the type of exception
that occurred and, for vectored external inter-
rupts, the vector returned by the peripheral dur-
ing the acknowledge cycle. The format of the
Interrupt/Trap Vector Table is given in Table
6-5. Each entry in the Interrupt/Trap Vector
Table consists of two words—an MR value followed
by a RC value. If an external interrupt is vec-
tored, as determined by the contents of the Inter-
rupt Status register, the 0-bit vector returned by
the peripheral is used as an index into a list of
up to 128 possible RC values for the service
routine; only even-valued vectors are supported by
the Z280 CRU architecture. Thus, for a vectored
interrupt, there is only one starting MR value
for all the possible service routines, but up to
128 potential FC values. The NM and Interrupt A
requests share the same vectors.

For example, suppose an interrupt is requested by
the on-chip counter/timer 0. If that interrupt

6-10

request is enabled (bit 1 in the MR is set to 1),
the interrupt is processed as follows: the current
PC and MR values are saved on the system stack;
an identifier word with the value 14" is saved
on the system stack; a new'value for the MR i3
fetched from location 14" in the Interrupt/Trap
Vector Table; a new value for the RC is fetched
from location 16" in the Interrupt/Trap Vector
Table; execution of the service routine is begun.

If an interrupt request is received from an
external source on interrupt line A under
interrupt mode 3 and that interrupt request is

enabled (bit 0 in the MR i3 set to 1),
interrupt processing proceeds as follows:

then

a An acknowledge cycle is executed, during which
data is read from the external data bus.

e The current RC and MR values are saved on the
system stack

a The data read from the bus during the
acknowledge cycle is saved on the system stack
as the identifier word.

a A new value for the MR is
location 08y in the
Table

fetched from
Interrupt/Trap Vector

a A new value for the RC is fetched either from
location QA in the Interrupt/Trap Vector Table
(if bit 13 of the Interrupt Status register is
0, indicating that Interrupt A is not vectored)
or from the location in the Interrupt/Trap
Vector Table found by adding the lower byte of

the data read from the bus during the
acknowledge cycle (the interrupt vector) to
70y (if bit 13 of the Interrupt Status

register is 1, indicating that Interrupt A is
vectored).

a Execution of the service routine i3 begun.

For vectored interrupts, the interrupt vector
returned during the acknowledge cycle must be
even-valued in order to reference a valid FC value
In the” Interrupt/Trap Vector Table.

The Interrupt/Trap Vector Table Pointer register
must be initialized to hold the most significant
12 bits of the starting physical address of the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table must start on a 4K byte boundary in
physical memory (that is, a memory address whose
12 least 3ignificant bits are all zeros).

Table 6-5. Interrupt/Trap Vector Table Format

Address In Table

(Hexadecimal) Contents
00 Reserved
04 NMI vector
08 Interrupt line A vector
oC Interrupt line B vector
10 Interrupt line C vector
14 Counter/Timer O vector
18 Counter/Timer 1 vector
ic Reserved
20 Counter/Timer 2 vector
24 DMA channel 0 vector
28 DMA channel 1 vector
2C DMA channel 2 vector
30 DMA channel 3 vector
34 UART receiver vector
38 UART transmitter vector
3C Single-Step trap vector
40 Breakpoint-on-Halt trap vector
44 Division Exception trap vector
48 Stack Overflow Warning trap vector
4C Access Violation trap vector
50 System Call trap vector
54 Privileged Instruction trap vector
58 EPU <- Memory Extended Instruction trap vector
5C Memory «r EPU Extended Instruction trap vector
60 A <- EPU Extended Instruction trap vector
64 EPU Internal Operation Extended Instruction trap vector *
68-6C Reserved
70-.16E 128 Program Counter values for NMI and interrupt line A vectors (MSR values from position 04 and
08 in this table, respectively)
170-26E 128 Program Counter values for interrupt line B (MSR value from position 0C in this table).
270-36E 128 Program counter values for interrupt line C (MSR value from position 10 in this table)

6.6 THE FATAL CIVOITION

During interrupt and trap processing, the U
automatically attempts to save status information
about the interrupted program on the system
stack. If the MW is enabled, an access violation
can occur during the status saving process if a
write is attempted to an invalidated page or to a
page that is write-protected. Detection of an
access violation during the status saving process
causes the 7280 CPU to enter a special fatal con-

dition; the following steps are taken automati-
cally when the fatal condition occurs: the current
FC contents are written to the H. register, the
current MR contents are written to the [CE regis-
ter, ail the Interrupt Request Enable bits in the
MR are cleared to 0, and the CPU enters a Halt
state. This Halt state is identical to the Halt
state caused by the execution of a Halt instruc-
tion, with one exception: a Halt state induced by
a fatal condition can be exited only by a reset.

*

7.1 INTRODUCTION

. mja- o ol
The 7280 MPUs include an on-chip paged Memory Man+
agement Unit tMMU), which allows the MPUs to
address more than 64K bytes of physical memory.
Memory management with the MW involves two
issues: memory allocation and memory protection.
The allocation of memory is controlled by allowing
the MM to translate the 16-bit logical addresses
from the 2Z280 CPU into the 24-bit physical
addresses output by the MPU. Thus, a given
programming task can be relocated to any area of
physical memory, regardless of the logical
addresses used by that task. During this
translation process, the MW also monitors the
type of memory access beinqg made; the MW can
inhibit accesses or write-protect memory areas,
thereby allowing memory to be protected from
unwanted or unintended modes of use.

The MW partitions the 64K logical address space
of the 72280 AU into fixed-sized memory pages and
meps 'those pages into the physical address space.
Separate mapping facilities are available for the
system and user modes of operation; translation
can be performed in either one or in both modes.
Optionally, the MW provides for separating
instruction fetches from data references, which
allows the user to define up to four different
logical address spaces: system mode program, Sys-
tem nmode data, user mode program, and user mode
data. If the program and data address spaces are
separated, the MW uses a page size of 8192 (8K)
bytes; if not, the page size is 4096 (4K) bytes.

The MW is programmed via 1/O references to its
control registers. The MW records which pages
have been modified and can inhibit the cache mech-
anism to prevent the writing of data to the
on-chip cache. Access Violation traps are gener-
ated when an error condition is detected (such as
an attempted write to a read-only page). Access
violations cause the currently executing instruc-
tion to be aborted, and allow that instruction to
be restarted in a manner compatible with virtual
memory requirements. Upon reset, the NAWJ is dis-
abled, allowing logical addresses to pass through
to physical memory without translation.

Chapter 7.
Memory Management Unit

7.2 MW ARCHITECTURE

The 7280 MW consists of two sets of 16 page
descriptor registers, used to translate addresses
and assign memory attributes on a page-by-page
basis, and a Master Control register that governs
MW operation. There is one page descriptor reg-
ister associated with each logical page of mem
ory. Ore set of 16 page descriptor registers is
dedicated to system node operation and the other
set to user node operation. The MW registers are
accessed using 1/0 instructions.

When translation is enabled for a particular node
(system or user), as determined by thfe contents of
the MW Master Control register, the MW trans-
lates memory addresses whenever the CPU is operat-
ing in that mode, using the set of page descriptor
registers dedicated to that mode. However, there
are two exceptions to that rule:

« When the GPU is fetching program status infor-
mation from the Interrupt/Trap Vector Table in
response to an interrupt under interrupt mode 3
or a trap, the Interrupt Trap Vector Table
Pointer register is used to determine the phys-
ical address of the program status information.

e The Load in User Program (LDUP) and Load in
User Data (LOUD) instructions are executed in
system mode but use the user mode page descrip-
tor registers to translate the data operand's
address.

Memory addresses generated by the on-chip DVA
channels are 24-bit physical addresses that are
not translated by the MMJ Only memory addresses,
and not I/O addresses, are translated by the MVU

While an address is being translated, any attri-
butes associated with the logical page containing
that address are checked. The attributes for a
page are determined by the contents of that page's
page descriptor register. Pages can be write-
protected and/or mede non-cacheable using these
attributes. A non-cacheable page is one whose
contents cannot be copied into the on-chip cache
during program execution; thus, accesses to loca-

7-1

tions in non-cacheable pages always use the exter-
nal bus. This attribute is useful in multiproces-
sor systems with shared memory areas, where each
processor must be able to access the most current
version of the information in the shared memory
area, or in systems with memory-mapped I/O
devices. The MW also maintains a status bit for
each page, which indicates if that page has been
modified.

Each page descriptor register contains a Valid
bit, which indicates if that descriptor contains
valid information. Attempts to access an address
contained in a page with an invalid descriptor and
attempts to write to an address in a page that is
write-protected generate Access Violation traps.
An Access Violation trap causes the currently exe-
cuting instruction to be aborted, facilitating the
development of virtual memory systems. A special
/0 port in the MW (Invalidation 1/O port) is
available for resetting the valid bits in a whole
group of page descriptor registers with a single
/O instruction.

For system mode operation, user mode operation, or
both, the MW can be configured to separate
instruction fetches from data fetches, therefore
separating the program address space from the data
address space. This allows a 7280 MU program to
contain up to 64K bytes of code and operate on up
to 64K bytes of data. With the program/data sep-
aration mode in effect, the 16 page descriptor
registers for that mode are partitioned into two
sets of eight descriptors: one set for instruction
fetches and one set for data fetches. An instruc-
tion fetch or data reference using the FC relative
addressing mode is translated using the page
descriptor registers associated with the program
address space; data accesses using other addres-
sing modes and accesses to the interrupt vector
table under interrupt nmode 2 use the page descrip-
tor registers associated with the data address
space. In this mode, pages are 8K bytes long.
Two control bits in the MW Master Control regis-
ter specify independently whether program/data
separation is in effect for system node and
whether program/data separation is in effect for
user mode.

When translation is disabled for a particular node
(system or user), the MW does not translate mem
ory addresses or perform attribute checking while
the CPU is operating in that mode. For a memory
access when the MW is disabled, the logical mem
ory address passes through the MW without trans-
lation to physical address outputs Ag-A™ and
physical address outputs A"-A23 are all zeros.
When the MW is disabled all memory is assumed to
be both writeable and cacheable.

7-2

7.3 PAGE DESCRIPTOR REGISTERS

There are two sets of 16 page descriptor registers
in the MMJ one set for system mode operation and
one set for user mode operation. Each page
descriptor register is 16 bits long, consisting of
a 12-bit page frame address field and a 4-bit
attribute field (Figure 7-1).

-r -1 it

- i o T-
PAGE FRAME ADDRESS *'r I VIWP CIMI

Figure 7-1. Page Descriptor Register

The page frame address field contains the most
significant 12 bits (if program/data separation is
not in effect) or most significant 11 bits (if
program/data separation is in effect) of the
starting physical address for that page. The low-
order bits of the page's base physical address are
assumed to be all zeros; thus, pages always start
on 4K byte boundaries in physical memory without
program/data separation, or 8K byte boundaries
with program/data separation.

The least significant four bits of each page
descriptor register are attribute and status bits
for that page, as described below:

Modified Bit (M). This status bit is automati-
cally set to 1 whenever a write is successfully
performed to a logical address in the page; it can
be cleared to 0 only by writing to the page
descriptor register via a software command. If
the Valid bit is 0, the contents of this bit are
undefined.

Cacheable Bit (C). When this bit is set to 1,
information from the page can be stored in the
on-chip cache memory. When this bit is cleared to
0, the cache control mechanism is inhibited from
retaining a copy of information from the page.

Write-Protect Bit (WP). When set to 1, write
operations to addresses in the page generate an
Access Violation trap and the write i3 inhibited.
When this bit is cleared to 0, all valid accesses
to the page are allowed.

Valid Bit (V). This bit is set to T to indicate
that the page descriptor register contains valid
information about the page. When cleared to O,
all accesses to addresses in the page are
inhibited and generate Access Violation traps.

7.4 ADDRESS TRANSLATION

If address translation is enabled, -logical
addresses are translated to physical addresses in
one of two ways, depending on the program/data
separation mode, as specified in the MW Master
Control register. The format of the page descrip-
tor registers is independent of which mode is in
effect.

7.4.1 Address Translation Without Program/bata
Separation

When program/data separation is not in effect, the
16-bit logical address from the QU is divided

into two fields, a 4-bit index field used to
select one of the 16 page descriptor registers,

15 1211

Figure 7-2.

and a 12-bit offset field that forms the lower 12
bits of the resulting physical address. The upper
12 bits of the physical address are provided by
the page frame address field of the selected page
descriptor register. The pages are 4K bytes
long. This translation mechanism is illustrated

in Figure 7-2. Page descriptor register 0 is the
descriptor for logical addresses 0000 to
OFFh, page descriptor register 1 *is the
descriptor for logical addresses 1000 to

1IFFFH, and so on. Thus, the index portion of
the logical address selects the page descriptor
register. The page frame address field of that
page descriptor register then determines the
actual starting address for that page in physical
memory; the low-order 12 bits of the logical
address specify the offset within that 4K byte

page.

LOGICAL
ADDRESS

PADS DESCRIPTOR
REGISTERS

PHYSICAL
ADDRESS

Address Translation without Program/Data Separation

7-3

7.4.2 Address Translation With Prograa/bata
Separation

When program/data separation is in effect, the
16-bit logical address from the CPU is divided
into a 3-bit index and a 13-bit offset. A Pro-
gram/Data address control signal from the QU
becomes the most significant bit of the 4-bit
index that selects the appropriate page descriptor
register; the three most significant bits of the
logical address form the least significant bits of
this index. The upper 11 bits of the page frame
address field in the selected page descriptor reg-
ister provide the upper 11 bits of the resulting
physical address. The least significant 13 bits
of the logical address form the low order 13 bits
of the physical address, as illustrated in Figure
7-3. Page descriptor register 0 is the descriptor
for logical addresses 0000"-1FFF" in the data

PROGRAM/

Figure 7-3.

7-4

address space, Page descriptor register 1 is the
descriptor for logical addresses 2000"-3FFFh
in the data address space, and so on through page
descriptor register 7; page descriptor register 8
is the descriptor for logical . addresses
0000"-1FFFh in the program address space, page
descriptor reqister 9 is the descriptor for loqi-
cal addresses 2Q00h-3FFFh in the program
address space, and so on. Thus, each page is 8K
bytes long, where the starting address of the page
in physical memory is determined by the page frame
address field in the selected page descriptor reg-
ister, and the 13 least significant bits of the
logical address specify the offset within that 8K
byte page. In this mode, the least significant
bit of the page frame address field in each page
descriptor register is not used; this bit is modi-
fied by translation, and values read from it are
unpredictable.

16-BIT LOGICAL PROGRAM
OR DATAADDRESS

PROGRAM PAGE
DESCRIPTOR REGISTERS

DATA PAGE
DESCRIPTOR REGISTERS

24-BIT PHYSICAL PROGRAM
OR DATA ADDRESS

Address Translation with Program/Data Separation

7.5 [?MI CONTROL REGISTERS

Besides the two sets of 16 page descriptor regis-
ters, the MW contains a Master Control register
and a Page Descriptor Register Pointer. The
16-bit Master Control register controls the opera-
tion of the MMJ the 8-bit Page Descriptor Regis-
ter Pointer is used to select a particular page
descriptor register during /O accesses to the
descriptors.

The 16-bit MW Master Control register is shown in
Figure 7-4. This register consists of four con-
trol bits and a 5-bit status field; the fields in
this register are described below:

is ‘ ' o]

M 1

lutelupd| 1 1 |STEspd| 1 | 1

Figure 74. MMU Master Control Register

Use* Node Translate Enable (UTE). When this bit
is set to 1, logical memory addresses generated
during user-mode operation are translated to phys-
ical addresses with attribute checking. When this
bit is cleared to 0, the logical addresses are
passed through the MW to the address outputs with
zeros in the most significant bits and no attri-
bute checking or modified bit setting is per-
formed.

User Node Program/Data Separation Enable (UPD).
When this bit is set to 1, instruction fetches and
data accesses using the PRC Relative addressing
nmode use user-mode Page Descriptor registers 8
through 15, and data references using other
addressing modes use user-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes.
When this bit is cleared to 0, both instruction
and data fetches WBe u3er-mode Page Descriptor
registers 0 through 15 and the page 3ize is 4K
bytes.

System Mode Translate Enable (STE). When this bit
is set to 1, logical memory addresses generated
during system-mode operation are translated to
physical addresses with attribute checking. When
this bit is cleared to 0, the logical addresses
are passed through the MW to the address outputs
with zeros in the most significant bits and no
attribute checking or modified bit setting is per-
formed.

System Node Program/Oata Separation Enable (SPD).
When this bit is set to 1, instruction fetches and
data accesses using the PC Relative addressing
mode use esystem-mode Page Descriptor registers 8

through 15, and data references wusing other
addressing modes use system-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes.
When this bit is cleared to 0, both instruction
and data fetches use system-mode Page Descriptor
registers 0 through 15 and the page size is 4K
bytes.

Page Fault Identifier (PFI) Field. This 5-bit
status field latches an identification number that
indicates which Page Descriptor register was being
accessed when an access violation was detected.
The encoding used is given in Table 7-1.

The MW Master Control register is programmed via
a word output instruction to 1/O port address
FPxxFQh (where "x" indicates a "don't care") and
is read via a word input instruction to that same
port. A reset clears this register to all zeros,
thereby disabling address translation and attri-
bute checking in the MU Bits 5 through 9, 12,
and 13 in this register are not used.

The Page Descriptor registers in the MW are
accessed using the Page Descriptor Register
Pointer (PDR Pointer). The 8-bit FOR Pointer con-
tains the address of one of the Page Descriptor
registers; the encoding is given in Table 7-1.
The permissible contents of the PDR Pointer are
00y through 1IFh« The POR Pointer is accessed
via byte 1/0 instructions to port address
FFxxF1h.

Table 7-1. Page Descriptor Register Addresses

PDR Pointeror Selected Page

PR Field Descriptor Register
00 User Page Descriptor 0
01 User Page Descriptor 1
OE User Page Descriptor 14
OF User Page Descriptor 15
10 System Page Descriptor 0
n System Page Descriptor 1
1E System Page Descriptor 14
1F System Page Descriptor 15

7.6 ACCESSING PAGE DESCRIPTOR REGISTERS

Data is read or written to the Page Descriptor
registers via 1/O instructions. Three different
types of accesses are allowed, each of which is
implemented with its own unique I/O port address.

7.6.1 Descriptor Select Port

Moves of one word of data to or from a Page
Descriptor register are accomplished through 1/0
port address FFxxF5", the Descriptor Select

Port. The Page Descriptor register accessed is
the one addressed by the PDR Pointer; the PR
Pointer itself is unaffected. Any word 1/O

instruction can be used.

7.6.2 Block Move Port

Block moves of data into and out of Page Descrip-
tor registers are accomplished by word accesses to
/0 port address FFxxF4*. The Page Descriptor
register accessed is the one addressed by the AR
Pointer. Any word /O instruction can be used.
After the access, the contents of the FOR Pointer
are automatically incremented by one; thus, a sin-
gle block 1/O instruction can be used to access
several successive Page Descriptor registers. For
example, if the FCR Pointer is initialized to 00,
the execution of an INIRW instruction to I/O port
FPoFAN causes data from successive Page
Descriptor registers starting with user Page
Descriptor register 0 to be loaded into memory.

For accesses to the Page Descriptor registers
using the Descriptor Select port or the Block Move
port, the permissible contents of the POR Pointer
are the addresses for the Page Descriptors given'
in Table 7-11 00" to 1Fh* Execution of an I/O

instruction to ports FFPxF4* or FFxF5" when
the contents of the POR Pointer are outside of
this permitted range will have unpredictable
results.

7.6.3 Invalidation Port

The Valid bits in the Page Descriptor registers
can be cleared to 0 via byte writes to 1/O port
address FFxxF2", thereby invalidating the con-
tents of the Page Descriptor registers. Individ-
ual Valid bits can subsequently be set by writing
to individual Page Descriptor registers using the
Descriptor Select port or the Block Move port.
The Page Descriptor registers invalidated by a
write to port FPoF2Y depend on the data written

7-6

to that port, as delineated in Table 7-2. When
writing to the invalidation port only the least
significant four bits are sampled; the upper
four bits are not used. Reading port FRxF2*
returns unpredictable data.

Table 7-2. MMU Invalidation Port

Data Written to

Port FFxxF2 Page Descriptor Registers

(Hexadecimal) Invalidated
oL System Page Descriptor Registers 0-7
02 System Page Descriptor Registers 8-15
03 System Page Descriptor Registers 0-15
04 User Page Descriptor Registers 0-7
08 User Page Descriptor Registers 815
oCc User Page Descriptor Registers 0-15

The 1/0 port addresses for the MMfregisters are
listed in Table 7-3.

Table 7-3. I/0O Port Addresses for MMU Control Registers

Port
Address Register
FFxxFOnh Master Control Register
FFxxFlh Page Descriptor Register Pointer
FFxxF5h Descriptor Select Port
FFxxF4h Block Move Port
FFxxF2h Invalidation Port

Changing an MW control register or Page
Descriptor register does not cause a flush of the
QU instruction pipeline. While an instruction
that changes an MW register is executing, up to
two subsequent instructions can be pre-fetched
into the QMU pipeline; execution of these
subsequent instructions must have benign results.
In other words, when changing an MW register, up
to two subsequent instructions can be fetched
before the change to the MW register is

guaranteed to take effect. (However, no data
accesses are pre-fetched.) Therefore, when
initially enabling the MW for address

translation, the instruction that enables the MW
and the next two instructions must be in a page
whose logical addresses are identical to physical
addresses (so that it is immaterial exactly when
the MW begins the translation process for those
instruction fetches). When altering a page
descriptor register while translation is enabled,
neither of the next two instructions should reside
in the page associated with the Page Descriptor
register being changed.

7.7 INSTRUCTION ABORTS

Detection of a page fault (due to an attempted
access to an invalidated page) or a write-protect
violation (due to an attempted write to a write-
protected page) causes the currently executing,
instruction to be immediately aborted and

generates an Access Violation trap. The starting
addresp of the instruction that caused the
violation and the current MR value are

automatically saved on the system stack when
processing an Access Violation trap. Furthermore,
the MW latches the address of the referenced Page
Descriptor register in the PFl field of the MW
Master Control register whenever a violation
occurs.

For rtiost instructions, the CPU registers are not
modified during the execution of aborted instruc-
tions; i.e., their contents are the same as before
the aborted instruction began. The exceptions are
the block move, block search, and block 1/O
instructions; when aborted, the CPU registers are
the same as just before the iteration of the
instruction in which the violation occurred. In
either case, no modification of CPU registers is
necessary before restarting the aborted instruc-
tion.

The instruction abort mechanism of the 7280 MU
facilitates the implementation of virtual memory
in Z280-based systems. In a virtual memory sys-
tem, a cleared Valid bit in the Page Descriptor
register can be used to indicate when a memory
page is not currently mapped into main memory. If
an access is attempted to such a page, the
instruction is aborted and the Access Violation
trap service routine is invoked. The service rou-
tine can determine which Page Descriptor register
is involved by reading the PFI field of the MW
Master Control register, swap the appropriate page
from the secondary storage device into main nem
ory, adjust the appropriate Page Descriptor regis-
ters, and then restart the aborted instruction.
The aborted instruction is automatically restarted
by using the Return from Interrupt Long instruc-
tion to retrieve the original RFC and MR values
from the system stack. No adjustments to other
U registers are required. During the swapping
process, the modified status bit in the page
descriptor register can be used to determine if a
page has been modified since the last time it was
copied to a secondary storage device.

8.1 INTRODUCTION

The 7280 MU ha3 256 bytes of on-chip memory.
This on-chip memory can operate in either of two
modes, as determined by the contents of the Cache
Control register (see Chapter 3). In one mode,
the on-chip memory is dedicated to fixed physical
memory locations; the memory addresses that are
mepped into the on-chip memory are determined
under program control. In the other mode, the
on-chip memory acts as a cache for either instruc-
tions, data, or both. When acting as a cache, the
set of memory locations mapped into the on-chip
memory at a given time is determined by the action
of the executing program; the memory locations
that were most recently accessed are stored in the
cache. Memory accesses to locations mapped into
the on-chip memory do nut generate external bus
transactions and, therefore, are faster than
accesses toy external memory; thus, use of the
on-chip memory leads to faster, more efficient
program execution. On reset, the on-chip memory
is automatically enabled for use as a cache for
instructions only.

8.2 CACHE VBEMORY MOCE

If the MIC bit in the Cache Control register is
cleared to 0, then the 256 bytes of on-chip memory
are treated as a cache. Cache memories are small,

high-speed memory buffers situated between the
processor and main memory. (Main memory is the

20 BITS 16 BITS

VALID

LINE O TAOO BITS
UNE 1 TAG 1 V;$§
LINE 2 TAG 2 VQ#.ISD
.a a a
a a a
a a a
UNE1S TAag1s VALD

BITS

Chapter 8.
On-Chip Memory

semiconductor memory accessed via bus transac-
tions.) For each memory access, control logic in
the MU checks if the memory location involved is
currently stored in the cache. If so, the access
is mede to the cache, usually without generating
an external bus transaction; if not, the access is
mede to main memory and the contents of the cache
mey be updated.

7280 MPU cache organization is illustrated in
Fiqure 8-1. The cache is arranged as 16 lines of
16 bytes each. Each line of the cache can hold a
copy of sixteen consecutive bytes of memory in
physical memory locations whose 20 most signifi-
cant address bits are identical. Thus, for exam
ple, one line of the cache could 'hold the data
from physical memory locations 7153820" to
15382Fh# The 20 bits of physical address asso-
ciated with one line of 16 bytes in the cache is
called the tag address for that line. Each line
of the cache also has 16 valid bits associated
with it; each byte in the line is associated with
one valid bit. The valid bit is used to indicate
if the corresponding byte in the cache holds a
valid copy of the memory contents at the asso-
ciated physical memory location.

Lines in the cache are allocated using a Least-
Recently Used (LRU) algorithm. If a read access
is mede to a physical memory address not currently
stored in the cache (a cache "miss”), and the MW
does not assert cache inhibit, the line in the

16x6 BITS

CACHE DATA
CACHE DATA
CACHE DATA

- a

a

a

CACHE DATA

Tag n m (ha 20 Address bits associated with Hna n
Valid bite » 16 bite that indicate which bytes in tha cache contain valid data

Cache date * 16 bytes

Figure 8-1.

Cache Organization

8-1

cache that has been least recently accessed is
selected to hold the newly read data. All bytes
in the selected line are marked invalid except for
the bytes containing the newly accessed data. A
cache miss on a data write does not cause a line
to be allocated to the memory location accessed.

On a cache miss during a memory read, one or two
bytes (depending on the bus size) are fetched from
main memory and written to the cache. The cache
does not prefetch beyond the currently reguested
byte or word, with one exception; if burst node
operations are specified in the Cache Control reg-
ister, burst mode transactions are used when
fetching instructions.

The cache can be configured to hold only instruc-
tions, only data, or both instructions and data,
as determined by the contents of the Cache Control

register. If the cache contains data, writes to
data at locations in the cache also generate
external bus transactions to update the appro-

priate memory locations; thus, external memory is data write transactions can occur. The state of
always guaranteed to contain valid information. the Cache Data Disable control bit in the Cache
Table 8-1. CPU Accesses to On-Chip Memory as Cache
Cache/Memory
Cache Cache Activity Bus Supplies
Operation HIt/Miss Instruction Cache Data Contents LRU Transaction Information
MMU Cache Inhibit Cacheable Transaction
Instruction Read Hit Disabled Don’t care Updated No change Yes Memory
Enabled Don't care No change Updated None Cache
Miss Disabled Don't care Updated* No change Yes Memory
Enabled Don't care Updated Updated Yes Memory
Data Read Hit Don't care Disabled Updated No change Yes Memory
(non Test & Set) > Don't care Enabled No change Updated None Cache
Miss Don't care Disabled Updated* No change Yes Memory
Don't care Enabled Updated Updated Yes Memory
Data Read Don’t care Don't care Don't care Updated* No change Yes Memory
(Test & Set)
Data Write Hit Don’t care Disabled Updated No change Yes —
Don't care Enabled Updated Updated Yes —
Miss Don’t care Disabled No change No change Yes —
Don’t care Enabled No change No change Yes —
EPU-to-Memory Don’t care Don’t care Don't care Updated* No change Yes EPU
Memory-to-EPU Don’t care Don’t care Don’t care No change No change Yes Memory
EPU Template Don't care Don’t care Don’t care No change No change Yes Memory
RETI Opcode Don‘tcare * Don’t care Don't care No change No change Yes Memory
MMU Cache Inhibit-* Noncacheable Transaction
Don't care Don't care Don't care Don't care Updated* No change Yes Memory

Tables 8-1 and 8-2 summarize cache operation.
Whether or not a given memory operation accesses
the cache depends on a number of factors: the
type of access being mede (program read, data
read, or data write), whether the cache is enabled
for that type of access, the type of instruction
being executed, whether the MW asserts cache
inhibit, and whether the U or a OMA device ini-
tiates the transaction. The Cache Control regis-
ter determines if the cache is used for instruc-
tion fetches or data accesses or both. Execution
of the Test and Set (TSET) instruction, Return
from Interrupt (RETI) instruction, and the
extended instructions force external bus transac-
tions, regardless of the contents of the cache, as
described below. If the MW is enabled, the
access can be cacheable or noncacheable, as deter-
mined by the contents of the page descriptor reg-
ister in use. If the MM is not enabled, all
transactions are considered to be cacheable. Both
the CRU and on-chip DVA channels can access the
cache. For DVA operations, only data read and

‘ Updated if a cache line contains the accessed location, otherwise unaffected.

8-2

Control register is ignored during DVA
transactions; therefore, an on-chip DVA device
always updates the cache contents during DVA write
operations to memory locations that are currently
mapped into the cache.

For read operations, a cache "hit" is a reference
to a location with a valid entry in the cache, and
a cache "miss" is a reference to a location that
has no valid entry in the cache. In the general
case (and assuming the transaction is cacheable),
read operations that are cache hits cause the data
to be read from the cache without generating an
external bus transaction. Read operations that
are cache misses cause the data to be read from
the external memory via an external bus cycle and
update the cache contents. Updating the cache
contents may involve replacing the teast-recently
used line of the cache with a new line that
contains the read location. For write operations,
a cache hit is a write to a location in the cache,
even if the destination byte is marked as invalid
in the cache, and a cache miss is a write to a
location that is not in the cache. Write
operations that are cache hits cause both the
cache and external memory to be updated, and write
operations that are cache misses have no effect on
the cache. Memory write operations always gener-
ate external bus transactions.

Exceptions to the above rules include the Test and
Set, Return from Interrupt, and extended instruc-
tions. Data read operations during execution of a
Test and Set instruction always read the data from
the main memory with an external bus transaction,
reqardless of whether or not the location read is
valid in the cache. This ensures that the most
recent value for a semaphore is read from external
memory in the case that the semaphore is in shared
memory in a multiprocessor system; another proces-
sor mey have changed the semaphore after it wes
last read into the MPU's cache.

If an RETI opcode is fetched from the cache, the
instruction fetch cycles are repeated with
external bus transactions; this ensures that Z80
family peripherals connected to the 7280 MU with
an interrupt request daisy chain can detect the
RETI opcode fetch (a requirement for the proper
operation of the Z80 family peripherals).

If extended instructions are resident in the
cache, the B template portion of those
instructions is always read using external bus
transactions. This ensures that an Extended
Processing Unit (EPU) that is monitoring the
external bus can detect and read the template
during those instruction fetch cycles. If the
extended instruction results in a transfer of data
between the BPU and memory, all the involved data
transactions occur on the external bus. Cache
hits during EPU-to-memory write transactions
result in the updating of cache contents as well
as external memory.

For memory reads, the LRU algorithm logic is
updated to reflect that the associated cache line
is the most-recently accessed line if the read was
an instruction fetch in a cache enabled for
instructions or a data fetch in a cache enabled
for data. For data writes, the LRU algorithm
logic is updated only for a cache hit in a cache
that is enabled for data.

When the on-chip DVA controllers transfer data to
memory, cache contents are modified if the write
is to a location mapped into the cache, but the
LRU alqorithm is unaffected. EPU-to-memory
transaction® have the same effect. The cache is
not affected by the activity of external OVA
controllers.

On reset, all the valid bits in the cache are
cleared to 0, marking all cache entries as
invalid, and the on-chip memory is confiqured as a
cache for instructions only.

Table 8-2. On-Chip DMA Accesses (Both Flowthrough and Flyby)
Effecton On-Chip Memory as Cache

Memory Cache
Operation HH/MIss Instruction Cache Data
Read Hit Don’t care Don’t care
Miss Don’t care Don’t care
Write Hit Don't care Don’t care
Miss Don’t care Don’t care

Cache/Memory
Cache Activity Bus Supplies
Contents LRU Transaction Information
Updated No change Yes Memory
Updated* No change Yes Memory
Updated No change Yes —
No change No change Yes —

*Updated if a cache line contains the accessed location, otherwise unaffected.

8.5 FIXED-ADDRESS MODE

When the MIC bit in the Cache Control register is
set to 1, the on-chip memory is treated as fixed
physical memory locations. Accesses to these nem
ory locations never generate external bus transac-
tions and, therefore, are faster than memory
accesses that use the external bus (Table 8-3).

In this mode, the on-chip memory is still organ-
ized as 16 lines of 16 bytes each, with a 20-bit
taq address that specifies the 16 physical memory
locations in each line. All locations are assumed
to contain valid information, whether or not they
have been initialized; the individual valid bits
associated with each byte in the line are ignored
in this mode. The Cache Data Disable and Cache
Instruction Disable bits in the Cache Control reg-
ister are also ignored in this mode, and no dis-
tinction is mede as to whether the CGPU is acces-
sing instructions or data.

Before entering this mode, the user must initial-
ize the tag addresses for all 16 lines of on-chip
memory. The values for these tags determine the
256 physical memory addresses that are mapped into

the on-chip memory. This is accomplished by ena-
bling the on-chip memory as a cache for data only,
reading data from 16 physical memory locations
that are in different cache lines, and then set-
tinqg the MIC bit in the Cache Control register to
1 to enable the fixed-address mode for the on-chip
memory. Alterinqg the MC bit in the Cache
Control register does not affect the contents of
the on-chip memory, including the taq addresses.

Note that each line of the on-chip memory must be
assigned a unique taq address before entering this
mode so that no unpredictable addresses are mapped
into the on-chip memory. If instructions are to
be fetched from the on-chip memory while in this
mode. Return from Interrupt (RETI) instructions
and the templates within extended instructions
should never be resident in the on-chip memory; in
each case, the operation of devices external to
the MU depends on these instructions being
fetched with external bus transactions, as men
tioned in section 8.2. Data to be transferred to
or from an BPU cannot be resident in on-chip nem
ory either, since this data must be transferred to
the BPU over the external bus.

Table 8-3. DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location

Memory Cache
Operation Hit/Miss Instruction Cache Data
Read Hit Don’t care Don't care
Miss Don’t care Don't care
Write Hit Don’t care Don't care
Miss Don'’t care Don't care

Cache/Memory
Cache Activity Bus Supplies
Contents LRU Transaction Information
No change No change No Cache
No change No change Yes Memory
Updated No change No —
No change No change Yes —

9.1 INTRODUCTION

The 7280 MU features a number of peripheral
devices on-chip in addition to the CPU, MMJ and
cache memory. These peripheral devices include a
clock oscillator, dynamic RAM refresh controller,
four direct memory access (DMA) controllers, three

counter/timers, and a universal asynchronous
receiver/transmitter (UART).
The DVA channels, counter/timers, and UART are

user-programmable devices that can be configured
to operate in several different modes. These
devices are accessed wusing /O instructions;
however, no external 1/O bus transactions are
generated when the on-chip peripherals are
accessed by the CPU. These devices can generate
interrupt requests to the 7280 MPU, as described
below and in Chapter 6. Interrupts from these
on-chip peripherals are always processed using
interrupt node 3, reqardless of which interrupt
mode is used for externally, generated interrupts.

9.2 CQOCK OSCILLATOR

The Z280 MU has an on-chip clock oscillator/
gener;ator that can be connected directly to a
crystal or any other suitable clock source. The
frequency of the processor clock is one-half of
the frequency of the external clock source or
crystal* The processor clock can be further
divided by a factor of 1, 2, or 4 to. provide the
bus timing clock, as specified by the contents of
the Bus Timing and Initialization register (see
Chapter 3). The bus timing clock is output by the
MU for use by the rest of the system.

The on-chip clock oscillator(a high-gain amplifier, is
enabled by either connecting a crystal across the
Clock/Crystal Input (XTAL1) and Crystal Output (XTALO)
pins or connecting a clock input to the Clock/Crystal
Input pin. The crystal must be a parallel resonant
fundamental type.

Chapter 9.
On-Chip Peripherals

9.3 REFRESH CONTROLLER

An on-chip memory refresh controller in the Z280
MU is available for generating memory refresh
operations in systems wutilizing dynamic RAVs.
Operation of this mechanism is controlled by the
Refresh Rate register, which is located in the
7280 MPU 8 1/0 address space. |If enabled, memory
refreshes are performed at a rate specified by the
contents of this register.

The format of the 8-bit Refresh Rate register is
shown in Figure 9-1. This register enables the
refresh mechanism and determines the frequency of
refresh transactions. The fields in this register
are described below.

EH : s

Figure 9-1. Refresh Rate Register

Refresh Enable (E) bit. When this bit is set to
1, the refresh mechanism is enabled. When this
bit is cleared to 0, the refresh mechanism is
disabled and refresh transactions are not
generated.

Refresh Rate field. The contents of this 6-bit
field determine the frequency of refresh
transactions if the Refresh Enable bit is set to
1. A value of n (0 < n < 63) in this field
specifies a refresh rate of once every 4n
processor clock cycles; a value of 0 in this field
indicates a refresh rate of every 236 processor
clock cycles. *

The Refresh Rate register is accessed via byte 1/0
operations to /O port address FFxxE8Y (where X
means "don't care"). Bit 6 of this register is
not used. On reset, the Refresh Rate register is
initialized to 88H, thereby enabling memory
refresh at a rate of 32 processor clock cycles per
refresh. This register can be read at any time to

determine if refresh is enabled and the current

refresh rate.

A 10-bit refresh address is output on address
lines AQA9 during a refresh transaction. This
refresh address is incremented by one for Z80 bus
(8-bit data bus) configuration and by two for
ZBUS (16-bit data bus) configuration of the Z280
MU between refresh transactions. The refresh
address is not accessible by the programmer and is
not affected by a reset.

During instruction execution, the actual refresh
transactions are generated as soon as possible
after the refresh period has elapsed. Generally,
the refresh transaction is executed after the last
clock cycle of the bus transaction in progress at
the time that the refresh period elapsed. If the
QU receives an interrupt request during that same
bus transaction, the refresh transaction is
inserted before processing the interrupt. When
the 72280 MU does not have control of the bus due
to a bus request, refresh transactions cannot be
executed; while the MU is in this state, internal
circuitry records the number of refresh periods
that have elapsed (that is, the number of "missed”
refresh transactions). When the 72280 MU regains
control of the bus, the refresh mechanism
automatically issues the missed refresh cycles.
Similarly, if the refresh period elapses while the
MU is in a wait state (due to WAT being
asserted) during a bus transaction, the number of
missed refresh transactions is recorded
internally, and those refresh cycles are issued
after WAtt is deactivated and the bus transaction
is completed. The internal circuitry can record
up to 236 such missed refresh operations.

Pseudo-static memories and some peripheral devices
(such as the Z8000 family of peripherals) require
a minimum transaction rate on the bus for correct
operation. If the refresh mechanism is disabled
by clearing the Refresh Enable bit in the Refresh
Rate register, the rate field in this register is
used to determine the minimum transaction rate on
the bus. In this mode, if the refresh timer
reaches 0 and no external bus transaction has
occurred since the last time the refresh timer
elapsed, then a refresh transaction will be
generated. Thus, in a system that does not
require, memory refresh transactions, the Refresh
Rate field in the Refresh Rate register must be
initialized to an appropriate value even if memory
refresh operations are disabled,

9.4 COUNTERMTIMERS

The Z280 MPU's three on-chip 16-bit counter/timers
can be configured to satisfy a broad range of

9-2

counting and timing applications, including event
counting, interval timing, watchdog timing, and
clock generation. Each counter/timer is composed
of a 16-bit downcounter, a 16-bit time constant

register, and two 8-bit control and status
registers (the Counter/Timer Configuration
register and the Counter/Timer Command/Status
register). The three independent devices are

referred to as counter/timer O (C/T 0), counter/
timer 1 (C/T 1), and counter/timer 2 (C/IT 2).
Figure 9-2 is a block diagram of a Z280 MU
counter/timer.

INTERRUPT CPU
TOCPU CLOCK

Figure 9-2. Counter/Timer Block Diagram

C/T 0 and C/T 1 can be programmably linked to form
a 32-bit counter/timer.

Two external connections are available for each
counter/timer: a Counter/Timer 1/O pin (C/T 1/O)
that can act as a gate or trigger input or a
counter/timer output, and a Counter/Timer Input
pin (C/T IN) that can serve as a count, gate,
trigger, or gate/trigger input. The contents of
the Counter/Timer Configuration register determine
the pin functions for a given application.
/

The counter/timers can operate in counter nmode or
in timer mode. In counter mode, the downcounter
decrements the count on the occurrence of an
external event; specifically, the counter is
clocked by a rising edge on the Counter/Timer
Input pin. In timer mode, the downcounter is
clocked by an internal signal—the QU clock
divided by four.

Gate and trigger inputs to the downcounter can be
used to control counter/timer activity. Both
hardware and software gate and trigger signals are
available. Either retriggerable or nonretrigger-
able modes can be specified.

The counter/timer's "terminal count" condition is
when the downcounter holds a count of 0. This
terminal count condition can be used to generate
an interrupt request to the CPU. Counter/timers
can generate a counter/timer output signal when
the terminal count is reached. Upon reaching
terminal count, a counter/timer can be programmed
either to discontinue counting (single-cycle mode)
or to reload the initial time constant value and
continue counting (continuous mode).

9.4.1 Counter/Timer Operating Nodes

The counter/timers have two basic operating modes,
distinguished by the clocking signal to the
downcounter: counter nmode and timer mode. The
current mode for counter/timer operation is
determined by the contents of the Counter/T ier
Configuration reqister.

In counter nmode operation, the counter/timer
monitors an external input line and records
low-to-high transitions on that line. The
Counter/Timer Input pin is used as the counter's
input signal; if the appropriate enabling
conditions are met, a low-to-high transition on
that pin will cause the contents of the down-

counter to be decremented by one. The decrement
operation in the downcounter is actually performed
on the first rising edge of the scaled processor

clock (CPU clock divided by 4) after the
low-to-high transition on the C/T IN signal.
Typically, counter mode is used in event-counting

types of applications.

In timer node operation, . the counter/timer
monitors the internal CPU clock scaled by four for
low-to-high transitions. If the appropriate
enabling conditions are met, such a transition

causes the contents of the downcounter to be
decremented by one. No external inputs are
required in the timer node of operation. Timer
mode is used in applications such as delay
interval timing, watchdoq timing, and clock
generation.

OATS I

—PUT I

COUNT/TIMS

RKOISTKIt *
DKCIUMKMTKD

Figure 9-3.

In either mode, the maxinun count frequency is the CPU
clock divided by four.

9.4.2 Gates and Triggers

Gate and trigger inputs are used to control
counter/timer activity in either counter mode or
timer mode.

Gate signals are wused in applications where
counting or timing is to occur only during certain
specified intervals; the counter/timer will count
or time only while the gating condition is met.
For applications where an external pin is
configured as a qate input, counting or timing
operations are performed only while the gate input
is high. A software qate bit (one bit of the
Counter/Timer Command/Status register) istused as
a filter for the qate input; while the software
gate bit is cleared to 0, the qating condition is
not met regardless of the state of the gating
line. In other words, the gating condition is a
logical AM) of the hardware and software qates;
both the gate input must be high and the software'
gate bit must be set to 1 for the counter/ timer
to be operating. If no external pins are
configured as a gating signal, then the software
gate bit must be set to 1 to satisfy the qating
condition.

Figure 9-3 illustrates the gating facility in an
application where the counter/timer is in counter
mode with both the qgate and the count signals
coming from external pins. This example assumes
that the software gate bit has been set to 1. The
contents of the downcounter are decremented on a
low-to-high transition of the count input only if
the qate input is high.

If trigger node is selected, a countdown sequence
for a counter/timer beqins only after a triggering
condition occurs; a countinq or timing operation
can begin only after a low-to-high transition is
detected on the trigger. If an external input is
used as a trigger, that line is monitored by the
counter/timer. Alternatively, a software trigqer
bit (one bit in the Counter/Timer Command/Status
reqister) can be set to 1 from a previously
cleared value to activate the cdunter/timer. The

T
TLTI

Counter Operation with Gate Only

9-3

trigger condition is a logieal R of the hardware
and software triqgers; that is, either a hardware
or software trigqger will activate an enabled
counter/timer.

Fiqure 9-4 illustrates trigger operation in an
application where the counter/timer is in the
counter mode with both the trigger and count
inputs provided by external pins. This example
assumes that the software trigger bit does not
meke a low to high transition. The contents of
the downcounter are decremented on a low-to-high
transition of the count input only after a
low-to-high transition on the trigger input has
been detected.

