
Zilog P R E L IM IN A R Y
Technical Manual

July 1987

Z280™ M P U
M icroprocessor U n it

r

Table of Contents

Chapter 1 • Z280 A rchitectural Overview

1.1 In tro d u c t io n ... 1-1
1.2 MPU Architectural F e a tu re s 1-2

1.2.1 System and User Modes 1-2
1.2.2 Address Spaces 1-2
1.2.3 Data Types 1-2
1.2.4 Addressing Modes • 1-3
1.2.5 Instruction S e t ... 1-3
1.2.6 Exception Conditions 1-3
1.2.7 Memory Management1-3
1.2.8 Cache Memory 1-4
1.2.9 Refresh.. 1-4
1.2.10 On-Chip Peripherals 1-4
1.2.11 Multiprocessor Mode.................................... 1-4
1.2.12 Extended Instruction F a c ility .. 1-4

1.3 Benefits o f the Architecture ̂ • 1-5

1.4.1 High Throughput 1-5
1.4.2 Integration o f System Functions 1-5
1.4.3 Operating System Support 1-5
1.4.4 Code D e n s ity .. 1-5
1.4.5 Compiler E ffic ie n c y .. 1-5

1.4 Summary 1-6

Chapter 2 . Address Spaces •

2.1 Introduction 2-1
2.2 CPU Register F ile 2-1
2.3 CPU Control Registers , 2-2
2.4 Memory Address Spaces 2-3
2.5 I/O Address Space . :2-4

Chapter 3* CPU Control Registers 3

3.1 Introduction .. 3-1
3.2 System Configuration Registers 3-1

v 3.2.1 Bus Timing and In it ia liz a t io n Register .. 3-1
3.2.2 Bus Timing and Control Register .. 3-2
3.2.3 Local Address R e g is te r 3-3
3.2.4 Cache Control Register 3-3

i i i

Table of Contents (Continued)

3.3 System Status R eg iste rs..3-4 ^

3.3.1 Master Status Register 3-4
3.3;2 Interrupt Status Register,.......................... 3-4
3.3.3 Interrupt/Trap Vector Table Pointer 3-5
3.3.4 I/O Page R eg is te r.......................... 3-5
3.3.5 Trap Control Register ... 3-5
3.3.6 System Stack Limit Register . .. 3-6

Chapter A. Addressing Modes and Data Types

4.1 Introduction 4-1
4.2 Addressing Mode D e s c r ip t io n s ... 4-1

4.2.1 Register (R, RX) 4-1
4.2.2 Immediate (IM) / 4-1
4.2.3 Indirect Register (I R) ..4-2
4.2.4 Direct Address (DA) 4-2
4.2.5 Indexed (X) 4-3
4.2.6 Short Index (S X) ...4-3
4.2.7 Relative Address (RA) 4-4
4.2.8 Stack Pointer Relative (SR) 4-5
4.2.9 Base Index (B X)...4-5

4.3 Data Types4-6

Chapter 5 . Instruction Set

5.1 Introduction . • 5-1
5.2 Processor F la g s ...5-1

5.2.1 Carry Flag (C) 5-1
5.2.2 Add/Subtract Flag (N) 5-1

,5.2.3 Parity/Overflow Flag (P/V) 5-2
5.2.4 Half-Carry Flag (H) 5-2
5.2.5 Zero Flag (Z) 5-2
5.2.6 Sign Flag (S) ...5-2
5.2.7 Condition Codes 5-2

5.3 Instruction Execution and Exceptions .. . 5-3

5.3.1 Instruction Execution and Interrupts 5-3
5.3.2 Instruction Execution and Traps .. 5-3

i v

5.4 Instruction Set Functional Groups .. 5-4

5.4. T 8-b it Load Group . • 5-4
5.4.2 16-bit Load and Exchange Group.. 5-5
5.4.3 Block Transfer and Search Group 5-5
5.4.4 8-b it Arithmetic and Logic Group .. 5-6
5.4.5 16-bit Arithmetic Group ... 5-6
5.4.6 B it Manipulation, Rotate and Shift Group 5-7
5.4.7 Program Control Group 5-7
5.4.8 Input/Output Instruction Group 5-9
5.4.9 CPU Control Group5-9
5.4.10 Extended Instruction Group 5-10

5.5 Notation and Binary Encoding5-10
5.6 Instruction S e t5-13

Chapter 6 . Interrupts and Traps

6. t In tro d u c t io n • • 6-1
6.2 Interrupts 6-1

6.2.1 Interrupt Mode 0 ... 6-2
6.2.2 Interrupt Mode 1 i . 6-2
6.2.3 Interrupt Mode 2 6-2
6.2.4 in terrupt Mode 3 6-3

6.3 T raps.. 6-4

6.3.1 Extended Instruction T ra p .. 6-4
6.3.2 Privileged Instruction T rap 6-4
6.3.3 System Call Trap ... 6-5
6.3.4 Access Violation Trap 6-5
6.3.5 System Stack Overflow Warning Trap 6-5
6.3.6 Division Exception T rap w 6-5
6.3.7 Single-Step Trap .. . 6-5
6.3.8 Breakpoint-on-Halt Trap • 6-6

6.4 Interrupt and Trap Handling.................. 6-6

i
* 6.4.1 Interrupt Acknowledge 6-6

6.4.2 Status Saving... 6-7
6.4.3 Loading New Program Status 6-7
6.4.4 Executing the Service Routine .. 6-9
6.4.5 Returning from a Service R o u tin e 6-9

6.5 Interrupt/Trap Vector Table . .. 6-9
6.6 The Fatal Cond ition................... 6-11

v

Table of Contents (Continued)

Chapter 7 . Memory Management Uhit

7.1 Introduction 7-1
7.2 MMU Architecture7 -1
7.3 Page Description Registers 7-2
7.4 Address T rans la tion7-3

7.4.1 Address Translation without Program/Data Separation 7-3
7.4.2 Address Translation with Program/Data Separation 7-4

7.5 MMU Control Registers 7-5
7.6 Accessing Page Descriptor R egisters.. 7-6

7.6.1 * Descriptor Select P o r t .. 7-6
7.6.2 Block Move Port 7-6
7.6.3 Invalidation Port 7-6

7.7 Instruction Aborts 7-7

Chapter 8 . On-Chip Memory

8.1 Introduction8 -1
8.2 Cache Memory Mode.......................... 8-1
8.3 Fixed-Address M o d e 8-4

Chapter 9 . On-Chip Peripherals

9.1 Introduction 9-1
9.2 Clock O scilla tor 9-1
9.3 Refresh C o n t r o l le r ... 9-1
9.4 Count er/Tiirters ..9-2

9.4.1 Counter/Timer Operating Modes 9-3
9.4.2 Gates and Triggers ... 9-3
9.4.3 Terminal Count Condition 9-4
9.4.4 Counter/Timer Registers .. . 9-4
9.4.5 Linking Counter/Timers ... 9-7
9.4.6 Counter/Timer. Sequence o f Events .. 9-7

V *
9.5 DMA Channels 9-9

9.5.1 Types of DMA Operations 9-10
9.5.2 DMA Transfer M odes.. * 9-10
9.5.3 End-o f-P ro c e s s ..9-11
9.5.4 P rio r ity Resolution ... 9-12
9.5.5 DMA L in k in g ... 9-12
9.5.6 DMA R egiste rs.................. ...9-13
9.5.7 DMA Sequence o f E v e n ts 9—15
9.5.8 DMA Programming: Linked DMAs....................................... ... 9-16
9.5.9 DMA Programming: DMAs Linked to UART 9-17

7

8

9

%

v i

9.6 UART................... * .9 -1 7

9.6.1 Transmitter Operation 9-17
9.6.2 Receiver O p e ra tio n ... 9-18
9.6.3 UART Registers • • 9-18
9.6.4 UART O p e ra tio n ...9-21

9.7 UART Bootstrapping Option9-21

Chapter 10. Multiprocessor Configurations

10.1 Introduction10—1
10.2 Slave Processors................... ... 10-1
10.3 Tightly Coupled Multiple Processors 10—2

10.3.1 The Local Address Register10-2
10.3.2 Bus Request Protocols 10-2
10.3.3 Examples of the Use of the Global Bus 10-4

10.4 Loosely Coupled Multiple CPUs ... 10-6
10.5 Coprocessors and the Extended Processing Architecture 10-6

10.5.1 Extended Instructions 10-6
10.5.2 Extended Instruction Execution Sequence 10-7

Chapter 11. Reset 11-1

9

10

1 1

Chapter 12. Z80 Bus External Interface

12.1 Introduction 12-1
12.2 Bus Operations ... 12-2
12.3 Pin Descriptions 12-3
12.4 Bus Configuration and Timing12-4
12.5 Transactions * 12-4

12.5.1 Memory Transactions ... 12-5
12.5.2 RETI Transactions 12-9
12.5.3 Halt and Refresh Transactions12-9
12.5.4 1/0 Transactions 12-10
12.5.5 Interrupt Acknowledge Transactions 12-12
12.5.6 DMA Flyby Transactions........................ . , 12-13

12.6 Requests .. 12-14

12.6.1 Interrupt Requests.. 12-14
12.6.2 Local Bus Requests......................... 12-15
12.6.3 Global Bus Requests 12—15

12

v i i

Table of Contents (Continued)

Chapter 13. Z-BUS External Interface 13
13.1 In tro d u c tio n
13.2 Bus Operations
13.3 Pin D escrip tions............... ...
13.4 Bus Configuration and Timing
13.5 Transactions... ...

13.5.1 Memory Transactions
13.5.2 Halt and Refresh Transactions
13.5.3 I/O Transactions ..
13.5.4 Interrupt Acknowledge Transactions »
13.5.5 Extended Processing Unit (EPU) Transactions . . .
13.5.6 DMA Flyby Transactions

13.6 Requests

13.6.1 Interrupt Requests ..
13.6.2 Local Bus Requests
13.6.3 Global Bus Requests

Appendix A. Z80/Z280 Compatibility

Appendix B. Z280 MPU Instruction Formats

Appendix C. Instructions in AlphSbetic Order

Appendix D. Instructions in Numeric Order

Appendix E. Instruction Timing ..

Appendix F. Compatible Peripheral Families

Glossary G-1

Index 1-1

v i i i

LIST OF ILLUSTRATIONS AND TABLES

F ig u re Page
Number Number
1 - 1. B lock D iagram 1-1
2 - 1. R e g is te r F i le O rg a n iz a t io n 2-1
2 -2 . CPU C o n tro l R e g is te rs 2 - 3
2 -3 . Numbering o f B its W ith in a B y te .. 2-3
2 - 4. Form ats, M u lt ip le -B y te Data Elem ents in Memory...................................2 -4
3 - 1. Bus T im ing and I n i t i a l i z a t i o n R e g is te r 3-1
3 -2 . Bus Tim ing and C o n tro l R e g is te r 5-2
3 -3 . Loca l Address R e g is t e r3 -3
3 -4 . Cache C o n tro l R e g is te r . . . '3 - 3
3 - 5 . ' M aster S ta tu s R e g is te r ... 3-4
3 -6 . In te r r u p t S ta tu s R e g is t e r 3-5
3 -7 . In te r r u p t /T r a p V ecto r Table P o in t e r3 - 5
3 -8 . I/O Page R e g is te r . * .. 5-5
3 -9 . ' Trap C o n tro l R e g is te r 3-5
3 -1 0 . System Stack L im it R e g is t e r3-6
5 - 1. F lag R e g is te r ... 5-1
6 - 1. Mode 2 In te r r u p t P ro c e s s in g 6 - 3
6 - 2. I n s t r u c t io n E xecu tion S e q u e n ce ..6-6
6 r 3 • Format o f Saved S ta tu s on System Stack

Due to a Mode 3 I n t e r r u p t 6 -8
7 - 1. Page D e s c r ip to r R e g is t e r 7-2
7 -2 . Address T ra n s la t io n W ithou t Program /Data S e p a r a t io n7-3
7 -3 . Address T ra n s la t io n W ith Program /Data S e p a ra tio n7-4
7 - 4 . MMU M aster C o n tro l R e g is t e r7 - 5
8 - 1. Cache O rg a n iz a t io n 8 - 1
9 - 1. Refresh Rate R e g is t e r 9-1
9 -2 . MPU C ounter/T im er^ B lock D iagram9 -2
9 -3 . Counter O pe ra tion W ith Gate O n ly9 -3
9 -4 . Counter O pe ra tion W ith T r ig g e r O n ly . ..V9-4
9 -5 . Counter O pe ra tion W ith Gate and T r ig g e r 9-4
9 -6 . C o un te r/T im e r C o n f ig u ra t io n R e g is te r 9 - 5
9 -7 . Count e r /T im e r Command/St a t us R e g is te r 9-6
9 -8 . Modes o f O p e ra t io n 9-11
9 -9 . DMA Master C o n tro l R e g is te r 9-13
9 -1 0 . T ra n s a c tio n D e s c r ip to r R e g is t e r9-13
9 -1 1 . Source & D e s tin a tio n Address R e g is te rs F orm at.................. 9-15
9 -1 2 . General Form at, Asynchronous T ra n s m is s io n 9-17
9 -1 3 . Byte Assembled by R ece iver fo r 5 - b i t C harac te r w ith P a r i t y . . . 9 - 1 8
9 -1 4 . UART C o n f ig u ra t io n R e g is te r 9 - 1 8
9 -1 5 . T ra n s m itte r C e n tro l/S ta tu s R e g is te r9-19
9 - 16. R ece iver Cont r o l /S t a t us R e g is te r 9 - 2 0
1 0 - 1. M ult ip ro p e s s o r C o n f ig u ra t io n s 10-1
10 -2 . Loca l Address R e g is te r 1 0 - 2
10 -3 . S ta te Diagram fo r CPU Bus Request P ro to c o l................ 1 0 - 3
10 -4 . T ig h t ly Coupled P rocessors W ith Shared G loba l Memory. 10-4
10 -5 . T ig h t ly Coupled. P rocessors W ithou t G loba l Memory. 10-5
10 -6 . ,Z280 MPU as £n 1/0 P r o c e s s o r 10-5

Table of Contents (Continued)

10 -7 . EPU C onnection in Z280 MPU System 1 0 - 6
10 -8 . CPU-EPU In s t r u c t io n E xecu tion Sequence.1 0 -7
12 -1 . Z80 Bus C o n f ig u ra t io n (In p u t OPT t ie d to GND)

a) P in F u n c t io n s 12-1
b) Pin A ss ignm en ts 12 — 1

12 -2 . Memory Read T im in g12-5
12 -3 . Memory W rite T im in g ...12-6
12 -4 . Memory Read T im ing W/One E x te rn a l Wait S ta te 12-6
12 -5 . Memory W rite T im ing W/One E x te rn a l W ait S ta te 12 — 7
12 -6 . Memory Read T im ing W/One In te r n a l W ait S t a t e12-7
12 -7 . RETI Read T im in g' 12-8
12 -8 . H a lt T im in g 12-9
12 -9 . Memory R efresh T im in g12-10
12-10 . I/O Read T im in g1 2 -1 1
12-11 . I/O W rite T im in g12-11
12-12 . I n te r r u p t Acknowledge Sequence... 12-12
12-13. On-Chip DMA Channel F lyb y Memory Read T ra n s a c t io n1 2 -1 3
12-14 . On-Chip DMA Channel F lyby Memory W rite T r a n s a c t io n12-14
1 2 - 15. M u lt ip ro c e s s o r Mode T im in g12-15
1 3 - 1. Z-BUS C o n f ig u ra t io n (In p u t OPT t ie d to +5V or not connected)

a) Pin F u n c t i o n s13-1
b) Pin A ss ignm en ts 1 3 — 1

1 3 — 2 • Memory Read T im in g 13-6
13 -3 . Memory W rite T i m i n g13 — 7
13 -4 . Memory Read T im ing W ith E x te rn a l W ait C y c le 1 3 — 7
13 -5 . Memory W rite T im ing W ith E x te rn a l W ait C y c le13 -8
13 -6 . Memory Read T im ing W ith In te r n a l W ait C y c le 1 3 - 8
13 -7 . B u rs t Memory Read T im in g13-9
13 -8 . H a lt T im in g13-10
13 -9 . Memory R efresh T im in g13-11
13-10 . I/O Read T im in g1 3 -1 2
13-11 . I/O W rite T im in g 13-12
13-12 . In te r r u p t Acknowledge T im in g 13—13
13-13 . Memory to EPU T im in g 13-14
13-14 . EPU W rite To M e m o ry13 — 15
13-15 . EPU To CPU T im in g 13-16
13-16. PAUSE T im in g 13-16
13-17 . On-Chip DMA Channel F lyb y Memory Read T ra n s a c t io n 13-17
13-18. On-Chip DMA Channel F lyby Memory W rite T ra n s a c t io n13-18
13—19. M u lt ip ro c e s s o r Mode T im in g «13-19

x

Table Page
Number Number
3 -1 . CS F ie ld , Bus T im ing & I n i t i a l i z a t i o n R e g is te r ‘.............3-1
3 -2 . LM F ie ld , Bus T im ing & I n i t i a l i z a t i o n R e g is te r 3-1
3 -3 . I/O F ie ld o f Bus T im ing and C o n tro l R e g is te r 3-2
3 -4 . HM F ie ld o f Bus T im ing and C o n tro l R e g is te r ...3-2
3 -5 . DC F ie ld o f Bus T im ing and C o n tro l R e g is te r 3 - 2
5 -1 . C o n d it io n Codes... . • .. 5-3
5 -2 . 8- B i t Load Group I n s t r u c t i o n s 5-4
5 -3 . 1 6 -B it Load and Exchange Group I n s t r u c t i o n s5-5
5 -4 . B lock T ra n s fe r and Search G roup.............. 5 - 5
5 -5 . 8- B i t A r ith m e tic and Log ic Group.. 5-6
5 -6 . 1 6 -B it A r ith m e t ic O pe ra tion I n s t r u c t io n s 5-7
5 -7 . B i t M a n ip u la t io n , R o ta te and S h i f t G roup........................ . .5 - 8
5 -8 . Program C o n tro l Group I n s t r u c t i o n s 5-8
5 -9 . In p u t/O u tp u t In s t r u c t io n Group I n s t r u c t io n s 5 - 9
5 -1 0 . CPU C o n tro l G roup.................................. 5 - 1 0
5 -1 1 . Extended I n s t r u c t io n s5-10
5 - 12. Encoding o f 8- B i t R e g is te rs in In s t r u c t io n Opcodes............................5-11
6 - 1. G rouping o f Maskable In te r r u p t R equests............................ . .6 -1
6 -2 . In te r r u p t Modes................................... 6 - 4
6 -3 . Trap Types.. 6-7
6 -4 . In te r r u p t Acknowledge Encoding fo r Z80 Bus P a r ts6-7
6 - 5. In te r r u p t /T r a p V ecto r Table F orm at...6-10
7 - 1. Page D e s c r ip to r R e g is te r A d d r e s s e s 7 - 5
7 -2 . MMU In v a l id a t io n P o r t 7-6
7 - 3. I/O P ort Addresses fo r MMU C o n tro l R e g is te rs . ..7-6
8 - 1. CPU Accesses to On-Chip Memory as Cache... .8 -2
8 -2 . On-Chip DMA Accesses (B oth F low th rough and F ly b y) E f fe c t

on On-Chip Memory as Cache... 8 - 3
8 - 3. DMA/CPU Accesses to On-Chip Memory as F ixed Memory L o c a t io n • . . 8 - 4
9 - 1. E ncoding, IPA F ie ld in C/T C o n f ig u ra t io n R e g is t e r9-5
9 -2 . I/O Addresses o f C o un te r/T im e r R e g is te rs9 - 7
9 -3 . C b n f ig u ra t io n and Command/Status R e g is te rs

fo r L inked Count e r /T im e r 9 - 8
9 -4 . Encoding o f DAD & SAD F ie ld s in DMA T ra n s a c tio n

D e s c r ip to r R e g is t e r9-13
9 -5 . Encoding o f Type F ie ld in T ra n s a c tio n D e s c r ip to r R e g is te r9-14
9 -6 . Encoding o f BRP F ie ld in T ra n s a c tio n D e s c r ip to r R e g is te r 9-14
9 -7 . Encoding o f ST F ie ld in T ra n s a c tio n D e s c r ip to r R e g is te r 9 - 1 4
9 -8 . I/O Addresses o f DMA R e g is te rs . • • . • ...^-15
9 -9 . CR F ie ld o f UART C o n f ig u ra t io n R e g is te r 9-19
9 -1 0 . BC F ie ld o f UART, C o n tro l R e g is te r .. 9“ 19
9 -1 1 . 1 /0 Addresses o f UART R e g is te rs .. 9-20
9 -1 2 . Reset Value o f UART and DMA R e g is te rs

When B o o ts tra p Mode Is S e le c te d9 -2 1

Table of Contents (Continued)

10 -1 . Bus T ra n s a c tio n s In v o lv e d in Fetch o f
Extended In s t r u c t io n T em pla te10-8

10 - 2. Sequence o f T ra n s a c tio n s fo r Data T ra n s fe rs
Between an EPU and Memory... 1 0 - 9

1 1 - 1. E f fe c t o f a Reset on Z280 CPU & MMU R e g is te rs11-2
11 -2 . E f fe c t o f a .R eset on Z280 On-Chip P e r ip h e ra l R e g is te rs11-3
13 -1 . ST S ta tu s L ine D e c o d e13-4
B -1 . Format 1 I n s t r u c t io n E n c o d in g s B - 2
B -2. Format 2 In s t r u c t io n E n c o d in g sB - 2
B -3 . Format 3 I n s t r u c t io n E ncod ings....................... ..B-2
B -4. Format 4 In s t r u c t io n E nco d ingsB-2
E -1 . In s t r u c t io n E xe cu tio n T im es..............................E -2
E -2 . Extended In s t r u c t io n E xecu tion T im es... E-11
E -3 . I n t e r r u p t , T rap , and S p e c ia l C o n d it io n E xecu tion Times i . E -12
E -4 . In s t r u c t io n Fetch and Decode T im in g E-13
E -5 . Data Read T im in g E-14
E -6 . Data W rite T i m in g E-14
E -7 . I/O Read and W rite T im in g •E-1 5
E -8 . EPU Read and W rite T i m in g E-15
E -9. In te r r u p t Acknowledge T im in gE-13
E-10. M isce lla n e o u s T ra n s a c tio n T im in g *E - 1 6
F -1 . Z8400 P e r ip h e ra l F a m ilyF-1
F -2 . Z8000/Z8300 P e r ip h e ra l F a m ilyF-1

x i i

Chapter 1.
Z280 Architectural Overview

1*1 INTRODUCTION

The Z280" microprocessor un it (MPU) features an
advanced 16-bit CPU that is object-code compatible
with the Z80* CPU. The Z280 microprocessor un it
includes memory management, peripherals, memory
refresh log ic , cache memory, wait state
generators, and a clock o s c illa to r on the same
integrated c irc u it as the CPU. The on-chip
peripheral devices include 4 DMA (Direct Memory
Access) channels, 3 counter/timers, and' a UART
(Universal Asynchronous Receiver/Transmitter). A
block diagram o f the Z280 MPU is shown in Figure
1-1. This chapter presents some o f the features
o f the Z280 MPU family, with detailed descriptions

o f the various aspects o f the processor provided
in succeeding chapters.

The Z280 MPU has a multiplexed address/data bus
for communication with external memory and
peripheral devices. Two d iffe ren t bus structures
are supported by the 2280: an 8- b i t data bus that
uses Z80 Bus control signals, and a 16-bit data
bus that uses Z-BUS* bus control signals. Z ilog 's
Z80 and Z8500 fam ilies o f peripherals are easily
interfaced to the Z80 Bus; Zilog*s Z8000* family
o f peripherals are easily interfaced to the Z-BUS.

1-1

1 .2 W U ARCHITECTURAL FEATURES

The cen tra l processing u n it o f the Z280 MPU is a
binary-compatible extension o f the Z80 CPU
a rch ite c tu re . High throughput rates fo r the Z280
CPU are achieved by a high clock ra te , in s tru c tio n
p ip e lin in g , and the use o f on-chip cache memory.
The in te rn a l CPU clock can be scaled down to
provide fo r slower speed bus transaction tim ing.
A programmable refresh mechanism fo r dynamic RAMs
and a clock o s c il la to r are provided on-chip.

1 .2 .1 System and U se r Modes

Two modes o f CPU operation, system and user, are
provided to fa c i l i ta te operating system design.
In system mode, a l l o f the in s tru c tio n s can be
executed and a l l o f the CPU reg is te rs can be
accessed. This mode is intended fo r use by
programs performing operating system functions.
In user mode, ce rta in in s tru c tio n s tha t a ffe c t the
s ta te o f the machine cannot be executed and the
con tro l reg is te rs in the CPU are inaccessib le. In
general, user mode is intended fo r use by
app lica tions programs. This separation o f CPU
resources promotes the in te g r ity o f the system,
since programs executing in user mode cannot
access those aspects o f the CPU tha t deal w ith
time-dependent or system-interface events.

The re g is te r s truc tu re has been extended to
include separate Stack Pointer re g is te rs , one fo r
a system-mode stack and one fo r a user-mode
stack. The system-mode stack is used fo r saving
program sta tus on the occurrence o f an in te rru p t
or trap cond ition , thereby ensuring th a t the user
stack is free o f system in fo rm ation . The
is o la tio n o f the system stack from user-mode
programs fu rth e r promotes system in te g r ity .

1 .2 .2 A d d ress S p a c e s

Addressing spaces in the Z280 CPU include the CPU
re g is te r space, the CPU con tro l re g is te r space,
the memory address space, and the I/O address
space. The CPU re g is te r f i l e is id e n tic a l to the
Z80 re g is te r se t, w ith the exception o f the
separate system- and user-mode Stack Po in te rs.
The A re g is te r acts as an 8 -b it accumulator; the
HL re g is te r is the 16 -b it accumulator. These are

supplemented by four other 8 -b it reg is te rs (B, C,
D, E) and two other 1 6 -b it reg is te rs (IX , IY);
the 8 -b it reg is te rs can be paired fo r 16 -b it
operation, and each 1 6 -b it re g is te r can be treated
as two 8 -b it re g is te rs . The Flag re g is te r (F)
contains in form ation about the re s u lt o f the la s t
operation. The A, F, B, C, D, E, H, and L
re g is te rs are rep lica ted in an a u x ilia ry bank o f
re g is te rs . These a u x ilia ry reg is te rs can be
exchanged w ith the primary re g is te r bank fo r fas t
context sw itch ing.

Several CPU con tro l reg is te rs determine the
operation o f the Z280 MPU. For example, the
contents o f con tro l reg is te rs determine the CPU
operating mode, which in te rru p ts are enabled, and
the bus transaction tim ing . The con tro l reg is te rs
are accessible in system-mode operation on ly.

The Z280 CPU's lo g ic a l memory address space is the
same as th a t o f the Z80 CPU: 16 -b it addresses are
used to reference up to 64K bytes o f memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16 -b it lo g ic a l memory address to a
2 4 -b it physical memory address. Two separate
lo g ic a l address spaces, one fo r system mode and
one fo r user mode, are supported by the CPU and
MMU. O p tiona lly , the MMU can be programmed to
d is tin g u ish between in s tru c tio n fetches and data
accesses; thus, the Z280 CPU can have up to four
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data. The lo g ic a l address space is divided in to
pages to fa c i l i ta te con tro lled sharing o f program
or data among separate processes.

The Z280 CPU arch itec tu re also d is tingu ishes
between the memory and I/O address spaces and,
the re fo re , requires sp e c ific I/O in s tru c tio n s .
I/O addresses in the Z280 CPU are 24 b its long,
w ith the upper 8 b its provided by an I/O page
re g is te r in the CPU.

1 .2 .3 D a ta Types

Many data types are supported by the Z280 CPU
a rch itec tu re . The basic data type is the 8 -b it
byte, which is also the basic addressable memory
element. The a rch itec tu re also supports opera­
tio n s on b its , BCD d ig its , 2-byte words, and byte
s tr in g s .

1-2

1 .2 .6 Exception Conditions1 .2 .4 Addressing Nodes

The operand addressing mode is the method by which
a data operand's location is specified. The Z280
CPU supports nine addressing modes, including the
five modes available on the Z80 CPU. The
addressing modes o f the Z280 CPU are:

a Register
e Immediate
e Ind irect Register
e Direct Address
e Indexed (with a 16-bit displacement)
a Short Index (with an 8-b i t displacement)
a Program Counter (PC) Relative
a Stack Pointer (SP) Relative
a Base Index

A ll addressing modes are available on the 8- b i t
load, arithm etic, and log ica l instructions; the
8- b i t s h if t , rotate, and b it manipulation
instructions are lim ited to the Register, Ind irect
Register, and Short Index addressing modes. The
16-bit loads on the addressing registers support
a l l addressing modes except Short Index, while
other 16-bit operations are lim ited to the
Register, Immediate, Ind irect Register, Index,
Direct Address, and PC Relative addressing modes.

1 .2 .5 Instruction Set

The Z280 CPU instruction set is an expansion o f
the Z80 instruction set; the enhancements include
support for additional addressing modes for the
Z80 instructions as well as the addition o f new
instructions. The Z280 CPU instruction set
provides a fu l l complement o f 8- and 16-bit
arithmetic operations, including signed and
unsigned m u ltip lica tion and d iv is ion . Additional
8- b i t computational instructions support log ica l
and decimal operations. B it manipulation, rotate,
and s h ift instructions round out the data
manipulation capab ilities o f the Z280 CPU. The
Jump, Ca ll, and Return instructions have both
conditional and unconditional versions; Relative
addressing is provided for the Jump and Call
instructions to support position-independent
programs. Block move, search, and I/O
instructions provide powerful data movement
capab ilities . In addition, special instructions
have been included to fa c il ita te m ultitasking,
multiple processor configurations, and typ ica l
high-level language and operating system
functions.

The Z280 MPU supports three types o f exceptions
(conditions that a lte r the normal flow o f program
execution): in te rrup ts, traps, and resets.

Interrupts are asynchronous events typ ica lly
triggered by peripherals requiring attention. The
Z280 MPU in te rrup t structure has been s ign i­
f ica n tly enhanced by increasing the number o f
in terrupt request lines and by adding an e ffic ie n t
means for handling nested in te rrup ts. There are
four modes for handling in te rrup ts:

a 8080 compatible, in which the in terrupting
device provides the f i r s t instruction o f the
in terrupt routine.

a Dedicated in te rrup ts, in which the CPU jumps to
a dedicated address when an in te rrup t occurs.

a Vectored in te rrup t mode, in which the
in terrupting peripheral provides a vector in to
a table of jump addresses.

a Enhanced vectored in te rrup t mode, wherein the
CPU handles traps and multiple in te rrup t
sources, saving control information as well as
the Program Counter when an in te rrup t occurs.

The f i r s t three modes are compatible with the Z80
CPU in te rrup t modes; the fourth mode provides more
f le x ib i l i t y , with support fo r nested in terrupts
and a sophisticated vectoring scheme.

Traps are synchronous events that trigg e r a
special CPU response when certain conditions occur
during instruction execution. The Z280 CPU
supports a sophisticated complement of traps
including Division Exception, System Call,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
V io la tion, and System Stack Overflow Warning
traps.

Hardware resets occur when the RF3TT line is
activated and override a l l other conditions. A
reset causes certain CPU control registers to be
in it ia l iz e d .

1 .2 .7 Memory Management

Memory management consists prim arily o f dynamic
relocation, protection, and sharing of memory.

1-3

Proper memory management 'can provide a logica l
structure to the memory space that is independent
o f the actual physical location of data, protect
the user from inadvertent mistakes (such as try ing
to execute data), prevent unauthorized accesses to
memory, and protect the operating system from
disruption by users.

The 16-bit addresses manipulated by the pro­
grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit (MMU) transforms the
log ica l addresses in to the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent o f
physical memory. Thus, the user is freed from
specifying where information is actually located
in physical memory.

Status information generated by the CPU allows the
MMU to monitor the intended use o f each memory
access. I lle g a l types o f accesses, such as writes
to read-only memory, can be suppressed; thus,
areas o f memory can be protected from unintended
or unwanted modes o f use. Also, the MMU records
which memory areas have been modified and can
in h ib it copies o f data from being retained in the
on-chip cache.

When a memory access v io la tion is detected by the
MMU, a trap condition is generated in the CPU and
execution o f the current instruction is auto­
matically aborted. This mechanism fa c ilita te s the
easy implementation o f v ir tu a l memory systems
based on the Z280 MPU.

1 .2 .8 Cache Memory

1 .2 .9 Refresh

The Z280 MPU has an in terna l mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program contro l. I f
enabled, memory refresh operations are performed
period ica lly at a rate determined by the contents
o f a refresh rate reg is ter. A 10-bit refresh
address is generated for each refresh operation.

1.2 .10 On-Chip Peripherals

Several programmable peripheral devices are
included on-chip in the Z280 MPUs: four DMA
channels, three 16-bit counter/timers, and a
UART. Optionally, one o f the DMA channels can be
used with the UART as a bootstrap loader fo r the
Z280 MPU’ s memory a fte r a reset.

1.2.11 Multiprocessor Mode

A special mode o f operation allows the Z280 MPU to
operate i>n environments that have a global bus,
wherein the Z280 MPU is not the bus master o f the
global bus. A set o f memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the Z280 MPU, and
another set o f addresses is used for the global
bus. The Z280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode o f operation fa c ilita te s use o f
the Z280 MPU in multiple-processor configura­
tions. For example, a Z280 MPU could be used as
an I/O processor in a Z80000-, Z8000-, or
Z280-based system.

Cache memories are small high-speed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
see i f the data at that memory location is
currently stored in the cache. I f so, the access
is made to the high-speed cache; i f not, the
access is made to main memory, and the cache
i t s e l f might be updated. Thus, use o f a cache
leads to increased performance with fewer memory
transactions on the system bus.

The Z280 MPU includes on-chip memory that can be
used as a cache for programs, data, or both.
Cache operations, including updating, are
performed automatically and are completely trans­
parent to the user. Optionally, th is on-chip
memory can be dedicated to a set o f memory
locations that are specified under program
contro l, instead of being used as a cache.

1.2.12 Extended Instruction F a c ility

The Z280 MPU architecture has a mechanism for
extending the basic instruction set through the
use o f external devices called Extended Processing
Units (EPUs). Special opcodes have been set aside
to implement th is feature. When the Z280 MPU
encounters an instruction with one o f these
opcodes, i t performs any indicated address calcu­
la tions and data transfers; otherwise, i t treats
the "extended instruction" as i f i t were executed
by the EPU.

I f an EPU is not present, the Z280 MPU can be
programmed to trap when an extended instruction is
encountered so that system software can emulate
the EPU’ s a c tiv ity .

1-4

1.3 BENEFITS OF THE ARCHITECTURE

The features o f the Z280 MPU architecture provide
several s ign ifican t benefits, including increased
program throughput, increased integration o f
system functions, support for operating systems,
and improvements in compiler e ffic iency and code
density.

1.3 .1 High Throughput

Very high throughput rates can be achieved with
the Z280 MPU, due to the cache memory, instruction
p ipe lin ing , and high clock rates achievsble with
th is processor. The CPU clock rate can be scaled
down to provide the bus clock rate, allowing the
designer to use slower, less-expensive memory and
I/O devices. Use o f the on-chip cache memory
further increases throughput by minimizing the
number o f accesses to the slower, o ff-ch ip memory
devices. The high code density achievsble with
the Z280 CPU's expanded instruction set also
contributes to program throughput, since fewer
instructions are needed to accomplish a given
task.

1 .3 .2 In tegration o f System Functions

Besides a powerful CPU, the Z280 MPU includes
many on-chip devices that previously had to be
implemented in log ic external to the micro­
processor chip. These devices include a clock
o s c illa to r, memory refresh log ic , wait state
generators, the MMU, cache memory, DMA channels,
counter/timer8 , and a UART. Integration o f a l l
these functions onto a single chip resu lts in a
reduced parts count in a system design, accom­
panied by a resu lting reduction in design and
debug time, power requirements, and printed
c irc u it board space. This increased level o f
in tegration also, contributes to system throughput,
since the on-chip devices can be accessed quickly
without the need o f an external bus transaction.

1 .3 .3 Operating System Support

Several o f the Z280 MPU's arch itectura l features
fa c il ita te the implementation o f multitasking
operating systems for Z280-based systems.

The inclusion o f user and system operating modes
improves operating system organization. User-mode
programs are automatically inh ib ited from per­
forming operating-system type functions. System­
mode memory can be separated from user-mode memory
and separate stacks can be maintained for system­
mode and user-mode operations. The System Call

instruction and the trap mechanism provide a
controlled means o f accessing operating system
functions during user-mode execution.

The in te rrup t- and trap-handling mechanisms are
well suited for operating system implementations.
Several levels o f in terrupts are provided,
allowing fo r separate control o f various peripher­
a l devices (both on and o f f the chip). A new
in te rrup t mode is provided, wherein status in fo r­
mation about the currently executing task is saved
on the stack and new program status information
for the service routine is automatically loaded
from a special memory area. Traps resu lt in the
same type o f program status saving. In both
cases, status is always saved on the system stack,
leaving the user stack undisturbed.

Allocation o f resources w ith in the operating
system can be accomplished using a special Test
and Set ine truction . Other instructions, such as
the Purge Cache ins truction , are provided to aid
in task switching and other operating system
chores.

The on-chip MMU supports a multitasking environ­
ment by providing both a means o f quickly
allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage.

1 .3 .4 Code Density

Code density affects both processor speed and
memory u t il iz a t io n . Code compaction saves memory
space and improves processor speed by reducing the
number o f instructions that must be fetched and
decoded. The largest reduction in program size
resu lts from the powerful instruction set, where
instructions such as M ultip ly and Divide help
substantia lly reduce the nunber o f instructions
required to complete a task.

The effic iency o f the instruction set is enhanced
by the addition of new addressing modes. For
example,- a l l nine addressing modes are available
for a l l the 8-b i t load, arithm etic, and log ica l
instructions.

1 .3 .5 Compiler E fficiency

For microprocessor users, the trans ition from
assembly language to high-level languages allows
greater freedom from arch itectura l dependency and
improves ease o f programming. For the Z280 MPUs,
high-level language support is provided through
the inclusion o f features designed to minimize
typ ica l compilation and code-generation problems.

1-5

Among these features is the variety and the power
o f the Z280 instruction set, allowing the Z280 CPU
to easily handle a large amount and variety o f
data types. The Z280 CPU's a b il i ty to manipulate
many d iffe ren t data types aids in compiler
e ffic iency; since data structures are high-level
constructs frequently used in programming,
processing performance is enhanced by providing
e ff ic ie n t mechanisms for manipulating them.

Examples o f commonly used data structures include
arrays, s trings, and stacks. Arrays are supported
in the Z280 CPU by the Ind irect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move| and Compare instructions; since
compilers and assemblers often must manipulate
character s trings, the Block Move and Block
Compare instructions can resu lt in dramatic speed
improvements over software simulations o f those
tasks. Nuneric strings o f BCD data can be
manipulated using the Decimal Adjust and Rotate
D ig it instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
the Stack Pointer Relative addressing mode is

especially useful for accessing parameters and
local variables stored on the stack.

1.4 SUMMARY

The Z280 MPU is a high-performance 16-bit micro­
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the Z80 CPU,
the Z280 MPU architecture has been expanded to
include features such as multiple memory address
spaces, e ff ic ie n t handling o f nested in te rrup ts,
system and user operating modes, and support for
multiprocessor configurations. Additional
functions such as memory management, clock
generation, wait state generation, and cache
memory are included on-chip, as well as a number
o f peripheral devices. The benefits o f th is
architecture—including high throughput rates, a
high level o f system integration, operating system
support, code density, and compiler e ffic iency—
greatly enhance the power and v e rs a tility o f the
Z280 MPU. Thus, the Z280 MPU provides both a
growth path for existing Z80-based designs and a
high-performance processor for future
applications.

1-6

Chapter 2.
Address Spaces

2.1 INTRODUCTION

The Z280 MPU supports four address spaces corre­
sponding to the d iffe re n t types o f locations that
can be addressed, the method by which the log ica l
addresses are formed, and the transla tion mecha­
nisms used to map the log ica l address in to
physical locations. These four address spaces
are:

a CPU reg ister apace. This consists o f the
addresses o f a l l registers in the CPU register
f i le .

a CPU control reg is ter space. This consists o f
the addresses o f a l l registers in the CPU
control reg ister f i le .

i
a Memory address space. This consists o f the

addresses o f a l l locations in the main memory.

a I/O address space. This consists o f the
addresses o f a l l I/O ports through which
peripheral devices are accessed, including
on-chip peripherals and MMU registers.

2.2 CPU REGISTER SPACE

The Z280 CPU reg ister f i le is il lu s tra te d in
Figure 2-1. The primary reg ister f i le , consisting
o f the A, F, B, C, D, E, H, and L reg isters, is
augmented by an aux ilia ry f i le containing
duplicates o f those reg isters. Only one set
(e ither the primary or aux ilia ry f i le) can be used
at any one time. Special exchange instructions
are provided for switching between the primary and
aux ilia ry reg isters.

The CPU reg ister f i le is divided in to f ive groups
o f registers (an apostrophe indicates a reg ister
in the aux ilia ry f i le) :

a Flag and accunulator registers (F, A, F ', A ')
a Byte/word registers (B, C, D, E, H, L, B ', C ',

O ', E ', H ', L ')
a Index registers (IX, IY)
a Stack Pointers (SSP, USP)
a Program Counter, Interrupt reg is te r, and

Refresh reg ister (PC, I , R)

Figure 2-1. Register File Organization

?-1

Register addresses are either specified e x p lic it ly
in the instruction or are implied by the semantics
o f the instruction .