Either a retriggerable or nonretriggerable
operation can be specified. In the retriggerable
mode, the occurrence of a trigger condition causes
the counter/timer to reload its initial time
constant value reqardless of the current contents
of the downcounter. This mode is wused in

applications such as watchdoq timers. In the
nonretriggerable mode, after the first trigger
condition starts counter/timer activity,
subsequent trigger conditions are ignored.

Nonretriqgerable node is used in applications such
as delay counters that measure a fixed delay from
a piven event.

Gate and triggqer operations can be combined in a
single counter/timer. Separate gate and trigger
inputs (either hardware or software) can be
specified, or one external input can be used as
both a gate and a triqger. In the latter case, a
low-to-high transition on the input acts as a
triqger that starts counter/timer activity, and
then counting or timing continues only as lonq as
the input signal remains high. Again, either
retriggerable or nonretriggerable modes are
available. Fiqure .9-5 illustrates counter/timer

Figure 9-4.

QATESTRIQOER
INPUT

COUNTER
LINE ‘e—

operation in an application where counter mode is
selected, one input is a count input, and the
other input is used as both the trigger and gate.

9.4.3 Terminal Count Condition

During operation, the counter/timer counts down
from a preset time constant value. The time
constant value can range from 0 to 65535. The
terminal count condition is reached with the
transition from a count of 1in the downcounter to
a count of O. The counter/timers can be
programmed to interrupt the CGRU and/or generate a

counter/timer output signal when the terminal
count is reached.
Another set of operating modes determines

counter/timer activity upon reaching the terminal
count. Whether in counter or timer mode, a
counter/timer can be configured for single-cycle
mode or continuous mode. In single-cycle mode,
the counter/timer halts operation upon reaching
terminal count; a new trigger is required to
reload the time constant and initiate another
countdown sequence. In continuous mode, the
counter/timer is automatically reloaded with the
time constant upon reaching terminal count; the
downcounter is reloaded on the next count input
after reaching terminal count. For example, a
counter/timer in continuous node with a 3 in its
Time Constant register will be reloaded on every
fourth count input.

An interrupt enable bit in the Counter/Timer
Configuration reqister determines if an interrupt
request is qenerated at the terminal count. This
request will be processed by the GRU if the appro-
priate Interrupt Request Enable bit in the CPU's
Master Status register is set to 1 (see Chapter

6).

=1L _n

Counter Operation with Trigger Only

n n.

COUNT/TIME

Figure 9-5.
9-4

Counter Operation with Gate and Trigger

The CTIO pin can be configured as a counter/timer
output signal. Reaching the terminal count
condition causes a low-to-high transition on the
CTIO pin; this signal remains high as long as the
downcounter holds a value of zero (that is, until
a non-zero time constant is loaded into the
downcounter due to a trigger condition).

9.4.4 Counter/Timer Registers

Each counter/timer has .two 8-bit command and
status registers and two 16-bit count reqisters.
The 8-bit Counter/Timer Configuration and
Counter/Timer Command/Status reqisters determine
the counter/timer*s operating modes and provide
status information about the current operation.

If CIT 0 and C/T 1 are linked to form a 32-bit
counter/timer, the functionality of these
registers is affected, as described in section
9.4.5. The 16-bit Time Constant register holds
the initialization value for the counter/timer,
and the 16-bit Count-Time register contains the
value of the current count in progress.

9.4.4.1 Counter/Tiaer Configuration Register

The Counter/Timer Configuration register, shown in
Figure 9-6, specifies the counter/timer's node of
operation. The five fields in this register are
described below.

(o]

y .
{cIs| we e e . r |

*CTC Is pis—Ht on countoiftimof 0 only.

Figure 9-6. Counter/Timer Configuration Register

Continuous/Single Cycle (C/5). While this bit is
set to 1, the downcounter is automatically
reloaded with the contents of the Time Constant
register on the next count input signal after
terminal count is reached, and the counting or
timing operation continues. While this bit is
cleared to 0, no automatic reloading occurs when
terminal count is reached.

Retrigger Enable (RE). While this bit is set to
1, the value of the Time Constant register is
loaded into the downcounter whenever a trigger
input is received (retriggerabie mode). While
this bit i8 0, trigger conditions do not cause
reloading of the downcounter.

Interrupt Enable (IE). While this bit is set to
1, the counter/timer generates an interrupt
request to the 2280 CPU upon reaching terminal
count. While this bit is cleared to 0, no
interrupt requests can be generated by the
counter/timer.

Cotnter/Tiaer Cascade (CTC). For C/T 0, this is
the enable bit for linking to C/T 1 in order to
form a 32-bit counter/timer (see section 9.4.5).
The state of this bit has no effect in C/T 1 and
CIT 2.

Input Pin Assignments (IPA). The contents of this
4»-bit field determine the operating node of the
counter/timer (counter or timer mode) and the
functionality of the external pins associated with
that counter/timer. The four bits in this field
are associated with enabling the generation of an
output pulse (EO), selecting the counter or timer
mode (C/T), enabling the gating facility (G), and
enabling the triggering facility (T). Table 9-1
shows the encoding of this field.

Table 9-1. Encoding of the IPA Field in the Counterflimer Configuration Register

IPA Reid
EO CmM G

—

o

Unused
Unused
Gate
Gate
Unused
Trigger
Gate

Qutput
Output
) Output
QOutput
Output
Unused
Unused
Unused

P PP RPRRRLRPRPROOOOOSODO

P P PP OOOORrR PR PELR OOODOo
P P OORFr P OO0OFr r OO PR prp OO0
P O RPLP ORPO R ORFr OFP OFr OpR O

Gate/Trigger

Pin Functionality
Counter/Timer I/O

Countev/Timer Input Mode
Unused Timer
Trigger Timer
Unused Timer
Trigger Timer
Input Counter
Input Counter
Input Counter
Input Counter
Unused Timer
Trigger Timer
Gate Timer
Gate/Trigger Timer
Input Counter
Unused 1 Reserved
Unused Reserved
Unused Reserved

9-5

IPA field s
counter/timer

IF a reserved encoding of the
specified fur any counter/timer,
operation is unpredictable.

The Counter/Timer Configuration
cleared to all zeros by a reset.

registers are

9.4.4.2 Couiter/Timer Command/Status Register

The Counter/Timer Command/Status register provides
for software control of counter/timer operation
and reflects the current status of the counter/
timer. Three control bits and three status bits
are included in the Command/Status register. The
format for this register is illustrated in Fiqure
9-7. ; o

E QT TO| 1| 1 CIP cckor]

Figure 9-7. Counter/Timer Command/Status Register

Enable (EN). While this bit is set to 1, the
counter/timer is enabled; operation begins on the
first rising edge of the processor clock following
the setting of this bit from a previously cleared
state. Writing a 1 to this bit when its previous
value was a 1 has no effect. While this bit is
cleared to 0, the counter/timer is disabled and
performs no counting or timing operations. While
in the disabled state, the contents of the Time
Constant register are continuously loaded into the
downcoiinter.

Software Gate (GT). While the counter/timer is
enabled (the EN bit is a 1), downcounter operation
beqgins on the rising edge of the first scaled
processor clock following the setting of this bit
from a previously cleared value. Writing
a 1 to this bit when the previous value was a 1
has no effect. While this bit is cleared to O,
the counting or timing sequence is halted.

Software Trigger (TR). While the counter/timer is
enabled (the EN bit is a 1), the trigger condition
is generated on the risinqg edge of the first
scaled processor clock following the settinqg of
this bit from a previously cleared value. If a
previous trigger condition has not occurred, the
contents of the Time Constant reqister are loaded
into the downcounter and the counting or timing
sequence begins. If a hardware or software
trigger has already occurred and the Retrigger
Enable bit is set to 1, the counter/timer will be
retriggered. If a trigger has already occurred,
the Retrigger Enable bit is cleared to 0, and a
counting or timing operation is in progress (that
is, the downcounter holds a count other than 0),
then setting the TR bit has no effect on
counter/timer operation. Clearing this bit to, 0
also has no effect on counter/timer operation.

Count in Progress (CIP). This status bit
indicates if a counting or timing operation is in

9-6

progress. While this bit is a 1y the counter/timer
has a time constant loaded and the downcounter holds a
non-zero value. While this bit is a 0, the
counter/timer is not operating. The state of this bit
is determined by control logic in the counter/timer
and cannot be altered by a write operation to this
register.

End-of-Count Condition Has Been Reached (CC).
This status bit is set to 1 by control logic in
the counter/timer when the end-of-count condition
is reached (that is, the downcounter has been
decremented to zero in the single-cycle mode or
the downcounter has been reloaded in the
continuous mode). While this bit is a 0, the
downcounter has not been decremented to 0 since
the last time that this bit was cleared by
software. This bit can be read or written under
program control.

Count Overrun (COR). This status bit is set to 1
by control logic in the counter/timer if the
end-of-count condition is reached while the CC bit
is already set to 1, thereby indicating a count
over-run condition. If this bit is a 0, the
end-of-count condition has not been reached while
the GC bit is a 1 since the last time the CC bit
was cleared by software. This bit can be read or
written under program control.

The Counter/Timer Command/Status regqister is
cleared to all zeros by a reset. Bits 3 and 4 of
this reqister are not used, and should always be
written with zeros (however, when bits 3 and 4 are
read back, they will be 1s regardless of whether
they were written with zeros or ones).

9.4.4.3 Time Constant and Count-Time Registers

The 16-bit Time Constant reqister holds the value
to be loaded into the downcounter when counter/
timer operation beqins. The downcounter is loaded
with the contents of the Time Constant reqister
when the counter/timer is initially triggered to
beqin counter/timer operation, each time the
end-of-count condition is reached if the
continuous mode is selected, and at the occurrence
of each triqger condition if retriqgerable node is
selected. By loading the Time Constant reqister,
the user can specify counts ranging from 1 to
65536. The contents of the Time Constant register
are continuously loaded into the downcounter while
the counter/timer is disabled (the EN bit is 0).

The 16-bit Count-Time reqister holds the current
value in the downcounter and can be read at any
time without affecting counter/timer operation.
Writes to this register have no effect.

Both the Time Constant and Count-Time reqisters
hold unpredictable values after a reset.

Table 9-2 lists the I/O port addresses associated
with each of the counter/timers' reqisters. The
Counter/Timer Configuration register and Counter/
Timer Command/Status register are accessed with
byte 1/0 instructions and, with the exception of
the read-only CIP bit, can be read or written. The
Time Constant and Count-Time registers are
accessed with wurd 1/0 instructions. The Time
Constant register can be read or written; the
Count-Time register is read-only.

Table 9-2. 1/0O Addresses off Counter/Timer Registers

Counter/Timer

Register CI/TO CIT1 CiIT2
Configuration FEXEO FEXXE8 FExXxF8
Command/Status FEXXE] FEXXE9 FEx<F9
Time Constant FEXxE2 FEXXEA FBEXFA
Count-Time FEXXE3 FEX<EB FEX<FB

All addresses are inhexadecimal.
X' means "don’t care’
i

9*4.5 Linking Cbunter/Timers

Under software control, two Z280 MU counter/
timers can be linked to form a 32-bit counter/
timer. C/T 0 can be linked with C/T 1. This
linking function is controlled by the CIC bit in
the Counter/Timer Configuration register in CIT
0. While the CIC bit in C/T 0's Configuration
register is set to 1, C/T 0 and C/T 1 are linked
together.

Linking the two counter/timers together affects
the functionality of the counter/timers'
registers. If C/T 0 and C/T 1 are linked to form
a 32-bit counter, C/T 1's Time Constant register
holds the upper 16 bits and C/T 0's Time Constant
register holds the lower 16 bits of the 32-bit
count to be loaded into the downcounter when a
counter/timer operation begins. Similarly, CIT
1's Count-Time register holds the upper 16 bits
and C/T 0's Count-Time register holds the lower 16
bits of the current count.

The effect of linking counter/timers on the Con-
figuration and Command/Status registers is
summarized in Table 9-3. The configuration of the
32-bit counter/timer is determined by the state of
the C/S, RE, and IPA fields in the Configuration
register of the more significant counter/timer
(C/IT 1). Any external connections specified in the
IPA field of the C/T 1 Configuration register use
the pins associated with C/T 1. The controls in
the Configuration register for C/T 0 are ignored,
with the exception of the CIC, IE, and ED bits.
The CIC bit in C/T 0 is used to specify linking of

the counter/timers. If the IE bit in the more
significant counter/timer (C/T 1) is set to 1, an
interrupt reguest is generated when the 32-bit
counter reaches end-of-count, using the interrupt
reguest signal from C/T* 1; if the IE bit in the
less significant counter/timer (C/T 0) is set to
1, an interrupt reguest is generated when the
lower 16 bits of the 32-bit downcounter reach 0
(in other words, when C/T 0 reaches end-of-count),
using the interrupt reguest signal from C/T 0. |If
the OE bit in C/T 0 is set, the C/T I/O signal
associated with C/T 0 goes high whenever the lower
half of the 32-bit down-counter holds a 0 (in
other Words, when C/T 0's downcounter holds a 0).

Similarly, the Command/Status register in the more
significant counter/timer (C/T 1) contains the
control and status bits for the linked 32-bit
counter/timer. However, the status bits in the
less significant counter/timer (C/T 0) hold valid
status for the lower-half of the 32-bit
counter/timer (that is, the status of C/T 0
itself).

9.4.6 Counter/Timer Sequence of Events

Before starting a counting or timing seguence, the
counter/timer must be configured for the par-
ticular application by loading its Configuration
register. Next, the starting value for the
downcounter is specified by loading the Time
Constant register; initial values ranging from 0
to 65535 can be specified for the downcounter.
Lastly, the enable (EN) bit in the Command/Status
register is set to 1 to enable counter/timer
operation.

While the BN bit is cleared to 0, the counter/
timer cannot be triggered, interrupt reguests from
the counter/timer cannot be generated, and the
downcounter holds the value in the Time Constant

register. However, clearing the BN bit does not
clear any pending interrupt reguests—it only
prevents new interrupt reguests from being
generated.

Once the BN bit is set to 1, the countdown

seguence begins when the counter/timer is
triggered, causing the contents of the Time
Constant register to be loaded into the doan

counter. The downcounter is loaded on the rising
edge of the external trigger input (if an external
trigger was specified in the Configuration
register) or by writing a 1 into the TGbit of the
Command/Status register. The EN and TG bits can
both be set to 1 during the same write operation
to the Command/Status register to both enable and
trigger a counter/timer (assuming that the TG bit
was a zero previously, so that a low-to-high

9-7

Table 9-3. Configuration and Command/Status Registers for Linked CounterfTimers

Bit Active/lgnored

C/T1 Configuration Register

C/3 Active
RE Active
IE Active
«CTC Ignored
EO Active /
CT 1 Active
G Active
T Active

C/T 0 Configuration Register

C/3 Ignored
RE Ignored
IE Active
CTC Active
EO Active
CIT Ignored
G Ignored
T Ignored

C/T 1 Command/Status Register

EN Active
GT Active
TG Active
CIP Active
CcC Active
COR Active

C/T 0 Command/Status Register

Comments

Specifies continuous or single-cycle mode for 32-bit counter/timer.

Specifies retriggerable or nonretriggerable mode for 32-bit counter/timer..

interrupt enable for 32-bit counter/timer..

mEnable output for 32-bit counter/timer; C/T 1's output pin is used.
Specifies counter or timer mode for 32-bit counter/timer.

Enable gate input for 32-bit counter/timer; C/T 1's input pin is used.
Enable trigger input for 32-bit counter/timer; C/T 1's input pin is used.

Interrupt enable for lower half of 32-bit counter/timer.
Set to 1 to link counter/timers.
Enable output for lower half of 32-bit counter/timer (C/T 0 only).

Enable control for 32-bit counter/timer.

Software gate for 32-bit counter/timer.

Software trigger for 32-bit counter/timer.

Count-in-Progress status bit for 32-bit counter/timer.

End-of-Count Has Been Reached status bit for 32-bit counter/timer.
Count Overrun status bit for 32-bit counter/timer.

Count-in-Progress status bit for lower half of 32-bit counter/timer.
End-of-Count Has Been Reached status bit for lower half of 32-bit

Count Overrun status bit for lower half of 32-bit counter/timer.

EN Ignored
GT Ignored
TG Ignored
Cip Active
CcC Active
counter/timer.
COR Active
transition on the trigger is detected). The

In counter mode, the first

low-to-high transition

trigger condition is a logical R of the external
triqger input (if specified) and the TG bit.

Once triggered, the rate at which the downcounter
counts is determined by the mode of the counter/
timer. In the timer mode, the downcounter is
clocked internally by a signal that is one-fourth
the frequency of the QU clock (one-eighth the

frequency of the external clock source). In the
counter mode, the downcounter is clocked by a
rising edge on the count input signal (this edge

is internally synchronized with the scaled QU
clock).

9-8

on the count input should occur a minimum of four
internal QU clock cycles after the trigger
event. Count inputs occurring within four CPU
clock cycles of the trigger may or may not be
recognized by the downcounter.

Once the downcounter is loaded, the countdown
sequence continues towards the terminal count
condition as long as the counter/timer's gate
input is high. The gate input to the counter/
timer is the logical A\D of the external gate
input (if an external gate was specified in the
Configuration register) and the GI' bit in the

Command/Status register. If the gate input goe3
low, the countdown halts, and then resumes when
the gate input goes high again. The gate function
does not affect the trigger function.

The reaction to triggers during the countdown
operation depends on the state of the RE bit in
the Configuration register. If RE is a 0,
retriggers are ignored and the countdown sequence
continues normally. If REis a 1, each occurrence
of a trigger condition causes the downcounter to
be reloaded from the Time Constant register and
the countdown sequence starts over again.

The current state of the downcounter can be
determined by polling the status bits in the
Command/Status register and by reading the current
count from the Count-Time register. Reading these
registers does not affect the current countdown
sequence.

The state of the CS' bit in the Configuration
register controls the operation of the counter/
timer upon reaching terminal count. If the C/5*

bit is a 1, specifying the continuous mode of
operation, the downcounter is reloaded from the
Time Constant register on the next count input

after reaching terminal count, and a new countdown
sequence begins. The Time Constant register can
be programmably altered during counter/timer
operation without affecting the current countdown
sequence. If the CIT bit is -0, specifying
single-cycle operation, the downcounter halts upon
reaching terminal count until the next occurrence
of a trigger condition reloads the downcounter.

If the IE bit in the Configuration register is a
1, an interrupt request is generated upon reaching
the terminal count. If a counter/timer output
signal is specified in the IPA field of the
Configuration register, reaching terminal count
causes a low-to-high transition on the output
signal; this signal then remains high until the
downcounter is reloaded with a non-zero value due
to a trigger condition or disabling of the
counter/timer with a non-zero value in the Time
Constant register. Note that the counter/timer
output line can be forced high by disabling the
counter/timer with all zeros loaded into the Time
Constant register.

9.5 DMA CHANNELS

The 2280 MU has four on-chip Direct Memory Access
OMA) transfer controllers for high-bandwidth
data transmissions within a Z280-based system.
Each DVA channel is capable of controlling high
speed memory-to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
data transfers.

Ail four DVA channels, referred to as DMAO, DVAL
DVA2, and DMVA3, are capable of controlling
"flowthrough" type data transfers, wherein data is
temporarily stored in the DVA device between
reading from the source and writing to the
destination. Two of the channels, DMPO and DVAL
also support "flyby" mode data transfers, wherein
the data is read from the source and written to
the destination during a single bus transaction.
Otherwise, the four DOVA controllers are identical,
although they have different priorities with
respect to interrupt and bus requests.

Two external signals provide the interface between
the DMA channels and external memory or peripheral

devices. The READY (RDY) input is used by an
external device to request activity by a ONVA
channel. The DVA STROSE output is used

to signal the I/O port when a flyby transaction is
in progress; DwASIB is available only for DMPO
and DVAL

Two 24-bit addresses are generated by the DVA for
each flowthrough transaction, and one 24-bit
address for each flyby transaction. These
addresses can le physical memory addresses or 1/O
port addresses. The addresses are automatically
generated for each transaction, and can be fixed,
incrementing, or decrementing. T™wo readable
registers, the Source Address register and
Destination Address register, hold the current
address of the source and destination ports.

During a DMA-controlled
channel assumes control

transaction, the DMVA
of the system's address
and data buses. The on-chip CMVA channels behave
as if they were external bus requestors with
respect to acquiring, using, and relinquishing the
bus. The DVA channels are arranged in a priority
daisy chain with the external Bus Request input
signal being the "next lowest bus requestor" on
the chain. Data can be transferred as bytes or
words, using the same memory and 1/0 timing as the
(U for bus transactions (as determined by the
contents of the Bus Timing and Initialization
register)e

Two OVA devices can be programmably linked, where
one DVA channel is used to program the second DOVA
channel. DVA3 can be linked to DVAL and DMA2 can
be linked to DMAO in this manner. DMAO can also
be programmably linked to the on-chip UARTS
receiver, and DVAL can be linked to the on-chip
UART's transmitter.

The DVA Master Control register specifies the
general configuration of all four DVA channels,
including the linking of DVA channels to the
UART. Each DVA channel has its own Transaction
Descriptor register that determines the operating

9-9

modes for that channel, Source Address and
Destination Address registers that hold the
addresses for the DVA transfers, and a Count

register that controls the number of transfers to
be performed. All DVA registers are accessed via
1/0 instructions.

9.5.1 Types of DVA Operations

The 2280 WU's on-chip CMA channels are capable of
two basic types of operations: flowthrough mode
data transactions and flyby mode data
transactions.

All four on-chip DVA channels support flowthrough
mode data transactions. In flowthrough mode, each
DMA-controlled data transfer involves two bus
operations: a read cycle to obtain the data from
the source and a write cycle to transfer the data
to the destination. The data is temporarily
stored in the OVA device between the read and
write operations. Flowthrough node transactions
use the same address, data, and control signals as
CPU-initiated transactions and, therefore, require
no additional external logic in a Z280-based
system. Memory-to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
transfers are possible using flowthrough mode.

Flyby mode data transactions are supported only by
DMPO and DVAL In a flyby mode transaction, the
data is read from the source and written to the
destination in a single bus operation. There are
two types of flyby transactions: memory-to-
peripheral and peripheral-to-memory. For a
memory-to-peripheral transaction, the DOVA channel
generates a memory read bus cycle and notifies the
1/0 devifce that a flyby transaction is in progress
by activating the ftMASIS output. The data must be
written to the I/O device during the memory read
operation. For a peripheral-to-memory flyby
transaction, the DVMA channel generates a memory
write bus cycle while activating the DVASTS
output; the data must be read from the 1/O device
during the memory write transaction. In other
words, during flyby mode transactions, the DVA
channel generates the bus signals needed to
control the memory access, and fVPSIS is used to
notify the peripheral device when to read data
from the bus (for memory-to-peripheral transfers)
or when to put data onto the bus (for
peripheral-to-memory transfers.) Thus, flyby node
transactions require additional external logic to
activate the appropriate peripheral device when
DVASYS is active. However, flyby node
transactions are faster than flowthrough node
transactions, since only one bus cycle is needed
to complete a data transfer.

9-10

9.5.2 DVA Transfer Modes

When transferring data under DVA control* (with
either flowthrough or flyby transactions), one of
three transfer modes can be selected: single
transaction, burst, or continuous mode. Once DVA
activity has been initiated, the transfer mode
determines how many DMA-controlled data transfers
are to occur before the DNMA channel relinquishes
the bus to the CPU or another OVA channel.

In the single transaction mode, the DOVA controller
transfers only one byte or word of data at a
time. Control of the system bus is returned to
the CPU between each DMVA transfer; the DVA must
meke a new request for the bus before performing
the next data transfer.

In the burst mode, once the DONMA channel gains
control of the bus, it continues to transfer data
until the RDY input goes inactive. When the RDY
line becomes inactive, the DVA releases fhe system
bus; bus control then returns back to the GPU or
to the next lower-priority DVA channel with a bus
request pending.

In the continuous mode, the [OMA channel retains
control of the system bus until the entire block
of data has been transferred. If the RtV line
goes inactive before the entire data block is
transferred, the DVA simply waits until RtV
becomes active again, without releasing the bus.
This mode is the fastest mode since it has the
least response-time overhead when the RtY line
momentarily goes inactive and returns active
again. However, this node does not allow any CGRU
activity for the duration of the transfer. Figure
9-8 summarizes the ONVA transfer modes*

In any transfer mode, once a DMA-controlled data
transfer begins, that transaction is completed in
an orderly fashion, regardless of the state of the
RDY input.

OCMAO and DVAL include a software RbY signal in the
DVA Master Control register. The RY input to
these OMA channels is the logical R of the RitY
pin and the software-controlled RoY signal.

A DVA channel can be programmed to perform data
transfers on a byte (8-bit), word (16-bit), or
long word (32-bit) basis. |f a DMAs port address
is a memory address that is auto-incremented or
auto-decremented after each transfer, the size of
the data transfer determines whether the memory
address is incremented or decremented by a factor
of 1, 2, or 4. For word and long word transfers
to or from memory locations, the memory address
must be even-valued (that s, the least
significant bit of the memory address must be 0).

‘enable]

Figure 9-8a. Single Transaction Mode Figure 9-8b.

Figure 9-8.

Transfers of unaligned data on 16-bit buses can be
accomplished via byte transfers only. Long word
transfers are used in applications where the 7280
MU is acting as a DOVA controller for a system
with a 32-bit bus, such as a Z80,000-based
system. During long word transactions, the 27280
MPUs DVA channel provides only 24 bits of the
address; the upper 8 bits of the 32-bit address
have to be generated with external logic. Long
word transfers are supported only in the flyby
mode with the on-chip cache programmdbly disabled.

9.5.3 End-of-Process

An enable bit in the DVA Master Control register
allows the Interrupt A input to be used as an
end-of-process (COP) input during DVA trans-
actions. When enabled, transfers by DOVA channels
can be prematurely terminated by a low on the QP
(Interrupt A) line. Recognition of the GP'signal
is not affected by the state of the Interrupt
Request Enable bit for Interrupt A in the CPUs
Master Status register.

If the QP signal goes active during the read
portion of a flowthrough transaction, the DOVA
activity is aborted before the write portion of
that transaction. If (O0P' becomes active during
the write portion of a flowthrough transaction or
during, a flyby transaction, that transfer is
completed before stopping the DOVA operation.

Burst Mode Figure 9-8c. Continuous Mode

Modes of Operation

Wheen an active CDF signal terminates a [DVA
operation, the CDF Signaled (EPS)”status bit in
that channel's Transaction Descriptor register is
automatically set to 1 and the Enable bit in that
same register is cleared to 0. If that channel's
Interrupt Enable bit is set to 1, an interrupt
request to the CGRU is generated.

The CDF signal is level-sensitive and shared by
all four on-chip DVA channels. Thus, if an active
CDF signal terminates the activity of one DMVA
channel and another DOVMA channel immediately
requests the bus, the second DMAs activity is
terminated before any transactions can be
generated if CDF is still active. In other words,
the second DMA channel also recognizes the CDF
signal, and so on. Therefore, in order for the
currently active DVA channel to be the only
channel whose activity is terminated, CDF should
be asserted for only one bus clock cycle in
systems where the bus clock frequency is equal to
or one-half of the processor clock frequency; CDF
should be asserted for one-half of a bus clock
cycle in systems where the bus clock frequency is
one-fourth of the processor clock frequency.

If the end-of-process capability is enabled, a
single input to the 7280 MU can act as both the
Interrupt A and the CDF signal; it acts as the
Interrupt A Request line when the CPU controls the
bus and as the BEobP line when a DVA channel
controls the bus. If an CDF signal terminates a

9-11

DMA operation, and that signal is still asserted
when the CPU regains control of the bus, then the
signal is interpreted as an interrupt request.
Thus, a single signal can be used to stop OMA
activity and generate an interrupt, if so
desired. Note that the interrupt request
generated by the DVA channel and the interrupt
request generated by an active signal on the
Interrupt A line are different interrupt requests,
each with its own priority and its own enabling
bit in the CPUs Master Status register.

9.5.4 Priority Resolution

Prioritization of the four on-chip DVA channels is
implemented via an internal "service request"
latch. A DVA channel generates a service request,
indicating that the channel needs to gain control
of the bus, if that channel's Enable bit in the
Transaction Descriptor register is set to 1 and an
active toV signal is asserted. This service
request signal is latched in the service request
latch only if all preceding service requests have
already been serviced (that is, there are no
service requests active in the latch). Once a
service request is latched, the service request
latch is "closed" to all other service requests
until the current requests are serviced; the
latched requests are serviced in priority order,
where OVA channel 0 has highest priority and DVA
channel 3 has lowest priority. When all latched
service requests have been serviced, the latch is
"opened” so that new service requests can be
latched.

This service request mechanism provides for
non-preemptive prioritization of [MA activity.
For example, if DVA channel 1 requires servicing
while the other channels are quiescent (that is,
not currently controlling the bus or making a
service request), channel 1's service request is
latched and the service request latch is closed.

Thus, no other channel can preempt channel 1's
activity. If channels 0 and 2 activate service
requests while channel 1 is being serviced, both
those requests will be latched after channel 1's
activity is completed, and channel 0 will be
serviced next, followed by channel 2. No new
service requests are latched until both channels
0 and 2 have been serviced, and so on.

All*service requests from the on-chip DVA channels

have priority over bus requests made via the
BUSRE input by external CVA controllers.

9-12

9.5.5 DVA Linking

The 2280 MPU's on-chip DVA devices can be linked
together to provide for DONVA transfers to
non-contiguous memory locations. In a linked
configuration, one channel, called the master DVA
controls the actual data transfers to the memory
and/or peripheral devices; the second channel,
called the linked DVA is used to load the master
DMA's control registers from memory when ‘the
master DVA completes an operation. The master VA
signals the linked DVA when a transaction is

completed via an internal "ready" input to the
linked DVA The linked OVA then initiates the
trahsfers that load the master DMAs control

registers from memory, allowing the master DVA to
perform multiple data transfer operations without
any CPU intervention.

Control bits in the DOVA Master Control register
allow DVA3 to be linked to DWVAL with DVAL the
master OVA and DVA3 the linked DVA and DVR2 to be
linked to DVAQ, with DMAO the master DVA and DVIA2
the linked DVA

When the linked [CMA
registers, the
following order:

the master DMAS
are written in the

loads
registers

a Destination Address register (least significant
word)

« Destination Address register (most significant
word)

a Source Address register (least significant
word)

a Source Address register (most significant
word)

a Count register
N Transaction Descriptor reqister

After the six words have been written to the
master DMA the master DVA deasserts the ready
3ignal to the linked DVA and begins' the new
transfer operation. For Z-8US configurations of
the 7280 MPU, the linked DOVA uses six word
transactions on the bus to program the master DV
for Z80 Bus configurations, the linked DVA uses
twelve byte transactions to program the master
DVA with the least significant byte of each word
being transferred first.

Control bits in the DOVA Master Control reqister
also allow DVRO to be programmably linked to the
on-chip UART's receiver and DVAL to be linked to
the UART's transmitter. |f so linked, an internal
"ready" signal to DMRO is automatically .generated
when the UARTs receive buffer is full.
Similarly, an internal "ready" signal to DVAL is
automatically generated when the UARt's transmit
buffer is empty. The external ROY inputs are
ignored while in this configuration.

9.5.6 DVA Registers

DMA registers consist of a DOVA Master Control
reqister that specifies the general configuration
of all four channels, and a Transaction Descriptor
register, Source Address reqister, Destination
Address reqister, and Count register for each OMVA
channel. All DVA reqisters are accessed using
word /O instructions.

9.5.6.1 DM6 Master Control Register

The 16-bit DVA Master Control register is illus-
trated in Figure 9-9. The bit fields within this
reqister are described below.

15 o
1 1 1 0 0 0 0 1 SRI SROEOPD3L D2L|D1T|DOR]|
Figure 9-9. DMA Master Control Register
DVAO to Receiver Link (DDR).

set to 1, DMXO is
receiver.

While this bit is
linked to the on-chip UART*s

While this bit is
linked to the on-chip UARTS

DVAL to Transmitter Link (D1T).
set to 1, DMAL is
transmitter.

DNA2 Link (D2L).
is linked to DVRO

While this bit is set to 1, DvVA2

OMA3 Link (D3L).
is linked to DVAL

While this bit is set to 1, DVIA3

End-of-Process (EOP). While this bit is set to 1,
the Interrupt A input acts as an End-of-Process
input for the active DVA channel during ONVA
operations.

Software Ready for DMRO (SRO). While this bit is
set to 1, DVRO requests use of the system bus if
enabled.

Software Ready for DMAL (SRI). While this bit is
set to 1, DVAL requests use of the system bus if
enabled.

The DVA Master Control register is cleared to all
zeros by a reset, unless bootstrap mode is enabled
during the reset operation (see sections 3.2.1 and
9.7). Bits 7 through 15 of this register are not
used.

9.5.6.2 DVA Transaction Descriptor Register

Each DVA channel has its own 16-bit Transaction
Descriptor register. The Transaction Descriptor
register (Figure 9-10) describes the type of DVA
transfer to be performed and contains control and
status information.

15 0

Pl «*P |IE| « | BHP | TYPE |TC| PAP |ePs|

Figure R»10. Transaction Descriptor Register

End-of-Process Signaled (EPS). This status bit is
set to 1 automatically when an active End-of-
Process signal prematurely terminates a DOVA
transfer. This bit can be set to 1 or cleared to
0 under software control.

Destination Address Descriptor (DAD). This 3-bit
control field determines the type of location
(tiemory or 1/O) to be accessed as the destination
port during DVA transfers, and whether the desti-
nation address is to be incremented,, decremented,
or left unchanged between transfers, as shown in
Table 9-4. When memory addresses are auto-
incremented or auto-decremented, the incrementing
or decrementing value is determined by the size of
the data transfer, as specified in the ST field.
1/0 port addresses are always auto-incremented and
auto-decremented by 1.

Table 9*4. Encoding off DAD and SAD Fields In DMA
Transaction Descriptor Register

Encoding Address Modification Operation
000 Auto-increment memory location
001 Auto-decrement memory location
010 Memory address unmodified by transaction
o , Reserved
100 Autoincrement 1/O location
101 Auto-decrement I/O location
110 110 address unmodified by transaction
m Reserved

Transfer Complete (TC). This status bit is set to
1 automatically when the Count register has
reached zero. This bit can be set to 1 or cleared
to 0 under software control.

9-13

Transaction Type (Type). This 2-bit control field
specifies the type of DOVA operation to be
performedj, as shown in Table 9-5.

Table 9-5. Encoding of Type Field in
Transaction Descriptor Register

Encoding DMA Oparation
00 Flowthrough
01 Reserved
10 Flyby write (peripheral-to-memory)
n Flyby read (hnemory-to-peripheral)

Bus Request Protocol (BRP). This 2-bit control
field determines the transfer node for the DVA
operation, as shown in Table 9-6.

Table 9-6. Encoding of BRP Field In
Transaction Descriptor Register

Encoding DMA Transfer Mode
00 Single transaction
01 Burst
10 Continuous
n Reserved

Size of Transfer (ST). This 2-bit control field
specifies the size of the entity to be transferred
during each DMA-controlled transaction, as shown
in Table 9-7. If auto-increment or auto-decrement
of a source or destination memory address is
specified in the SAD or DAD fields, then the state
of this field determines the size of the increment
or decrement operation.

Table 9-7. Encoding of ST Field in
Transaction Descriptor Register

Size of Numberto Increment
Encoding Transfer or Decrement By
00 Byte 1
o1 Word 2
10 Long word 4
n Reserved

Interrupt Enable (IE). While this bit is set to
1, the DMA channel generates an interrupt' request
to the QU either when the Count register goes to

zero, indicating the completion of a DMVA
operation, or when an End-of-Process signal
prematurely terminates a DMA operation. While

this bit is cleared to 0, no interrupt request is
generated.

9-14

Source Address Descriptor (SAD). This 3-bit
control field determines the type of location
(memory*or 1/0) to be accessed as the source port
during CMA transfers, and whether the source
address is to be incremented, decremented, or le ft
unchanged between transfers, as shown in Table
9-4. .

DVA Enable (EN). While this bit is set to 1, the
OVA channel is enabled; while enabled, the CMA can
request control of the system bus and, upon
becoming bus master, initiate transactions on the
bus. While this bit is a 0, the OVMA channel is
disabled and cannot request control of the bus.
The DVA registers can be accessed regardless of
the state of this bit.

For DMAO a reset loads a 0100 into the Trans-
action Descriptor register. For the remaining
three channels, the EN, IE, TC, and BPS bits are
all cleared to O by a reset, and the remaining
fields are unaffected.

9.5.6.3 Count Register

Each channel has a 16-bit Count register that is
programmed to contain the number of DVA transfers
to be performed. When the contents of the Count
register reach zero (terminal count), further
requests on the ROV line are ignored, and, if the
IE bit in the Transaction Descriptor register is
set to 1, an interrupt request is generated.

A reset loads a 01000 into DMAOs Count
register; the other channels' Count registers are
unaffected by a reset.

9.5.6.4
Registers

Source Address and Destination Address

The 24-bit Source Address register and Destination
Address register hold the port addresses used
during DVA transfers. These are physical
addresses that are not translated by the MU In
flyby mode, only one of these registers is used to
supply the address for the transaction, as
determined by the Type field in the Transaction
Descriptor register. The contents of these
registers can be automatically incremented or
decremented by each DVA transaction, as determined
by the SAD and DAD field in the Transaction
Descriptor register.

The entire 24-bit Source Address or Destination
Address register is read and written via two word

accesses to the register. Twelve, bits of the
address are accessed by each word 1/O operation;
the format used when accessing these registers is
shown in Figure 9-11.

r~"nh...........

Figure 9-11. Source and Destination
Address Registers Format

DMAOs Destination Address register is cleared to
0 by a reset; all other Source and Destination
Address registers are unaffected by a reset.

All DVA registers are located in 1/O page FFH.
The DVA Master Control register is accessed at 1/0
port address FFxxIF. Table 9-8 lists the I/O port
addresses for the other DMA registers. All DMA
registers can be read or written using word 1/O
instructions.

Table 9-8. 1/0 Addresses of DMA Registers

DMA Channel
Register DMAO DMA1 DMA2 DMA3
Destination FPoQO FFxx08 FRxIO FFxx18
Address
(bits 0-11)
Destination FFxxOl FFxx09 FPxdl FFxx19
Address
(bits 12-23)
Source Address FFxx02 FFxxOA FPxx12 FFxxIA
(bits 0-11)
Source Address FFxx03 FFxxOB FPxx13 FFxxIB
(bits 12-23)
Count FFxx04 FFxOC FFxx14 FFxxIC
Transaction FFxx05 FFHxOD FFxx15 FFxxID
Descriptor

All addresses are in hexadecimal,
"X means “don’t care".

No checking is performed by the hardware to deter-
mine if an invalid configuration is specified in
the DVA registers, such as specifying word trans-
actions on 8-bit data bus configuration of the
7280 MPU, in such cases, [NMA behavior is
unpredictable.

9.5.7 DWVA Sequence of Events

This section describes a typical sequence of
events when a DVA channel is used in flowthrough
or flyby nmode to control data transfers.

Before a DVA channel can begin operation, that DVA
channel must be configured for the particular
application by loading its Destination Address,
Source Address, Count, and Transaction Descriptor
registers. DOVA operations cannot take place while
the EN bit in the Transaction Descriptor register
is cleared to O. Thus, the BN bit should be
cleared to zero while configuring the DVA channel,
and set to 1 as the last step in the configuration
process; the BN bit can be set at the same time
that the other bit fields in the Transaction
Descriptor register are specified.

Once the BN bit is set to 1, the DOVA channel
requests use of the system bus only after an
active RDY signal is received. The ftbY signal is
sampled by the DVA on the rising edge of each
processor clock cycle. For DMMO and DVAL, the RBY"
signal is the logical CR of the external RoY input
and the software IW bit in the OVA Master Control
register.

When the system bus is available for DVA
transfers, the highest priority DOMVA channel with a
request pending becomes the bus master. The
priority of the on-chip DVA channels from highest
to lowest is DVAO, DMAL, DMVA2, and DMVA3. The
external Bus Request input has the next lowest
priority after the on-chip OVA channels.

The number of date transfers performed by a OMVA
that has gained control of the bus is determined
by the current transfer mode (single transaction,
burst, or continuous) and the contents of the
Count register. A DVA channel in single trans-
action mode relinquishes the bus after a single
data transfer; a DOVA channel in burst mode
relinquishes the bus when RbY is deasserted or
when terminal count is reached; a DVA channel in
continuous mode relinquishes the bus when the
terminal count is reached. Regardless of the
transfer mode, a CNMA channel will relinquish the
bus if an EbP is signalled or the terminal count
i3 reached.

If the destination for a DMA-controlled data
transfer is a menmory location that corresponds to
an entry in the on-chip memory (in either the
cache or fixed-address mode), the on-chip memory
is updated to reflect the new contents of that
memory location.

For each DMA-controlled data transfer on the bus,
that DMA's Count register is decremented by 1,
regardless o.f the size of the data transferred.
The Destination Address and Source Address
registers might also be incremented or decre-
mented, as determined by the DAD, SAD, and ST
fields in the Transaction Descriptor register.
When a DVA operation reaches completion, either by
assertion of an EOF signal or by reaching terminal
count (a count of 0) in the Count register, the EN
bit in the Transaction Descriptor register is
automatically cleared to 0. |If the IE bit is set
to 1, an interrupt request to the QU is
generated. |f the DVA operation terminated due to
an active EJP signal, the EPS status bit is set to
1} if the DVA operation terminated due to reaching
terminal count, the TC status bit is set to 1.

9.5.8 DVA Programming: Linked DWiAs

When two DMA channels are linked together, the
master DMAs registers are written via
memory-to-peripheral data transfers initiated by
the linked DMA Thus, to begin DOVA operations, the
linked DVA must be programmed to load the master
DVA While the linked DVA is being configured,
the master DVA must be prohibited from asserting a
RoY signal to the linked DVA The internal ROY
signal from the master DVA to the linked DMA is
controlled by the TC status bit of the master DVIA
therefore, before configuring the linked DVA the
TC bit of the master DMA's Transaction Descriptor
register should be written with a 0. Then, the
linked DOVA is configured by writing to its
registers. Finally, the TC bit in the master DVA
should be set to 1; this causes the internal RoY
signal to the linked DVA to go active, which in
turn causes the linked DVA to request the bus and,
upon acknowledgement pf that request, initiates
the transactions that program the master DVA

The linked DVA must be configured for flowthrough-
type data transfers. The transfer size must match
the size of the external data bus (that is, byte
for 780 bus configurations and word for ZBUS
configurations). The Source Address register is
loaded with the starting address of the memory
block that holds the data to be written to the
master DMA's registers; for the Z-BUS, this
starting address must be even-valued (A0=0). The
SAD field of the Transaction Descriptor register
should specify an auto-increment or auto-decrement
of the memory address. The Destination Address
register must be set to FFxx00" when DV is the

linked DVA or FFxx08H when DV3 is the linked
DVA ("x" means don't care). The DAD field in the
linked DMAs Transaction Descriptor register

9-16

should be Set to 1000 (auto-increment 1/0
address). Burst node transactions must be
specified. The contents of the Count register
vary depending on the number of times that the
linked DVA is required to reconfigure the master
DVA

When the master DVA has completed a transaction

(terminal count is reached), an internal RoY
signal to the linked DVA is activated. If the
linked DVA is enabled, the linked DVA will

generate the transactions that program the master
DMAs registers. (The linked DMAs external RoY
input is ignored when DVA linking is specified.)

When the linked DVA loads the
registers, the registers
following order:

master DMA's
are written in the

« Destination Address register (least significant
word)

a Destination Address register (most significant
word)

a Source Address
word)

register (least significant

a Source Address register (most significant word)
a Count register
a Transaction Descriptor register

After the six words have been written to the
master DMA, the master DVA deasserts the ready
signal to the linked OVA and begins the new
transfer operation. For Z-BUS configurations %f
the 27280 WMPU, the linked DVA uses six word
transactions on the bus to program the master DVIA
for Z80 Bus configurations, the linked DNA uses
twelve byte transactions to program the master
DVA with the least significant byte of each word
being transferred first.

Both the master and linked DMBs can be programmed
to generate an interrupt request to signal the end
of DMA activity. If the IE bit of the master DMA
is set, an interrupt request is generated when the
master DVA reaches terminal count and the linked
DMA's TC bit is set (that is, when the last block
has been transferred), or if EOF is asserted. If
the IE bit in the linked DVA is set, an interrupt
request is generated when the linked DVA reaches
terminal count (that is, when the last block
transfer has been programmed into the master DVA),
or if EOFis asserted.

9.5.9 DVA Programming: DMAs Linked to UART

The DR and DU bits of the DVA Master Control
register specify whether DMPO is linked to the
UART receiver and OVAL is linked to the UART
transmitter, respectively.

When DMRO is linked to the UART receiver, the
state of the Source Address register and the SAD
field in the Transaction Descriptor register do
not affect DVA operation. The Destination Address
register is programmed with the starting address
of the memory area or the address of the I/O
device that will be used to store the received
data; if the destination port is a memory block,
the DAD field should specify an auto-increment or
auto-decrement of the memory address.
Flowthrough-type transactions and the byte
transfer size "mist be specified. Single, burst,
or continuous mode operation can be used.

When DMAL is linked to the UART transmitter, the
Source Address rbgister is programmed with the
starting address of the memory area or the address
of the 1/0O device that holds the data to be
transmitted; if the source is a memory area, the
SAD field should specify an auto-increment or
auto-decrement of the memory address. The
Destination Address reqister must be set to
xxxx18h, —and the DAD field to a 11h-
Flowthrough type transactions and the byte
transfer size must be specified. Single, burst,
or continuous mode operation can be used.

9>6 UART

The on-chip universal asynchronous receiver/
transmitter (UART) provides the 2280 MU with
serial /O capability. The full-duplex UART

transmits and receives serial data using any
common asynchronous data communication protocol.

Fiqure 9-12 illustrates the general format fur an
asynchronous transmission usinq the 2280 MPU's
UART. Characters can contain five, six, seven, or
eight bits, plus an optional even or odd parity
bit. The transmitter can supply one or two stop
bits per character. Break outputs can be produced
by the transmitter at any time under program
control; the receiver can detect breaks as well
as parity errors, framing errors, and overrun

START—| RARITY—| START—| PARITY—|
MARKINGLINE |

| DM* j | 1] | DATA | | ' |

STOP—I STOP—I

Figure 9-12. General Format for an
Asynchronous Transmission

errors. Transmission and reception are performed
independently.

The UART uses the same clock frequency for both the
transmitter and the receiver. The UART's clock input
can be generated externally or internally. For
externally generated clocks, Counter/Timer 1's input
line is used as the source of the UART's clock in
addition to being an input to the counter/timer. The
maximtin external clock frequency is the CPU clock
divided by 4. Alternately, the UART's clock can be
provided by the output pulse from Counter/Timer 1,,
allowing the internal processor clock to be used for
bit rate generation. The UART's clock input is
further scaled by a factor of 1, 16, 32, or 64 for;
clocking the

transmitter and receiver.

The UART can be used in an interrupt-driven or
polled environment. If enabled, separate transmit
and receive interrupt requests are generated by
the UART. Transmit interrupts occur when the
transmitter's data buffer is emptied, and receive
interrupts occur when an entire character is
received or an error is detected. In polled
environments, status bits in UART registers can be
read to determine if the transmit buffer is empty
or receive buffer is full. As described in
section 9.5.9, DMVA channel 0 can be linked to the
receiver and OVA channel 1 to the transmitter to
provide for DMA-controlled transfers between the
UART and memory.

The UART uses two external pins, Transmit (Tx) and
Receive (Rx). Data that is to be transmitted is
placed serially on the Transmit pin and data that
is to be received is read from the Receive pin.

The UART contains five reqi3ters.
is controlled by three registers: the UART
Configuration reqister, which contains controls
for both the transmitter and receiver, the
Transmitter Control/Status register, and the
Receiver Control/Status reqister. Received data
is read from the Receive Data regqister, and data
to be transmitted is written to the Transmit Data
reqister.

UART operation

9.6.1 Transmitter Operation

Transmit operations are performed only when the
Transmitter* Enable bit in the Transmitter
Control/Status register is set to 1. In order to
transmit data, the data character is written to
the Transmit Data reqister. The UART automati-
cally adds the start bit, the programmed parity-
bit (if so specified), and the programmed number
of stop bits to the data character to be trans-
mitted. The number of bits per character, the
number of stop birt3 per character, and the type of

9-17

parity (even, odd, or none) is determined by the
contents of the UART Configuration reqister. When
the transmit character size is five, six, or seven
bits, the wunused most significant bits in the
Transmit Data register are ignored by the UART.

Serial data is shifted out of the transmitter on
the Tx pin at a rate egual to 1, 1/16th, 1/32nd,
or 1/64th of the clock signal supplied to the
UART, as determined by the contents of the UART
Configuration register. Serial data is shifted on
the falling edge of the clock input.

The Tx output line is held high (marking) when the
transmitter has no data to 3end or is disabled.
If transmit interrupts are enabled, an interrupt
reguest is generated when the Transmit Data
register is emptied. Under program control, break
conditions can be generated, wherein the Tx line
is held low (spacing) until the break commend is
cleared.

9.6.2 Receiver Operation

Receive operations are performed only when the
Receiver Enable bit in the Receiver Control/Status
register is set to 1. A low (spacing) condition
on the Receive input line indicates a start bit;
if the low persists for at least one-half of a bit
time, the start bit is assumed to be valid and the
data input is sampled at mid-bit times until the
entire character is assembled. Thus, reception is
protected from transients on the input line by
checking for a valid start bit one-half bit time
after detecting a high-to-low transition on the
Receive input; if the low does not persist (as
with a transient), the character assembly process
is not started. If the bit time is one clock
period (the x1 clock mode), bit synchronization
must be accomplished externally; received data is
sampled on the rising edge of the clock.

Received characters are read from the Receive Data
register. |If parity is enabled, the parity bit is
assembled as part of the character for character
lengths other than eight bits. If the resulting
character is still less than eight bits, 1's are
appended in the unused high-order bit positions.
For example, Figure 9-13 illustrates how the
character is assembled in the Receive Data
reqister when receiving 5-bit characters with
parity.

It 11leldld b5 o

Figure 9*13. Byte Assembled by Receiver
for 5-bit Character with Parity

For each character assembled by the receiver,

error flags in the Receiver Control/Status
register indicate if an error condition was
detected. These flags are loaded when the

character assembly process is completed—that is,
when the character is loaded into the Receive Data
register from the receiver's shift register. The
receiver checks for parity errors, framing errors,
and overrun errors for each received character.

A parity error occurs when the parity bit of the
received character does not match the programmed
parity, as determined by the contents of the UART
Con{iguration register.

A framing error occurs if a character is assembled
without any stop bits (that is, if a low level is
detected for the stop bit). A built-in checking
process prevents a framing error from being
interpreted as a new start bit; detection of a
framing error results in the addition of one-half
of a bit time to the point at which the search for
a new start bit is begun.

An overrun error occurs if a new character is
assembled and loaded into the Receive Data
register before the previous character has been
read from that reqister. Since the receiver is
buffered by the Receive Data register in addition
to the receiver shift register, ample time is
available for responding to a receiver interrupt
and accepting a received character before the next
character is assembled by the receiver.

9.6.3 UART Registers

UART operation is controlled by three 8-bit
registers: the UART Configuration reqister,
Transmitter Control/Status reqister, and Receiver
Control/Status register. Data to be transmitted
is written to an 8-bit Transmit Data reqister, and
received data is read from an 8-bit Receive Data
reqgister. All UART registers are accessed using
byte I/O instructions.

9.6.3.1 UART Configuration Reqister

The 8-bit UART Configuration reqister (Figure
9-14) contains control information for both the
receiver and transmitter. The control fields
within this register are described below.

0
=" tirr'\ g g 77!

Figure 9-14. UART Configuration Register

Loop Back Enable (LB). When set to 1, the UART is
in local loopback mode; in this mode, the internal
transmit data line is tied to the internal
receiver input line and the external receiver
input pin is ignored. Thus, all transmitted data
is automatically received. When this bit is
cleared to 0, the transmitter and receiver operate
independently.

Clock Rate (CR). This 2-bit field determines the
multiplier between the UART clock and data rates
(that is, the number of clocks per bit time), as
specified in Table 9-9. The same data rate is
used by both the transmitter and receiver. |If the
XL clock rate is selected, bit synchronization
must be accomplished externally. In the XL mode,
the transmitter sends data on the falling edge of
the clock and the receiver samples data on the
rising edge of the clock.

Table 9-9. CR Field off UART
Configuration Register

CR Field UART Clock Rate
00 XL
oL X16
10 X32
n xXe4

Clock Select (CS). The state of this bit
specifies the clock input for the UART. When this
bit is set to 1, counter/timer 1*s output pulse
supplies the UART clock. When this bit is cleared
to 0, counter/timer 1's clock input pin provides
the UART clock signal, thus allowing the use of an
externally-generated clock. The content of the
IPA field of C/T 1's Configuration reqister does
not affect these UART clocking modes.

Parity (P). When set to 1, an additional bit
position (in addition to the number of bits per
character specified in the BC field) is added to
each transmitted character and expected in each
received character; this additional bit is the
parity bit.” Parity bits in received characters
are assembled as part of the character for
character lengths of less than 8 bits.

Parity Even/bdd (E/0). If parity is specified (P
= 1), this bit determines whether an odd or even
parity bit is added to transmitted characters and
whether odd or even parity is checked for in
received characters. E/0 = 1 specifies even

parity and E/0O = 0 specifies odd parity. If P=
0, then this bit is ignored.
Bits per Character (B/C). This 2-bit field

determines the number of bits per character in
both the transmitter and receiver, as specified in

Table 9-10. If this field is changed while a
character is being transmitted or received, the
results are unpredictable.

, Table 9-10. BC Field of UART Control Register

BC Field Bits per Character
00 5
a 6
10 7
v 1 8

A reset clears the UART Configuration reqister to
all zeros, unless bootstrap nmode is selected (see
section 9.7).

9.6.3.2 Transmitter Control/Status Register

The 8-bit Transmitter Control/Status reqister,
shown in Fiqure 9-15, specifies the operation of
the UART transmitter, as described below.

JEN|IE | 0 SBbRklfBc|vAL IT |

Figure 9-15. Transmitter Control/Status Register

Transmitter Buffer Empty (BE). This status bit is
automatically set to 1 whenever the Transmit Data
reqister becomes empty and cleared to 0 whenever a
character is loaded into the Transmit Data
register. The BE bit is controlled by the UART
circuitry; it can be read via an /O read but is
unaffected by an I/O write to this register. A
reset loads a 1 into this bit.

Value (VAL). This bit determines the value of the
bits transmitted by the UART when the FRC bit is
set to 1 and "dummy’ characters are loaded into
the Transmit Data reqister. When the VAL bit is
set to 1, a mak character (all 1s) is
transmitted; when the VAL bit is cleared to 0, a
break character (all 0s) is transmitted.

Force Character (FRC). When this bit is set to 1,
writing a character to the Transmit Data register
causes the transmitter output to be held high or
low (depending on the state of the VAL bit) for
the lenqth of time required to transmit the
character. Note that characters written to the
Transmit Data register are not themselves trans-
mitted while FRC is set to 1. When FRC is cleared
to 0, the transmitter operates normally, sendinq
characters that are written to the Transmit Data
reqister.

Send Break (BRK). When this bit is set to 1, the
transmitter is forced into the spacing condition,
wherein the transmit data output is forced to O.
When this bit is cleared to 0, normal transmitter
operation resumes.

Stop Bits (SB). The state of this bit determines
the number of stop bits appended to each character
by the transmitter. Setting this bit to 1
specifies two stop bits per character; clearing
this bit to 0 specifies one stop bit per
character.

Transmitter Interrupt Enable (IE). When this bit
is set to 1, an interrupt request is generated
whenever the Transmit Data reqister is emptied.
When this bit is cleared to 0, no tranmsit inter-
rupts are generated.

Transmitter Enable (EN). When this bit is cleared
to 0, the transmitter is disabled and the
transmitter output line is held high (marking).
When this bit is set to 1, the transmitter is
enabled and operates as specified by the UART
Confiquration register and the Transmitter
Control/Status reqister. If this bit is cleared
while a character is in the process of being
transmitted, transmission of that character is
completed.

A reset sets the
reqgister to a 01/..
not used.

Transmitter Control/Status
Bit 5 of this reqister is

9.6.3.3 Receiver Control/Status Register
The 8-bit Receiver Control/Status register, shown

in Figure 9-16, specifies the operation of the
UART receiver, as described below.

7

0
E\ElO CA| FE PE+3

Figure 9-16. Receiver Control/Status Register

Receiver Error (ERR). This bit is the logical R
of the PE, OVE, and FE bits.

Framing Error (FE). This bit is automatically set
to 1 if the receiver detects a framing error when
assembling the received character. Detection of a
framing error adds an additional one-half bit time
to the character to ensure that the framing error
is not interpreted as a new start bit. This bit
is not latched; once set, it remains set only
until a new character is assembled and shifted
into the Receive Data register.

9-20

Parity Error (PE). When parity is enabled (P =1
in the UART Configuration register) this bit is
automatically set to 1 if a character is received
without the specified parity. This bit is
latched; once set, it remains set until cleared
via software.

Receiver Overrun Error (OVE). This bit is
automatically set to 1 if a new character is
assembled and loaded into the Receive Data
register before the previous character has been
read from that register. Only the most recently
received character is flagged with this error, but
once this character is read, the OVE bit remains
latched until cleared via software.

Receiver Character Available (CA). This bit is
automatically set to 1 when a received character
is available in the Receive Data register and
automatically cleared to 0 when the Receive Data
register is read. This bit is controlled by UART
circuitry; it can be read via an 1/0 read but
cannot be altered by an 1/0 write to this
register.

Receiver Interrupt Enable (IE). When this bit is
set to 1, an interrupt request is generated
whenever the receiver has a character available in
the Receive Data register or when a receiver error
is detected.

Receiver Enable (EN). When set to 1, receiver
operation is enabled. This bit should be set
after programming the UART Configuration register.

The Receiver Control/Status register is cleared
to all zeros by a reset, unless bootstrap mode is
selected (see section 9.7). Bit 5 of this
register is not used.

All UARRT registers are in 1/0 page FE and are
accessed via byte 1/0 instructions. Table 9-11
lists the 1/0 port addresses for the UART
registers.

Table 9-Tl. 1/0O Addresses of UART Registers

110 Port
Register Address
UART Configuration Register FExx10
Transmitter Control/Status Register FExx12
Receiver Control/Status Register FExx14
Receive Data Register FExx16
Transmit Data Register FExx18

All addresses are in hexadecimal.
“X” means “don’t care”.

9.6.4 UART Operation

Operation of the UARTSs transmitter and receiver
are enabled by the Transmitter Enable and Receiver

Enable control bits in their respective
control/status registers. Before enabling the
UART by setting one of those bits, the UARTS

configuration must be determined by programming
the UART Configuration register. If the UART
Configuration register is to be altered during
system operation, the transmitter and receiver

should be disabled before writing to the
Configuration register, and then re-enabled
afterwards.

Once enabled, the UART can be wused in an
interrupt-driven or polled environment. Separate
transmit and receive interrupts are controlled by
the interrupt enable bits in the control/status
registers. Receive interrupts are generated
whenever a new character is available in the
Receive Data register or when an error is
detected. Transmit interrupts are generated
whenever the Transmit Data register is emptied.

For polled environments, the Character Available
bit in the Receiver Control/Status register must
be monitored to determine when a character is to
be read from the Receive Data register; this bit
is automatically cleared when the received data" is
read. For transmitting characters, the Transmit
Buffer Empty flag should be checked before writing
to the Transmit Data register to prevent the
overwriting of transmitted data.

The error flags in the Receiver Control/Status
register are loaded at the same time that the
received data character is moved from the
receiver'8 shift register to the Receive Data
register. Since the parity and receiver overrun
error flags are latched, the error status reflects
any errors in the current character in the Receive
Data register plus any parity or overrun errors
that have been detected since the last write to
the Receiver Control/Status register. To maintain
correspondence between the state of the error
flags and the data in the Receive Data register,
the flags in the Receiver Control/Status register
should be read before the data.

Once the transmitter has been enabled, there are
two ways to produce a break output on the transmit
data line. Setting the BRK bit in the Transmitter
Control/Status register forces a break condition
on the transmit data output until that bit is
cleared. Alternatively, setting the FRC bit to 1

and clearing the VAL bit to O causes a break
condition on the transmit data output each time a
character is loaded into the Transmit Data
register; this break output persists for the same
amount of time that it would have taken to
transmit the data written to the Transmit Data
register had the FRC bit been 0. Note that the
characters written to the Transmit Data register
while the FRC bit is set to 1 are not actually
transmitted.

9.7 UART BOOTSTRAPPING OPTION

The on-chip UART and DVA Channel O can be used to
automatically initialize the Z280 MPUs memory
with values received by the UART following a
reset. This system bootstrapping capability
permits ROMess system configurations, where
memory is initialized using a serial link prior to
the first Z280 MU instruction fetch after the
resete

As' described in Section 3.2.1 and Chapter 11,
bootstrap mode is selected by driving WAT low and
A6 high while EKTT is asserted. The appropriate
UART and DVA registers are automatically
programmed as shown in Table 9-12 as a result of
selecting bootstrap mode. The UART is initialized
to receive data in 8-bit characters with odd
parity, an external clock source, and a x16 clock
rate. DVA Channel 0 is initialized with the link
to the UART receiver and end-of-proces8 capability
enabled, and set up for flowthrough byte transfers
in continuous mode. The destination address
starts at memory location 0, with an autoincrement
after each transfer, and a transfer count of 236
(100n).

Table 9-12. ResetValue of UART and DMA
Registers When Bootstrap Mode Is Selected

Initial Hex
Register Value
UART Registers
UART Configuration register E2
Receiver Control/Status register 80
DMA Registers
DMA Master Control register 0011
Channel 0 Transaction Descriptor register 8100
Channel 0 Destination Address register 000000
Channel 0 Source Address register Undefined
Channel 0 Count register 0100

9-21

If bootstrap mode is specified, the 2280 QU
automatically enters an idle state when RISET is
deasserted. A minimum of 15 processor clock
cycles must elapse after RESET is deasserted
before tranmission of data to the UART receiver
begins. DVA Channel 0 is then used to transfer
characters received by the UART into memory. The
data received is placed in memory starting at

9-22

physical address 0. If an error is detected by
the UART receiver, the Transmit Output (Tx) line
is driven low; external circuitry can use this
signal to restart the initialization procedure, if
so desired. After 256 bytes of data have been
received and transferred to memory, the 2280 CPU
automatically begins execution with an instruction
fetch from memory location 0.

10.1 INTRODUCTION
The 7280 MRU architecture provides support for
four types of multiprocessor configurations

a) SLAVE PROCESSOR b) TIGHTLY COUPLED

MULTIPLE CPU

Figure 10-1.

10.2 SLAVE PROCESSORS

Slave processors, such as the Z8016 DVA Transfer
Controller or other DVA devices, perform dedicated
functions asynchronously to the CPU. The CPU and
slave processors share a local bus, where the CRU
is the default bus master. In order for a slave
processor to use the bus, it must request control
of the bus from the QU and receive an
acknowledgement of that request.

Two 7280 MU signals are provided for supporting
slave processors: BUSREQ and BUSACK A bus
request is initiated by pulling the BUSREQ input
low. Several bus requestors may be wire-ORed to
the BUSREQ pin; priorities are resolved external
to the MPU, usually by a priority daisy chain.
The external BUSREQ signal generates an internal,
synchronous BUSREQ If this signal is active at
the beginning of any bus cycle, the 7280 MU wiill
relinquish the bus at the end of that bus

Chapter 10.
Multiprocessor Configurations
(Figure 10-1): slave processors, tightly coupled

multiple CPUs, loosely coupled multiple CPUs, and
coprocessors.

c) LOOSELY COUPLED
MULTIPLE CPU

d) COPROCESSOR

Multiprocessor Configurations

cycle (with the exception of the TSET instruction,
where the read-modify-write cycle is atomic). The
MU suspends execution of the current instruction
and gives up control of the bus by 3-stating all
address, address/data, bus timing, and bus status
output pins. The BUSAXK output is then asserted,
signaling that the bus request has been accepted
and the bus is free for use by the slave
processor. The 7280 MPU remains in the bus
disconnect state until BUSREQ is deasserted.

The BUSREQ input is sampled during each processor
clock period by the external bus interface logic
of the 2280 MPU, If BUSREQ is sampled active low
while the Z280 MU is involved in an internal
operation, the external bus is relinquished to the
bus requestor immediately. Internal processing
can continue until a transaction involving the
external bus e«is required; the MU then suspends
activity until regaining control of the bus. If
BUSREQ is sampled active during a CPU-generated

10-1

transaction on the external bus, the bus is not
relinquished nor CRU activity suspended until the
current transaction is completed.

The 7280 MU regains control of the bus after
BUSREQ rises, continuing execution from the point
at which it was suspended. Any bus requestor
desiring control of the bus must wait at least two
bus cycles after BUSREQ has risen before asserting

BUSREQ again.

In the case of simultaneous bus requests from
multiple sources, the on-chip DVA channels have
higher priority than external slave processors in
7280 MU systems. After reset, the 7280 MU
acknowledges an active BUSREQ signal before
performing any transactions.

10.3 TIGHTLY COUPLED MULTIPLE PROCESSORS
Tightly coupled multiple CPUs execute independent

instruction streams from their own (local)<memory
locations and communicate through shared memory

locations on a coomon (global) bus. Each GRU is
the default master of its local bus, but the
global bus master is chosen by an external

arbiter.

The Z280 MPUs multiprocessor mode of operation
supports tightly coupled multiple [e2V)
configurations. This node is also useful when
configuring the Z280 MU as an I/O processor in a
distributed processing system. Multiprocessor
mode is selected by setting the Multiprocessor
Configuration Enable (MP) bit in the Z280 CPU's
Bus Timing and Initialization register (see
Section 3.2.1). While in the multiprocessor mode,
the 72280 MU is able to support both a local bus
and a global bus. The 2280 CPU is the default bus
master of the local bus, but must make a request
and receive an acknowledgement before performing
transactions on the global bus. Only memory
transactions can be performed on the global bus;
/0 transactions always use the local bus. The
range of memory addresses dedicated to the global
and local buses is determined by the contents of
the CPUs Local Address register.

While
0's I/O and IN pins are used as global bus request
(GREQ and global bus acknowledge (GACK) signals,
respectively. GEQ is a three-state output; an
active low signal on this line requests use of the
global bus. An active low level on the GAX input
acknowledges a global bus request.

10-2

in the multiprocessor mode, Counter/Timer%

10.3.1 The Local Address Register

During each memory transaction while in multi-
processor mode, the 27280 CPU uses the Local
Address register to determine if that transaction
is to occur on the local or global bus. The Local
Address register includes a 4-bit Base field and a
4-bit Match Enable field (Figure 10-2). For each
bus transaction, the four most-significant bits of
the physical address (address bits A20 through
A23) are compared with the 4-bit Base field; the
Match Enable field specifies which bits are going
to, be used during this comparison. If all the
corresponding address bits match the Base field in
the bit positions specified by the Match Enable
field, then the bus transaction can proceed on the
local bus without requesting the global bus. If
there is a mismatch in at least one specified bit
position, then the global bus is requested and the
bus transaction does not proceed until the global
bus acknowledge signal is asserted. (See section
3.2.3)

Figure 10-2. Local Address Register

10.3«2 Bus Request Protocols

While in the multiprocessor mode, the BUSREQ and
BUSACK signals control use of the local bus in the
Sare manner as described in section 10.2. When a
local bus request is granted, as indicated by an
active BUSAXK signal, the CPU places all output
signals, including GREQ in the high-impedance
state.

When in control of its local bus, a Z280 CPU can
initiate transactions with devices on the global
bus that are shared with other CPUs. At any one
time, only one CPU can control transactions on the
global bus. Control of the global bus is
arbitrated by external circuitry. Before
initiating a transaction on the global bus, the
(U requests control of the global bus from the
external arbiter circuitry by asserting GREQ and
waiting for an active GAX in response. (The
timing diagrams for global bus requests are shown
in Figures 12-35 and 13-19.) The CGAX input is
asynchronous to the CPU clock; the 7280 CRU
synchronizes CGAX internally. Once GAXK is
asserted, the CPU performs the transaction on the
global bus. The CPU then deasserts GEQ and waits

for the arbiter circuit to deassert GACK The CPU
always relinquishes the global bus by deasserting
GH) after each global transaction is completed,
except during execution of a Test and Set (TSET)
instruction (both the data read and write are
completed before relinquishing the global bus) or

ERROR

during a burst-mode memory transfer

(the entire

sequence of burst-mode memory reads is completed

before relinquishing the global bus).

A state diagram of the bus request protocol

shown in Figure 10-3.

NOTES: Interface signals are High (H), Low (L), High or Low (2ST), or 3-stated (3ST).

NEED__GBUS is an active High signal internal to the CPU.

Transition Legend

A Alocal bus request occurs.
B Theglobal busarbiter control ofthe
global buswhen nog bus request is

pendlng This isan eror. The CPU remainsin

t the Iobal busin
t'\?gée:mtem& it s

D Thelocal bus mester relinquishes the bus.

E Theglobal busarbiter grants the global bus
tothe CPU while nolocal bus request is
pehding.

F Theglobal busarbiter grants the global bus
tothe CPU while alocal lasrequestlspend-
lng The local bus request has preempted the

Q g bus arbiter reclaims the globeal
bus the CPU relinquishes the global
bus. This isan error. The CPUIsresponse to
this error is undefined.

H TheCPU rehr’lTJIﬂESGIM’d of the global
buswhen it mgfer needsthe global bus
orinresponsetoalocal bus request.
'IJEglobal bus arbiter reclaims the global

State 1

State 2

State 3

State 4

State Legend

The CPU controls the local bus and is
neither requesting nor controlling the
global bus.

The CPU can performtransactions on
the local bus.

The CPU has granted the local bus.
The CPU cannat perform transactions.
The CPU controls the local busand is
requesting the global bus.

The CPU cannot perform transactions.
The CPU controls the local and global
buses.

The CPU can perform transactions on
the global bus.

The CPU controlsthe local busand is
relinquishing control of the global bus.
The CPU cannot perform transactions.

Figure 10*3. State Diagram for CPU Bus Request Protocol

is

10-3

While a 72280 CPU is asserting G&)Q and waiting for
an active GACK if BUSREQ is asserted before GACK,
the CPU releases the global bus request after
GAX is asserted without performing any
transactions.

The on-chip DVA channels nmey also initiate
transactions on the global bus. During each
DMA-controlled transaction, memory addresses

generated by a DVA channel are compared to the
contents of the Local Address register to
determine if the global bus is to be requested, in
the same manner as CPU-controlled bus
transactions.

If the automatic memory refresh mechanism is
enabled, refresh cycles are inhibited while either
the GPU or a DVA channel has requested the global
bus but not yet received the global bus
acknowledge. No refresh transactions are ever
performed on the global bus.

10.3.3 Examples of the Use of the Global Bus

The 7280 MPUs multiprocessor node of operation
facilitates the development of tightly coupled
multiprocessor systems and systems using the Z280
MU as a front-end 1/0 processor.

Figure 10-4 is a block diagram illustrating the
use of multiple Z280 MPU as tightly-coupled
processors. Access to the global memory via the
global bus is controlled by a centralized bus
arbitration circuit. The GAX circuit controls
the buffers that connect or isolate the global bus
from each MPUs local bus. Each Z280 MU can
access its local memory independent of the other
MPUs activity. Only one MU at a time can access
the shared global memory. Note that memory-mapped
1/0 devices could also be shared using the global
bus.

Figure 104. Tightly Coupled Processors with Shared Global Memory

Figure 10-5 shows a tightly coupled multiple Z280
MU system without a global memory, where each
processor can directly access the local memory of
the other processor. For this system, priority
resolution logic would control both the local and
global bus requests. A global bus request from

10-4

one processor is used to generate a local bus
request to the other processor. When one
processor generates a global bus request, an
active GAX signal is not returned to that
processor until the other processor's local bus is
available, as indicated by BUSACK

Figure 10-5. Tightly Coupled Processors without Global Memory

Although both Figure 10-4 and 10-5 show only two
tightly coupled processors, more processors could
be added to these systems in a similar manner.

Figure 10-6 illustrates the use of a 7280 MU as
an /0 processor in a Z8000-based system. The

7280 MPUs GRHQ signal is used as the bus request
signal to the Z8000 CPU, the Z8000 CPU's BUSACK
signal is input directly to the Z280 MPUs GACK
as well as controlling the buffers that normally
isolate the 7280 MPUs local bus from the Z8000
CPU's bus.

Figure 1045. Z280 MPU as an I/O Processor

10-5

10.4 LOOSELY OOUPLED MULTIPLE CPUS

Loosely coupled multiple CPUs generally
communicate through a multiple-port peripheral,
such as the Z8038 FIO (FIFO,buffer I/O unit). The
7280 MPUs 1/0 and interrupt facilities and the
on-chip DVA channels support loosely coupled
multiprocessing with the 7280 MPU.

10.5 COOPROCESSORS AND THE EXTENDED PROCESSING
ARCHITECTURE

The Zilog Extended Processing Architecture (EPA)
provides a flexible and modular approach to
expanding the capabilities of the 7280 MAU through
the use of coprocessors called Extended Processing
Units (EPUs). The Extended Processing Architec-
ture is available on the ZBUS configurations
of the 72280 MPU, but not the Z80 Bus
configurations. W to four EPUs can be connected
to a single 2280 MPU.

An Extended Processing Unit is a coprocessor that

can be used to execute complex, time-consuming
tasks in order to unburden the CPU. EPUs connect
directly to the Z-BUS; no extra external logic is
required to interface an BU to a Z280-based
system (Figure 10-7). As the 7280 CQPU fetches and
executes instructions, the HBEPU continuously
monitors the instruction stream on the bus. A
special group of instructions, called extended
instructions, are processed by EPUs. When the
7280 CPU encounters an extended instruction, it
performs any specified data transactions, but
otherwise assumes that the instruction will be
recognized and handled by an EPU. (In systems
without EPUs, extended instructions can be used to
generate a trap condition.) Thus, when EPUs are
added to a system, the instruction set is expanded
to include the extended instructions applicable to
those EPUs, thereby boosting the processing power
of the whole system. The Z280 CGPU and EPUs work
together like a single central processor; a
system with EPUs can be thought of as a system
whose central processor consists of 1 + N separate
devices, where N is the number of EPUs in the
system.

MEMORY

Figure 10-7. EPU Connection in Z280 MPU System

The underlying philosophy of the Extended
Processing Architecture is that the CGU is an
instruction processor; that is, the CRU fetches
an instruction, fetches data associated with that
instruction, performs the specified operation, and
stores the result. Extending the number of
operations that can be performed does not affect
the instruction fetch and address calculation
portion of the QU activity. The extended
instructions exploit this feature. The QU is
responsible for fetching instructions, performing
address calculations, and generating the timing
signals for bus transactions; however, the actual
data manipulation for extended instructions is
handled by an EPU Both the CPU and EPUs are,
therefore, controlled via a single instruction
stream, eliminating many significant system
software and bus contention problems that can
occur with other multiprocessing configurations.

10-6

10.5.1 Extended Instructions

Extended Processing Units connect directly to the
Z-BUS and continuously monitor the instruction
stream. When the template portion of an extended
instruction is fetched from memory, the
appropriate BPU wiill detect that the instruction
is meant for it and respond to the instruction.
The QU is always responsible for fetching
instructions and delivering operands to the EPUs.
The EPUs recognize the extended instruction
templates and execute them, using data supplied
with the template and/or data already within
internal BPU registers.

There are four types of extended instructions in
the Z280 instruction set: data transfers from
memory to an EPU, data transfers from an BPU to
memory, data transfers from an BPU to the CPU's

accumulator register, and BPU internal
operations. Twenty-two instruction opcodes are
used to implement these operations. Each extended
instruction opcode includes two parts: a two- or
four-byte instruction opcode used by the 7280 CPU
to determine its activity and the address of the
memory operand, and a four-byte instruction
"template" that specifies the BPU activity. Six
operand addressing modes are supported by the
instructions that specify transfers between BEPU

registers and main memory: Direct Address,
Indirect Register, Indexed, Stack Pointer
Relative, Program Counter Relative, and Base
Index. (See section 5.4.10 for a description of

the extended instructions.)

In addition to the hardware-implemented
capabilities of the EPA there is an extended
instruction trap mechanism that permits software
simulation of BPU functions. The state of the BRU
Enable bit in the CPUs Trap Control register
indicates whether EPUs are present in the system
(see section 3.3.5). If the BEPU Enable bit is
cleared to 0O, indicating that there are not EPUs
in the system, the CPU will execute an Extended
Instruction trap if an extended instruction is
encountered in the instruction stream. The
service routine for this trap could perform a
software simulation of an EPUs functions. This
trap mechanism facilitates the design of systems
in which EPUs are not present but may be added
later. Initially, the "extended" function is

executed as the Extended Instruction trap service
routine; ttfwn EPUs are added to the system, the
trap routine is eliminated and the BPU Enable bit
is set to 1. This change would be transparent to
applications programs. (The Extended Instruction
trap is described in section 6.3.1.)

10.5.2 Extended Instruction Execution Sequence

The CPU and BPU instruction execution sequence is
diagrammed in Figure 10-8. When the CPU fetches
an extended instruction, the BPU Enable bit in the
Trap Control register is examined. |If the BEPU
Enable bit is a 0, an Extended Instruction trap is
executed. If the BEPU Enable bit is a 1,
indicating that there is an BPU in the system,
then the QU fetches the four-byte instruction
template from memory. The fetching of the
template is indicated by the ST3-STO status lines
from the CPU. EPUs must continuously monitor the
address/data bus and ST3-STO status lines for its
templates. A 2-bit identification field in the
template can select one of up to four EPUs for
execution of a given extended instruction. If the
extended instruction calls for the transfer of
data between the CQPU and BPU or between the BEPU
and memory, the CPU generates the appropriate bus
transaction cycles. These transactions are
identified by unique encodings of the SI3-STQ
status lines. The BPU monitors the status and

Figure 104. CPU-EPU Instruction Execution Sequence

10-7

timing signals output by the CPU to determine when
to participate in the data transaction; the BU
supplies or captures the data when L[S is active.
For transactions between an EPU and memory, the
CPU 3-states its address/data lines while G5 is
active so that the BPU or memory can supply the
data. (See section 13.5.5 for a description of the
bus transaction timing.)

The number and type of bus cycles required to
fetch the extendedVinstruction template depends on
whether the template is aligned on an even address

boundary. The four-byte long template can be
fetched with two word transactions if the template
begins on an even memory address or with one byte
and two word transactions if the template begins
at an odd memory address, as described in Table
10-1. (In the case of an odd starting address for
the template, the BEPU captures only the upper byte
from the bus during the second word transaction.)
The template is always fetched from memory using
the CPUs external bus interface, regardless of
the current state of the on-chip cache memory.

Table 10-1. Bus Transactions Involved in Fetch of Extended Instruction Template

Address at Address
Template Start Bus Cycle from 2280 Byte/Word ST3-STO
Even 1 n Word 1101
2 n+2 Word 1100
Odd 1 'n Byte 1101
2 n+l Word 1100
3 n+3 Word 1100

If the extended instruction specifies an internal
BEPU operation, the Z280 CPU can proceed to fetch
and execute subsequent instructions. Thus, the
QU and EPUs may be processing in parallel. The
PAUSE signal is wused to synchronize CPUEPU
activity in the case of overlapping extended
instructions. |f the GRU fetches another extended
instruction template intended for an BPU that is
s till executing a previous instruction, the BU
activates the PAOE input to the QU to halt
further QU activity until the BPU can finish the
original operation. While PAUSE is asserted, all
QU activity is suspended except responses to
refresh requests, bus requests, and resets.

QU activity following the fetch of the extended
instruction template is governed by the type of
extended instruction being processed. In the case
of an BPU internal operation, no further bus
transactions are required by the extended
instruction, so the CPU wiill proceed to fetch the
next instruction. However, the CPU will s till
honor an active PAUSE input and suspend execution
until PAEE is released.

In the case of an EPU-to-CPU transfer instruction,
the next non-refresh transaction following the
fetch of the template (and after an active PAUSE
signal is deasserted) will be the EPU-to-CPU bus
transaction. EPU-to-CPU bus transactions are

10-8

identified by a 1110 status code on the STj-STg
status lines and are word transactions. The
address emitted by the CPU during this cycle is
the memory address of the previous transaction
(that is, the address used during the last fetch
of the instruction template).

In the case of EPU-to-memory or memory-to-EPU
transfer instructions, the next one to sixteen
non-refresh transactions following the fetch of
the template (and after an active PAUSE signal is
deasserted) will be the appropriate data transfer
cycles. Upto 16 bytes of data may be transferred
as the result of a single extended instruction;
the number of data transfers to be performed is
encoded in the instruction template. The 1010
status code on the ST3-STQ status lines identifies
bus cycles that transfer data between an BPU and
memory. The BPU must supply the data for write
operations or capture the data for read operations
during each transaction, just as if it were part
of the CPU. The number and type of transactions
generated also depends on whether the starting
memory address of the data block to be moved is an
even-valued address, as defined in Table 10-2.
The case where only one byte is transferred is
degenerate and shown separately in Table 10-2 for
clarity. These transfers are always performed on
the Z280 MPUs external bus, regardless of the
current state of the on-chip cache memory.

Table 10-2. Sequence of Transactions for Data Transfers between an EPU and Memory

Starting Memory
Address

Even
Even
Even

Odd

Odd

Odd

Number of
Bytes (n)

Even
Odd
One

Even

Odd

One

Byte/Word Status of
Transfers

word, word....word
word, word,...,word, byte
byte

byte, word,...,word, byte

byte, word....word, word

byte

Type of
Addresses

All even
All even
Even

First odd,
others even

First odd,
others even

Odd

Total Number of
Transactions

n/2
(n+1)/2
1
(n+2)/2

(n+1)/2.

10-9

Hardware resets are asserted by an active RESET
input and place the 7280 MU in a known state.
Optionally, the Bus Timing and Initialization reg-
ister can be initialized to a system specifiable
value during a reset. The RESET input is
internally synchronized to the clock and then
sampled at the end of every processor clock
cycle. When an active RESET line is detected, the
current bus transaction is allowed to be completed

before starting the reset process. A reset
overrides all other operations, including
interrupts, traps, and bus requests. A hardware

reset must be used to initialize the 7280 MU as
part of the power-up sequence.

The RESET input must be asserted for a minimum of
128 processor clock cycles. Within this time the
7280 MU lines assume their reset values: the
address and address/data lines are 3-stated and
all control lines are forced High. While RESET is
asserted, the clock output line (CLK) is the proc-
essor clock frequency divided by four.

When RESET is sampled high (deasserted), the state of the
WATT input is sampled. |f WAIT is asserted, the contents
of the ADg>AD7 lines are sampled on the falling edge of
the processor clock and loaded into the Bus Timing and
Initialization register;
is chosen, AD7 must be a 1 and AD4 must be a 0 when the
bus is sampled, and the state of the AD" line determines
whether the bootstrap mode option is selected. WAIT must
be asserted for at least two processor clock cycles after
RESET is deasserted in order for the Bus Timing and
Initialization register, thereby specifying a bus clock
frequency of one-half the processor clock, no automatic
wait states when accessing the lower 8M bytes of memory,
and disabling the multiprocessor mode of operation.

Table 11-1 delineates the effect of a reset on
other CRU registers. A reset places the CRU in

if this method of initialization

' fetching the first

Chapter 11.

Reset

interrupt nmode 0; thus, the IM field in the
Interrupt Status register will be a 0. The
Interrupt Vector Enable bits in the Interrupt
Status register also are cleared to 0 by a reset,
and the Interrupt Pending bits will reflect the
current status of the interrupt requests. All
other CPU and MW registers, including the
remaining registers in the CPU register file, the
MW page descriptor registers, and the

Interrupt/Trap Vector Table Pointer are unaffected
by a reset.

The effect of a reset on the on-chip peripherals’
programmable registers is shown in Table 11-2.
The on-chip counter/timers are always disabled by
a reset. The on-chip DVA channels and UART are
also disabled by a reset, unless bootstrap nmode is
selected (see Section 9.7). The counter/timers’
Time Constant and Count-Time registers are
unaffected by a reset. The DVA channels'
Destination Address, Source Address, and Count
registers also are unaffected by a reset, except
for DVA Channel 0's Destination Address and Count
registers.

In a multiprocessing system employing multiple
7280 MPUs with a shared bus, the internal
processor clocks for the 7280 MPUs need to be
synchronized. The processor clock is generated by
dividing the XTALLl input by two. The falling edge
of RESET is used internally to synchronize the
prqcessor clock, and can be used to synchronize
processor clocks in a multiprocessing system. |If
all the 7280 MPUs in the system have identical
XTAL1 and RESET input signals, their internal
processor clocks will be initialized in the same
manner by a reset.

If an active bus request is detected on the rising
edge of RESET, the 7280 MAU grants the bus before
instruction from location 0.
Thus, an external DOVA device can initialize RM
memory before execution begins. If bus request is
not asserted, the CPU begins execution with a
fetch from location 0 unless bootstrap mode is in
effect.

11-1

Register

Program Counter
System Stack Pointer
|

R

Master Status

Bus Timing and Control

Bus Timing and Initialization

/0 Page

Cache Control

Trap Control
System Stack Limit
Local Address

Interrupt Status

Interrupt/Trap Vector Table Pointer

Table 11-1. Effect of a Reset on Z280 MPU and MMU Registers

Value Loaded on Reset
(Hexadecimal)

0000
0000
00
00

0000

30

80

00

20

00
0000

00

CPU Registers AF, BC, DE, HL, IX IY,

AF#BC', DE', HL'
User Stack Pointer

MMU Master Control

0000

MMU Page Descriptor Register, Page

Descriptor Register Pointer

Comments

System mode, Single-Step disabled, Breakpoint-on-Halt
disabled

All maskable interrupts disabled

No automatic wait states for /O, upper 8M bytes of
memory, or interrupt acknowledges

CLK output 2 x processor clock period, no automatic wait
states for lower 8M bytes of memory, bootstrap mode
disabled

I/0 Page 0 in use

Cache enabled for instructions

All valid bits cleared to 0

Burst mode disabled

EPA trap disabled, 1/O not privileged

System Stack Overflow Warning trap disabled

Al memory transactions are made to local bus

Interrupt mode 0, nonvectored interrupts, current state of
interrupt requests (indicated by xx)

Unaffected

Unaffected
Unaffected

MMU disabled

Unaffected

Table 11-2. Effect of a Reset on Z280 On-Chip Peripheral Registers

Register

Refresh

Counter/Timers:
Configuration
Command/Status

DMA Channels:
Master Control
DMAQ Transaction Descriptor
DMA1/2/3 Transaction Descriptor

DMAO Destination Address
DMAO Count

UART:
Configuration
Transmitter Control/Status

Receiver Control/Status

*Unless bootstrap mode is selected.

Value Loaded on Reset
(Hexadecimal)

88

00
00

0000*
0100*

000000

0100

00*

o1
00*

Comments

Refresh enabled, rate=32

Timer mode, single-cycle mode
Timer disabled

No DMA linking, EOP disabled, Software Ready disabled

DMAO disabled, continuous mode

EN, IE, TC, and EPS fields cleared, other fields unaffected

5 bits/character, parity disabled, external clock, x 1 clock

rate, loop back disabled

Transmitter disabled, transmit buffer empty

Receiver disabled

11-3

12.1 INTRODUCTION

The 7280 MAU is typically only one component in a
system that maey include memory, peripherals, slave
processors, coprocessors, and other CPUs, all
connected via a system bus. Two different
component-interconnect bus schemes are available
with the 7280 MPU: the Z80 Bus and the Z-BUS.

This chapter describes the external manifestations
(that is, the activity on the pins) that result
from QU or on-chip peripheral activity for the
Z80 Bus configurations of the Z280 MPU. (The
Z-BUS external interface is described in Chapter
13.) Since the pins are connected to the system
bus, most of this discussion will center on the
bus and bus operations.

Chapter 12.
Z280 Bus External Interface

The condition of the CPT signal pin determines the
configuration of the bus interface for the Z280
MPU, the Z80 Bus configuration is selected by
applying a logical 0 (ground) level on the CPT
pin.

The Z80 Bus on the 7280 MU includes a 24-bit
address bus, 8-bit data bus, and associated status
and control signals. The data bus is multiplexed
with the low-order 8 bits of the address bus.
Figure 12-la shows the pin functions for the
Z80 Bus configuration of the 2z280 MPU. The
Z80 bus described here is compatible with Zilog's
78400 and Z8300 families of peripheral devices.

Figure 12-1b. Pin Assignments

Figure 12-1. Z80 Bus Configuration (input OPT tied to GND)

12-1

12.2 BUS OPERATIONS

Two kinds of operations can occur on the Z80 Bus:
transactions and requests. At any given time only
one device (either the CPU or a bus requestor such
as a DVA channel) can be in control of the bus;
this device is called the bus master. Trans-
actions are always initiated by the bus master and
are responded to by some other device on the bus.
Only one transaction can proceed at a time.
Requests can be initiated by a device that does
not have control of the bus.

Seven types of transactions can occur on the
Z80 Bus, as described below:

Memory transaction. CPU- or DMA-controlled
transfer of data to or from a memory location*

RETI transaction. CPU-initiated transaction used
in conjunction with the interrupt logic of Z8400
family peripherals.

Halt transaction. Transaction indicating that the
(U is entering the Halt state due to the
execution of a HAT instruction or a fatal
sequence of traps.

Refresh. Transaction that refreshes dynamic
memory; refresh transactions do not involve a
transfer of data.

1/0 transaction. CPU- or DMA-controlled transfer
of data to or from a peripheral device.

Interrupt Acknowledge. CPU-controlled transaction
used to acknowledge an interrupt and read data
from the interrupting device.

DVMA Flyby transaction. A DMA-controlled trans-
action that transfers data between a memory
location and a peripheral device.

Two types of requests can occur on the Z80 Bus, as
described below:

Interrupt request. A request initiated by a
peripheral device to gain the attention of the
CPU

Bus request. A request by an external device
(typically a DVA channel) to gain control of the
bus in order to initiate transactions.

A request is answered by the CQPU according to its
type: for interrupt requests, an interrupt
acknowledge sequence is generated; for bus
requests, the QU relinquishes the bus and
activates an acknowledge signal.