*
The flag registers (F, F ') contain eight status
flags. Four can be ind iv idua lly used for control
o f program branching, two are used * to support
decimal arithm etic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i .e . , where the resu lt is stored) for
the 8- b i t arithmetic and log ica l instructions.
Two sets o f flag and accumulator registers exist
in the Z280 CPU, with only one set accessible as
the flag reg ister and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag reg ister and accumulator.

The byte/word registers can be accessed either as
8- b i t byte registers or 16-bit word registers.
B its w ith in these registers can also be accessed
ind iv idua lly . For 16-bit accesses, the registers
are paired B with C, D with E, and H with L. Two
sets o f byte/word registers exist in the Z280 CPU,
although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange instruction .

The index registers IX and IY can be accessed as
16-bit registers or th e ir upper and lower bytes
(IXH, I XL, IYH, and IYL) can be ind iv idua lly
accessed.

The Z280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an in terrupt or
trap occurs and for supporting subroutine ca lls
and returns in system mode. The User Stack
Pointer (USP) is used for supporting subroutine
ca lls and returns in user mode.

The Program Counter is used to sequence through
instructions in the currently executing program ,
and for generating re la tive addresses. The In ter­
rupt register is used in in te rrup t mode 2 to
generate a 16-bit log ica l address from an 8- b it
vector returned by a peripheral during an in te r­
rupt acknowledge. The Refresh register is used by
the Z80 CPU to indicate the current refresh
address, but does not perform th is function in the
Z280 CPU; instead, i t is another 8-b i t register
available for the programmer.

The e x p lic it or im p lic it reg ister specified by an
instruction is mapped in to the CPU reg ister f i le
based on the state o f three control b its . One o f
the three control b its is used to map the flag and
accumulator reg isters, selecting e ither F, A or
F ', A' whenever the instruction specifies the flag
reg ister or the accumulator. Another control b i t
is used to map the byte/word reg isters, selecting
the B, C, D, E, H, L registers or the B ', C ', D ',
E ', H ', L' reg isters. These two contro l b its are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
respectively. At any time the program can sense
the state o f these control b its by special jump
instructions. The th ird control b i t , the
User/System control b it in the Master Status
reg is ter, specifies whether the System Stack
Pointer reg ister or the User Stack Pointer
reg ister is selected whenever an instruction
specifies the Stack Pointer reg is ter. In
addition, the User Stack Pointer reg ister also has
an address in the CPU control reg ister space via a
special Load Control instruction .

2.3 CPU CONTROL REGISTER SPACE

The Z280 CPU status and control registers govern
the operation o f the CPU. They are accessible
only by the privileged Load Control (LDCTL)
instruction .

Control reg ister addresses are specified by the
contents o f the C reg is ter. No transla tion is
performed in mapping th is 8- b it log ica l address
in to the control reg ister f i le location.

The Z280 CPU control registers are the Bus Timing
and In it ia liz a t io n reg is ter, the Bus Timing and
Control reg is ter, the Master Status reg is ter, the
Interrupt/Trap Vector Table Pointer, the I/O Page
reg is ter, the System Stack Lim it reg is ter, the
Trap Control reg is ter, the Interrupt Status
reg is ter, the Cache Control reg is ter, and the
Local Address reg ister (Figure 2-2). The CPU
control registers are described in de ta il in
Chapter 3.

2-2

Figure 2-2. CPU Control Registers

2 .4 IEM0RY ADDRESS SPACES

Two memory address spaces, one for system and one
for user mode operation, are supported by the Z280
MPU. They are selected by the User/System mode
control b i t in the Master Status reg is ter, which
governs the selection o f page descriptor registers
in the MMU during address transla tion.

Each address space can be viewed as a s tring o f
64K bytes nunbered consecutively in ascending
order. The 8- b i t byte is the basic addressable
element in the Z280 MPU memory address spaces.
However, there are other addressable data ele­
ments: b its , 2-byte words, byte strings, and
multiple-byte EPU operands.

The size o f the data element being addressed
depends on the instruction being executed. A b i t
can be addressed by specifying a byte and a b it
w ith in that byte. B its are numbered from rig h t to
le f t , with the least s ign ifican t b i t being b i t 0 ,
as illu s tra te d in Figure 2-3.

The address o f a multiple-byte en tity is the same
as the address o f the byte with the lowest memory
address w ith in the e n tity . M ultiple-byte e n titie s
can be stored beginning with e ither even or odd
memory addresses.. A word (2-byte en tity) is
aligned i f i t s address is even; otherwise i t is
unaligned. Multiple bus transactions, which may
be required to access multiple-byte e n tit ie s , can
be minimized i f alignment is maintained.

The formats o f m ultip le byte data types in memory
are given in Figure 2-4.

Note that when a word is stored in memory, the
least s ign ifican t byte precedes the most
s ign ifican t byte o f the word, as in the Z80 CPU
architecture.

The 16-bit log ica l addresses generated by a
program can be translated in to 24 -b it" physical
addresses by the on-chip MMU. When the
transla tion mechanism is disabled, the 24-bit
physical address consists o f the log ica l address
fo r b its Aq-A-|5 and zeros fo r A-|g-A23«

Figure 2-3.' Numbering of Bits within a Byte

2-3

Figure 2-4. Formats of Multiple-Byte Data Elements in Memory

2.5 I/O ADDRESS SPACE

I/O addresses are generated only by I/O
instructions. The 8- b i t log ica l port address
specified in the instruction appears on AD0-AD7;
th is is concatenated with the contents o f the A
reg ister on lines Ag-A^ for Direct addressing
mode, or by the contents of the B reg ister for
Ind irect Register addressing mode or block I/O
instructions. - The contents of the I/O Page
reg ister are appended to th is address on lines
A16“ A23* Thus, the 24-bit I/O port address

V

consists o f the 8-b i t address specified in the
ins truction , the contents of the A or B reg is ter,
and the contents of the I/O Page reg is ter.

An I/O read or w rite is always one transaction,
regardless of the bus size and the type o f I/O
instruction . On-chip peripherals w ith word
registers are always accessed with word
instructions, regardless of the size of the
external bus.

2-4

Chapter 3.
CPU Control Registers

3.1 INTRODUCTION

Several CPU control and status registers specify
the operating mode o f the Z280 MPU. There are two
types o f CPU control reg isters: system
configuration registers and system status regis­
te rs . The system configuration registers contain
information about the physical configuration of
the Z280-based system, such as bus timing in fo r­
mation. Typically, the system configuration
registers are loaded once during system in i t ia l ­
iza tion and are not altered during subsequent
operations. The system status registers contain
information that may change during system
operation, such as the current I/O page. Access
to the CPU control registers is restric ted to
system mode operation only, using the privileged
Load Control (LDCTL) ins truction . Resets in i ­
t ia l iz e the control registers so that a Z80 object
program w i l l execute successfully on the Z280
MPU. (Z80 programs do not a ffect these reg isters,
since the Load Control instruction is not part o f
the Z80 CPU's instruction se t.) Unused b its in
these registers should always be loaded with
zeros.

3.2 SYSTEM CONFIGURATION REGISTERS

There are four 8- b i t system configuration regis­
te rs: the Bus Timing and In it ia liz a t io n reg ister,
the Bus Timing and Control reg is ter, the Local
Address reg is te r, and the Cache Control reg is ter.

3.2 .1 Bus Timing and In itia liz a tio n Register

The Bus Timing and In it ia liz a t io n register
controls the scaling o f the processor clock for
bus tim ing, the duration o f bus transactions to
the lower h a lf o f physical memory, and the
enabling o f the multiprocessor and bootstrap
modes. Figure 3-1 illu s tra te s the b it fie lds in
th is reg is ter.

Figure 3-1. Bus Timing and Initialization Register

Clock Scaling (CS) F ie ld . This 2 -b it f ie ld
governs the scaling o f the CPU clock for
generation of bus timing cycles. The state o f the
CS f ie ld determines the bus clock frequency for
a l l bus transactions, as per Table 3-1. This
f ie ld is in it ia liz e d during a reset operation, as
described below, and cannot be modified via
software.

Table 3-1. CS Field of Bus Timing and Initialization Register

CS Field Bus Clock Frequency

00 Bus clock frequency equals CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)

01 Bus clock frequency equals CPU clock frequency
(one bus clock cycle for every one CPU clock cycle)

10 Bus clock frequency equals 1/4 CPU clock frequency
(one bus clock cycle for every four CPU clock
cycles)

11 Reserved

Low Memory Wait Insertion (LM) F ie ld . This 2-b it
f ie ld specifies the number o f automatic wait <
states to insert in memory transactions to the
lower 8 megabytes o f physical memory (that is , a l l
memory locations where b it 23 o f the physical
address is a 0), as per Table 3-2. Additional
wait states can s t i l l be added to any given memory
transaction via control o f the WAIT input.

Table 3-2. LM Field of Bus Timing and Initialization Register

LM Field
Number of WWt States for

Lower 8M Bytes of Memory

00 0
01 1
10 2
11 3

Multiprocessor Configuration Enable (M>) B it.
This 1 -b it f ie ld enables the multiprocessor mode
o f operation, wherein the Z280 MPU is connected to
both a local and a global bus. Transactions to

3-1

addresses on the global bus require a special bus
request and acknowledgement before the bus trans­
action can occur. (See Chapter 10 for details
concerning th is mode of operation.) Setting th is
b it to 1 enables the multiprocessor mode, and
clearing th is b it to 0 disables th is mode.

Bootstrap Mode Enable (BS) B it. This 1 -b it f ie ld
enables the bootstrap mode of operation. I f the
bootstrap mode is selected during a reset oper­
ation, memory is automatically in it ia liz e d via the
UART a fte r the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes o f data
in to the f i r s t 256 memory locations; execution
then begins from memory location 0 . (See Chapter
9 fo r further de ta ils .) Setting th is b it to 1
enables the bootstrap mode and clearing th is b it
to 0 disables th is mode. The BS b it can be set to
1 only during a reset operation, as described
below. Writing to th is b it via a software command
has no e ffec t. This b it is always a 1 when th is
reg ister is read.

Bits 4 and 7 of the Bus Timing and In it ia liz a t io n
reg ister are reserved for special use by Zilog and
should always be loaded with a zero when w riting
to th is reg is ter. When th is reg ister is read,
b its 4 and 7 may return a 1.

The Bus Timing and In it ia liz a t io n reg ister can be
in it ia liz e d with either o f two methods during a
reset operation. I f the MPU's W IT input is not
asserted during reset, th is register is auto­
m atically in it ia liz e d to a l l zeros, thereby
specifying a bus clock frequency o f one-half the
in terna l CPU clock, no automatic wait states
during transactions to the lower 8M bytes of
memory, and disabling o f the multiprocessor and
bootstrap modes. I f the WAIT input is asserted
during reset, the Bus Timing and In it ia liz a t io n
reg ister is set to the contents o f the ADQ-AD7 bus
lines, as read during the reset operation (see
Chapter 12); th is form o f in it ia l iz a tio n is the
only way to specify the bootstrap mode. Once the
CS fie ld has been loaded during reset, i t cannot
be modified via software; however, the LM and MP
fie lds can be written using the LDCTL instruction .

3 .2 .2 Bus Timing and Control Register

The 8- b i t Bus Timing and Control register deter­
mines the timing of bus transactions to the upper
8M bytes of memory and to a l l I/O devices, and the
timing of in te rrup t acknowledge transactions.
Figure 3-2 indicates the format o f th is reg ister.

Figure 3*2. Bus Timing and Control Register

I/O Wait Insertion (I/O) F ie ld . This 2 -b it f ie ld
specifies the number of automatic wait states (in
addition to the one wait state always present
during I/O transactions) to be inserted during
each I/O read or write transaction, as per Table
3-3. The specified number o f wait states is also
added to the vector read portion of an in terrupt
acknowledge cycle.

Table 3-3. I/O Field of Bus Timing and Control Register

Number of Walt States
I/O Field for I/O

High Memory Wait Insertion (HM) F ie ld . This 2 -b it
f ie ld specifies the number o f automatic wait
states to be inserted during memory transactions
to the upper 8M bytes o f physical memory
(locations where address b it 23 o f the physical
address is a 1), as per Table 3-4.

Daisy Chain Timing (DC). This 2 -b it f ie ld
determines the number o f automatic wait states to
be inserted during in te rrup t acknowledge
transactions while the in te rrup t acknowledge daisy
chain is s e ttlin g , as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
o f Address Strobe and the assertion of Data Strobe
during an in te rrup t acknowledge (fo r the Z-BUS)
or between the assertion of RT and the assertion
of lb#Q (fo r the Z80 Bus). The value of the DC
f ie ld determines i f any additional clocks are to
be added between the Address Strobe and Data
Strobe (or RT and 1GRQ) assertions.

Table 3-5. DC Field of Bus Timing and Control Register

Number of W alt States for
DC Field Interrupt Acknowledge

3-2

The contents of the Bus Timing and Control
reg ister govern the number of automatic wait
states to be inserted during various bus trans­
actions. Additional wait states can be added to
any bus transaction via control o f the WAIT
input.

The Bus Timing and Control reg is ter is set to 30H by a
reset. B its 4 and 5 should always be w ritten with 0.
When th is reg is ter is read, b its 4 and 5 may return a
1.

Match Enable b it (HE^i I f MEn is set to 1, then
the corresponding physical address b it An is
compared to base b it Bn to determine i f the
address requires the use o f the global bus. I f
MEn is a zero, then any values for An and Bn
produce a match, sign ify ing a local bus access.
I f every MEn is cleared to 0, then a l l memory
transactions are performed on the local bus.

The Local Address reg ister is cleared to a l l zeros
by a reset.

3 .2 .3 Local Address Register

The 8- b i t Local Address reg ister is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
I f the multiprocessor mode is disabled (that is ,
i f there is a 0 in b i t 5 o f the Bus Timing and
In it ia liz a t io n re g is te r), the contents o f the
Local Address reg ister have no effect on MPU
operation.

I f multiprocessor mode is enabled, the MPU auto­
matically uses the Local Address reg ister during
each memory access to determine i f the global bus
is required. The Local Address reg ister consists
of a 4 -b it match fie ld and a 4 -b it base fie ld that
are compared to the upper four b its of the
physical memory address during memory trans­
actions. The 4 -b it match fie ld specifies which
b its o f the physical memory address are of
in te res t; fo r those b it positions specified in
the match f ie ld , i f a l l the corresponding address
b its match the Local Address reg is te r's base f ie ld
b its , then the bus transaction can proceed on the
local bus. I f there is a mismatch in at least one
of the specified b it positions* then the global
bus is requested, and the transaction cannot
proceed u n t il the global bus acknowledge signal is
asserted. (See Chapter 10 fo r further discussion
o f the Multiprocessor mode.)

The format o f the Local Address reg ister is
il lu s tra te d in Figure 3-3.

Figure 3-3. Local Address Register

3 .2 .4 Cache Control Register

The 8- b i t Cache Control reg ister controls the
operation o f the on-chip memory. The contents o f
the Cache Control reg ister determine i f the
on-chip memory is to be used as a cache or as
fixed memory locations; i f used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
data fetches. This reg ister is also used to
determine i f burst-mode memory transactions are
supported. (See Chapter 8 fo r further discussion
of the on-chip memory and Chapter 13 for a
description o f the burst mode memory transaction.)

The Cache Control reg ister contains five control
b its , as described below. The format fo r th is
reg ister is shown in Figure 3-4.

Memory/Cache (M /O B it. While th is b i t is set to
1, the on-chip memory is accessed as physical
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which the on-chip memory w i l l respond. While
th is b i t is cleared to 0 , the on-chip memory is
accessed associatively as a cache.

Cache Instruction Disable (I) B it. While th is b it
and the M/C b i t are cleared to 0, the on-chip
memory is used as a cache during instruction
fetches. While th is b it is set to 1, instruction
fetches do not use the cache. I f the M/C b it is a
1, the state o f th is b it is ignored.

Base b it (B f|): For each MEn that is set to 1, the
corresponding value o f Bn must match the value o f
address b it An in order fo r the loca l bus to be
used; otherwise, the transaction requires the use
o f the global bus.

Cache Data Disable (D) B it. While th is b it and
the M/C b it are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
th is b it is S 8 t to 1, data fetches do not use the
cache. (The cache can be enabled for both

3-3

Figure 3-4. Cache Control Register

instruction and data fetches by clearing both the
l and 0 b its .) I f the M/C b it is a 1, the state
of th is b it is ignored.

Low Memory Burst C apability (LMB) B it. This 1-b it
f ie ld specifies whether burst-mode memory
transactions w i l l occur during memory transactions
to the lower 8M bytes of physical memory
(locations where address b it 23 of the physical
address is a 0). Setting th is b it to 1 enables
burst-mode transactions; clearing th is b it to 0
disables burst mode transactions.

High Memory Burst C apability (HMB) B it. This
1- b it f ie ld specifies whether burst-mode memory
transactions w i l l occur during memory transactions
to the upper 8M bytes of physical memory
(locations where address b it 23 of the physical
address is a 1). Setting th is b it to 1 enables
burst-mode transactions; clearing th is b it to 0
disables burst-mode transactions.

The Cache Control reg ister is set to a 20 ̂
(hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches
only and disabling burst mode transactions. B its
0, 1, and 2 of th is reg ister are not used.

3.3 SYSTEM STATUS REGISTERS

There are s ix system status registers in the Z280
CPU: the Master Status reg is ter, Interrupt Status
reg is ter, Interrupt/Trap Vector Table Pointer, I/O
Page reg is ter, Trap Control reg is ter, and System
Stack Lim it reg ister.

3.3 .1 Master Status Register

The 16-bit Master Status reg ister (MSR) contains
status information about the currently executing
program. Typically, the MSR changes when a new
programming task is dispatched; i t changes
automatically when an in te rrup t or trap occurs.
For a l l traps and for in terrupts processed using
in te rrup t mode 3, the old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of in terrupt and trap processing).

The format o f the Master Status reg ister is shown
in Figure 3-3.

User/System (U /5) B it. While th is b it is cleared
to 0, the Z280 MPU is in the system mode of
operation; while set to 1, the MPU is in the user
mode of operation. The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged
instructions can be executed only while in system
mode.

Breakpoint-on-Halt Enable (BH) B it. While th is
b it is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed normally.

Single-Step Pending (SSP) B it. The CPU checks
th is b it p rio r to the s ta rt of an instruction
execution and generates a Single-Step trap i f th is
b it is set to 1. The Single-Stpp b it is
automatically copied in to th is f ie ld at the
completion of an ins truction . This b it is
automatically cleared when a Single-Step, Division
Exception, Access V io la tion, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in th is
b it position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.)

Single-Step (SS) B it. This b it is the enable for
the single-step operating mode. While th is b it is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated fo r each
instruction ; i f cleared to 0, single-step mode is
disabled.

In terrup t Request Enable (En) B it. There are
seven in terrupt enable b its in the MSR, one for
each type o f maskable in te rrup t source. The Z280
MPU's in te rrup t sources, including both the
external in te rrup t requests and the on-chip
peripherals, are grouped in to seven levels o f
in te rrup t requests. While b it En is set to 1,
in terrupt requests from sources at level n are
accepted by the CPU; while En is cleared to 0,
in terrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with a l l
zeros by a reset. Bits 7, 10, 11, 13, and 13 o f
the MSR always should be written with zeros.

3 .3 .2 In terrup t Status Register

Figure 3-5. Master Status Register

The 16-bit Interrupt Status reg ister indicates
which in te rrup t mode is in e ffec t, which in terrupt
requests are pending, and which in terrupt requests
are to be vectored. Only the in terrupt vector

3-4

enable b its are writeable; a l l other b its in th is
reg ister are read-only status b its . The fie lds in
the Interrupt Status reg ister are shown in Figure
3-6.

Figure 3-6. Interrupt Status Register

In terrup t Vector' Enable (I n) B its . These four
b its indicate which o f the four external in terrupt
inputs are to be vectored. While I n is set to 1,
in terrupts on the Interrupt n lin e are vectored
when the CPU is in in terrupt mode 3; while I n is
cleared to 0 , that in terrupt is not vectored.
These b its are ignored when not in in te rrup t mode
3.

In terrup t Mode (IM) F ie ld . This 2 -b it f ie ld
indicates the current in terrupt mode in e ffec t,
with a value n in th is f ie ld denoting in terrupt
mode n. This f ie ld can be changed by executing
the IM instruction .

In terrup t Request Pending (IPn) B its . When b it
IPn is a 1, an in te rrup t request from a source at
level n is pending.

On reset, the Interrupt Vector Enable b its are
cleared to a l l zeros, in te rrup t mode 0 is in
e ffe c t, and the Interrupt Pending b its re fle c t the
state o f the in terrupt requests. B its 7, 10, and
11 o f th is reg ister are not used.

3 .3 .3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer
contains the twelve most s ign ifican t b its o f the
physical memory address o f the s ta rt o f the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table is a memory area that holds the
values that are loaded in to the Master Status
reg ister and Program Counter during trap and
in te rrup t processing under in te rrup t mode 3, as
described in Chapter 6 . The twelve low-order b its
o f the 24-bit physical address are assumed to be
a l l zeros: thus, the Interrupt/Trap Vector Table
must s ta rt on a 4K byte boundary in physical
memory. The low-order four b its o f the
Interrupt/Trap Vector Table Pointer must be a l l
zeros (Figure 3-7).

Figure 3-7. Interrupt/Trap Vector Table Pointer

The contents o f the Interrupt/Trap Vector Table
Pointer are unaffected by a reset and are
undefined a fte r power-up. When th is reg ister is
read, b its 3,2,1 and 0 may return a 1.

3 .3 .4 I/O Page Register

The 8- b i t I/O Page reg ister determines the upper
eight b its o f the 24-bit peripheral address output
during execution o f an I/O transaction (Figure
3-8). I/O pages FEH and FFH are reserved for
on-chip peripheral addresses.

The contents o f. the I/O Page reg ister are
cleared to a l l zeros by a reset.

3 .3 .3 Trap Control Register

The 8- b it Trap Control reg ister contains the
enables for the maskable traps. Figure 3-9
illu s tra te s the format o f th is reg is ter.

Figure 3-9. Trap Control Register

In h ib it User I/O (I) B it. This b it determines
whether or not I/O instructions are privileged
instructions. While th is b it is set to 1, a l l I/O
instructions are treated as privileged
instructions, and an attempt to execute an I/O
instruction while in user mode results in a
Privileged Instruction trap. While th is b it is
cleared to 0, I/O instructions can be successfully
executed in user mode. I/O instructions can
always be executed in system mode, regardless o f
the state o f th is b i t .

EPU Enable (E) B it . This b it indicates whether or
not an Extended Processor Unit (EPU) is available
in the -system for execution of extended in ­
structions. I f th is b it is cleared to 0,
indicating that no EPUs are present, the CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. I f th is b it
is set to 1, the CPU performs whatever data
transfers are indicated by the extended in ­
struction opcode, and assumes that the EPU is
present to execute the instruction .

3-3

System Stack Overflow Warning (S) B it. This is
the enable b it for the System Stack Overflow
Warning trap. While i t is set to 1, Stack
Overflow Warning traps can occur during a stack
access while in system mode, as determined by the
contents o f the Stack Lim it reg is ter. While th is
b it is cleared to 0, Stack Overflow Warning traps
are disabled. This b it is automatically cleared
when a System Stack Overflow Warning trap is
generated.

The Trap Control reg ister is cleared to a l l zeros
by a reset, indicating that I/O instructions are
not privileged, EPUs are not present in the
system, and Stack Overflow Warning traps are
disabled. B its 3 through 7 of th is reg ister are
not used.

3 .3 .6 System Stack Lim it Register

The 16-bit System* Stack Lim it reg ister determines
when a System Stack Overflow Warning trap is to be
generated. Pushes onto the system-mode stack
cause the 12 most s ign ifican t b its o f the log ica l
address o f the System Stack Pointer to be compared
to the 12 most s ign ifican t b its o f th is reg ister;
a System Stack Overflow Warning trap is generated
i f they match. The low-order four b its o f th is
reg ister must be zeros (Figure 3-10). This
register has no effect on MPU operation i f the
System Stack Overflow Warning enable b it in the
Trap Control reg ister is cleared to 0.

Figure 3*10. System Stack Limit Register

The contents o f the System Stack Lim it register
are cleared to zeros by a reset.

3-6

Chapter 4.
Addressing Modes and Data Types

4.1 INTRODUCTION

An instruction is a consecutive l i s t o f one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon. For Z280 CPU instructions,
operands can reside in CPU reg isters, memory
locations, or I/O ports. The methods used to
designate the location o f the operands for an
instruction are called addressing modes. The Z280
CPU supports nine addressing modes: Register,
Immediate, Ind irect Register, D irect Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.
A wide variety o f data types can be accessed using
these addressing modes.

4 .2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions o f the
addressing modes for the Z280 CPU. Each
description explains how the operand*s location is
calculated, indicates which address spaces can be
accessed with that pa rticu lar addressing mcyde, and
gives an example o f an instruction using that
mode, il lu s tra t in g the assembly language format
for the addressing mode. The examples using
memory addresses use log ica l memory addresses; i f
the MMU is enabled, these log ica l addresses can be
translated to physical addresses before the
physical memory is accessed, but th is process is
not discussed or illu s tra te d here.

4 .2 .1 Register (R9 RX)

When th is addressing mode is used, the instruction
processes data taken from one of the 8- b i t
registers A, B, C, D, E, H, L, IXH, IXL, IYH, IYL,
or one of the 16-bit registers BC, DE, HL, IX, IY,
SP, or one of the special byte registers I or R.

Storing data in a reg ister allows shorter
instructions and faster execution than occur with
instructions that access memory.

INSTRUCTION REGISTER

| OPERATION | REGISTER M OPERAND |

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the reg ister address
space. The reg ister length (byte or word) is
specified by the instruction opcode.

Example o f R modes

LD BC,HL ;load the contents o f HL into BC

Before instruction execution: After instruction execution:

4 .2 .2 Immediate (IN)

When the Immediate addressing mode is used, the
data processed is in the instruction .

The Immediate addressing mode is the only mode
that does not indicate a register or memory
address as the source operand.

INSTRUCTION

OPERATION

OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part o f the
instruction , i t is always located in the program
memory address space. Immediate mode is often
used to in it ia l iz e reg isters.

Example o f IN mode:

LD A,55H ;load hex 55 in to the accumulator

Before instruction execution: After instruction execution:

4-1

4 .2 .4 D irect Address (DA)4 .2 .3 Ind irect Register (IR)

In the Ind irect Register addressing mode, the
reg ister specified in the instruction holds the
address o f the operand. The data to be processed
is at the location specified by the HL register
for memory accesses or the C reg ister for I/O and
control reg ister space accesses. For the Load
Byte instruction , BC and DE can also be used in
addition to HL.

Depending on the instruction , the operand
specified by IR mode is located in e ither the I/O
address space (I/O instructions), control reg ister
space (Load Control ins truction), or data memory
address space (a l l other instructions).

When the Direct Address addressing mode is used,
the data processed is at the location whose memory
or I/O port address is in the instruction .

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Depending on the instruction , the operand
specified by DA mode is e ither in the I/O address
space (I/O instructions) or in the data memory
address space (a l l other instructions).

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded in to the Program Counter.)

The Ind irect Register mode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed.

Example o f IR mode:

LD A,(HL) ;load the accunulator with the data
;addressed by the contents o f HL

Before instruction execution: After instruction execution:

Example o f DA mode:

LD BC,(5E22H) ;load BC with the data in
; address 5E22

Before instruction execution: After instruction execution.

Data memory:

170C:

4-2

4 .2 .5 Indexed (X)

For th is addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents o f HL, IX, or
IY.

The indexed address is computed by Ridding the
address specified in the instruction to a

twos-complement "index" contained in the HL, IX or
IY reg is ter, also specified by the instruction .
Indexed addressing allows random access to tables
or other complex data 8tructures where the address
Of the base o f the table i 8 known, but the
particu lar element index must be computed by the
program.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Operands specified by X mode are always in the
data memory address space.

Example o f X mode:

LD A,(IX *i* 231 AH) ;load in to the accumulator
jthe contents of the memory
; location whose address
; is 231AH + the value in IX

Address calculation:

Before instruction execution: After instruction execution:

Data memory:

2518: | 3 D|

231A
+01FE
2518

4 .2 .6 Short Index (SX)

When the Short Index addressing mode is used, the
data processed is at the location whose address is
the contents o f IX or IY offset by an 8-b it signed
displacement in the instruction . (Note that th is
addressing mode was called "Indexed" in the Z80
CPU lite ra tu re .)

The short indexed address is computed by adding
the 8- b i t twos-complement signed displacement
specified in the instruction to the contents o f
the IX or IY reg is ter, also specified by the
instruction . Short Index addressing allows random
access to tables or other complex data structures
where the address o f the base o f the table is
known, but the particu lar element index mM8t be
computed by the program.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THp ADDRESS IN THE INSTRUCTION,
OFFSET BY THE CONTENTS OF THE REGISTER.

Operands specified by SX mode are always in the
data memory address space.

Example o f SX mode:

LD A,(IX - 1) jload in to the accunulator the
; contents o f the memory location
?whose address is one less than
;the contents o f IX

Before instruction execution: After instruction execution:

4-3

Address calcula tion: FF encoding in the instruc­
tion is sign-extended before
the address calculation.

203A
+FFFF
2039

4 .2 .7 Program Counter (PC) R elative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents o f the Program Counter o ffse t by an
8- or 16-bit displacement given in the
instruction .

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Program Counter value used is
the address o f the f i r s t instruction following the
currently executing instruction . For extended
instructions, the address used to calculate the
displacement is the address o f the template.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

This format implies that the assembler w i l l
calculate the displacement from the current PC
value to the specified labe l. A lternative ly ,
s lig h tly d iffe ren t syntaxes can be used for the RA
mode i f the actual displacement from the
instruction using th is mode is known. Thus, th is
example can also be w ritten in the following
manner:

LD A,<$ + 6> ;load the accunulator with the
; contents o f the memory location
;whose address is six more than
;the address o f the s ta rt o f th is
;LD instruction

or

LD A,(PC + 2) jload the accumulator with the
;contents o f the memory location
;whose address is two more than
;the current PC, which now points
;to the next instruction

Because the Program Counter is advanced to point
to the next instruction when the address
calculation is performed, the constant that occurs
in the instruction is +2 .

Before instruction execution: After instruction execution:

An operand specified by RA mode is always in the Program memory-
program memory address space.

The Program Counter Relative Addressing mode is
used by certain program control instructions to
specify the address o f the next instruction to be
executed (spe c ifica lly , the resu lt o f the addition
o f the Program Counter value and the displacement
is loaded in to the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; i t is used
for program control instructions such as Jumps and
for Loads that access constants in the program
address space.

instruction

Address calculation:

Example o f RA mode:

LD A,<LABEL> ;load the accunulator with the
; contents o f the memory location
;whose address is LABEL

0206
+__ 2
0208

Example o f SR mode:4 .2 .8 Sta ck Pbinter R e la tiv e (SR)

For the Stack Pointer Relative addressing mode,
the data processed is at the location whose
address is the contents o f the Stack Pointer
o ffse t by a 16-bit displacement in the
ins truction .

The instruction specifies a twos-complement
displacement that is added to the contents o f the
Stack Pointer reg ister to form the address. An
operand specified by SR mode is always in the data
memory address space.

The SR addressing mode is used to specify data
items to be found in the stack such as parameters
passed to subroutines. The System Stack Pointer
or User Stack Pointer is selected depending on the
state o f the User/System b it in the Master Status
reg is ter.

4 .2 .9 Base Index (BX)

For the Base Index addressing mode, the data
processed is at the location whose address is the

LD A,(SP +2) {load in to the accunulator
' {the contents o f the memory

{location whose address is
;two more than the contents
;o f SP

Before instruction execution: After instruction execution:

Data memory:

Top of stack 8200
8201
8202
8203

Address calcula tion:

8200
+__ 2

8202

contents o f HL, IX, or IY, o ffse t by the contents
o f another o f these three registers.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF THE ONE REGISTER
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

A B
0 1
F 3
2 8

This mode allows access to memory locations whose
physical addresses are computed at run time and
are not fu lly known at assembly time. An operand
specified by BX mode is always in the data memory
address space.

Example o f BX mode:

LD A,(HL + IX) ;load in to the accunulator the
{contents of the memory location
{whose address is the sum of the
{Contents o f the HL and IX
{reg ister

Before instruction execution: After instruction execution:

Address calcula tion:

1502'
+FFFE

1500

4-5

4 .3 DATA TYPES

Many data types are supported by the Z280 MPU
architecture; that is , many data types have a
hardware representation in a Z280 MPU system and
instructions that d ire c tly apply to them. The
Z280 MPU supports operations on bytes, words,
b its , BCD d ig its , and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the reg is ter, memory,
and I/O address spaces. The 8- b i t load,
arithm etic, log ica l, s h if t , and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as lo g ica l, signed
numeric, or unsigned numeric values.

Operations on two-byte words are also supported.
Sixteen-bit load and arithmetic instructions
operate on words in registers or memory; words
can be treated as signed or unsigned numeric
values. I/O reads and writes can be 8-b it or
16-bit. operations. Sixteen-bit log ica l memory
addresses can be held and manipulated in 16-bit
reg isters.

B its are fu lly supported and addressed by nunber
w ith in a byte (see Figure 2-2). B its w ith in byte
registers or byte memory locations can be tested,
set, or cleared.

Operations on binary-coded decimal (BCD) d ig its

are supported by the Decimal Adjust Accunulator
and Rotate D ig it instructions. BCD d ig its are
stored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in ­
struction is used after a binary addition or
subtraction o f BCD numbers. The Rotate D ig it
instructions are used to s h ift BCD d ig it strings
in memory.

Strings o f up to 65,536 bytes can be manipulated
by the Z280 CPU's block move, block search, and
block I/O instructions. The block move
instructions allow strings o f bytes in memory to
be moved from one location to another. Block
search instructions provide fo r scanning strings
o f bytes in memory to locate a particu lar value.
The block I/O instructions allow strings o f bytes
or words to be transferred between memory and a
peripheral device.

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as C all, Return, Push, and Pop.
A special stack write warning feature aids in the
allocation o f system stack memory space.

Strings o f up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution o f an extended instruction .

4-6

Chapter 5.
Instruction Set

5.1 INTRODUCTION

The Z280 CPU's in s tru c tio n . set is a superset o f
the Z80's; the Z280 CPU is opcode compatible with
the Z80 CPU. Thus, a Z80 program can be executed
on a Z280 MPU without modification. The
instruction set is divided in to ten groups by
function:

a 8- b i t load
a 16-bit load and exchange
a Block transfer and search
a 8-b i t arithmetic and log ica l
a 16-bit arithmetic
a Rotate, s h if t , and b it manipulation
a Program control
a Input/Output
a CPU control
a Extended instructions

Thie chapter describes the instruction set o f the
Z280 CPUs. F irs t, flags and condition codes are
discussed in re la tion to the instruction set.
Then, in te r ru p t ib il ity o f instructions is
discussed and traps are described. The las t part
o f th is chapter is a detailed description o f each
ins truction , lis te d in alphabetic order by
mnemonic. This section is intended to be used as
a reference for Z280 MPU programmers. The entry
for each instruction contains a complete
description of the ins truction , including
addressing modes, assembly language mnemonics,
instruction opcode formats, and simple examples
il lu s tra t in g the use of the instruction .

5.2 PROCESSOR FLAGS

The Flag reg ister contains six b its o f status
information, that are set or cleared by CPU
operations (Figure 5-1). Four o f these b its are
testable (C, P/V, Z, and S) for use with
conditional jump, c a ll, or return instructions.
Two flags are not testable (H, N) and are used for
binary-coded decimal (BCD) arithm etic.

Figure 5-1. Flag Register

The flags provide a lin k between sequentially
executed instructions, in that the resu lt o f
executing one instruction may a lte r the flags, and
the resu lting value o f the flags can be used to
determine the operation o f a subsequent
ins truction . The program control instructions
whose operation depends on the state o f the flags
are the Jump, Jump Relative, subroutine C all, and
subroutine Return instructions; these instructions
are referred to as conditional instructions.

5.2 .1 Carry Flag (C)

The Carry flag is set or cleared depending on the
operation being performed. For add instructions
that generate a carry and subtract instructions
that generate a borrow, the Carry flag is set to
1. The Carry flag is cleared.to 0 by an add that
does not generate a carry or a subtract that
generates no borrow. This saved carry fa c ilita te s
software routines for extended precision
arithm etic. The m ultip ly and divide instructions
use the Carry flag to signal information about the
precision o f the resu lt. Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set
to 1 i f a carry occurs when adding BCD quantities.

For the rotate instructions, the Carry flag is
used as a lin k between the least s ign ifican t and
most s ign ifican t b its fo r any reg ister or memory
location. During s h ift instructions, the Carry
flag contains the last value shifted out o f any
reg ister or memory location. For log ica l in ­
structions the Carry flag is cleared. The Carry
flag can also be set and complemented with
e x p lic it instructions.

5 .2 .2 Add/Subtract Flag (N)

The Add/Subtract flag is used for BCD arithmetic.
Since the algorithm for correcting BCD operations
is d iffe re n t fo r addition and subtraction, th is
flag is used to record whether an add or subtract
was las t executed, allowing a subsequent Decimal
Adjust Accumulator instruction to perform
correctly . See the discussion of the DAA in ­
struction for further information.

5-1

5 .2 .3 Parity/O verflow Flag (P A)

This flag is set to a particu lar state depending
on the operation being performed.

For signed arithm etic, th is flag , when set to 1,
indicates that the resu lt o f an operation on
twos-complement numbers has exceeded the largest
number, or is less than the smallest number, that
can be represented using twos-complement
notation. This overflow condition can be
determined by examining the sign b its o f the
operands and the resu lt.

The P/V flag is also used with log ica l operations
and rotate instructions to indicate the pa rity of
the resu lt. The number of b its set to 1 in a byte
are counted. I f the to ta l is odd, odd pa rity (P =
0) is flagged. I f the to ta l is even, even parity
is flagged (P = 1).

During block search and block transfer
instructions, the P/V flag monitors the state o f
the byte count reg ister (BC). When decrementing
the byte counter resu lts in a zero value, the flag
is cleared to 0 , otherwise the flag is set to 1 .

During the Load Accumulator with I or R register
instructions, the P/V flag is loaded with the
contents o f ,the Interrupt A enable b i t in the
Master Status reg is ter.

When inputting a byte to a reg ister from an I/O
device addressed by the C reg is ter, the flag is
adjusted to indicate the parity o f the data.

5 .2 .4 H alf-C arry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to
0 depending on the carry and borrow status between
b its 3 and 4 o f an 8- b it arithmetic operation and
between b its 11 and 12 o f a 16-bit arithmetic
operation. This flag is used by the Decimal
Adjust Accumulator instruction to correct the
resu lt o f an addition or subtraction operation on
packed BCD data.

5 .2 .5 Zero Flag (Z)

The Zero flag (Z) is set to 1 i f the resu lt
generated by the execution o f certain instructions
is a zero.

For arithmetic and log ica l operations, the Zero
flag is set to 1 i f the resu lt is zero. I f the
resu lt is not zero, the Zero flag is cleared to 0.

For the block search instructions, the Zero flag
is set to 1 i f a comparison is found between the
value in the Accumulator and the memory location
pointed to by the contents o f the reg ister pair
HL.

When testing a b it in a reg ister or memory
location, the Zero flag contains the complemented
state o f the tested b i t (i . e . , the Zero flag is
set to 1 i f the tested b it is a 0 , and
vice-versa).

For the block I/O instructions, i f the resu lt o f
decrementing B is zero, the Zero flag is set to 1;
otherwise, i t is cleared to 0. Also for byte
inputs to registers from 1/0 devices addressed by
the C reg is ter, the Zero flag is set to 1 to
indicate a zero byte input.

5 .2 .6 Sign Flag (S)

The Sign flag (S) stores the state of the most
s ign ifican t b it o f the resu lt. When the Z280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is used to
represent and process numeric information. A
positive number is id en tified by a zero ip the
most s ign ifican t b i t . A negative number is
id en tified by a 1 in the most s ign ifican t b it .

When inputting a byte from an 1/0 device addressed
by the C reg ister to a CPU reg is ter, the Sign flag
indicates e ither positive (S = 0) or negative (S =
1) data.

For the Test and Set instruction , the Sign b it is
set to 1 i f the tested b it is 1, otherwise i t is
cleared to 0 .

5 .2 .7 Condition Codes

The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation o f the con­
d ition a l instructions. The operation o f these in ­
structions is a function o f the state o f one o f
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution o f a conditional
instruction ; the condition codes are encoded in to
a 3-b it f ie ld in the instruction opcode i t s e l f .

Table 5-1 l is ts the condition code mnemonic, the
flag setting i t represents, and the binary
encoding for each condition code.

5-2

Table 5-1. Condition Codes

Flag Binary
Mnemonic Meaning Setting Code

Condition Codes for Jump, Call, and Return Instructions

NZ Not Zero N II O 000
Z Zero Z = 1 001
NC No Carry C = 0 010
C Carry C = 1 011
NV No Overflow V = 0 100
PO Parity Odd V = 0 .100
V Overflow V = 1 101
PE Parity Even V = 1 101
NS No Sign S = 0 110
P Plus S = 0. 110
S Sign S = 1 111
M Minus S = 1 111

Condition Codes for Jump Relative Instruction

NZ Not Zero . Z = 0 100
Z Zero Z = 1 101
NC No Carry C = 0 110
C Carry c = 1 111

5.3 INSTRUCTION EXECUTION AND EXCEPTIONS

Two types o f exception conditions, in terrupts and
traps, can a lte r the normal flow of- program
execution. Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use in terrupts to request
service from the CPU. Traps are synchronous
events generated in te rna lly in the CPU by
particu lar conditions that occur during
instruction execution. Interrupts and traps are
discussed in de ta il in Chapter 6. This section
examines the relationship between instructions and
the exception conditions.

5.3 .1 Instruction Execution and Interrupts

When the CPU receives an in terrupt request, and i t
is enabled for in terrupts o f that class, the
in terrupt is normally processed at the end o f the
current instruction . However, the block transfer
and search instructions are designed to be in te r­
rup tib le so as to minimize the length o f time i t
takes the CPU to respond to an in te rrup t. I f an
in terrupt request is received during a block move,
block search, or block I/O instruction , the in ­
struction is suspended a fte r the current i te r ­
ation. The address of the instruction i t s e l f ,
rather than the address o f the following in ­
struction , is saved on the system stack, so that
the same instruction is executed again when the
in terrupt handler executes an in terrupt return

instruction . The contents o f the repetition counter and the registers that index into the
block operands^ are such tha t, a fte r each i te r ­
ation, when the instruction is reissued upon
returning from an in te rrup t, the e ffect is the
same as i f the instruction were not interrupted.
This assumes, o f course, that the interrupt
handler preserved the registers.

5 .3 .2 Instruction Execution and Traps

Traps are synchronous events that resu lt from the
execution o f an instruction . The action o f the
CPU in response to a trap condition is s im ilar to
the case o f an in terrupt in in terrupt mode 3 (see
Chapter 6) . A ll traps except for Extended
Instruction, System Stack Overflow Warning,
Single Step and Breakpoint-on-Halt are nonmask­
able.

The Z280 MPU supports eight kinds o f traps:

e Division Exception
a Extended Instruction
e Privileged Instruction
e System Call
a Access V io lation (page fa u lt and write protect)
a System Stack Overflow Warning
a Single Step
a Breakpoint-on-Halt

The Division Exception trap occurs when executing
a divide instruction i f e ither the d iv isor is zero
or the resu lt cannot be represented in the
destination (overflow).

The Extended Instruction trap occurs when an
extended instruction is encountered, but the
Extended Processor Architecture is disabled,
(the EPA b it in the Trap Control reg ister should
be cleared to 0 i f there is no EPU in the system
or i f the Z280 MPU is configured with an 8-b it
bus). This allows the same software to be run on
Z280 MPU system configurations with or without
Extended Processing Units (EPUs). For systems
without EPUs, the desired extended instructions
can be emulated by software that is invoked by the
Extended Instruction trap. For systems with an
8- b it data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
I/O instructions to access the EPU. The
information saved on the system stack during th is
trap is designed to fa c il ita te 'the 8-b i t I/O
interface to an EPU by providing address
calculation fo r the operands and by pushing
addresses onto the system stack in the reverse
order from which they w i l l be used by an I/O
interface trap handler.

5-3

The Privileged Instruction trap serves to protect
the in te g rity o f a system from erroneous or
unauthorized actions o f user mode processes.
Certain instructions, called privileged
instructions, can be executed only in system
mode. An attempt to execute one o f these
instructions in user mode causes a Privileged
Instruction trap.

The Breakpoint-on-Halt trap occurs whenever the
Halt instruction is encountered and the
Breakpoint-on-Halt control b it in the Master
Status reqister is set to 1. This fa c il ita te s
software debugging of programs.

5.4 INSTRUCTION SET FUNCTIONAL GROUPS

The System Call instruction always causes a trap.
This instruction is used to transfer control to
system mode software in a controlled way,
ty p ic a lly to request operating system services.

The Access V io lation trap occurs whenever the Z280
MPU's on-chip MMU detects an il le g a l memory
access. Access V iolation traps cause instructions
to be aborted. When Access V iolation traps occur,
the log ica l address o f the instruction is pushed
onto the system stack along with the Master Status
reg is ter; part o f the log ica l address that caused
the page fa u lt is latched in the MMU to indicate
which page frame caused the fa u lt; and the CPU
registers are unmodified, i .e . , th e ir contents are
the same as ju s t before the instruction execution
began. (For block move, block search, or block
I/O instructions, the registers are the same as
jus t before the ite ra tio n in which the page fau lt
occurred.)

This section presents an overview of the Z280
instruction set, arranged by functional groups.
(See Section 5.5 for an explanation of the
notation used in Tables 5-2 through 5-11.)

5.4 .1 8 -B it Load Group

This group of instructions (Table 5-2) includes
load instructions for transferring data between
byte registers, transferring data between a byte
register and memory, and loading immediate data
in to byte registers or memory. A ll addressing
modes are supported for loading between the
accumulator and memory or for loading immediate
values in to memory. Loads between other registers
and memory use the IR and SX addressing modes. An
exchanqe instruction is available for swapping the
contents of the accumulator with another register
or with memory.

The System Stack Overflow Warning trap arises
when pushing information onto the system stack
causes the Stack Pointer to reference a specified
16-byte area o f memory. Use o f th is fa c i l i t y
protects the system from system stack overflow
e rro rs .

The Single Step trap occurs with the execution o f
each instruction , provided the Single-Step control
b it in the Master Status reg ister is set to 1.
This fa c il ita te s software debugging o f programs.

The LDUD and LDUP instructions are available for
loading to or from the user-mode memory address
space while executing in system mode. The CPU
flags are used to indicate i f the transfer was
successfully completed. LDUD and LDUP are
privileged instructions. The other instructions
in th is group do not affect the flags, nor can
th e ir execution cause exception conditions.

Table 5-2. 8-Bit Load Group Instructions

Addressing Modes Available
Instruction Name Format R RX IM IR DA X SX RA SR BX

Exchange Accumulator EX A.src • • • • . • • • • •
Exchange H,L EX H.L
Load Accumulator LD A.src • • • • • • • • • •

LD dst.A • • • • • • • • •
Load Immediate LD dst.n • • • • • • • • •
Load Register (Byte) LD R,src • • • • •

LD-dst.R • • • •
Load in' User Data Space LDUD A.src • •

LDUD dst.A • • •
Load in User Program Space LDUP A.src • •

• LDUP dst.A • •

5-4

5 .4 .2 16-B it Load and Exchange Group

This group of load and exchange instructions
(Table 5-3:) allows words o f data (two bytes equal
one word) to be transferred between registers and
memory. The exchanqe instructions allow for
switching between the primary and alternate
req ister f i le s , exchanging the contents o f two
16-bit reg isters, or exchanging the contents o f an
addressing reg ister with the top word on the
stack. The 16-bit loads include transfers between

reqisters and memory and immediate loads of
registers or memory. The Load Address instruction
fa c il ita te s the loadinq of the address registers
with a calculated address. The Push and Pop stack
instructions are also included in th is group.
None o f these instructions a ffect the CPU flags,
except for EX AF, AF'. The Push instruction can
cause a System Stack Overflow Warning trap;
otherwise, no exceptions can arise from the
execution o f these instructions.

Table 5-3. 16-Bit Load and Exchange Group Instructions

Addressing Modes Available
Instruction Name Format R IM IR DA X SX RA SR BX

* Restricted to an addressing register (HL, IX, or IY).

5 .4 .3 Block Transfer and Search Group

This group o f instructions (Table 5-4) supports
block transfer and s trinq search functions. Using
these instructions, a block of up to 65,536 bytes
can bd moved in memory, or a byte s tring can be
searched u n t il a given value is found. A ll the
operations can proceed through the data in either
d irection . Furthermore, the operations can be
repeated automatically while decrementing a length
counter u n t il i t reaches zero, or they can operate
on one storage un it per execution with the length
counter decremented by one and the source and
destination pointer reqisters properly adjusted.
The la tte r form is useful for implementing more
complex operations in software by adding other
instructions w ith in a loop containing the block
instructions.

Various Z280 MPU registers are dedicated to
specific functions fo r these instructions: the BC
reg ister for a counter, the DE and HL registers
for memory pointers, and the accumulator for
holdinq the byte value being sought. The repeti­
t iv e forms o f these instructions are

in te rrup tib le ; th is is essential since the
repetition count can be as hiqh as 65,536.# The
instruction can be interrupted a fte r any
ite ra tio n , in which case the address o f the
instruction i t s e l f , rather than the next one, is
saved on the system stack; the contents of the
operand pointer reg isters, as well as the
repetition counter, are such that the instruction
can simply be reissued a fte r returning from the
in te rrup t without any v is ib le difference in the
instruction execution.

Table 5-4. Block Transfer and Search Group

5-5

5 .4 .4 8 -B it Arithm etic and Logic Group

This group of instructions (Table 5-5) performs
8- b i t arithmetic and loq ica l operations. The Add,
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned M ultip ly take one input operand from the
accumulator and the other from a reg ister, from
immediate data in the instruction i t s e l f , or from
memory. A ll memory addressing modes are
supported: Ind irect Register, Short Index, Direct
Address,PC Relative Address, Stack 'Pointer
Relative, Indexed, and Base Index. Except for the
m ultip lies , which return the 16-bit resu lt to the
HL reg is ter, these instructions return the
computed result to the accumulator. Both signed

and unsigned div is ion are provided. A ll memory
addressinq modes except Ind irect Register can be
used to specify the d iv iso r.

The Increment and Decrement instructions operate
on data in a register or in memory; a l l memory
addressinq modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The fin a l
instruction in th is group, Extend Sign, takes i t s
8- b i t input from the accumulator and returns i t s
16-bit resu lt to the HL reg is ter.

A ll these instructions except Extend Sign set the
CPU flags according to the computed resu lt. Only
the Divide instructions can generate an exception.

Table 5-5. 8-Bit Arithmetic and Logic Group

5 .4 .5 16-B it Arithm etic Operations

This group of instructions (Table 5-6) provides
16-bit arithmetic operations. The Add, Add with
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing reg ister and the other from a 16-bit
reg ister or from the instruction i t s e l f ; the
resu lt is returned to the addressing reg ister.
The 16-bit Increment and Decrement instructions
operate on data found in a register or in memory;
the Ind irect Register, Direct Address or PC
Relative addressing mode can be used to specify
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices
in to tables or arrays in memory.

The remaining 16-bit instructions provide general
arithmetic capab ility using the HL register as one
of the input operands. The word Add, Subtract,
Compare, and signed and unsigned M ultip ly
instructions take one input operand from the HL
register and the other from a 16-bit reg ister,
from the instruction i t s e l f , or from memory using
Indexed, Direct Address, or Relative addressing
mode. The 32-bit resu lt o f a m ultip ly is returned
to the DE and HL registers, with the DE reg ister
containing the most s ign ifican t b its . The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and HL registers (the DE
reg ister containing the most s ign ifican t b its) and
a 16-bit d iv isor from a reg ister, from the
instruction , or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

5-6

16-bit quotient is returned to the HL register and the 16-bit remainder' i s returned to the DE
reg ister. The Extend Sign instruction takes the
contents o f the HL register and delivers the
32-bit resu lt to the DE and HL registers, with the
DE req ister containing the most s ign ifican t b its
o f the resu lt. The Negate HL instruction negates

the contents of the HL reg ister.

Except for Increment, Decrement, and Extend Sign,
a l l the instructions in th is group set the CPU
flags to re fle c t the computed resu lt. The only
instructions that can generate exceptions are the
Divide instructions.

Table 5-6. 16-Bit Arithmetic Operation Instructions

Addressing Modes Available

5 .4 .6 B it Manipulation, Rotate ands S h ift Group

Instructions in th is group (Table 5-7) te s t, set,
and reset b its w ith in bytes and rotate and s h ift
byte data one b it position. B its to be
manipulated are specified by a f ie ld w ith in the
instruction . Rotation can optionally concatenate
the Carry flag to the byte to be manipulated.
Both le f t and righ t s h iftin g is supported. Right
s h ifts can either s h ift 0 in to b i t 7 (log ica l
s h ifts) or can rep lica te the sign in b its 6 and 7
(arithm etic s h ifts) . The Test and Set instruction
is useful in multiprogramming and multiprocessing
environments for implementing synchronization
mechanisms between processes. A ll these
instructions except Set B it and Reset B it set the
CPU flags according to the calculated resu lt; the
operand can be a reg ister or a memory location
specified by the Ind irect Register or Short
Index addressing modes.

The RLD and RRD instructions are provided for
manipulating strings o f BCD d ig its ; these rotate
4 -b it quantities in memory specified by the
ind irec t reg is ter. The low-order four b its o f the
accumulator are used as a lin k between rotations

*o f successive bytes.

None of these instructions generate exceptions.

5 .4 .7 Program Control Group

This group (Table 5-8) consists o f the
instructions that a ffect the Program Counter (PC)
and thereby control program flow. The CPU
registers and memory are not altered except for
the Stack Pointer and the stack, which play a
s ig n ifica n t role in procedures and in terrupts.
(An exception is Decrement and Jump i f Non-Zero
[DJNZ], which uses a register as a loop counter.)
The flags are also preserved except for the two
instructions spe c ifica lly designed to set and
complement the Carry flag .

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new
location i f the processor flags sa tis fy the
condition specified in the instruction . Jump
Relative is a 2-byte instruction that jumps to any
instruction w ith in the range -126 to +129 bytes
from the location o f th is ins truction . Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction explo its th is fact to improve
code compactness and effic iency.

A special Jump instruction tests whether the•
primary or aux ilia ry reg ister f i le is being used
and branches i f the aux ilia ry f i le is in use.' In

5-7

Table 5-7. Bit Manipulation, Rotate and Shift Group

Addressing Modes Available
Instruction Name Format R IR SX

5-8

systems that reserve the auxilia ry register f i le Jump and Call instructions are available with the
for in te rrup t handlers only (via a software Ind irect Register and PC Relative Address modes in
convention), th is instruction can be used to addition to the Direct Address mode. These can be
decide whether registers must be saved. useful for implementing complex control structures

such as dispatch tables. When using Direct
Call and Restart are used for ca lling subroutines; Address mode for a Jump or C a ll, the operand is
the current contents of the PC are pushed onto the used as an immediate value that is loaded in to the
processor stack and the e ffective address PC to specify the address o f the next instruction
indicated by the instruction is loaded in to the to be executed.
PC. The use of a procedure address stack in th is
manner allows straightforward implementation of The conditional Return instruction is a companion
nested and recursive procedures. C a ll, Jump, and to the Call instruction ; i f the condition
Jump Relative can be unconditional or based on the specified in the instruction is sa tis fied , i t
setting o f a CPU flag . loads the PC from the stack and pops the stack.

A special instruction , Decrement and Jump i f
Non-Zero (DJNZ), implements the control part of
the basic Pascal FOR loop in a one-word
ins truction .

System Call (SC) is used for controlled access to
fa c il i t ie s provided by the operating system. I t
is implemented id en tica lly to a trap or in te rrup t
in in te rrup t mode 3: the current proqram status
is pushed onto the system stack, and a new program
status is loaded from a dedicated part o f memory.

5 .4 .8 Input/Output Instruction Group

This group (Table 5-9) consists o f instructions
for transferring a byte, a word, or a s tring of
bytes or words between peripheral devices and the
CPU registers or memory. Byte I/O port addresses
transfer bytes on ADQ-AD7 only. Thus in a 16-bit
data bus environment, 8- b i t peripherals must be
connected to bus lines ADgrADy. In an 8- b i t data
bus environment, word I/O instructions to external
peripherals should not be used; however, on-chip
peripherals can s t i l l be accessed by word I/O
instructions.

The instructions for transferring a single byte
(IN, OUT) can transfer data between any 8- b i t CPU
req ister or memory address specified in the
instruction and the peripheral port specified by
the contents of the C req is ter. The IN
instruction sets the CPU flags according to the
input data; however, special cases o f these
instructions, res tric ted to using the CPU
accumulator and Direct Address mode, do not a ffect
the CPU flags. Another variant tests an input
port specified by the contents o f the C register
and sets the CPU flags without modifying CPU
reqisters or memory.

The instructions for transferring a single word
(INW, OUTW) can transfer data between the HL
reg ister and the peripheral port specified by the
contents o f the C req is ter. For word I/O, the
contents o f H appear on ADQ-AD7 and the contents
o f L appear as AD0-AD15. These instructions do
not a ffect the CPU flags.

The remaining instructions in th is qroup form a
powerful and complete complement o f instructions
for transferring blocks o f data between I/O ports
and memory. The operation o f these instructions
is very s im ilar to that o f the block move instruc­
tions described e a rlie r, with the exception that
one operand is always an I/O port whose address
remains unchanged while the address o f the other
operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

repeating forms o f these instructions are in te r­
rup tib le .

I/O instructions are not privileged i f the Inh ib it
User I/O b i t in the Trap Control reg ister is
c lear; they can be executed in e ither system or
user mode, so that I/O service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals' control and status
registers are accessed using the I/O
instructions. The contents o f the I/O Page
reqister are output on with the I/O port
address and can be used by external decoding to
select specific devices. Pages FF and FE are
reserved for on-chip I/O and no external bus
transaction id generated. I/O devices can be
protected from unrestricted access by using the
I/O Page reg ister to select among I/O peripherals.

Table 5-9. Input/Output Instruction Group Instructions

Instruction Name Format

Input IN dst,(C) .
Input Accumulator IN A/n)
Input HL INW HL,(C)
Input and Decrement (Byte) IND
Input and Decrement (Word) INDW
Input, Decrement and Repeat (Byte) INDR
Input, Decrement and Repeat (Word) INDRW
Input and Increment (Byte) INI
Input and Increment (Word) INIW
Input, Increment and Repeat (Byte) INIR
Input, Increment and Repeat (Word) INIRW
Output OUT (C),src
Output Accumulator OUT (n),A
Output HL OUTW (C),HL
Output and Decrement (Byte) OUTD
Output and Decrement (Word) OUTDW
Output, Decrement and Repeat (Byte) OTDR
Output, Decrement and Repeat (Word) OTDRW
Output and Increment (Byte) OUTI
Output and Increment (Word) OTIRW
Output, Increment and Repeat (Byte) OTIR
Output, Increment and Repeat (Word) OTIRW
Test Input TSTI (C)

5 .4 .9 CPU Control Group

The instructions in th is group (Table 5-10) act
upon the CPU control and status registers or
perform other functions that do not f i t in to any
of the other instruction groups. There are three
instructions used for returning from an in terrupt
or trap service routine. Return from Nonmaskable
Interrupt (REIN) and Return from Interrupt (RETI)

5-9

are used in in te rrup t modes 0, 1, and 2 to pop the
Program Counter from the stack and manipulate the
Interrupt Mask req ister, or to signal a reset to
28400 Family peripherals. The Return from
Interrupt Long (RETIL) ins truction pops a 4-byte
program status from the System stack, and is used
in in te rrup t mode 3 and trap processing.

Two of these instructions are not priv ileged: No
Operation (NOP) and Purge Cache (PCACHE). The
remaining instructions are privileged.

Table 5-10. CPU Control Group

Instruction Name Format

Disable Interrupt Dl mask
Enable Interrupt El mask
Halt HALT
Interrupt Mode Select IMp
Load Accumulator From I or R Register LD A.src
Load I or R Register From Accumulator LDdst.A
Load Control LDCTL dst.src
No Operation NOP
Purge Cache PCACHE
Return From Interrupt RETl
Return From Interrupt Long RETIL
Return From Nonmaskable Interrupt RETN

5.4.10 Extended Instruction Group

The Z280 MPU architecture contains a powerful
mechanism for extending the basic instruction set
through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes is dedicated for the implementation of
extended instructions using th is fa c i l i t y . The
extended instructions (Table 5-11) are intended
for use on a 16-bit data bus; thus, th is fa c i l i t y
is available only on the Z-BUS configuration of
the Z280 MPU.

There are four types of extended instructions in
the Z280 MPU instruction set: EPU in terna l
operations, data transfers from an EPU to memory,
data transfers from memory to an EPU, and data
transfers between an EPU and the CPU' s
accumulator. The extended instructions that
access memory can use any of the s ix basic memory
addressinq modes (Indexed, Base Index, PC
Relative, SP Relative, Ind irect Register, and
Direct Address). Transfers between the EPU and
CPU accumulator are useful when the program must
branch based on conditions generated by an EPU
operation.

A 4-byte long "template" is embedded in each of
the extended instruction opcodes. These templates
determine the operation to be performed in the EPU
i t s e l f . The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is , only CPU a c tiv it ie s are described.
The operation of thfe EPU is implied, but the f u l l
specification o f the instruction template depends
on the implementation of the EPU, and is beyond
the scope of th is manual. Fields in the template
that are ignored by the CPU are indicated by
asterisks, and would typ ica lly contain opcodes
that determine any operation to be performed by
the EPU in addition to the data transfers
specified by the ins truction . A 2 -b it
id e n tifica tio n f ie ld is included in each template,
for use in selecting one o f up to four EPUs in a
multiple-EPU system.

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
b i t in the CPU's Trap Control req ister. When th is
b it is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed. I f th is b it is cleared to 0, indicating
that there are no EPUs in the system, the CPU
executes an extended instruction trap whenever an
extended ins truction is encountered; th is allows a
trap service routine to emulate the desired
operation in software.

Table 5-11. Extended Instructions

Instruction Name Format

Load EPU From Memory EPUM src
Load Memory From EPU MEPU dst
Load Accumulator From EPU EPUF
EPU Internal Operation EPUI

5.5 NOTATION AND BINARY ENCODING

The rest of th is chapter consists o f detailed
descriptions of the Z280 MPU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary
encoding for reg ister f ie ld s w ith in in s tru c tion 's
dperation codes (opcodes).

The description o f each instruction begins on a
new page. The instruction mnemonic and name is
printed in bold le tte rs at the top o f each page to
enable the reader to easily locate a desired

5-10

description. The assembly language syntax is then
given in a single generic form that covers a l l the
variants o f the instruction , along with a l i s t o f
applicable addressing modes. This is followed by
a description o f the operstion performed by the
instruction , a l is tin g o f a i l the flags that are
affected by the instruction , a lis t in g o f ex­
ception conditions thst may be caused by execution
o f the instruction , il lu s tra tio n s o f the opcodes
for a l l variants o f the instruction , and a simple
example o f the use o f the instruction .

The following notation is used throughout the
descriptions o f the instructions:

(addr) A d irect sddress
<addr> An address to be encoded using re la tive

addressing
b A 3 -b it f ie ld specifying the position o f

a b it w ith in a byte
BX Base Index addressing mode
cc A condition code specifying whether a

flag is sejt to 1 or cleared to 0
d An 8- b it signed displacement
DA Direct Address addressing mode'
dd A 16-bit signed displacement
disp The displacement calculated from the

address in re la tive addressing
dst Destination location or contents
IM Immediate addressing mode
IR Indirect Register addressing mode
MSR The Master Status register
n 8-b it immediate data
nn 16-bit immediate data
p An in terrupt mode
PC The Program Counter
PS The program status registers (the Program

Cbunter and Master Status reg ister)
R A single 8- b it register o f the set .

(A,B,C,D,E,H,L); also, R1 and R2 are used
when two d iffe ren t registers are
specified in the same instruction . (Note
that the R reg ister i t s e l f is accessed by
a single instruction and vio lates th is
convention.)

R‘ The corresponding 8- b i t or 16-bit
register in the alternate register f i le ,
such as A’

RA PC Relative Address addressing mode
RR A 16-bit register o f the set (BC,DE,

HL,SP); also, RRA and RRB are used when
two d iffe ren t registers are specified in
the same instruction

RX A single byte in the IX or IY reg isters;
that is , a register in the set (IXH,IXL,
IYH,IYL); also, RXA and RXB are used when
two d iffe ren t registers are specified in
the same instruction

SP The current Stack Pointer in use
SR Stack Pointer Relative addressing mode

src Source location or contents
SX Short Index addressing mode
USP The User Stack Pointer
X Indexed addressing mode
XX One o f the 16-bit addressing registers

HL, IX, or *IY; also XXA and XXB are used
when two d iffe ren t registers are speci­
fied in the same instruction

XY One o f the 16-bit index registers IX or
IY

In the binary encoding o f the instruction , lower
case is used for the corresponding encoding o f the
assembler syntax.

Brackets ([and]) are used in the assembly
language syntax to indicate an optional f ie ld .
For example, the 16-bit addition instruction for
adding word data to the HL register is described
a3:

ADDW [HL,]src

This format means the instruction can be written
as:

ADDW HL,src
or

ADDW src

Assignment o f a value is indicated by the symbol
"<—". For example,

dst <-- dst + src

indicates that the source data is added to the
destination data and the resu lt is stored in the
destination location.

The notation Maddr(n)" is used to refer to b it Mn"
o f 8 given location, for example, dst(7) .

The reg ister f ie ld in the binary encoding o f an
instruction opcode is encoded as shown in Table
5-12.

Table 5-12. Encoding of 8-Bit Registers in
Instruction Opcodes

Register Encoding

A 111
B 000
C 001
D 010
E 011
H 100
L 101

The remainder of th is chapter consists o f the
individual descriptions of each Z280 MPU
instruction .

5-11

ADC
Add with Carry (Byte)

ADC [A,]src src = R, RXf IM, IR, DA, X, SX, RA, SR, BX

Operation: A A + src + C

The source operand together with the Carry flag is added to the accumulator and the
sum is stored in the accumulator. The contents of the source are unaffected. Twos-
complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Zi Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: ADC A,R I 10I0011 r 1

RX: ADC A,RX | 11 |<M111011110|0011 rx |
IM: ADC A,n | 11)001l i i o l | . n |
IR: ADC A,(HL) | 10)001|110|

DA: ADC A,(addr) 1111011110111lolooi[111II addiflow) | | addifhlgh) |

X: ADC A,(XX +dd) 1111 111 |1011110 |ooi | xx 11 d(low) | 1 d(hlah) |

SX: ADC A,(XY + d) |11|<M1|101||10|001|110|| d I

RA: ADC A,<addr> 111111111011110|0011000| I disp(low) I | dlapfhlgh) |

SR: ADC A,(SP + dd) 111101111011110|0011000| 1 d(1ow) I 1 d(hlgh) |

BX: ADC A,(XXA + XXB) 11110111101111010011 bx |

Field Encodings: 0 : 0 for IX, 1 for IY
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: ADC A,(HL)

Before instruction execution: After instruction execution:

AF:
HL:

Data memory

2454: 1

8
! 4

szxhxvnl
5 4

AF:
HL

6 1 00x1x000
2 4 5 4

Data memory:

2454: 1 8

5-13

ADC
Add With Carry (Word)

ADC dst,src dst = HL 1
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

Operation: dst dst + src + C

The source operand together with the Carry flag is added to the destination and the sum
is stored in the destination. The contents of the source.are unaffected. Twos-complement
addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared
C; Set if there is a carry from the most significant bit of the result; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

ADC HL,RR 111| 101110111 011 rr 10101

ADC XY,RR 111|«t>11110111111101110111011 rr | 010]

Field Encodings: 0 : 0 for ;x, 1 for iy
rr: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

Example: ADC HL,BC

Before instruction execution: After instruction execution:

F: szxhxvnl F: 00x0x001
BC: 2 3 0 8 BC: 2 3 0 8
HL: F 0 3 8 HL: 1 3 4 1

5-14

ADD
Add Accumulator to Addressing Register

ADD dst,A dst = HL, IX, IY

Operation: d s t d s t + A

The contents of the accumulator are added to the contents of the destination and the
result is stored in the destination. The contents of the accumulator are unaffected. The
contents of the accumulator are treated as a signed binary integer and are sign-
extended to 16 bits; twos-complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
s result is of the opposite sign from the operands; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

* ADD HL,A 111| 10111011101I10111011
ADD XY,A) 111 *1111011111110111011101110111011

Field Encoding: ♦ : 0 for IX, 1 for IY

Example: ADD HL,A

Before instruction execution: After instruction execution:

AF: E 2 szxhxvnc AF: E 2 00x1x001
HL 2 3 8 4 HL 2 3 6 6

Computation: accumulator is sign-extended.

FFE2
+ 2384

2366

5-15

ADD
Add (Byte)

ADD [AJsrc src = R, RXt IM, IR, DA, X, SX, RA, SR, BX

Operation: A A + src

The source operand is added to the accumulator and the sum is stored in the ac­
cumulator. The contents of the source are unaffected. Twos-complement addition is
performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: ADD A,R 110|000 j r I

RX: ADD A,RX |11|<*>1111011110|000 I rx I

IM: ADD A,n 1111000111011 n

IR: ADD A,(HL) | 10|0001110 I

DA: ADD A,(addr) 111101111011110|000 |11111 addr(low) | | addr(high) |

X: ADD A,(XX + dd) 111111111011110|000 | xx II d(low) I I cKhlgh) |

SX: ADD A,(XY + d) 111|<S>1111011110|000 |110| I d" I

RA: ADD A,<addr> 111|111|101||10|000|000|| disp(low) I I dl«p(high) |

SR: ADD A,(SP + dd) | 111011 1101 1110|000 |0001 I d(low) I I dfhlgh) "j

BX: ADD A,(XXA + XXB) | 11101111011110|000 | bx |

Field Encodings: <D:
rx:
xx:
bx:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: ADD A,(HL)

Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnc AF: 6 0 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454: 1 8

5-16

ADD
Add (Word)

ADD dst,src dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

Operation: dst dst + src •

The source operand is added to the destination and the sum is stored in the destination.
The contents of the source are unaffected. Twos-complement addition is performed.

Flags: S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

ADD HL,RR

ADD XY.RR
| 00| it 10011
|11|*11|101||00| vr 10011

Field Encodings: ♦ : 0 for IXV1 for IY
rr: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

Example: ADD HL,BC

Before instruction execution: After instruction execution:

F: szxhxvnc F: szx0xv01
BC: 2 3 0 8 BC: 2 3 0 8
HL F 0 3 8 HL 1 3 4 0

5 -17

ADDW
Add Word

ADDW [HLJsrc src = R, IM, DA, X, RA

Operation: H L « -H L + src

The source operand is added to the HL register and the sum is stored in the HL register.
The contents of the source are unaffected. Twos-complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: ADDW HL,RR

ADDW HL.XY
I 11|101|101||111 nr 11101

| 11101111011111110111011111110011101

IM: ADDW HL,nn | 111111110111111101110111111110111011 n(low byte) 11 n(high byte)]

DA: ADDW HL,(addr) | 11|0111101111l|l0111011111|010| 110 [i addr(low) j | addr(hlgh) |

X: ADDW HL,(XY + dd) | 11|11111011111|1011101111l| xy 111011 dflow) 11 dfhlgh) 1

RA: ADDW HL,<addr> | 111011110111111101110111111110111011 dlsp(low) || dlsp(hlgh) |

IR: ADDW HL,(HL) | 111011 1101 1111 [101 1101 111110001110 |

Field Encodings: *: o for ix. 1 for iy
rr: 000 for BC, 010 for DE, 100 for HL. 110 for SP

xy: 000 for (IX + dd), 010 for (IY + dd)

Example: . A DDW HL,DE

Before instruction execution: After instruction execution:

F:
DE
HL:

10x0x000
0 0 1 0
A 1 3 3

szxhxvnc
0 0 1 0
A 1 2 3

5-18

AND
AND

AND [A,]src

Operation: A A AND src

src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

A logical AND operation is performed between the corresponding bits of the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are both 1s; otherwise a 0
bit is stored. The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: AND A,R IIflLlPpI r.J
RX: AND A,RX lnl<M lll011110I100I rx I
IM: AND A,n |11|100|110|| n |
IR: AND A,(HL) 11o| 10011101

DA: AND A,(addr) 111(01111011110I100I11111 addiflow) I
X: AND A,(XX + dd) 111| 11111011110I100I XX 11 d(low) I 1 «Khigh) |

SX: AND A,(XY + d) ! 1l[0111101111011Q01110 j | d |
RA: AND A,<addr> 111|11111011110|100|000| l dtepdow) | I dtep(hlflh) |
SR: ’ AND A,(SP + dd) 111101111011110| 1001000 (| ddow) I 1 1
BX: AND A,(XXA + XXB) 111|01111011110|100| bx |

Field Encodings: <t>:
rx:
xx:
bx:

0 fpr IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: AND A,(HL)

Before instruction execution: After instruction execution:

AF: 4 8 szxhxpnc AF: 0 8 00x1x000
HL 2 4 5 4 HL 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454: 1 8

5 -1 *

BIT
Bit Test

BIT b,dst dst = R, IR, SX

Operation: Z NOT dst(b)

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is zero, otherwise the Zero flag is cleared to 0. The contents of the
destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruc­
tion; this field contains the binary encoding for the bit number to be tested. The bit
number must be between 0 and 7.

Flags: S: Unaffected
Z: Set if the specified bit is zero; cleared otherwise
H: Set
P: Unaffected
N: Cleared
C: Unaffected

Exceptions: N one

Addressing
Mode Syntax Instruction Format

R: BIT b,R |11|001|011||01| b | r |

IR: BIT b,(HL) l1 1 |001|0 1 1 ||011 b 11101

SX: BIT b,(XY + d) |11|4>11|101||11|001|011|| d I I 011 b 1110 |

Field Encoding: e : 0 for IX, 1 for IY

Example: BIT 1,A

Before instruction execution: After instruction execution:

00010110 szxhxpnc AF: 00010110 s0x1xp0c

CALL
Call

CALL [cc,]dst dst = IR, DA, RA

Operation: If the cc is satisfied then: SP ♦ - SP - 2
(SP) - PC

' PC dst

A conditional call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an uncondi­
tional call always transfers control to the destination address. The current contents of
the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the
address of the first instruction byte following the Call instruction. The destination address
is then loaded into the PC and points to the first instruction of the called procedure. At
the end of a procedure a return instruction (RET) can be used to return to the original
program .,

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.

When using DA mode with the CALL instruction, the operand is not enclosed in paren­
theses.

Flags: No flags affected

Exceptions: System Stack Overflow Warning

Addressing
Mode Syntax Instruction Format

IR: CALL cc,(HL) 111 011 1011111 cc 1001 \
CALL (HL) 111 011 1011| 11 001 1011 | “unconditional call” |

DA: CALL cc.addr 111 cc 10011 addrQow) |
CALL addr 111 001 1011 | addiflow) I I addrthlgh) I I “unconditional call” |

RA: CALL cc,<addr> 111 111 1011|11 cc 100 | | dlap(low) 11 dlsp(hlgh) J
CALL <addr> 111 111 1011f11 001 1011E S B I I E S S S H S I M | “unconditional call” |

Field Encoding: cc : OOO for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for P or NS, 111 for M or S

Example: CALL 2520H

Before instruction execution: ' After instruction execution:

PC: 1 6 3 0
SP: F F 2 6

Data memory:

FF24: 0 0
FF25: 0 0

PC: 2 5 2 0
SP: F F 2 4

Data memory:

FF24: 3 3
FF25: 1 6

CCF
Complement Carry Flag

CCF

Operation: C NOT C

The Carry flag is inverted.

Flags: S: Unaffected
Z: Unaffected
H: The previous state of the Carry flag
P: Unaffected . '
N: Cleared
C: Set if the Carry flag was clear before the operation; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

CCF |00|111|111|

Example: CCF

Before instruction execution: After instruction execution:

F: szxhxvnO F: szxOxvOI

5-22

C P
Compare (Byte)

CP [A,]src src = R, RX, IM, IB, DA, X, SX, RA, SR, BX

Operation: A - src

Flags:

The source operand is compared with the accumulator and the flags are set according­
ly. The contents of the accumulator and the source are unaffected. Twos-complement
subtraction is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and

the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: CP A,R 110I111r u
RX: CP A,RX I 11|<M1Tioil 1 to ll-ill rx 1
IM: CP A,n Inl111T110I 1 "_____l
IR: CP A,(HL) 1101111Tiiol

DA: CP A,(addr) 111I011Tioil 110|111|111J[addr(low) 11 addr(hlgh) |
X: CP A,(XX + dd) Inl111Tioil <Klow) || d(hlgh) |

SX: CP A,(XY + d) I n |e iiTioil 11011111 no i r
RA: CP A,<addr> iii|m Boil i ioim loooi r
SR: CP A,(SP + dd) 111I011Tioil i ioimioooir •flow) || d(hlgh) |
BX: CP A,(XXA + XXB) | 11I011Tioil | 10|1111 bx |

Field Encodings: <t>: o for ix. 1 for iy
rx : 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: CP A,(HL)

Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnc AF: 4 8 00x0x010
HL 2 4 5 4 HL 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454: 1 8

5-23

\

CPD
Compare and Decrement

CPD

Operation: A - (HL)
H L « -H L - 1
B C « - B C - 1

This instruction is used for searching strings of byte data. The byte of data at the loca­
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. Next the HL register is decremented by one, thus moving the pointer to the
previous element in the string. The BC register, used as a counter, is then decremented
by one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the

memory byte are equal; cleared otherwise
' H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

CPD | i i | i o i | io i 11 id|ioi|ooi |

Example:

Before instruction execution: After instruction execution:

Data memory:

1215: 3 B

AF: 3 B szxhxvnc AF: 3 B 01x0x01c
HL: 1 2 1 5 HL: 1 2 1 4
BC: 0 0 0 1 BC: 0 0 0 0

Data memory:

1215: 3 B

5-24

CPDR
Compare, Decrement and Repeat

CPDR

Operation: Repeat until BC = 0 or match: A - (HL)
H L ^ -H L - 1
BC ^ BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac­
cumulator until either an exact match is found or the string length is exhausted. The Sign
and Zero flags are set to reflect the result of the last comparison. The contents of the
accumulator and the memory bytes are unaffected. Twos-complement subtraction is per­
formed.

After each comparison, the HL register is decremented by one, thus moving the pointer
to the previous element in the string. The BC register, used as a counter, is then de­
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating that the contents of the accumulator and

the memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

CPDR |11|101|101||10|111|001 I

Example: CPDR

Before instruction execution: After instruction execution:

AF: F 3 szxhxvnc AF: F 3 01x0x11c
HL 1 1 1 8 HL 1 1 1 5
BC: 0 0 0 7 BC: 0 0 0 4

Data memory: Data memory:

1116: F 3 1116: F 3
1117: 0 0 1117: 0 0
1118: 5 2 1118: 5 2

5-25

CPI
Compare and Increment

CPI

Operation: A - (H L)
H L « -H L + 1
BC BC — 1

This instruction is used for searching strings of byte data. The byte of data at the loca­
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.

Next the HL register is incremented by one, thus moving the pointer to the next element
in the string. The BC register, used as a counter, is then decremented by one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the

/ memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

CPI 111|101| 1011110|100|001 |

Example: CPI

Before instruction execution: After instruction execution:

AF: 3 B szxhxvnc AF: 3 B 01x0x01c
HL 1 2 1 5 HL: 1 2 1 6
BC: 0 0 0 1 BC: 0 0 0 0

Data memory: Data memory:

1215: 3 B 1215: 3 B

v

CPIR
Compare, Increment and Repeat

CPIR

Operation: Repeat until BC = 0 or match: A - (HL)
H L ^ -H L + 1
B C « -B C - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac­
cumulator until either an exact match is found or the string length is exhausted. The
Sign and Zero flags are set to reflect the result of the comparison. The last contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.

After each comparison, the HL register is incremented by one, thus moving the pointer
to the next element in the string. The BC register, used as a counter, is then de­
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating that the contents of the accumulator and

the memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

CPIR |11|101|101 ||10|110|001 |

Example: CPIR

Before instruction execution: After instruction execution:

AF:
HL
BC:

F 3 szxhxvnc AF:
HL
BC:

F 3 01x0x11c
1 1 1 8 1 1 1 B
0 0 0 7 0 0 0 4

Data memory: Data memory:

1118: 2 5 1118: 2 5
1119: 0 0 v 1119: 0 0
111 A: F 3 111A: F 3

5-27

CPL
Complement Accumulator

CPL [A]

Operation: A NOT A

The contents of the accumulator are complemented (ones complement)* all 1 bits are
changed to 0 and vice-versa.

Flags: S: Unaffected
Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected

■ ' v ■

Exceptions: None

Addressing
Mode Syntax Instruction Format

CPL A | ooj10111111

Example: CPL A

Before instruction execution: After instruction execution:

2 8 szxhxvnc AF: D 7 szxlxvlc

5-28

\ '

CPW
Compare (Word)

CPW [HLJsrc src = R, IM, DA, X, RA

Operation: HL - src

The source operand is compared with the HL register and the flags are set accordingly.
The contents of the source and HL are unaffected. Twos-complement subtraction' is
performed.