12-2

12.3 PIN DESCRIPTIONS

The pin functions for the Z80 Bus configuration
of the 2280 MAJ are illustrated in Figure
12-1a. The pin assignments are shown in Figure
12-1b. A functional description of each pin is
given below:

Aa-A23. adadress (output, active High, 3-state). These
address lines carry /0 addresses and memory addresses
during bus transactions.

ADo-AD7.address/pata (bidirectional, active High, 3-state).
These eight multiplexed Data and Address lines carry /O
addresses, memory addresses, and data during bus
transactions. <

S8. address strobe (OUtpUL, active Low, 3-state). The rising
edge of AS indicates the beginning of a transaction and
shows that the address is valid.

BUSACK. Bus Acknowled ge (Output, active LO/\O A Lowon
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

bUSreq .Bus Request (iNput, active Low). A Low on this
line indicates that an external bus requester has obtained or
istfying to obtain control of the bus.

CLK. ciock o utput (output). The frequency of the processor
timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. The
processor clock is further divided by one, two, or four (as
programmed) and then output on this line.

CTIN. counterimimer input (iNnput, active High). These lines
receive signals from external devices for the counter/timers.

CTIO. counter/Timer 10 (bidirectional, active ngh,
3-state). These /O lines transfer signals between the
counter/timers and external devices.

DMA&TB. bma Fiyby strobe (OUtpUt, active Low). These
lines select peripheral devices for flyby transfers.

EOP.end ofrrocess (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
isactive, EOP isignored.

GACK. ciobal Acknowledge (input, active LO\N) A Lowon
this line indicates the CPU has been granted control of a
global bus.

GREQ Global Request (Output, active Low, 3-State) A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

GND. 6 round. Ground reference.

HALT. n a1e (Output, active Low, 3-state). This signal indicates
that the CPU is in the Halt state and is awaiting an interrupt
before operation can resume.

IE in put Enable (Output, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the MPU.

IRT. Maskable Interrupts (input, active Low). A Low onthese
lines requests an interrupt.

ICRS. Input/output Request (output, active Low, 3-state).
This signal indicates that ADo*AD7 and of the
address bus holda valid I/O address for an I/O read or write
operation. An15R5 signal is also generated with an
M1 signal when an interrupt is being acknowledged, to
indicate that an interrupt response vector can be placed on
the data bus.

Hi. mMachine Cycle One (output, active Low, 3-state). This
signal indicates that the current transaction is the opcode
fetch cycle of a RETI instruction execution. M1 also occurs
with IORQ to indicate an interrupt acknowledge cycle.

MREb. Memory Request (Output, active Low, 3-state). This
signal indicates that the address bus holds a valid address
for a memory read or write operation.

RHI. Nonmaskable Interrupt (input, failing-edge activated).
A High-to-Lowtransition on this line requests a nonmaskable
interrupt.

5E. output Enable (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.

OPT. Bus Option (input). This signal establishes the bus
option during reset.

OPT Bus Interface
0 Z80 Bus, 8-bit
1 Z-BUS, 16-hit

PAU&E. MPU Pause (input, active Low). While this line is
Low the MPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

HD. read (output, active Low, 3-state). This signal indicates
that the CPU or DMA peripheral is reading data from
memory or an /O device.

Rt)Y. DMA Ready (input, active Low). These lines are
monitored by the DMAs to determine when a peripheral
device associated with a DMA port is ready for a read or
write operation. When a DMA port is enabled to operate, its
Ready line indirectly controls DMA activity; the manner in
which DMA activity is controlled by the line varies with the
operating mode (single-transaction, burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.

RFSH. Refresh (output, active Low, 3-state). This signal
indicates that the lower ten bits of the Address bus contain a
refresh address for dynamic memories and the current
KSRKS5 signal should be used to perform a refresh to all
dynamic memories.

RxD. UART Receive (input, active High). This line receives
serial data at standard TTL levels.

TVD. UART Transmit (output, active High). This linetransmits
serial data at standard TTL levels.

WAIT. wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.

WE. write (output, active Low, 3-state). This signal indicates
that the bus holds valid data to be stored at the addressed
memory or l/O location.

XTALIL Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip oscillator.

XTALO. crystal Output (time-base output). Connects a
parallel-resonant crystal to the on-chip oscillator.

+ 5V. Powersupply Voltage. (+5 nominal).

12-3

12.4 BUS CONFIGURATION AND TIMING

Four Z280 CPU control registers specify certain
characteristics of the 2280 MPUs external
interface and determine bus timing: the Bus
Timing and Initialization register, Bus Timing and
Control register, Local Address register, and
Cache Control register.

Bus timing is determined by the frequency of the
7280 MPUs external clock source or crystal and
the contents of the Bus Timing and Initialization
register, which receives its initial values as
part of the reset process (see section 3,2.1).
The frequency of the processor clock is one-half
of the frequency of the external clock source or
crystal. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling field in the Bus Timing and
Initialization register. The bus timing clock is
output by the MU as the QK signal. In the
logical timing diagrams that follow, signal
transitions on the bus are shown in relation to
the bus clock, CLK

The number of automatic wait states included in a
given transaction is determined by the contents of
the Bus Timing and Initialization and Bus Timing
and Control registers. The physical memory
address space is divided into two sections based
on the most significant physical address bit,
A23. Up to. three automatic wait states can be
added to transactions to the lower half of memory
(addresses where A23 = 0); similarly, up to three
automatic wait states can be added to transactions
to the upper half of memory (A23 = 1), to all /O
transactions, and to interrupt acknowledge
transactions.

The state of the Multiprocessor Configuration
Enable bit in the Bus Timing and Initialization
register and the contents of the Local Address
register determine which memory transactions
require use of a global bus, as described in
section 10.3. The contents of the Cache Control
register and the state of the address tags and
valid bits in the cache memory determine which
transactions employ the cache memory and which
transactions use the external bus interface, as
described in Chapter 8.

12-4

12.3 TRANSACTIONS

At any given time, one device (either the CGRU or a
bus requester) has control of the bus and is known
as the bus master. A transaction is initiated by
the bus master and is responded to by some other
device on the bus. Information transfers (both
instructions and data) to and from the 72280 MU
are accomplished through the use of transactions.
All transactions start when Address Strobe (fiS) is
driven low and then raised high.

If the transaction requires an address, the
address is valid on the rising edge of AS. AS can
be used to latch 27280 MU addresses to de-
multiplex the 2Z280 Address/Data lines. If an
address is generated, the Output Enable (OE) line
is activated coincident with AS assertion.

The Read (RD) and Write (WR) lines are used to
time the data transfers. For transactions that do
not involve the transfer of data (Refresh and
Halt transactions), neither RD nor WR s
activated. For write operations, a low on WR
indicates that valid data from the bus master is
on the AD lines. The Output Enable line continues
to be asserted until WR is deasserted. For read
operations, the bus master drives the FD line low
when the addressed device is to put its data on
the bus. Coincident with the assertion of RD, the
AD lines are 3 stated by the bus master and CE is
deasserted; Input Enable (IE) is asserted one-half
clock cycle later. The bus master samples the
data on the falling clock edge just before
deasserting FD and IE. The rising edge of RD or
WR marks the end of the transaction.

The Z280 MPUs WAT input provides a mechanism
whereby the timing of a particular transaction can
be extended to accommodate a memory or peripheral
device with a long access time. The WAT line is
sampled on the falling clock edge when data is to
be sampled (i.e. just before FD or WR rises)
during a transaction. If the WAIT line is low,
another bus clock cycle is added to the
transaction before data is sampled (RD or WR
rises). In this added cycle, and all subsequent
cycles added due to WAT being low, the WAT line
is sampled on the falling edge of the clock and,
if it is low, another cycle is added to the
transaction before data is sampled. In this way,
the transaction can be extended by external logic
to an arbitrary length, in increments of one bus
clock cycle.

The WATT input is synchronous, and must meet the
specified setup and hold times in order for the
2280 MU to function correctly. This requires
asynchronously generated WAT signals to be
synchronized to the QK output before they are
input into the 7280 HFfU. Automatic wait states
can also be generated by programming the Bus
Timing and Control register and Bus Timing and
Initialization register; these are inserted in
the transaction before the external WAT signal is
sampled.

12.5.1 Memory Transactions

Memory transactions move instructions or data to
or from memory when a bus master makes a memory
access. Thus, they are generated during program
execution to fetch instructions from memory and to
fetch and store memory data. They are also
generated to store old program status and fetch
new program status during interrupt and trap
handling, and to transfer information during DVA
controlled memory accesses. A memory transaction
is three bus cycles long unless extended with
hardware- and/or software-generated wait states,
as explained previously.

Memory transaction timing is illustrated in
Figures 12-2 and 12-3. During the first bus cycle,

AS is asserted to indicate the beginning of a
transaction; Output Enable (OE) is also asserted
at this time. The MR signal goes active during
the second half of this bus cycle, which indicates
a memory transaction. For a Read operation
(Figure 12-2), RD is activated during the first
half of the second bus cycle, after the bus master
has 3-stated the AD lines; CE is deasserted at
the beginning of the second cycle and Input Enable
(IE) is asserted during the second half of the
second cycle. The bus master samples the infor-
mation returned from memory on the Address/Data
bus on the falling edge of the clock during the
third bus cycle; after the data is sampled, RD,
MREQ and IE are deasserted. For a Write oper-
ation (Figure 12-3), the WR line is asserted
during the second half of the second cycle, after
the bus master has placed the data to be written
on the AD lines, and (E stays active throughout
the transaction.

The WAIT input is also sampled on the falling edge
of the clock during the third clock cycle; if
WAT is low, another bus clock cycle is added
before sampling the data. Wait states can also be
added through programming of the Bus Timing and
Initialization regqister and Bus Timing and Control
reqister. For example, Fiqures 12-4, 12-5, and
12-6 illustrate memory transactions with one wait
state.

12-5

Figure 12-4. Memory Read Timing with One External Wait State

12-6

CLK

Figure 12-5. Memory Write Timing with One External Wait State

Figure 12-6. Memory Read Timing with One Internal Wait State

12-8

12.5.2 RETI Transactions

RETI transactions (Figure 12-7) are similar to
memory read transactions with two exceptions: M
is asserted throughout each read transaction,
falling early in the first bus cycle, and MREQ
ML, RD, and IE are deasserted on the rising edge
of the clock following the third cycle. Each of
the read transactions is followed by a minimum of
three bus cycles of inactivity. These trans-
actions are invoked whenever an REfl instruction
is encountered in the instruction stream; they
are used to re-fetch the instruction from external
memory so that interrupt logic within Z8400 family
peripherals that monitor the bus for this
instruction will function correctly.

f2»5.3 Halt and Refresh Transactions

There are two types of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are similar to memory
transactions, except that RD and WR remain high,
the WAIT input is not sampled, and no data is
transferred.

Halt transactions (Figure 12-8) are identical to
menory read transactions except that HAT is
asserted throughout the transaction, falling
during the second half of the first bus cycle, and
remains asserted after the transaction is
completed. This transaction is invoked when a
HALT instruction.is executed or a fatal seguence
of traps occurs. For Halt transactions generated
by the HALT instruction, once the Halt transaction
is completed, all subseguent QU activity is
suspended until an active interrupt reguest or
reset is detected. After Halt transactions
generated due to a fatal condition, all QU
activity is suspended until an active reset is
detected (see section 6.6). The HALT line remains
asserted until the interrupt reguest s
acknowledged or the reset is received. Refresh
transactions or DVA transfers may occur while HALT
is asserted; also, the bus can be granted. The
address put out during the address phase of the
Halt transaction is the address of the Halt
instruction or the instruction that initiated the

fatal seguence of traps. \

Figure 12-8. HaltTiming

129

A memory refresh transaction (Figure 12-9) is
generated by the 7280 MU refresh mechanism and
can occur immediately after the final clock cycle
of any other transaction. The memory refresh
counter'8 10-bit address is output on ADQAD7, Ag,
and A9 when AS is asserted; the remaining address
lines are undefined. The RFSH line is activated
concurrent with MREQ This transaction can be
used to generate refreshes for dynamic RAMSs.
Refreshes may occur while the CPU is in the Halt
state.

12.5.4 1/0 Transactions

/0 transactions move data to or from peripherals
and are generated during the execution of I/O
instructions or during DMA-controlled transfers.
.1/0 transactions to devices in /O pages FE* and
FFdo not generate external bus transactions.

Figures 12-10 and 12-11 illustrate /O transaction
timing. 1/O transactions are four clock cycles
long at a minimum, and, like memory transactions,
may be lengthened by the addition of wait cycles.
/0 transaction timing is similar to memory
transaction timing with one automatic wait state.

The IORQ line indicates that an I/O transaction is
taking place. The 1/0 address is found on ADQ-AD7
and Ag-A23 when AS rises. For read operations, FD
and |IE are asserted during the second clock cycle,
and input data from the peripheral is sampled by
the bus master during the fourth cycle (unless
additional wait states are inserted in the
transaction). For write operations, WR is
asserted during the second cycle with OE remaining
asserted; output data to the peripheral is placed
on the bus at this time.

10 tea significant Mts art Refresh address, tha restare undsfinsd.

Figure 12-9. Memory Refresh Timing

12-10

Figure 12-10. /O Read Timing

Figure 12-11. 1/O Write Timing

12.5.5 Interrupt Acknowledge Transactions

Interrupt acknowledge transactions acknowledge an
interrupt and read information from the device
that generated the interrupt. These transactions
are generated automatically by the CU when an
interrupt request is detected.

Interrupt acknowledge transactions are five cycles
long at a minimum, with two automatic wait cycles
(Figure 12-12). The wait cycles are used to give
the interrupt priority daisy chain (or other
priority resolution devices) time to settle before
the identifier or vector is read. Additional
automatic wait states can be generated by
programming the Bus Timing and Control register.

The interrupt acknowledge transaction is indicated
by an ML assertion without MREQ during the first
cycle. The AD* and AD2 address lines indicate the
type of interrupt being acknowledged when AS is
asserted (see Table 6-4); the remaining address
lines are undefined. The IORQ signal becomes
active during the third cycle to indicate that the
interrupting device can place an 8-bit identifier
or vector on the bus. It is captured from the AD
lines on the falling clock edge before IORQ is
raised high.

There are two places where the WAT line is
sampled and, thus, where wait states can be
inserted by external circuitry. The first, during
T2, serves to delay the falling edge of IORQ to

Figure 12-12. Interrupt Acknowledge Sequence

12-12

allow the daisy chain a longer time to settle;
the second, during T3, serves to delay the point
at which the identifier or vector is read.
Software-generated wait states can also be added
at either time via programming of the DC and I/O
fields in the Bus Timing and Control register. As
always, software-generated wait states are
inserted into the transaction before the external
WAT signal is sampled.

12.5.6 DVA Flyby Transactions

On-chip DVA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external DVA controllers in 7280
MU systems may also have this capability. The
timing of flyby transactions is identical to
memory transaction timing, with the exception that
the OVA Flyby Strobe (DMASTB) signal is activated;
the DVASIB signal is used to select the partici-
pating 1/0O device that must capture or supply the
data during the memory access transaction.

Flyby transactions controlled by the on-chip DVA
channels always include one automatic wait state
(Figures 12-13 and 12-14). As with all memory

transactions, other hardware- and software-
generated wait states can be added to the trans-
action. The external WAIT signal is sampled at
two different times: during the automatic wait
state and during T3.

For flyby transactions that read from memory and
write to a peripheral (Figure 12-13), DVASIB
is asserted during the automatic wait state and
any subsequent wait states added by an active WAIT
signal sampled during the automatic wait state.
Thus, if the WAT input is asserted during the
automatic wait state, the additional wait states
extend the width of the DVASIB pulse. Wait states
added via the assertion of WAIT during T3 (after
DVASIB is deasserted) stretch the RD signal
without affecting DVASTB

For flyby transactions that read from a peripheral
and write to memory (Figure 12-14), DVASIB is
asserted at the beginning of T2 and remains
asserted until the second half of T3. The

signal is asserted only during the automatic wait
state and any subsequent wait states added by
sampling WAIT during the automatic wait state.
Wait states added via the assertion of WAIT during
T3 stretch the DVASIB signal without affecting WR

12-13

Figure 12-14. On-Chip DMA Channel Flyby Memory Write Transaction

12.6 REQUESTS

The 7280 MU supports three types of request
signals: interrupt requests, local bus requests,
and global bus requests. A request is answered

according to its type. Interrupt requests are
generated by peripheral devices; the 27280 MU
responds with an Interrupt Acknowledge trans-

action. Local bus requests are initiated by an
external potential bus master; the 7280 MU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the 27280 CPU or an
on-chip DVA channel to access a global bus; the
7280 MPU receives a Global Bus Acknowledge signal
in response to the request.

12.6.1 Interrupt Requests

The 7280 QU supports two types of interrupts,
maskable INT and nonmaskable (NMI). The interrupt
request line from a device capable of generating
interrupts can be tied to the 7280 MPUs INT or

12-14

NM inputs; several devices can be connected to
one interrupt request input, with interrupt
priorities established via external logic or a

priority daisy chain. However, all Z8400 family
peripherals in a Z280-based system w ill respond to
the RETI transaction. Therefore, either all Z8400
family peripherals should use the same interrupt

request line or, alternatively, no nesting of
interrupts should be allowed among the Z8400
peripherals using different interrupt request
lines.

Nonmaskable interrupt requests are edge-triggered,
but maskable interrupts are level-triggered. Any
high-to-low transition on the NM input is
asynchronously edge-detected, and an internal NVt
latch is set. At the beginning of the last clock
cycle during execution of an instruction, the
maskable interrupt inputs are sampled along with
the state of the internal NM latch. If an
interrupt is detected, and that interrupt is
enabled in the Master Status register, interrupt
processing proceeds in accordance with the current
interrupt mode, as described in Chapter 6.

12.6.2 Local Bus Requests

To generate transactions on the bus, a potential
bus master (such as a DMA controller) must gain
control of the bus by making a bus request. A bus
request is initiated by pulling BUSREQ low; the
7280 MAU responds by 3-stating its address, data,
bus control, and bus status outputs and asserting
an active BUSACK, as described in section 10.2.
The CPU regains control of the bus after BUSREQ
rises. The on-chip DVA channels have higher
priority than external devices requesting the bus

via BUSREQ

12.6.3 Global Bus Requests

If the multiprocessor mode is specified in the Bus
Timing and Initialization register, then the
contents of the Local Address register determine
the range of memory addresses dedicated to the

[u [

shared global bus. Before accessing an address on
the global bus, the 7280 MU must issue a Global
Bus Request (GREQ and receive an active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 12-15 illustrates the timing of the global
bus request/acknowledge sequence. When the Z280
MU needs to access a location on the global bus,
GRR) is asserted in order to request use of the
global bus. CAX is then sampled on each
successive rising edge of the clock; when GAXK
becomes active (and if BUSREQ is not asserted),
the memory transaction proceeds as described in
section 12.5.1. GE) is deasserted in the bus
clock cycle immediately following the end of the
memory transaction (except when executing the Test
and Set instruction, where both the memory read
and write operations are executed before
deasserting GREQ).

' CLK I
L
—
e " s s X 7,

AS
£-
BUSREQ ~
GREQ \//
GACK

X

a I

H<SH

Figure 12-15. Multiprocessor Mode Timing

12-15

13.1 INTRODUCTION

The 72280 MU is typically only one component in a
system that mey include memory, peripherals, slave
processors, coprocessors, and other CPUs, all
connected via a system bus. Two different
component-interconnect bus schemes are available
with the 72280 MPU the Z80 Bus and the Z-BUS.

This chapter describes the external manifestations
(that is, the activity on the pins) that result
from CRU or on-chip peripheral activity for the
ZBUS configurations of the 27280 MPU. (The
Z80 8us external interface is described in Chapter
12.) Since the pins are connected to the system
bus, most of this discussion will center on the
bus and bus operations.

The condition of the OPT pin determines the
configuration of the bus interface for the 2280
MPY the Z-BUS configuration is selected either by

Figure 13-1a. Pin Functions

Chapter 13.
Z-BUS External Interface

applying a logical 1 (Vcc) level on the CPT pin
or by leaving the CPT pin disconnected.

The ZBUS on the 27280 MU includes a 24-bit
address bus, 16-bit data bus, and associated
status and control signals. The data bus is
multiplexed with the low-order 16 bits of the
address bus. The ZBUS configuration of the 7280
MU supports the use of Extended Processing Units
and burst-mode memories. Figure 13-1 shows the
pin functions and pin assignments for the Z-BUS
configuration of the 27280 MPU The Z-BUS
described here is compatible with Zilog's Z8000
family of peripheral devices. Other Z-BUS
compatible components include the 78000 family of
CPUs. Refer to Zilog's Component Data Book for a
complete description of the ZBUS Component
Interconnect convention.

A% »N W

ir KSiggmiffifM

Figure 13*1b. Pin Assignments

Figure 13-1. Z-BUS Configuration (input OPT tied to + 5V or not connected)

13.2 BUS OPERATIONS

Two kinds of operations can occur on the Z-BUS:
transactions and requests. At any given time only
one device (either the CGRU or a bus requestor such
as a OMA channel) can be in control of the bus;
this device is called the bus master. Trans-
actions are always initiated by the bus master and
are responded to by some other device on the bus.
Only one transaction can proceed at a time.
Requests can be initiated by a device that does
not have control of the bus.

Seven types of transactions can occur on the
Z-BUS, as described below:

Memory transaction. CPU- or DMA-controlled
transfer of data to or from a memory location.
Halt transaction. Transaction indicating that
the QU is entering the Halt state due to
execution of a HAT instruction or a fatal
sequence of traps.

Refresh. Transaction that refreshes dynamic
memory; refresh transactions do not involve a
transfer of data.

I/d transaction. CPU- or DMA-controlled transfer
of data to or from a peripheral device.

Interrupt Acknowledge. CPU-controlled
transaction used to acknowledge an interrupt and
read data from the interrupting device.

EPU transaction. A transfer of data from an
Extended Processing Unit (EPU) to the CPU.

DVA Flyby transaction. A DMA-controlled
transaction that transfers data between a memory
location and a peripheral device.

Two types of requests can occur on the Z-BUS, as
described below:

Interrupt request. A request initiated by a
peripheral device to gain the attention of the
CPU.

Bus request. A request by an external device
(typically a DMVA channel) to gain control of the
bus in order to initiate transactions.

A request is answered by the CQPU according to its
type: for interrupt requests, an interrupt
acknowledge sequence is generated; for bus
requests, the QU relinquishes the bus and
activates an acknowledge signal.

13-2

13.3 PIN DESCRIPTIONS

The pin functions and assignments for the Z-BUS
configuration of the 2280 MAJ are illustrated in
Figure 13-1. A functional description of each pin
is given below:

A16-A23. address (output, active High, 3-state). These
address lines carry 1/0 addresses and memory addresses
during bus transactions.

AD0-AD15. addressimata (bidirectional, active High,
3-state). These 16 multiplexed address and data lines carry
I/O addresses, memory addresses, and data during bus
transactions.

AS. address strobe (OUtpUL, active Low, 3-state). The rising
edge of Address Strobe indicates the beginning™ of a
transaction and shows that the address, status, R\W, and
B/W signals are valid.

BUSACK. Bus acknowledge (OUtpUL, active Low). A Lowon
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

IUSREQ. 8us request (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
istrying to obtain control of the bus.

B/W. 8yte/wora (OUtpUt, Low = Word, 3-state). This signal
indicates whether a byte or a word of data is to be
transmitted during a transaction.

CLK. ciock output (output). The frequency of the processor
timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. Tipe
processor clock is further divided by one, two, or four (as
programmed), and then output on this line.

CTIN. counter/Timer in put (input, active ngh) These lines
receive signals from external devices for the counter/timers.

CTIO. counter/Timer 1/0 (bidirectional, active ngh,
3-state). These /O lines transfer signals between the
counter/timers and external devices.

DMASTB. oma Fiyby strobe (OUtpuUt, active Low). These
lines select peripheral devices for DMA flyby transfers.

DS. pata strobe (OUtput, active Low, 3-state). This signal
provides timing for data movement to or from the bus
mester.

EOP.end ofrrocess (iNput, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
isactive, EOP isignored.

GACK. ciobal Acknowledge (input, active LON) A Lowon
this line indicates the CPU has been granted control of a
global bus.

GREQ.global Request (OUtpUt, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

IE. inputenabie (OUtpUL, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines istoward the CPU.

INT.Maskable Interrupts (Input, active L(NV) A Lowon these
lines requests an interrupt.

NMIl. Nonmaskable Interrup linm, falling-edge aCthated)
A High-to Lowtransition on this line requests a nonmaskable
interrupt.

OE. output Enabie (OUtput, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.'

OPT. Bus option (iNput). This signal establishes the bus
option during reset as follows:

OPT Bus Interface
0 Z80-Bus, 8-hit
1 Z-BUS, 16-bit

PAUSE. cpu pause (input, active Low). While this line isLow
the CPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

RDY. oma ready (input, active Low). These lines are
monitored by the DMA channels to determine when a
peripheral device associated with a DMA channel is ready
for a read or write operation. When a DMA channel is

enabled to operate, its Ready line indirectly controls DMA
activity; the manner in which DMA activity is controlled by
the line varies with the operating mode (single-transaction,
burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.

R/W. read/w rite (OUtpUt, Low = White, 3-state). This signal
determines the direction of data transfer for memory, 1/0, or
EPU transfer transactions.

Rxb. uarT rReceive (input, active High). This line receives
serial data at standard TTL levels.

STO-ST3. status (OUtput, active High, 3-state). These four
lines indicate the type of transaction occurring on the bus
and give additional information about the transaction.

TXD. uarT Transm it (OUtput, active High). This line transmits
serial data at standard TTL levels.

WAIT. wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.

XTALL ciockicrystal input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clockto
the on-chip clock oscillator.

XTALO. crystal output (time-base output). Connects a
parallel-resonant crystal to the on-chip clock oscillator.

+5V.PowersSupply Voltage. (+5 nomnal)

GND. ¢ round. Ground reference.

13-3

13.4 BUS CONFIGURATION AND TIMING

Four Z280 CRU control registers specify certain
characteristics of the 27280 MPUs external
interface and determine bus timing: the Bus
Timing and Initialization register, Bus Timing and
Control register, Local Address register, and
Cache Control register.

Bus timing is determined by the frequency of the
7280 MPUs external clock source or crystal and
the contents of the Bus Timing and Initialization
register, which receives its initial values as
part of the reset process (see section 3.2.1).

The frequency of the processor clock is one-half
of the frequency of the external clock source or
crystal. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling field in the Bus Timing and
Initialization register. The bus timing clock is
output by the WU as the QK signal. In the
logical timing diagrams that follow, signal
transitions on the bus are shown in relation to
the bus clock, CLK

The number of automatic wait states included in a
given transaction is determined by the contents of
the Bus Timing and Initialization and Bus Timing
and Control registers. The physical memory
address space is divided into two sections based
on the most significant physical address bit,
Af3« Up to three automatic wait states can be
added to transactions to the lower half of memory
(addresses where A23 = 0); similarly, up to three
automatic wait states can be added to transactions
to the upper half of menmory (A23 = 1)»'to all I/O
transactions, and to interrupt acknowledge
transactions.

The state of the Multiprocessor Configuration
Enable bit in the Bus Timing and Initialization
register and the contents of the Local Address
register determine which memory transactions
require use of a global bus, as described in
section 10.3. The contents of the Cache Control
register and the state of the address tags and
valid bits in the cache memory determine which
transactions employ the cache memory and which
transactions use the external bus interface, as
described in Chapter 8.

13-4

13.5 TRANSACTIONS

At any given time, one device (either the GRUor a
bus requester) has control of the bus and is known
as the bus master. A transaction is initiated by
the bus master and is responded to by some other
device on the bus. Information transfers (both
instructions and data) to and from the 7280 MU
are accomplished through the use of transactions.
All transactions start when Address Strobe (AS) is
driven low and then raised high.

On the rising edge 6f S5 the bus status signals
(STO-ST3> RW, and BMW) are valid. The STqSTj
status lines indicate the type of transaction
being performed (Table 13-1). Typically, these
signals are decoded and used to enable the
appropriate buffers, drivers, and chip select
logic necessary for proper completion of the data
transfer.

Table 13-1. ST Status Line Decode

Status Lines
3««0 lype of Transaction

0000 Reserved

0001 Refresh

0010 1/0 transaction

0011 Halt

0100 Interrupt acknowledge line A

0101* NMI acknowledge
0110 Interrupt acknowledge line B
0111 Interrupt acknowledge line C

1000 Transfer between CPU and memory, cacheable

1001 Transfer between CPU and memory,
non-cacheable

1010 Data transfer between EPU and memory

1011 Reserved

1100 EPU Instruction fetch, template, subsequent
words.

1101 EPU Instruction fetch, template, first word

1110 Data transfer between EPU and CPU

1111 Test and Set (data transfers)

[f the transaction requires an address, the
address is valid on the rising edge of AS. Thus,
AS can be used to latch 7280 NPU addresses to
de-multiplex the Address/Data lines. No address
is required for BPUCPJ or Interrupt Acknowledge
transactions; the contents of the A and AD lines
are undefined while AS is asserted during these
transactions. If an address is generated for a
transaction, the Output Enable (OE) signal is
activated coincident with AS assertion.

The ZBUS MPUs use Data Strobe (DS) to time the
transfer of data. For transactions that do not
involve the transfer of data (Refresh and Halt
transactions), DS is not activated. During write
operations (RW = low), a low on DS indicates that
valid data from the bu8 master is on the
Address/Data lines. The Output Enable line
continues to be asserted until DS is deasserted.
For Read Operations (RW = high), the bus master
drives DS low when the addressed device is to put
its data on the bus. Coincident with the
assertion of DS during a read operation, the AD
lines are 3-stated by the bus master, CE is
deasserted, and Input Enable (IE) is asserted.
The bus master samples the data on the falling
clock edge just before deasserting DS and IE.

The Z280 MPUs WAIT input provides a mechanism
whereby the timing of a particular transaction can
be extended to accommodate a memory or peripheral
device with a lonq access time. The WAT line is
sampled on the falling clock edge when data is to
be sampled (i.e. just before DS rises) during a
transaction. |f the WAT line is low, another bus
clock cycle is added to the transaction before
data is sampled and DS rises. In this added
cycle, and all subsequent cycles added due to WAT
being low, the WAT line is sampled on the falling
edge of the clock and, if it is low, another cycle
is added to the transaction. In this way, the
transaction can be extended by external loqgic to
an arbitrary length, in increments of one bus
clock cycle.

The WA input is synchronous, and must meet the
specified setup and hold times in order for the
7280 MU to function correctly. This requires
asynchronously-generated WRIT signals to be
synchronized to the QK output before they are
input into the Z280 MPU. Automatic wait states
can also be generated by programming the Bus
Timing and Control register and Bus Timing and
Initialization register; these are inserted in
the transaction before the external WRIT signal is
sampled.

13.5.1 Memory Transactions

Memory transactions move instructions or data to
or from memory when a bus master makes a memory
access. Thus, they are generated during program
execution to fetch instructions from memory and to
fetch and store memory data. They are also
generated to store old program status and fetch
new program status during interrupt and trap
handling, and to transfer information during DVA
controlled memory accesses. A memory transaction
is three bus cycles lonq unless extended with
hardware- and/or software-generated wait states,
as explained previously.

During memory transactions, the STj-STg status
lines indicate that a memory transaction is
occurring and provide the following information:

¢ Whether the memory access is cacheable (ST3-STQ
= 1000) or noncacheable (STj-STg = 1001).

a Whether the memory access is a fetch of an
extended instruction's template intended for an
EPU (ST3-STO “ 1100 or 1101).

a Whether the data is supplied or captured by an
Extended Processor Unit while executing an
extended instruction (SA-STg = 1010).

a Whether the memory access is part of an atomic
read-modify-write operation during the
execution of a Test and Set instruction
(ST3-STO = 1111).

A memory read is distinguished from a memory write
via the RW signal.

13.5.1.1 Byte/Wbrd Organization

The byte is the basic addressable memory element
in Z280 MU systems. However, although memory is
addressed as bytes, the Z-BUS configuration of the
7280 MU has a 16-bit data path, and memory trans-
actions can be byte or word transfers. Each
16-bit word in memory is mede up of two 8-bit
bytes, where the least-significant byte proceeds
the most-significant byte of the word, as in the
780 AU architecture. For example, the word at
memory location 5000" has its low-order byte at
location 50000 and its high-order byte at
location 5001

Bytes transferred to or from odd memory locations
(address bit 0 = 1) are always transmitted on
lines ADg-ADys Bytes transferred to or from even
memory locations (address bit 0 = 0) are always
transmitted on lines ADg-AD”. For byte reads BW
= high, RW = high), the G or on-chip DVA
channel uses only the byte whose address it put
out on the bus. In other words, for a byte read
with an odd address, the CPU or DVA channel will
only read the lower half of the bus; for a byte
read with an even address, the CRU or DVA channel
will only read the upper half of the bus. For
byte writes (BW = high, RW = low), the CPU or
on-chip DVA channel (flowthrough mode) places the
byte to be written on both halves of the bus, and
the proper byte must be selected in the memory
control logic by testing address bit 0.

For word transfers (BW = low), all 16 bits are
captured by the CPU or DVA channnel during reads
(RW = high) or stored by the memory during writes

13-3

(RW s low). The most-significant byte of the
word is transferred or, ADQAD7 and least-
significant byte on ADg-AD”; thus, the bytes of
data will appear swapped on the bus, with the most
significant byte on the lower half of the bus and
the least significant byte on the upper half of
the bus. Word transfers always use even-valued
addresses (address bit 0 = 0) and result in an
access to the byte at the even address and the
next consecutive byte at the foliowing odd
address. For example, a word access to location
50000 would access the byte at location 5000H
(transferred on ADg-AO”) and the byte at location
5001 (transferred on ADQADY).

Instruction fetches are always executed as word
transactions. However, instruction opcodes need
not be aligned on even-address boundaries; the
CPU will use only one byte of the fetched word if
appropriate.

Data accesses may be byte or word accesses. Data
words aligned at even-address memory boundaries
are accessed via one word transaction. Data words

on odd-address boundaries are accessed via two
consecutive byte transactions.

CLK

ADO~AD15
Ai«-A23

AS

STATUS
SIW

R/W = 1

DS

51

13.5.1.2 Memory Transaction Tininq

Memory transaction timing i3 illustrated in
Fiqures 13-2 and 13-3. During the first bus cycle,
AS is asserted to indicate the beginning of a
transaction; Output Enable (OE) is also asserted
at this time. All address and status information
is guaranteed valid on the risinq edge of AS. The
STO-ST3 status lines indicate that a memory trans-
action is occurring. For a read operation (Fiqure
13-2), DS is activated during the first half of
the second bus cycle, after the bus master has
3-3tated the AD lines; OE is deasserted at the
beqinning of the second cycle and Input Enable
(IE) i3 asserted during the second half of the
second cycle. The bus master samples the
information returned from memory on the Address/
Data bus on the falling edge of the clock during
the third bus cycle; after the data i.3 sampled,
S and IE are deasserted. For a write operation
(Fiqure 13-3), DS is asserted during the second
half of the second cycle, after the bus master has
placed the data to be written on the AD lines, and
OE stays active throughout the transaction.

Figure 13-2. Memory Read Timing

13-6

r— T— *f— B»— 1- — — 7

F'u 1 1 1 1 1

1 J1 !
ADO-ADis * m/ ADDRESS Y DATA VALID X

A «-A23
s C

TSIX e X
\ f
7T

HIGH

Figure 13-3. Memory Write Timing

cue

ado-adis

(1
A1S-A23

STATUS VALID
MW :

\ I T

Figure 13-4. Memory Read Timing with External Wait Cycle

ADO-ADIt - ADDRESS DATA VALID X
Aia-Aaa X ADDRESS X

Al
STATUS
_ BWw STATUS VALID X
RiW « O
of \

A

11 HIiH

Figure 13-5. Memory Write Timing with External Wait Cycle

Figure 13-6. Memory Read Timing with Internal Wait Cycle

The WAIT input is also sampled on the falling edge
of the clock during the third clock cycle; if
WAIT is low, another bus clock cycle is added
before sampling the data. Wait states can also be
added through programming of the Bus Timing and
Initialization register and Bus Timing and Control
register. For example, Figures 13-4, 13-5, and
13-6 illustrate memory transactions with one wait
state.

13.5.1.3 Burst Memory Transactions

The Z-BUS configuration of the 7280 MU supports a
special kind of memory transaction called a "burst
memory transaction” for use in systems employing
burst-mode memory devices. Control bits in the
Cache Control register indicate whether portions
of the memory system can support burst
transactions; burst node can be specified for
either the upper half of memory (A23 = 1)> the
lower half of memory (A23 = 0), or both.

Burst memory transactions are used only during
instruction fetches to ‘"prefetch" instructions
into the on-chip cache. In a burst memory read,
four consecutive words of memory are read. If a
byte is to be read from a portion of external

memory that supports burst transactions, and that
read operation is cacheable, the CPU reads the
four words that contain the desired byte of the
instruction with a single burst transaction. The
address of the first word read during a burst
transaction has zeros in the three least
significant bits. The GU reads a tojtal of eight
bytes via four word transfers, where the last byte
read has all ones in the three least significant
bits of its address. This effectively increases
the bus bandwidth by prefetching a cache block on
a cache miss. .Burst transactions are not used
when fetching templates in extended instructions.

The timing of a burst transaction is illustrated
in Figure 13-7. During burst transactions, four
Data Strobes are generated with a single Address
Strobe. Timing for the first data transfer is
identical to that for a single memory read,
including the insertion of automatic wait states.

This first transfer is immediately followed by
three more transfers in the next three bus clock
cycles. The WAT input is sampled during each
transfer and any resulting wait states, thereby
allowing wait states to be added before any of the
transfers. However, automatic wait states are
added only before the first transfer.

13-9

13.5.1.4 Test and Set Memory Transactions

The Test and Set (TSET) instruction provides a
locking mechanism that can be used to synchronize
software processes in a multitasking or multi-
processor system where exclusive access to certain
resources is required. TSET tests and sets
semaphores that control access to shared
resources. Execution of TSET involves a memory
read followed immediately by a memory write; the
memory read followed by the memory write is one
indivisible operation. The testing and setting of
a semaphore requires the semaphore to be read from
memory, modified, then written back into the same
memory location. During the first of these two
memory operations, the "1111" status code is
placed on the sTj-sTq status lines. This is
particularly useful in a multiple microprocessor
environment with semaphores in a shared memory
area. The Test and Set status code can be used to
control external circuitry that precludes memory
access by another processor during the Test and
Set semaphore operation. Furthermore, the BUSREQ
input is disabled during a Test and Set operation
to ensure that the semaphore is tested and set
without any intervening accesses.

13.5.2 Halt and Refresh Transactions

There are two kinds of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are similar to memory
transactions, except that DS remains high, the
WAT input is not sampled, and no data is
transferred.

The Halt transaction (Figure 13-8) is generated
when a HALT instruction is encountered or a fatal
sequence of traps occurs. The "0011" status code
on the ST3-STQ lines identifies the Halt
transaction. For Halt transactions generated by
the HALT instruction, once the Halt transaction is
executed, all subsequent GU activity is suspended
until an active interrupt request or reset is
detected. After Halt transactions generated due
to a fatal condition, all QU activity is
suspended until an active reset is detected (see
section 6.6). However, Refresh transactions or
DVA transfers mey occur while the CPU is in the
Halt state; also, the bus can be granted. The
address emitted during the address phase of the
Halt transaction is the address of the Halt
instruction or the instruction that initiated the
fatal sequence of traps.

Figure 13-8. Halt Timing

13-10

A memory refresh transaction (Figure 13-9) is
generated by the 7280 MAU refresh mechanism and
can occur immediately after the final clock cycle
of any other transaction. The memory refresh
counter's 10-bit address is emitted on ADQAD9
when AS is asserted; the contents of the
remaining address lines are undefined. The "0001"
status code on the ST3-STO lines identifies the
Refresh transaction. This transaction can be used
to generate refreshes for dynamic RAVs. Refreshes
mey occur while the CPU is in the Halt state.

13.5.3 1/0 Transactions

1/0 Transactions move data to or from peripherals
and are generated during the execution of 1/0
instructions or during DMA-controlled transfers.
1/0 transactions to devices in 1/0 pages FE" and
FFfl do not generate external bus transactions.

Figures 13-10 and 13-41 illustrate 1/0 transaction
timing. 1/0 transactions are four clock cycles
long at a minimum, and, like memory transactions,
may be lengthened by the addition of wait cycles.
1/0 transaction timing is similar to memory

=
4
Tl
-

CcLK 1 jl_

ADo-ADis----
Aie-A23 Y
AS
B/W = O n
DS

ol A /

11

*10 laast-signifleant bits art Refresh address.

transaction timing with one automatic wait state.
The "0010" status code on the ST3-STO line3
indicates that an 1/0 transaction is taking place,
and the RW line indicates the direction of the
data transfer. The 1/0 address is found on
ADrAD” and/A16-A23 when AS rises. For read
operations, 55 and IE are asserted during the
second clock cycle, and input data from the
peripheral is sampled by the bus master during the
fourth cycle (unless additional wait states are
inserted in the transaction). Note that 5S falls
near the middle of T2 for 1/0 read transactions
(as opposed to the beginning of T2 for memory
reads); this provides peripheral control logic
with additional time for address decoding. 1For
write operations, DS is asserted during the second
cycle with OE remaining asserted; output data to
the peripheral is placed on the bus at this time.

For byte 1/0 operations (B/W = high), the byte of
data is always transferred on the ADD-AD7 bus
lines, regardless of the address of the peripheral
device. For word 1/0 operations, the - most
significant byte of data is transferred on ADg-ADy
and the least significant ,byte on ADg-AD"* as
with word memory transactions.

undefined Y
STATUS VALID n
HIGH
Vv 1

Figure 13-9. Memory Refresh Timing

13-11

Figure 13-10. 1/0 Read Timing

Figure 13-11. 1/O Write Timing

13-12

13.3.4 Interrupt Acknowledge Transactions
Interrupt Acknowledge transactions acknowledge an
interrupt and read an identifier from the device
that generated the interrupt. These transactions
are generated automatically by the CPU when an
interrupt request is detected. ,

Interrupt Acknowledge transactions are five cycles
long at a mimimum, with two automatic wait cycles
(Figure 13-12). The wait cycles are used to give
the interrupt priority daisy chain (or other
priority resolution devices) time to settle before
the identifier is read. Additional automatic wait
states can be generated by programming the Bus
Timing and Control register.

The ST3-STO status lines indicate the type of
interrupt being acknowledged. No address is
generated, so the contents of the address bus are

undefined when AS is asserted. The RW line
indicates read (high), and the 8W line indicates
word (low). The identifier is sampled by the GRU
on the AD lines at the falling clock edge before
DS is raised high.

There are two places where the WAT line is
sampled and, thus, where wait states can be
inserted by external circuitry. The first, during
T2, serves to delay the falling edge of D[S to
allow the daisy chain a longer time to settle;
the second, during T3, serves to delay the point
at which the identifier is read. Software-
generated wait states can also be added at either
time via programming of the DC and I/O fields in
the Bus Timing and Control register. As always,
software-generated wait states are inserted into
the transaction before the external WAIT signal is
samplede

Figure 13*12. Interrupt Acknowledge Timing

13-13

13.5.3 Extended Processing Unit (EPU)
Transactions

7280 MPs in the ZBUS configuration can operate
in conjunction with one or more Extended
Processing Units (EPUs). Functioning as a
coprocessor, the HBEPU monitors the status and
timing signals output by the CPU so that it knows
when to participate in a transaction. The 7280 MU
provides the address, status, and timing signals
while the BPU supplies or captures data. Each of
the four possible types of transactions that
require BPU participation are signalled by the
7280 MAU ST3-Sr0 outputs. CGPU and ERU interaction
is fully described in section 10.5.

13.5.5.1 BEPU Instruction Fetch

When the 2280 QU encounters an extended
instruction, the state of the BPU Enable bit in
the Trap Control register is examined. |f the BRU
Enable bit is zero, the 27280 generates an
Extended Instruction trap. If the EPU Enable bit
is set to 1, then the four-byte BPU template is

T .
r
CLK I I

fetched from memory using memory transactions and
captured by both the CGRU and EPU. The "HOI"
status code on the 5T3-STQ lines indicates when
the first word of the template is fetched, and the
"1100" status code indicates fetches of the
subsequent template word or words, depending on
the alignment. The QU fetches the template from
external memory using two word transactions if the
template is aligned (that is, starts on an even
address) or a byte transaction followed by two
word transactions if the template is unaligned.
The opcode and addressing mode portion of the
extended instruction may be executed from cache,
but the template will always be fetched from
external memory.

In a multiple BPU system, the BU that is to
participate in the execution of an extended
instruction is selected implicitly by an
identification code in the instruction template.
Thus, there is no indication on the bus as to
which BPU is cooperating with the GRU at any given
time.

ADo-ADis 1

A16-A23 X

urn .

wait

STATUS VALID Y

\ y

Figure 13-13. Memory to EPU Timing

13-14

13.5.5.2 Memory-EPU Transactions

If an extended instruction involves a read or
write to memory, then the transfers of data
between memory and the HBU are the next
non-refresh transactions performed by the QU
following the fetch of the template. The timing
of memory-EPU data transfers is shown in Figures
13-13 and 13-14. The BUJ must supply the data
during write operations (RW = low) or capture the
data during read operations (RW = high), just as
if it were part of the CPU. In both cases, the
QU 3-states its AD lines while data is being
transferred (OS = low). BEPU reads from memory are
three cycles long unless extended by wait states.
BPU writes to memory are six cycles long unless
extended by wait states.