Flags: , S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: CPW HL,RR |11|101|101||11| rr |111|
CPW HL,XY 111 |en 11011111110111011111110011111

IM: CPW HL,nn 11l|l1111011111 |l01 |l0 11111|110|11111 n(lowbyt.) 11 nfhlgh byte) |

DA: CPW HL,(addr) |11|011|101||11|101|101||11|010|111|| addr(low) || addr(Mgh) |

X: CPW HL,(XY + dd) 111 |m 11011111110111011111 |o m | h i] | ddow) |[(Khlgh) 1

RA: CPW HL,<addr> |11|011|101||11|101|101||11|110|111|| dtepQow) 11 dl*p(Mgh) |

IR: CPW HL,(HL) |ii |o n | io i| | t i | io i |ioi ||ti|ooo |iti]

Field Encodings: 0 : 0 for ix, 1 for iy
rr: 000 for BC. 010 for DE. 100 for HL, 110 for SP

Example: CPW HL.DE

Before instruction execution: After instruction execution:

F: szxhxvnc F: 10x0x010
DE 0 0 1 0 DE: 0 0 1 0
HL A 1 2 3 HL A 1 2 3

5-29

DAA
Decimal Adjust Accumulator

DAA

Operation: A Decimal Adjust A

The accumulator is adjusted to form two 4-bit BCD digits following a binary,
twos-complement addition or subtraction on two BCD-encoded bytes. The table below
indicates the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC,
DEC, NEG).

Operation of DAA Instruction

Hex Value in Hex Value in Number
C Before Upper Digit H Before Lower Digit Added C After H After

Operation DAA (Bits 7-4) DAA (Bits 3-0) to Byte DAA DAA
0 0-9 0 0-9 00 0 0
0 0-8 0 A-F 06 0 1

ADD 0 0-9 . 1 0-3 06 0 0
ADC 0 A-F 0 0-9 60 1 0
INC 0 9-F 0 A-F 66 1 1

(N = 0) 0 A-F 1 0-3 66 1 0
1 0-2 0 0-9 60 1 0
1 0-2 0 A-F 66 1 1

' 1 0-3 1 0-3 66 1 0

SUB 0 0-9 0 0-9 00 0 0
SBC 0 0-8 1 6-F FA 0 1
DEC 1 7-F 0 0-9 A0 1 0
NEG 1 6-F 1 6-F 9A 1 1

(N = 1)

The operation is undefined if the accumulator was not the result of a binary addition or sub­
traction of BCD digits.

Flags: * S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: See table above
P: Set if the parity of the result is even; cleared otherwise
N: Not affected
C: See table above

Exceptions: None

Addressing
Mode Syntax Instruction Format

DAA 100110011111

5-30

DAAExample:

Before instruction execution:

AF: I 2 8 szxOxpOl

After instruction execution:

AF: 8 8 00x0x001

5 - 3 1

DEC
Decrement (Byte)

DEC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX

Operation: dst ♦ “ dst - 1

Flags:

The destination operand is decremented by one and the result is stored in the destina­
tion. Twos-complement subtraction is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 80h; cleared otherwise
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: DEC R M j im j
RX: DEC RX |ii|e ii|io i||oo | rx 11011
IR: DEC (HL) | 00|110|1011

DA: DEC (addr) Ill|0 1 l[l0 l||0 0 |l1 l|l0 l|r
X: D EC (XX +dd) 111| 111 110111 001 xx 11011 r dflow) II (Khlflh) I

SX: DEC (XY + d) |ii|e ii|io i||o o |n o |io i|r . . < .._ J
RA: DEC <addr> | 11| 111110111 00 |ooo| 1011 r dl#p(low) II dlsp(hlgh) |
SR: DEC (SP + dd) | 11|011110111 001000| 10111~ dflow) II dflilgh) |

BX: DEC (XXA + XXB) j 11101111011} 00 [bx 11011

Field Encodings: <t>
IX

XX

bx

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for(HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: DEC (HL)
Before instruction execution: v

F: szxhxvnc
HL 2 4 5 4

Data memory:

2454: 8 8

After instruction execution:

F:
HL

10x0x01c
2 4 5 4

Data memory:

2454: 8 7

5 -32

DEC[W]
Decrement (Word)

DEC(W] dst
or
DECW dst

dst = R

dst = IR, DA, X, RA

Operation:
i

dst •*- dst - 1

The destination operand is decremented by one. Twos-complement subtraction is
performed.

Flags: No flags affected _

Exceptions: None

Addressing
Mode Syntax Instruction Format

R:

IR:
DA:

X:

RA:

DECW RR

DECW XY
DECW (HL)
DECW (addr)

DECW (XY + dd)

DECW <addr>

I ool nr 10111

I n | * 1l| 1011 roolioil Oil 1

11l|# 1l| toi l I oolooil 0111

|l l |o i l| l0 l | |o o |0 1 llo i l | | addition*) || addrQilgh) |

11l | l 1l| 1011 | oo| xy 101111 d(low) || dfhigty 1

|11 |a i1 |101 |fo o |m |o ii|| dlsp(low) || dlap(Mg>«l

Field Encodings: <D: 0 for IX, 1 for IY
rr: 001 for BC, 011 for DE, 101 for HL, 111 for SP

xy: 001 for (IX + dd), 011 for (IY + dd)

Example: DECW HL

Before instruction execution: After instruction execution:

HL 2 3 0 8 | HL: | 2 3 0 7

PI
Disable Interrupt

Dl mask Mask = Hex value between 0 and 7Fh

Operation: If mask(i) = 1 then MSR(i) 0

The designated interrupt control bits in the Master Status register (MSR) are cleared to
0, thus disabling all interrupts on these inputs; all other interrupt enables in the MSR are
unaffected. If no mask is present then all interrupts are disabled.
Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i.

Flags: No flags affected •

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

Dl 1111110I0111
Dl mask 111 |ioi11011101 |iio |m 11 mask [

Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
mask(7) must be zero.

Example: Df 23H

Before instruction execution: After instruction execution:

MSR: 0 0 7 F MSR: 0 0 5 C

5-34

DIV
Divide (Byte)

DIV [HL,]src src = R, RX, IM, DA, X, SX, RA, SR, BX

Operation: A HL -*-• src
L remainder

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H registef are unaffected. Both operands are treated as
signed, twos-complement integers and division is performed so that the remainder is of
the same sign as the dividend.

There are three possible outcomes of the DIV instruction, depending on the division and
the resulting quotient:

CASE 1: If the quotient is within the range - 27 to 27-1 inclusive, then the quotient is
left in the accumulator, the Overflow flag is cleared to 0, and the Sign and Zero flags are
set according to the value of the quotient.

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is outside the range -2 7 to 27-1, the accumulator remains un­
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.

Flags:* S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quptient lies outside the range from -2 7

to 27-1; cleared otherwise
N: Unaffected
C: Unaffected

Exceptions: Division Exception

Addressing
Mode Syntax Instruction Format

R: DIV HL,R 111|101110111111 r 11001
RX: DIV HL,RX | 1l|*111101 11 1111011 101 I 1111 IX liool
IM:
DA:

X:
SX:
RA:
SR:
BX:
IR:

DIV HL,n

DIV HL,(addr)

DIV HL,(XX +dd)

DIV HL,(XY + d)

DIV HL,<addr>

DIV HL,(SP + dd)

DIV HL,(XXA + XXB)
DIV HL,(HL)

111| 1111101~
| 1l|01l|t01
111)1111101
1 11|4>11|101

1111111I 101

111I0111101

111)0111101

til 1011101

11

11

11

11

11

11

11

1011101 l
1011101 l
101 101

1011101 l

1011101
1011101

11|11111001

111111110011 addfttow) 11 addrffriqh)

Hlxxliooirfl10") ir~*higty~
111110|10011

111000110011 dlapflow)

111000110011 dQow) ll djhjjgj) J

1011101 11111 bx 11001

100 100

5-35

Field Encodings:

Example:

0 : 0 for IX, 1 for IY
r x : 100 for high byte, 101 for low byte
x x : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

DIV HL,C
Before instruction execution: After instruction execution:

AF: 5 5 szxhxvnc AF: 0 1 OOxhxOnc
C: F E C: F E

HL: F F F ■»' HL F F F F

5 - 3 6

DIVU
Divide Unsigned (Byte)

DIVU [HLJsrc src = R, RX, IM, DA, X, SX, RA, SR, BX

Operation: A HL src
L remainder

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are not affected. Both operands are treated as
unsigned, binary integers.

There are three possible outcomes of the DIVU instruction, depending on the division
and the resulting quotient:

CASE 1: If the quotient is less than 28, then the quotient is left in the accumulator, the
Overflow and Sign flag? are cleared to 0 and the Zero flag is set according to the value
of the quotient.

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1 and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is greater than or equal to 28, the accumulator remains un­
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.

Flags: S: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient is greater than or equal to

28; cleared otherwise
N: Unaffected
C: Unaffected

Exceptions: Division Exception '

Addressing
Mode Syntax Instruction Format

R: DIVU HL,R 11l|l01110111111 r 1101 I
RX: DIVU HL,RX 1 1 101 111111011101 1|11| rx |101]
IM: DIVU HL,n |11|111|10111111101[101 I |11|111|101 II n]
DA: DIVU HL,(addr) |11|011|101||11|10||101 |i i ii in iio i ir addr(low) 11 adddhigh) |

X: DIVU HL,(XX + dd) | l l | l1 l| l0 1 11111101f101 | | l l | xx 1101 |f d(low) HI d(hloh) I
SX: DIVU HL,(XY + d) |11|<M1|101 11111101 H01 | |11|110|101 11 d]
RA: DIVU HL,<addr> ||11|101|101 | |11|000|101 II dispdow) || dtop(hlgh) |
SR: DIVU HLf(SP + dd) |11|011|101 111111011101 I |11|000|101 II d(low) "|| dfhlgh) |
BX: DIVU HL,(XXA + XXB) |11|011|101 11111101|l01 I |11| bx 1101 J

IR: DIVU HL,(HL) I n 1101*1101 ||11 |no |ioi |

5-37

Field Encodings: 0 : 0 for ix, 1 tor iy

nc: 100 for high byte, 101 for low byte
x x : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
b x : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: Dliu HL,C

Before instruction execution: After instruction execution:

AF: 5 5 szxhxvnc AF: 8 0 OOxhxOnc
C: 0 2 C: 0 2

HL 0 1 0 1 HL 0 1 0 1

5-38

DIVUW
Divide Unsigned (Word)

DIVUW [DEHLJsrc src = R, IM, DA, X, RA

Operation: HL«-DEHL + src
DE remainder

The contents of the DE and HL registers (with the most significant bits of the dividend in
the DE register) are divided by the source operand (divisor) and the quotient is stored in
the HL register and the remainder in the DE register. The contents of the source are
unaffected. Both operands are treated as unsigned, binary integers.

There are three possible outcomes of the DIVUW instruction, depending on the division
and the resulting quotient:

CASE 1: If the quotient is less than 216, then the quotient is left in the HL register and
the remainder is left in the DE register, the Overflow and Sign flags are cleared to 0, and
the Zero flag is set according to the value of the quotient.

CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is greater than 216 - 1 , then the DE and HL registers remain un­
changed, the Overflow flag is set to 1, and the Zero and Sign flags are cleared to 0.
Then the Division Exception trap is taken. t

Flags: _ S: Cleared
" 2i Set if the quotient or divisor is zero; cleared otherwise

H: Unaffected
V: Set if the divisor is zero or if the computed quotient is greater than or equal to

cleared otherwise
N: Unaffected ,
C: Unaffected

Exceptions: Division Exception

Addressing
Mode Syntax Instruction Format

R: DIVUW DEHL.RR 111| 101110111111 rr 1011 |
DIVUW DEHL,XY | i i |*11|101||11|101|101I l l l l io i l 0111

IM: DIVUW DEHL,nn 111| 11111011111110111011111 !m | 01111 nflow) 'll "QHqh) |
DA: DIVUW DEHL,(addr) |lllo il110111111101110111111011| 01111 addrflow)

X: DIVUW DEHL,(XY + dd) | 111 111 i 101111111011101 11111 xy 101111 dlspflow)] | dtyXMgty |
RA: DIVUW DEHL, <addr> 111]0111101111111011101 11111111101111 dltfXlow) 1| dtepOW 1
IR: DIVUW DEHL.(HL) |t l |0tl I 10 l||tl]101 I W1 ||11 |001 I Otl I

Field Encodings: ♦ : 0 for IX, 1 for IY
r r : 001 for BC, 011 for DE, 101 for HL, 111 for SP

x y : 001 for(IX +'dd), 011 for(IY + dd)

5 - 3 9

Example: DIVUW DEHL.6

Before instruction execution: After instruction execution:

ft szxhxvnc F: OOxhxOnc
DE 0 0 0 0 DE 0 0 0 4
HL 0 0 2 2 HL 0 0 0 5

5-40

DIVW
Divide (Word)

DIVW [DEHL,]src src —— .R, IM, DA, X, RA

Operation: HL DEHL src
DE remainder

The contents of the DE and HL registers (with the DE register containing the most signifi­
cant bits of the dividend) are divided by the source operand (divisor) and the quotient is
stored in the HL register. The contents of the source are unaffected. Both operands are
treated as signed, twos-complement integers and division is performed so that the re­
mainder is of the same sign as the dividend.

There are three possible outcomes of the DIVW instruction, depending on the division
and the resulting quotient:

CASE 1: If the quotient is within the range - 215 to 215-1 inclusive, then the quotient is
left in the HL register and the remainder is left in the DE register, the Overflow flag is
cleared to 0, and the Sign and Zero flags are set according to the value of the quotient.

CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is outside the range - 215 to 2 1 5 -1 , the DE and HL registers re­
main unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to
0. Then the Division Exception trap is taken.

Flags: S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient lies outside the range from - 215

to 215 - 1 ; cleared otherwise
N: Unaffected
C: Unaffected

Exceptions: Division Exception

Addressing
Mode Syntax Instruction Format

R: DIVW DEHL,RR | 11|101|101|| 1l| rr |010|
DIVW DEHL.XY | 11|<I>11| 10111 11| 101110111 1010|

IM: DIVW DEHL,nn | 11| 111 110111 111101110111111111101011 nflow) || n(high) |
DA: DIVW DEHL,(addr) | 1l|01111011| 11|1011101111110111010|| addiflow) || addifhlgh) |

X:
RA:

DIVW DEHL,(XY + dd)
DIVW DEHL,<addr>

1 111 11111011(11 |l0111011| 111 xy 101011 ddow) II dChlgh) |
1 1 l|01 l|l0 l|| 111101110111111111101011 dlapflow) 1| dlsp(hlgh) I

IR: DIVW DEHL,(HL) | 11|011 |KM || tl|i0 l|l01 111110011010 |

Field Encodings: <t>:
it :

xy:

0 for IX, 1 for lY

001 for BC, 011 for DE, 101 for HL, 111 for SP
001 for (IX + dd), 011 for (IY + dd)

5-41

Example: DIVW DEHL.6

Before instruction execution: After instruction execution:

F: szxhxvnc F: OOxhxOnc

DC 0 0 0 0 DC 0 0 0 4

H L 0 0 2 2 H L 0 0 0 5

5-42

DJNZ
Decrement and Jump if Non-Zero

DJNZ dst dst = RA

Operation: B B - 1
if B # 0 then PC dst

The B register is decremenjted by one. If the result is non-zero, then the destination ad­
dress is calculated and theh loaded into the Program Counter (PC). Control then passes
to the instruction whose address is pointed to by the PC. When the B register reaches
zero, control falls through to the instruction following DJNZ. This instruction provides a
simple method of loop control.
The destination address is calculated using Relative addressing. The displacement in the
instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction. The 8-bit displacement is treated as a signed, twos-complement
integer. Thus the branching range from the location of this instruction is -1 2 6 to •+129
bytes.

Flags: No flags affected

Exceptions: None
-

Addressing
Mode Syntax Instruction Format

RA: DJNZ addr |oo|oio|ooo|| disp |

Example: DJNZ 1050H

Before instruction execution: After instruction execution:

B:
PC:

1 2
1 0 7 6

B:
PC: 1 0

1 1
5 0

5-43

El
Enable Interrupt

El mask Mask = Hex value between 0 and 7Fh

Operation: If mask(i) = 1 then MSR(i) 1

The designated control bits in the Master Status register (MSR) are set to 1, thus enabl­
ing interrupts on these inputs; all other interrupt enables in the MSR are unaffected.
Note that during the execution of this instruction and the following instruction, all
maskable interrupts (whether previously enabled or not) are automatically disabled for
the duration of these two instructions.

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i. If no mask is present, all interrupts are enabled.

Flags: No flags affected %

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

El I 11I111I011I
El mask 111110111011101|111|11111 mask l

Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
mask(7) must be zero.

Example: El 49H

Before instruction execution: After instruction execution:

MSR: 0 0 0 0 MSR: 0 0 4 9

5-44

EX
Exchange Accumulator/Flag with Alternate Bank

Operation:

EX AF.AF'

A F«*AF'

The control bit mapping the accumulator and flag registers into the primary bank or the
auxiliary bank is complemented, thus effectively exchanging the accumulator and flag
registers between the two banks.

Flags: Loaded from F'

Exceptions: None

Addressing
Mode Syntax Instruction Format

EX AF.AF' | 0010011 0001

Example: EX AF,AF'
Before instruction execution: After instruction execution:

2 3 F 3 AF: 1 0 B 0
1 0 B 0 AF': 2 3 F 3

*

EX
Exchange Addressing Register with Top of Stack

EX (SP),dst dst = HL, IX, IY

Operation: (SP)^dst

The contents of the destination register are exchanged with the contents of the top of
stack. That is, the low-order byte contained in the register is exchanged with the con­
tents of the memory address specified by the Stack Pointer (SP), and the high-order byte
of the register is exchanged with the contents of the next highest memory address
(SP + 1).

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

EX (SP),HL |11|100|011 I
EX (SP),XY 1111*1111011111110010111

Field Encoding: * : 0 for IX, t for IY

Example: EX (SP),HL

Before instruction execution: After instruction execution:

HL 2 1 9 3 HL B 3 2 A
SP: 8 2 0 0 SP: 8 2 0 0

Data memory: Data memory:

8200: 2 A 8200: 9 3
8201: B 3 8201: 2 1

5-46

EX
Exchange H and L

EX'H.L

Operation: H *► L

The contents of the H and L registers are exchanged.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

EX H,L 11111011101 1111|1011111 |

Exampls: EX H,L

Before instruction execution: After instruction execution:

HL 1 2 3 4 HL 3 4 1 2

EX
Exchange HL with Addressing Register

EX src.HL src = DE, IX, IY

Operation: src HL

The contents of the HL register are exchanged with the contents of the source.

Flags: No flags affected *

Exceptions: None

Addressing
Mode Syntax Instruction Format

EX DE.HL |11|101|011|
EX XY.HL 1 1 10111111101

Field Encoding: Or 0 for IX, 1 for IY

Example: EX DE,HL

Before instruction execution: After instruction execution:

8 2 E 0 DE 3 8 F F
3 8 F F HL: 8 2 E 0

5-48

EX
Exchange with Accumulator

EX A,src src = R, RX, IR, DA, X, SX, RA, SR, BX

Operation: s rc ^ A

The contents of the accumulator are exchanged with the contents of the source.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: EX A,R | 1l |101| 10111 ool r 1111
RX: EX A,RX | 11|*11|101|| 1111011101||oo| IX |l1l|
IR: EX A,(HL) | 11| 101110111 00I1101111

DA: EX A,(addr) | 1l|oil|lO l|| 11110111011100|111111111 addr(low) || addr(high) |
X: EX A,(XX + dd) | 11|111| 10111 11110111011100| xx 111111 d(low) II <l(hloh) |

SX: EX A,(XY + d) I ii|e ii|io i|| 11110111011100|110|11111 ~d H
RA: EX A,<addr> | 11|111| 10111 1111011101] 1001000111111 d lap (low) 11 disp(high) |
SR: EX A,(SP + dd) | 1l|on| 101)1 1l | l0l | l011100|000| 11111 d(kmf) H " W l 1
BX: EX A,(XXA + XXB) I 1l|oil| 10111 1111011101] 1001 bx 11111

Field Encodings: 0 : 0 for ix, 1 for iy
nc: 100 for high byte, 101 for-low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)

* bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: EX A,B

Before instruction execution: After instruction execution:

A: 0 3 A: 8 2
B: 8 2 B: 0 3

5-49

EXTS
Extend Sign (Byte)

EXTS [A]

Operation: L A
If A(7) = 0, then H 00 else H FF

The contents of the accumulator, considered as a signed, twos-complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed
operands to longer signed operands. p

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

EXTS A 111I10111011101I10011001

Example: EXTS A

Before instruction execution: After instruction execution:

A: 8 2 A: 8 2
HL: 5 5 5 5 HL: F F 8 2

5-50

EXTS
Extend Sign (Word)

' EXTS HL _

Operation: If H(7) = 0, then DE 0000 else DE FFFF

The contents of the HL register, considered as a signed, twos-complement integer, are
sign-extended to 32 bits and the result is stored in the DE and HL registers, with the DE
register containing the most significant bits. This instruction is useful for conversion of
signed operands to larger signed operands.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax ’ Instruction Format

EXTS HL 1111101110111 0111011100 |

Example: EXTS HL

Before instruction execution: After instruction execution:

DE: 0 3 2 F DE F F F F
HL E F 3 0 HL E F 3 0

5-51

EXX
Exchange Byte/Word Registers with Alternate Bank

EXX

Operation: BC BC'
D E ^ D E '
HL HL'

The control bit mapping the byte/word registers into the primary or auxiliary bank of the
CPU registers is complemented, thus effectively exchanging the B, C, D, E, H, and L
registers between the two banks.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

EXX 11110111001 |

Example: EXX
Before instruction execution: After instruction execution:

BC: 2 3 A 0 BC: 3 8 0 F
DE: 1 6 5 3 DE: E 2 0 0
HL: 2 4 F F HL: 1 F A 3

BC': 3 8 0 F BC': 2 3 A 0
DE': E 2 0 0 DE': 1 6 5 3
HL': 1 F A 3 HL': 2 4 F F

\

5-52

HALT
HALT

Operation:

HALT

CPU Halts

The CPU operation is suspended until an interrupt or reset request is received. This in­
struction is used to synchronize the Z280 MPU with external events, preserving its state
until an interrupt or reset request is accepted. After an interrupt is serviced, the instruc­
tion following HALT is executed. While halted, memory refresh cycles still occur, and bus
requests are honored.
For the Z80 Bus configuration of the Z280 MPU, the HALT signal is asserted when the
Halt instruction is executed and remains asserted until an interrupt or reset request is
accepted. For the Z-BUS configurations of the Z280 MPU, a special Halt bus transaction is
performed when the halt instruction is executed.

If the Breakpoint-on-Halt control bit in the Master Status register is set to 1, the Halt
instruction is not executed, and Breakpoint-on-Halt trap is taken instead.

Flags: No flags affected

Exceptions: Breakpoint, Privileged Instruction

Addressing
Mode Syntax Instruction Format t

HALT |01|110|110|

5-53

IM
Interrupt Mode Select

IM p p = 0, 1,2, 3%

Operation: Interrupt Mode p

The interrupt mode of operation is set to one of four modes (see Chapter 6 for a descrip­
tion of the various modes for responding to interrupts). The current interrupt mode can
be read from the Interrupt Status register.

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

IM p |11|101|101||01| t 1110-1

P t
mode encoding

0 000
1 010
2 011
3 001

Example: IM 3

Before instruction execution: After instruction execution:

Interrupt Status register: Interrupt Status register:

F 0 0 0 F 3 0 0

IN
Input

IN dst,(C) dst = R, RX, DA, X, RA, SR, BX

Operation: d s t (C)

The byte of data from the selected peripheral is loaded into the destination. During the I/O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines A8-A15 and the
contents of the I/O Page register are placed on address lines A16-A23. The byte of data from
the peripheral is then loaded ihto the destination.

Flags: S: Set if the input data is negative; cleared otherwise
' l Z: Set if the input data is zero; cleared otherwise

H: Cleared
V: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format .

R: IN R,(C) 111)101)101110l| r 10001
RX: IN RX,(C) 11l|«1l|1011111110111011 |oi | n 10001
DA: IN (addr),(C) 111)0111101111111011101 | |o i |m | 00011 addrflow) 11 addiflilgh) I

X: IN (XX + dd),(C) 111|1111101111111011101 11011 xx 100011 ddow) || cKhlgH) |
RA: IN <addr>,(C) 11111111101111111011101 11011000|00011 dlapOow) || dlap<hlgh) |
SR: IN (SP + dd),(C) 111101111011111 |l01110111011000| 00011 ddow) II <XMgh> 1
BX: IN (XXA + XXB),(C) 1111011110111111101110111011 bx |ooo|

Field Encodings: *: 0 for ix. 1 for iy
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: IN L,(C)
Before instruction execution: After instruction execution:

F: szxhxvnc F: 00x0x00c
BC: 1 6 5 0 BC: 1 6 5 0
HL 0 0 2 3 HL 0 0 7 6

I/O Page register:

1 1

Byte 76h available at I/O port 111 650h

5-55

IN
Input Accumulator

IN A,(n)

Operation: A «-(n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the 8-bit peripheral address from the instruction is placed on the low
byte of the address bus, the contents of the accumulator are placed on address lines
A8 -A-i5 and the contents of the I/O Page register are placed on address lines A16-A 23.
The byte of data from the selected port is written into the accumulator.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

IN A,(n) |11|011|011|| n |

Example: IN A,(66H)

Before instruction execution:

A: | 4 2

After instruction execution:

A: F D

I/O Page register:

1 1

Byte FDh available at I/O port 11 4266h

5-56

INC
' Increment (Byte)

INC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX
J

Operation: d s t d s t + 1

The destination operand is incremented by one and the sum is stored in the destination.
Twos-complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 7Fh; cleared

otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: INC R tool r LlOOl
RX: INC RX |ll|* 1 l| l0 l||0 0 | rx 1100|
IR: INC (HL) Ioo|iio| 100 I

DA: INC (addr) 111101111011100| 111 110011 addrQow) I I addrlMflh) |
INC (XX +dd) 1 1 l|m | 1011100| xx 110011 dflow) | | dfhloh) |

SX:
RA:

INC (XY + d)
INC <addr>

|11|*11|1011 lOolllOllOO 11 d |
111|11111011 looloool 1001 f dlspoow) | | dtep(hlgh) I

SR: INC (SP + dd) 111|011| 1011100|000|10011 dpow) | | <KMgh) |
BX: INC (XXA + XXB) 111101111011 tool bx Moo I

Field Encodings: «>: o for ix. 1 for iy
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: INC (HL)
Before instruction execution: After instruction execution:

F: szxhxvnc F: 10x0x00c
HL 2 4 5 4 HL I___2 4 5 4

Data memory: * Data memory:

2454: 8 8 2454: 8 9

5-57

INC[W]
Increment (Word)

INC[W] dst dst = R
or
INCW dst dst = IR, DA, X, RA

Operation: dst dst + 1

The destination operand is incremented by one. Twos-complement addition is performed.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: INCW RR |00| rr 10111

INCW XY 111|<M1|101||00|100|011 |
IR: INCW (HL) 1111011110111 00|0001011 |

DA: INCW (addr) 111|011 [101 ll 00|010]01111 addr(low) || addr(hlgh) |

X: INCW (XY + dd) 1111111110111001 xy 101111 dflow) |T dfhigh) |
RA: INCW <addr> 11l|01111011roo|l10|011 II dlspflow) l! dlsp<high) |

Field Encodings: <t>: o for ix, 1 for iy
rr : 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy: 000 for (IX + dd), 010 for (IY + dd)

Example: INCW BC

Before instruction execution: After instruction execution:

BC: F 1 2 BC: 3 F 1 3

5-58

IND
Input and Decrement (Byte, Word)

IND
INDW

Operation: (HL) •*- (C)
B b — 1
HL AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aq-A ^ , and the contents of the
I/O Page register are placed on address lines A16-A 23 The byte or word of data from
the selected peripheral is then loaded into the memory location addressed by the HL
register. The HL register is then decremented by one for byte transfers or by two for
word transfers, thus moving the memory pointer to the next destination for the input. The
B register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

IND 111I10111011110I101I010I
INDW | 11|io i|101| |10I001|010|

Example: INDW

Before instruction execution: After instruction execution:

F: szxhxvnc F: sOxhxvIc
BC: 1 5 6 4 BC: 1 4 6 4
HLa 5 0 0 2 HL 5 0 0 0

I/O Page register: Data memory:

3 3 5002: 0 7
5003: 8I D

Word 8D07h available at I/O port 331564H

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-5V

INDR
Input, Decrement and Repeat (Byte, Word)

Operation:

INDR
IN DRW

Repeat until B = 0: (HL) (C)
B « - B - 1
HL AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transactions, the
peripheral address from the‘C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A8-A 15, and the contents of the
I/O Page register are placed on address lines A18-A 23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then decremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in­
struction, 256 bytes are input.

% This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
ZSet

H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INDR 11111011101 1110|1111010 I
INDRW I 11I101I101 [110I0111010 I

5-60

INDR

Before instruction execution: After instruction execution:

Example:

F: szxhxvnc F: slxhxvlc
BC: 0 3 4 6 BC: 0 0 4 6
HL 5 2 1 8 HL 5 2 1 5

I/O Page register: Data memory:

1 ̂ j 5216: F r |

Byte 9Ah available at
5217: 3 B

I/O port 170346h,
then byte 3BH available at

5218: 9 A 1
I/O port 170246h,

then byte FFH available at
I/O port 170146h.

i

INI
Input and Increment (Byte, Word)

INI
INIW

Operation: (HL)«-(C)
B B - 1

' HL AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aq-A-is, and the contents of the
I/O Page register are placed on address lines A16-A 23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode ^ Syntax Instruction Format

' INI 11111011101I I10I100I010 I
INIW 11111011101 1110|000|010 I

Example: INI

Before instruction execution: After instruction execution:

F: szxhxvnc F: sOxhxvtc
BC: 1 5 6 4 BC: 1 4 6 4
HL: 5 0 0 2 HL: 5 0 0 3

I/O Page register: Data memory:

3 3 5002: 7 A

Byte 7Ah available at
I/O port 331564h

5-62

INIR
Input, Increment and Repeat

_ . - -
INIRW

Operation: Repeat until B = 0: (HL) — (C)
B -e— B — 1
HL — AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the .
location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aq-A is , and the contents of the
I/O Page register are placed on address lines A16-A 23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in­
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
7i Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INIR I11I101I101M10I110I010I
INIRW |11|101|1011110|010|0101

5-63

Example: INIRW

Before instruction execution:

Word 66D7h available at
I/O port 310255h

then word A8FFh available
at I/O port 3101 55h-

4

After instruction execution:

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-64

IN[W]
Input HL

Operation:

IN[WJ HL,(C)

HL (C)

The word of data from the selected peripheral is loaded into the HL register. During the
I/O transaction, the 8 -bit peripheral address from the C register is placed on the low byte
of the address bus, the contents of the B register are placed on address lines Ae-A -15
and the contents of the I/O Page register are placed on address lines A16-A 23. Then one
word of data from the selected port is written into the HL register. For 8 -bit data buses,
the contents of L are undefined for external peripherals.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

IN HL.(C) I 11I101I101 Ijio llio lm I

Example: INW HL,(C)

Before instruction execution: After instruction execution:

BC: 2 6 5 0 BC: 2 6 5 0
HL: 3 3 3 3 HL: 8 7 4 D

I/O Page register:

1 0

Word 4D87h available at I/O port 1 02650h

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

)

JAP
Jump On Auxiliary Accumulator/Flag

JAF dst dst = RA

Operation: If auxiliary AF then PC dst

A conditional jump is performed if the auxiliary Accumulator/Flag registers are in use. If
the jump is taken, the Program Counter is loaded with the destination address; otherwise
the instruction following the JAF instruction is executed. This instruction employs an 8-bit
signed, twos-complement displacement from the Program Counter to permit jumps
within the range -1 2 5 to +130 bytes from the location of this instruction.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RA: JAF addr |11|011|101||00|101|000|| dlsp I

Example: JAF 5000H

Before instruction execution: After instruction execution:

Auxiliary Accumulator/Flag in use

4 F E 6 PC: 5 0 0 0

\

5-66

JAR
Jump On Auxiliary Register File In Use

JAR dst dst = RA

Operation: If auxiliary file then PC dst

A conditional jump is performed if the auxiliary register file is in use. If the jump is taken,
the Program Counter is loaded with the destination address/otherwise the instruction
following the JAR instruction is executed. This instruction employs an 8-bit signed, twos-
complement displacement from the Program Counter to permit jumps within the range
-1 2 5 to +130 bytes from the location of this instruction.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RA: JAR addr 111I01111011100I100I00011 disp 1

Example: JAR 42D0H

Before instruction execution: After instruction execution:

Auxiliary file in use

PC: 4 2 F 6 PC: 4 2 D 0

5-6 7

JP
Jump

JP [ccjdst dst = IR, DA, RA

Operation: If cc is satisfied then PC dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an uncondi-
tionai jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump instruction is executed. For the Relative Address mode, the PC value
used to calculate the destination address is the address of the next instruction following
the Jump instruction; a 16-bit signed twos-complement displacement from the PC per­
mits jumps within the range -32764 to +32771 bytes from the location of this instruc­
tion.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.

When using DA mode with the JP instruction, the operand is not enclosed in paren­
theses.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

IR: JP CC,(HL) |11|011|101 11111 cc 1010 |

JP (HL) 11111011001 | | “unconditional jump” |
JP (XY) 1111*111101 111111011001 | | “unconditional jump” |

DA: JP CC.addr 1111 cc 1010 11 addr(low) 11 addr(hlgh) |
JP addr 1111000| 011 11 addr(low) || addr(high) | | “unconditional jump” |

RA: JP CC,<addr> 111 |l111101 11111 cc 1010 11 dlsp(low) || disp(high) |
JP <addr> 11111111101 11111000| 011 11 dlspQow) 11 dlsp(high)] | “unconditional jump” |

Field Encodings: 0 ̂ 0 for ix, 1 tor iy
cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,

• 110 for P or NS, 111 for M or S

Example: JP C.5000H
Before instruction execution: After instruction execution:

szxhxvnl F: szxhxvnl
| 2 6 8 4 PC: r 5 0 0 0

5-68

JR
Jump Relative

JR [cc,]dst dst = RA

Operation: If the cc Is satisfied then PC dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “cc” specified in the instruction; an uncondi­
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump Relative instruction is executed. These instructions employ an 8-bit
signed, twos-complement displacement from the PC to permit jumps within the range
-1 2 6 to +129 bytes from the location of this instruction.
Either the Zero or Carry flag can be tested and a jump performed conditionally on the
setting of the flag.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RA: JR CC.addr I 001 cc 100011 dlsp II
JR addr |00|011|000|| d ip || I “unconditional jump” |

Field Encoding: cc: 100 for NZ, 101 for Z, 110 for NC, 111 for C

Example: JR NZ,6000H

Before instruction execution: After instruction execution:

sOxhxvnc F: sOxhxvnc
5 F D 4 PC: o> o 0 0

5-69

LD
Load Accumulator

LD dst,src dst = R, RX, IR, DA, X, SX, RA, SR, BX
src = A

or
dst = A
src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: dst src

The contents of the source are loaded Into the destination. The contents of the source
are not affected. Special instructions are provided so that the BC and DE registers can
also be used in the IR addressing mode.

Flags: No flags affected

Exceptions: None

Load into Accumulator
Addressing

Mode Syntax Instruction Format

R: LD A,R |o i|m | r I
RX: LD A,RX 11l|en |l0 l||0 l|l1 l| rx |
IM: LD A,n ! 00|11111101r n | '
IR: LD A(HL) | 01 |m 1 1101

LD A(RR) | 001 rra 10101

DA: LD A(addr) | 00|111101011 addr(low) 11 addr(hlgh) |

X: LD A,(XX + dd) 11111111101110111111 xxa] | d(low) || d(high) |

SX: LD A(XY + d) |11|*11|10111011111111011 d |

RA: LD A,<addr> 1111111110111011111 looo 11 disp(low) II disp(hlgh) |

SR: LD A,(SP + dd) 11110111101110111111000 11 d(low) II d(hlgh) |

BX: LD A,(XXA + XXB) 11110111101110111111 bx I

toad from Accumulator
Addressing

Mode Syntax Instruction Format

R: LD R,A ! 01| r |111|
RX: LD RX,A 1 1 l |# 1 l | l0 1 . | |0 1 | IX |1111

IR: LD (HL),A | 01|110|1111
LD (RR)A | 001 rrt> 10101

DA: LD (addr)A |00|l10|010j| addrflow) || addr(high) |
X: LD (XX + dd)A 111110111011100|xxb|011 11 dflow) || d(hlgh) |

SX: LD (XY + d)A | ii|e»ii 11011101 |iio | m 11 d |
RA: LD <addr>A |11|101|101||p0|100|011 || dlspflow) 11 dlsp(high) |
SR: LD (SP + dd)A | I l f lO l11 0 1 1 |00 |000 |011 11 d(low) || d<hlgh) |
BX: LD (XXA + XXB),A 11l|l01110111oo| bx 1011 1

R eid Encodings: e 0 for IX, 1 for IY
rx 100 for high byte, 101 for low byte

nra 001 for BC, 011 for DE
rrb 000 for BC, 010 for DE

xxa 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
xxb 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)

bx 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Examples: LD A,(HL)
Before instruction execution: After instruction execution:

A: 0 F A: 0 B
H L 1 7 0 C H L 1 7 0 C

Data memory: Data memory:

170C: 0 B 170C: 0 B

5 - 7 1

LD
Load from I or R Register

LD A,src src = I, R

O peration: A ^ src

The contents of the source are loaded into the accumulator. The contents of the source
are not affected. The Sign and Zero flags are set according to the value of the data
transferred; the Overflow flag is set according to the state of the Interrupt A Enable bit in
the Master Status register. Note: The R register does not contain the refresh address
and is not modified by refresh transactions.

Flags: S: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared
V: Set when loading the accumulator if the interrupt A Enable bit is set; cleared

otherwise
N: Cleared
C: Unaffected

E xceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

LD A,l |11|101|1011101|010|111 1
LD A,R 11111011101 1101|0111111 I

Exam ple: LD A,R

Before instruction execution: After instruction execution:

AF: 1 0 szxhxvnc AF: 4 2 00x0x10c
R: 4 2 R: 4 2

MSB: 4 0 7 F MSR: 4 0 7 F

5-72

LD
Load Immediate (Byte)

LD dst,n dst = R, RX, IR, DA, X, SX, RA, SR, BX

Operation: dst * - n

The byte of immediate data is loaded into the destination.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Form at

R: LD R,n lool r 111011 n I
RX: LD RX,n 1111*1111011 tool ix 111011 n I
IR: LD (HL),n loolliol11011 n 1

DA: LD (addr),n 111I01111011100I111111011 addrtlow)
X: LD (XX + dd),n 111111111011 lool xx 111011 d(k>w) 1 «(M0h> 1 1 " 1

SX: LD (XY + d)fn l l lU l l l l0 1 Il00ll10ll10ll d r : \~ 3
RA: LD <addr>,n I 11I1I 1I 101 I looloool 11011 (HwOowt Ijw hsm il I 1___" _ J
SR: LD (SP + dd),n |11|011|101 1100|000|11011 dflow) 1 dough) 1 [" 1
BX: LD (XXA + XXB),n |11|011|101 1100| bx 111011 n

Field Encodings: * : o for ix, 1 for iy
r x : 100 for high byte, 101 for low byte
xx : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
b x : 001 for (HL + IX), 010 for (HL + IY>, 011 for (IX + IY)

Example: LD A.55H
Before instruction execution:

A: 6 7

After instruction execution:

A: 5 5

5 - 7 3

LD
Load Register (Byte)

LD dst,src dst = R
src = R, RX, IM, IR, SX

or
dst = R, RX, IR, SX
src = R

Operation: d s t s r c

The contents of the source are loaded Into the destination.

Flags: No flags affected

Exceptions: None

Load into Register
Addressing

Mode Syntax Instruction Format

R: LD R1,R2 I Oil r1 I r2 I
RX: LD R*,RX I 11U 11H 01 I I 01 I r* IL eJ

LD RXA, RXB 11l|<t>1l| 1011101 |nca |rxbj
LD RX,R* 1111011110111011 rx k l

IM: LD R,n loot r 1110 11 n I
LD RX,n 111|<M1| 10111 001 rx I 110J L

IR: LD R,(HL) |01| r 1110 |
SX: LD R,(XY + d) | 11|<M*l| 1011101 I r Q E C _ j ____ I

Load from Register
IR: LD (HL),R |01|110| >r |

SX: LD (XY + d),R |11|<M1|101 110111101 r 11 d" I

Field Encodings: <t>: 0 for JX, 1 for IY
rx: 100 for high byte, 101 for low byte

rxa: 100 for high byte, 101 for low byte
rxb: 100 for high byte, 101 for low byte .

rxa and rxb refer to the same index register
r*: Only registers A, B, C, D, and E can be accessed

r1,r2: See Table 5-12

Example: LD A,B

Before instruction execution: After instruction execution:

A: 0 3 A: 8 2

B: 8 2 B: 8 2

5-74

LD
Load to I or R Register

LD dst,A dst = I, R

Operation: dst A

The contents of the accumulator are loaded into the destination. Note: the R register
does not contain the refresh address and is not modified by refresh transactions.

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instmction Format

LD l,A 111I1011101I I01I000I1111
LD R,A 111110111011101I00111111

Example: LD I,A

Before instruction execution: After instruction execution:

A: 0 D A: 0 D
I: 2 2 1: 0 D

5-75

LDA
Load Address

LDA dst.src dst = HL, IX, IY
sre = DA, X, RA, SR, BX

Operation: dstaddress(src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address translation mechanism in the MMU
is not used to determine if the address is valid.

Flags: No flags affected '

Exceptions: None !

Addressing
Mode Syntax Instruction Format

DA: LDA HL,(addr) I ool 1001001II addr(low) | I addr(high) |
LDA XY,(addr) |n |e ii|io i 8

.
8 § | addr(low) || addr(high) 1

X: LDA HL,(XX + dd) I 11I101|101 11 ool XX 1010 | d(low) 1 r d(high)
LDA XY,(XX + dd) I 11I011I1O11111110111011lOOl xx 1010 i r d(low) II d(hlgh)J

RA: LDA HL,<addr> |11|101|1011100|100|010 I I dlsp(low) I f dlsp(high)
LDA XY,<addr> |n |en |io i I|ll|t0 l|l01 |

i_
i

00|8 disp(low) 11 disp(hlgh) |
SR: LDA HL,(SP + dd) |11|101|101 11oo|ooo|010 I1 CHIOW) 1 r d(hlgh)]

LDA XY,(SP + dd) |11|011|1O1 111111011101 I 8 i 0 -L 0 1—
1

d(low) 11 <Khlgh) |
BX: LDA HL,(XXA + XXB) |11|101|101 11001 bx 1010 |

LDA XY,(XXA + XXB) |11|011|1O1"I [1111011101 I |00| bx 1010 |

Field Encodings: 0 : 0 for ix, 1 for iy
XX: 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
b x : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: LDA HL,(IX + 4)
Before instruction execution: After instruction execution:

2 3 0 8 HL: E 3 2 8
E 3 2 4 IX: E 3 2 4

Address calculation:

E324
+____ 4^

E328

5 - 7 :6

LDCTL
Load Control

LDCTL dst,src dst = (C), USP
src = HL, IX, IY

or
dst = HL, IX, IY
src = (C), USP

Operation: d s t s r c

This instruction loads the contents of a CPU control register into an addressing register,
or the contents of an addressing register into a CPU control register. The contents of the
source are loaded into the destination; the source register is unaffected. The address of
the control register is specified by the contents of the C register, with the exception of
the User Stack Pointer. The various CPU control registers have the following addresses:

Register
Address

(HexadecImaO

Master Status register (MSR) 00
Interrupt Status register 16
Interrupt/Trap Vector Table Pointer 06
I/O Page register * 08
Bus Timing and Initialization register * FF
Bus Timing and Control register * 02
Stack Limit register 04
Trap Control register * 10
Cache Control register * 12
Local Address register * 14
* 8-bit control register

When writing to an 8-bit CPU control register, only the low-order byte of the specified
source addressing register is written to the control register. When reading from an 8-bit
CPU control register, the control registeroontents are loaded into the low-order byte of
the destination addressing register, and the upper byte of the destination is undefined.

Note that the User Stack Pointer control register is accessed using special opcodes; the
contents of the C register are not used for these opcodes. This form of the Load Control
instruction allows the user-mode Stack Pointer to be accessed while in system-mode
operation.

Flags: No flags affected

Exceptions: Privileged Instruction

5-77

Addressing
Mode Syntax instruction Format

LDCTL HL,(C) 111 il011101 11 01 liool 110 i
LDCTL XY,(C) I 11I011I1O1 M11I101I101 II01I100I1101
LDCTL (C),HL 111110111011101110111101
LDCTL (QXY 111 k n | 101 ||n]io i|io i II01I10111101
LDCTL HL.USP 111110111011110I00011111
LDCTL XY,USP 111 |<P111101 I111110111011110I0001111 |
LDCTL USP.HL 111110111011110I0011111 |
LDCTL USP.XY 111 |<t>111101 111111011101 11 io|ooi |111 I

Field Encoding:

Example:

0: 0 for IX, 1 for IY

LDCTL (C),HL
Before instruction execution: After instruction execution:

C; 0 8 C: 0 8
HU 5 5 3 A HU 5 5 3 A

I/O Page register: I/O Page register:

0 0 3 A

5-78

Load and Decrement

LDD

Operation: (DE) (HL)
DE ^-DE - 1'
HL — HL - 1
B C -B C - 1

This instruction is used for block transfers of strings of data. The byte of data at the loca­
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then decremented by one, thus moving the
pointers to the preceding elements in the string. The BC register, used as a counter, is
then decremented by one.

Flags: & Unaffected
ZUnaffected

H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

LDD |n|iot|ioi||io|ioi|ooo|

Example: LDD

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc
HL 1 1 1 1 HL 1 1 1 0
DE

CMCM 2 2 DE 2 2 2 1
BC: 0 0 0 7 BC: 0 0 0 8

Data memory: Data memory:

1111: 8 8 1111: 8 8
9099- 8 6 2222: 8 8

5-79

LDDR
Load, Decrement and Repeat

LDDR

Operation: Repeat until BC = 0;(DE)«-(HL)
DE DE - 1
HL HL - 1
BC ^ BC - 1

This instruction is used for block transfers of strings of data. The bytes of data starting at the
location addressed by HL are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

LDDR I11I101I101I I 10I111I000I

Example: LDDR

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc
HL 1 1 1 7 HL 1 1 1 4
DE: 2 2 2 5 DE: 2 2 2 2
BC: 0 0 0 3 BC: 0 0 0 0

Data memory: Data memory:

1115: 8 8 1115: 8 8
1116: 3 6 1116: 3 6
1117: A 5 1117: A 5

2223: 9 6 2223: 8 8
2224: 1 1 2224: 3 6
2225: 2 6 2225: A 5

LDI
Load and Increment

LDI

Operation: (DE)«-(HL)
DE — DE + 1
HL HL + 1
BC^-BC - 1

This instruction is used for block transfers of strings of data. The byte of data at the loca­
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then incremented by one, thus moving the
pointers to the next elements in the strings. The BC register, used as a counter, is then
decremented by one.

Hags: S: Unaffected
Z: Unaffected
H: Cleared
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing *
Mode Syntax Instruction Format

LDI |ll|l0l|i01 ||10|100|000 I

Example: LDI

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc
HL 1 1 1 1 HL 1 1 1 2
DE: 2 2 2 2 DE- 2 2 2 3
BC: 0 0 0 7 BC: 0 0 0 6

Data memory: Data memory:

1111: 8 8 1111: 8 8
poop- 8 8 PPPP-. 8 8

5-81

LDIR
Load, Increment and Repeat

LDIR

Operation: Repeat until BC = 0: (DE) (HL)
-D E «-D E + 1
HL HL + 1
BC — BC - 1

This instruction is used for block transfers of strings of data. The bytes of data starting at
the location addressed by the HL register are loaded into memory starting at the location
addressed by the DE register. The number of bytes moved is determined by the contents
of the BC register. If the BC register contains zero when this instruction is executed,
65,536 bytes are transferred. The effect of incrementing the pointers during the transfer
is important if the source and destination strings overlap with the source string starting
at a higher memory address. Placing the pointers at the lowest address of the strings
and incrementing the pointers ensures that the source string is copied without destroy­
ing the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

LDIR 111 |ioi 11011110I110I000 I

•

5-82

Example: LDIR

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc
HL 1 1 2 5 HL 1 1 2 8
DE 2 2 1 0 DE 2 2 1 3
BC: 0 0 0 3 BG 0 Q 0 0

Data memory: Data memory:

1125: 5 A 1125: 5 A
1126: B 0 1126: B 0
1127: 7 6 1127: 7 6

2210: F F 2210: 5 A
2211: 9 A 2211: B 0
2212: 2 7 2212: 7 6

LDUD
Load in User Data Space (Byte)

LDUD dst,src dst = A
src = IR or SX in user data space

or
dst =5 IR or SX in user data space
src = A

Operation: d s t s r c

The destination is loaded with the contents of the source. In loading from the user data
space into the accumulator, the memory-mapping mechanism used in translating logical
addresses for data in user mode operation is used to translate the source address. In
loading into the user data space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for data in user-mode operation is used to translate
the destination address. See Chapter 7 for an explanation of this mechanism. The con­
tents of the source are unaffected.
The flags are set to reflect the success or failure of the transfer. If the transfer is un­
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared to 0; if the transfer is unsuccessful, the Carry flag
is set to 1. The other flags are unaffected if the transfer is successful. If the transfer is
unsuccessful, the value of the Write Protect (WP) bit in the Page Descriptor register
used by the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid
bit is loaded into the V flag.

Flags: S: Unaffected
Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;

unaffected otherwise
H: Unaffected
V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;

unaffected otherwise
N: Unaffected
C: Set if the transfer is unsuccessful; cleared otherwise

Exceptions: Privileged Instruction

Load from User Data Space
Addressing

Mode Syntax Instruction Format

IR: LDUD A,(HL) 111110111011110I00011101
SX: LDUD A,(XY + d) 111|<I»111101 111111011101 111010001110 11 d |

Load into User Data Space
IR: LDUD (HL),A 111110111011110I001 I

SX: LDUD (XY + d),A |ll]«1 l|l01 ||11|101|101 | J1010011110 11 d |

Field Encoding: *: o for ix, 1 for iy

Example: LDUD A,(HL)
Before instruction execution: After instruction execution:

AF: 0 F szxhxvnc AF: 5 5 szxhxvnO
HL: 8 D 0 7 HL 8 D 0 7

User data memory:

8D07: 5 5

User data memory:

8D07: 5 5

5-85

LDUP
Load in User Program Space (Byte)

A
IR or SX in user program space

or
IR or SX in user program space
A

Operation: d s t s r c

LDUP dst ,src dst
src

dst
src

Flags:

Exceptions:

The destination is loaded with the contents of the source. In loading from the user pro­
gram space into the accumulator, the memory-mapping mechanism used in translating
logical addresses for program fetches (instructions or data using PC Relative adddress­
ing mode) in user-mode operation is used to translate the source address. When loading
into the user program space from the accumulator, the memory-mapping mechanism

* used in translating logical addresses for program accesses (instructions or data using
PC Relative addressing mode) in user-mode operation is used to translate the destination
address. See Chapter 7 for an explanation of this mechanism. The contents of the
source are unaffected.
The flags are set to reflect the success or failure of the transfer. If the transfer is un­
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared; if the transfer is unsuccessful, the Carry flag is
set. The other flags are unaffected if the transfer is successful. If the transfer is unsuc­
cessful, the value of the Write Protect (WP) bit in the Page Descriptor register used by
the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid bit is
loaded into the V flag.

S: Unaffected
Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;

unaffected otherwise
H: Unaffected
V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;

unaffected otherwise
N: Unaffected
C: Set if the transfer is unsuccessful; cleared otherwise

Privileged Instruction

Load from User Program Space
Addressing

Mode Syntax Instruction Format

IR: LDUP A,(HL) 111|1011101 1110I0101110 I
SX: LDUP A,(XY + d) 111|4»111101 111111011101 | I10I0101110 II d |

5-86

Load into User Program Space
Addressing

Mode Syntax Instruction Format

IR: LDUP (HL)A I n 11011101I I10I011I110I
SX: LDUP (XY + d)A 1111* 1111011111 |ioi l ioi | |io|oii| iio 11 T " |

Field Encoding: ♦ : 0 for IX, 1 for IY , ■>
Example: LDUP A,(HL)

Before instruction execution: After instruction execution:

AF: 0 F szxhxvnc AF: F F szxhxvnO
HL 5 3 9 0 HU 5 3 9 0

User program memory:

5390: F F

User program memory:

5390: F F

5-87

LDW
Load Immediate Word

Operation:

LD[W] dst.nn
or
LDW dst.nn

d s t n n

dst = R
dst = IR, DA, RA

The two bytes of immediate data are loaded into the destination. For register destina­
tions, the low byte of the immediate operand is loaded into the low byte of the register
and the high byte of the operand is loaded into the high byte of the register. For memory
destinations, the low byte of the operand is loaded into the addressed location and the
high byte of the operand is loaded into the next higher memory byte (addressed location
incremented by one).

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: LDW RR,nn I 00| i t 100111 n(low) 11 n(hlgh) |

LDW XY,nn 111101111011| 00|100| 00111 n(low) || n(hlgh) |

IR: LDW (HL),nn I I 1 I0111101II ooloool001II nflow) || iXhlgh) I

DA: LDW (addr),nn |-1ll0111101II 00|01Q|.00l|| addiflow) || addrfhigh) 11 n(low) || n(high) |

RA: LDW <addr>,nn I 11I011I 101II 00)110100111 dlapdow) 11 dlsp(hlgh) 11 n(low) || n(hlgh) |

Field Encodings: IT: 000 for BC, 010 for DE, 100 for HL, 110 for SP
0 : 0 for IX, 1 for IY

Example: LDW (HL),3825H

Before instruction execution: After instruction execution:

HL: 2 3 9 1 HL 2 3

Data memory: Data memory:

2391: 1 E 2391: 2 5
2392: A 3 2392: 3 8

LD[W]
Load Addressing Register

LDJW] dst,src dst = HL, IX, IY
src = IM, DA, X, RA, SR, BX

or
dst = DA, X, RA, SR, BX
src = HL, IX, IY

Operation: dst src '

The contents of the source are loaded Into the destination. The contents of the source
are unaffected. For register-to-memory transfers, the effective address of the memory
operand corresponds to the low byte of the register; and the memory byte at the effective
address incremented by one corresponds to the high byte of the register.

Flags: No flags affected

Exceptions: None

Load into Addressing Register
Addressing

Mode Syntax Instruction Format

IM: LDW HL,nn I 00I100I001II nflow) II n(hkih) I
LDW XY.nn |11|*11|101||00|100|001|| nflow) || n(hlgh) [

DA: LDW HL,(addr) I ool 101101011 addrflow) 11 addr(Mgh> I
LDW XY,(addr) I l lk l l | l0 l | |0 0 | l0 l |o io | | addrflow) || addrfliigh) |

X: LDW HL,(XX + dd) 11111011101I I 001 xx 1100 11 dflow) II dOitah) 1
LDW XY,(XX + dd) Illl+1 lll01111111011101 1100! xx hOOll dflow) || d(hlgh) I

RA: LDW HL,<addr> 11l | l01110111 ooliocrlioo 11 dlapflow) || dl»p(hl*h) |
LDW XY,<addr> 1111̂ 111101111111011101 1100 |l00110011 dlapflow) 11 diapfliigh) |

SR: LDW HL,(SP + dd) 111|101110111 ooloool 100 11 dflow) 11 dfliigh) |
LDW XY,(SP 4 dd) 111|si11101 111111011101 110010001100 11 d(low) II d(hlgh) |

BX: LDW HL, (XXA + XXB)

LDW XY, (XXA 4 XXB)
1111101110111001 bx 1100 |

11l|«11|1011111|1011101 11001 bx |100|

5-89

Load from Addressing Register
Addressing

Mode Syntax Instruction Format

DA: LDW (addr),HL I ool lool 0101I addr(low) II addrfliigh) 1
LDW (addr),XY I 1110111101 I 10011001010 || addrflow) || addr(high) |

X: LDW (XX + dd),HL 111I10111011I ool XX 1101 11 dflow) II d(hiflh) I
LDW (XX + dd),XY 111I01111011I 11I101I 10I I lool XX 1101 11 dflow) I

RA: LDW <addr>,HL 111110111011100I1001101 11 dlsp(low) II dispflilgh) |
LDW <addr>,XY 1111* 111101111111011101 1100I1001101 ll dispflow) |

SR: LDW (SP + dd),HL [111101110111 ooloool 101 11 dflow) ll d(high) |

LDW (SP + dd),XY 1111*111101 | 111110111011 |oo|ooo [101 ll dflow) 11 d<hlgh) |

BX: LDW (XXA + XXB), HL 11111011101 | |00| bx 1101 |
LDW (XXA + XXB), XY 1111*111101 I11111011101 11001 bx |101 I

Field Encodings: * : o tor ix, 1 for iy
X X : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: LDW HL,(HL + IX)
Before instruction execution: After instruction execution:

HL: 1 5 0 2 HL: 0 3 A 2
IX: F F F E IX: F F F E

Data memory: Data memory:

1500: A 2 1500: A 2
1501: 0 3 1501: 0 3

Address calculation:

1502
*FFFE

1500

5-90

LD[W]
Load Register Word

LD[W] dst,src dst = BC, DE, HL, SP
src = IM, IR, DA, SX

or
dst = IR, DA, SX
src = BC, DE, HL, SP

Operation: dst src '

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For transfers between a register and memory, the effective address of
the memory operand corresponds to the low byte of the register and the memory byte at
the effective address incremented by one corresponds to the high byte of the register.

Flags: No flags affected

Exceptions: None

Load Into Register
Addressing

Mode Syntax Instruction Format

IM: LDW RR,nn | 00| rra100111 n(low) || n(Mgh) |
IR: LDW RR,(HL) 1 1 l|l0 l|l0 l||0 0 |rra |l1 0 |

DA: LDW RR,(addr) 1111101110111011 rrb 101111 addrtyow) 11 addr(hlgh) | (except HL)
SX: LDW RR,(XY + d> 111|011|1O1||11|1O1|1O1 ||00|rra |l10|| <F |

Load from Register
IR: LDW (HL),RR 111110111011100| rrb 1110 I

DA: LDW (addr),RR 111| 101110111011 rra 1011 11 addr(low) || addr(high) | (exceptHL)

SX: LDW (XY + d),RR 11l|ai11101111111011101 11001rrb 11101 [d |

Field Encodings: rra: OOO for BC, 010 for DE, 100 for HL, 110 for SP
rrb: 001 for BC, 011 for DE, 101 for HL, 111 for SP

0 : 0 for IX, 1 for IY

Example: LDW BC,3824H
Before Instruction execution: After instruction execution:

BC: 2 1 F 3 Bfc: 3 8 2 4

5-V1

LD[W]
Load Stack Pointer

LD[W] dst,src dst = SP
src = HL, IX, IY, IM, IR, DA, SX

or
dst = IR, DA, SX
src = SP

Operation: dst src

The contents of the source are loaded into the destination, where the source or destina­
tion is the Stack Pointer.

Flags: No flags affected

Exceptions: None

Load into Stack Pointer
Addressing

Mode Syntax Instruction Format

R: LDW SP.HL | i i|m |o o i|
LDW SP,XY 111 Ion 110111111 m l 0011

IM: LDW SP,nn LooL110|OQ1|| n(low) || n(hlgh) |
IR: LDW SP,(HL) (11|io i|10 1 | |00I110I1101

DA: LDW SP,(addr) 1111101110111 0111111011 11 addr(low) || addr(hlgh) |
SX: LDW SP,(XY + d) |11|*11|101||11|101|101||00|110|110|| d I

Load from Stack Pointer
IR: LDW (HL),SP |11|101|101||00|111|110|

DA: LDW (addr),SP 11111011101110111101011 11 addr(low) 11 addr(hlgh) |
SX: LDW (XY + d),SP Il1|*11|1d1||l1|101l101||00|111|110|| d |

Field Encoding: 4>: 0 for IX, 1 for IY

Example: LDW SP.IX
Before instruction execution: After instruction execution:

SP: 2 3 8 D SP: F F F 0
IX: F F F 0 IX: F F F 0

5-92

MULT
Multiply (Byte)

MULT [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: H L ^ A x src

The contents of the accumulator are multiplied by the source operand and the product is
stored in the HL register. The contents of the accumulator and the source are unaffected.
Both operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds sign-extension data.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is less than - 27 or greater than or equal to 27; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: MULT A,R I 111 101110111 111 r 1000 |
RX: MULT A,RX 11l|4>1l| 101111111011101 I1111 rx 10001

IM: MULT A,n 11l|1111101111111011101 | I 11I111I 000II n J
IR: MULT A,(HL) 111I10111011111I110I0001

DA: MULT A,(addr) 11110111101111111011101 I in imiooo 1 r addr(low) 11 addr(hlgh) I
X: MULT A,(XX + dd) 111I1111101111111011101 | l«l«l«»JI ddow) 11 d(hloh) |

SX: MULT A,(XY + d) | 11 |<M11101 111111011101 | 1111110100011 d
RA: MULT A,<addr> 111111111011111110111011111 loool 00011 dlsp(low) 11 dltp(high) |
SR: MULT A,(SP + dd) 11110111101111111011101 I1111000| 00011 d(low) 11 d(hlgh) |
BX: MULT A,(XXA + XXB) 11110111101111111011101 I 1111 bx 10001

Field Encodings: *: o for ix, 1 for iy
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
b x : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: MULT A,H
Before instruction execution: After instruction execution:

Alf: F E szxhxvnc AF: F E 10xhx0n0
HL 1 2 0 0 HL F F D C

5-VJ

MULTU
Multiply Unsigned (Byte)

MULTU [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: HL« - A x src

The contents of the accumulator are multiplied by the source operand and the product
is stored in the HL register. The contents of the accumulator and the source are
unaffected. Both operands are treated as unsigned, binary integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds zero.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 28; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: MULTU A,R M 1011 101Hu] r | 001 I
RX: MULTU A,RX M 0111 101111111011101 ||11| rx 1001 |
IM: MULTU A,n M 111110111 1111011101 111111111001 || n]
IR: MULTU A,(HL) M 1011101 11 111110| 001 |

DA: MULTU A,(addr) |n | 0111101 Hill 1011101 ||11|111|001 || addr(low) 11 addr(high) |
X: MULTU A,(XX + dd) M 1111101 111.111011101 11111 XX 1001 II d(low) l l d(hlBh) |

SX: MULTU A,(XY + d) N 0111 101 ll11l1011101 11111110| 001 || d]
RA: MULTU A,<addr> M 111|101 111111011101 11111000| 001 II disp(low) 1 1 dlsp(hlgh) |
SR: MULTU A,(SP + dd) l11l011)101 111111011101 | |ii |ooo| 001 II d(low) l l d(hlflh) |
BX: MULTU A,(XXA + XXB)

lu l0111101 Il11l 1011101 11111 bx 1001 I

Field Encodings: 0 :
rx:
xx:
bx:

0 for IX, 1 for fY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: MULTU A,H
Before instruction execution: After instruction execution:

AF: F E szxhxvnc AF: F E 00xhx0n1
HL: 0 2 F B HL: 0 1 F C

5-94

/

MULTUW
Multiply Unsigned (Word)

MULTUW [HLJsrc • src = R, IM, DA, X, RA

Operation: DEHL HL x src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as unsigned, binary integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be represented correctly in 16 bits and the DE register
merely holds zero.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 216; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: MULTUW HL,RR | 1l|l01110111 111 rr |0111

MULTUW HL,XY ! 111#1111011111110111011111110010111
IM: MULTUW HL,nn 11111111 lOll 111110111011111111010111 r n(low) II nOilgh) 1

DA: MULTUW HL,(addr) 1111011 j 1011| 111101110111111010|01111 addr(low) || addr(high) |

X: MULTUW HL,(XY + dd) 1111111110111111101110111111 xy 101111 d(low) || d(hlgh) |

RA: MULTUW HL,<addr> 111|01111011111110111011 j 11|110|01111 dltp(low) 11 disp(hlgh) I

IR: MULTUW HL(HL) • In |on | io i] | t i | io i | x>i| |ii |ooo10111

Field Encodings:

Example:

0 for IX, 1 for IY
rr: 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy: 000 for (IX + dd), 010 for (IY + dd)

MULTUW HL,DE
Before instruction execution: After instruction execution:

F: szxhxvnc
DE 0 0 0 A
HL 0 0 3 1

F: OOxhxOnO
DE 0 0 0 0
HL 0 1 E A

5-95

MULTW
Multiply (Word)

MULTW [HLJsrc src = R, IM, DA, X, RA

Operation: DEHL HL x src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as signed, twos-complement integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in 16 bits and the DE register
merely holds sign-extension data.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is less than — 215 or greater than or equal to 215; cleared

otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: MULTW HL,RR |11|101|101||11| rr |010|

MULTW HL,XY 11110111101111111011101 111111001010 | .

IM: MULTW HL,nn 11111111101111111011101 111111101010 11 n(low) || n(high) |

DA: MULTW HL,(addr) 111101111011 [1111011101 111110101010 I f addr(low)] | addr(high) |

X: MULTW HL,(XY + dd) 11111111101111111011101 11111 xy |010 11 d(low) 11 d(hlgh) |

RA: MULTW HL,<addr> 11110111101111111011101 1111|110|010 11 dlsp(low) || disp(high) |

IR: MULTW HL.flHL) |n |on 1101111111011 io il |n|ooo| oio|

Field Encodings: <t>: o for ix, 1 for iy
rr: 000 for BC, 01Q for DE. .100 for HL, 110 for SP

x y : 000 for (IX + dd), 010 for (IY + dd)

Example: MULTW HL,DE
Before instruction execution: After instruction execution:

F: szxhxvnc F: OOxhxOnO
DE 0 0 0 A DE 0 0 0 0
HL 0 0 3 1 HL 0 1 E A

5-96

NEG
Negate Accumulator

NEG [A]

Operation: A-*-—A

The contents of the accumulator are negated, that is, replaced by its twos-complement
value. Note that 80h is replaced by Itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

Flags: S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero, cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of
' t h e result (bit 4); cleared otherwise

V: Set if the contents of the accumulator was not 80̂
before the operation; cleared otherwise.

N: Set
C: Set if the contents of the accumulator was not 00^ before the operation; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

NEG A fn|ioi|ioi||oi|ooo]ioo]

Example: NEG A

Before instruction execution: After instruction execution:

AF: 2 8 szxhxvnc AF: | D 8 | 10x0x010

5-97

NEG
Negate HL

NEG HL

Operation: HL - HL

The contents of the HL register are negated, that is, replaced by its twos-complement
value. Note that 8000h is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

Flags: S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of

the result (bit 12); cleared otherwise
V: Set if the contents of HL was 8000h before the operation; cleared otherwise
N: Set
C: Set if the contents of HL was not 000H before the operation; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

NEG HL 11111011101 1 [01 |ooi 1100 |

Example: NEG HL

Before instruction execution: After instruction execution:

szxhxvnc

0 1 2 1

10x1x010

F E D F

5-98

NOP
No Operation

Operation:

NOP

None

No operation.

Flags: No flags affected

Exceptions: None .
Addressing

Mode Syntax instruction Format

NOP | oo |ooo| 000 |

5 -99

OR
OR

OR [AJsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A ♦ -A OR src

A logical OR operation is performed between the corresponding bits in the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit Is
stored wherever either of the corresponding bits in the two operands is one; otherwise a
0 bit is stored. The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Cleared

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: OR A,R |10|110| r |
RX: OR A,RX 111 |<M11101 | 110|1101 rx I
IM: OR A,n 1111110|1101I n |
IR: OR A,(HL) 110|110|110 I

DA: OR A,(addr) 111101111011 110|1101111 I f addr(low) || addr(high) |
X: OR A,(XX + dd) 111|1111101 I |10|110| XX | f d(low) 11 d(high) |

SX: OR A,(XY + d) |11|<M1|101 | i io | i io |n o ir 0 I
RA: OR A,<addr> 111|l111101 I |10|110|000 I f dlsp(low) || dl«p(hlflh) |
SR: OR A,(SP + dd) 11110111101 I |io |no |ooo ir dflow) 11 d(high) |
BX: OR A,(XXA + XXB) 11110111101 I 110|1101 bx I

Field Encodings:

Example:

: 0 for IX, 1 for IY
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

OR A,(HL)

Before instruction execution: After instruction execution:

AF: 4 8 szxhxpnc AF: 5 8 00x0x000
HL: 2 4 5 4 HL- 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454: 1 8

v

5-100

OTDR
Output, Decrement and Repeat (Byte, Word)

OTDR
OTDRW

Operation: Repeat until B = 0: (C)-*-(HL)
B B — 1
HL AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aq-A-is, and the contents of the
I/O Page register are placed on address lines A-|6-A 23. The byle or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then
decremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing the B
register is zero, the instruction is terminated, otherwise the output sequence is repeated.
Note that if the B register contains 0 at the start of the execution of this instruction, 256
bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

OTDR 111110111011 fiolm l 011 |

OTDRW 11l|l01 |l0 1111010111011 |

5-101

Example: OTDR

Before instruction execution: i After instruction execution:

F: szxhxvnc F: slxhsvlc
BC: 0 3 4 6 BC: 0 0 4 6
HL 5 2 1 8 HL: 5 2 1 5

I/O Page register: Byte 9Bh written t0 ,/0 port 170346H,
—-------------------- then byte FFh written to I/O port 170246h ,

1 ^ I then byte A 3h written to I/O port 1701 4 6 h -

Data memory:

5216: A 3
5217: F F
5218: 9 B

5-102

OTIR
Output, Increment and Repeat (Byte, Word)

o u r
OTIRW

Operation: Repeat until B = 0 : (C) +- (HL)
B — B - 1
HL AUTOINCREMENT (by one if byte, by two if word)

This instruction is used for block output of strings of data. The string of data is loaded
into the selected peripheral from memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A-is, and the contents of the
I/O Page register are placed on address lines A-16-A 23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then in­
cremented by one for byte transfers or by two for word transfers, thus moving the
memory pointer to the next source for the output. If the result of decrementing B is zero,
the instruction is terminated, otherwise the output sequence is repeated. Note that if the
B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Rags: S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

OTIR 111 hoi I1011 | io |i i o |o ii |
OTIRW 111 |ioi 11011110101010111

5-103

Example: OTIRW

Before instruction execution: After instruction execution:

F: szxhxvnc F: slxhxvlc
BC: 0 2 4 4 BC: 0 0 4 4
HL 5 0 0 4 HL 5 0 0 8

I/O Page register:

3 1

Data memory:

5004: 9 0
5005: 3 A
5006: 6 7
5007: B 8

Word 3A90h written to I/O port 310244h ,
then word B867h written to I/O port
310144h.

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-104

OUT
Output

Operation:

OUT (C),src src = R, RX, DA, X, RA, SR, BX

(C) s r c

The byte of data from the source is loaded into the selected peripheral. During the I/O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Aq-A-is, and the
contents of the I/O Page register are placed on address lines A-I6 -A 23. The byte of data
from the source is then loaded into the selected peripheral.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

R: OUT (C),R 111I101I 101 Moil r 10011

RX: OUT (C),RX 111 |en110111111101 hoi Moil rx 1001 |

DA: OUT (C),(addr) 11110111101111111011101 | |oi |1111001 II addr(low) 11 addr(high) |

X: OUT (C),(XX + dd) 111111111011111 f 1011101 11011 xx 1001 11 dflow)]| d(hlgh) |

RA: OUT (C),<addr> |11|111| 1011111110111011|0tlooofooi || dtap(low) l! dtep(hlgli) |

SR: OUT (C),(SP + dd) 111 toil1101111111011101 j|oi|000|001] | d0mf) II d(Mgh)]

BX: OUT (C),(XXA + XXB) 111101111011111)1011101 11011 bx |001 |

Field Encodings: ♦ : 0 for IX, 1 for IY
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: OUT (C),IXH
Before instruction execution: After instruction execution:

BC:
IX:

1 6______5 0
F D 0 7

Byte FDh written to
I/O port 321650m

I/O Page register:

OUT
Output Accumulator

OUT (n),A

Operation: (n)«-A

The contents of the accumulator are loaded Into the selected peripheral. During the I/O
transaction, the 8 -bit peripheral address from the instruction is placed on the low byte of
the address bus, the contents of the accumulator are placed on address lines Ag-A-is,
and the contents of the I/O Page register are placed on address lines A16-A 23. Then the
contents of the accumulator are written into the selected port.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode

Example:

Syntax Instruction Format

OUT (n),A | i i |o io lo ii|r n I

OUT (55H),A

Before instruction execution:

A: 4 2

I/O Page register:

1 1

After instruction execution:

Byte 42h written to
I/O port 114255h

5 - 1 0 6

OUTD
Output and Decrement (Byte, Word)

OUTD
OUTDW

Operation: (C) - (H L)
B •<— b — 1
HL — AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A8-A15, and the contents of the I/O
Page register are placed on address lines A 16-A23. The byte or word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The B
register, used as a counter, is decremented by one. The HL register is decremented by one
for byte transfers or by two for word transfers, thus moving the memory pointer to the next
source for the output.

Flags: & Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

OUTD I11I101I101I I 10I101I0111
OUTDW |ii|io i|io i||io |ooi|oii |

5 -107

Example: OUTDW

Before instruction execution: After instruction execution:

F:

BC:
HL:

szxhxvnc F: sOxhxvIc
1 5 6 4 BC: 1 4 6 4
5 0 0 6 HL: 5 0 0 4

I/O Page register: Word 8D 07h written to
I/O port 331564h

Data memory:

5007:

0 7

8 D

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-108

OUTI
Output and Increment (Byte, Word)

OUTI
OUTIW

Operation: (C) — (HL)
B w— b — 1
HL — AUTOINCREMENT HL (by one if byte, by two if word)

'

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A q-A - is , and the contents of the
I/O Page register are placed on address lines A 16- A 23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then incre­
mented by one for byte transfers or by two for word transfers, thus moving the memory
pointer to the next source for the output.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

•
Instruction Format

OUTI I i i f io i I 101I I 10I100I011I
OUTIW 111)10111011110|000|011 [

Example: OUTI

Before instruction execution: After instruction execution:

F: szxhxvnc F: sOxhxvIc
BC: 1 5 6 4 BC: 1 4 6 4
HL: 5 0 0 2 HL 5 0 0 3

I/O Page register: Byte 7Bh written to
I/O port 331564h

3 3

Data memory:

5002: 7 B

5-109

OUT[W]
Output HL

OUT[W] (C),HL

Operation: (C) - H L

The contents of the HL register are loaded into the selected peripheral. During the I/O
transaction, the 8-bit peripheral address from the C register is placed on the low byte of
the address bus, the contents of the B register are placed on address lines A8- A 15, and
the contents of the I/O Page register are placed on address lines A 16- A 23. Then the con­
tents of the HL register are written into the selected port. For 8-bit data buses, only the
contents of the H register are transferred during a single bus transaction.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

OUTW (C),HL 111I101I1011110I11111111

Example: OUTW (C),HL

Before instruction execution: After instruction execution:

Word 843Ah written

to I/O port 172650h

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5-110

PCACHE
Purge Cache

p c a c h e —
I ' . ;■ .

Operation: Ail cache entries invalidated

This instruction is used to invalidate all entries in the cache.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

PCACHE 11111011101110111001101 |

POP
POP

POP dst dst = BC, DE, HL, AF, IX, IY, IR, DA, RA

Operation: dst (SP)
SP — SP + 2

The content of the memory location addressed by the Stack Pointer (SP) are loaded into the
destination. For register destinations, the byte at the memory location specified by the
contents of the SP is loaded into the low byte of the destination register (or Flag register for
AF) and the byte at the memory location one greater than the contents of the SP is loaded
into the high byte of the destination register. The SP is then incremented by two. If the
destination is a memory location, the destination and the top of the stack must be
non-overlapping.

Flags: No flags affected (unless dst = AF)

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: POP RR |11| rr 10011
POP XY |11|<M1|101||11|100|001 |

IR: POP (HL) | 1110111101 1111 |ooo| 001 I

DA: POP (addr) 1111011110111111010| 001 11 addr(low) 11 addr(high) |

RA: POP <addr> 1111011110111111110| 001 || disp(low) || disp(high) |

Field Encodings: n>: o tor ix. 1 for iy
rr: 000 for BC, 010 for DE, 100 for HL, 110 for AF

Example: POP BC
Before instruction execution: After instruction execution:

BC: 2 3 0 8 BC: 0 9 2 3
SP: F E 3 2 SP: F E 3 4

Data memory: Data memory:

FE32: 2 3 • FE32: 2 3
FE33: 0 9 FE33: 0 9

i 5-112

PUSH
Push

PUSH src src = BC, DE, HL, AF, IX, IY, IM, IR, DA, RA

Operation: SP SP - 2
(SP) src

The Stack Pointer (SP) is decremented by two and the source is loaded into the location
addressed by the updated SP; the low byte of the source (or Flag register for AF) is load­
ed into the addressed memory location and the upper byte of the source is loaded into
the addressed memory location incremented by one. The contents of the source are
unaffected. If the source is a memory location, the source and the new top of the stack
must be non-overlapping.

Flags: No flags affected

Exceptions: System Stack Overflow Warning

Addressing
Mode Syntax Instruction Format • ‘

R: PUSH RR I 111 " l lQ l l
PUSH XY 111|<M1|101| 11111001101 |

IM: PUSH nn i 11111111011111111011011r n(low) If n(high) |
IR: PUSH (HL) 11110111101111110001101 |

DA: PUSH (addr) 1111011110111111010|10111 addr(low) || addrfhigh) |

RA: PUSH <addr> 11110111101111111101101 11 disp(low) || disp(high) |

Field Encodings: <t>: o for ix, 1 for iy
rr: 000 for BC, 010 for DE, 100 for HL, 110,for AF

Example: * PUSH BC
i , ■

Before instruction execution: After instruction execution:

BC: 0 9 2 3 BC: 0 9 2 3
SP: F E 3 4 SP: F E 3 2

Data memory: Data memory:

FE32: 0 0 FE32: 2 3
FE33: 0 0 FE33: 0 9

5-113

Reset Bit

Operation:

RES b.dst dst = R, IR, SX

dst(b) 0

The specified bit b within the destination operand is cleared to 0. The other bits in the
destination are unaffected. The bit number b must be between 0 and 7.

Flags: No flags affected >

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: RES b,R I11I001I011||lOf b 1 r 1
IR: RES b,(HL) 111I00110111110I b I110I

SX: RES b,(XY + d) |ll|<Ml|l0l||ll|00l|0111| d 11101 b 1110 |

Field Encoding: * : 0 for IX, 1 for IY

Example: RES 1,A
Before instruction execution: After instruction execution:

A: 00010110 A: 00010100

5- 114

RET
Return

RET [cc]

Operation: If the cc is satisfied then: P C (S P) /
S P -S P + 2

I

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry,
Sign, or Parity/Overflow flags is checked to see if its setting matches the condition code
“cc” encoded in the instruction; if the condition is not satisfied, the instruction following the
Return instruction is executed, otherwise a value is popped from the stack and loaded into
the Program Counter (PC), thereby specifying the location of the next instruction to be
executed. For an unconditional return, the return is always taken and a condition code is
not specified.
The following figure illustrates the format of the PC on the stack for the Return instruction:

SP before

SP after

PC (low)
PC (high)

1 byte

low address

high address

Hags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RET cc
RET

1111 cc |ooo)
11110011001 I

Field Encodings: cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110for Por NS. 111 forMorS

Example: RET NC

Before instruction execution:, After instruction execution:

F: szxhxvnO F: szxhxvnO
PC: 2 5 2 8 PC: 1 6 3 3
SP: F F 2 4 SP: F F 2 6

Data memory: Datamemory:

FF24: 3 3 FF24: 3 3
FF25: 1 6 FF25: 1 6

5-115

RETI
Return from Interrupt

RET,

Operation: PC (SP) %
SP SP + 2

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by an interrupt while in interrupt mode 0, 1, or 2. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC).

The following figure illustrates the format of the PC on the stack for the Return from In­
terrupt instruction:

SP before -►

SP after

PC (low)
PC (high)

1 byte

low address

high address

A special sequence of bus transactions is performed when this instruction is
encountered in order to control Z80 family peripherals; see Chapter 12.

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

RETI |ll|i0lfl0l||0l|00l|l01 |

Example: RETI

Before instruction execution: After instruction execution:

PC: 8 4 1 0 PC: 1 9 7 2
SP: F F C 6 SP: F F C 8

Data memory: Data memory:

FFC6: 7 2 FFC6: 7 2
FFC7: 1 9 FFC7: 1 9

5-116

I . '

RETIL
Return from Interrupt Long

RETIL

Operation: PS •*- (SP)
SP •*- SP + 4

This instruction is used to return to a previously executing procedure at the end 6f a pro­
cedure entered by an interrupt while in interrupt mode 3 or a trap. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC)
and Master Status register (MSR).

The following figure illustrates the format of the program status (PC and MSR) on the
system stack for the Return from Interrupt Long instruction:

SP before -*•

SP after - *

MSR (low) low address
MSR (high)

PC (low)
PC (high)

__________ high address
1 byte -*■

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mods Syntax Instruction Format

RETIL 111j1011101110110101101 I

Example: RETIL

Before instruction execution: After instruction execution:

PC: 8 4 1 0 PC: 1 9 7 2
SP: F F C 6 SP: F F C A

MSR: 0 0 0 0 MSR: 4 0 7 F

Data memory: Data memory:

FFC6: 7 F FFC6: 7 F
FFC7: 4 0 FFC7: 4 0
FFC8: 7 2 FFC8: 7 2
FFC9: 1 9 FFC9: 1 9

5-117

RETN
Return from Nonmaskable Interrupt

RETN

Operation: PC (SP)
SP SP + 2
MSR(0-7) IFF(0-7)

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by a nonmaskable interrupt while in interrupt mode 0,1, or 2. The con­
tents of the location addressed by the Stack Pointer (SP) are popped into the Program
Counter (PC). The previous setting of the interrupt masks in the Master Status register
are restored.