13.5.5.3 EPUCPU Transactions

If an extended instruction involves a transfer
from the BPU to the Z280 CPU, the next non-refresh
transaction following the fetch of the template is
the EPU-to-CPU data transfer (Figure 13-15).

EPU-to-CPU transactions have the same form as I/O
read transactions and thus are four clock

cycles long, unless extended by wait states.
Although AS is asserted, no address is generated
and the contents of the address bus are
undefined. The "1110" status code on the ST3-STQ
lines indicate an EPU-to-CPU transaction.

13.5.5.4 PAUSE Timing

The PAEE signal is used to synchronize CPUEPU
activity in the case of overlapping extended
instructions. The CPU samples the PAUSE signal
within one bus clock period of the completion of
the fetch of an extended instruction's template
(Figure 13-16). If PAUSE is active when sampled,
the QU enters an idle state wherein all QU
activity is suspended. While in this idle state,
the QU samples the PAUSE input each processor
clock cycle until PAKE is deasserted. The CGPU
then resumes operation at the point at which it
was suspended, either by executing the data
transactions associated with the extended
instruction (in the <case of an extended
instruction specifying an EPU-memory or CPUBEPU
data transfer) or by starting the fetch of the
next instruction (in the case of an extended
instruction specifying an internal EPU operation).

Figure 13-14. EPU Write to Memory

1315

AS

DS

PAUSE

13-16

R

FETCH OF
LAST WORD
OF TEMPLATE

Figure 13-16.

NEXT BUS
TRANSACTION

PAUSE Timing

13.5.6 DVA Flyby Transactions

On-chip DVA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external DVA controllers in 2280
MU systems (such as the Z8016 DIC) may also have
thi9 capability. The timing of flyby transactions
is similar to memory transaction timing, with the
exception that the [MA Strobe (DVASIB) signal is
activated; the DVASIB signal is used to select
the participating 1/O device that must capture or
supply the data during the memory access.

Flyby transactions controlled by the on-chip DVA
channels always include one automatic wait state
(Figures 13-17 end 13-18). As with all memory
transactions, other hardware- and software-
generated wait states can be acded to the
transaction. The external WAT signal is sampled
at two different times: during the automatic wait
state and during T3.

Figure 13*17. On-Chip DMA Channel Flyby Memory Read Transaction

13-17

For Flyby transactions that read from memory and
write to a peripheral (Figure 13-17), DVASEB is
asserted during the automatic wait state and any
subsequent wait states due to an active WAT
signal. Thus, if the WAT input is asserted
during the automatic wait state, the additional
wait states extend the width of the QVASIB pulse.
Wait states added via the assertion of WAT during
T3 (after QOWASIB is deasserted) stretch the BT
signal without affecting OVIASTB

For flyby transactions that read from a peripheral
and write to memory (Figure 13-18), DVASIB is
asserted at the beginning of T2 and remains
asserted until the second half of T3. The DS
signal is asserted only during the automatic wait
state. Wait states added via the assertion of
WAT stretch the DVASIB signal without affecting
Cs.

Figure 13-18. On-Chip DMA Channel Flyby Memory Write Transaction

13.6 REQUESTS

The Z280 MU supports three types of request
signals; interrupt requests, local bus requests,
and global bus requests. A request is answered

according to its type. Interrupt requests are
generated by peripheral devices; the 27280 MU
responds with an Interrupt Acknowledge

transaction. Local bus requests are initiated by

13-18

an external potential bus master; the Z280 MU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the 2280 CRU or an
on-chip DVA channel to access a global bus; the
7280 MAU receives a Global Bus Acknowledge signal
in response to the request.

13.6.1 Interrupt Requests

The 7280 QU supports two types of interrupts,
maskable and nonmaskable (NMI). The interrupt
request line from a device capable of generating
interrupts can be tied to the Z280 MPUs NM or
maskable interrupt request inputs; several
devices can be connected to one interrupt request
input, with interrupt priorities established via
external logic or a priority daisy chain.

Nonmaskable interrupt requests are edge-triggered,
but maskable interrupts are level-triggered. Any
high-to-low transition on the NM input is
asynchronously edge-detected, and an internal NM
latch is set. At the beginning of the last clock
cycle during execution of an instruction, the
maskable interrupt inputs are sampled along with
the state of the internal NM latch. If an
interrupt is detected, and that interrupt is
enabled in the Master Status register, interrupt
processing proceeds in accordance with the current
interrupt mode, as described in Chapter 6.

13.6.2 Local Bus Requests

To generate transactions on the bus, a potential
bus master (such as a DVA controller) must gain
control of the bus by making a bus request. A bus
request is initiated by pulling BUSREQ low; the
7280 MPU responds by 3-stating its address, data,
bus control, and bus status outputs and asaerting

an active BUSACK, as described in section 10.2.
The CPU regains control of the bus after BUSREQ
rises. The on-chip DVA channels have higher
priority than external devices requesting the bus
via BUSREQ

13.6.3 Global Bus Requests

If the multiprocessor mode is specified in the Bus
Timing and Initialization register, then the
contents of the Local Address register determine
the range of memory addresses dedicated to the
shared global bus. Before accessing an address on
the global bus, the 7280 MU must issue a Global
Bus Request (GREQ) and receive an active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 13-19 illustrates the timing of the global
bus request/acknowledge sequence. When the Z280
MU needs to access a location on the global bus,
GX) is asserted in order to request use of the
global bus. GAX is then sampled on each
successive rising edge of the clock; when GAXK
becomes active (and if BUSREQ is not asserted),
the memory transaction proceeds as described in
section 13.5.1. GEQ is deasserted in the bus
cycle immediately following the end of the memory
transaction (except when executing' the Test and
Set instruction, where both the memory read and
write operations are executed before deasserting

GREQ).

13-19

The 7280 MU architecture is an upward-compatible
extension of the Z80 CPU architecture. This
compatibility extends to the instruction set,
register architecture, interrupt structure, and
bus structure of the 2280 MU and Z80 CPU.

The Z80 CPU 8 instruction set is a subset of the
7280 MPU 8 instruction set. Thus, the 7280 MAU is
completely binary-compatible with Z80 code.
However, since some Z80 instructions, such as
HALT, are privileged instructions in the 7280 MPU,
complete compatibility is achieved only when the
7280 MAU is executing in the system mode. All Z80
software will execute successfully on a 2280 MU
running in system mode, provided that the software
contain8 no timing dependencies, does not modify
itself, and does not use any of the Z80's reserved
instruction encodings.

Since the 72280 MAU is binary-code compatible with
the Z80 CPU, the 2280 MPUs general-purpose
register set is the same as the Z80 CPU's, with
the exception of the Stack Pointer. The Z280 MU
contains both a System Stack Pointer and a User
Stack Pointer, whereas the Z80 CPU has only one
Stack Pointer register. In the Z80 CPU, the R
register is used to indicate the next refresh
address; in the 7280 MPU the R register is not
involved with the refresh logic and may be used by

the programmer as a general-purpose storage
register.
The Z280 MPUs interrupt structure is also an

upward-compatible extension of the Z80 CPU's. The
7280 MPU supports all three interrupt modes found
on the Z80 CPU, as well as a fourth interrupt node
new to the 7280 MPU.

The Z80 Bus configurations of the 7280 MU are
also bus-compatible with the Z80 CPU, generating
the same RD, WR IORQ, and MREQ bus control and
gtatus signals. However, M is asserted during
every instruction fetch and interrupt acknowledge
cycle in the 780 CPU, for the Z280 MPU, M is
asserted only during the, special RETl bus
transaction and interrupt acknowledge cycles. The
78400 family of peripherals interface directly to

Appendix A.
Z280/Z2280 Compatibility

both Z80 CPUs and Z80 bus configuration of the
7280 MPUs.

Following a reset, the Z280 MU takes on a
configuration that is fully compatible with Z80
code. The Memory Management Unit is disabled,
meaning that the 16-bit logical addresses from the
Z280 QU are routed directly to the 16
least significant address pins on the external
bus. The User/System bit in the Master Status
register specifies system-mode operation, allowing
execution of privileged instructions and enabling
the System Stack Pointer. The I/O Page register
is cleared to all Gs and Interrupt Mode 0 is
selected. The Trap Control register is cleared to
all zeros, disabling System Stack Overflow Warning
traps and designating that 1/O instructions are
not privileged. All 780 instructions can be
successfully executed (and may execute from the
on-chip memory that is enabled as an instruction-
only cache upon reset). The 2280 MU w ill remain
in a Z80-compatible configuration as long as Z80
code is executed, since the Load Control
instruction that acts on the 7280 MPUs control
registers is not part of the Z80 instruction set.

The software routine shown below can be used to
determine if code is executing on a Z80 CPU or
7280 MPU. This facilitates development of
programs that can execute on either processor, but
contain special routines invoked only when
executing on a Z280 MU and, therefore, allowing
use of 7280 MU features not available on the Z80
CPU. The routine differentiates the Z80 CPU from
the 7280 MPU by executing the instruction with
machine code CB37/ This instruction code is
reserved in the Z80 CPU, and results in logically
shifting the A register one bit to the left while
shifting a 1 into the least significant bit. For
the 7280 MPU, CB37" is the code for the Tes8t and
Set instruction. If the A register holds a 40"
before executing this instruction code, the A
register holds an 81" and the Sign flag is set
to 1 after executing the instruction on a Z80 CPU;
the A register holds an FFP* and the Sign flag is
cleared to 0 after executing the instruction on a
7280 MPU.

Code to Distinguish Execution on a 200 GPU and 7280 MU

This instruction sequence exploits the difference when executing the CB37
machine code on the Z80 CPU and 7280 MPU, to allow a program to determine which
processor it is executing on. This instruction sets the S flag on the Z80 CRU
and clears the S flag on the 2280 MPU. The A and F registers are used by the
routine.

Lo A,40h ; Initialize the operand.
DEB 0CBn,037h ; This instruction will set the S flag on the
; Z80 CPU and clear the S flag on the 7280 MU
JP M,Z80 ; Now test the flag and jump.
or

JP P,Z280

Four formats are used to generate the machine-
language bit encodings for the Z280 MAU
instructions. Three formats are used for
instructions that are executed solely by the Z280
CPU. (These same three formats are used for Z80
QU instruction encoding.) A fourth format is
dedicated to instructions that involve Extended
Processing Units (EPUs).

The bit encodings of the Z280 MU instructions are
partitioned into bytes. Every instruction encoding
contains one byte dedicated to specifying the type
of operation to be performed; this byte is
referred to as the instruction's operation code
(opcode). Besides specifying a particular
operation, opcodes typically include bit encodings
specifying the operand addressing node for the
instruction and identifying any general-purpose
registers used by the instruction. Along with the
opcode, instruction encodings mey include bytes
that contain an address, displacement, and/or
immediate value wused by the instruction, and
special bytes called "escape codes" that determine
the meaning of the opcode itself.

By themselves, one byte opcodes would allow the
encoding of only 256 unigue instructions.
Therefore, special "escape codes" that precede the
opcode in the instruction encoding are used to

expand the number of possible instructions. There
are two types of escape codes: addressing node
escape codes and opcode escape codes. Escape

codes are one byte in length.

Three of the instruction formats are
differentiated by the opcode escape value used;
the fourth format is for instructions that include
an BU template. Format 1 is for instructions
without an opcode escape byte, Format 2 is for
instructions whose opcode escape byte has the
value ED® and Format 3 i3 for instructions
whose opcode escape byte has the value CBM
Instructions that support EPUs use Format 4 and
always have the opcode escape byte with value
Etyy as the first byte of the instruction

Appendix B.
Z280 MPU Instruction Formats

encoding. In Formats 2 and 4, the opcode escape
byte immediately proceeds the opcode byte itself.

In Format 3, a 1-byte displacement may be between
the opcode escape byte and opcode itself. Opcode
escape bytes are used to distinguish between two
different instructions with the same opcode byte,
thereby allowing more than 256 unique
instructions. For example, the 01" opcode, when
alone, specifies a form of the Load Register Word
instruction; when preceded by the CB* escape
byte, the opcode 01" specifies a Rotate Left
Circular instruction.

Addressing nmode escape codes are used to determine
the type of encoding for the addressing node field
within an instruction's opcode, and can be used in
instructions with and without opcode escape
values. An addressing node escape byte can have
the value DOH or FDn. The addressing node
escape byte, if present, is always the first byte
of the instruction's machine code, and i3 immedi-
ately followed by either the opcode (Format 1) or
the opcode escape byte (Formats 2 and 3). For
example, the 79" opcode, when alone, specifies a
Load Accumulator instruction using Register
addressing for the source operand; when preceded
by the DD escape byte, the opcode 79"
specifies a Load Accumulator instruction using
Base Index addressing for the source operand.

The four instruction formats are shown in Tables
B-1 through B-4. Within each format, several
different configurations are possible, depending
on whether the instruction involves addressing
mode escape bytes, addresses, displacements, or
immediate data. In Tables B-1 through B-4, the
symbol "A.esc" is used to indicate the presence of

an addressing mode escape byte, "disp." is an
abbreviation for displacement, "addr." is an
abbreviation for address, and "temp." is an

abbreviation for template. Templates in BU
instructions are four-byte fields that include the
bit encodings that specify BPU operation.

Table B-1. Format 11nstruction Encodings

Example Instruction

Instruction Format Assembly Machine Code (Hex)
opcode LDAC 79
opcode 2-byte address LD A,(addr) 3A addr(low) addr(high)
opcode 1-byte displacement DJINZaddr 10disp
opcode immediate LDEn IEn
Aesc opcode LDA,(HL + IX) DD 79
A.esc opcode 2-byte address LD IX,(addr) DD 2A addr(low) addr(high)
A.esc opcode 1-byte displacement LDA/(X + d) DD 7E disp
A.esc opcode 2-byte displacement LD A,(IX + dd) FD 79 d(low) d(high)
A.esc opcode immediate LD IXnn DD 21 n(low) n(high)
A.esc opcode 2-byte address immediate LD (addr),n DD 3E addr(low) addr(high) n
A.esc opcode 1-byte displacement immediate LD (IY + d),n FD 36dn
A.esc opcode 2-byte displacement immediate LD<addr>,n FD 06 disp(low) disp(high) n
Table B-2. Format 2 Instruction Encodings
Example Instruction
Instruction Format Assembly Machine Code (Hex)
ED opcode MULTA.B ED CO
ED opcode immediate SC nn ED 71 n(low) n(high)
ED opcode 2-byte address LD BC.(addr) ED 4B addr(low) addr(high)
ED opcode 2-byte displacement LD (HL + dd),A ED 3B d(low) d(high)
A.esc ED opcode MULTA.IY FD ED E8
Aesc| ED opcode 2-byte address MULT A,(addr) DD ED F8 addr(low) addr(high)
Aesc ED opcode 1-byte displacement MULT A(Y + d FDEDF8d
Aesc ED opcode 2-byte displacement LD IX,(IY + dd) DD ED 34 d(low) d(high)
A.esc ED opcode 2-byte immediate MULTUW HL.nn FD ED F3 n(low) n(high)
Table B-3. Format 3 Instruction Encodings
Example Instruction
Instruction Format Assembly Machine Code (Hex)
CB opcode RLC(HL) CBO06
A.esc CB l-bytedisplacement opcode RCL (IX + d) DD CB d 06
Table B-4. Format 4 Instruction Encodings
Example Instruction
Instruction Format Assembly Machine Code (Hex)
ED opcode 4-byte template EPU«- (HL) ED A6 tempi temp2 temp3 temp4
ED opcode 2-byte displacement 4-byte template EPU<-(HL + dd) ED BC d(low) d(high) tempi temp2 temp3 temp4
ED opcode 2-byte address 4-byte template EPU <- (addr) ED A7 addr(low) addr(high) tempi temp2 temp3 temp4

B-2

SOURCE CODE

ADC A(HL

ADC A (HL+IX)
ADC A, (HL+IY)
ADC A,(HL+1122H)
ADC A(IX+Y)
ADC A (IX+55H)
ADC A (IX+1122H)
ADC A(IY+55H)
ADC A/(IY+1122H)
ADC A(PC+1122H)
ADC A,(SP+1122H)
ADC A,(3344H)
ADC AA

ADC AB

ADC AC

ADC AD

ADC AE

ADC AH

ADC AlIXH

ADC AIXL

ADC AlIYH

ADC AIYL

ADC AL

ADC A66H

ADC HLBC

ADC HLDE

ADC HLHL

ADC HLSP

ADC IX,BC

ADC IX,DE

ADC XX

ADC IXSP

ADC IY.BC

ADC |Y.DE

ADC IY.IY

ADC IY.SP

ADD a,(h1)

ADD A, (HL+IX)
ADD A(HL+Y)
ADD A (HL+1122H)
ADD A(IX+Y)
ADD A (IX+55H)
ADD A /(IX+1122H)
ADD A(IY+55H)
ADD A/(IY+1122H)
ADD A (PC+1122H)
ADD A,(SP+1122H)
ADD A(3344H)
ADD AA

ADD AB

ADD AC

OBJECT CODE
8E

DD89
DD8A
FD8B2211
DD8B
DD8ES5
FD892211
FD8ES5
FD8A2211
FD882211
DD882211
DD8F4433
8F

FD8655
FD822211
FD802211
DD802211
DD874433
87

80

81

Appendix C.
Instructions in Alphabetic Order

SOURCE CODE

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

AD
AE

AH

AIXH

AIXL

AIYH

AIYL

AL

AB6H

HLA

HL,BC

HL,DE

HLHL

HL.SP

IX,A

IX.BC

IX,DE

IX,IX

IX,SP

IY,A

IY,BC

IY,DE

IY,IY

Iv,SP

HL,(HL)

HL: (IX+1122H)
HL,(IY+1122H)
HL,(PC+1122H)
HL,(3344H)
HLBC

HL.DE

HL,HL

HL,IX

HL.IY

HL,SP
HL.3344H
A(HL)

A (HL+IX)
A(HL+Y)
Al(HL+1122H)
A(IX+Y)
A,(IX+55H)
A(IX+1122H)
A,(IY+55H)
A(IY+1122H)
A,(PC+1122H)
A,(SP+1122H)
A,(3344H)
AA

AB

AC

OBJECT CODE

39

DDED6D
DDO09

DD19

DD29

DD39
FDEDGD
FDO9

FD19

FD29

FD39
DDEDC6
FDEDCG622li
FDEDD62211
DDEDF62211
DDEDDG4433
EDC6

EDD6

EDE6
DDEDE6G
FDEDE6
EDF6
FDEDF64433
A6

DDA1

DDA2
FDA32211
DDA3
DDAG55
FDA12211
FDAB55
FDA22211
FDAD2211
DDA02211
DDA74433

A7
AO
Al

Cc-1

C-2

SOURCE CODE

AND AD
AND AE
AND AH
AND AIXH
AND AIXL
AND AlIYH
AND AIYL
AND AL
AND AG6H
BIT O(HY

BIT 0,(IX+55H)
BIT 0,(IY+5SH)

BIT 0A
BIT 0B
BIT QC
BIT OD
BIT OF
BIT OH
BIT oL
BIT I(HL)

BIT 1,(X+55H)
BIT 1,(IY+55H)

BIT 1A
BIT, 1B
BIT i,c
BIT 1.D
BIT 1E
BIT I.H
BIT U

BIT 2,(HL)

BIT 2,(IX+55H)
BIT 2,(Y+55H)

BIT 2A
BIT 2B
BIT 2C
BIT 2D
BIT 2E
BIT 2H
BIT 2L
BIT 3,HL)

BIT 3,(IX+55H)
BIT 3.0Y+55H)

BIT 3A
BT 3B
BIT 3C
BIT 3D
BIT 3E
BIT 3H
BIT 3L
BIT 4,(HL)

BIT 4,(IX+55H)
BIT 4,(IY+55H)

BIT 4A
BIT 4B
BIT 4C
BIT 4D
BIT 4E
BIT 4H
BIT 4L
BIT 5(HL)

OBJECT CODE
A2

A3

Al

DDA4
DDAS5
FDAA
FDAS

A5

E666
CB46
DDCB5546
FDCB5546
CB47
CB40
CB4l

CB4D

DDCB5556

CB5D

DDCB5566
FDCB5566

SOURCE CODE

BIT 5,(IX+55H)
BIT 5,(1Y+55H)
BIT 5A

BIT 5B

BIT 5C

BIT 5D

BIT 5E

BIT 5H

BIT 5L

BIT 6|(HL)

BIT 6,(IX+55H)
BIT 6,(IY+55H)
BIT 6,A

BIT 6,B

BIT 6|C

BIT 6,D

BIT 6.E

BIT 6,H

BIT «L

BIT 7,(HL)

BIT 7,(IX+55H)
BIT 7,(1IY+55H)
BIT 7A

BIT 7.B

BIT 7.C

BIT 7.D

BIT 7E

BIT 7H

BIT 7L

CALL (HL)

CALL (PC+1122H)
CALL C,(HL)

CALL C,(PC+U22H)
CALL C.33¢4H

CALL M,(HL)

CALL M,(PC+1122H)
CALL M.3344H
CALL NC,(HL)

CALL NC,(PC+1122H)
CALL NC.3344H
CALL NZ,(HL)

CALL NZ,(PC+1122H)
CALL NZ.3344H
CALL P.(HL)

CALL P,(PC+1122H)
CALL P.3344H

CALL PE,(HL)

CALL PE,(PC+1122H)
CALL PE.3344H
CALL PO.(HL)

CALL PO,(PC+1122H)
CALL PO0.3344H
CALL Z(HL)

CALL Z,(PC+1122H)
CALL Z.3344H

CALL 3344H

CCF

CP A,(HL)

CP A, (HL+IX)

CP A, (HL+IY)

OBJECT CODE
DDCB556E
FDCBS56E
CB6F
CB68
CB69
CB6A
CB6B
CB6C
CB6D
CB76
DDCB5576
FDCB5576
CcBr7
CB70
CB71
CBr2
CB73
CB74
CB75
CB7E
DDCBS57E
FDCB557E
CB7F
CB78
CB79
CB7A

.CB7B

CB7C
CB7D
DDCD
FDCD2211
DDDC
FDDC2211
DCA433
DDFC
FDFC2211
FC4433
DDD4
FDD42211
D44433
DDC4
FDC42211
CA4433
DDF4
FDF42211
FA44433
DDEC
FDEC2211
EC4433
DDE4
FDE422U

0

IVIYIYBILIBILLIVILILIIS

OURCE CODE

A,(HL+U22H)
A (IX+1Y)

A, (IX+55H)

A, (IX+1122H)
A,(IY+55H)
A(IY+1122H)
A,(PC+1122H)
A,(SP+1122H)
A,(3344H)

HL,(HL)
HL,(IX+1122H)
HL,(IY+1122H)
HL,(PC+1122H)
HL,(3344H)
HL.BC

HL.DE

HL.HL

HL.IX

HLIY

HL.SP
HL.3344H

(HL)
(HL+IX)
(HL+1Y)
(HL+1122H)
(IX+1Y)
(IX+55H)
(IX+1122H)
(IY+55H)
(IY+1122H)
(PC+1122H)
(SP+1122H)
(3344H)

%UOE%ED:D

I ITm
=

OBJECT CODE
FDBB2211

FDEDD72211
DDEDF72211
DDEDD74433
EDC7

EDD7

EDE7
DDEDE7
FDEDE7?
EDF7
FDEDF74433
27

H

DDCOD

DD15
FD1D2211
DD1D
DD3555
FDOD2211
FD3555
FD152211
FD052211
DD052211
DD3D4433
3D

05

aB

0D

15

1B

ID

ys)

2B

SOURCE CODE

DEC IX

DEC IXH

DEC IXL

DEC IY

DEC IYH

DEC IYL

DEC L

DEC SP

DECW (HL)

DECW (IX+1122H)
DECW (IY+1122H)
DECW (PC+1122H)
DECW (3344H)
DECW BC

DECW DE

DECW HL

DECW IX

DECW IY

DECW SP

DI

Dl 66H

DIV HL.(HL)

DIV HL,(HL+IX)
DIV HL,(HL+Y)
DIV HL,(HL+1122H)
DIV HL,(IX+Y)
DIV HL,(IX+55H)
DIV HL,(IX+1122H)
DIV HL,(IY+55H)
DIV HL,(IY+1122H)
DIV HL,(PC+1122H)
DIV HL,(SP+1122H)
DIV HL,(3344H)
DIV HLA

DIV HLB

DIV HLC

DIV HLD

DIV HLE

DIV HLH

DIV HLIXH

DIV HLIXL

DIV HLIYH

DIV HLIYL

DIV HLL

DIV HL66H

DIVU HL,(HL)

DIVU HL,(HL+IX)
DIVU HL,(HL+Y)
DIVU HL,(HL+1122H)
DIVU HL,(IX+Y)
DIVU HL, (IX+55H)
DIVU HL,(IX+1122H)
DIVU HL,(IY+55H)
DIVU HL,(IY+1122H)

DIVU
DIVU
DIVU
DIvU
DivU
DIVU

HL,(PC+1122H)
HL,(SP+1122H)
HL,(3344H)
HLA

HL,B

HL,C

OBJECT CODE

DD2B

FDOB2211
FD1B2211
DD3B22U
DD1B4433
B

1B

2B

DD2B

FD2B

3B

F3

ED7766
EDF4
DDEDCC
DDEDD4
FDEDDC2211
DDEDDC
DDEDF455
FDEDCC2211
FDEDF455
FDEDD42211
FDEDCA42211
DDEDCA2211
DDEDFCA4433
EDFC

EDCA

EDCC

EDD4

EDDC

EDE4
DDEDE4
DDEDEC
FDEDE4
FDEDEC

DDEDD5
FDEDDD2211
DDEDDD
DDEDF555
FDEDCD2211
FDEDF555
FDEDD52211
FDEDC52211
DDEDC52211
DDEDFD4433
EDFD

EDC5

EDCD

c-4

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
DMU HLD EDD5 EX A(PC+1122H) FDED072211
DVU HLE EDDD EX A(SP+1122H) DDED072211
DU HLH EDES EX A 3344H) DDED3F4433
DVU HLIXH DDEDE5 EX AA ED3F
DIVU HL.IXL DDEDED EX AB EDO7
DIVU HL.IYH FDEDE5 EX AC EDOF
DIVU HLIYL FDEDED EX AD ED17
DMVU HLL EDED EX AE EDIF
DIVU HL.66H FDEDFD66 EX AH ED27
DIVUW DEHL, (HL) DDEDCB EX AlIXH DDED27
DIVUW DEHL, (IX+1122H) FDEDCB2211 EX AIXL DDED2F
DIVUW DEHL,(IY+1122H) FDEDDB2211 EX AIYH . FDED27
DIVUW DEHL,(PC+1122H) ~ DDEDFB2211 EX AIYL FDED2F
DIVUW DEHL,(3344H) DDEDDB4433 EX AL ED2F
DIVUW DEHL.BC EDCB EX AFAF 08

DIVUW DEHL.DE EDDB EX DEHL BB

DIVUW DEHL.HL EDEB EX HL EDEF
DIVUW DEHL.IX DDEDEB EX IXHL DDEB
DIVUW DEHL.IY FDEDEB EX IYHL FDEB
DIVUW DEHL.SP EDFB EXTS A ED64
DIVUW DEHL.3344H FDEDFB4433 EXTS HL ED6C
DIVW DEHL.(HL) DDEDCA EXX D9

DIVW DEHL,(IX+1122H) FDEDCA2211 HALT 76

DIVW DEHL,(IY+1122H) FDEDDA2211 M o ED46
DIVW DEHL,(PC+1122H) DDEDFA2211 M 1 ED56
DIVW DEHL,(3344H) DDEDDAA433 M 2 ED5E
DIVW DEHL.BC EDCA M 3 ED4E
DIVW DEHL.DE EDDA IN (HL+1X),(C) DDED48
DIVW DEHLHL EDEA IN (HL+1Y).(C) DDEDS0
DIVW DEHL.IX DDEDEA IN (HL+1122H),(C) FDED582211
DIVW DEHL.IY FDEDEA IN (IX+1Y),(C) DDEDS8
DIVW DEHL.SP EDFA IN (IX+1122H).(C) FDED4822U
DIVW DEHL.3344H FDEDFAA433 IN (IY+1122H),(C) FDED502211
DINZ 77H 1075 IN (PC+1122H),(C) FDED402211
H B IN (SP+1122H),(C) DDED402211
B 66H ED7F66 IN (3344H),(C) DDED784433
EPUF ED97 N A®© ED78

EPUI ED9F IN A 66H) DB66
EPUM (HL) EDAG IN B,(C) ED40
EPUM (HL+IX) EDBC IN C(C ED48
EPUM (HL+Y) ED%4 IN D,©) ED50
EPUM (HL+1122H) EDBC2211 IN E() ED58
EPUM (IX+Y) ED9C IN H.(O) ED60
EPUM (IX+1122H) EDAC2211 IN HL.(C) EDB7
EPUM (IY+1122H) EDB42211 IN IXH,(C) DDED60
EPUM (PC+1122H) EDAY2211 IN IXL,(C) DDED68
EPUM (SP+1122H) ED842211 IN IYH,(C) FDED60
EPUM (3344H) EDA74433 IN IYL.(C) FDED68
EX (SP).HL B3 IN L©) ED68

EX (SP).IX DDE3 INC (HL) A

EX (SPJIY FDE3 INC (HL*IX) DDOC

EX A(HD ED37 INC (HLHY) DD14

EX A(HL+X) DDEDOF INC (HL+1122H) FDIC2211
EX A(HLHY) DDED17 INC (IX+1Y) DDIC

EX A(HL+1122H) FDED1F2211 INC (IX+55H) DD3455
EX A(IX+Y) DDED1F INC (IX+1122H) FDOC2211
EX A(IX+55H) DDED3755 INC (IY+55H) FD3455

EX A(IX+1122H) FDEDOF2211 INC (IY+1122H) FD142211
EX A/(IY+55H) FDED3755 INC (PC+1122H) FDO42211
EX A(IY+1122H) FDED172211 INC (SP+1122H) DDO42211

SOURCE CODE

INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INCW
INCW
INCW
INCW
INCW
INCW
INCW
INCW
INCW
INCW

(3344H)

II'HRUO%UJ:D

HL)
(IX+1122H)
(IY+1122H)
(PC+1122H)
(3344H)

()
(PC+1122H)
C.(HL)
C,(PC+1122H)
C.3344H

M,(HL)
M,(PC+1122H)
M.3344H
NC.(HL)
NC,(PC+1122H)
NC.3344H
NZ,(HL)
NZ,(PC+1122H)
NZ.3344H
P,(HL)
P,(PC+1122H)
P.3344H
PE,(HL)

OBJECT CODE
DD3C4433

3C

04

03

ac

14

13

1C

24

PA]

DD23
DD24
DD2C
FD23
FD24
FD2C

.o

3

DDO3
FDO032211
FD132211
DD332211
DD134433
03

13

PA]

DD23
FD23

33

EDAA
EDBA
EDOA
EDSA
EDA2
EDB2
ED92
ED82
EDB7
DD2874
DD2074
[=¢)

DDE9
FDE9
FDC32211
DDDA
FDDA2211
DA4433
DDFA
FDFA2211
FA4433
DDD2
FDD22211
D24433

DDF2
FDF22211
F24433
DDEA

SOURCE CODE

JP

GE6E6E6G6E66GEEE666GEEEEE6E6666666666666666666666EEG

PE,(PC+1122H)
PE.3344H
PO,(HL)
PO,(PC+1122H)
P0.3344H
Z(HL)
Z,(PC+1122H)
2.3344H

3344H

C7TH

NC.77H
NZ.77H

Z7TH

7H

(BC),A

(DE),A

(HL),A

(HL),B
(HL),BC
(HL),C

(HL).D
(HL),DE
(HL),E

(HL).H
(HL),HL

(HL),L

(HL).SP
(HL),66H
(HL+1X),A
(HL+IX),HL
(HL+1X),1X
(HL+IX),IY
(HL+IX),66H
(HL+IY),A
(HL+1Y),HL
(HL+1Y),IX
(HL+Y),IY
(HL+1Y),66H
(HL+1122H),A
(HL+1122H),HL
(HL+1122H),IX
(HL+1122H),IY
(HL+1122H),66H
(IX+1Y),A
(IX+1Y),HL
(IX+1Y),IX
(IX+1Y),1Y
(IX+1Y),66H
(IX+55H),A
(IX+55H),B
(IX+55H),BC
(IX+55H),C
(IX+55H),D
(IX+55H),DE
(IX+55H),E
(IX+55H),H
(IX+55H),HL
(IX+55H),L
(IX+55H),SP
(IX+55H),66H

OBJECT CODE
FDEA2211
EA4433
DDE2
FDE22211
E24433
DDCA
FDCA2211
CA433
C34433
3875

3075

2075

2875

1875

02

12

v

70

EDOE

7

2

ED1E

73

74

ED2E

I&)

ED3E

EDOB
EDOD
DDEDOD
FDEDOD
DDOEG6
ED13

ED15
DDED15
FDED15
DD1666
ED3B2211
ED3D2211
DDED3D2211
FDED3D2211
FD1E221166
ED1B
ED1D
DDED1D
FDED1D
DD1E66
DD7755
DD7055
DDEDOESS
DD7155
DD7255
DDEDI1ES5
DD7355
DD7455
DDED2ES55
DD7555
DDED3ES5
DD365566

C-5

C-6

SOURCE CODE
D (IX+1122H),A
LD (IX+1122H)HL
LD (IX+1122H),IX
LD (IX+1122H),IY
LD (IX+1122H),66H
LD (IY+55H),A

LD (IY+55H),B

LD (IY+55H),BC
LD (IY+55H),C

LD (IY+55H),D

LD (IY+55H),DE
LD (IY455H),E

LD (IY+55H)H

LD (IY+55H),HL
LD (IY+55H).L

LD (IY+55H),SP
LD (IY+55H),66H
LD (IY+1122H)A
LD (IY+1122H)HL
LD (IY+1122H),IX
LD (IY+1122H),IY
LD (IY+1122H),66H
LD (PC+1122H)A
LD (PC+1122H)HL
LD (PC+1122H),IX
LD (PC+1122H),IY
LD (PC+1122H),66H
LD (SP+1122H)A
LD (SP+1122H),HL
LD (SP+1122H),IX
LD (SP+1122H),IY
LD (SP+1122H),66H
LD (3344H)A

LD (3344H)BC

LD (3344H)DE

LD (3344H)HL

LD (3344H),IX

LD (3344H),lY

LD (3344H),SP

LD (3344H),66H

LD A,(BC)
LD a.(de)
LD a,(hl)

LD A(HL*X)

LD A(HLHY)

LD A(HL+1122H)
LD A(IX+Y)

LD A(IX+55H)
LD A(IX+1122H)
LD A(IY+55H)
LD A,(Y+U22H)
LD A(PC+1122H)
LD A(SP+1122H)

LD A(3344H)
ID AA
ID AB
ID AC
ID AD
ID AE
ID AH

OBJECT CODE
ED2B2211
ED2D2211
DDED2D2211
FDED2D2211
FDOE221166
FD7755
FD7055
FDEDOES5
FD7155
FD7255
FDED1ES5
FD7355
FD7455
FDED2ES5
FD7555
FDED3ES5
FD365566
ED332211
ED352211
DDED352211
FDED352211
FD16221166
ED232211
ED252211
DDED252211
FDED252211
FD06221166
ED032211
ED052211
DDEDO052211
FDEDO052211
DD06221166
324433

FD792211
FD7ES5

FD7A2211
FD782211
DD782211

3

SOURCE CODE
LD Al
LD A.IXH
LD A.IXL
LD A.IYH
AlYL
AL
AR
A66H
b,(h1)

B, (IX+55H)
B,(IY+55H)

BA
BB

BC,(HL)

BC,(IX+55H)
BC,(IY+55H)
BC,(3344H)

BC.3344H
C,(HL)

C,(IX+55H)
C,(IY+55H)

cA
cB

6666666666666 E666666666666666666G
g
<

CCEEC
Oooo
D000
<I<XXX
rIfxT

C,66H

Di(HL)

DA
DB
DC
D.D
DE
DH
D.IXH
D,IXL
D.IYH
D.IYL
DL
D.66H
DE.(HL)

E66bbb6666666666666

D, (IX+55H)
D,(IY+55H)

DE, (IX+55H)

OBJECT CODE
ED57
DD7C
DD7D
FD7C
FD7D
7D
EDSF
3E66
46
DD4655
FD4655
47

40

41

42

43

44
DD44
DD45
FD44

DD4D

OEG6

DDED1655

SOURCE CODE
LD

DE, (IY+55H)
LD DE,(3344H)

LD DE3344H
ID E(HL)

LD E(IX+55H)
LD E(IY+55H)

LD EA
LD EB

LD EC

ID ED

LD EE

LD EH

LD EIXH

LD EIXL

LD EJYH

LD EJYL

ID EL

LD EG6H

LD H(HL)

LD H,(IX+55H)
LD H,(IY+55H)
LD HA

ID HB

LD HC

LD HD

LD HE

LD HH

LD HL

LD H66H

LD HL(HL)

LD HL,(HL+IX)

LD HL,(HL+Y)

LD HL,(IX+Y)

LD HL,(IX+55H)
LD HL(X+1122H)
LD HL,(IY+55H)
LD HL(Y+1122H)
LD HL,(PC+1122H)
LD HL,(SP+1122H)
LD HL,(3344H)

LD HL.3344H
LD LA

LD IX,(HL+IX)
LD IX,(HL+Y)
LD IX,(HL+1122H)
LD IX,(IX+IY)
LD IX,(IX+1122H)
LD IX,(IY+1122H)
LD IX,(PC+1122H)
LD IX,(SP+1122H)
LD IX,(3344H)

LD IX.3344H
LD IXH.A
LD IXH.B
LD IXH.C
LD IXH.D
LD IXH.E
LD IXH.IXH
LD IXH.IXL
LD IXH.66H

OBJECT CODE
FDED1655
ED5B4433
114433

5E

DD5ES5

FD5ES5

5F

2666

ED26

EDCC

ED14

ED1C
DDED2655
ED2C2211
FDED2655
ED342211
ED242211
ED042211
2A4433
214433

ED47
DDEDOC
DDED14
DDED3C2211
DDED1C
DDED2C2211
DDED3422U
DDED242211
DDED042211
DD2A4433
DD214433
DD67

DD60

DD61

SOURCE CODE

LD IXLA

LD IXLB

LD IXLC

LD IXLD

LD IXLE

LD IXLIXH

LD IXLIXL

LD IXL66H

LD IY,(HL+IX)

LD IY,(HL+Y)

LD IY,(HL+1122H)
LD IY,(IX+lY)

LD IY,(IX+1122H)
LD 1IY,(IY+1122H)
LD IY,(PC+1122H)
LD IY,(SP+1122H)
LD 1Y.334H

LD IYHA

LD IYHB

LD IYHC

LD IYHD

LD IYHE

LD IYH.IYH

LD IYH.IYL

LD IYH.66H

LD IYLA

LD IYLB

LD IYLC

LD YLD

LD IYLE

LD IYLIYH

LD IYLIYL

LD IYL66H

LD L|HL)

LD L,(IX+55H)

LD L,(IY+55H)

ID LA

ID LB

ID LC

LD LD

LD LE

LD LH

ID LL

LD L66H

ID RA

LD SP,(HL)

LD SP,(IX+55H)
LD SP,(IY+55H)
LD SP,(3344H)

LD SPHL

LD SPIX

LD SPIY

LD SP.33MH

LDA HL,(HL+IX)
LDA HL,(HL+Y)
LDA HL,(HL+1122H)
LDA HL,(IX+Y)
LDA HL,(tX+1122H)
LDA HL,(IY+1122H)
LDA HL,(PC+1122H)

OBJECT CODE
DD6F

DD68

DD69

DD6A

DD6B

DD6C

DD6D
DD2E66
FDEDOC
FDED14
FDED3C2211
FDED1C
FDED2C2211
FDED342211
FDED242211
FDEDO42211
FD214433
FD67

FDG0

FD61

FD62

FDG3

FD64

FD65
FD2666
FD6F

FD68

FD69

FDGA

FD6B

DDED3655
FDED3655
ED7B4433

DDF9
FDF9
314433

ED12
ED3A2211
ED1A
ED2A2211
ED322211
ED222211

C-7

C-8

SOURC
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDCTL
LDD
LDDR
LDl
LDIR
LDUD
LDUD
LDUD
LDUD
LDUD
LDUD
LDUP
LDUP
LDUP
LDUP
LDUP
LDUP
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW

E CODE
HL,(SP+1122H)
HL,(3344H)
IX,(HL+1X)
IX,(HL+Y)
IX,(HL+1122H)
IX,(IX+1Y)
IX,(IX+1122H)
IX,(IY+1122H)
IX,(PC+1122H)
IX,(SP+1122H)
IX,(3344H)

1Y, (HL+1X)

1Y, (HL+Y)
IY,(HL+1122H)
1Y, (IX+1Y)

1Y, (IX+1122H)
1Y, (IY+1122H)
IY,(PC+1122H)
IY,(SP+1122H)
IY,(3344H)
(©),HL

(©),IX

(C).IY

HL,(C)

HL.USP

1X,(C)

IX.USP

IY,(C)

IY.USP
USP,HL
USP,IX
USP.IY

(HL),A
(IX+55H),A
(IY+55H),A
A(HL)

A, (IX+55H)
A,(IY+55H)
(HD),A
(IX+55H),A
(IY+55H),A
A(HL)
A,(IX+55H)
A,(IY+55H)
(HL).BC
(HL),DE
(HL),HL
(HL).SP
(HL),3344H
(HL+1X),HL
(HL+IX),IX
(HL+IX),IY
(HL+1Y),HL
(HL+1Y),IX
(HLHYJ.IY
(HL+1122H),HL

OBJECT CODE
ED022211
214433
DDEDOA
DDED12
DDED3A2211
DDED1A
DDED2A2211
DDED322211
DDED222211
DDEDO022211
DD214433
FDEDOA
FDED12
FDED3A2211
FDED1A
FDED2A2211
FDED322211
FDED222211
FDEDO22211
FD214433
EDGE
DDEDGE
FDEDGE

EDSE
DDEDSES5
FDEDSES5
ED86
DDED8655
FDED8655
EDOE
DDED9ESS
FDEDOESS
ED96
DDED9655
FDED9655
EDCE
ED1E
ED2E
EDSE
DD014433
EDOD
DDEDOD
FDEDOD
ED15
DDED15
FDED15
ED3D2211

SOURCE CODE

LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW

(HL+1122H),IX
(HL+1122H),IY
(IX+1Y),HL
(IX+1Y),IX
(IX+1Y),IY
(IX+55H),BC
(IX+55H),DE
(IX+55H),HL
(IX+55H),SP
(IX+1122H),HL
(IX+1122H),1X
(IX+1122H),IY
(IY+55H),BC
(IY+55H),DE
(IY+55H),HL
(IY+55H),SP
(IY+1122H),HL
(IY+li22H),1X
(IY+1122H),IY
(PC+1122H),HL
(PC+1122H),IX
(PC+1122H),lY

(PC+1122H) ,3344H

(SP+1122H),HL
(SP+1122H),IX
(SP+1122H),IY
(3344H),BC
(3344H),DE
(3344H),HL
(3344H) IX
(3344H) IY
(3344H),SP
(3344H),8899H
BC,(HL)
BC,(IX+55H)
BC,(IY+55H)
BC,(3344H)
BC.3344H
DE,(HL)

DE, (IX+55H)
DE, (IY+55H)
DE,(3344H)
DE.3344H
HL,(HL)

HL, (HL+IX)
HL,(HL+1Y)
HL,(HL+1122H)
HL, (IX+1Y)

HL, (IX+55H)
HL, (IX+1122H)
HL, (IY+55H)
HL,(IY+1122H)
HL,(PC+1122H)
HL,(SP+1122H)
HL,(3344H)
HL.3344H
IX,(HL+IX)
IX,(HL+Y)
IX,(HL+1122H)
IX,(IX+Y)

OBJECT CODE
DDED3D2211
FDED3D2211
ED1D
DDED1D
FDED1D
DDEDOES5
DDED1ES5
DDEDZ2ES5
DDED3ES5
ED2D2211
DDED2D2211
FDED2D2211
FDEDOES5
FDEDI1ES5
FDED2ES5
FDED3ES5
ED3522U
DDED352211
FDED352211
ED252211
DDED252211
FDED252211
DD3122114433
ED052211
DDED052211
FDEDO052211
EDA434433
ED534433
224433
DD224433
FD224433
ED734433
DD1144339988
EDO6
DDEDO655
FDEDO655
ED4B4433
014433

ED16
DDED1655
FDED1655
ED5B4433
114433

ED26

EDCC

ED14
ED3C2211
ED1IC
DDED2655
ED2C2211
FDED2655
ED342211
ED242211
ED042211
2A4433
214433
DDEDCC
DDED14
DDED3C2211
DDED1C

SOURCE CODE

LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
LDW
M?w
LDW
LDW
LDW
LDW
MEPU
MEPU
MEPU
MEPU
MEPU
MEPU
MEPU
MEPU
MEPU
MEPU
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT
MULT