The following figure illustrates the format of the PC on the stack for the Return from Non­
maskable Interrupt instruction:

SP before

SP after

PC (low)
PC (high)

1 byte

low address

high address

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

RETN 111110111011 j 0110001101 |

Example: RETN

Before instruction execution: After instruction execution:

PC: 8 4 1 0 PC: 1 9 7 2
SP: F F C 6 SP: F F C 8

MSR: 4 0 0 0 MSR: 4 0 7 F

Shadow interrupt register:

7 F

Data memory: Data memory:

FFC6: 7 2 FFC6: 7 2
FFC7: 1 9 FFC7: 1 9

5 - 1 18

f '

RL
' Rotate Left

RL dst dst = R, IR, SX

Operation: tmp dst
dst(O) « -C 1
C dst(7)
dst(n + 1) tmp(n) for n = 0 to 6

HZHIHH
dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated left one bit position. Bit 7 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 0 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: RL R I lllooi 101111 ooloiof r 1
IR: RL (HL) i11|001|011II00|010|1101
SX: RL (XY + d) |11|»11|101||11|001|011|| d 1|00|010|110|

Field Encoding: * : 0 for IX, 1 for IY

Example: RL D
Before instruction execution: After instruction execution:

F: szxhxpnO F: 00x0x101
D: 10001111 D: 00011110

5-11V

RLA
Rotate Left Accumulator

RLA

Operation: tmp A
A(0) C
C A(7)
A(n + 1) tmp(n) for n = 0 to 6

A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 0 of the destination.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: RLA |00|010|1111

Example: RLA

Before instruction execution: After instruction execution:

AF: 01110110 szxhxpnl AF: 11101101 szxOxpOO

5-120

RLC
Rotate Left Circular

RLC dst dst = R, IR, SX

Operation: tmp *- dst
C — dst(7)
dst(0) •*- tmp(7)
dst(n + 1) •*” tmp(n) for n = 0 to 6

dst

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit 0 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: RLC R | 11|001|011||00|000| r |

IR: RLC (HL) 11110011011) I oo[ooo| 1101
SX: RLC (XY + d) 11114>1111011111|001101111 d 1100|000| 110 |

Field Encoding: ♦ : 0 for IX, 1 for IY

Example: RLC B
Before instruction execution: After instruction execution:

F: szxhxpnc F: 00x0x101
B: 10001000 B: 00010001

5-121

RLCA
Rotate Left Circular (Accumulator)

RLCA

Operation: tmp A
C -A (7)
A(0) tmp(7)
A(n + 1) tmp(n) for n = 0 to 6

The contents of the accumulator are rotated left one bit position. Bit 7 of the
accumulator is moved to the bit 0 position and also replaces the Carry flag.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

RLCA |oo|ooo|m I

Example: RLCA

Before instruction execution: After instruction execution:

AF: 10001000 szxhxpnc AF: 00010001 szx0xp01

5-122

RLD
Rotate Left Digit

RLD

Operation: tmp(0:3) •*- A(0:3)
A(0:3) - dst(4:7)
dst(4:7) — dst(0:3)
dst(0:3) — tmp(0:3)

I 7 4 I 3 o| I 7 T T T o]r_x£r
A dst

The tow digit of the.accumulator is logically concatenated to the destination byte whose mem­
ory address is in the HL register. The resulting three-digit quantity is rotated to the left by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the tower digit of
the accumulator is moved to the lower digit of the source! The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the left a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RL instruction.

Flags: S: Set if the accumulator is negative after the operation; cleared otherwise
h Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RLD 111110111011101110111111

Example: RLD

Before instruction execution: After instruction execution:

AF: 3 7 szxhxpnc
HL 5 0 0 0

Data memory:

5000: 0 4

AF: 3 0 00x0x10c
HL: 5 0 0 0

Data memory:

5000: 4 7

5-123

RR
Rotate Right

RR dst dst = R, IR, SX

1

Operation: tmp «-dst
dst(7)«-C
C dst(O)
dst(n) tmp(n 4- 1) for n = 0 to 6

L | 7 - o | - * { c} J
dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated right one bit position. Bit 0 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 7 of the destination.

Flags: S: Set if-the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N : Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R:
IR:
SX:

RR R
RR (HL)
RR (XY + d)

|11|001|011||00|011| r |

11110011011 11 oo|on 1110 I
1111̂ 111101 If 11100110111| d | |oo f oil|iio |

Field Encoding: 0: 0 for IX, 1 for IY

Example: RR B

Before instruction execution: After instruction execution:

F: szxhxpnO F: 00x0x001
B: 11011101 B: 01101110

5-124

RRA
Rotate Right (Accumulator)

RRA

Operation: tmp dst
A(7) C .
C A(0)
A(n) tmp(n + 1) for n = 0 to 6

7 — 0
A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated right one bit position. Bit 0 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 7 of the accumulator.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None

Addressing
Mods Syntax Instruction Format

RRA 100I01111111

Example: RRA

Before instruction execution: After instruction execution:

11100001 szxhxpnO AF: 01110000 szx0xp01

RRC
Rotate Right Circular

RRC dst dst = R, IR, SX

Operation: tmp •«- dst
C dst(O)
dst(7) tmp(0)
dst(n) tmp(n + 1) for n = 0 to 6

L ^ j 7 — 0 1—hL ^ [*c"]

dst

The contents of the destination operand are rotated right one bit position. Bit 0 of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: RRC R 111|001[01111 00I0011 r 1
IR: RRC (HL) 111)001101111 00|0011110 |

SX: RRC (XY + d) I i i i0 i i i io i i in |o o i|o ii ir d 1100)0011110 |

Field Encoding: * : 0 for IX, 1 for IY

Example: RRC A
Before instruction execution: After instruction execution:

00110001 szxhxpnc AF: 10011000 10x0x001

5-126

f .

RRCA
Rotate Right Circular (Accumulator)

RRCA

Operation: tmp A
C«-A(0)
A(7) temp(0)

* A(n)*-tmp(n + 1)forn = 0 to 6

dst

The contents of the accumulator are rotated right one bit position. Bit 0 of the
accumulator is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set If the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

RRCA | 00|00111111

Example: RRCA

Before instruction execution: After instruction execution:

00010001 szxhxpnc AF: 10001000 szx0xp01

/ 5-127

RRD
Rotate Right Digit

RRD

Operation: tmp(0:3) A(0:3)
A(0:3) — dst(0:3)
dst(0:3) dst(4:7)
dst(4:7) - tmp(0:3)

7 4E3 I
L Q .
7 4 3 0

dst

The low digit of the accumulator is logically concatenated to the destination byte whose mem­
ory address is in the HL register. The resulting three-digit quantity is rotated to the right by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the right a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RR instruction.

Flags:

)

S: Set if the accumulator is negative; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RRD 11111011101 11 0111001 I

Example: RRD

Before instruction execution: After instruction execution:

AF: 0 6 szxhxpnc AF: 0 2 00x0x00c
H: 5 0 0 0 H: 5 0 0 0

Data memory:

5000: 3 2

Data memory:

5000: 6 3

5-128

RST
Restart

RST address

Operation: SP SP - 2
(SP) — PC
PC address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table
below. The table also indicates the encoding of the address used in the instruction en­
coding. (The address is in hexadecimal, the encoding in binary.)

Address (encoding
0 0 H 0 0 0

08h 0 0 1

1 0 H 0 1 0

18h 0 1 1

2 0 h 1 0 0

28h 1 0 1

30r t 1 1 0

38h 1 1 1

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RST address

Field Encoding: t : See table above

Example: RST 18H

Before instruction execution: After instruction execution:

PC: 4 6 2 0 PC: 0 0 1 8
SP: F F C 4 SP: F F C 2

Data memory: Data memory:

FFC3: F F FFC3: 2 0
FFC4: F F FFC4: 4 6

5-1 2 V

SBC
Subtract with Carry (Byte)

SBC [AJsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A A - src - C

The source operand together with the Carry flag is subtracted from the accumulator and
the difference is stored in the accumulator. The contents of the source are not affected.
Twos-complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

and the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R:
RX:
IM:

SBC A,R
SBC A,RX
SBC A,n

I 10| 0111 r |

| 11|*11|101||
111|011|110|[

10|011| rx I
___g___ J

IR:
DA:

SBC A,(HL)
SBC A,(addr)

| 10|0111110 I
1111 on 11011 r10I0111111 i r addr(low) || addr(hlgh) |

X: SBC A,(XX + dd) |11|111|101 if 10|011| xx || . . . « n «Khlflh) I
SX: SBC A,(XY + d) i n i 0i i i i o i i r 10|0111110 11 J
RA: SBC A,<addr> |11|111[101|| io|on |000 11 dlsp(low) IT dlsp(high) |
SR: SBC A,(SP + dd) 11110111101 If 10|0111000 | r d(low) 11 dthlgh) I
BX: SBC A,(XXA + XXB) | l l |0 1 l | l0 l | f 10|0111 bx I

Field Encodings: 0 : 0 for ix, 1 tor iy
rx: 100 for high byte, 101 for low byte
x x : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
b x: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: SBC A,(HL)

Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnl AF: 2 F 00x1x010
HL: 2 4 5 4 HL: 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454: 1 8

5-130

Subtract with Carry (Word)

SBC dst,src dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

Operation: dst dst - src - C

The source operand together with the Carry flag Is subtracted from the destination and
the result is stored in the destination. The contents'of the source are not affected. Twos-
complement subtraction is performed.

Flags: S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

SBC HL.RR
SBC XY.RR

I11I101I10111011 rr loiol
111|4>111101111111011101 11011 ft | 010 |

Field Encodings: ♦ : 0 for IX, 1 for IY
rr: 000 for BC, 010 for DE, 100 for subtract register from itself, 110 for SP

Example: SBC HL,DE

Before instruction execution: After instruction execution:

F: szxhxvnl F: 00x0x010
DE 0 0 1 1 DE 0 0
HL: 0 1 0 0 HL 0 0 E E

5-131

sc
System Call

SC nn

Operation: S P « -S P - 4
(SP) - PS
SP — SP - 2
(SP) - nn
PS System Call Program Status

This instruction is used for controlled access to operating system software in a manner
similar to a trap or interrupt. The current program status is pushed onto the system
stack followed by a 16-bit constant embedded in the instruction. The program status con­
sists of the Master Status register (MSR) and the updated Program Counter (PC), which
points to the first instruction byte following the SC instruction. Next the 16-bit constant in
the System Call instruction is pushed onto the system stack. The system Stack Pointer is
always used regardless of whether system or user mode is in effect. The new program
status is loaded from the Interrupt/Trap Vector Table entry associated with the SC in­
struction. CPU control is passed to the procedure whose address is the PC value con­
tained in the new program status.

The following figure illustrates the format of the saved program status on the system
stack:

SP after -►

SP before -**

n (low) low address
n(high) .

MSR (low)
MSR (high)

PC (low)
PC (high)

____________ high address
1 byte

Flags: No flags affected

Exceptions: System Call Trap, System Stack Overflow Warning

Addressing
Mode Syntax Instruction Format

SC nn 111|101|1011 |0l|l10|001 11 nflow) 11 njhjfltj) l

5-132

Example: SC 0155H

Before instruction execution:

PC: 4 6 2 0
SP: F F C 9

MSR: 4 0 7 F

Interrupt/Trap Vector Table Pointer:

3 6 5 2

Physical memory:

365250: 2 3
365251: 0 0

8 8
365253: 9 0

After instruction execution:

PC: 9 0 8 8
SP: F F C 3

MSR: 0 0 2 3

Data memory:

FFC3: 5 5
FFC4: 0 1
FFC5: 7 F
FFC6: 4 0
FFC7i 2 0
FFC8: 4 6

Note: The physical memory addresses are 24-bit addresses emitted by the MMU. The data memory addresses are the
16-bit addresses from the CPU.

5-133

SCF
Set Carry Flag

SCF

Operation: C 1

The Carry flag is set to 1

Flags: S: Unaffected
7i Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set

Exceptions: None

Addressing
Mode Syntax Instruction Format

SCF |00|110|111|

Example: SCF '

Before instruction execution: After instruction execution:

szxhxvnc szxOxvOI

5-134

Set Bit

SET b,dst dst = R, IR, SX

Operation: dst(b) — 1
/

The specified bit b within the destination operand is set to 1. The other bits in the
destination are unaffected. The bit to be set is specified by a 3-bit field in the instruction;
this field contains the binary encoding for the bit number to be set. The bit number must
be between 0 and 7.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SET b,R |11|001|011||11| b | r I
IR: SET b,(HL) 1111001101111111 b 1110 I

SX: SET b,(XY + d) [11|<*>11| 1011111100110T1 11 d 11 111 b 1110 |

Field Encoding: S: 0 for IX, 1 for IY

Example: SET 1,A
Before instruction execution: After instruction execution:

A: 00010100 00010110

5-135

SLA
Shift Left Arithmetic

SLA dst dst = R, IR, SX

Operation: tmp dst
C «•- dst(7)
dst(O) 0
dst(n + 1) tmp(n) for n = 0 to 6

r ^ H 7 - ° h ~°
dst

The contents of the destination operand are shifted left one bit position. Bit 7 of the
destination operand is moved to the Carry flag and zero is shifted into bit 0 of the
destination.

Flags: , S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SLA R 111|001101111 oo| r |
IR: SLA (HL) 111|0011011 It 00| 100|110 I
SX: SLA (XY + d) |11|*11|101||11|001|011 II d 1100110011101

Field Encoding: 0 : 0 for IX, 1 for IY

Example: SLA L

Before instruction execution: After instruction execution;

F: szxhxpnc F: 00x0x001
L: 10110001 L: 01100010

5-136

SRA
Shift Right Arithmetic

SRA dst dst = R, IR, SX

Operation: tmp *-dst
C — dst(0)
dst(7) tmp(7)
dst(n) tmp(n + 1) for n = 0 to 6

pCpIsHI]
dst

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and bit 7 remains unchanged.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SRA R I 11I001I 011I I 00I101I r I

IR: SRA (HL) 111100110111100I101 I

SX: SRA (XY + d) 1111*111101111110011011II d ||0 0 |1 0 l|l1 0 |

Field Encoding: 0: 0 for IX, 1 for IY

Example: SRA (IX + 3)
Before instruction execution: After instruction execution:

F: szxhxpnc F: 10x0x000
IX: 1 0 0 0 IX: 1 0 0 0

Data memory: Data memory:

1003: 10111000 1003: 11011100

Address calculation:

1000
+____3

1003

5-137

SRL
Shift Right Logical

SRL dst dst = R, IR, SX

Operation: tm p*-dst
C — dst(O)
dst(7) 0
dst(n) tmp(n + 1)forn = 0 t o 6

7 - 0

dst

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into bit 7 of the
destination.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SRL R I11I001I011 II OOlml r I
IR: SRL (HL) |11|0011011 | | 00|11111101

SX: SRL (XY + d) |11|*1l|l01] I 111001101111 d 1100111111101

Field Encoding: $: 0 for IX, 1 for IY

Example: SRL B
Before instruction execution: After instruction execution:

F: szxhxpnc F: 00x0x101
B: 10001111 B: 01000111

5 - 138

SUB
Subtract

SUB [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A •*-A - src

The source operand is subtracted from the accumulator and the difference is stored in
the accumulator. The contents of the source are unaffected. Twos-complement subtrac­
tion is performed.

Flags: S: Set if the result is negative; cleared otherwise
2i Set if the result, is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

and the result is the same sign as the source; cleared otherwise
N: Set
G: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SUB A,R 110| 0101 r |

RX: SUB A,RX 11l|<t>1l|l01 ||l0|010| rx I

IM: SUB A,n |11|010|110|| n I

IR: SUB A,(HL) 110(010(110 I

DA: SUB A,(addr) |ll|011|1011|10|010|111 II addrQow) || addrQilgh) |
X: SUB A,(XX + dd) |ll|l11|101 ||i0|010| xx ll dQow) || dQilgh) |

SX: SUB A,(XY + d) f 1l|<Ml|l01 1110)0101110 11 d |
RA: SUB A,<addr> 11111111101 1110|<M0 (ooo 11 dlsp(low) If disp(hlgh) |
SR: SUB A,(SP + dd) 11110111101 || 10|010|000 11 dQow) || dQilgh) |
BX: SUB A,(XXA + XXB) 11110111101 1110|010| bx I

1 Field Encodings: 0 : 0 for ix, 1 for iy
rx: TOO for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: SUB A,(HL)
Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnc AR 3 0 00x0x010
HL 2 4 5 4 HL 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454: 1 8

5-1 >9

SUBW
Subtract (Word)

SUBW [HLJsrc src = R, IM, DA, X, RA

Operation: HL +- HL - src

The source operand is subtracted from the HL register and the difference is stored in
the HL register. The contents of the source are unaffected. Twos-complement subtrac­
tion is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

and the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SUBW HL,RR I lllio il 10111 111 rr llio l
SUBW HL,XY 111| * I11101111111011101 1111110111101

IM: SUBW HL,nn 1111 ii-tl ioi 11111101Jnoi I lit Im 11101 r n(low) 11 "(high) |
DA: SUBW HL,(addr) 11110111101111111011101 | | n | 01l | l 10i r addr(low) 1 1 addr(high) |

X: SUBW HL,(XY + dd) f 1111111101111111011101 11111 xy |110 | f d(low) "ll d(hlgh) |
RA: SUBW HL,<addr> 11110111101 111111011101 111111111110 11 disp(low) 1 1 dlsp(hlgh) |
IR: SUBW HL.(HL) I ti ion 110111 ti iio i 11011111 |ooi | tio |

Field Encodings: e : 0 for IX. 1 for IY
rr: 001 for BC. 011 for DE. 101 for HL, 111 for SP
xy: 001 for (IX + dd), 011 for (IY + dd)

Example: SUBW HL,DE

Before instruction execution: After instruction execution:

F: szxhxvnc F: 10x0x010
DE: 0 0 1 0 DE 0 0 1 0
HL: A 1 2 3 HL: A 1 1 3

5 - u o

TSET
Test and Set

TSET dst dst = R, IR, SX

Operation: S ♦ - dst(7)
dst FFh

Bit 7 within the destination operand is tested, and the Sign flag is set to 1 if the specified
bit is 1; otherwise the Sign flag is cleared to 0. The contents of the destination are then
set to all 1s. For memory operands, the operand is always fetched from the external
memory; on the Z-BUS interface, the status lines indicate a Test and Set operation dur­
ing the memory read transaction.

Between the data read and subsequent write transactions, bus request is not granted.
The data is read from memory, even if it is also present in the cache.

Flags: S: Set if bit 7 is 1; cleared otherwise
Z: Unaffected
H: Unaffected
P: Unaffected
N: Unaffected
C: Unaffected

Exceptions: None

Addressing
Mode Syntax

\
Instruction Format

R: TSET R |11|001|011II00I110! r 1
IR: TSET (HL) |11|001|011||00|110|110 1

SX: TSET (XY + d) 1111* 11[1011111looi101111 d | |00|110|110|

Field Encoding: ♦ : 0 for IX, 1 for IY

Example: TSET (HL)
Before instruction execution: After instruction execution:

F:. szxhxpnc F: Ozxhxpnc
HL 0 3 8 2 HL 0 3 8 2

Data memory: Data memory:

0382: 00010111 0382: 11111111

5-141

TSTI
Test Input

TSTI (C)

Operation: F •«- test (C)

During the I/O transaction, the peripheral address from the C register is placed on the
low byte of the address bus, the contents of the B register are placed on address lines
A8 -A-I5, and the contents of the I/O Page register are placed on address lines A-I6 -A 23*
The byte of data from the selected peripheral is tested and the CPU flags set according­
ly. No CPU register or memory location is modified.

Flags: S: Set if the tested byte is negative; cleared otherwise
Z: Set if the tested byte is zero; cleared otherwise
H: Cleared
P: Set if the parity of the tested byte is even; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

TSTI (C) 11111011101110 1 1110 [OOP l

Example: TSTI (C)

Before instruction execution:' After instruction execution:

F:
BC:

szxhxpnc

5 0 4 6

10x0x10c

I/O Page register:

1 2

Byte 93h available at I/O port 125046H.

5-142

XOR
Exclusive OR

XOR [AJsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A A XOR src

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accumulator and the result is stored in the accumulator. A 1 bit
is stored wherever the corresponding bits in the two operands are different; otherwise a
0 bit is stored. The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Cleared

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: XOR A,R 110|1011 r l
RX: XOR A,RX 1111*1111011|10|101| IX I
IM: XOR A,n 11111011 noIf..I
IR:

DA:
XOR A,(HL)
XOR A,(addr)

|10|101|110

11110111101 1110|1011111 11 addroow) 1l addrfhlflh) |

X: XOR A,(XX + dd) 11111111101111011011 XX 11 d0ow) JL <Hhlgh) |
SX: XOR A,(XY + d) 1111*111101 1110(1011110 11 d

RA: XOR A,<addr> |11|111|101 1110|1011000 11 dlsp(low) || dtepQilgh) |

SR: XOR A,(SP + dd) 111 Ion 11011110|1011000 11 d(low) 11 1
BX: XOR A,(XXA + XXB) [111011110111 1o|io i | bx |

Field Encodings: *
rx
xx
bx

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY). 011 for (IX + IY)

Example: XOR A,(HL)
Before instruction execution: After instruction execiutTon:

AF: 4 8 szxhxpnc AF: 5 0 00x0x100
HU 2 4 5 4 HU 2 4 5 4

Data memory:

2454: 1 8

Data memory:

2454: 1 8

5-143

EXTENDED INSTRUCTION
EPU Internal Operation

Operation: EPU template

If the EPU Enable bit In the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed.
If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in-

. dicated by the following figure:

new SP - *

previous SP

template address (low)
template address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte

low address

high address

The format for the EPU template for this instruction is indicated in the following figure:

10001110
****01ID
* * * * * * * *

****0000
1 byte

low address

high address

where ID is the two bit ID number specifying the EPU to process this instruction
and * indicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned.

Flags: No flags affected

Exceptions: Extended Instruction -

Addressing
Mode

e
Operation Instruction Format

EPU Internal 11111011101111010111111 11 template 1 11 template 2 11 template 3 |

Operation (template 4 |

The template is a 4-byte field.

5-144

EXTENDED INSTRUCTION
Load Accumulator frovp EPU

Operation: EPU template
A - EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
data from the EPU is loaded into the accumulator.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in­
dicated by the following figure:

Flags:

new SP

previous SP

template address (low)
template address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte -►

low address

high address

The format for the EPU template for this instruction is indicated in the following figure:

10001110
****00ID
****0000
****0000

1 byte

low address

high address

where ID is the 2-bit ID number specifying the EPU to process this instruction and * in­
dicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned. The CPU
places the data on ADs-AD-is into the accumulator.

S: Set if the byte loaded into the accumulator has a 1 in bit 7; cleared otherwise
Z: Set if the byte loaded into the accumulator is zero; cleared otherwise
H: Cleared
P: Set if the parity of the byte loaded into the accumulator is even; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: Extended Instruction

5-145

Addressing
Mode Operation Instruction Format

A EPU 111110111011110|010| 111~| | template 1~|| template 2 [l template 3 |

| template 4~|

The template is a 4-byte field.

5-146

EXTENDED INSTRUCTION
Load EPU from Memory

src = IR, DA, X, RA, SR, BX

Operation: EPU template
EPU +- src

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed on
the input operand. Next the data starting at the memory location determined by the
source calculation is fetched from memory and loaded into the EPU; successive trans­
fers are performed until the entire operand has been fetched. The number of bytes in the
source operand is encoded in the fourth byte of the template. For PC Relative
addressing mode, the address of the template is used instead of the address of the next
instruction.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the following instruction, Master Status
register (MSR), operand logical address, and template logical address. The format of the
system stack after the trap is indicated by the following figure:

Flags:

new SP

previous SP -►

template address (low)
template address (high)
operand address (low)
operand address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte

low address

high address

The format for the EPU template for this instruction is indicated in the following figure:

0p001110
****01ID
* * * * * * * *

n - 1
1 byte -►

low address •

high address

where p encodes whether the data resides in program memory (p = 1; Relative ad­
dressing mode) or data memory; ID is the 2-bit ID number specifying the EPU to process
this instruction, * indicates bits that encode the operation to be performed, and n
specifies the number of bytes of data to be transferred to the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two yvord transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers to the EPU.

No flags affected

Exceptions: Extended Instruction

Addressing
Mode Operation Instruction Format

IR: EPU (HL) 111l i o i1101 1110| 1001110 11 template 1 11 template 2 11 template 3 |
| template 4

DA: EPU (addr) 11111011101 1110|100|111 II addr(low) 11 addr(hlgh) 11 template 1 I
| template 2 11 template 3 11 template 4 |

X: EPU (XX + dd) 11111011101 | | 10| xx 1100 II d(low) 11 d(hlgh) 11 template 1 |
I template 2 11 template 3 11 template 4 \

RA: EPU — <addr> | 11|101|101 1110|1001100 11 dlspdow)~|| disp(high) 11 template 1 |
| template 2] | template 3 11 template 4 |

SR: EPU (SP + dd) |11|101|101 1110100011001 r d(low) 11 d(hlgh) 11 template 1 I
| template 2 11 te m p la te3 || template 4 |

BX: EPU (XXA + XXB) |11|101|101 11101 bx 1100 11 template 1 11 template 2 11 template 3 |

| template 4

Field Encodings: xx: 101 for (IX + dd), no for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

All templates are 4-byte fields.

5-148

EXTENDED INSTRUCTION
Load Memory from EPU

dst = IR, DA, X, RA, SR, BX

Operation: EPU template
dst 'EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
the data from the EPU is stored into memory starting at the location specified by the
destination address; successive transfers are performed until the entire operand has
been stored. The number of bytes in the source operand is encoded in the fourth byte of
the template. For PC Relative addressing mode, the address of the template is used
instead of the address of the next instruction.
If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), operand address, and template address. The format of the system stack
after the trap is indicated by the following figure:

new SP

previous SP

template address (low)
template address (high)
operand address (low)
operand address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte-^

low address

high address

The format for the EPU template for this instruction is indicated in the following figure:

0p001110
000011 ID
* * * * * * * *
n - 1

1 byte -►

low address

high address

where p encodes whether the data resides in program space (p = 1; Relative address­
ing mode) or data memory; ID is the 2-bit ID number specifying the EPU to process this
instruction, * indicates bits that encode the operation to be performed, and n specifies
the number of bytes of data to be transferred from the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers from the, EPU.

5-14V

Flags: No flags affected

Exceptions: Extended Instruction

Addressing
Mode Operation Instruction Format

IR: (HL) EPU I 1 l | 1011101 |[10|101|110|| template 1 11 template 2 11 template 3 |

| template 4

DA: (addr) —. EPU 11111011101 1|10|101|111 || addr(low) [| addr(high) 11 template 1 I

[template 2 11 template 3 11 template 4 |

x- (XX + dd) EPU | 11| 101| 101 11101 xx 1101 11 d(low) 11 d(hlgh) 11 template 1 I

| template 2 11 template 3 11 template 4 |

RA: <addr> — EPU | 11|101| 101 1110|1001101 II dlsp(low) 11 disp(high) 11 template 1 |

| template 2 11 template 3 11 template 4 |

SR: (SP + dd) EPU | 11|101| 101 1110I0001101 || d(low) 11 dfhigh) 11 template 1 I

| template 2 11 template 3 11 template 4 |

BX (XXA + XXB) r EPU 111 [1011101 11101 bx |101 II template 1 11 template 2 11 template 3 |

| template 4

Field Encodings: x x : 101 for (IX + dd). 110 for (IY + dd). 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

All templates are 4-byte fields.

5-150

Chapter 6.
Interrupts and Traps

6.1 INTRODUCTION

Exceptions are conditions that can a lte r the
normal flow o f program execution. The Z280 CPU
supports three kinds o f exceptions: in te rrup ts,
traps, and resets.

Interrupts are asynchronous events generated by a
device external to the CPU; peripheral devices use
in terrupts to request service from the CPU. Traps
are synchronous events generated in te rna lly in the
CPU by pa rticu lar conditions that can occur during
the attempted execution of an ins truction . Thus,
the difference between traps and in terrupts is
th e ir o rig in . A trap condition is always repro­
ducible by re-executing the program that created
the trap, whereas an in te rrup t is generally inde­
pendent of the currently executing task.

A hardware reset overrides a l l other conditions,
including in terrupts and traps. I t occurs when
the RESET line is activated, and i t causes certain
CPU control registers to be in it ia l iz e d . Resets
are discussed in de ta il in Chapter 11.

6 .2 INTERRUPTS

Two kinds of in terrupts are activated by four d i f ­
ferent pins on the Z280 MPU. The nonmaskable
in terrupt (NMI) is an in te rrup t that cannot be
disabled (masked) by software. Typically, NMI is
reserved v for h igh -p rio rity external events that
need immediate attention, such as an imminent
power fa ilu re . Maskable in terrupts are in terrupts
that can be disabled (masked) via software by
clearing the appropriate b its in the Interrupt
Request Enable f ie ld o f the Master Status regis­
te r .

There are seven maskable in terrupts in the Z280
MPU architecture. Three of these in terrupts are
external inputs to the device (Interrupts A, B,
and C); the other four maskable in terrupts are
asserted by the on-chip peripherals. The seven
Interrupt Request Enable b its in the Master Status
reg ister control which of the requested in terrupts
are accepted. Interrupt requests are grouped as
lis te d in Table. 6-1, with each group controlled by
a separate Interrupt Request Enable b i t . The l i s t
is presented in order of decreasing p r io r ity , with
sources w ith in a group lis te d in order of
decreasing p r io r ity .

The Enable Interrupt (El) instruction is used to
selective ly enable the maskable in te rrup ts (by
setting the appropriate b its in the MSR to 1) and
the Disable Interrupt (DI) instruction is used to
selective ly disable in terrupts (by clearing the
appropriate b its in the MSR to 0). When an
in te rrup t source has been disabled, the CPU
ignores any requests from that source. Because
maskable in te rrup t requests are not retained by
the CPU, the request signal on a maskable
in terrupt lin e must be asserted u n t il the CPU
acknowledges the request.

When enabling in terrupts with the El instruction ,
a l l maskable in terrupts are automatically disabled
(whether previously enabled or not) fo r the
duration of the execution of the El instruction
and the immediately following instruction .

Interrupts are always accepted between instruc­
tions. The block move, block search, and block
I/O instructions can be interrupted a fte r any
ite ra tio n .

Table 6-1. Grouping of Maskable Interrupt Requests

Members of Interrupt Group Enable bit In MSR

Maskable Interrupt A line 0
Counter/Timer 0, DMA Channel 0 1
Maskable Interrupt B line 2
Counter/Timer 1, UART Receiver, DMA Channel 1 3
Maskable Interrupt C line 4
UART Transmitter, DMA Channel 2 5
Counter/Timer 2, DMA Channel 3 6

The Z280 CPU has four modes for handling exter­
na lly generated in terrupts, selectable using the
1M instruction . The f i r s t three modes extend the
Z80 CPU in terrupt modes to accommodate the Z280
MPU's additional in te rrup t inputs in a compatible
fashion. The fourth mode allows more f le x ib i l i t y
in in te rrup t handling, providing support for
nested in terrupts and a sophisticated vectoring
scheme. The on-chip peripherals always use th is
fourth in te rrup t mode, regardless of which mode is
selected for the external in terrupts. The current
in terrupt mode in e ffect can be read from the
Interrupt Status reg ister.

6.2.1 Interrupt Mode 0

Interrupt mode 0 is s im ilar to the 8080 CPU
in te rrup t response mode. For mode 0, an exter­
na lly generated in te rrup t (maskable or nonmask­
able) causes the User/System b it and the Single-
Step b it in the Master Status reg ister to be
cleared to 0, thereby placing the CPU in system
mode with single-stepping disabled. A ll the
Interrupt Request Enable b its in the MSR are also
cleared to zero, which disables the maskable
in te rrup ts. The previous condition of the MSR is
not saved.

For nonmaskable in te rrup ts, the current value in
the Program Counter is saved on the system stack,
using the System Stack Pointer, and the constant
0066 ̂ is loaded into the Program Counter. Loca­
tion 0066 ̂ in system program memory is , then,
the s tarting logica l address of the nonmaskable
in te rrup t service routine; th is log ica l address
can, o f course, be translated in to a physical mem­
ory address by the MMU.

For maskable in te rrup ts, the in terrupting device
must place a Call or Restart instruction opcode on
the data bus during the in te rrup t acknowledge bus
transaction. The Z280 CPU reads th is opcode and
executes i t ; thus, the in terrupting device,
instead of memory, provides the f i r s t instruction
of the service routine. Typically, a Restart
instruction is used, since the Restart opcode is
only one byte long, meaning that the in terrupting
peripheral needs to supply only one byte of in fo r­
mation. A lternative ly, a 3-byte c a ll to any loca­
tion can be executed.

6.2 .2 Interrupt Mode 1

In in terrupt mode 1, the Z280 CPU automatically
executes a Restart to a fixed location when ar.
in terrupt occurs. An externally generated in te r­
rupt (maskable or nonmaskable) causes the User/
System b i t , the Single-Step b i t , and a l l Interrupt

Request Enable b its in the Master Status reg ister
to be cleared to 0, which puts the CPU in system
mode with single-stepping disabled. The previous
condition of the MSR is not saved. The current
value in the Program Counter is pushed onto the
system-mode stack. For nonmaskable in te rrup ts,
the constant 0066 ̂ is then loaded in to the Pro­
gram Counter; thus, 0066 ̂ is the starting
address of the nonmaskable in te rrup t service rou­
tine . For maskable in te rrup ts, the constant
0038 ̂ is loaded in to the Program Counter;
0038 ̂ w i l l be the starting address of the mask­
able in te rrup t service routine. These logical
addresses can be converted to physical addresses
by the MMU.

6 .2 .3 Interrupt Mode 2

Interrupt mode 2 is a vectored in te rrup t response
mode for maskable in te rrup ts, wherein the in te r­
rupting device id en tifie s the starting location of
the service routine using an 8- b i t vector read by
the CPU during the in terrupt acknowledge cycle.

An externally generated in te rrup t (maskable or
nonmaskable) causes the User/System b i t , the Sin­
gle-Step b it , and the Interrupt Enable Request
b its in the Master Status reg ister to be cleared
to 0, which puts the CPU in system mode with
single-stepping disabled. The previous condition
of the MSR is not saved. The current value in the
Program Counter is pushed onto the system mode
stack.

For nonmaskable in te rrup ts, the constant 0066 ̂
is then loaded in to the Program Counter; thus,
0066h is the starting address of the nonmaskable
in te rrup t service routine. For maskable in te r­
rupts, the programmer must maintain a table in
memory of the 16-bit s tarting addresses for every
maskable in te rrup t service routine. This table
can be located anywhere in the system mode data
memory address space, starting on a 256-byte mem­
ory boundary. When a maskable in te rrup t is
accepted, a 16-bit pointer in to th is table is gen­
erated in order to select the starting address of
the appropriate service routine from the table
entries. The peripheral generating the in terrupt
places an 8- b i t vector on the data bus in response
to the in te rrup t acknowledge. This vector becomes
the lower eight b its of the pointer in to the
table. The upper eight b its o f the pointer are
the contents of the I reg ister. This pointer is
treated as an address in the system data memory
space that can be translated to a physical address
by the MMU. The actual logical address of the
service routine is found by referencing the word
located at the address formed by concatenating the
I reg is te r's contents with the vector. Figure 6-1

6-2

i l lu s tra te s the sequence of events for processing
mode 2 maskable in te rrup ts . A reset clears the 1
reg ister to a l l zeros.

VECTOR
TABLE

NOTES:
1. Interrupt vector generated by peripheral is read by CPU during interrupt

acknowledge cycle.
2. Vector combined with I register contents form 16-bit memory address

pointing to vector table.
3. TWo bytes are read sequentially from vector table. These two bytes are

read into the PC.
4. Processor control is transferred to interrupt service routine and

execution continues.

Figure 6-1. Mode 2 Interrupt Processing

The Master Status reg ister is not saved when proc­
essing in terrupts under in te rrup t modes 0, 1, and
2. I.f the Z280 CPU is running in the user mode
when an in te rrup t occurs, the MSR is automatically
changed to system mode when the in terrupt is
acknowledged, without recording the previous user
mode of operation. S im ilarly , the single-step
mode and the maskable in terrupts are automatically
disabled during in te rrup t processing, with no sav­
ing of the previous status. Thus, to resume proc­
essing of an interrupted user-mode program a fte r
the execution of an in te rrup t service routine, the
operating system must change the Master Status
reg ister in order to switch back to user mode; the
Return from Interrupt Long instruction can be used
for th is purpose.

In in te rrup t modes 0, 1, and 2, a nonmaskable
in terrupt automatically disables a l l maskable
in terrupts (as in the Z80 CPU). A ll of the In ter­
rupt Request Enable b its (b its 0 through 6 in the
MSR) are copied to a special reg ister in the CPU
called the Interrupt Shadow reg is ter. The In te r­
rupt Request Enable b its are then cleared to a l l
zeros. A Return from Nonmaskable Interrupt
instruction restores the previous settings of the
Interrupt Request Enable b its by copying the con­
tents of the Interrupt Shadow reg ister in to b its 0

through 6 of the MSR. The nesting is only one
level deep (again, as in the Z80 CPU).

For a Z80 Bus configuration of the Z280 MPU, only
one in terrupt line (e ither Interrupt A, Interrupt
B, or Interrupt C) can be used i f in te rrup t modes
0, 1, or 2 and the Z80 family peripherals are
used; Z80 peripherals being serviced on multiple
in terrupt lines would a l l be affected by a Return
from Interrupt (RETI) instruction .

6.2.4 In terrupt Mode 3

Interrupt mode 3 exploits the advanced features of
the Z280 MPU architecture. When an in te rrup t
request is accepted (maskable or nonmaskable), the
Master Status reg ister, Program Counter, and a
16-bit "reason code" are automatically stored on
the system-mode stack. Next, new values for the
MSR and PC are fetched from a table in memory
called the Interrupt/Trap Vector Table, thereby
determining the operating modes and starting
address of the service routine (see section 6.5).
The reason code for externally generated, in te r­
rupts is the contents o f the data bus during the
in te rrup t acknowledge, and is usually supplied by
the in te rrup ting device. For 8- b i t data bus con­
figurations of the Z280 MPU, the upper byte o f the
reason code is a l l zeros. For in terrupts from the
on-chip peripherals, the reason code is identica l
to the vector address in the Interrupt/Trap Vector
Table, thereby iden tify ing the in terrupting
device. The Interrupt/Trap Vector Table Pointer
reg ister in the CPU is used to reference the
Interrupt/Trap Vector Table during mode 3
in te rrup t processing.

Interrupt mode 3 is the intended mode of operation
when using the advanced features o f the Z280 MPU
architecture, such as system and user modes and
single-stepping, since the Master Status reg ister
of the interrupted task is automatically saved and
another loaded for the service routine. This
allows each service routine to be executed in the
appropriate mode without affecting the status of
the interrupted task. Also, vector tables can be
provided for both maskable and nonmaskable in te r­
rupts when in mode 3.

Interrupt mode 3 is always used for processing
in terrupts from the Z280 MPU's on-chip periph­
erals, regardless of which mode is selected for
the external in te rrup t requests.

Table 6-2 summarizes in terrupt processing fo r a il
four modes.

6-3

Table 6-2. Interrupt Modes

Interrupt
Mode

Interrupt
Typo

Saved Status
Information Effect on MSR Effect on PC

0 Nonmaskable PC System mode, Single-Step
and interrupts disabled

Set to 66h

0 Maskable * * *

1 Nonmaskable PC n Set to 6 6 h

1 Maskable PC Setto38H

2 Nonmaskable PC " Set to 6 6 h

2 Maskable PC
"

Fetched from address formed by I
register and Interrupt vector

3 Nonmaskable MSR, PC, and
reason code

Fetched from Interrupt/
Trap Vector Table

Fetched from Interrupt/
Trap Vector Table

3 Maskable MSR, PC, and
reason code

n

*: Depends on Instruction returned by interrupting device during acknowledge cycle.

6.3 TRAPS

The Z280 CPU architecture supports eight types of
traps, a l l of which are generated in te rna lly in
the MPU. The Privileged Instruction, System Call,
Access V io la tion, and Division Exception traps
cannot be disabled. I/O instructions can be spec­
if ie d as privileged instructions in the Trap Con­
t ro l reg is ter. The Extended Instruction, System
Stack Overflow Warning, Single-Step, and
Breakpoint-on-Halt traps can be selective ly
enabled or disabled in the Trap Control register
and MSR.

Traps are processed by saving the current program
status (PC and MSR) on the system stack and load­
ing new program status from the Interrupt/Trap
Vector Table, in a manner s im ilar to in terrupts
using in te rrup t mode 3. The current in terrupt
mode has no effect on trap processing. Thus, the
Interrupt/Trap Vector Table must be present in
memory and the Interrupt/Trap Vector Table Pointer
in the CPU must be in it ia l iz e d before executing
any instruction that could generate a trap. Traps
can occur only i f executing Z280 MPU instructions
that are not part o f the Z80 CPU instruction set
or i f trap-generating features of the Z280 CPU
(such as stack overflow warnings) have been
e x p lic it ly enabled.

6.3.1 Extended Instruction Trap

The Extended Instruction trap occurs when the Z280
CPU encounters an extended instruction while the
EPU Enable b it in the Trap Control reg ister is a

zero. For instructions that transfer data between
an EPU and memory, the following information is
pushed onto the system stack when processing the
Extended Instruction trap: the address of the next
instruction , the MSR, the address of the memory
operand, and the address of the template portion
of the extended instruction (in that order). For
Load Accumulator from EPU and EPU Internal Opera­
tion instructions, the address of the next
ins truction , the MSR, and the address of the tem­
plate in the extended instruction are saved. The
PC and MSR values for the service routine are then
loaded from the Interrupt/Trap Vector Table. The
Interrupt/Trap Vector Table contains four d i f ­
ferent entries for Extended Instruction traps, one
for each type of extended instruction .

The Extended Instruction trap allows the program
to simulate (in software) the operation of an EPU
in a trap service routine when no EPUs are present
in the system.

6 .3 .2 Privileged Instruction Trap

The Privileged Instruction trap occurs when the
Z280 CPU encounters a privileged instruction while
in the user mode (the User/5ystem b it in the MSR
is set to 1). I/O instructions can be privileged
instructions, depending on the contents of the
Trap Control reg is ter. The following information
is saved on the system stack when processing a
Privileged Instruction trap: the address of the
instruction causing the trap and the MSR (in that
order).

6-4

The Privileged Instruction trap protects the oper­
ating system environment by preventing user mode
programs from executing instructions that could
disrupt the system.

6 .3 .3 System Call Trap

The System Call trap occurs whenever a System Call
instruction is executed. The following informa­
tion is saved on, the system stack when processing
a System Call trap: the address of the next
in s tru c tion , the MSR, and the 16-bit immediate
operand encoded in the System Call instruction (in
that order).

The System Call trap provides a means by which a
user mode program can request an operating system
function, thereby allowing for an orderly trans i­
tion between the user and system modes.

6 .3 .4 Access Violation Trap

The Access V io lation trap occurs whenever the
Z280 MPU's on-chip MMU detects an i l le g a l memory
access. S pec ifica lly , th is trap occurs when the
MMU's transla tion mode is enabled and either the
address to be translated implies using a page
descriptor reg ister whose Valid b i t is zero or the
access is a w rite to a page whose Write-Protect
b it is set to 1. The following information is
saved on the system stack when processing an
Access V iolation trap: the address o f the instruc­
tion causing the trap and the MSR (in that
order). Information about the logica l address
that caused the fa u lt is saved in the MMU (see
Chapter 7).

The Access Violation trap fa c il ita te s the imple­
mentation o f v ir tu a l memory systems using the
Valid b it in the page descriptor registers and
allows information in memory to be w rite -
protected.

6.3 .5 System Stack Overflow Warning Trap

The System Stack Overflow Warning trap can occur
only i f the Stack Overflow Warning b it in the Trap
Control reg ister is set to 1. I f so, then for
each push to the system stack, the 12 most s ig n if­
icant b its o f the Stack Pointer are compared to
the contents o f the Stack Lim it reg ister and a
trap is generated i f they match. The following
information is saved on the system stack when
processing a System Stack Overflow Warning trap
(but no second System Stack Overflow Warning trap
is generated): the address of the next instruction
and the MSR (in that order). The Stack Overflow

Warning b i t in the Trap Control reg ister is auto­
matically cleared to 0 when th is trap occurs in
order to prevent repeated traps.

The System Stack Overflow Warning trap no tifie s
the operating system of potentia l stack overflow
problems.

6 .3 .6 Division Exception Trap

The Division Exception trap occurs while executing
a Divide instruction i f the d iv isor is zero
(divide by zero case) or the quotient cannot be
represented in the destination precision (over­
flow case); the CPU flags are set to distinguish
between these two situations (see the descriptions
for the Divide instructions in Chapter 5). The
following information is saved on the system stack
when processing a Division Exception trap: the
address o f th8 Divide instruction and the MSR (in
that order).

6 .3 .7 Single-Step Trap.

Two control b its in the Master Status reg ister are
used to control Single-Step traps: the Single-Step
b it (b it 8) and the Single-Step Pending b i t (b it
9). The Single-Step trap occurs when the
Single-Step Pending b it in the MSR is set to 1.
To enter single-step mode, wherein a Single-Step
trap is executed a fte r each ins truction , the
Single-Step b i t in the MSR is set to 1. At the
beginning o f instruction execution, the state of
the Single-Step Pending b it is checked; i f i t is
set, a Single-Step trap ip executed. Then, the
state of the Single-Step b it is copied in to the
Single-Step Pending b it and the instruction is
executed. i f the instruction generates another
trap (such as a Privileged Instruction trap), that
trap handling routine is executed before the
Single-Step Pending b i t is again checked and the
Single-Step trap is processed. This execution
sequence is illu s tra te d in Figure 6-2. Note that
once the Single-Step b i t gets set, a Single-Step
trap does not occur u n t il a fte r the next
ins truction , because the Single-Step Pending b it
is checked before being loaded with the state of
the Single-Step b i t . Single-Step traps are then
executed a fte r each instruction u n t il the
Single-Step b it in the MSR is cleared to 0.

The Single-Step Pending b it in the MSR is automat­
ic a lly cleared by a Division Exception, Access
V io la tion, Privileged Instruction, or
Breakpoint-on-HaIt trap, so that the saved MSR
value put on the stack as a resu lt o f trap
processing w i l l have a 0 in b it position 9. For
each of those trap types, the address of the

6-5

Figure 6-2. Instrucfion Execution Sequence

actual trapping instruction is saved on the stack
(as opposed to the address of the next
ins truc tion). The trapping instruction can be
re-executed upon returning from the trap service
routine, in which case another Single-Step trap is
not desired before instruction execution.
S im ilarly, the Single-Step Pending b it is
automatically cleared by a Single-Step trap, to
ensure that only one Single-Step trap occurs per
instruction .

When executing a Return From Interrupt Long
(RET XL) instruction to .return from an in te rrup t or
trap service routine, the Single-Step Pending b it
in the MSR for the interrupted program is the OR
of the Single-Step Pending b it in the MSR of the
service routine and the Single-Step Pending b it in
the MSR value that was saved during trap proces­
sing. Thus, i f the service routine was being exe­
cuted in single-step mode, a Single-Step trap
occurs a fte r execution o f the RETIL instruction ,
before resumption o f the interrupted program.

The following information is saved on the system
stack when processing a Single-Step trap: the
address o f the next instruction and the MSR (in
that order).

The Single*Step trap fa c i l i ta te s the debugging of Z280
CPU code. The following te x t explains four methods
fo r entering single*step operations.

a. PUSH a PC value for the instruction you wish to
jump to .

PUSH an MSR value with the desired combination of
the Single-Step (SS) and Single-Step Pending
(SSP) b its .

Execute and RETIL instruction .

b. Execute a LDCTL instruction with the desired
combination of the SS and SSP b its .

c. Execute a System Call (SC) with an id e n t if ie r that
you reserve fo r a s ing le-step entry.

POP the id e n t if ie r and branch to the remaining
’ s ing le-step code routine.

POP the MSR.
Set the desired combinations of SS and SSP.
PUSH the new MSR.
Execute the RETIL instruction .

This method can be used only in the User Mode of
operation.

d. Use the "Breakpoint-on-Halt" trap by substitu ting
a HALT opcode fo r the f i r s t byte of an instruction
where single-stepping is to s ta r t . The trap service
routine should look something lik e th is :

POP the MSR.
Set the desired combinations of SS and SSP.
PUSH the MSR.
Restore the instruction byte that the HALT opcode

replaced.
Execute the RETIL instruction.

Both in terrupt and trap routines can be single-stepped
by setting the appropriate SS and SSP combination in
the MSR entry in the In terrupt/Trap Vector Table.

Instructions that cause a trap but w il l be re-executed
(ie : p riv ileg ed , d iv ide , page fa u lt) autom atically
c lear the SSP b it in the PUSHed MSR. This ensures
that only one sing le-step trap w ill occur fo r these
instructions.

6-6

Table6-3. flap Types

TtapTVP*
Can be >

Disabled Status Saved

Extended Instruction s Address of next instruction
MSR value
Address of operand in memory (if applicable)
Address of EPU template

Privileged Instruction No Address of instruction causing trap
MSR value

System Call No Address of next instruction
MSR value
16-bit reason code from SC instruction

Access Violation No Address of instruction causing trap
MSR value

System Stack Overflow Yes Address of next instruction
MSR value

Division Exception No Address of instruction causing trap
MSR value

Single-Step Yes Address of next instruction
MSR value

Breakpoint-on-Halt \fes Address of Halt instruction
MSR value

Table 6-4. Interrupt Acknowledge Encoding
for Z80 Bus Configuration

AD2 ADi Interrupt Being Acknowledged

0 0 Interrupt A
0 1 Nonmaskable Interrupt
1 0 Interrupt B
1 1 Interrupt C

6 .3 .8 Hreakpoint-on-Halt Trap

The Breakpoint-on-Halt trap occurs i f a Halt
instruction is encountered while the Breakpoint-
on-Halt Enable b i t in the MSR is set to 1. The
following information i 8 saved on the sy8tem stack
when processing a Breakpoint-on-Halt trap: the
addres8 o f the Halt instruction and the MSR (in
th8t order).

The Breakpoint-on-Halt trap provided a breakpoint
fa c i l i t y that is useful in debugging environments
in which breakpoints on instruction boundaries are
de8ired .

The trap types and the status saved during the
processing o f each trap are summarized in Table
6-3.

6 .4 INTERRUPT AND TRAP HAIDLING

The Z280 CPU response to an in te rrup t request or
trap condition consists o f up to f ive steps:
acknowledging the external request (externally-
generated in terrupts on ly), saving current program
8ta tu8 , loading new program status, executing the
service routine, and returning to the interrupted
program. Interrupts are accepted and processed
between instructions, with the exception o f the
block move, search, and I/O instructions, which
can be interrupted between any ite ra tio n . Traps
are detected during instruction execution, with
the exception o f the Single-Step trap, as
described previously. Thus, a trap condition is
processed before handling any pending in te rrup ts.

6 .4 .1 In terrup t Actomledge

An in te rrup t acknowledge bus transection is
required only for externally-generated in te r­
rupts. The main effect o f the in te rrup t acknowl­
edge is to establish communication between the
requestor and the Z280 CPU.

For Z80 Bus configurations o f the Z280 MPU, the
type o f in te rrup t being acknowledged is indicated
on bus lines AD-j and AD2 while the Address Strobe
is being asserted during the in te rrup t acknowledge
cycle, as per Table 6-4.

6-7

For the Z80 Bus configurations o f the Z280 MPU, no
external acknowledge cycle is generated for
nonmaskable in terrupts in in terrupt modes 0, 1 ,
and 2 , or for maskable in terrupts in in terrupt
mode 1. For maskable in terrupts in in terrupt
modes 0y 2, and 3, and for nonmaskable in terrupts
in mode 3, 8- b i t data is read from the ADQ-AD7 bus
lines during the acknowledge cycle; th is data is
used as dictated by the in terrupt mode in e ffec t,
as described in section 6.2. For maskable
in terrupts in in te rrup t mode 0 , successive bytes
are read on ADQ-AD7 u n t il a complete instruction
has been fetched, via repetition o f the
acknowledge cycle.

For Z-BUS configurations o f the Z280 MPU, any
in te rrup t from an external source is
acknowledged. The type of in terrupt being
acknowledged is indicated by the STq-$T3 status
lines during the acknowledge cycle. A word o f
data is read from the address/data bus during the
acknowledge cycle and used as dictated by the
in terrupt mode in e ffec t. For in terrupt modes 2
and 3, the lower byte o f th is data is used as the
in te rrup t vector. For maskable in terrupts in
in terrupt mode 0 , successive bytes are read on
ADQ-AD7 u n til a complete instruction has been
fetched, v ia repetition o f the acknowledge cycle.

Acknowledge cycles are always executed in system
mode, regardless o f the mode o f the interrupted
program. The MSR o f the interrupted program is
not affected by th is change in mode. The CPU
stays in system mode u n t il the s ta rt o f execution
o f the service routine. In in te rrup t modes 0, 1,
and 2 , the service routine s tarts in system mode;
in in te rrup t mode 3, the MSR o f the service rou­
tine is determined by the contents o f the In te r­
rup tsrap Vector Table.

Interrupt requests from the on-chip peripherals
never generate an acknowledge cycle and are always
processed using in te rrup t mode 3. S im ilarly,
traps do not generate acknowledges.

6.4 .2 Status Saving

During exception processing, the status of the
interrupted program is saved on the system stack.
In in te rrup t mode 0, the Program Counter is auto­
m atically saved when processing nonmaskable in te r­
rupts; the instruction returned by the peripheral
device w i l l determine what status information is

saved when processing maskable in te rrup ts. For
in terrupts in in terrupt mode 1 or 2, the Program
Counter is automatically saved. For in terrupts in
in te rrup t mode 3, the Program Counter and MSR of
the interrupted task are saved, followed by the
"reason code" (Figure 6-3). For external in te r­
rupt requests, the reason code is the value read
from the data bus during the in te rrup t acknowledge
cycle; the upper byte o f the reason code is a l l
zeros for 8- b i t data bus (Z80 Bus) configurations
o f the Z280 MPU. For in terrupts from the on-chip
peripherals, the reason code is the o ffset address
in the Interrupt/Trap Vector Table that
corresponds to the MSR value entry for that
in terrupt type.

Figure 6-3. Format of Saved Status on
System Stack Due to a Mode 3 Interrupt

The Program Counter value saved during in terrupt
processing is the address o f the next instruction
in the interrupted routine, except for in terrupts
during block move, block search, and block 1/0
instructions. The block instructions can be
interrupted between any one ite ra tio n of th e ir
operation, in which case the PC value saved is the
address o f the block instruction it s e l f .

The status saved as a resu lt o f a trap depends on
the type o f trap being executed, as noted in
Figure 6-3. The PC and MSR values are always
saved during trap processing, along with other
trap-dependent information.

I f any memory w rite operation involved in saving
status information during in terrupt or trap proc­
essing causes a memory access v io la tion , a special
" fa ta l condition" is entered, as described in sec­
tion 6. 6 .

6-8

6 .4 .3 Loading New Program Status

After saving the status o f the interrupted pro­
gram, new program status values (i . e . , new values
for the PC and MSR) are automatically loaded, in
accordance with the in te rrup t mode and any data
read during the acknowledge cycle. This new pro­
gram status determines the operating modes and
s ta rting address o f the service routine.

For externally generated in terrupts in in terrupt
modes 0, 1, and 2, the Master Status reg ister is
automatically modified to specify system mode with
the Single-Step trap and a l l maskable in terrupts
disabled. For externally generated in terrupts in
in te rrup t mode 3, a l l in te rna lly generated in te r­
rupts, and a l l traps, the new MSR value is loaded
from the Interrupt/Trap Vector Table.

For externally generated maskable in terrupts proc­
essed using in te rrup t mode 0 , the f i r s t instruc­
tion o f the service routine is supplied by the
in terrupting device. This must be a Call or
Restart instruction that loads the PC with the
s ta rting address o f the service routine. For non­
maskable in terrupts in in te rrup t mode 0, the PC is
set to 0066^, and a l l maskable in terrupts are
automatically disabled.

In in te rrup t mode 1, the PC is set to 0038 ̂ for
externally generated maskable in terrupts and to
0066̂ | for nonmaskable in te rrup ts .

For externally qenerated maskable in terrupts in
in te rrup t mode 2, the PC is fetched from an In te r­
rupt Vector table in system data memory; the lo g i­
cal address of the fetched PC value is formed by
concatenating the contents o f the I reg ister with
the 8- b i t vector returned by the in terrupting
device during the acknowledge cycle. For nonmask­
able in te rrup ts , the PC is set to 0066^.

For externally generated in terrupts in in te rrup t
mode 3, a l l in te rna lly qenerated in te rrup ts, and
a l l traps, the PC> and MSR values for the service
routine are fetched from the Interrupt/Trap Vector
Table (see section 6.5). The new value for the
MSR is at a fixed location in th is tab le. Exter­
na lly generated in terrupts can be vectored or
nonvectored in in te rrup t mode 3, as determined by
the contents o f the Interrupt Status reg ister.
For nonvectored in terrupts and a l l traps, the new
PC value is at a fixed location in the In te r­
rupt/Trap Vector Table; for vectored in terrupts,
the location of the new PC in the table is depen­
dent on the 8- b i t vector read durinq the acknowl­
edge cycle. ,

The value loaded in to the Proqram Counter during
exception processing is a logica l address that can

be translated to a physical address by the MMU
when the CPU fetches the f i r s t instruction o f the
service routine.

6 .4 .4 Executing the Service Routine

In in te rrup t mode 0, the in terrupting device pro­
vides the Restart or Call instruction that begins
the service routine; th is instruction saves the
Program Counter value o f the interrupted routine
and provides the address of the service routine.
In the other in terrupt modes and for traps, the
s ta rting address of the service routine i 3 deter­
mined automatically during in te rrup t processing,
as described in the preceding section. This pro­
gram is now executed.

For externally generated in terrupts in in te rrup t
modes 0, 1, and 2, a l l maskable in te rrup ts, are
automatically disabled; therefore the service rou­
tine is protected from additional in te rrup ts u n t il
the MSR is altered via a Load Control, Enable
In terrupt, Return from Nonmaskable In terrupt, or
Return from Interrupt Long instruction . In te r­
rupts in mode 3 and a l l traps cause a new MSR to
be loaded from the Interrupt/Trap Vector Table;
the value o f th is MSR determines which in terrupts
are enabled during the service routine. Service
routines that enable in terrupts before exiting
permit in terrupts to be handled in a nested fash­
ion.

6 .4 .5 Returning from a Service Routine

Three d iffe ren t instructions are available for
returning from an in te rrup t or trap service rou­
tin e : Return from Nonmaskable In te rrup t, Return
from In terrupt, and Return from Interrupt Long.
A ll three are privileged instructions, since they
must retrieve values from the system stack.

The Return from Nonmaskable Interrupt (RE TN)
instruction is used to return from nonmaskable
in terrupts in in te rrup t modes 0 , 1, and 2. This
instruction pops the word on the top o f the stack
in to the Program Counter, restoring the Program
Counter value present before the in te rrup t, and
loads the Interrupt Request Enable b its in the MSR
with the contents o f the Interrupt Shadow regis­
te r.

The Return from Interrupt (RETI) ins truction is
used to return from externally generated maskable
in terrupts in in te rrup t modes 0, 1, and 2. This
instruction pops the word on the top o f the stack
in to the Program Counter, which restores the Pro­
gram Counter value present before the in te rrup t.
The RETI instruction also causes a special bus

6-9

transaction that fetches th is instruction from
external memory (reqardless o f whether i t Is con­
tained io the on-chip cache), with the appropriate
bus control and status signals to indicate that an
instruction fetch is occurring; th is is used to
reset the in te rrup t logic of the Z80 family
peripherals.

The Return from Interrupt Lonq (RETIL) instruction
is used to return from in terrupts in in terrupt
mode 3 and a l l traps, since i t causes both the MSR
and PC values to be popped from the stack. I f
th i3 instruction is used to return from an in te r­
rupt processed with another in te rrup t mode (e.g.,
i f RETIL is used to return from a mode 2, instead
of a mode 3, in te rru p t), an MSR value must be
pushed onto the stack in the service routine p rio r
to execution of the RETIL. For in terrupts in
in te rrup t mode 3 and a l l traps, the service
routine must pop . the reason code or other
trap-dependent information o ff the stack before
executing RETIL. Unlike RETI, RETIL causes no
special bus a c tiv ity and, therefore, cannot be
used to automatically reset Z80 family periph­
erals. }

6.5 INTERRUPT/TRAP VECTOR TABLE

During in te rrup t processing under in terrupt mode 3
and a l l . trap processing, the PC and MSR values
that determine the s ta rting location and operating
modes of the appropriate service routine are
fetched from a table in memory called the In te r-
rupt/Trap Vector Table. This table holds an MSR
and PC value for the service routine for every
possible type of in te rrup t and trap. The particu­
la r values fetched from the table during exception
processing are a function o f the type o f exception
that occurred and, for vectored external in te r­
rupts, the vector returned by the peripheral dur­
ing the acknowledge cycle. The format of the
Interrupt/Trap Vector Table is given in Table
6-5. Each entry in the Interrupt/Trap Vector
Table consists of two words—an MSR value followed
by a PC value. I f an external in te rrup t is vec­
tored, as determined by the contents of the In te r­
rupt Status reg is ter, the 0 -b it vector returned by
the peripheral is used as an index in to a l i s t of
up to 128 possible PC values for the service
routine; only even-valued vectors are supported by
the Z280 CPU architecture. Thus, for a vectored
in te rrup t, there is only one s ta rting MSR value
for a l l the possible service routines, but up to
128 potentia l PC values. The NMI and Interrupt A
requests share the same vectors.

request is enabled (b it 1 in the MSR is set to 1),
the in te rrup t is processed as follows: the current
PC and MSR values are saved on the system stack;
an id e n tif ie r word with the value 14 ̂ is saved
on the system stack; a new'value for the MSR i 3
fetched from location 14 ̂ in the Interrupt/Trap
Vector Table; a new value for the PC is fetched
from location 16 ̂ in the Interrupt/Trap Vector
Table; execution of the service routine is begun.

I f an in te rrup t request is received from an
external source on in te rrup t line A under
in te rrup t mode 3 and that in te rrup t request is
enabled (b it 0 in the MSR i 3 set to 1), then
in te rrup t processing proceeds as follows:

a An acknowledge cycle is executed, during which
data is read from the external data bus.

• The current PC and MSR values are saved on the
system stack

a The data read from the bus during the
acknowledge cycle is saved on the system stack
as the id e n tif ie r word.

a A new value for the MSR is fetched from
location 08̂ | in the Interrupt/Trap Vector
Table

a A new value for the PC is fetched either from
location 0A in the Interrupt/Trap Vector Table
(i f b it 13 o f the Interrupt Status reqister is
0, indicating that Interrupt A is not vectored)
or from the location in the Interrupt/Trap
Vector Table found by adding the lower byte of
the data read from the bus during the
acknowledge cycle (the in te rrup t vector) to
70̂ | (i f b it 13 of the Interrupt Status
register is 1, indicating that Interrupt A is
vectored).

a Execution of the service routine i 3 begun.

For vectored in te rrup ts, the in te rrup t vector
returned during the acknowledge cycle must be
even-valued in order to reference a va lid PC value
In the ̂ Interrupt/Trap Vector Table.

The Interrupt/Trap Vector Table Pointer register
must be in it ia l iz e d to hold the most s ign ificant
12 b its of the startinq physical address of the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table must s ta rt on a 4K byte boundary in
physical memory (that is , a memory address whose
12 least 3iq n ifica n t b its are a l l zeros).

For example, suppose an in te rrup t is requested by
the on-chip counter/timer 0. I f that in terrupt

6-10

Table 6-5. Interrupt/Trap Vector Table Format

Address In Table
(Hexadecimal) Contents

00 Reserved
04 NMI vector
08 Interrupt line A vector
OC Interrupt line B vector
10 Interrupt line C vector
14 Counter/Timer 0 vector
18 Counter/Timer 1 vector
1C Reserved
20 Counter/Timer 2 vector
24 DMA channel 0 vector
28 DMA channel 1 vector
2C DMA channel 2 vector
30 DMA channel 3 vector
34 UART receiver vector
38 UART transmitter vector
3C Single-Step trap vector
40 Breakpoint-on-Halt trap vector
44 Division Exception trap vector
48 Stack Overflow Warning trap vector
4C Access Violation trap vector
50 System Call trap vector
54 Privileged Instruction trap vector
58 EPU <- Memory Extended Instruction trap vector
5C Memory «r EPU Extended Instruction trap vector
60 A <- EPU Extended Instruction trap vector
64 EPU Internal Operation Extended Instruction trap vector *

68-6C Reserved
70-.16E 128 Program Counter values for NMI and interrupt line A vectors (MSR values from position 04 and

08 in this table, respectively)
170-26E 128 Program Counter values for interrupt line B (MSR value from position 0C in this table).
270-36E 128 Program counter values for interrupt line C (MSR value from position 10 in this table)

6 .6 THE FATAL CIVOITION

During in terrupt and trap processing, the CPU
automatically attempts to save status information
about the interrupted program on the system
stack. I f the MMU is enabled, an access v io la tion
can occur during the status saving process i f a
w rite is attempted to an invalidated page or to a
page that is write-protected. Detection of an
access v io la tion during the status savinq process
causes the Z280 CPU to enter a special fa ta l con­

d ition ; the following steps are taken automati­
ca lly when the fa ta l condition occurs: the current
PC contents are w ritten to the HL reg is ter, the
current MSR contents are w ritten to the DE regis­
te r, a i l the In terrupt Request Enable b its in the
MSR are cleared to 0, and the CPU enters a Halt
state. This Halt state is iden tica l to the Halt
state caused by the execution o f a Halt instruc­
tion , with one exception: a Halt state induced by
a fa ta l condition can be exited only by a reset.

6-11

Chapter 7.
Memory Management Unit

7.1 INTRODUCTION
. '■ ./-■" - ' ; ' ", '• •: ' : ‘ : I

The Z280 MPUs include an on-chip paged Memory Man­
agement Unit tMMU), which allows the MPUs to
address more than 64K bytes of physical memory.
Memory management with the MMU involves two
issues: memory a llocation and memory protection.
The allocation of memory is contro lled by allowing
the MMU to translate the 16-bit log ica l addresses

* from the Z280 CPU in to the 24-bit physical
addresses output by the MPU. Thus, a given
programming task can be relocated to any area of
physical memory, regardless o f the logica l
addresses used by that task. Durinq th is
translation process, the MMU also monitors the
type of memory access beinq made; the MMU can
in h ib it accesses or w rite-protect memory areas,
thereby allowing memory to be protected from
unwanted or unintended modes of use.

The MMU partitions the 64K log ica l address space
of the Z280 CPU in to fixed-sized memory pages and
maps 'those pages in to the physical address space.
Separate mapping fa c il i t ie s are available for the
system and user modes of operation; translation
can be performed in e ither one or in both modes.
Optionally, the MMU provides for separating
instruction fetches from data references, which
allows the user to define up to four d iffe ren t
logica l address spaces: system mode program, sys­
tem mode data, user mode program, and user mode
data. I f the program and data address spaces are
separated, the MMU uses a page size of 8192 (8K)
bytes; i f not, the page size is 4096 (4K) bytes.

The MMU is programmed via I/O references to it s
control reg isters. The MMU records which pages
have been modified and can in h ib it the cache mech­
anism to prevent the w ritinq o f data to the
on-chip cache. Access V io lation traps are gener­
ated when an error condition is detected (such as
an attempted w rite to a read-only page). Access
vio la tions cause the currently executing instruc­
tion to be aborted, and allow that instruction to
be restarted in a manner compatible with v ir tu a l
memory requirements. Upon reset, the NWU is d is­
abled, allowing loqica l addresses to pass through
to physical memory without transla tion.

7.2 MMU ARCHITECTURE

The Z280 MMU consists o f two sets o f 16 page
descriptor reg isters, used to translate addresses
and assign memory a ttribu tes on a page-by-page
basis, and a Master Control reg is ter that governs
MMU operation. There is one page descriptor reg­
is te r associated with each log ica l page o f mem­
ory. One set o f 16 page descriptor registers is
dedicated to system mode operation and the other
set to user mode operation. The MMU registers are
accessed using 1/0 instructions.

When transla tion is enabled for a pa rticu lar mode
(system or user), as determined by thfe contents of
the MMU Master Control reg is te r, the MMU trans­
lates memory addresses whenever the CPU is operat­
ing in that mode, using the set o f page descriptor
registers dedicated to that mode. However, there
are two exceptions to that ru le :

• When the CPU is fetching program status in fo r­
mation from the Interrupt/Trap Vector Table in
response to an in te rrup t under in te rrup t mode 3
or a trap, the Interrupt Trap Vector Table
Pointer reg ister is used to determine the phys­
ic a l address of the program status information.

• The Load in User Program (LDUP) and Load in
User Data (LOUD) instructions are executed in
system mode but use the user mode page descrip­
to r registers to translate the data operand's
address.

Memory addresses generated by the on-chip DMA
channels are 24-bit physical addresses that are
not translated by the MMU. Only memory addresses,
and not I/O addresses, are translated by the MMU.

While an address is being translated, any a t t r i ­
butes associated with the log ica l page containing
that address are checked. The a ttribu tes fo r a
page are determined by the contents o f that page's
page descriptor reg is ter. Pages can be w rite -
protected and/or made non-cacheable using these
a ttribu tes . A non-cacheable page is one whose
contents cannot be copied in to the on-chip cache
during program execution; thus, accesses to loca-

7-1

7.3 PAGE DESCRIPTOR REGISTERStions in non-cacheable pages always use the exter­
nal bus. This a ttribu te is useful in multiproces­
sor systems with shared memory areas, where each
processor must be able to access the most current
version of the information in the shared memory
area, or in systems with memory-mapped I/O
devices. The MMU also maintains a status b it for
each page, which indicates i f that page has been
modified.

There are two sets of 16 page descriptor registers
in the MMU, one set for system mode operation and
one set for user mode operation. Each page
descriptor reg ister is 16 b its long, consisting of
a 12-bit page frame address f ie ld and a 4 -b it
a ttribu te f ie ld (Figure 7-1).

Each page descriptor register contains a Valid
b i t , which indicates i f that descriptor contains
valid information. Attempts to access an address
contained in a page with an inva lid descriptor and
attempts to write to an address in a page that is
write-protected generate Access V io lation traps.
An Access Violation trap causes the currently exe­
cuting instruction to be aborted, fa c il ita t in g the
development o f v ir tu a l memory systems. A special
I/O port in the MMU (Invalidation I/O port) is
available fo r resetting the valid b its in a whole
group of page descriptor registers with a single
I/O ins truction .

For system mode operation, user mode operation, or
both, the MMU can be configured to separate
instruction fetches from data fetches, therefore
separating the proqram address space from the data
address space. This allows a Z280 MPU proqram to
contain up to 64K bytes of code and operate on up
to 64K bytes of data. With the proqram/data sep­
aration mode in e ffec t, the 16 page descriptor
registers for that mode are partitioned in to two
sets o f eight descriptors: one set for instruction
fetches and one set fo r data fetches. An instruc­
tion fetch or data reference using the PC re la tive
addressing mode is translated using the page
descriptor registers associated with the program
address space; data accesses using other addres­
sing modes and accesses to the in te rrup t vector
table under in te rrup t mode 2 use the page descrip­
tor registers associated with the data address
space. In th is mode, pages are 8K bytes long.
Two control b its in the MMU Master Control regis­
te r specify independently whether program/data
separation is in effect for system mode and
whether program/data separation is in e ffect for
user mode.

When translation is disabled for a particu lar mode
(system or user), the MMU does not translate mem­
ory addresses or perform a ttribu te checking while
the CPU is operating in that mode. For a memory
access when the MMU is disabled, the logica l mem­
ory address passes through the MMU without trans­
la tion to physical address outputs Ag-A^ and
physical address outputs A^-A23 are a l l zeros.
When the MMU is disabled a l l memory is assumed to
be both writeable and cacheable.

- r - - r ,i" " i 1 r T-
PAGE FRAME ADDRESS *"r I V IW P C I M I

Figure 7-1. Page Descriptor Register

The page frame address f ie ld contains the most
s ign ifican t 12 b its (i f program/data separation is
not in e ffec t) or most s ign ifican t 11 b its (i f ’
program/data separation is in e ffect) of the
s tarting physical address for that page. The low-
order b its of the page's base physical address are
assumed to be a l l zeros; thus, pages always s ta rt
on 4K byte boundaries in physical memory without
program/data separation, or 8K byte boundaries
with program/data separation.

The least s ign ifican t four b its o f each page
descriptor reg ister are a ttr ibu te and status b its
for that page, as described below:

Modified B it (M). This status b it is automati­
ca lly set to 1 whenever a write is successfully
performed to a logica l address in the page; i t can
be cleared to 0 only by w riting to the page
descriptor reg ister via a software command. I f
the Valid b it is 0, the contents of th is b it are
undefined.

Cacheable B it (C). When th is b it is set to 1,
information from the page can be stored in the
on-chip cache memory. When th is b it is cleared to
0 , the cache contro l mechanism is inhib ited from
retaining a copy of information from the page.

W rite-Protect B it (WP). When set to 1, write
operations to addresses in the page generate an
Access V io la tion trap and the w rite i 3 inh ib ited .
When th is b it is cleared to 0, a l l va lid accesses
to the page are allowed.

V a lid B it (V) . This b it is set to T to indicate
that the page descriptor reg ister contains va lid
information about the page. When cleared to 0,
a l l accesses to addresses in the page are
inh ib ited and generate Access V io lation traps.

7-2

7.4 ADDRESS TRANSLATION

I f address translation is enabled, -logical
addresses are translated to physical addresses in
one o f two ways, depending on the program/data
separation mode, as specified in the MMU Master
Control reg is te r. The format of the page descrip­
to r registers is independent o f which mode is in
e ffec t.

7.4 .1 A d d ress Translation Without Program/bata
Separation

When program/data separation is not in e ffec t, the
16-bit log ica l address from the CPU is divided
in to two fie ld s , a 4 -b it index f ie ld used to
select one of the 16 page descriptor reg isters,

and a 12- b i t offset f ie ld that forms the lower 12
b its of the resu lting physical address. The upper
12 b its of the physical address are provided by
the page frame address f ie ld of the selected page
descriptor reg is ter. The pages are 4K bytes
long. This transla tion mechanism is illu s tra te d
in Figure 7-2. Page descriptor reg ister 0 is the
descriptor fo r logica l addresses 0000^ to
OFFFh, page descriptor reg ister 1 *is the
descriptor fo r logica l addresses 1000^ to
1FFFH, and so on. Thus, the index portion of
the log ica l address selects the page descriptor
reg is ter. The page frame address f ie ld o f that
page descriptor reg ister then determines the
actual s ta rting address for that page in physical
memory; the low-order 12 b its of the logica l
address specify the o ffse t w ith in that 4K byte
page.

15 1211 LOGICAL
ADDRESS

PADS DESCRIPTOR
REGISTERS

PHYSICAL
ADDRESS

Figure 7-2. Address Translation without Program/Data Separation

7-3

7 .4 .2 Address Translation With Prograa/bata
Separation

When program/data separation is in e ffec t, the
16-bit logica l address from the CPU is divided
in to a 3 -b it index and a 13-bit o ffse t. A Pro-
gram/Data address control signal from the CPU
becomes the most s ign ifican t b it of the 4 -b it
index that selects the appropriate page descriptor
reg is te r; the three most s ign ifican t b its o f the
log ica l address form the least s ig n ifica n t b its of
th is index. The upper 11 b its o f the page frame
address f ie ld in the selected page descriptor reg­
is te r provide the upper 11 b its o f the resu lting
physical address. The least s ign ifican t 13 b its
of the log ica l address form the low order 13 b its
o f the physical address, as illu s tra te d in Figure
7-3. Page descriptor reg ister 0 is the descriptor
fo r logica l addresses 0000^-1FFF^ in the data

address space, Page descriptor reg ister 1 is the
descriptor fo r logica l addresses 2000^-3FFFh
in the data address space, and so on through page
descriptor reg ister 7; page descriptor reg ister 8
is the descriptor for logica l . addresses
0000^ -1FFFh in the program address space, paqe
descriptor req ister 9 is the descriptor for lo q i-
cal addresses 2Q00h-3FFFh in the program
address space, and so on. Thus, each page is 8K
bytes long, where the s ta rting address of the page
in physical memory is determined by the page frame
address f ie ld in the selected page descriptor reg­
is te r , and the 13 least s ign ifican t b its o f the
log ica l address specify the o ffse t w ith in that 8K
byte page. In th is mode, the least s ign ifican t
b i t of the page frame address f ie ld in each page
descriptor reg ister is not used; th is b it is modi­
fied by transla tion , and values read from i t are
unpredictable.

PROGRAM/

16-B IT LOGICAL PROGRAM
OR DATA ADDRESS

PROGRAM PAGE
DESCRIPTOR REGISTERS

DATA PAGE
DESCRIPTOR REGISTERS

24-B IT PHYSICAL PROGRAM
OR DATA ADDRESS

Figure 7-3. Address Translation with Program/Data Separation

7-4

7 .5 ,'?MI CONTROL REGISTERS

Besides the two sets o f 16 page descriptor regis­
te rs , the MMU contains a Master Control reg ister
and a Page Descriptor Register Pointer. The
16-bit Master Control reg ister controls the opera­
tion o f the MMU; the 8- b i t Page Descriptor Regis­
ter Pointer is used to select a pa rticu la r page
descriptor reg ister during I/O accesses to the
descriptors.

The 16-bit MMU Master Control reg ister is shown in
Figure 7-4. This reg ister consists of four con­
t ro l b its and a 5 -b it status f ie ld ; the fie ld s in
th is reg ister are described below:

is_____________ ‘ ' ____________ o
| u t e |u p d | 1 1 | STE s p d | 1 | 1 ’ M 1

Figure 74. MMU Master Control Register

Use* Node Translate Enable (UTE). When th is b it
is set to 1, log ica l memory addresses generated
during user-mode operation are translated to phys­
ica l addresses with a ttribu te checking. When th is
b it is cleared to 0 , the loq ica l addresses are
passed through the MMU to the address outputs with
zeros in the most s ign ifican t b its and no a t t r i ­
bute checking or modified b i t setting is per­
formed.

User Node Program/Data Separation Enable (UPD).
When th is b it is set to 1, instruction fetches and
data accesses using the PC Relative addressing
mode use user-mode Page Descriptor registers 8
through 15, and data references using other
addressing modes use user-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes.
When th is b it is cleared to 0, both instruction
and data fetches U3e u3er-mode Page Descriptor
registers 0 through 15 and the paqe 3ize is 4K
bytes.

System Mode Translate Enable (STE). When th is b it
is set to 1, logica l memory addresses generated
during system-mode operation are translated to
physical addresses with a ttribu te checking. When
th is b it is cleared to 0 , the log ica l addresses ,
are passed through the MMU to the address outputs
with zeros in the most s ign ifican t b its and no
a ttribu te checking or modified b it setting is per­
formed.

System Node Program/Oata Separation Enable (SPD).
When th is b it is set to 1, instruction fetches and
data accesses using the PC Relative addressing
mode use • system-mode Page Descriptor registers 8

through 15,. and data references using other
addressing modes use system-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes.
When th is b i t is cleared to 0, both instruction
and data fetches use system-mode Page Descriptor
registers 0 through 15 and the page size is 4K
bytes.

Page Fau lt Id e n tifie r (P F I) F ie ld . This 5-b it
status f ie ld latches an id en tifica tio n number that
indicates which Page Descriptor reg ister was being
accessed when an access v io la tion was detected.
The encoding used is given in Table 7-1.

The MMU Master Control reg ister is programmed via
a word output instruction to I/O port address
FFxxFQh (where "x" indicates a "don't care") and
is read via a word input instruction to that same
port. A reset clears th is reg ister to a l l zeros,
thereby disabling address transla tion and a t t r i ­
bute checking in the MMU. B its 5 through 9, 12,
and 13 in th is reg ister are not used.

The Page Descriptor registers in the MMU are
accessed using the Page Descriptor Register
Pointer (PDR Pointer). The 8- b i t PDR Pointer con­
tains the address of one of the Page Descriptor
registers; the encoding is given in Table 7-1.
The permissible contents o f the PDR Pointer are
00̂ | through 1Fh« The PDR Pointer is accessed
via byte I/O instructions to port address
FFx x F1h .

Table 7-1. Page Descriptor Register Addresses

PDR Pointer or
PR Field

Selected Page
Descriptor Register

00 User Page Descriptor 0
01
•

User Page Descriptor 1
•

•
0E

•
User Page Descriptor 14

OF User Page Descriptor 15
10 System Page Descriptor 0
11
•

System Page Descriptor 1
•
•

•

1E

•

System Page Descriptor 14
1F System Page Descriptor 15

7 -5

7.6 ACCESSING PAGE DESCRIPTOR REGISTERS

Data is read or w ritten to the Page Descriptor
registers via I/O instructions. Three d iffe ren t
types of accesses are allowed, each of which is
implemented with i t s own unique I/O port address.

7.6 .1 Descriptor Select Port

Moves o f one word of data to or from a Page
Descriptor reg ister are accomplished through I/O
port address FFxxF5^, the Descriptor Select
Port. The Paqe Descriptor reg ister accessed is
the one addressed by the PDR Pointer; the PDR
Pointer i t s e l f is unaffected. Any word I/O
instruction can be used.

7 .6 .2 Block Move Port

Block moves o f data in to and out of Page Descrip­
to r registers are accomplished by word accesses to
I/O port address FFxxF4^. The Page Descriptor
reg ister accessed is the one addressed by the PDR
Pointer. Any word I/O instruction can be used.
A fter the access, the contents o f the PDR Pointer
are automatically incremented by one; thus, a s in­
gle block I/O instruction can be used to access
several successive Page Descriptor reg isters. For
example, i f the PDR Pointer is in it ia liz e d to 00,
the execution of an INIRW instruction to I/O port
FFxxFA ̂ causes data from successive Page
Descriptor registers s tarting with user Page
Descriptor reg ister 0 to be loaded in to memory.

For accesses to the Page Descriptor registers
using the Descriptor Select port or the Block Move
port, the permissible contents o f the PDR Pointer
are the addresses fo r the Page Descriptors given'
in Table 7-11 00 ̂ to 1Fh* Execution of an I/O
instruction to ports FFxxF4 ̂ or FFxxF5 ̂ when
the contents of the PDR Pointer are outside of
th is permitted range w i l l have unpredictable
resu lts.

7 .6 .3 Invalidation Port

The Valid b its in the Page Descriptor registers
can be cleared to 0 via byte writes to I/O port
address FFxxF2^, thereby invalida ting the con­
tents o f the Page Descriptor reg isters. Ind iv id­
ual Valid b its can subsequently be set by w riting
to individual Page Descriptor registers using the
Descriptor Select port or the Block Move port.
The Page Descriptor registers invalidated by a
write to port FFxxF2 ĵ depend on the data written

to that port, as delineated in Table 7-2. When
w riting to the inva lida tion port only the least
s ign ifican t four b its are sampled; the upper
four b its are not used. Reading port FFxxF2 ̂
returns unpredictable data.