IX,(IX+1122H)

IX,(1Y+1122H)

IX.(PC+1122H)

IX.(SP+1122H)

IX. (3344H)

IX.3344H

1Y (HL+IX)

1Y, (HL+Y)

IY.(HL+1122H)

Y, (IX+1Y)

IY,(IX+1122H)

1Y,(1Y+1122H)

IY.(PC+1122H)

IY.(SP+1122H)

IY,(3344H)

1Y.3344H

SP.(HL)

SP,(IX+55H)

SP.(IY+55H)

SP,(3344H)

SP.HL

SP.IX

SP.IY

SP.3344H

(HL)

(HL+IX)
HL+IY)
(HL+1122H)
(IX+1Y)
(IX+1122H)
(IY+1122H)
(PC+1122H)
(SP+1122H)
(3344H)

a,(hl)

A (HL+IX)

A (HL+Y)

A (HL+1122H)

A(IX+Y)

A (IX+55H)

A (IX+1122H)

A(IY+55H)

A(IY+1122H)

A (PC+1122H)

A(SP+1122H)

A,(3344H)

AA

AB

AC

A.D,

AE

AH

AlIXH

AIXL

AlYH

AlYL

AL

A.66H

MULTUA,(HL)
MULTU A, (HL+IX)

OBJECT CODE
DDED2C2211
DDED342211
DDED242211
DDED042211
DD2A4433
DD214433
FDEDOC
FDED14
FDED3C2211
FDED1C
FDED2C2211
FDED342211
FDED242211
FDEDO42211
FD2A4433
FD214433
ED36
DDED3655
FDED3655
ED7B4433

Fo

DDF9

FDF9

314433

EDAE

ED8D

ED95
EDBD2211
EDOD
EDAD2211
EDB52211
EDA52211
ED852211
EDAF4433
EDFO
DDEDC8
DDEDDO
FDEDD82211
DDEDDS8
DDEDFO055
FDEDC82211
FDEDF055
FDEDD(02211
FDEDCO02211
DDEDC02211
DDEDF84433
EDF8

EDCO

EDC8

EDDO

EDD8

EDEO
DDEDEO
DDEDES
FDEDEO
FDEDES
EDES
FDEDF866
EDF1
DDEDC9

SOURCE CODE

MULTU A(HLHY.)
MULTU A(HL+1122H)
MULTU A,(IX+lY)
MULTU A (IX+55H)
MULTU A (IX+1122H)
MULTU A,(IY+55H)
MULTU A(IY+1122H)
MULTU A,(PC+1122H)
MULTU A,(SP+1122H)
MULTU A,(3344H)
MULTU AA

MULTU AB

MULTU AC

MULTU AD

MULTU AE

MULTU AH

MULTU AlIXH
MULTU AIXL

MULTU AIYH
MULTU AIYL

MULTU AL

MULTU A66H
MULTUW HL,(HL)
MULTUW HL,(IX+1122H)
MULTUW HL,(IY+1122H)
MULTUW HL,(PC+1122H)
MULTUW HL,(3344H)
MULTUW HLBC
MULTUW HL.DE
MULTUW HLHL
MULTUW HL.IX
MULTUW HL.IY
MULTUW HL.SP
MULTUW HL.3344H
MULTW HL,(HL)
MULTW HL,(IX+1122H)
MULTW HL,(IY+1122H)
MULTW HL,(PC+U22H)
MULTW HL,(3344H)
MULTW HLBC
MULTW HL.DE
MULTW HLHL
MULTW HL.IX
MULTW HL.IY
MULTW HLSP
MULTW HL.3344H
NEG A

NEG HL

NOP

OR A(HL)

OR A (HL+IX)
OR A (HL+Y)
OR A,(HL+1122H)
OR A (IX+1Y)

OR A, (IX+55H)
OR A, (IX+1122H)
OR A(IY+55H)
OR A(IY+1122H)
OR A,(PC+1122H)
OR A,(SP+1122H)

OBJECT CODE
DDEDD1
FDEDD92211
DDEDD9
DDEDF155
FDEDC92211
FDEDF155
FDEDD12211
FDEDC12211
DDEDC12211
DDEDF94433
EDF9

EDC1

EDC9

EDD1

EDD9

EDE1
DDEDE1
DDEDE9
FDEDE1
FDEDE9
EDE9
FDEDF966
DDEDC3
FDEDC32211
FDEDD32211
DDEDF32211
DDEDD34433
EDC3

EDD3

EDE3
DDEDE3
FDEDE3
EDF3
FDEDF34433
DDEDC2
FDEDC22211
FDEDD22211
DDEDF22211
DDEDD24433
EDC2

EDD2

EDE2
DDEDE2
FDEDE2
EDF2
FDEDF24433
ED44

EDAC

00

B6

DDB1

DDB2
FDB32211
DDB3
DDB655
FDB12211
FDBG55
FDB22211
FDB02211
DDB02211

C-10

SOURCE CODE
A,(3344H)
AA

AB

AC

AD

AE

AH
AlIXH
AIXL
AIYH
AlYL
AU
A66H

3999333399939

OTDR
OTDRW
OTIR

OUT (C)i(HL+IX)
OUT (C),(HL+Y)
OUT (C),(HL+1122H)
OUT (C),(IX+1Y)
OUT (C),(IX+1122H)
OUT (C),(IY+1122H)
OUT (C),(PC+1122H)
OUT (C),(SP+1122H)
OUT (0),(3344H)

ouT (C)A
OouT (C).B
OouT (C).C
ouT (©).D
OUT (O
outT (©H
OouT (C),HL
OuUT (C).IXH
OuT (C)JIXL
OuUT (C).IYH
ouT (C),IyL
ouT (L
OUT (66H),A
OuUTD

OuTDW

OuTI

OUTIW

OUTW (C),HL
PCACHE

POP (HL)
POP (PC+1122H)
POP (3344H)
POP AF
POP BC
POP DE
POP HL
POP IX

POP Y
PUSH (HL)
PUSH (PC+1122H)
PUSH (3344H)
PUSH AF
PUSH BC
PUSH DE

OBJECT CODE
DDB74433
B7

FDB5

EDBB

EDOB

EDB3

ED93
ODED49
DDED51
FDED592211
DDED59
FDED492211
FDED512211
FDED412211
DDED412211
DDED794433

EDA3

EDBF
EDG5
DDCi
DDF12211
DDD14433
Fl

Cl

D1

El

DDE1
FDE1L
DDC5
DDF52211
DDD54433
53]

(63

D5

SOURCE CODE
PUSH HL

PUSH IX

PUSH Y

PUSH 3344H

RES 0,(HL)

RES 0,(IX+55H)
RES 0,(IY+55H)
RES O0OA

RES 0B

RES oc

RES 0D

RES OE

RES OH

RES OL

RES 1,HL)

RES 1,(IX+55H)
RES 1,(IY+55H)
RES 1A

RES I.B

RES i.c

RES 1.D

RES 1E

RES I.H

RES I.L

RES 2|(HL)
RES 2,(IX+55H)
RES 2,(IY+55H)
RES 2,A

RES 2B

RES 2,C

RES 2D

RES 2E

RES 2H

RES 2L

RES 3,(HL)
RES 3,(IX+55H)
RES 3,(IY+55H)
RES 3A

RES 3B

RES 3C

RES 3D

RES 3E

RES 3H

RES 3L

RES 4,(HL)

RES 4,(IX+55H)
RES 4,(IY+55H)
RES 4A

RES 4B

RES 4C

RES 4D

RES 4E

RES 4,H

RES 4L

RES 5,(HL)
RES 5,(IX+55H)
RES 5,(IY+55H)
RES 5A

RES 5B

RES 5C

OBJECT CODE

DDCB55A6
FDCB55A6
CBA7
CBAO
CBAl
SCBA2
CBA3
CBA4
CBAS
CBAE
DDCBS55AE
FDCBS5AE
CBAF
CBA3
CBA9

SOURCE CODE OBJECT CODE j SOURCE CODE OBJECT CODE

RES 5D CBAA RR (IX+55H) DDCBS51E
RES 5E CBAB RR (IY+55H) FDCBS51E
RES 5H CBAC RR A CBIF
RES 5L CBAD RR B CB18
RES 6|(HL) CBB6 RR C CB19
RES 6,(IX+55H) DDCB55B6 RR D CBIA
RES 6,(IY+55H) FDCB55B6 RR E CBIB
RES 6A CBB7 RR H CBIC
RES 6B CBBO RR L CBID
RES 6C CBBL RRA IF

RES 6D CBB2 RRC (HL CBCE
RES 6E CBB3 RRC (IX+55H) DDCB550E
RES 6H CBB4 RRC (IY+55H) FDCB550E
RES 6L CBB5 RRC A CBOF
RES 7,HL) CBBE RRC B CBO8
RES 7,(1X+55H) DDCBS5BE RRC C CB09
RES 7,(IY+55H) FDCB55SBE RRC D CBOA
RES 7A CBBF RRC E CBOB
RES r.B CBB8 RRC H cBOC
RES '7.c CBB9 RRC L CBOD
RES 7D CBBA RRCA o

RES 7E CBBB RRD ED67
RES 7H CBBC RST OOH c7

RES 7L CBBD RST O8H oF

RET o) RST 10H D7

RET ¢ D8 RST 18H DF

RET M 8 RST 20H =4

RET NC DO RST 28H EF

RET NZ @ RST 30H F7

RET P FO RST 38H FF

RET PE B SBC A(HL) 9

RET PO B SBC A,(HL+IX) DD99
RET Z c8 SBC A(HL+Y) DD9A
RETI ED4D SBC A(HL+1122H) FDOB2211
RETJL ED55 SBC A(IX+Y) DD9B
RETN ED45 SBC A,(IX+55H) DDIES5
RL (HD) CB16 SBC A(IX+1122H) FD992211
RL (IX+55H) DDCB5516 SBC A,(IY+55H) FDOE55
RL . (IY+55H) FDCB5516 SBC A(IY+1122H) FDOA2211
R A CB17 SBC A,(PC+1122H) FD982211
RL B CBIO SBC A,(SP+1122H) DD982211
RL C CBI1 SBC A(3344H) DDOF4433
RL D CBI2 SBC AA oF
RLE CBI3 SBC AB %8
RLH CBl4 SBC AC %

RL L CBI5 SBC AD %A

RLA 17 SBC AE 9B

RIC (HY CB06 SBC AH oC

RLC (IX+55H) DDCB5506 SBC AJIXH DDIC
RLC . (IY+55H) FDCB5506 SBC AJXL DD9D
RC A CBO7 SBC AlIYH FDOC
RC B B0 SBC AJIYL FD9D
RIC C CBOL SBC AL 9D

RIC D CBO2 SBC A66H DE66
RIC E CBO3 SBC HLBC ED42

RIC H CBO4 SBC hl.de ED52

RC L CBO5 SBC HLHL ED62
RLCA o7 SBC HLSP ED72

RLD ED6F SBC IXBC DDED42
R (HD CBIE SBC IXDE , DDED52

\ C-11

SOURCE CODE

IX,1X

IX,SP
1Y,BC
IY.DE
IY,IY

IY.SP
3344H

O.(HL)
0,(IX+55H)
0,(IY+55H)
0.A

0B

o.C

0D

0.E

OH

oL

1.(HL)
1,(IX+55H)
1,(1Y+55H)
1A

1B

i.c

1.D

1E

1H

U

2,(HD)
2,(IX+55H)
2,(IY+55H)
2,A

2B

2C

2D

2E

2H

2L

3,(HL)
3,(IX+55H)
3,(IY+55H)
3A

3B

3C

3D

3E

3H

3U

4,(HL)
4,(IX+55H)
4,(IY+55H)
4A

4.B

4.C

4,D

4E

4,H

4L

5,(HL)
5,(IX+55H)

OBJECT CODE
DDED62
DDED72
FDED42
FDED52
FDEDG2
FDED72
ED714433
37

CBCo6
DDCB55C6
FDCB55C6

DDCB55D6

CBE4

DDCBS5EE

SOURCE CODE
SET 5(IY+55H)
SET ,

SET 5B

SET 5C

SET 5D

SET 5E

SET 5H

SET 5L

SET 6,(HL)
SET 6,(IX+55H)
SET 6,(IY+55H)
SET 6A

SET 6B

SET @C

SET 6D

SET 6E

SET 6H

SET 6L

SET 2,(H)
SET 7,(IX+55H)
SET 7.(IY+55H)
SET 7A

SET 7B

SET 7C

SET 7D

SET 7E

SET 7H

SET 7L

SLA (HL)

SLA (IX+55H)
SLA (IY+55H)"
SLA A

SLA B

SIA C

SIA D

SLA E

SLA H

SLA L

SRA (HL)

SRA (IX+55H)
SRA (IY+55H)
SRA A

SRA B

SRA C

SRA D

SRA E

SRA H

SRA L

SRL (Hb

SRL (IX+55H)
SR (IY+55H)
SRL A

SRL B

SRL C

SRL D

SRL E

SRL H

SRL L

SUB AHL
SUB a,(hl+ix)

OBJECT CODE
FDCBS5EE
CBEF
CBE8
CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCB55F6
FDCB55F6
CBF7
CBFO
CBF1
CBR2
CBF3
CBH
CBF
CBFE
DDCBS5FE
FDCBS5FE
CBFF
CBF8
CBF9
CBFA,
CBFB
CBFC
CBFD
CB26
DDCB5526
FDCB5526
cB27
CB20
CB21

CcB22
CB23
CB24
CB25
CB2E
DDCB552E
FDCB552E
CB2F

DDo1

SOURCE CODE

SUB

TSET

A, (HL+Y)
A,(HL+1122H)
A, (IX+1Y)

A, (IX+55H)

A (IX+1122H)
A,(IY+55H)
A(IY+1122H)
A,(PC+1122H)
A,(SP+1122H)
A,(3344H)

AA

AB

AC

AD

AE

AH

AIXH

AIXL

AIYH

AIYL

AL

A66H

HL,(HL)
HL,(IX+1122H)
HL,(IY+1122H)
HL,(PC+1122H)
HL,(3344H)
HL.BC

HL.DE

HL,HL

HL.IX

HLIY

HL.SP
HL.3344H

(HL)

OBJECT CODE
DD92
FD932211
DD93
DD9655
FD912211
FD9655
FD922211
FD902211
DD902211
DD974433

97

0

91

92

93

A

DDo4

DD95

FD94

FD95

9%

D666
DDEDCE
FDEDCE2211
FDEDDE2211
DDEDFE2211
DDEDDE4433
EDCE

EDDE

EDEE
DDEDEE
FDEDEE
EDFE
FDEDFE4433
CB36

SOURCE CODE
TSET (IX+55H)
TSET (IY+55H)
TSET A

TSET B

TSET C

TSET D

TSET E

TSET H

TSET L

TSTI Q)

XOR A(HL)

XOR A, (HL+IX)
XOR A, (HL+IY)
XOR A,(HL+1122H)
XOR A.0X+lY)
XOR A,(IX+55H)
XOR A,(IX+1122H)
XOR A,(IY+55H)
XOR A/(lY+1122H)
XOR A,(PC+1122H)
XOR A, (SP+1122H)
XOR A/(3344H)
XOR AA

XOR AB

XOR AC

XOR AD

XOR AE

XOR AH

XOR AIXH

XOR AJIXL

XOR AIYH

XOR AlYL

XOR AL

XOR A66H

OBJECT CODE

DDCB5536
FDCB5536
CB37
CB30
CB31
CB32
CB33
CB3#4
CB35
ED70

AE

DDA9
DDAA
FDAB2211
DDAB
DDAES5
FDA92211
FDAES5
FDAA2211
FDA82211
DDA82211
DDAF4433

OBJECT CODE
00

014433

014433

02

03

03

04

05

OE66
1075

114433
114433

2875

SOURCE CODE
NOP

LD BC334H «
LDW BC.3344H
LD (bc),a
INCW BC

INC BC

INC B

DEC B

LD B,66H
RLCA

EX AF.AF
ADD HLBC

LD A(BQ)
DEC BC
DECW BC

INC C

DEC C

LD C.66H
RRCA

DINZ 77H

LD DE.3344H
LDW DE.3344H
LD (de),a
INC DE

INCW DE

INC D

DEC D

LD D,66H
RLA

JR 7H

ADD HLDE

LD a.(de)
DEC DE
DECW DE

INC E

DEC E

LD E,66H
RRA

JR Nz, 77H
LD HL.3344H
LDA HL,(3344H)
LDW HL.3344H
LD (3344H),HL
LDW (3344H),HL
INCW HL

INC HL

INC H

DEC H

LD H.66H
DAA

JR Z7MH

Appendix D.
Instructions in Numeric Order

OBJECT CODE
29
2A4433
2A4433
2B

2B

2

2D
2E66
2F
3075
314433
314433

3875

SRALBRBABHAEEELEEIEHERED

SOURCE CODE

ADD
LD
LDW
DEC
DECW
INC
DEC

INC

HLHL
HL,(3344H)
HL,(3344H)
HL

HL

L

L

L,66H

NC.77H
SP.3344H
SP.3344H
(3344H),A
sP

sP

(HL)

(HL)
(HL),66H

C.7H
HL.SP
A,(3344H)
SP

SP

D-1

D-2

OBJECT CODE
57

JIVFA NIV IARERBRBBASRRBBABAASGEHL B

8ARIII>

&

SeSRASRERBBARRRER

SOURCE CODE
LD \

LD EB
LD EC
ID ED
ID EE
ID EH
LD EL
LD E(HL)
ID EA
ID HB
ID HC
ID HD
LD HE
LD HH
LD HL
LD H(HL
ID HA
ID LB
ID LC
LD LD
LD LE
LD LH
ID LL
ID L{HD
ID LA
LD (h1).b
ID (HY).C
LD (HL),D
LD (HL)E
ID (HLH
ID (HLL
HALT

ID (HHA
ID AB
ID AC
ID AD
LD AE
LD AH
LD AL
LD A(HL
LD AA
ADD AB
ADD AC
ADD AD
ADD AE
ADD AH
ADD AL
ADD A(HL)
ADD AA
ADC AB
ADC AC
ADC AD
ADC AE
ADC AH
ADC AL
ADC A(HL)
ADC AA
SUB AB
SUB AC
SUB AD

OBJECT CODE

S8ELB8BLYBERY

ul

ggggggagggQS%%%R%gzu%gaga%EB%%%%5E%aagakakag

CB01
CB02

:

SOURCE CODE
SUB AE
SUB AH
SUB AL
SUB A(HL)
SUB AA
SBC AB
SBC AC
SBC AD
SBC AE
SBC AH
SBC AL
SBC A(HL)
SBC AA
AND AB
AND AC
AND AD
AND AE
AND AH
AND AL
AND A(HL)
AND AA
XOR AB
XOR AC
XOR AD
XOR AE
XOR AH
XOR AL
XOR A(HL)
XOR AA
OR AB
OR AC
OR AD
OR AE
OR AH
OR AL
OR A(HL
OR AA
CP AB
P AC
P AD
CP AE
CP AH
CcP AL
P A(HL
P AA
RET NZ
POP BC
JP Nz.33uH
JP 33MH
CALL Nz.3344H
PUSH BC
ADD A66H
RST OOH
RET Z
RET

JP Z33MH
RIC B
RIC C
RIC D
RIC E

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE

CBO4 RIC H CB40 - BT OB
CBO5 RIC L CB41 BIT 0C
CB06 RLC (HD cB42 BIT 0D
CBO7 RIC A CcB43 BIT O0E
CB08 RRC B cBM4 BIT OH
CB09 RRC C CcB45 BIT oL
CBOA RRC D CB46 BIT O,HL)
cBOB RRC E cBa7 BIT OA
CcBOC RRC H CB48 BIT |I.B
CBOD RRC L CcB49 BIT ic
CBCE RRC (HL CB4A BIT 1D
CBOF RRC A CB4B BIT 1E
CB10 RL B CB4AC BIT 1H
CB1L RL C CB4D BIT 1L
CBL2 RL D CB4E BIT L(HL)
CB13 RL E CBAF BIT 1A
CB14 RL H CB50 BIT 2B
CB15 RL L CB51 BIT 2C
CB16 RL (HL) CB52 BIT 2D
CB17 RL A CB53 BIT 2E
CB18 RR B CB4 BIT 2H
CB19 RR C CB55 BIT 2L
CB1A RR D CB56 BIT 2|(HL)
CB1B RR E CB57 BIT 2A
CBIC RR H CB58 BIT 3B
CBI1D RR L CB59 BIT 3C
CBLE RR (HL) CB5A BIT 3D
CB1F RR A CB5B BIT 3E
CB20 SLA B CB5C BIT 3H
cB21 SLA C CB5D BIT 3L
CcB2 SLA D CBSE BIT 3i(HL)
CB23 SLA E CB5F BIT 3A
CB24 SLA H CB60 BIT 4B
CB25 SLA L CB61 BIT 4cC
CB26 SLA (HL) CB62 BIT 4D
cB27 SLA A CB63 BIT 4E
CB28 SRA B CBe4 BIT 4H
CB29 SRA C CB65 BIT 4L
CB2A SRA D CB66 BIT 4,(HI)
CcB2B SRA E CB67 BIT 4A
cB2C SRA H CB68 BIT 5B
CB2D SRA L CB69 BIT 5C
CBZE SRA (HL) CB6A BIT 5D
CB2F SRA A CB6B BIT 5E
CB30 TSET B CB6C BIT 5H
CB31 TSET C CB6D BIT 5L
CB32 TSET D CB6E BIT 5,(HL)
CB33 TSET E CB6F BIT 5A
CB34 TSET H CB70 BIT 6B
B35 TSET L CB71 BIT 6C
CB36 TSET (HL) CB72 BIT 6D
CB37 TSET A CB73 BIT 6E
CB33 SRL B CB74 BIT 6H
CB39 SRL C CB75 BIT 6L
CB3A SRL D CB76 BIT 6,(HL)
CcB3B SRL E CB77 BIT 6A
CB3C SRL H CB78 BIT 7B
CB3D SRL L CB79 BIT 7C
CB3E SRL (HY CB7A BIT 7D
CB3F SRL A CB7B BIT 7E

OBJECT CODE
CB7C
CB7D
CB7E
CB7F
CB80
CBs1
CB82
CB83
CB84
CB85
CB86
CB87
CB88
CB89
CB8A
CBsB
CBsC
CB8D
CBSE

SOURCE CODE
BIT 7H
BIT 7L
BIT 7,(HL)
BIT 7A
RES 0B
RES 0C
RES 0D
RES OQE
RES OH
RES Qu
RES O.(HL)
RES O0A
RES 1B
RES 1C
RES 1D
RES |E
RES 1H
RES IL
RES IL.(HL)
RES 1A
RES 2B
RES 2C
RES 2D
RES 2E
RES 2H
RES 2L
RES 2,(HL)
RES 2A
RES 3B
RES 3C
RES 3D
RES 3E
RES 3H
RES 3L
RES 3,(HL)
RES 3A
RES 4B
RES 4|C
RES 4D
RES 4E
RES 4H
RES 4L
RES 4,(HL)
RES 4A
RES 5B
RES 5C
RES 5D
RES 5E
RES 5H
RES 5L
RES 5,(HL)
RES 5A
RES 6B
RES 6,C
RES 6D
RES 6E
RES 6H
RES 6L
RES 6,(HL)
RES 6A

OBJECT CODE
CBB8

CBB9

CBBA

CBBB

CBBC

CBBD

CBBE

CBBF

CBD7

CBDA
CBDB

CBED

SOURCE CODE
RES 7B
RES 7C
RES 7D
RES 7E
RES 7H
RES 7L
RES 7,(HV)
RES 7A
SET OB
SET o,c
SET 0D
SET OE
SET OH
SET OL
SET 0,(HL)
SET O0OA
SET 1B
SET i.c
SET I.D
SET 1E
SET 1H
SET 1L
SET 1,(HL)
SET 1A
SET 2B
SET 2C
SET 2D
SET 2E
SET 2H
SET 2L
SET 2,(HL)
SET 2A
SET 3B
SET 3C
SET 3D
SET 3E
SET 3H
SET 3L
SET sihu)
SET 3A
SET 4B
SET 4C
SET 4D »
SET 4E
SET 4H
SET 4L
SET 4,(HL)
SET 4A
SET 5B
SET 5C
SET 5D
SET 5E
SET 5H
SET 5L
SET 5,(HL)
SET 5A
SET 6B
SET 6,C
SET 6D
SET 6E

OBJECT CODE
CBF4
CBF5
CBF6
CBF7
CBF8
CBF9
CBFA
CBFB
CBFC
CBFD
CBFE
CBFF
CC4433
CD4433
CE66

CF

DO

D1
D24433
D366
D44433

D5

D666

D7

D8

D9
DA4433
DB66 '
DC4433
DD014433
DDO03
DD042211
DDO052211
DD06221166
DDO09
DDOB
DDOC
DDOD
DDOEG66
DD1144339988
DD134433
DD14
DD15
DD1666
DD19
DD1B4433
DD1C
DD1D
DD1EG66
DD2074
DD214433
DD214433
DD214433
DD224433
DD224433
DD23
DD23
DD24
DD25
DD2666

SOURCE CODE

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
CALL
CALL
ADC
RST
RET
POP
JP
ouT
CALL
PUSH
sSuB
RST
RET
EXX
JP

IN
CALL
LDW
INCW
INC
DEC
LD
ADD
DECW
INC
DEC
LD
LDW
INCW
INC
DEC
LD
ADD
DECW
INC
DEC
LD
JAR
LD
LDA
LDW
LD
LDW
INC
INCW
INC
DEC
LD

6>H

6,L
6»(HL)
6,A

7,B

7,C

7,D

7,E

7,H

7,L
7,(HL)
7,A
Z.3344H
3344H
A,66H
08H

NC

DE
NC.3344H
(66H),A
NC.3344H
DE
A.66H
10H

C

C.3344H
A,(66H)
C.3344H
(HL),3344H
(HL)
(SP+1122H)
(SP+1122H)
(SP+1122H),66H
IX,BC

(HL)
(HL+IX)
(HL+IX)
(HL+1X),66H
(3344H),8899H
(3344H)
(HL+1Y)
(HL+1Y)
(HL+1Y) 66H
IX.DE
(3344H)
(IX+1Y)
(IX+1Y)
(IX+1Y),66H
77H

IX.3344H
IX,(3344H)
IX.3344H
(3344H),IX
(3344H) ,IX
IX

IX

IXH

IXH

IXH.66H

OBJECT CODE
DD2874
DD29
DD2A4433
DD2A4433
DD2B
DD2B
DD2C
DD2D
DD2EG66
DD31221144
DD332211
DD3455
DD3555
DD365566
DD39
DD3B2211
DD3C4433
DD3D4433
DD3E443366
DD44
DD45
DD4655
DD4C
DD4D
DDA4ES5
DD54
DD55
DD5655
DD5C
DD5D
DD5ES5
DD60
DD61
DD62
DD63
DD64
DD65
DD6655
DD67
DD68
DD69
DD6A
DD6B
DD6C
DD6D
DDG6ES5
DD6F
DD7055
DD7155
DD7255
DD7355
DD7455
DD7555
DD7755
DD782211
DD79
DD7A
DD7B
DD7C
DD7D

SOURCE CODE

JAF
ADD
LD
LDW
DEC
DECW
INC
DEC
LD
LDW
INCW
INC
DEC
LD
ADD
DECW
INC
DEC
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

77H
IX,IX
IX,(334471)
IX,(3344H)
IX

IX

IXL

IXL

IXL.66H
(PC+1122H),3344H
(PC+1122H)
(IX+55H)
(IX+55H)
(IX+55H),66H
IX,SP
(PC+1122H)
(3344H)
(3344H)
(3344H),66H
B.IXH

B.IXL
B,(IX+55H)
C.IXH

C;IXL
C,(IX+55H)
D,IXH
D.IXL
D,(IX+55H)
E,IXH

E.IXL
E,(IX+55H)
IXH.B
IXH.C
IXH.D
IXH.E
IXH,IXH
IXH,IXL
H,(IX+55H)
IXH,A
IXL,B

IXL.C

IXL.D

IXL,E
IXL,IXH
IXL,IXL
L,(IX+55H)
IXL,A
(IX+55H),B
(IX+55HJ.C
(IX+55H),D
(IX+55H),E
(IX+55HJ.H
(IX+55HJ.L
(IX+55H),A
A, (SP+1122H)
A (HL+IX)
A (HL+1Y)
AL (IX+1Y)
ALIXH

AIXL

D-5

OBJECT CODE
DD7E55

DD802211
DD81
DD82
DD83
DD84
DD85
DD8655
DD874433
DD882211
DD89
DD8A
DD8B
DD8C
DD8D
DD8ES5
DD8F4433
DD90221.1
DD9I1
DD92
DD93
DD94
DD95
DD9655
DD974433
DD982211
DD99
DD9A
DD9B
DD9C
DD9D
DDOES5
DD9F4433
DDA02211
DDA1
DDA2
DDA3
DDA4
DDAS5
DDAG55
DDA74433
DDA82211
DDA9
DDAA
DDAB
DDAC
DDAD
DDAES5
DDAF4433
DDB02211
DDB1
DDB2
DDB3
DDB4
DDB5
DDB655
DDB74433
DDB82211
DDB9
DDBA

SOURCE CODE

LD A(IX+55H) |,
ADD A(SP+1122H)
ADD A,(HL+IX)
ADD A (HL+Y)
ADD A(IX-MY)
ADD AIXH

ADD AIXL

ADD A(IX+55H)
ADD A,(3344H)
ADC A(SP+1122H)
ADC A, (HL+X)
ADC A (HL+Y)
ADC A, (IX+Y)
ADC AIXH

ADC AIXL

ADC A, (IX+55H)
ADC A,(3344H)
SUB A,(SP+1122H)
SUB A,(HL+IX)
SUB A,(HLHY)
SUB A,(IX+Y)
SUB AIXH

SUB A.IXt

SUB A,(IX+55H)
SUB A,(3344H)
SBC A(SP+1122H)
SBC A,(HL+X)
SBC A,(HL+Y)
SBC A,(IX+Y)
SBC AlIXH

SBC AIXL

SBC A,(IX+55H)
SBC A(3344H)
AND A(SP+1122H)
AND A (HL+IX)
AND A.(HL+Y)
AND A (IX+1Y)
AND AlIXH

AND AIXL

AND A (IX+55H)
AND A (3344H)
XOR A(SP+1122H)
XOR A,(HL+IX)
XOR A,(HL+lY)
XOR A,(IX+Y)
XOR AIXH

XOR AIXL

XOR A,(IX+55H)
XOR A,(3344H)

OR A(SP+1122H)
OR A(HL+IX)

OR A(HLHY)

OR A,(IX+Y)

OR AIXH

OR AIXL

OR A,(IX+55H)
OR A(3344H)

CP A(SP+1122H)
P A(HL+IX)

CP A(HLHY)

OBJECT CODE
DDBB
DDBC

DDCBS5FE
DDCC
DDCD
DDD14433
DDD2
DDD4
DDD54433
DDDA
DDDC
DDE1
DDE2
DDE3
DDE4
DDE5
DDE9
DDEA
DDEB
DDEC
DDEDO022211

SOURCE CODE

cP

A, (IX+1Y)
AIXH
AIXL
A,(IX+55H)
A,(3344H)
(HL)
NZ.(HL)
NZ.(HL)
(HL)
Z.(HL)
(IX+55H)
(IX+55H)
(IX+55H)
(IX+55H)
(IX+55H)
(IX+55H)
(IX+55H)
(IX+55H)
0,(IX+55H)
1,(IX+55H)
2,(IX+55H)
3,(IX+55H)
4,(1X+55H)
5,(IX+55H)
6,(IX+55H)
7,(IX+55H)
0,(IX+55H)
I.(IX+55H)
2,(IX+55H)
3,(IX+55H)
4,(1X+55H)
5,(IX+55H)
6,(IX+55H)
7,(IX+55H)
0,(IX+55H)
1,(IX+55H)
2,(IX+55H)
3,(IX+55H)
4,(1X+55H)
5,(IX+55H)
6,(IX+55H)
7,(IX+55H)
Z,(HL)
(HL)
(3344H)
NC.(HL)
NC.(HL)
(3344H)
C.(HL)
C.(HL)

IX

PO.(HL)
(SP).IX
PO.(HL)

IX

(IX)
PE,(HL)
IX,HL
PE,(HL)
IX,(SP+U22H)

OBJECT CODE
DDEDO042211
DDEDO042211
DDEDO052211
DDED052211
DDEDO655
DDEDO655
DDEDO072211
DDEDOA
DDEDOC
DDEDOC
DDEDOD
DDEDOD
DDEDOES5
DDEDOES5
DDEDOF
DDED12
DDED14
DDED14
DDED15
DDED15
DDED1655
DDED1655
DDED17
DDED1A
DDEDI1C
DDED1C
DDEDID
DDED1D
DDED1ES5
DDED1ES5
DDED1F
DDED222211
DDED242211
DDED242211
DDED252211
DDED252211
DDED2655
DDED2655
DDED27
DDED2A2211
DDED2C2211
DDED2C2211
DDED2D2211
DDED2D2211
DDED2ES5
DDED2ES5
DDED2F
DDED322211
DDED342211
DDED342211
DDED352211
DDED352211
DDED3655
DDED3655
DDED3755
DDED3A2211
DDED3C2211
DDED3C2211
DDED3D2211
DDED3D2211

SOURCE CODE

LD IX,(SP+1122H)
LDW IX,(SP+1122H)
LD (SP+1122H),IX
LDW (SP+1122H),IX
LD BC,(IX+55H)
LDW BC,(IX+55H)
EX A,(SP+U22H)
LDA IX,(HL+IX)

LD IX,(HL+X)
LDW IX,(HL+IX)

LD (HL*IX),IX
LDW (HL+IX),IX

LD (IX+55H),BC
LDW (IX+55H),BC
EX A(HL+X)
LDA IX,(HL+Y)

LD IX,(HL+Y)
LDW IX.(HU-IY)

LD (HLHY),IX
LDW (HL+Y),IX

LD DE,(IX+55H)
LDW DE,(IX+55H)
EX A(HLHY)
LDA IX,(IX+1Y)

LD IX,(X+Y)
LDW IX,(IX+1Y)

LD (IXHYJIX
LDW (IX+1Y),IX

LD (IX+55H),DE
LDW (IX+55H),DE
EX A(IXHY)

LDA IX,(PC+1122H)
LD IX,(PC+1122H)
LDW IX,(PC+1122H)
LD (PC+1122H),IX
LDW (PC+1122H),IX
LD HL,(IX+55H)
LDW HL,(IX+55H)
EX AIXH

LDA IX,(IX+1122H)
LD IX,(IX+1122H)
LDW IX,(IX+1122H)
LD (IX+U22H),IX
LDW (IX+1122H),IX
LD (IX+55H),HL
LDW (IX+55H),HL
EX AIXL

LDA IX,(IY+1122H)
LD IX,(IY+1122H)
LDW IX,(IY+1122H)
LD (IY+1122H),IX
LDW (IY+1122H),1X
LD SP,(IX+55H)
LDW SP,(IX+55H)
EX A(IX+55H)
LDA IX,(HL+1122H)
LD IX,(HL+1122H)
LDW IX,(HL+1122H)
LD (HL+1122H),IX
LDW (HL+1122H),IX

OBJECT CODE
DDED3ES5
DDED3ES5
DDED3F4433
DDEDA402211
DDED412211
DDED42
DDED48
DDED49
DDED4A
DDED50
DDED51
DDED52
DDEDS58
DDED59
DDED5A
DDEDG0
DDED61
DDED62
DDEDG6
DDED6G8
DDED69
DDEDGA
DDEDGD
DDEDG6E
DDED72
DDED784433
DDED794433
DDED7A
DDED8655
DDED87
DDEDSES5
DDEDS8F
DDED9655
DDEDYES5
DDEDC02211
DDEDC12211
DDEDC2
DDEDC3
DDEDCA42211
DDEDC52211
DDEDC6
DDEDC?Y
DDEDC8
DDEDC9
DDEDCA
DDEDCB
DDEDCC
DDEDCD
DDEDCE
DDEDDO
DDEDD1
DDEDD24433
DDEDD34433
DDEDD4
DDEDD5
DDEDD64433
DDEDD74433
DDEDD8
DDEDD9
DDEDDAA4433

SOURCE CODE

LD (IX+55H),SP
LDW (IX+55H),SP
EX A(3344H)

IN (SP+1122H),(C)
OUT (C),(SP+1122H)
SBC IX,BC

IN (HL+1X),(C)
OUT (C),(HL*IX)
ADC IXBC

IN (HL+Y),C)
OUT (C),(HL+Y)
SBC IXDE

IN (IX+1Y),(C)
OUT (C),(X+1Y)

ADC IXDE
IN IXH,(C)
OoUT (C)IXH
SBC IX|IX
LDCTL IX,(C)
IN IXL,(C)
OUT (O),IXL
ADC IX,IX
ADD IXA
LDCTL (C),IX
SBC IX.SP

IN (3344H),(C)
OUT (C),(3344H)
ADC IXSP

LDUD A, (IX+55H)
LDCTL IX.USP

LDUD (IX+55H),A
LDCTL USP.IX

LDUP A (IX+55H)
LDUP (IX+55H),A
MULT A,(SP+1122H)
MULTU A,(SP+1122H)
MULTW HL,(HL)
MULTUW HL,(HL)
DIV HL,(SP+1122H)
DIVU HL,(SP+1122H)
ADDW HL.(HL)

CPW HL.(HL)
MULT A, (HL+IX)
MULTUA, (HL+IX)
DIVW DEHL.(HL)
DIVUW DEHL.(HL)

DIV HL,(HL+IX)
DIVU HL,(HL+IX)
SUBW HL,(HL)

MULT A, (HL+Y)
MULTUA, (HL+Y)
MULTW HL,(3344H)
MULTUW HL,(3344H)
DIV HLJ{HL+Y)
DIVU HL,(HL+Y)
ADDW HL,(3344H)
CPW HL,(3344H)
MULT A,(IX+1Y)
MULTUA, (IX+1Y)
DIVW DEHL,(3344H)

D-7

OBJECT CODE
DDEDDB4433
DDEDDC
DDEDDD
DDEDDE4433
DDEDEO
DDEDE1L
DDEDE2
DDEDE3
DDEDE4
DDEDES
DDEDE6
DDEDE7
DDEDES
DDEDE9
DDEDEA
DDEDEB
DDEDEC
DDEDED
DDEDEE
DDEDFO055
DDEDF155
DDEDF22211
DDEDF32211
DDEDF455
DDEDF555
DDEDF62211
DDEDF72211
DDEDF84433
DDEDF94433
DDEDFA2211
DDEDFB2211
DDEDFCA4433
DDEDFD4433
DDEDFE2211
DDF12211
DDF2

DDF4
DDF52211
DDF9

DDF9

DDFA

DDFC

DEG6

DF

EO

El

E24433

B3

E44433

B

E666

E/

B3

E9

EA4433

EB

EC4433
ED022211
ED032211
ED042211

SOURCE CODE
DIVUW DEHL,(3344H)
DIV HL,(IX+Y)
DIVU HL,(IX+Y)
SUBW HL,(3344H)
MULT A.IXH
MULTUA.IXH

MULTW HL,IX
MULTUW HL.IX
DIV HL,IXH

DIVU HLIXH

ADDW HL,IX

CPW HL.IX

MULT A,IXL
MULTUA,IXL

DIVW DEHL.IX

DIVUW DEHLJIX

DIV HLIXL

DIVU HLIXL

SUBW HL.IX

MULT A, (IX+55H)
MULTU A, (IX+55H)
MULTW HL,(PC+1122H)
MULTUW HL,(PC+1122H)
DIV HL,(IX+55H)
DIVU HL,(IX+55H)
ADDW HL,(PC+1122H)
CPW HL,(PC+1122H)
MULT A,(3344H)

MULTU A,(3344H)

DIVW DEHL,(PC+1122H)
DIVUW DEHL,(PC+1122H)
DIV HL,(3344H)

DIVU HL.(3344H)
SUBW HL,(PC+1122H)
POP (PC+1122H)

JP P(HY
CALL P,(HL)
PUSH (PC+1122H)
LDW SP,IX
LD SP.IX
P MHL
CALL m,(h1)
SBC A66H
RST 18H
RET PO
POP HL

JP P0.3344H
EX (SP)HL
CALL P0.3344H
PUSH HL
AND A66H
RST 20H
RET PE

P (HY

JP PE334H
EX DEHL

CALL PE3344H

LDA HL,(SP+1122H)
LD (SP+1122HJA
LD HL,(SP+1122H)

OBJECT CODE
ED042211
ED052211
ED052211

EDO6

EDO6

EDO7

ED12
ED13
ED14
ED14
ED15
ED15
ED16
ED16
ED17
ED1A
ED1B
ED1C
ED1C
ED1D
ED1D
ED1E
ED1E
EDIF
ED222211
ED232211
ED242211
ED242211
ED252211
ED252211
ED26
ED26
ED27
ED2A2211
ED2B2211
ED2C2211
ED2C2211
ED2D2211
ED2D2211
ED2E

SOURCE CODE

LDW HL,(SP+1122H)
LD (SP+U22H),HL
LDW (SP+1122H)HL

LD BC.(HL)
LDW BC.(HL)
EX AB

LDA HL,(HL+IX)
LD (HL+IX),A

LD HL,(HL+X)
LDW HL,(HL+IX)
LD (HL+IX),HL
LDW (HL+IX),HL

LD (HL.BC
LDW (HL),BC
EX AC

LDA HI,(HL+IY)
LD (HL+IV)A

LD HL,(HLHY)
LDW HL,(HU+Y)
LD (HLHY)HL
LDW (HL+Y),HL

LD de,(hl)
LDW DE,(HL)
EX AD

LDA HL,(IX+Y)
LD (IX+Y)A

LD HL,(IX+Y)
LDW HL.jIX+Y)
LD (IX+Y),HL
LDW (IX+IY),HL

LD (HL),DE
LDW (HL),DE
EX AE

LDA HL,(PC+1122H)
LD (PC+1122H)A

LD HL,(PCHi22H)
LDW HL,(PC+1122H)
LD (PC+1122H),HL
LDW (PC+1122H),HL

LD HL(HL
LDW HL(HL)
EX AH

LDA HL,(IX+1122H)
LD (IX+1122H),A

LD HL(IX+1122H)
LDW HL,(IX+1122H)
LD (IX+1122H)HL
LDW (IX+1122H)HL

LD (HLHL
LDW (HL),HL
EX AL

LDA HL,(IY+1122H)
LD (IY+1122H)A

LD HL,(Y+1122H)
LDW HL,(IY+1122H)
LD (IY+1122H),HL
LDW (IY+1122H),HL

LD SP.(HL)
LDW SP,(HL)
EX A(HL

OBJECT CODE
ED3A2211
ED3B2211
ED3C2211
ED3D2211
ED3D2211

ED714433
ED72

ED734433
ED734433

SOURCE CODE
LDA HL,(HL+1122H)
LD (HL+U22H),A
LDW HL,(HL+1122H)
LD (HL+1122H)HL
LDW (HL+1122H)HL
LD (HL),SP
LDW (HLJ.SP
EX A A
IN B. ©
ouUT (B

SBC HLBC

LD (3344H),BC
LDW (3344HJ.BC
NEG A

RETN

M 0

LD 1A

N C(©

OUT (C).c

ADC HLBC

LD BC,(3344H)
LDW BC,(3344H)
NEG HL

RETI

M 3

LD RA

IN D(C)

OUT (C)D

SBC HLDE

LD (3344H)DE
LDW (3344HJ.DE
RETIL

M 1

D Al

N _ E@Q

OUT (©OE

ADC HLDE

LD DE(3344H)
LDW DE,(3344H)
M 2

LD AR

IN H,(C)

ouT (O)H

SBC HLHL
EXTS A

PCACHE

LDCTL HL.(C)
RRD

IN L.(C)

OouUT (o)L

ADC HLHL
EXTS HL

ADD HLA
LDCTL (C),HL
RLD

ST (©

sc 33H

SBC HLSP

LD (3344HISP
LDW (3344H).SP

OBJECT CODE
ED7766

ED78

ED79

ED7A
ED7B4433

EDOE
EDOF
EDAO
EDA1L
EDA2
EDA3
EDA42211
EDA52211
EDAG
EDA74433
EDA8
EDAS
EDAA
EDAB
EDAC2211
EDAD2211
EDAE
EDAF4433
EDBO
EDB1
EDB2
EDB3
EDB42211
EDB52211
EDB7
EDB7
EDB8
EDB9
EDBA
EDBB
EDBC2211

SOURCE CODE
DI 66H

IN A(Q)

OUT (A
ADC HLSP

LD SP,(3344H)
LDW SP,(3344H)
g 66H

INIW

OUTIW

EPUM (SP+1122H)
MEPU (SP+1122H)
LDUD a.(ht)
LDCTL HL,USP
INDW

OUTDW

EPUM (HL+IX)
MEPU (HL+IX)
LDUD (hl),a
LDCTL USP.HL
INIRW

OTIRW

EPUM (HL+Y)
MEPU (HL+Y)
LDUP a.(hi)
EPUF

INDRW

OTDRW

EPUM (IX+1Y)
MEPU (IX+1Y)
LDUP (hl).a
EPUI

LDI

cPI

INI

ouTI

EPUM (PC+1122H)
MEPU (PC+1122H)
EPUM (HL)
EPUM (3344H)

EPUM (IX+1122H)
MEPU (IX+1122H)
MEPU (HL)
MEPU (3344H)

EPUM (IY+1122H)
MEPU (IY+1122H)
IN HL(©
INW HL(C)

EPUM (HL+1122H)

D-9

P-10

OBJECT CODE
EDBD2211
EDBF

EDBF

EDCO

EDC1

EDC2

EDC3

SOURCE CODE
MEPU (HL+1122H)
OUT (C)HL
OUTW (C),HL

MULT AB
MULTUA.B

MULTW HLBC
MULTUW HL,BC
DIV HLB

DVU HLB
ADDW HL.BC

CPW HLBC
MULT AC
MULTUA.C

DIVW DEHL.BC
DIVUW DEHL.BC
DIV HLC

DVU HLC
SUBW HLBC

MULT AD
MULTUA.D

MULTW HL.DE
MULTUW HL.DE
DIV HLD

DVU HLD
ADDW HL.DE

CPW HLDE
MULT AE
MULTUA.E

DIVW DEHL.DE
DIVUW DEHL.DE
DIV HLE

DVU HLE
SUBW HL.DE

MULT AH
MULTUA.H

MULTW HLHL
MULTUW HLHL
DIV HLH

DVU HLH
ADDW HLHL

CPW HLHL
MULT AL
MULTUA.L

DIVW DEHL.HL
DIVUW DEHL.HL
DIV HLL

DVU HLL
SUBW HLHL

EX HL

MULT A,(HL)
MULTUA.(HL)
MULTW HL.SP
MULTUW HL.SP
DIV HL(HL)
DIVU HL.(HL)
ADDW HL.SP

CPW HLSP
MULT AA
MULTUAA

DIVW DEHL.SP

OBJECT CODE

FDOC2211
FDOD2211
FDOE221166
FD132211
FD142211
FD152211
FD16221166
FD19
FD1B2211
FD1C2211
FD1D2211
FD1E221166
FD214433
FD214433
FD214433
FD224433
FD224433
FD23

FD23

FD24

FD25
FD2666
FD29
FD2A4433
FD2B

FD2B

FD2C

FD2D
FD2E6G6

SOURCE CODE
DIVUW DEHL.SP
DIV HLA
DiVU HLA
SUBW HLSP
XOR A66H
RST 28H
RET P

POP AF

JP P.3344H
DI

CALL P.3344H
PUSH AF

OR A.66H
RST 30H
RET M

LDW SP.HL
LD SP.HL
JP M.3344H
=]

CALL M.3344H

INCW (IX+1122H)
INC (PC+1122H)
DEC (PC+1122H)
LD (PC+1122H)66H
ADD IY.BC

DECW (IX+1122H)

INC (IX+1122H)
DEC (IX+1122H)

LD (IX+1122H),66H
INCW (IY+1122H)
INC (IY+1122H)
DEC (IY+1122H)

LD (IY+1122H),66H
ADD IY.DE

DECW (IY+1122H)

INC (HL+1122H)
DEC (HL+1122H)
LD (HL+1122HJ.66H

LD IY.334H
LDA 1Y,(3344H)
LDW 1Y.3344H

LD (3344H3.IY
LDW (3344HJ.lY

INC 1Y
INCW 1Y

INC IYH

DEC IYH

LD IYH.66H
ADD IY.IY
LDW 1Y.(3344H)
DEC IY

DECW 1Y

INC YL

DEC IYL

LD IYL66H
INC (IY+55H)

DEC (IY+55H)

LD (IY+55HJ.66H
ADD IY.SP

LD BIYH

OBJECT CODE
FD45
FD4655

FDGF
FD7055
FD7155
FD7255
FD7355
FD7455
FD7555
FD7755
FD782211
FD792211
FD7A2211
FD7B2211
FD7C
FD7D
FD7E55
FD802211
FD812211
FD822211
FD832211

FD932211
FD94

SOURCE CODE

LD BIYL

LD B,(IY+55H)
LD CIYH

LD CIYL

LD C(IY+55H)
LD D.IYH

LD DIYL

LD D,(IY+55H)
LD EIH

LD EIYL

LD E(Y+55H)
LD IYHB

LD IYHC

LD IYHD

LD IYHE

LD IYH.IYH

LD IYHIYL

LD H,(IY+55H)
LD IYHA

LD IYLB

LD ILC

LD YLD

LD IYLE

LD IYLIYH

LD IYLIYL

LD L,(IY+55H)
LD IYLA

LD (IY+55H),B
LD (IY+55H),C
LD (IY+55H),D
LD (IY+55H),E
LD (IY+55H),H
LD (IY+55H),L
LD (IY+55H),A
LD A(PC+1122H)
LD A(IX+1122H)
LD A(IY+1122H)
LD A(HL+1122H)
LD AIYH

LD AIVL

LD A(IY+55H)
ADD A,(PC+1122H)
ADD A(IX+1122H)
ADD A(IY+1122H)
ADD A(HL+1122H)
ADD AIYH

ADD AIYL

ADD A,(IY+55H)
ADC A,(PC+1122H)
ADC A(IX+1122H)
ADC A(IY+1122H)
ADC A(HL+1122H)
ADC AIYH

ADC AIYL

ADC A(IY+55H)
SUB A,(PC+1122H)
SUB A,(IX+1122H)
SUB A,(IY+1122H)
SUB A(HL+1122H)
SUB AIYH

OBJECT CODE
FD9S
FD9655
FD982211
FD992211
FD9A2211
FD9B2211
FDOC
FDOD
FD9ESS
FDAO2211
FDA12211
FDA22211
FDA32211
FDAA
FDAS5
FDAGS5
FDA82211
FDA92211
FDAA2211
FDAB2211
FDAC
FDAD
FDAES5
FDB02211
FDB12211
FDB22211
FDB32211
FDB4
FDB5
FDBG55
FDB82211
FDB92211
FDBA2211
FDBB2211
FDBC
FDBD
FDBES5
FDC22211
FDC32211
FDCA2211
FDCA2211
FDCB5506
FDCBS550E
FDCB5516
FDCBS51E
FDCB5526
FDCB552E
FDCB5536
FDCB553E
FDCB5546
FDCB554E
FDCB5556
FDCBS555E
FDCB5566
FDCBS56E
FDCBS5576
FDCB557E
FDCB5586
FDCBS58E
FDCB5596

SOURCE CODE

SUB AIYL

SUB A,(IY+55H)
SBC A,(PC+1122H)
SBC A,(IX+1122H)
SBC A,(IY+1122H)
SBC A.(HL+il22H)
SBC AlYH

SBC AIYL

SBC A,(IY+55H)
AND A, (PC+1122H)
AND A(IX+1122H)
AND A(IY+1122H)
AND A(HL+1122H)
AND AIYH

AND AIYL

AND A,(IY+55H)
XOR A,(PC+1122H)
XOR A,(IX+1122H)
XOR A,(IY+1122H)
XOR A(HL+1122H)
XOR AlYH

XOR AIYL

XOR A,(IY+55H)
OR A(PC+1122H)
OR A/(IX+1122H)
OR A(lY+1122H)
OR A(HL+1122H)
OR AIYH

OR AIYL

OR A,(IY+55H)
CP A(PC+1122H)
CP A(IX+1122H)
CcP A(IY+1122H)
CP A(HL+1122H)
CP AIYH

CP AIYL

CP A(IY+5SH)
JP NZ(PC+1122H)
JP (PC+1122H)
CALL NZ(PC+1122H)
JP Z(PC+1122H)
RLC (IY+55H)
RRC (IY+55H)

RL (IY+55H)

RR (IY+55H)
SLA (IY+55H)
SRA (IY+55H)
TSET (IY+55H)

SRL (IY+55H)

BIT 0,(I'Y+55H)
BIT 1,(Y+55H)
BIT 2,(Y+55H)
BIT 3,(IY+55H)
BIT 4,(1Y+55H)
BIT 5,(Y+55H)
BIT 6,(IY+55H)
BIT 7,(Y+55H)
RES 0,(IY+55H)
RES 1,(IY+55H)
RES 2,(IY+55H)

D-11

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE

FDCB559E RES 3,(IY+55H) FDED222211 LDA IY,(PC+1122H)
FDCB55A6 RES 4,(IY+55H) FDED242211 LD IY,(PC+1122H)
FDCBS5AE RES 5,(IY+55H) FDED242211 LDW IY,(PC+1122H)
FDCB55B6 RES 6,(IY+55H) FDED252211 LD (PC+1122H),lY
FDCB55BE RES 7,(IY+55H) FDED252211 LDW (PC+1122H),IY
FDCB55C6 SET 0,(IY+55H) FDED2655 LD HL,(IY+55H)
FDCB55CE SET 1,(Y+55H) FDED2655 LDW HL,(IY+55H)
FDCB55D6 SET 2,(IY+55H) FDED27 EX AIYH
FDCB55DE SET 3,(IY+55H) FDED2A2211 LDA IY,(IX+1122H)
FDCB55E6 SET 4,(IY+55H) FDED2C2211 LD IY,(IX+1122H)
FDCBS5EE SET 5,(IY+55H) FDED2C2211 LDW IY,(IX+1122H)
FDCB55F6 SET 6,(IY+55H) FDED2D2211 LD (IX+1122H),IY
FDCBS5FE SET 7,(IY+55H) FDED2D2211 LDW (IX+il22H),IY
FDCC2211 CALL Z(PC+1122H) FDED2E55 LD (IY+55H)HL
FDCD2211 CALL (PC+1122H) FDED2E55’ LDW (IY+55H),HL
FDD22211 JP NC,(PC+1122H) FDED2F EX AL
FDD42211 CALL NC,(PC+1122H) FDED322211 LDA IY,(IY+1122H)
FDDA2211 JP C(PC+l122H) FDED342211 LD IY,(IY+1122H)
FDDC2211 CALL C,(PC+1122H) FDED342211 LDW IY,(IY+1122H)
FDEL POP IY FDED352211 LD (IY+1122H),IY
FDE22211 JP PO,(PC+1122H) FDED352211 LDW (IY+1122H),IY
FDE3 EX (SP)IY FDED3655 LD SP,(IY+55H)
FDE42211 , CALL PO,(PC+1122H) FDED3655 LDW SP,(IY+55H)
FDE5 PUSH IY FDED3755 EX A(IY+55H)
FDEQ P (Y FDED3A2211 LDA IY,(HL+1122H)
FDEA2211 JP PE(PC+1122H) FDED3C2211 LD IY,(HL+1122H)
FDEB EX IYHL FDED3C2211 LDW IY,(HL+il22H)
FDEC2211 CALL PE,(PC+1122H) FDED3D2211 LD (HL+1122H)lY
FDED022211 LDA IY,(SP+1122H) FDED3D2211 LDW (HL+1122H),lY
FDED042211 LD IY,(SP+1122H) FDED3E55 LD (IY+55H),SP
FDED042211 LDW IY,(SP+1122H) FDED3E55 LDW (IY+55H),SP
FDED052211 LD (SP+1122H)IY FDED402211 IN (PC+1122H),(C)
FDED052211 LDW (SP+1122H),lY FDED412211 OUT (C),(PC+1122H)
FDEDO655 LD BC,(Y+55H) FDED42 SBC IY.BC
FDEDOG55 LDW BC,(IY+55H) FDED482211 IN (IX+1122H),(C)
FDED072211 EX A,(PC+il22H) FDED492211 OUT (C),(IX+1122H)
FDEDOA LDA IY,(HL+IX) FDED4A ADC IY,BC
FDEDOC LD IY,(HL+IX) FDED502211 IN (IY+1122H),(C)
FDEDOC LDW 1Y,(HL+IX) FDED512211 OUT (C),(IY+1122H)
FDEDOD LD (HL+IX),IY FDEDS52 SBC IY.DE
FDEDOD LDW (HL+IX),lY FDED582211 IN (HL+1122H),(C)
FDEDOE5S5 LD (IY+55H),BC FDED592211 OUT (C),(HL+1122H)
FDEDOES5 LDW (IY+55H),BC FDED5A ADC IY.DE
FDEDOF2211 EX A(IX+1122H) FDED60 IN I'YH,(C)
FDED12 LDA IY,(HLHY) FDED61 OUT (C).IYH
FDED14 LD IY,(HL+Y) FDED62 SBC IYIY
FDED14 LDW IY,(HL+Y) FDED66 LDCTL 1V,(C)

FDED15 LD (HL+Y),IY FDED68 IN IYL,(C)
FDED15 LDW (HL+IY),IY FDED69 OUT (C).IYL
FDED1655 LD DE(IY+55H) FDEDGA ADC IY.IY
FDED1655 LDW DE,(IY+55H) FDED6D ADD IYA
FDED172211 EX A(IY+1122H) FDED6E LDCTL (C),IY
FDEDIA LDA IY,(IX+Y) FDED72 SBC IY.SP
FDEDIC LD IY,(X+Y) FDED7A ADC IY,SP
FDEDIC LDW 1Y, (IX+Y) FDED8655 LDUD A, (IY+55H)
FDED1D LD (IX+Y),IY FDEDS7 LDCTL IY.USP
FDED1D LDW (IX+IY),IY FDEDSE55 LDUD (IY+55H),A
FDEDIE5S5 LD (IY+55H),DE FDEDSF LDCTL USP,IY
FDEDIE55 LDW (IY+55H),DE FDED9655 LDUP A (IY+55H)
FDED1F2211 EX A(HL+1122H) FDEDOE55 LDUP (IY+55H),A

D-12

OBJECT CODE
FDEDC02211
FDEDC12211
FDEDC22211
FDEDC32211
FDEDCA2211
FDEDC52211
FDEDC62211
FDEDC72211
FDEDC82211
FDEDC92211
FDEDCA2211
FDEDCB2211
FDEDCC2211
FDEDCD2211
FDEDCE2211
FDEDDO02211
FDEDD12211
FDEDD22211
FDEDD322U
FDEDD42211
FDEDD52211
FDEDDG2211
FDEDD72211
FDEDD82211
FDEDD92211
FDEDDA2211
FDEDDB2211
FDEDDC2211
FDEDDD2211
FDEDDE2211
FDEDEO
FDEDE1
FDEDE2
FDEDE3
FDEDE4

SOURCE CODE

MULT A,(PC+1122H)
MULTU A,(PC+1122H)
MULTW HL, (IX+1122H)
MULTUW HL, (IX+1122H)
DIV HL,(PC+1122H)

DIVU HL,(PC+1122H)
ADDW HL,(IX+1122H)

CPW HL,(IX+1122H)

MULT A, (IX+1122H)
MULTUA,(IX+1122H)

DIVW DEHL,(IX+1122H)
DIVUW DEHL,(IX+1122H)

DIV HL,(IX+1122H)

DIVU HL,(IX+1122H)
SUBW HL,(IX+1122H)

MULT A(IY+1122H)

MULTUA,(IY+1122H)
MULTW HL,(IY+1122H)
MULTUW HL,(IY+1122H)

DIV HL,(IY+1122H)
DIVU HL,(IY+1122H)
ADDW HL,(IY+1122H)
CPW HL,(IY+1122H)
MULT A (HL+1122H)
MULTU A,(HL+1122H)
DIVW DEHL,(IY+1122H)
DIVUW DEHL,(IY+U22H)
DIV HL,(HL+1122H)
DIVU HL,(HL+1122H)
SUBW HL,(IY+1122H)
MULT AIYH
MULTUA.IYH

MULTW HLIY
MULTUW HLIY
DIV HLIYH

OBJECT CODE
FDEDES
FDEDEG
FDEDE7
FDEDES
FDEDE9
FDEDEA
FDEDEB
FDEDEC
FDEDED
FDEDEE
FDEDF055
FDEDF155
FDEDF24433
FDEDF34433
FDEDF455
FDEDF555
FDEDF64433
FDEDF74433
FDEDF866
FDEDF966
FDEDFAA4433
FDEDFB4433
FDEDFC66
FDEDFDG6
FDEDFE4433
FDF22211
FDF42211
FDF54433
FDF9

FDF9
FDFA2211
FDFC2211
FEG6

FF

SOURCE CODE
DIVU HL.IYH
ADDW HL.IY

CPW HLIY
MULT AIYL
MULTUA.IYL

DIVW DEHL.IY
DIVUW DEHL.IY

DIV HLIYL
DIVU HL.IYL
SUBW HL.IY

MULT A, (IY+55H)
MULTU A, (IY+55H)
MULTW HLI3344H
MULTUW HL.3344H
DIV HL,(IY+55H)
DIVU HL,(IY+55H)
ADDW HL.3344H
CPW HL.3344H
MULT A66H
MULTU A 66H

DIVW DEHL.3344H
DIVUW DEHL.3344H
DIV HL66H
DIVU HL66H
SUBW HL.3344H

P P,(PC+l122H)
CALL P.(PC+1122H)
PUSH 3344H

LD SPIY

LDW SP.IY

P M(PC+1122H)
CALL M,(PC+1122H)
P A66H

RST 38H

D-13

The Z280 CPU processes instructions using a three-
stage pipeline consisting of an instruction
prefetch wunit, an instruction decoder, and an
instruction execution unit. Each section of the
pipeline operates autonomously, communicating with
the other stages of the pipeline via handshakes
and local buses. The pipelined architecture of
the 7280 MU greatly increases program throughput;
as one instruction is being executed, the next
instruction can be decoded, and the instruction
after that can be fetched.

The autonomous operation of the three stages in
the 27280 QU instruction pipeline makes it
difficult to calculate exact instruction execution
time?. Furthermore, execution times are affected
by cache activity; the current cache contents
determine the number of external memory
transactions mede during the fetch and execution
of a given instruction. In this appendix, three
types of tables are provided for calculation of
instruction timings: instruction execution timing,
instruction fetch and decode timing, and bus
transaction timing. All tables list execution and
transaction timings in terms of CPU clock cycles.

Tables E-1, £-2, and E-3 show the execution times

for all instructions and interrupt and trap
processing. Table E-1 lists the execution times
for all CPU-executed instructions, with the

instructions listed by functional group. Table
E-2 lists the execution times for the extended
instructions. Table E-3 shows execution times for
interrupt and trap events. These tables assume
that the instruction has been fetched, decoded,
and is ready for execution, and that the bus is
idle when the execution unit makes a request for a
transaction. Thus, the execution times shown in
these tables represent the maximum execution rate
of the machine. The actual execution rate will be
somewhat lower than this maximum for two reasons:
(1) the execution unit must compete with the
prefetch unit for use of the external bus, and (2)
some instructions may take longer to prefetch and
decode than the previous instruction will take to
execute.

Appendix E.
Instruction Timing

Furthermore, the activity of the execution unit
can affect the prefetch wunit when certain
instructions are executed. In Tables E-1 and E-2,
an "F" on the right-hand side of the table
indicates that the pipeline is flushed when that
instruction is executed; the pipeline is also
flushed during all interrupt and trap processing.
In these cases, the next instruction must be
completely fetched and decoded before the
execution unit can proceed. The execution times
in these tables do not include the time necessary
to fetch and decode the next instruction if the
pipeline is flushed.

In Tables E-1 through E-3, execution times are
given as the number of absolute CGRU clock cycles
plus the number and type of bus transactions. Bus
transaction timings are shown separately in Tables
E-5 through E-10.

Table E-4 contains the instruction fetch and
decode timing, and Tables E-5 through E-10 show
bus transaction timings. The CPU clock is divided
by a factor of 1, 2, or 4 to form the bus clock;
thus, bus transaction timing depends on the
relationship between the CQPU clock and bus clock.
All three types of bus timing are showmn in the
tables. Furthermore, because of the different
phase relationships between the request for a
transaction and the bus clock, a variable number
of cycles is included in parentheses in Tables E-4
through E-10; the average would be half of the sum
of the minimum and maximum numbers listed in the
parentheses. The notation "w" in these tables
refers to the number of wait states added to the
transaction (either by asserting the WAT input or
by programming the appropriate QU control
registers) in addition to any automatically
inserted wait states. Again, the numbers in these
tables assume that the bus is idle when the
transaction request is made.

Instruction
8-BIT LOAD GROUP

EXA,src

EXH.L
LD dstsrc

LDdstsrc

LDdstn

LDUD dst.src

LDUP dst.src

See Table E-1 Note on page E-10.

£-2

Table E-1. Instruction Execution Times

Addressing Modes

src= RRXIRDAXSX

RASRBX

dst=A

src= RRXIM,IRDAX

SXRASRBX
(B0).0B)
or

dst= RRXJIRDAX
SXRASRBX
(BC).(OE)

src=A

dst=R

src= RRXIMJIR.SX
or

dst= RRXIRSX

sic=R

dst= RRXIRDAX,
SXRASRBX

dst=A

src= IR, SXinuser
or

dst=IRSXInuser

src=A

dst=A

src= IRSXinuser
or

dst= IRSXinuser
srtc=A

Execution Time

RFIX:4

IR DAX.SXRASRBX: 5 + rd(src) + wr(src)

4
RRX: 2

IRDAXSXRASRBX: 3 + roisrc)
(BO)(DE): 3 + kR

RRXIM: 2
iIRDAXSXRASRBX: 3 + wr(dst)
(BO),(DE): 3 + wr(IR)

RRXIM: 2
IRSX: 3 + rd(src)

RRX 2

IRSX: 3 + wr(dst)

RRX: 2

IRDAXSXRASRBX: 3 + wr(dst)
3 + rd(src)

3 + wr(dst)

3 + rd(sro)

3 + wr(dst)

Instruction

16-BIT LOAD GROUP
EXsrc.HL

EX(SP),dst

EXAF.AF'

EXX

LD[W]dst,src

LD[W] dst.src

LD[W] dst.nn

LD[W]dst,nn

LD[W] dst.src

LDAdst.src

POPdst

PUSH src

See Table E-1 Note on page E-10.

Table E-1. Instruction Execution Times (Continued)

Addressing Motion

src= DE.IX.IY

dst=HL,IX,IY

dst= HL.IX.IY
src = IM,DA X,RA,SR.BX

or

dst= DA X,RA,SR.BX
src= HL,IX,lY

dst= BC.DE.HL.SP
src= IM,IR,DA,SX

or

dst= IR.DA.SX
src= BC.DE.HL.SP

dst= RR,IR,DA,RA

dst= RR

dst=SP
src= HL,IXIY,IM,IR,DA,SX

or

dst= IR.DA.SX
src= SP

dst= HL.IX.IY
src= DA, X,RA,SR,BX

dst= RR,IR,DARA

src= RR,IM,IR,DA,RA

Execution Tims

5
5+ rd(IR) + wr(IR)
2
2

IM: 2
DAX.RA.SR.BX: 3 + rd(src)

3 + wr(dst)

IM: 2
IR.DA.SX: 3 + rd(src)

3 + wr(dst)

RR:2
IR.DA.RA: 3 + wr(dst)

2

HL.IX.IY.IM: 2
IR.DA.SX: 3 + rd(src)

3 + wr(dst)

DA: 2
XRASR: 5
BX:6

RR: 9 + rd(IR)
IR.DARA: 9 + rd(IR) + wr(dst)

RR.IM: 8 + wr(IR)
IRDARA: 9 + rd(src) + wr(IR)

E-3

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes
BLOCK TRANSFER AND SEARCH GROUP

CPD

CPDR

CPI

CPIR

LDD

LDDR

LDI

LDIR

8-BIT ARITHMETIC AND LOGIC GROUP

ADC [A]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

ADD [A]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

AND [A]src src= R,RX,IM,IR,DA,
X,SX,RA,SR,BX

CP[A]src src= R,RX,IM,IR,DA,
X,SX,RA,SR,BX

CPL[A]

DAA[A]

DECdst dst= R,RXIR,DAX,
SX,RA,SR,BX

DIV[HL,]src src= R,RX,IM,DA,X,
SX,RA,SR,BX

DIVU [HL,]src src= R,RX,IM,DA X,
SX.RA.SR.BX

EXTS [Al

INC dst dst=R,RX,IR,DA,X,
SX.RA.SR.BX

MULT [A]src src= R,RX)IM,IR,DA,
X,SX.RA.SR.BX

See Table E-1 Note on page E-10.

E-4

Execution Time

8 + rd(IR)

8 + rd(IR), each Iteration

8 + rd(IR)

8 + rcKIR), each Iteration

9 + rd(IR) + wr(IR)

9 + rd(IR) + wr(IR), each Iteration
9 + rd(IR) + wr(IR)

9 + rd(IR) + wr(IR), each iteration

R,RX,IM:2
IR,DA X,SX,RA,SR,BX:3 + rd(src)

R,RX,IM: 2
IR,DAX,SX,RA,SR,BX: 3 + rd(src)

R,RX,IM: 2
IR,DAX,SX,RA,SR,BX: 3 + rd(src)

R,RX,IM: 2
IR,DA X,SX,RA,SR,BX: 3 + rd(src)

2
3

RRX: 3
IR,DAX,SX,RA,SR,BX: 4 + rd(dst) + wr(dst)

R,RX,IM: 46
4 if divide by zero
20 if overflow
DA,X,SX.RA.SR.BX: 47 + rd(src)
5 + rd(src) if divide by zero
21 + rd(src) if overflow

R.RX.IM: 34
4 if divide by zero
13 if overflow
DA.X,SX.RA.SR.BX: 35 + rd(src)
5 + rd(src) if divide by zero
14 + rd(src) if overflow

4

RRX: 3
IR,DAX,SX.RA.SRBX: 4 + rd(dst) + wr(dst)

R.RX.IM: 17*
IR.DAX.SX.RA.SR.BX: 18 + rd(src)*

*add lifsrc <0

Instruction

Table E-1. Instruction Execution Times (Continued)

Addressing Modes

8-BIT ARITHMETIC AND LOGIC GROUP (Continued)

MULTU [A]src

NEG [AJ

OR [Ajsrc

SBC [Ajsrc

SUB [Ajsrc

XOR [A]src

src= R,RX,IMIR DA,
X,SX,RA,SR,BX

. src= RRX.IM.IR.DA,

X.SX.RA.SR.BX

src= R,RXIM,IR,DA,
X.SX.RA.SR.BX

src= R,RX,IMAR DA,
X,SX,RA,SR,BX

src= RRX.IM.IR.DA,
X.SX.RA.SR.BX

16-BIT ARITHMETIC AND LOGIC GROUP

ADC dst,src

ADD dst,src

ADD dst,A

ADDW [HL]src

CPWIHL,]src

DECWdst

DEC[W] dst

DIVUW [DEHL,Jsrc

See Table E-1 Note on page E-10.

dst= HL
src= BC,DE,HL,SP

or

dst=IX

src = BC,DE,IX,SP
or

dst=IY
src = BC,DEIY,SP

dst= HL
src = BC,DE,HL,SP

or

dst= IX
src+BC,DE,IX,SP

or

dst=1Y
src = BC,DE,IY,SP

dst= HL,IX,lY

src = RR,IM,DAX,RA

src = RR.IM,DA,X,RA

dst= RR,IR,DAX,RA

dst= RR

src= RR,IM,DA,X,RA

Execution Time

RRX,IM: 17
IR,DAX,SX,RA)SRBX: 18 + rd(src)

3

RRX.IM: 2
IR,DAX.SX.RA.SR.BX: 3 + rd(src)

R,RX,IM: 2
IR,DAX.SX.RA.SRBX: 3 + rd(src)

RRXIM: 2
IRDAX.SXRASR.BX: 3 + rd(src)

R.RX.IM: 2
IR DAX.SX.RASR.BX: 3 + rd(src)

3

RR.IM: 3
DAX.RA: 3 + rd(src)

RR,IM: 3
DAX.RA: 3 + rd(src)

RR: 3
IR,DAX,RA: 4 + rd(dst) + wr(dst)

3

RR.IM: 51
4 if divide by zero
13 if overflow
DAX,RA: 52 + rd(src)
5 + rd(src) if divide by zero
14 + rd(src) if overflow

E-5

Instruction

Table E-1. Instruction Execution Times (Continued)

Addressing Modes

16-BIT ARITHMETIC AND LOGIC GROUP (Continued)

DIVW [DEHLJsrc

EXTS HL

INCW dst

INC[W] dst

MULTUW [HLIJsrc

MULTW [HL.Jsrc

NEG HL

SBC dst,src

SUBW [HL.Jsrc

See Table E-1 Note on page E-10.

src”"RR.IM.DA.X.RA

dst=RR,IR,DAX,RA

dst=RR

src= RR,IM,DAX,RA

src= RR.IM,DA,X,RA

dst=HL
src= BC,DE,HL,SP

or

dst=IX

src= BC,DE,IX,SP
or

dst=1Y

src-BC.DEJYSP

src= RR,IMIDAIXtRA

Execution Time

RR.IM: 63

4 if divide by zero

20 if overflow
DAX.RA: 64 + rd(src)

5 + rd(src) if divide by zero
21 + rd(src) if overflow

4

RR: 3

IRDAX.RA: 4 + rd(dst) + wr(dst)

3

RR,IM: 24*
DAX,RA: 25 + rd(src)*

*add 1ifsrc <0

RR.IM: 24
DAX,RA: 25 + rd(src)

3

3 .

RR,IM: 3
DAX,RA: 3 + rd(src)

Instruction

Table E-1. Instruction Execution Times (Continued)

Addressing Modes

BIT MANIPULATION, ROTATEAND SHIFT GROUP

BIT b.dst

RES b,dst

RLdst

RLA

RLCdst

RLCA
RLD

RRdst

RRA

RRC dst

RRCA
RRD

SET b,dst

SLAdst

SRAdst

SRLdst

TSETdst

See Table E-1 Note on page E-10.

dst= R.IR.SX

dst= RIR.SX

dst= R,IR,SX

dst= R.IR.SX

dst= R,IR,SX

dst= R.IR.SX

dst= R,IR,SX

dst= R,IR,SX

dst= R,IR,SX

dst= R,IR,SX

dst= R.IR.SX

Execution Time

R 2
IR.SX: 3 + rd(dst)

R 2
IRSX: 4 + rd(dst) + wr(dst)

R 2
IR.SX: 4 + rd(dst) + wr(dst)

R 2
IRSX: 4 + rd(dst) +wr(dst)

2
5 + rd(IR) + wr(IR)

R 2
IRSX: 4 + rd(dst) + wr(dst)

2

R 2
IR.SX: 4 + rd(dst) + wr(dst)

2

5 + rd(IR) + wr(IR)

R 2

IRSX: 4 + rd(dst) + wr(dst)
R:2

IRSX: 4 + rd(dst) + wr(dst)
R 2

IRSX: 4 + rd(dst) - wr(dst)
R 2

IR.SX: 4 + rd(dst) + wr(dst)
R 3

IR.SX: 1 + rd(dst) + wr(dst)

E-7

Instruction

PROGRAM CONTROL GROUP

CALL cc.dst

CALLdst

CCF

DJINZdst

JAFdst

JARdst

JP cc.dst

JPdst

JR cc.dst

JRdst
RET

RETcc

RSTdst
SCnn

SCF

* “F” indicates that the pipeline is flushed when that instruction is executed.

See Table E-1 Note on page E-10.

E-8

Table E-1. Instruction Execution Times (Continued)

Addressing Modes

dst= IR.DARA

dst= IR,DARA

dst= IR,DA,RA

dst= IR,DARA

dst= RA

dst= RA

dst= DA

Execution Time

cc not true: 3
IR.DA: 11 + wr(IR)
RA: 12 + wr(IR)

IRDA: 11 + wr(IR)
RA: 12 + wr(IR)

2

Biszero: 6
B is non-zero: 7

AF'notinuse:3
AF'in use: 4

Alternate file not in use: 3
Alternate file inuse: 4

cc not true: 3
cctrue: 4

4

cc nottrue: 3
cctrue: 4

4
9 + rd(R)

cc nottrue: 3
cctrue: 9 + rd(IR)

9 + wr(IR)
1+ System Call Trap
2

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modies/
INPUT/OUTPUT INSTRUCTION GROUP
IN dst,(C) dst= R,RX,DA X,RA,SRBX

IN A,(n)
IN[W] HL,(C)
IND

INDW

INDR
INDRW

INI

INIW

INIR

INIRW

OUT (C),src src = R,RX,DA X,RA,SR,BX

OUT (n),A
OUT[W](C),HL
OuUTD

OUTDW

OTDR

OTDRW

OouTI

OuTIW

OTIR

OTIRW

TSTI (O)

See Table E-1 Note on page E-10.

Execution Time

RRX: 3 + in()
DAX,RASRBX: 4 + In() + wr(dst)

5 +in()

3+ 1n()

8 +in() +wr(IR)

8 + In() + Wr(IR)

8 + in() + wr(IR), each iteration
8 + in() + wr(IR), each iteration
8 + in() + wr(IR)

8 +in() + wr(IR)

8 + in() + wr(IR), each iteration
8 + in() + wr(IR), each iteration

RRX: 3 + out()
DAX.RA.SR.BX: 3 + rd(src) + out()

5 + out()

3 + out()

8 + rd(IR) + out()

8 + rd(IR) + out()

8 + rd(IR) + out(), each iteration
8 + rd(IR) + out(), each iteration
8 + rd(IR) + out()

8 + rd(IR) + out()

8 + rd(IR) + out(), each iteration
8 + rd(IR) + out(), each iteration

3 +in()

Instruction

CPU CONTROL GROUP
Di mask

El mask

HALT

IMp

LD dst.src

LD dst.src

LDCTL dst.src

NOP
PCACHE
RETI

RETIL

RETN

* “F" indicates that the pipeline is flushed when that instruction is executed.

NOTES:

Table E-1. Instruction Execution Times (Continued)

Addressing Modes

mask = Hex value

mask = Hex value

p=0,123

dst=A

src=|,R

dst= IR

src=A

dst = (C),USP

src = HL,IX,IY
or

dst = HL,IX,IY
src = (C),UsP

Execution Time

3 + out(l)

3 + out(l)

1 + rd(halt) minimum
3

2

©: 4 + out(i)
USP: 2

©:3 + in()
USP: 2

2
2

Z-BUS: 8 + rd(IR)
Z80:8 + rd(reti) + rd(IR)

14 + 2*1d(IR) + out(l)

7 + rd(IR)

E*

m T

m M

1 This table assumes that the instruction has been fetched, decoded, and is ready for execution. The execution time for instructions

that cause the pipeline to be flushed do not include the time necessary to fetch and decode the following instruction.
2. This table assumes that the PAUSE input is inactive. If PAUSE is active, the execution unit will wait before beginning the next

instruction.

3. The bus is assumed to be idle when the execution unit makes a request for a transaction.
4. This table assumes that no exceptions occur during instruction execution except where indicated.

E-10

Table E-2. Extended Instmction Execution Times
Instruction Addressing Modes Execution Time

EXTENDED INSTRUCTION GROUP TEMPLATE FETCH (EPU ENABLE BIT SETT 01)

+

Aligned template 7 + epu(ifl) + epu(ifn) + out(l)

+

Unaligned template 7 + epu(ifl) + 2*epu(ifn) + out(l)

EXTENDED INSTRUCTION GROUP

EPUI (Internal Operation) 4+p , F*
EPUF (CPU*-EPU) 6 + p + epu(cpu) F
MEPU dst (Memory*-EPU) dst=IR,DAX,RA,SR,BX 5+ p + K3 + epu(wr)] F
EPUM src (EPU*-Memory) src= IRDAX.RA.SR.BX 5+ p + k*[3 + epu(rd)] F

*“F” indicates that the pipeline is flushed when that instruction is executed.

NOTES:

1. Additional cycles are necessary for address computation in the case of EPU-to-Memory and Memory*to-EPU instructions, as shown
below

IR.DA no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

. The notation "p" in the table is the number of pause cycles added to the bus cycle. " *
. The notation "k’ in the table is a function of n, the number of byte's to be transferred that is specified in the template, and the address
of the source or destination asshown below.

nisodd k = (n+ /2
niseven and aligned k = n2
nis even and uhaligned k = (n=212

w N

4. See “Notes” from Table E-1.

Table E-3. Interrupt, TTap, and Special Condition Execution Times

Type
INTERRUPTS
NMI in Modes 0,1,2
ModeO
Mode 1
Mode 2
Mode 3 Nonvectored
Mode 3 Vectored
On-Chip (Mode 3)
TRAPS
Single-Step
Breakpoint-on-Halt
Division Exception
Stack Overflow Warning
Access Violation
System Call
Privileged Instruction
EPU Memory
Memory*-EPU
A*-EPU
EPU Internal Operation
MISCELLANEOUS
FATAL
RESET

EPU Data Page Fault

1 Additional cycles are necessary for address computation inthe case of EPU-to-Memory and Memory-to-EPU traps, as shown

NOTES:
below.
IR,DA no additional cycles
X,SX,RA,SR ladditional cycle
BX 2 additional cycles

Execution Time

13 + iack(nmi012) + in(l) + out(l) + wr(IR)

9 + out(l) + [iack(mO) for each byte of opcode]

13 + iack(ml) + in(l) + wr(IR) + out(l)

16 + iack(m2) + in(l) + wr(IR) + rd(IR) + out(l)

28 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)
31 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

28 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

26 + in(l) +2*wr(iR) + 2*rd(IR) + out(l)
26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)
25 + in() +2*wr(IR) + 2*rd(IR) + out(l)
26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)
25 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)
30 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)
26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)
38 + in(l) +4*wr(iR) + 2*rd(IR) + out(l)
38 + in(l) +4*wr(IR) + 2*rd(IR) + out(i)
31 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

31 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

15 + out(l) + rd(halt) minimum
3 + rd(reset) + out(l) minimum

1+ epu(ifl) and then Access Violation trap

2. The pipeline is flushed at the end of any interrupt or trap sequence.

Table E-4. Instruction Fetch and Decode Timing

Condition 1x BusTiming 2x Bus Timing 4 x Bus Timing
First byte, cache 4 4 4
First byte, external 9+w 12 + 2w + (0-1) 17 + 4w + (0-3)
First byte, burst 12 +w 18 + 2w + (0-1) 29 + 4w + (0-3)
Subsequent byte, cache 1 1 1
Subsequent byte, external 5+ w 8 + 2w + (0-1) 13 + 4w + (0-3)
Subsequent byte, burst 8 +w 14 + 2w + (0-1) 25 + 4w + (0-3)
NOTES:
1 The term “first” means the first byte fetched following a flushed pipeline. All other bytes are “subsequent”. With a full pipeline, only

2.

the execution times are necessary.
With a 16-bit external bus, the prefetch unit tries to fetch words from external memory though bytes are transferred to the pipeline.
Bytes other than the one requested are placed in cache.

. A burst transfer transfers a four-word block starting with the word with the three least significant bits being zero. The appropriate byte

is transferred to the decoder as it is written to the cache. The execution unit of the pipeline can begin execution prior to the burst
transaction completion if the necessary bytes are fetched during the early part of the burst transaction.

. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

be half of the sum of the minimum and maximum numbers in parentheses.

. The notation “w” in the transaction tables is the number of WAIT states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for IADtransactions) should not be
included.

. Examples of instruction fetch/decode time (assuming flushed pipeline and 1x bus timing):

a) Two-byte instruction in cache

b) Two-byte instruction both bytes not in cache

c) Two-byte instruction, first byte in cache, second not in cache
d) Four-byte instruction in cache

e) Four-byte instruction not in cache, no burst, not cacheable
f) Four-byte instruction not in cache, burst, cacheable

g) Six-byte instruction, burst, first two bytes in cache

[4 + 1] processor cycles
[(0+w)+ (5 +w]

[4+(5+w]

[4+ 1+1 +1] processor cycles

[9 + w+ 3*(5 + w)] processor cycles
[12+w+ 1+ 1+ 1]
[A+1+@B+wW+1+1+1]

E-13

Table E-5. Data Read Timing — rd(src), rd(dst), and rd(IR)

Condition 1x BusTiming 2x Bus Timing 4 x Bus Timing
Byte Hit 5 5 5

Byte Miss 8 +w 1+ 2w + (0-1) 16 + 4w + (0-3)
Aligned Word Hit 5 5 5

Aligned Word Miss 8 +w 1+ 2w + (0-1) 16 + 4w + (0-3)
Unaligned Word Hit Hit 9 9 9

Unaligned Word Miss Hit 2+w 15 + 2w + (0-1) 20 + 4w + (0-3)
Unaligned Word Hit Miss 2+w 15 + 2w + (0-1) 20 + 4w + (0-3)
Unaligned Word Miss Miss 15+ w 21 + 2w + (0-2) 31 + 4w + (0-6)
TSET (cache) 8 +w 1+ 2w + (0-1) 16 + 4w + (03)
TSET (fixed memory) 6 6 6

Page Fault 4 + Access Violation trap 4 + Access Violation trap 4 + Access Violation trap
NOTES:

1 Additional cycles are necessary for address computation, as shown below.

IR,DA no additional cycles
X,SX,RA,SR 1additional cycle
BX 2 additional cycles

2. Aword is aligned if the address is even and the transfer is over a 16-bit bus. It is otherwise unaligned.

3. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

4. The notation “w” inthe transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for 1/0 transactions) should not be

included.
Table E-6. Data Write Timing — wr(src), wr(dst), and wr(IR)

Condition 1x BusTiming 2x BusTiming 4x BusTiming
Byte 5 5 5
Aligned Word 5 5 5
Unaligned Word 9+w 12 + 2w + (0-1) 17 + 4w + (0-3)
Page Fault 4 + Access Violation trap 4 + Access Violation trap 4 + Access Violation trap
NOTES:

1 Additional cycles are necessary for address computation, as shown below.

IR.DA no additional cycles
X,SX,RA,SR ladditional cycle
BX 2 additional cycles

2. Aword is aligned if the address is even and the transfer is over a 16-bit bus. It is otherwise unaligned.

3. The pipeline is flushed whenever a byte being written is valid in the cache.

4. Inthe unaligned word case where the first byte isvalid in cache, the execution time is 10 cycles with zero or one wait states and
9 + w cycles for two or more wait states.

5. The number in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

' be half of the sum of the minimum and maximum numbers in parentheses.

6. The notation "w" inthe transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for 1/O transactions) should not be
included.

TVpe
in(l)
in()
wr(l)
wr()
NOTES:
1

2.

1x Bus Timing

Table E-7. /0 Read and Write Timing

2 X Bus Timing

5

13 + 2w + (0-1)

5

5

4 X Bus Timing

5

20 + 4w + (0-3)

5
5

The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

The notation "w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be

included.

Type
epu(ifl)
epu(ifn)
epu(cpu)
epu(wr)

epu(rd)

NOTES:

1x Bus Timing

8 +w
8 +w
9+ w
10 + w

8 +w

. in(l) and wr(l) are performed internally within the Z280 MPU.

Table E-8. EPU Read and Write Timing

2x Bus Timing
11 + 2w + (0-1)
11 + 2w + (0-1)
13 + 2w + (0-1)
15 + 2w + (0-1)

11 + 2w + (0-1)

4 X Bus Timing
16 + 4w + (0-3)
16 + 4w + (0-3)
20 + 4w + (0-3)
24 + 4w + (0-3)

16 + 4w + (0-3)

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.
2. The notation “w" in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be

Table E-9. Interrupt Acknowledge Timing

1x BusTiming
4

8 +w
10 + w
10 + w

10 + w

2 X Bus Timing
4

13 + 2w + (09)
15 + 2w + (0-1)
15 + 2w + (0-1)

15 + 2w + (0-1)

4x EfusTiming
4

22 + 4w + (0-3)
24 + 4w + (0-3)
24 + 4w + (0-3)

24 + 4w + (0-3)

The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.
The notation “w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be

included.
TVpe
iack(nmi012)
iack(mO)
iack(m1l)
iack(m2)
iaek(m3)
NOTES:
1
2.
included.
3

. iack(nmi012) is for NMI in modes 0, 1, and 2.

iack(mO) is for mode 0 interrupts.

-15

Table E-10. Miscellaneous Transaction Timing

Type 1x BusTiming 2 X Bus Timing 4 X BusTiming
HALT Transaction 5 5 5
RESET Transaction 6 6 6
RETI Transaction 21 +w 31 + 2w +(0-2) 49 + 4w + (0-6)

NOTES:

1 The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

2. The notation “w” inthe transaction tables is the number of WAIT states added to the bus cycle in addition to any automatically
inserted WAIT states. This includes any WAITS added under program control.

E-16

The 7280 MAU supports two different types of bus
interface: the Z80-Bus and the Z-BUS. Families
of peripheral devices are available for both types
of component interconnect buses.

The Z80 Bus configurations of the Z280 MPU have
two compatible peripheral families: the Z8400 and
Z8000/28500 peripheral families (Tables F-1 and
F-2). The z8400 family of devices were originally
designed to support the Z80-Bus. The Z8000 series
of peripherals are designed for systems employing
multiplexed address/data buses, and are also
easily interfaced to Z80-Bus Z8000 MPU systems.
The Z8500 peripheral family is identical to the

Appendix F.
Compatible Peripheral Families

78000 family, except the devices are configured to
interface to non-multiplexed buses: the Z8500
series devices can be used in 7280 MU systems
where the address/data bus is de-multiplexed
external to the processor.

The Z-BUS versions of the Z280 MAU are supported
by the Z8000/Z8500 peripheral family (Table F-2).
These devices interface directly to the Z-BUS.

Refer to
further
families.

the Zilog Components Data Book, for
information regarding these peripheral

Table F-1 78400 Peripheral Family

Part Number

78410
78420
78430
Z8440/1/2
Z8470

DeseAMtion

DMA Direct Memory Access Controller
PIO Parallel Input/Output Controller
CTC Counter/Timer Circuit

SIO Serial Input/Output Controller
DART Dual Asynchronous

Receiver/Ttansmitter

Table F-2. Z8000/28500 Peripheral Family

Part Number

78016/Z8516

Description

D7C Direct Memory Access Transfer Controller

Z8030/28530 SGC Serial Communications Controller
78036/28536 CIO Counter/Timer and Parallel I/O Unit

78038
78060
78065
78068

Z-FIO FIFO Input/Output Interface Unit
Z-FIFO Buffer Unit and Z-FIO Expander
BEP Burst Error Processor

Z-DCP Data Ciphering Processor

78090/28590 UPC Universal Peripheral Controller

(ROM-based)

Z8094/28594 UPC Universal Peripheral Controller

(RAM-based)

access protection: A function of memory manage-
ment that controls read, write, and execute access
to memory locations, protecting proprietary or
operating system memory areas from tampering by
unauthorized users.

access protection violation: An incorrect or for-
bidden attempt to access a memory location; for
example, an attempt to write to a read-only page.
An access violation causes the CPU to abort the

current instruction and generate an Access
Violation trap.
acctnulator: A register within a central

processing unit (CPU) that can hold the result of
an arithmetic or logical operation.

address space: A set of addresses that are
accessed in a similar manner. The 7280 MU
contains four types of address spaces: CRU

register, QAU control register, memory, and I/O.
The memory space can be divided into four separate
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data.

addres8ing mode: The way in which the location of
an operand is specified. There are nine addressing
modes in the 27280 MPU Register, Immediate,
Register Indirect, Direct Address, Indexed, Short
Index, Base Index, Relative Address, and Stack
Pointer Relative.

address tag: The portion of certain associative
memories that is compared against a referenced
address to determine whether the matching value is
found. The address tag for a cache block is the
physical memory address.

address translation: The process of mapping log-
ical addresses into physical addresses.

aligned address: An address that is a multiple of
an operand's size in bytes. Aligned word
addresses are a multiple of two.

associative memory: A memory in which data is
accessed by specifying a value rather than a
location. The cache is an associative memory.

Glossary

autodecrement: The operation of decrementing an
address in a register by the operand's size in
bytes. The decrement amount is one for byte
operands, two for word operands.

autoincrement: The operation of incrementing an
address in a register by the operand's size in
bytes. The increment amount is one for byte
operands, two for word operands.

base address: The address used, alonqg with an
index and/or displacement value, to calculate the
effective address of an operand. The base address
is located in a register, the Program Counter, or
the instruction.

Bass Index (BX) addressing node: In this mode,
the contents of the base register and index regis-
ter are added to obtain the effective address.

burst transaction: The transfer of several con-
secutive items of data in one memory transaction.
bus master: The device in control of the bus.

bus request: A request for control of the bus
initiated by a device other than the bus master.

byte: A data item containing eight contiguous
bits. A byte is the basic data unit for
addressing memory and peripherals.

cache: An on-chip buffer that automatically
stores copies of recently used memory locations
(both instructions and data), allowing fast access
for memory fetches.

Central Processing Unit (CPU): The primary
functioning unit of a computer, consisting of an
ALU, control logic for decoding and executing
instructions and controlling program flow, and
registers.

coprocessor: A processor that works synchronously
with the CPU to execute a single instruction
stream using the Extended Processing Architecture
(EPA).

destination: The register, memory location, or
device to which data are to be transferred.

G1

Glossary

Direct Address (DA) addressing mode: In this
mode, the effective address is contained in the
instruction.

displacement: A constant value located in the
instruction that is wused for -calculating the
effective address of an operand.

effective address: The logical memory address of
an operand, calculated by adding the base address,
an optional index value, and an optional
displacement.

EPU internal operation: An EPU-handled operation
that controls BU operations but does not transfer
data.

A condition or event that alters the
The Z280

exception:
usual flow of instruction processing.

MU supports three types of exception: reset,
interrupts, and traps.
Extended Processing Architecture (EPA): A U

facility that allows the operations defined in the
architecture to be extended by hardware or
software. If enabled, the CPU transfers BEPA
instructions to an Extended Processing Unit (EPU)
for execution; if disabled, the CPU traps EPA
instructions for software emulation.

Extended Processing Unit (EPU): An external
device, that handles Extended Processing
Architecture instructions (such as floating-point
arithmetic).

flowthrough transaction: A DMA-initiated data
transfer consisting of separate read and write
transactions. Data is temporarily stored in the
DVA channel between the read and write
transactions.

flyby transaction: A transaction controlled by
the bus master, but in which another device
transfers data to the responding device.

frame: A block of physical memory used by the
memory management mechanism to mep logical memory
pages.

global bus: A bus shared by tightly coupled,
multiple CPUs; the bus master is chosen by an
external arbiter device.

hit: A hit occurs when a associative memory is
searched for a value and a match is found.

identifier word: A 16-bit code Saved on the
system stack during exception processing that
provides information about the cause of the
exception.

G2

Immediate (IM) addressing mode: In this mode, the
operand i3 contained in the instruction.

index: A value located in a register used for
calculating the effective address of an operand.
The index value usually specifies the calculated
offset of an operand from the orgin of an array or
other data structure.

Indexed (X) addressing mode: In this mode, the
contents of an index register are added to a base
address contained in the instruction to obtain the
effective address.

Indirect Register (IR) addressing mode: In this
mode, the effective address is contained in a
register.

interrupt: An asynchronous exception that occurs

when an NM or INT line is activated, usually when
a peripheral device needs attention.

least recently used (LRU): The QU records the
order of use for cache blocks. When a tag miss
occurs, the QU replaces the least recently used
block.

local bus: The bus controlled by the QU and
shared with slave processors.

logical address: The address manipulated by the

program. The memory management mechanism
translates logical addresses to physical
addresses.

loosely coupled CPUs: CPUs that execute

independent instruction streams and communicate
through a multi-ported peripheral, such as a Z8038
FIO I/O interface unit.

Master Status register: A 16-bit CU control
register that contains status information

describing the current operating states of the
CPU.

nmenory management: The process of translating
logical addresses into physical addresses, plus
certain protection functions. In the Z280 MPU,
memory management is integrated into the chip.

memory-mapped 1/0: An I/O device accessed in the
memory address space.

miss: A miss occurs when an associative memory is
searched for a value and no match is found.

nonmaskable interrupt: The
interrupt; cannot be disabled.

highest priority

page: A logical memory unit mapped by the memory
management mechanism to a physical memory frame.

paged translation: A method of address
translation in which the logical and physical
address spaces are divided into fixed, equal-sized
units called pages and frames, respectively.
During address translation, a logical page is
mapped to an arbitrary physical frame.

physical address: The 24-bit address required for
accessing memory and peripherals, obtained by the
CPU's address translation hardware.

pipeline: A computer design technique in which an
instruction is executed in a seguence of stages by
different functional units. The functional units
can be operating on several different instructions
simultaneously, similiar to an automobile assembly
line.

prefetching: Ability of the CU to
instruction or operand before the
instructions have been completed.

fetch an
previous

privileged instruction: An instruction that
performs I/O operations, accesses control
registers, or performs some other operating system
function. Privileged instructions execute in
system mode only.

Program Counter (PC): One of the two Program
Status registers; it contains the address of the
current instruction.

Program Status registers: The two registers
(Program Counter and Master Status register) that
contain the Program Status. The Program Status is
automatically saved during exception processing.
protection: See access protection.

read access: The type of memory access used by

the QU for fetching data operands other than
those specified by Immediate addressing mode.

refresh: To restore information that fades away
if left alone. For example, dynamic memories must
be refreshed periodically in order to retain their
contents.

Register (R) addressing node: In this mode, the
operand is in a general-purpose register.

Relative Address (RA) addressing node: In this
mode, the displacement in the instruction is added
to the contents of the Program Counter to obtain
the effective address.

Glossary

relocation: The process of mapping a logical
address to a different physical address, so that
multiple processes can use the same logical

address for distinct physical memory locations.

request: A signal or message used by a device to
indicate the need for some action or resource.

reset: A CPU operating state or exception that
results when a reset request is signaled on the
RESET line.

responder: The device to which bus transactions
transfer data.

self nodifying program: A program that stores to
a location from which a subsequent instruction is
fetched.

semaphore: A storage location used as a Boolean
variable to synchronize the use of resources among
multiple programming tasks. A semaphore ensures
that a shared resource is allocated to only one
task at any given time.

service routine: Program code that is executed in
response to an interrupt or trap.

Short Index addressing mode: In this mode, the
contents of the IX or 1Y reqister are added to an
8-bit displacement corftained in the instruction to
obtain the effective address of the operand.

slave processor: A processor, such as a Direct
Memory Access transfer controller, that performs
dedicated functions asynchronously to the CPU.

source: The reqister, memory location, or device
from which data are being read.

spatial locality: The characteristic of program
behavior whereby consecutive memory references
often apply to closely located addresses.

stack: An area of memory used for temporary
storage and subroutine linkages. A stack uses the
first-in, last-out method for storing and
retrieving data; the last data written onto the
stack will be the first data read from the stack.

Stack Pointer (SP): A register indicating the top
(lowest address) of the processor stack used by
Call and Return instructions for linking
procedures. User and system modes of operation
use separate Stack Pointers, the User Stack
Pointer (USP) and System Stack Pointer (SSP).

G3

Glossary

system modes A CPU node of operation, used for
operating system functions. In this mode, the CPU
can execute privileged (and all other)
instructions.

System Stack Pointer (SSP)s
used while the CGRU is in system mode.
programs cannot access the SSP.

The Stack Pointer
User mode

tag hits On a memory reference, a tag hit occurs
when the cache address tags are searched for the
referenced address and a match is found.

tag miss: On a memory reference, a tag miss
occurs when the cache address tags are searched
for the referenced address and no match is found.

temporal locality: The characteristic of program
behavior whereby memory references often apply to
a location that has been referred to recently.

tightly coupled CPUs: CPs that execute
independent instruction streams and communicate
through shared memory on a conmon (global) bus.

transaction: A basic bus operation involving the
transfer of one byte or word of data between the
CPU and a memory or peripheral device.

trap: An exception that occurs when certain
conditions, such as an ' access protection
violation, are detected during execution of an
instruction.

unaligned address: An address that is not a
multiple of an operand's size in bytes. Odd
addresses are unaligned for words.

user mode: A QU node of operation, generally
used for application programs. In this mode, the
CPU cannot execute privileged instructions or
access protected memory locations.

User Stack Pointer (USP): The Stack Pointer used
while the QU is in wuser mode. System node
programs can access the USP with the Load Control
instruction.

vectored interrupt: A interrupt that uses the
low-order byte of the identifier word as a vector
to an interrupt service routine; can be disabled.

virtual memory: A memory management technique in
which the system's logical memory address space is
not necessarily the same as, and can be much
larger than, the available physical menofcy.

wait state: A clock period that is added to a
memory or /O transaction due to an active WAT
signal. Wait states are used to prolong memory
and I/O transactions to devices with long access
times.

word: A data item containing sixteen contiguous
bits.*

write access: The type of memory access used by
the CPU for storing data operands.

Access violation, 1:4, 7:5 -
Access violation trap, 1:3, 5:3,4, 6:4,5, 7:1,2,7
Add/Subtract flag, 5:1
Address spaces, 1:2,6, 4:1,6
CPU control register space, 1:2, 2:1,2, 4:2,6
CPU register space, 1:2, 2:1>2, 4:6
1/0 address space, 1:2, 2:1,4, 4:2,6
Memory address space, 1:2, 2:1,3, 4:1-6
Address translation, 2:3, 7:1-6
with program/data separation, 7:1,2,4
without program/data separation, 7:2,3
Addressing modes, 1:3, 4:1-6, 5:1,6,10, 7:2,5
Base Index (BX), 1:6, 4:1,5,6, 5:6,10, 10:7, B:1
Direct Address (DA), 1:3, 2:4, 4:1,2, 5:6-10, 10:7
Immediate (IM), 1:3, 4:1

Indexed (X), 1:3,6, 4:1,3,6, 5:6,10, 10:7
Indirect Register (IR), 1:3,6, 2:4, 4:1,2, 5:4,6-8,10, 10:7
Program Counter Relative (RA), 1:3, 4:1,4, 5:6,8,10, 7:2,5, 10:7

Register (R, RX), 1:3, 4:1 \
Short Index CSX), 1:3, 4:1,3,6, 5:4,6
Stack Pointer Relative (SR), 1:3,6, 4

7
:1,5, 5:6,10, 10:7

-B-
Base Index (BX) addressing mode, 1:3,6 4:1,5,6, 5:6,10, 10:7 B:1
Bit manipulation, rotate and shift instructions, 1:3, 5:1,7
Block move port, 7:6
Block transfer and search instructions, 1:3, 4:6, 5:1-5
Bootstrap mode, 3:2, 9:20-22, 11:1
Breakpoint-on-Halt trap, 1:3, 3:4, 5:3,4, 6:4-6
Burst mode, 3:3,4, 8:2, 9:10,15-17, 10:3, 12:3, 13:1,3,9, E:13
Bus configuration and timing

I-BUS, 1:1, 9:12,16, 12:1, 13:4

Z80 Bus, 1:1, 9:12,16, 12:1,2,4, A:1l
Bus request, 1:4, 9:9,10, 10:1-5,8, 11:1, 12:2-3
Bus request protocols, 10:2,3
Bus Timing and Control register, 2:2, 3:1-
Bus Timing and Initialization register, 2:
12:2-5,15, 13:2,4,5,9,19
Byte/Word registers, 2:1

3, 12:4,5,12,13, 13:4,5,9,13
2, 3:1, 9:1,9, 10:2, 11:1,2,

-C-

Cache Control register, 2:2, 3:1,3,4, 8:1-4, 12r4, 13:4,9

Cache, 1:4-6, 3:3,4, 6:9, 7:1,2, 8:1-4 9:1,15, 10:8, 12:4, 13:4,9,14,
Fixed-Address mode, 8:4
Memory mode, 3:3,4, 8:1-3
Organization, 3:3,4, 8:1

Carry flag, 5:1-3,7,8

Clock oscillator, 1:1,2,5, 9:1,2

Condition codes, 5:1-3

Continuous mode, 9:10,15,17,21, 12:3, 13:3

A:l,

E:1,13-14

1-1

Coprocessors, 10:1,6, 12:1, 13:14
and Extended Processing Architecture, 10:6
Count register, 9:9,12-16, 11:1
Count-Time register, 9:2-6, 11:1,3
Counter/Timer registers, 6:9,10 9:4,4
Counter/Timer Command/Status register, 9:2,3,5-9
Counter/Timer Configuration register, 9:2-5,7-9,19
Count-Time register, 9:2-6, 11:1,3
I1/O addresses of, 9:7
Time Constant register, 9:2,4-7,9, 11:1
Counter/Timers, 1:4,5, 9:1-9,17,19, 10:2, 11:1,3, 12:3, 13:2
Gates and triggers, 9:2-9
Linking counter/timers, 9:5,7
Operating modes, 9:3-5
Sequence of events, 9:7,8
Terminal count condition, 9:3-5,8,9,15,16
Count-Time register, 9:2-6
CPU control instructions, 5:1,9,10
CPU control register space, 1:2, 2:1,2
CPU Control registers, 3:1-6, 6:1
CPU register file, 2:1,2
Byte/Word registers, 2:1,2
Flag and accumulator registers, 2:1,2
Index registers, 2:2
Interrupt register, 2:2
Program Counter, 2:1,2
Refresh register, 2:1,2
Stack Pointers, 2:1,2
CPU register space, 1:2, 2:1,2

Daisy chain timing, 3:2,3, 8:3
Oata types, 1:2,6, 2:4, 4:6
Descriptor Select port, 7:6
Destination Address register, 9:9,10,12-14,16,17, 11:1
Direct Address (DA) addressing mode, 1:3,
Division Exception trap, 1:3, 3:4, 5:3, 6
DMA channels, 1:1,4,5, 3:2, 7:1, 8:2, 9:1
12:2,3,13-15, 13:4,5,17,18,19
DVA linking, 9:9,12,13
DVA programming, DMAs linked to UART, 9:9,13,17,21,22
DMA programming, linked DMAs, 9:9,13,16
DVA registers, 9:12,13,15,16,21
DVMA sequence of events, 9:15,16
DVA transfer mode, 9:10,11
End-of-process, 9:11-16,21, 13:2
Priority resolution, 9:12
Types of DMA operations, 9:10
DVMA Flowthrough transaction, 9:9-11,15-17,21, 13:5,17
DMA Flyby transaction, 9:9-11,14,15 12:2,13, 13:2
DMA modes of operation, 9:10,11,14, 12:3, 13:3
burst mode, 9:10,15-17, 12:3, 13:3,9, E:13
continuous mode, 9:10,15,17,21, 12:3, 13:3
single transaction mode,. 9:10,17, 12:3, 13:3
DVA registers, 9:12,13,15,16,21
Count register, 9:10,12,13,14,16, 11:1,3
Destination Address register, 9:9,10,12,13,15-17, 11:1,3
DVA Master Control register, 9:9-13,15,17
DVMA Transaction Descriptor register, 9:9,11-17
Source Address register, 9:9,10,12-17, 11:1

2:
4.5
,9-1

7,21, 10:2,4,6,

1-2

4, 4:1,2, 5:6-8,10,

10:7

11:1,3,

End-of-Process, 9:11-16,21, 12:3

Exception conditions, 1:3, 5:3,4, 6:1
interrupts, 1:3,5,6, 2:2, 3:4,5, 5:3,9,10, 6:1-4,6-11, 7:1
resets, 1:3, 3:1-6, 6:1,3,11
traps, 1:3-5, 2:2, 3:4,5, 5:3,4,9,

Extended instructions, 1:4, 3:5, 5:1
execution sequence, 10:7

Extended Instruction trap, 1:3, 3:5, 5:3,

Extended Processing Units (EPUs), 1:4, 2
10:6-9, 13:14,15, B:1

EPU transaction, 13:2-4,14

10, 11 1
,3,10, 6:4, 8:2,3, 10:6-9, 13:5,9,14,15

Fixed Address mode, 9:15

Flag register, 1:2, 2:1,2, 5:2

Flowthrough mode, 9:9-11,15-17, 13:5

Flyby mode, 9:9-11,14,15, 12:2,13, 13:2,17,18
Framing error, 9:18,20

-H-
Half-Cafry flag, 5:2

Immediate (IM) addressing mode, 1:3, 4:1,
Index registers, 2:1,2
Indexed (X) addressing mode, 1:3,6, 4:1,3,6, 5:6,7,10, 10:7
Indirect Register (IR) addressing mode, 1:3,6, 2:4, 4:1,2, 5:4,6-8,10, 10:7
Input/Output instruction group, 1:3, 5:1,9
Instruction aborts, 7:7
Instruction Execution, 5:3,4
and exceptions, 5:3
and interrupts, 5:3,4
and traps, 5:3,4
Instruction set, 1:3,6, 5:12-172
binary encoding, 5:10,11
functional groups, 5:4
Block Transfer and Search group, 1:3, 4:6, 5:1-5
CPU Control group, 5:1,9,10
Extended Instruction group, 5:1,10, 10:6,7, 13:5,9,14,15
Input/Output group, 1:3, 5:1,9
Program Control group, 5:1,7,8
Rotate, Shift, and Bit Manipulation group, 1:3
8-bit Arithmetic and Logical group, '\:3, 5:1,6
8-bit Load group, 5:1,4
16-bit Arithmetic Group, 1:3, 5:1,6,7
16-bit Load and Exchange group, 5:1,5
notation, 5:10,11
Interrupt Acknowledge, 2:2, 3:2, 6:2,3,6-8, 12:2,3,12,14, 13:2-4,13,18, A:1l
Interrupt and Trap handling, 1:2,5
Interrupt Mask register, 5:10
Interrupt Modes, 3:4,5, 6:1,4,6,8,9, A:l

, 5:1,7

0: 3:5, 5:10, 6:1-3,7-9, 11:1, 12:14, 13:19, A1l
1: 5:10, 6:1-3,7-9

2: 2.2, 5:10, 6:2,3,7-9, 7.2

3: 3:4,5, 5:3,9,10, 6:1,3,4,7-10, 7:1, 9:1

1-3

Interrupt

12:2,3,9,12,14,

Interrupt
Interrupt
Interrupt

Interrupt/Trap Vector
Interrupt/Trap Vector

request, 3:4,5,

register, 2:2
Shadow register, 6:3,9
Status register

5:3, 6:1-3,6,7,9 8:3, 9:1-5,7,11,12,14,16-18,20,

13:2,10,13,19

, 2:2, 3:4,5, 6:2,8-10, 11:1

Table, 6:3,4,7-9, 7:1
Table Pointer, 2:2
1

, 3:4,5, 6:3,4,11, 7:1, 11:1,2
0, 6:1-4,6-11, 7:1, 9:1, 11:1,2,

Interrupts, 1:3,5,6, 2:3, 3:4,5, 5:3,9,
12:5,12,14, 13:3,5,19, E:1,12-13
maskable, 3:4, 6:1-3,7-9, 12:3,14, 13:3,19
nonmaskable, 5.4.9, 6:2,3,7-9, 12:3,14, 13:3,19
Invalidation port, 7:6
110
address space, 1:2, 2:1,4, 4:2,6, 9:1
Page register, 2:2,4, 3:4,5, Al
transaction, 3:2,5, 9:1, 0:2, 12:2,4,10, 13:2,3, E:9,16
X -L-

Local Address reg

Master Status reg

12:14, 13:19,
Memory Access Violation

ister, 2:2, 3:1,3, 10:2,4, 12:10,15, 13:4,19
Loosely coupled multiple CPUs, 10:1,6

-M-

ister (MSR), 2:2,3, 3:4,5, 4:5, 5:2,4, 6:1-11, 7:7, 9:4,12,

Al

Memory Address space, 1:2

System,

2:3

User, 2:3
Memory management, 1:1,3,4, 7:1
Memory transaction, 12:2,

tra

p 1:3, 5:3,4, 6:4,5, 7:1,2,7
2:1-4

5,10,13, 13:2-11,14,17,19
9, 6:2,5,8,11, 7:1,2,5-7, 8:2, 9:1,14, 11:1,2, A1l

MMU, 1:2,4,5, 2:3, 4:1,
Architecture, 7:1,2
Control registers, 7:1,5,6

MW Master Control r

Page Descriptor regi

Page Descriptor

Multiproce

ssor

configurations,

mode,

Overrun error,

1:4, 3:1

7:1
Register Pointer, 7:5,6

egister, 7:1,3,5,7
6:5

ster, 2:3, —, 8:2, 11:1,2

1:4, 3:1
,3, 10:2,4, 11:1, 12:15, 13:19

9:18,20,21

Page Descriptor register,

Page Desc

riptor R

Page Fault trap,

Parity error,
Parity/Overflow flag,

Peripheral
Pin descr

egister
3:4, 5:4

9:18,20,21
5:2,3, 9:21

families, 1:1,

iptions,

Z-BUS, 13:1-3
Z80 BUS, 12:1-3

-P-
2:3, 6:5, 1-7, 8:2
6

7:
Pointer, 7:5,

F:1

Privileged instructions, 3:4-6, 5:3,4,10, 6:4,5, A1l
Privileged Instruction trap, 1:3, 3:4,5, 5:4, 6:4,5
Processor flags, 5:1,7,9, 6:5

Add/Subtract flag, 5:1

1-4

Carry flag, 5:1,7',8

Half-Carry flag, 5:2

Parity-Overflow flag, 5:2

Sign flag, 5:2

Zero flag, 5:2
Program Control instructions, 5:1,7,8
Program Counter, 2:1,2, 3:4,5, 5:7,8,10, 6:2-4,7-11, 7:7, 1
Program Counter Relative (RA) addressing mode, 1:3, 4:1,4,

-R-
Reason code, 6:3,8,9

Refresh, 1:2,4,5, 10:4, 12:2-4,9,10, 13:2,4,10, A1l

Refresh controller, 9:1,2 ' om

Refresh Rate register, 1:4, 9:1,2

Refresh register, 2:1,2, A:l

Register (R,sRX) addressing mode, 1:3, 4:1, B:1

Reset, 1:3, 3:1,3-6, 5:10, 6:1,3,11, 7:5, 11:1, 12:1,3,4,9, 13:3,4,10, A1l
RET1 transaction, 5:9,10, 6:3,9, 8:2-4, 12:2,9,14, E:10

Rotate, Shift, and Bit Manipulation instructions, 1:3, 5:1,7

-S-
Short Index (SX) addressing mode, 1:3, 4:1,3,6, 5:4,6,7,
Sign flag, 5:2,3
Single-Step trap, 1:3, 3:4, 5:
Single transaction mode, 9:10,
Slave processors, 10:1,2, 12:1
Source Address register, 9:9,10,12-17, 11:1
Stack Limit register, 6:5
Stack Pointer registers, 1:2, 2:1,2, 3:4, 5:3,4, 6:5, Al

System, 2:2, A:l 1

User, 2:2, A:1
Stack Pointer Relative (SR) addressing mode, 1:3,6, 4:1,5,6, 5:6,10, 10:7
System Call trap, 1:3, 5:4, 6:4,5
System Configuration registers, 3:1

Bus Timing and Control register, 3:1,3

Bus Timing and Initialization register, 3:1

Cache Control register, 3:1,3,4

Local Address register, 3:1,3
System mode, 1:2,3,5,6, 2:2,3, 3:1,4-6 5:4,9, 6:2,3r5,7,8, 7:1,2,5, A1l
System Stack Limit register, 2:2, 3:4-6
System Stack Overflow Warning trap, 1:3, 3:6, 5:4,5, 6:4,5
System Stack Pointer (SSP), 2:1,2, 3:6, 4:5, 6:2, A1l
System Status registers, 3:1,4

Interrupt Status register, 3:4,5

Interrupt/Trap Vector Table Pointer, 3:4,5

1/0 Page register, 3:4,5

Master Status register (MSR), 3:4

System Stack Limit register, 2.2, 3:4-6

Trap Control register, 3:4-6

3,4, 6:4-6,8 X.
17, 12:3, 13:3

-T-
Terminal count condition, 9:3-5,8,9,15,16

Tightly coupled multiple processors, 10:1,2,4,5

Time Constant register, 9:2,4-7,9, 11:1

Trap Control register, 2:2, 3:4-6, 5:9,10, 6:4,5, 10:7, 13:14, A:l

Traps, 1:3-5, 2:2, 3:4,5, 5:1,3,4,7-10, 6:1,4-11, 7:1, 10:6, 11:1,2, 12:5,
13:2,5, E: 1,12

Access Violation, 1:6, 5:3,4, 6:4-6, 7:1,2,7
Breakpoint-on-Halt, 1:6, 3:4, 5:3,4, 6:4-6
Division Exception, 1:6, 3:4, 5:3, 6:4,5,

1-5

Extended Instruction, 1:6, 3:5, 5:3,10, 6:4, 10:6-9, 13:14

Page Fault, 3:4, 5:3,4

Privileged Instruction, 1:6, 3:4-6, 5:3,4, 6:4,5
Single-Step, 1:6, 3:4, 5:3,4, 6:4-6,8

System Call, 1:6, 5:3,4, 6:4,5

System Stack Overflow Warning, 1:6, 3:5,6, 5:3-5, 6:4,5,

-U-

UART, 1:1,4,5, 3:1,2, 9:1,17-22, 11:1,3, 12:3, 13:3

bootstrapping option, 3:2, 9:20-22
operation, 9:21
registers, 9:17,18,20
I1/O addresses of, 9:20
Receive Data register, 9:17,18,20,21
Receiver Control/Status register, 9:17,18,20,21
Transmit Data register, 9:17-21
Transmitter Control/Status register, 9:17-21
UART Configuration register, 9:18,19,21
receiver operation, 9:18,20, 12:3, 13:3
transmitter operation, 9:17-20, 12:3, 13:3

User mode, 1:2,5,6, 2:2,3, 3:4,5, 5:4, 6:3-5, 7:1,2,5
User Stack Pointer (USP), 2:1,2, 4:5, 5:9, A1l

_Z-

Z-BUS, 1:1, 9:2,12,16, 10:6, 12:1, 13:1-19, F:1

bus configuration and timing, 9:12,16, 12:1, 13:4
bus operation, 13:2
external interface, 12:1
pin descriptions, 13:1-3
requests, 13:2,18
global, 13:18,19
interrupt, 13:2,18,19
local, 13:18,19
transactions, 13:2-5,9-16
DVA flyby, 13:2,17
Extended Processing Unit (EPU), 10:6, 13:2-4,14
Halt, 13:2,4,10
1/0, 13:2,3,11
Interrupt Acknowledge, 13:2-4,18
Memory, 13:2-11,14,18,19
Refresh, 13:2,4,10

Z80 Bus, 1:1, 9:2,12,16, 10:6, 12:15, 13:1, F:1

bus configuration and timing, 9:12,16, 12:4, A:l
bus operation, 12:2
external interface, 12:1
pin descriptions, 12:1-3
requests, 12:2,14
global, 12:14,15
interrupt, 12:2,14
local,12:14,15
transactions, 12:2,4,5,9,10,12,15
DVA flyby, 12:2,13
Halt, 12:2,9,10
1/ 0, 12:2,10
Interrupt Acknowledge, 12:2,12,14
Memory, 12:2,5,10,13
Refresh, 12:2,9,10
RETI, 12:2,9,14

Zero flag, 5:2,3 *

1-6

A:l

NOTES

NOTES

Z i IO g READER COMMENTS

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Title of Publication:

Document Number

Your Hardware Model and Memory Size:

Describe your likes/dislikes concerning this document

Technical Information:

Supporting Diagrams:

Ease of Use:

Your Name:
Company and Address:___

Your Position/Department:
03-8224-61

tt/f

ZILOG DOMESTIC SALES OFFICES
AND TECHNICAL CENTERS

CALIFORNIA
Agoura 818-707-2160
Campbell RPN 408-370-8016
Costa Mesa..........coouvennee ...714-261-1281
COLORADO
Boulder ...303-494-2905
FLORIDA

...813-585-2533
GEORGIA
Atlanta 404-451-8425
ILLINOIS
ScnaumDurg...
MASSACHUSETTS
Burlington... 617-273-4222
MINNESOTA
Edina... 612-831-7611
NEW JERSEY
Hashrourk Heights ... 201-288-3737
Mt Laurel ...609-778-8070

OHIO

Seven Hills

216-447-1480

TEXAS

Richardson..........cccoeoeieiann ...214-231-9090

Z280 is a trademark of Zilog, Inc.

INTERNATIONAL SALES OFFICES

CANADA

Toronto 416-673-0634
GERMANY

Munich.. 49-89-612-6046
JAPAN

Tokyo 81-3-587-0528
HONG KONG

Kowloon... ...852-3-723-8979
R.O.C.

Taiwan 886-2-731-2420

UNITED KINGDOM

Maidenhead. 44-628-39200

Z80, Z8000 and Z—BUS are registered trademarks of Zilog, Inc.

01987 by Zilog, Inc. All rights reserved.

transmitted, in any form or by any
mechanical,
prior written permission of Zilog.

No part of this
publication may be reproduced, stored in a retrieval
means,
photocopying, recording, or otherwise,

system, or
electronic,

without the

The information contained herein is subject to change without

notice.

Zilog assumes no responsibility for the use of any

circuitry other than circuitry embodied in a Zilog product. No

other circuit patent licenses are implied.

All specifications (parameters) are subject to change without

notice.
which parameters are tested.

Zilog, Inc.

03- 8224-02 Printed in USA

The applicable Zilog test documentation will specify

210 Hacienda Ave., Campbell, California 95008-6609
Telephone (408)370-8000 TWX 910-338-7621

	TOP
	Table of Contents
	LIST OF ILLUSTRATIONS AND TABLES

	Chapter 1. Architectural Overview
	1.1 INTRODUCTION
	1.2 MPU ARCHITECTURAL FEATURES
	1.2.1 System and User Modes
	1.2.2 Address Spaces
	1.2.3 Data Types
	1.2.4 Addressing Modes
	1.2.5 Instruction Set
	1.2.6 Exception Conditions
	1.2.7 Memory Management
	1.2.8 Cache Memory
	1.2.9 Refresh
	1.2.10 On-Chip Peripherals
	1.2.11 Multiprocessor Mode
	1.2.12 Extended Instruction Facility

	1.3 BENEFITS OF THE ARCHITECTURE
	1.3.1 High Throughput
	1.3.2 Integration of Systeai Functions
	1.3.3 Operating System Support
	1.3.4 Code Density
	1.3.5 Compiler Efficiency

	1.4 SUMMARY

	Chapter 2. Address Spaces
	2.1 INTRODUCTION
	2.2 CPU REGISTER SPACE
	2.3 CPU CONTROL REGISTER SPACE
	2.4 MEMORY ADDRESS SPACES
	2.5 I/O ADDRESS SPACE

	Chapter 3. CPU Control Registers
	3.1 INTRODUCTION
	3.2 SYSTEM CONFIGURATION REGISTERS
	3.2.1 Bus Timing and Initialization Register
	3.2.2 Bus Timing and Control Register
	3.2.3 Local Address Register
	3.2.4 Cache Control Register

	3.3 SYSTEM STATUS REGISTERS
	3.3.1 Master Status Register
	3.3.2 Interrupt Status Register
	3.3.3 Interrupt/Trap Vector Table Pointer
	3.3.4 I/O Page Register
	3.3.5 Trap Control Register
	3.3.6 System Stack Limit Register

	Chapter 4.Addressing Modes and Data Types
	4.1 INTRODUCTION
	4.2 ADDRESSING MODE DESCRIPTIONS
	4.2.1 Register (R9 RX)
	4.2.2 Immediate (IN)
	4.2.3 Indirect Register (IR)
	4.2.4 Direct Address (DA)
	4.2.5 Indexed (X)
	4.2.6 Short Index (SX)
	4.2.7 Program Counter (PC) Relative Address (RA)
	4.2.8 Stack Pointer Relative (SR)
	4.2.9 Base Index (BX)

	4.3 DATA TYPES

	Chapter 5. Instruction Set
	5.1 INTRODUCTION
	5.2 PROCESSORR FLAGS
	5.2.1 Carry Flag (C)
	5.2.2 Add/Subtract Flag (N)
	5.2.3 Parity/Overflow Flag (PA)
	5.2.4 Half-Carry Flag (H)
	5.2.5 Zero Flag (Z)
	5.2.6 Sign Flag (S)
	5.2.7 Condition Codes

	5.3 INSTRUCTION EXECUTION AND EXCEPTIONS
	5.3.1 Instruction Execution and Interrupts
	5.3.2 Instruction Execution and Traps

	5.4 INSTRUCTION SET FUNCTIONAL GROUPS
	5.4.1 8-Bit Load Group
	5.4.2 16-Bit Load and Exchange Group
	5.4.3 Block Transfer and Search Group
	5.4.4 8-Bit Arithmetic and Logic Group
	5.4.5 16-Bit Arithmetic Operations
	5.4.6 Bit Manipulation, Rotate and Shift Group
	5.4.7 Progran Control Group
	5.4.8 Input/Output Instruction Group
	5.4.9 CPU Control Group
	5.4.10 Extended Instruction Group

	5.5 NOTATION AND BINARY ENCODING
	ADC Add with Carry (Byte)
	ADC Add With Carry (Word)
	ADD Add Accumulator to Addressing Registe
	ADD Add (Byte)
	ADD Add (Word)
	ADDW Add Word
	AND AND
	BIT Bit Test
	CALL Call
	CCF Complement Carry Flag
	CP Compare (Byte)
	CPD Compare and Decrement
	CPDR Compare, Decrement and Repeat
	CPI Compare and Increment
	CPIR Compare, Increment and Repeat
	CPL Complement Accumulator
	CPW Compare (Word)
	DAA Decimal Adjust Accumulator
	DEC Decrement (Byte)
	DEC[W] Decrement (Word)
	DI Disable Interrupt
	DIV Divide (Byte)
	DIVU Divide Unsigned (Byte)
	DIVUW Divide Unsigned (Word)
	DIVW Divide (Word)
	DJNZ Decrement and Jump if Non-Zero
	El Enable Interrupt
	EX Exchange Accumulator/Flag with Alternate Bank
	EX Exchange Addressing Register with Top of Stack
	EX Exchange H and L
	EX Exchange HL with Addressing Register
	EX Exchange with Accumulator
	EXTS Extend Sign (Byte)
	EXTS Extend Sign (Word)
	EXX Exchange Byte/Word Registers with Alternate Bank
	HALT HALT
	IM Interrupt Mode Select
	IN Input
	IN Input Accumulator
	INC Increment (Byte)
	INC[W] Increment (Word)
	IND Input and Decrement (Byte, Word)
	INDR Input, Decrement and Repeat (Byte, Word)
	INI Input and Increment (Byte, Word)
	INIR Input, Increment and Repeat
	IN[W] Input HL
	JAF Jump On Auxiliary Accumulator/Flag
	JAR Jump On Auxiliary Register File In Use
	JP Jump
	JR Jump Relative
	LD Load Accumulator
	LD Load from Accumulator
	LD Load from I or R Register
	LD Load Immediate (Byte)
	LD Load Register (Byte)
	LD Load to I or R Register
	LDA Load Address
	LDCTL Load Control
	LDD Load and Decrement
	LDDR Load, Decrement and Repeat
	LDI Load and Increment
	LDIR Load, Increment and Repeat
	LDUD Load in User Data Space (Byte)
	LDUP Load in User Program Space (Byte)
	LDW Load Immediate Word
	LD[W] Load Addressing Register
	LD[W] Load Register Word
	LD[W] Load Stack Pointer
	MULT Multiply (Byte)
	MULTU Multiply Unsigned (Byte)
	MULTUW Multiply Unsigned (Word)
	MULTW Multiply (Word)
	NEG Negate Accumulator
	NEG Negate HL
	NOP No Operation
	OR
	OTDR Output, Decrement and Repeat (Byte, Word)
	OTIR Output, Increment and Repeat (Byte, Word)
	OUT Output
	OUT Output Accumulator
	OUTD Output and Decrement (Byte, Word)
	OUTI Output and Increment (Byte, Word)
	OUT[W] Output HL
	PCACHE Purge Cache
	POP POP
	PUSH Push
	RES Reset Bit
	RET Return
	RETI Return from Interrupt
	RETIL Return from Interrupt Long
	RETN Return from Nonmaskable Interrupt
	RL Rotate Left
	RLA Rotate Left Accumulator
	RLC Rotate Left Circular
	RLCA Rotate Left Circular (Accumulator)
	RLD Rotate Left Digit
	RR Rotate Right
	RRA Rotate Right (Accumulator)
	RRC Rotate Right Circular
	RRCA Rotate Right Circular (Accumulator)
	RRD Rotate Right Digit
	RST Restart
	SBC Subtract with Carry (Byte)
	SBC Subtract with Carry (Word)
	SC System Call
	SCF Set Carry Flag
	SET Set Bit
	SLA Shift Left Arithmetic
	SRA Shift Right Arithmetic
	SRL Shift Right Logical
	SUB Subtract
	SUBW Subtract (Word)
	TSET Test and Set
	TSTI Test Input
	XOR Exclusive OR
	EXTENDED INSTRUCTION EPU Internal Operation
	EXTENDED INSTRUCTION Load Accumulator from EPU
	EXTENDED INSTRUCTION Load EPU from Memory
	EXTENDED INSTRUCTION Load Memory from EPU

	Chapter 6. Interrupts and Traps
	6.1 INTRODUCTION
	6.2 INTERRUPTS
	6.2.1 Interrupt Mode 0
	6.2.2 Interrupt Mode 1
	6.2.3 Interrupt Mode 2
	6.2.4 Interrupt Mode 3

	6.3 TRAPS
	6 .4 INTERRUPT AND TRAP HAIDLING
	6.3.1 Extended Instruction Trap
	6.3.2 Privileged Instruction Trap
	6.3.3 System Call Trap
	6.3.4 Access Violation Trap
	6.3.5 System Stack Overflow Warning Trap
	6.3.6 Division Exception Trap
	6.3.7 Single-Step Trap.
	6.3.8 Breakpoint-on-Halt Trap

	6.4 INTERRUPT AND TRAP HANDLING
	6.4.1 Interrupt Acknowledge
	6.4.2 Status Saving
	6.4.3 Loading New Program Status
	6.4.4 Executing the Service Routine
	6.4.5 Returning from a Service Routine

	6.5 INTERRUPT/TRAP VECTOR TABLE
	6.6 THE FATAL CONDITION

	Chapter 7. Memory Management Unit
	7.1 INTRODUCTION
	7.2 MMU ARCHITECTURE
	7.3 PAGE DESCRIPTOR REGISTERS
	7.4 ADDRESS TRANSLATION
	7.4.1 Address Translation Without Program/Data
	7.4.2 Address Translation With Program/Data Separation

	7.5 MMU CONTROL REGISTERS
	7.6 ACCESSING PAGE DESCRIPTOR REGISTERS
	7.6.1 Descriptor Select Port
	7.6.2 Block Move Port
	7.6.3 Invalidation Port

	7.7 1 INSTRUCTION ABORTS

	Chapter 8. On-Chip Memory
	8.1 INTRODUCTION
	8.2 CACHE MMORY MODE
	8.3 FIXED-ADDRESS MODE

	Chapter 9. On-Chip Peripherals
	9.1 INTRODUCTION
	9.2 CLOCK OSCILLATOR
	9.3 REFRESH CONTROLLER
	9.4 COUNTER/TIMERS
	9.4.1 Counter/Tinter Operating Modes
	9.4.2 Gates and Triqqers
	9.4.3 Terminal Count Condition
	9.4.4 Counter/Timer Registers
	9.4.4.1 Counter/Timer Configuration Register
	9.4.4.2 Counter/Timer Command/Status Register
	9.4.4.3 Time Constant and Count-Time Registers

	9.4.5 Linking Counter/Timers
	9.4.6 Counter/Timer Sequence of Events

	9.5 DMA CHANNELS
	9.5.1 Types of DMA Operations
	9.5.2 DMA Transfer Modes
	9.5.3 End-of-Process
	9.5.4 Priority Resolution
	9.5.5 DMA Linking
	9.5.6 DMA Registers
	9.5.6.1 DMA Master Control Reqister
	9.5.6.2 DMA Transaction Descriptor Register
	9.5.6.3 Count Register
	9.5.6.4 Source Address and Destination Address Registers

	9,5.7 DMA Sequence of Events
	
	

	9.6 UART
	9.6.1 Transmitter Operation
	9.6.2 Receiver Operation
	9.6.3 UART Registers
	9.6.3.1 UART Configuration Reqister
	9.6.3.2 Transmitter Control/Status Register
	9.6.3.3 Receiver Control/Status Register

	9.6.4 UART Operation

	9.7 UART BOOTSTRAPPING OPTION

	Chapter 10. Multiprocessor Configurations
	10.1 INTRODUCTION
	10.2 SLAVE PROCESSORS
	10.3 TIGHTLY COUPLED MULTIPLE PRROCESSORS
	10.3.1 The Local Address Register
	10.3.2 Bus Request Protocols
	10.3.3 Examples of the Use of the Global Bus

	10.4 LOOSELY COUPLED MULTIPLE CPUS
	10.5 COPROCESSORS AND THE EXTENDED PROCESSING ARCHITECTURE
	10.5.1 Extended Instructions
	10.5.2 Extended Instruction Execution Sequence

	Chapter 11. Reset
	Chapter 12. Z280 Bus External Interface
	12.1 INTRODUCTION
	12.2 BUS OPERATIONS
	12.3 PIN DESCRIPTIONS
	12.4 BUS CONFIGURATION AND TIMING
	12.5 TRANSACTIONS
	12.5.1 Memory Transactions
	12.5.2 RETI Transactions
	12.5.3 Halt and Refresh Transactions
	12.5.4 I/O Transactions
	12.5.5 Interrupt Acknowledge Transactions
	12.5.6 DMA Flyby Transactions

	12.6 REQUESTS
	12.6.1 Interrupt Requests
	12.6.2 Local Bus Requests
	12.6.3 Global Bus Requests

	Chapter 13. Z-BUS External Interface
	13.1 INTRODUCTION
	13.2 BUS OPERATIONS
	13.3 PIN DESCRIPTIONS
	13.4 BUS CONFIGURATION AND TIMING
	13.5 TRANSACTIONS
	13.5.1 Memory Transactions
	13.5.1.1 Byte/Word Organization
	13.5.1.2 Memory Transaction Timing
	13.5.1.3 Burst Memory Transactions
	13.5.1.4 Test and Set Memory Transactions

	13.5.2 Halt and Refresh Transactions
	13.5.3 I/O Transactions
	13.5.4 Interrupt Acknowledge Transactions
	13.5.5 Extended Processing Unit (EPU)Transactions
	13.5.5.1 EPU Instruction Fetch
	13.5.5.2 Memory-EPU Transactions
	1 3.5.5.3 EPU-CPU Transactions
	13.5.5.4 PAUSE Timing

	13.5.6 DMA Flyby Transactions

	13.6 REQUESTS
	13.6.1 Interrupt Requests
	13.6.2 Local Bus Requests
	13.6.3 Global Bus Requests

	Appendix A. Z80/Z280 Compatibility
	Appendix B. Z280 MPU Instruction Formats
	Appendix C. Instructions in Alphabetic Order
	Appendix D. Instructions in Numeric Order
	Appendix E. Instruction Timing
	Appendix F. Compatible Peripheral Families
	Glossary
	Index
	Bottom