Table 7-2. MMU Invalidation Port

Data W ritten to
Port FFxxF2 Page Descriptor Registers

(Hexadecimal) Invalidated

01 System Page Descriptor Registers 0-7
02 System Page Descriptor Registers 8-15
03 System Page Descriptor Registers 0-15
04 User Page Descriptor Registers 0-7
08 User Page Descriptor Registers 8*15
OC User Page Descriptor Registers 0-15

The 1/0 port addresses fo r the MMU* registers are
lis te d in Table 7-3.

Table 7-3. I/O Port Addresses for MMU Control Registers

Port
Address Register

FFxxFOh Master Control Register
FFxxFIh Page Descriptor Register Pointer
FFxxF5h Descriptor Select Port
FFxxF4h Block Move Port
FFxxF2h Invalidation Port

Changing an MMU control reg ister or Page
Descriptor reg ister does not cause a flush of the
CPU instruction pipeline. While an instruction
that changes an MMU register is executing, up to
two subsequent instructions can be pre-fetched
in to the CPU pipeline; execution o f these
subsequent instructions must have benign results.
In other words, when changing an MMU reg ister, up
to two subsequent instructions can be fetched
before the change to the MMU register is
guaranteed to take e ffec t. (However, no data
accesses are pre-fetched.) Therefore, when
in i t ia l ly enabling the MMU for address
transla tion , the instruction that enables the MMU
and the next two instructions must be in a page
whose log ica l addresses are identica l to physical
addresses (so that i t is immaterial exactly when
the MMU begins the translation process fo r those
instruction fetches). When a lte ring a page
descriptor reg ister while translation is enabled,
neither of the next two instructions should reside
in the page associated with the Page Descriptor
reg ister being changed.

7-6

7.7 INSTRUCTION ABORTS

Detection o f a page fa u lt (due to an attempted
access to an invalidated page) or a write-protect
v io la tion (due to an attempted w rite to a w rite -
protected page) causes the currently executing,
instruction to be immediately aborted and
generates an Access V io la tion trap. The s tarting
addresp of the instruction that caused the
v io la tion and the current MSR value are
automatically saved on the system stack when
processing an Access V io lation trap. Furthermore,
the MMU latches the address of the referenced Page
Descriptor reg ister in the PFI f ie ld of the MMU
Master Control reg ister whenever a v io la tion
occurs.

For rtiost instructions, the CPU registers are not
modified during the execution of aborted instruc­
tions; i . e . , the ir contents are the same as before
the aborted instruction began. The exceptions are
the block move, block search, and block I/O
instructions; when aborted, the CPU registers are
the same as jus t before the ite ra tio n o f the
instruction in which the v io la tion occurred. In
e ither case, no modification o f CPU registers is
necessary before restarting the aborted instruc­
tion .

The instruction abort mechanism of the Z280 MPU
fa c il ita te s the implementation o f v ir tu a l memory
in Z280-based systems. In a v ir tu a l memory sys­
tem, a cleared Valid b i t in the Page Descriptor
reg ister can be used to indicate when a memory
page is not currently mapped in to main memory. I f
an access is attempted to such a page, the
instruction is aborted and the Access V iolation
trap service routine is invoked. The service rou­
tine can determine which Page Descriptor register
is involved by reading the PFI f ie ld o f the MMU
Master Control reg is ter, swap the appropriate page
from the secondary storage device in to main mem­
ory, adjust the appropriate Page Descriptor regis­
te rs , and then restart the aborted instruction .
The aborted instruction is automatically restarted
by using the Return from Interrupt Long instruc­
tion to retrieve the o rig ina l PC and MSR values
from the system stack. No adjustments to other
CPU registers are required. During the swapping
process, the modified status b it in the page
descriptor register can be used to determine i f a
page has been modified since the last time i t was
copied to a secondary storage device.

7-7

Chapter 8.
On-Chip Memory

8.1 INTRODUCTION

The Z280 MPU ha3 256 bytes o f on-chip memory.
This on-chip memory can operate in e ither o f two
modes, as determined by the contents o f the Cache
Control reg ister (see Chapter 3). In one mode,
the on-chip memory is dedicated to fixed physical
memory locations; the memory addresses that are
mapped in to the on-chip memory are determined
under program con tro l. In the other mode, the
on-chip memory acts as a cache for either instruc­
tions, data, or both. When acting as a cache, the
set o f memory locations mapped in to the on-chip
memory at a given time is determined by the action
of the executing program; the memory locations
that were most recently accessed are stored in the
cache. Memory accesses to locations mapped in to
the on-chip memory do nut generate external bus
transactions and, therefore, are faster than
accesses to y external memory; thus, use of the
on-chip memory leads to faster, more e ffic ie n t
program execution. On reset, the on-chip memory
is automatically enabled for use as a cache for
instructions only.

8.2 CACHE MEMORY MODE

I f the M/C b it in the Cache Control reg ister is
cleared to 0, then the 256 bytes o f on-chip memory
are treated as a cache. Cache memories are small,
high-speed memory buffers situated between the
processor and main memory. (Main memory is the

semiconductor memory accessed via bus transac­
tion s .) For each memory access, control logic in
the MPU checks i f the memory location involved is
currently stored in the cache. I f so, the access
is made to the cache, usually without generating
an external bus transaction; i f not, the access is
made to main memory and the contents o f the cache
may be updated.

Z280 MPU cache organization is illu s tra te d in
Fiqure 8-1. The cache is arranged as 16 lines of
16 bytes each. Each line of the cache can hold a
copy o f sixteen consecutive bytes o f memory in
physical memory locations whose 20 most s ig n if i­
cant address b its are id en tica l. Thus, fo r exam­
ple, one line of the cache could 'hold the data
from physical memory locations ^153820^ to
15382Fh# The 20 b its o f physical address asso­
ciated with one line o f 16 bytes in the cache is
called the tag address for that line . Each line
of the cache also has 16 va lid b its associated
with i t ; each byte in the line is associated with
one va lid b i t . The va lid b i t is used to indicate
i f the corresponding byte in the cache holds a
va lid copy o f the memory contents at the asso­
ciated physical memory location.

Lines in the cache are allocated using a Least-
Recently Used (LRU) algorithm. I f a read access
is made to a physical memory address not currently
stored in the cache (a cache "miss”) , and the MMU
does not assert cache in h ib it , the line in the

20 BITS 16 BITS 1 6 x 6 BITS

LINE 0 TAOO VALID
BITS

CACHE DATA

UNE 1 TAG 1 VAUD
BITS

CACHE DATA

LINE 2 TAG 2 VALID
BITS CACHE DATA

.. a a a - a

a a a a

a a a a

UNE 15 TAG 15 VALID
BITS CACHE DATA

Tag n ■ (ha 20 Address bits associated with Hna n
Valid bite » 16 bite that indicate which bytes in tha cache contain valid data
Cache date * 16 bytes

Figure 8-1. Cache Organization

8-1

cache that has been least recently accessed is
selected to hold the newly read data. A ll bytes
in the selected line are marked inva lid except for
the bytes containing the newly accessed data. A
cache miss on a data w rite does not cause a line
to be allocated to the memory location accessed.

On a cache miss during a memory read, one or two
bytes (depending on the bus size) are fetched from
main memory and w ritten to the cache. The cache
does not prefetch beyond the currently reguested
byte or word, with one exception; i f burst mode
operations are specified in the Cache Control reg­
is te r, burst mode transactions are used when
fetching instructions.

The cache can be configured to hold only instruc­
tions, only data, or both instructions and data,
as determined by the contents of the Cache Control
reg is ter. I f the cache contains data, writes to
data at locations in the cache also generate
external bus transactions to update the appro­
priate memory locations; thus, external memory is
always guaranteed to contain valid information.

Tables 8-1 and 8-2 summarize cache operation.
Whether or not a given memory operation accesses
the cache depends on a number of factors: the
type of access being made (program read, data
read, or data w rite), whether the cache is enabled
for that type of access, the type of instruction
being executed, whether the MMU asserts cache
in h ib it , and whether the CPU or a DMA device in i­
tia te s the transaction. The Cache Control reg is­
te r determines i f the cache is used for instruc­
tion fetches or data accesses or both. Execution
of the Test and Set (TSET) ins truction , Return
from Interrupt (RETI) ins truction , and the
extended instructions force external bus transac­
tions, regardless of the contents of the cache, as
described below. I f the MMU is enabled, the
access can be cacheable or noncacheable, as deter­
mined by the contents of the page descriptor reg­
is te r in use. I f the MMU is not enabled, a l l
transactions are considered to be cacheable. Both
the CPU and on-chip DMA channels can access the
cache. For DMA operations, only data read and
data write transactions can occur. The state o f
the Cache Data Disable control b i t in the Cache

Table 8-1. CPU Accesses to On-Chip Memory as Cache

Operation H lt/M iss
Cache

Instruction Cache Data
Cache Activity

Contents LRU
Bus

Transaction

Cache/Memory
Supplies

Information

MMU Cache Inhibit Cacheable Transaction

Instruction Read Hit Disabled Don’t care Updated No change Yes Memory
Enabled Don’t care No change Updated None Cache

Miss Disabled Don’t care Updated* No change Yes Memory
Enabled Don’t care Updated Updated Yes Memory

Data Read Hit Don’t care Disabled Updated No change Yes Memory
(non Test & Set) > Don’t care Enabled No change Updated None Cache

Miss Don’t care Disabled Updated* No change Yes Memory
Don’t care Enabled Updated Updated Yes Memory

Data Read Don’t care Don’t care Don’t care Updated* No change Yes Memory
(Test & Set)

Data Write Hit Don’t care Disabled Updated No change Yes —
Don’t care Enabled Updated Updated Yes —

Miss Don’t care Disabled No change No change Yes —
Don’t care Enabled No change No change Yes —

EPU-to-Memory Don’t care Don’t care Don’t care Updated* No change Yes EPU

Memory-to-EPU Don’t care Don’t care Don’t care No change No change Yes Memory

EPU Template Don’t care Don’t care Don’t care No change No change Yes Memory

RETI Opcode Don’t care * Don’t care Don’t care No change No change Yes Memory

MMU Cache Inhibit -* Noncacheable Transaction

Don’t care Don’t care Don't care Don't care Updated* No change Yes Memory

‘ Updated if a cache line contains the accessed location, otherwise unaffected.

8-2

Control reg ister is ignored during DMA
transactions; therefore, an on-chip DMA device
always updates the cache contents during DMA write
operations to memory locations that are currently
mapped in to the cache.

For read operations, a cache "h it " is a reference
to a location with a va lid entry in the cache, and
a cache "miss" is a reference to a location that
has no va lid entry in the cache. In the general
case (and assuming the transaction is cacheable),
read operations that are cache h its cause the data
to be read from the cache without generating an
external bus transaction. Read operations that
are cache misses cause the data to be read from
the external memory via an external bus cycle and
update the cache contents. Updatinq the cache
contents may involve replacing the teast-recently
used line of the cache with a new line that
contains the read location. For w rite operations,
a cache h it is a write to a location in the cache,
even i f the destination byte is marked as inva lid
in the cache, and a cache miss is a write to a
location that is not in the cache. Write
operations that are cache h its cause both the
cache and external memory to be updated, and write
operations that are cache misses have no e ffect on
the cache. Memory write operations always gener­
ate external bus transactions.

Exceptions to the above rules include the Test and
Set, Return from In terrupt, and extended instruc­
tions. Data read operations during execution o f a
Test and Set instruction always read the data from
the main memory with an external bus transaction,
reqardless of whether or not the location read is
valid in the cache. This ensures that the most
recent value for a semaphore is read from external
memory in the case that the semaphore is in shared
memory in a multiprocessor system; another proces­
sor may have chanqed the semaphore a fte r i t was
last read in to the MPU's cache.

I f an RET I opcode is fetched from the cache, the
instruction fetch cycles are repeated with
external bus transactions; th is ensures that Z80
family peripherals connected to the Z280 MPU with
an in te rrup t request daisy chain can detect the
RETI opcode fetch (a requirement for the proper
operation o f the Z80 family peripherals).

I f extended instructions are resident in the
cache, the EPU template portion o f those
instructions is always read usinq external bus
transactions. This ensures that an Extended
Processinq Unit (EPU) that is monitoring the
external bus can detect and read the template
durinq those instruction fetch cycles. I f the
extended instruction resu lts in a transfer o f data
between the EPU and memory, a l l the involved data
transactions occur on the external bus. Cache
h its during EPU-to-memory write transactions
resu lt in the updating o f cache contents as well
as external memory.

For memory reads, the LRU algorithm log ic is
updated to re fle c t that the associated cache line
is the most-recently accessed line i f the read was
an ins truction fetch in a cache enabled for
instructions or a data fetch in a cache enabled
for data. For data writes, the LRU alqorithm
loqic is updated only for a cache h i t in a cache
that is enabled for data.

When the on-chip DMA contro llers transfer data to
memory, cache contents are modified i f the write
is to a location mapped in to the cache, but the
LRU alqorithm is unaffected. EPU-to-memory
transaction^ have the same e ffec t. The cache is
not affected by the a c tiv ity of external DMA
con tro lle rs.

On reset, a l l the valid b its in the cache are
cleared to 0, markinq a l l cache entries as
inva lid , and the on-chip memory is confiqured as a
cache for instructions only.

Table 8-2. On-Chip DMA Accesses (Both Flowthrough and Flyby)
Effect on On-Chip Memory as Cache

Cache/Mem ory
Memory Cache Cache Activity Bus Supplies

Operation HH/MIss Instruction Cache Data Contents LRU Transaction Information

Read Hit Don’t care Don’t care Updated No change Yes Memory
Miss Don’t care Don’t care Updated* No change Yes Memory

Write Hit Don’t care Don’t care Updated No change Yes —
Miss Don’t care Don’t care No change No change Yes —

* Updated if a cache line contains the accessed location, otherwise unaffected.

8.5 FIXED-ADDRESS MODE

When the M/C b it in the Cache Control reg ister is
set to 1, the on-chip memory is treated as fixed
physical memory locations. Accesses to these mem­
ory locations never qenerate external bus transac­
tions and, therefore, are faster than memory
accesses that use the external bus (Table 8-3).

In th is mode, the on-chip memory is s t i l l organ­
ized as 16 lines of 16 bytes each, with a 20- b i t
taq address that specifies the 16 physical memory
locations in each line . A ll locations are assumed
to contain va lid information, whether or not they
have been in it ia l iz e d ; the individual va lid b its
associated with each byte in the line are ignored
in th is mode. The Cache Data Disable and Cache
Instruction Disable b its in the Cache Control reg­
is te r are also iqnored in th is mode, and no d is­
tinc tio n is made as to whether the CPU is acces-
sinq instructions or data.

Before enterinq th is mode, the user must in i t ia l ­
ize the taq addresses for a l l 16 lines of on-chip
memory. The values for these tags determine the
256 physical memory addresses that are mapped in to

the on-chip memory. This is accomplished by ena­
bling the on-chip memory as a cache for data only,
readinq data from 16 physical memory locations
that are in d iffe ren t cache lines, and then set-
tinq the M/C b it in the Cache Control reg ister to
1 to enable the fixed-address mode for the on-chip
memory. A lte rinq the M/C b it in the Cache
Control req ister does not a ffect the contents of
the on-chip memory, includinq the taq addresses.

Note that each line o f the on-chip memory must be
assigned a unique taq address before entering th is
mode so that no unpredictable addresses are mapped
in to the on-chip memory. I f instructions are to
be fetched from the on-chip memory while in th is
mode. Return from Interrupt (RETI) instructions
and the templates w ith in extended instructions
should never be resident in the on-chip memory; in
each case, the operation of devices external to
the MPU depends on these instructions being
fetched with external bus transactions, as men­
tioned in section 8.2. Data to be transferred to
or from an EPU cannot be resident in on-chip mem­
ory e ither, since th is data must be transferred to
the EPU over the external bus.

Table 8-3. DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location

Cache/Mem ory
Memory Cache Cache Activity Bus Supplies

Operation H it/M iss Instruction Cache Data Contents LRU Transaction Information

Read Hit Don’t care Don’t care No change No change No Cache
Miss Don’t care Don’t care No change No change Yes Memory

Write Hit Don’t care Don’t care Updated No change No —
Miss Don’t care Don’t care No change No change Yes —

Chapter 9.
On-Chip Peripherals

9.1 INTRODUCTION

The Z280 MPU features a number o f peripheral
devices on-chip in addition to the CPU, MMU, and
cache memory. These peripheral devices include a
clock o s c illa to r, dynamic RAM refresh con tro lle r,
four d irect memory access (DMA) con tro lle rs, three
counter/timers, and a universal asynchronous
receiver/transm itter (UART).

The DMA channels, counter/timers, and UART are
user-proqrammable devices that can be configured
to operate in several d iffe re n t modes. These
devices are accessed usinq I/O instructions;
however, no external I/O bus transactions are
qenerated when the on-chip peripherals are
accessed by the CPU. These devices can generate
in te rrup t requests to the Z280 MPU, as described
below and in Chapter 6 . Interrupts from these
on-chip peripherals are always processed using
in te rrup t mode 3, reqardless o f which in te rrup t
mode is used for externally, qenerated in te rrup ts.

9.2 CLOCK OSCILLATOR

The Z280 MPU has an on-chip clock o s c illa to r/
qener;ator that can be connected d ire c tly to a
crysta l or any other suitable clock source. The
frequency o f the processor clock is one-half of
the frequency of the external clock source or
crysta l* The processor clock can be further
divided by a factor o f 1, 2, or 4 to . provide the
bus tim ing clock, as specified by the contents of
the Bus Timing and In it ia liz a t io n reg ister (see
Chapter 3). The bus timinq clock is output by the
MPU for use by the rest o f the system.

The on-chip clock o s c illa to r (a high-gain a m p lifie r, is
enabled by e ith e r connecting a crysta l across the
Clock/Crystal Input (XTAL1) and Crystal Output (XTALO)
pins or connecting a clock input to the Clock/Crystal
Input p in . The crysta l must be a p a ra lle l resonant
fundamental type.

9 .3 REFRESH CONTROLLER

An on-chip memory refresh con tro lle r in the Z280
MPU is available for generating memory refresh
operations in systems u t il iz in g dynamic RAMs.
Operation o f th is mechanism is controlled by the
Refresh Rate reg is ter, which is located in the
Z280 MPU' 8 I/O address space. I f enabled, memory
refreshes are performed at a rate specified by the
contents o f th is reg is ter.

The format o f the 8- b it Refresh Rate reg ister is
shown in Figure 9-1. This reg ister enables the
refresh mechanism and determines the frequency o f
refresh transactions. The fie ld s in th is reg ister
are described below.

EH : : i
Figure 9-1. Refresh Rate Register

Refresh Enable (E) b it . When th is b it is set to
1, the refresh mechanism is enabled. When th is
b it is cleared to 0 , the refresh mechanism is
disabled and refresh transactions are not
generated.

Refresh Rate f ie ld . The contents o f th is 6-b it
f ie ld determine the frequency o f refresh
transactions i f the Refresh Enable b it is set to
1. A value o f n (0 < n < 63) in th is f ie ld
specifies a refresh rate o f once every 4n
processor clock cycles; a value o f 0 in th is f ie ld
indicates a refresh rate o f every 236 processor
clock cycles. *

The Refresh Rate reg ister is accessed via byte I/O
operations to I/O port address FFxxE8 |̂ (where x
means "don 't care"). B it 6 o f th is reg ister is
not used. On reset, the Refresh Rate reg is ter is
in it ia l iz e d to 88H, thereby enabling memory
refresh at a rate o f 32 processor clock cycles per
refresh. This reg ister can be read at any time to

9-1

determine i f refresh is enabled and the current
refresh rate.

A 10-bit refresh address is output on address
lines AQ-A9 during a refresh transaction. This
refresh address is incremented by one for Z80 bus
(8- b it data bus) configuration and by two for
Z-BUS (16-bit data bus) configuration o f the Z280
MPU between refresh transactions. The refresh
address is not accessible by the programmer and is
not affected by a reset.

During instruction execution, the actual refresh
transactions are generated as soon as possible
a fte r the refresh period has elapsed. Generally,
the refresh transaction is executed a fte r the las t
clock cycle o f the bus transaction in progress at
the time that the refresh period elapsed. I f the
CPU receives an in te rrup t request during that same
bus transaction, the refresh transaction is
inserted before processing the in te rrup t. When
the Z280 MPU does not have control o f the bus due
to a bus request, refresh transactions cannot be
executed; while the MPU is in th is state, in terna l
c irc u itry records the number of refresh periods
that have elapsed (that is , the number o f "missed”
refresh transactions). When the Z280 MPU regains
control o f the bus, the refresh mechanism
automatically issues the missed refresh cycles.
S im ilarly, i f the refresh period elapses while the
MPU is in a wait state (due to WAIT being
asserted) during a bus transaction, the number of
missed refresh transactions is recorded
in te rn a lly , and those refresh cycles are issued
a fte r WAtt is deactivated and the bus transaction
is completed. The in terna l c irc u itry can record
up to 236 such missed refresh operations.

Pseudo-static memories and some peripheral devices
(such as the Z8000 family o f peripherals) require
a minimum transaction rate on the bus for correct
operation. I f the refresh mechanism is disabled
by clearing the Refresh Enable b it in the Refresh
Rate reg is ter, the rate f ie ld in th is reg ister is
used to determine the minimum transaction rate on
the bus. In th is mode, i f the refresh timer
reaches 0 and no external bus transaction has
occurred since the las t time the refresh timer
elapsed, then a refresh transaction w i l l be
generated. Thus, in a system that does not
require, memory refresh transactions, the Refresh
Rate f ie ld in the Refresh Rate reg ister must be
in it ia l iz e d to an appropriate value even i f memory
refresh operations are disabled,

9 .4 COUNTER/TIMERS

The Z280 MPU's three on-chip 16-bit counter/timers
can be configured to sa tis fy a broad range of

counting and timing applications, including event
counting, in te rva l tim ing, watchdog tim ing, and
clock generation. Each counter/timer is composed
of a 16-bit downcounter, a 16-bit time constant
reg is ter, and two 8- b i t control and status
registers (the Counter/Timer Configuration
reg ister and the Counter/Timer Command/Status
reg is te r). The three independent devices are
referred to as counter/timer 0 (C/T 0), counter/
timer 1 (C/T 1), and counter/timer 2 (C/T 2).
Figure 9-2 is a block diagram of a Z280 MPU
counter/timer.

INTERRUPT CPU
TO CPU CLOCK

Figure 9-2. Counter/Timer Block Diagram

C/T 0 and C/T 1 can be programmably linked to form
a 32-bit counter/timer.

Two external connections are available for each
counter/timer: a Counter/Timer I/O pin (C/T I/O)
that can act as a gate or trigge r input or a
counter/timer output, and a Counter/Timer Input
pin (C/T IN) that can serve as a count, gate,
trigg e r, or ga te/trigger input. The contents of
the Counter/Timer Configuration reg ister determine
the pin functions fo r a given application.

/
The counter/timers can operate in counter mode or
in timer mode. In counter mode, the downcounter
decrements the count on the occurrence of an
external event; spe c ifica lly , the counter is
clocked by a ris ing edge on the Counter/Timer
Input pin. In timer mode, the downcounter is
clocked by an in terna l signal—the CPU clock
divided by four.

9-2

Gate and trigg e r inputs to the downcounter can be
used to control counter/timer a c t iv ity . Both
hardware and software gate and trigge r signals are
available. Either retriggerable or nonretrigger-
able modes can be specified.

The counter/timer's "terminal count" condition is
when the downcounter holds a count o f 0. This
terminal count condition can be used to generate
an in te rrup t request to the CPU. Counter/timers
can generate a counter/timer output signal when
the terminal count is reached. Upon reaching
terminal count, a counter/timer can be programmed
either to discontinue counting (single-cycle mode)
or to reload the in i t ia l time constant value and
continue counting (continuous mode).

9.4 .1 Counter/Timer Operating Nodes

The counter/timers have two basic operating modes,
distinguished by the clockinq siqnal to the
downcounter: counter mode and timer mode. The
current mode for counter/timer operation is
determined by the contents o f the Counter/T^ier
Configuration req is ter.

In counter mode operation, the counter/timer
monitors an external input lin e and records
low-to-hiqh trans itions on that lin e . The
Counter/Timer Input pin is used as the counter's
input signal; i f the appropriate enabling
conditions are met, a low-to-hiqh trans ition on
that pin w i l l cause the contents o f the down-
counter to be decremented by one. The decrement
operation in the downcounter is actually performed
on the f i r s t ris in q edqe of the scaled processor
clock (CPU clock divided by 4) a fte r the
low-to-hiqh trans ition on the C/T IN siqnal.
Typically, counter mode is used in event-countinq
types of applications.

In timer mode operation, . the counter/timer
monitors the in terna l CPU clock scaled by four for
low-to-hiqh trans itions. I f the appropriate
enablinq conditions are met, such a trans ition
causes the contents o f the downcounter to be
decremented by one. No external inputs are
required in the timer mode o f operation. Timer
mode is used in applications such as delay
in te rva l tim inq, watchdoq tim ing, and clock
generation.

OATS I
—PUT I

In e ith e r mode, the maxi nun count frequency is the CPU
clock divided by four.

9 .4 .2 Gates and Triqqers

Gate and triqqe r inputs are used to control
counter/timer a c tiv ity in e ither counter mode or
timer mode.

Gate signals are used in applications where
countinq or tim inq is to occur only durinq certain
specified in te rva ls ; the counter/timer w i l l count
or time only while the qatinq condition is met.
For applications where an external pin is
configured as a qate input, counting or timing
operations are performed only while the gate input
is hiqh. A software qate b i t (one b i t of the
Counter/Timer Command/Status reg ister) i s t used as
a f i l t e r fo r the qate input; while the software
qate b i t is cleared to 0, the qating condition is
not met reqardless of the state o f the qating
lin e . In other words, the gatinq condition is a
loq ica l AM) o f the hardware and software qates;
both the qate input must be hiqh and the software'
qate b it must be set to 1 fo r the counter/ timer
to be operatinq. I f no external pins are
configured as a qatinq siqnal, then the software
qate b i t must be set to 1 to sa tis fy the qating
condition.

Figure 9-3 illu s tra te s the gatinq fa c i l i t y in an
application where the counter/timer is in counter
mode with both the qate and the count siqnals
cominq from external pins. This example assumes
that the software qate b it has been set to 1. The
contents o f the downcounter are decremented on a
low-to-hiqh trans ition of the count input only i f
the qate input is hiqh.

I f tr igqer mode is selected, a countdown sequence
for a counter/timer beqins only a fte r a triqqerinq
condition occurs; a countinq or timing operation
can begin only a fte r a low-to-hiqh trans ition is
detected on the triqqe r. I f an external input is
used as a trigg e r, that line is monitored by the
counter/timer. A lte rnative ly , a software triqqer
b it (one b i t in the Counter/Timer Command/Status
req ister) can be set to 1 from a previously
cleared value to activate the cdunter/timer. The

i___r
srss__ I l_n____ T L T I

COUNT/TIM S
RKOISTKIt * *

DKClUMKMTKD

Figure 9-3. Counter Operation with Gate Only

9-3

triqqer condition is a loqieal OR o f the hardware
and software triqqers; that is , e ither a hardware
or software triqqer w i l l activate an enabled
counter/timer.

Fiqure 9-4 illu s tra te s triqqer operation in an
application where the counter/timer is in the
counter mode with both the triqqer and count
inputs provided by external pins. This example
assumes that the software trigger b it does not
make a low to high trans ition . The contents of
the downcounter are decremented on a low-to-high
trans ition of the count input only a fte r a
low-to-hiqh trans ition on the triqqer input has
been detected.

Either a retrigqerable or nonretriqqerable
operation can be specified. In the retriqqerable
mode, the occurrence o f a triqqer condition causes
the counter/timer to reload i t s in i t ia l time
constant value reqardless of the current contents
o f the downcounter. This mode is used in
applications such as watchdoq timers. In the
nonretriqqerable mode, a fte r the f i r s t triqqer
condition starts counter/timer a c tiv ity ,
subsequent triqqer conditions are iqnored.
Nonretriqqerable mode is used in applications such
as delay counters that measure a fixed delay from
a piven event.

Gate and triqqer operations can be combined in a
sinqle counter/timer. Separate gate and triqqer
inputs (e ither hardware or software) can be
specified, or one external input can be used as
both a qate and a triq q e r. In the la tte r case, a
low-to-hiqh trans ition on the input acts as a
triqqer that s tarts counter/timer a c tiv ity , and
then countinq or timinq continues only as lonq as
the input siqnal remains hiqh. Again, either
retriggerable or nonretriggerable modes are
available. Fiqure .9-5 illu s tra te s counter/timer

operation in an application where counter mode is
selected, one input is a count input, and the
other input is used as both the triqqer and qate.

9 .4 .3 Terminal Count Condition

Durinq operation, the counter/timer counts down
from a preset time constant value. The time
constant value can range from 0 to 65535. The
terminal count condition is reached with the
trans ition from a count of 1 in the downcounter to
a count o f 0. The counter/timers can be
programmed to in te rrup t the CPU and/or generate a
counter/timer output siqnal when the terminal
count is reached.

Another set of operatinq modes determines
counter/timer a c tiv ity upon reachinq the terminal
count. Whether in counter or timer mode, a
counter/timer can be configured for single-cycle
mode or continuous mode. In sinqle-cycle mode,
the counter/timer halts operation upon reachinq
terminal count; a new triqqer is required to
reload the time constant and in it ia te another
countdown sequence. In continuous mode, the
counter/timer is automatically reloaded with the
time constant upon reaching terminal count; the
downcounter is reloaded on the next count input
a fte r reaching terminal count. For example, a
counter/timer in continuous mode with a 3 in i t s
Time Constant req ister w i l l be reloaded on every
fourth count input.

An in te rrup t enable b it in the Counter/Timer
Configuration req ister determines i f an in te rrup t
request is qenerated at the terminal count. This
request w i l l be processed by the CPU i f the appro­
pria te In terrupt Request Enable b it in the CPU's
Master Status reqister is set to 1 (see Chapter
6).

j— I__ n

Figure 9-4. Counter Operation with Trigger Only

QATESTRIQOER
INPUT

5
COUNTER

LINE —n__n__n_n.
COUNT/TIME

Figure 9-5. Counter Operation with Gate and Trigger

9-4

Continuous/Single Cycle (C /5) . While th is b it is
set to 1, the downcounter is automatically
reloaded with the contents of the Time Constant
reg ister on the next count input signal a fter
terminal count is reached, and the counting or
timing operation continues. While th is b it is
cleared to 0 , no automatic reloading occurs when
terminal count is reached.

Retrigger Enable (RE). While th is b it is set to
1, the value o f the Time Constant reg ister is
loaded in to the downcounter whenever a trigger
input is received (retriggerabie mode). While
th is b it i 8 0, tr igge r conditions do not cause
reloading o f the downcounter.

In terrup t Enable (IE). While th is b it is set to
1, the counter/timer generates an in terrupt
request to the Z280 CPU upon reaching terminal
count. While th is b it is cleared to 0, no
in terrupt requests can be generated by the
counter/timer.

C otnter/Tiaer Cascade (CTC). For C/T 0, th is is
the enable b it fo r link ing to C/T 1 in order to
form a 32-bit counter/timer (see section 9.4.5).
The state o f th is b it has no effect in C/T 1 and
C/T 2.

Input Pin Assignments (IP A). The contents of th is
4»-bit f ie ld determine the operatinq mode of the
counter/timer (counter or timer mode) and the
functiona lity o f the external pins associated with
that counter/timer. The four b its in th is f ie ld
are associated with enabling the generation o f an
output pulse (E0), selectinq the counter or timer
mode (C/T), enablinq the qatinq fa c i l i t y (G), and
enablinq the triqqerinq fa c i l i t y (T). Table 9-1
shows the encodinq o f th is f ie ld .

Table 9-1. Encoding of the IPA Field in the Counterfllmer Configuration Register

EO
IPA Reid
C/T G T

Pin Functionality
Counter/Timer I/O Countev/Timer Input Mode

0 0 0 0 Unused Unused Timer
0 0 0 1 Unused Trigger Timer
0 0 1 0 Gate Unused Timer
0 0 1 1 Gate Trigger Timer
0 1 0 0 Unused Input Counter
0 1 0 1 Trigger Input Counter
0 1 1 0 Gate Input Counter
o 1 1 1 Gate/Trigger Input Counter
1 0 0 0 Output Unused Timer
1 0 0 1 Output Trigger Timer
1 0 1 0) Output Gate Timer
1 0 1 1 Output Gate/Trigger Timer
1 1 0 0 Output Input Counter
1 1 0 1 Unused Unused 1 Reserved
1 1 1 0 Unused Unused Reserved
1 1 1 1 Unused Unused Reserved

The CTIO pin can be configured as a counter/timer
output siqnal. Reachinq the terminal count
condition causes a low-to-high trans ition on the
CTIO pin; th is signal remains high as long as the
downcounter holds a value of zero (that is , u n t il
a non-zero time constant is loaded in to the
downcounter due to a trigger condition).

9 .4 .4 Counter/Timer Registers

Each counter/timer has . two 8- b i t command and
status registers and two 16-bit count reqisters.
The 8- b i t Counter/Timer Configuration and
Counter/Timer Command/Status reqisters determine
the counter/timer*s operatinq modes and provide
status information about the current operation.
I f C/T 0 and C/T 1 are linked to form a 32-bit
counter/timer, the functiona lity o f these
registers is affected, as described in section
9.4.5. The 16-bit Time Constant reg ister holds
the in it ia l iz a t io n value for the counter/timer,
and the 16-bit Count-Time reg ister contains the
value o f the current count in progress.

9 .4 .4 .1 Counter/Tiaer Configuration Register

The Counter/Timer Configuration reg is ter, shown in
Figure 9-6, specifies the counter/timer's mode of
operation. The five fie ld s in th is reg ister are
described below.

y o
{c/s| WE e e e : IPA |

•CTC Is pis—Ht on countoiftlmof 0 only.

Figure 9-6. Counter/Timer Configuration Register

9-5

IF a reserved encodinq of the IPA f ie ld is
specified fur any counter/timer, counter/timer
operation is unpredictable.

The Counter/Timer Configuration reqisters are
cleared to a l l zeros by a reset.

9 .4 .4 .2 Couiter/Tim er Command/Status Register

The Counter/Timer Command/Status reg ister provides
for software control o f counter/timer operation
and re flec ts the current status of the counter/
timer. Three control b its and three status b its
are included in the Command/Status reg is ter. The
format for th is reg ister is il lu s tra te d in Fiqure
9-7.

7_________________________,_________________ 0

E QT T0| 1 | 1 CIP c c |c o r |

Figure 9-7. Counter/Timer Command/Status Register

Enable (EN). While th is b it is set to 1, the
counter/timer is enabled; operation beqins on the
f i r s t ris ing edge of the processor clock following
the settinq o f th is b it from a previously cleared
state. Writinq a 1 to th is b i t when i t s previous
value was a 1 has no e ffec t. While th is b it is
cleared to 0 , the counter/timer is disabled and
performs no countinq or timinq operations. While
in the disabled state, the contents of the Time
Constant reg ister are continuously loaded in to the
downcoiinter.

Software Gate (GT). While the counter/timer is
enabled (the EN b it is a 1), downcounter operation
beqins on the ris inq edqe of the f i r s t scaled
processor clock following the setting of th is b it
from a previously cleared value. Writing
a 1 to th is b it when the previous value was a 1
has no e ffec t. While th is b it is cleared to 0,
the countinq or timinq sequence is halted.

Software Triqqer (TR). While the counter/timer is
enabled (the EN b it is a 1), the triqqer condition
is qenerated on the ris inq edqe of the f ir s t
scaled processor clock followinq the settinq of
th is b it from a previously cleared value. I f a
previous triqqe r condition has not occurred, the
contents of the Time Constant req ister are loaded
in to the downcounter and the countinq or timinq
sequence begins. I f a hardware or software
triqqe r has already occurred and the Retrigger
Enable b it is set to 1, the counter/timer w i l l be
retriggered. I f a trigqer has already occurred,
the Retrigqer Enable b i t is cleared to 0, and a
countinq or timinq operation is in progress (that
is , the downcounter holds a count other than 0),
then settinq the TR b it has no e ffect on
counter/timer operation. Clearinq th is b it to, 0
also has no effect on counter/timer operation.

Count in Proqress (C IP). This status b it
indicates i f a countinq or timinq operation is in

progress. While th is b it is a 1, the counter/timer
has a time constant loaded and the downcounter holds a
non-zero value. While th is b i t is a 0, the
counter/timer is not operating. The state of th is b it
is determined by control logic in the counter/timer
and cannot be a lte red by a w rite operation to th is
reg is te r.

End-of-Count Condition Has Been Reached (CC).
This status b it is set to 1 by control logic in
the counter/timer when the end-of-count condition
is reached (that is , the downcounter has been
decremented to zero in the sinqle-cycle mode or
the downcounter has been reloaded in the
continuous mode). While th is b it is a 0, the
downcounter has not been decremented to 0 since
the last time that th is b it was cleared by
software. This b it can be read or w ritten under
proqram contro l.

Count Overrun (COR). This status b it is set to 1
by control logic in the counter/timer i f the
end-of-count condition is reached while the CC b it
is already set to 1, thereby indicating a count
over-run condition. I f th is b it is a 0, the
end-of-count condition has not been reached while
the CC b it is a 1 since the last time the CC b it
was cleared by software. This b it can be read or
w ritten under proqram contro l.

The Counter/Timer Command/Status reqister is
cleared to a l l zeros by a reset. B its 3 and 4 of
th is req ister are not used, and should always be
w ritten with zeros (however, when b its 3 and 4 are
read back, they w i l l be 1s regardless of whether
they were w ritten with zeros or ones).

9 .4 .4 .3 Time Constant and Count-Time Registers

The 16-bit Time Constant req ister holds the value
to be loaded in to the downcounter when counter/
timer operation beqins. The downcounter is loaded
with the contents of the Time Constant req ister
when the counter/timer is in i t ia l ly triqqered to
beqin counter/timer operation, each time the
end-of-count condition is reached i f the
continuous mode is selected, and at the occurrence
of each triqqer condition i f retriqqerable mode is
selected. By loading the Time Constant req ister,
the user can specify counts ranqinq from 1 to
65536. The contents of the Time Constant register
are continuously loaded in to the downcounter while
the counter/timer is disabled (the EN b it is 0).

The 16-bit Count-Time req ister holds the current
value in the downcounter and can be read at any
time without affectinq counter/timer operation.
Writes to th is reg ister have no e ffec t.

Both the Time Constant and Count-Time reqisters
hold unpredictable values a fte r a reset.

9-6

Table 9-2 l is ts the I/O port addresses associated
with each of the counter/timers' req isters. The
Counter/Timer Configuration reg ister and Counter/
Timer Command/Status reg ister are accessed with
byte I/O instructions and, with the exception of
the read-only CIP b i t , can be read or w ritten . The
Time Constant and Count-Time registers are
accessed with wurd 1/0 instructions. The Time
Constant reg ister can be read or w ritten ; the
Count-Time reg ister is read-only.

Table 9-2. I/O Addresses off C ounter/Tim er Registers

Register C /T 0
C ounter/TIm er

C /T 1 C /T 2

Configuration FExxEO FExxE8 FExxF8
Command/Status FExxEI FExxE9 FExxF9
Time Constant FExxE2 FExxEA FExxFA
Count-Time FExxE3 FExxEB FExxFB
All addresses are in hexadecimal.
"x" means "don’t care’

i

9 *4 .5 L in king Cbunter/Timers

Under software contro l, two Z280 MPU counter/
timers can be linked to form a 32-bit counter/
timer. C/T 0 can be linked with C/T 1. This
link ing function is controlled by the CTC b i t in
the Counter/Timer Configuration reg ister in C/T
0. While the CTC b i t in C/T 0 's Configuration
reg ister is set to 1, C/T 0 and C/T 1 are linked
together.

Linking the two counter/timers together affects
the functiona lity o f the counter/timers'
reg isters. I f C/T 0 and C/T 1 are linked to form
a 32-bit counter, C/T 1's Time Constant reg ister
holds the upper 16 b its and C/T 0 's Time Constant
reg ister holds the lower 16 b its of the 32-bit
count to be loaded in to the downcounter when a
counter/timer operation begins. S im ilarly , C/T
1 's Count-Time reg ister holds the upper 16 b its
and C/T 0 's Count-Time reg ister holds the lower 16
b its o f the current count.

The effect o f link ing counter/timers on the Con­
figu ra tion and Command/Status registers is
summarized in Table 9-3. The configuration of the
32-bit counter/timer is determined by the state of
the C/S, RE, and IPA fie ld s in the Configuration
reg ister o f the more s ign ifican t counter/timer
(C/T 1). Any external connections specified in the
IPA f ie ld o f the C/T 1 Configuration reg ister use
the pins associated with C/T 1. The controls in
the Configuration reg ister for C/T 0 are ignored,
with the exception o f the CTC, IE, and E0 b its .
The CTC b i t in C/T 0 is used to specify linking of

the counter/timers. I f the IE b it in the more
s ign ifican t counter/timer (C/T 1) is set to 1, an
in terrupt reguest is generated when the 32-bit
counter reaches end-of-count, using the in terrupt
reguest signal from C/T* 1; i f the IE b it in the
less s ig n ifica n t counter/timer (C/T 0) is set to
1, an in te rrup t reguest is generated when the
lower 16 b its of the 32-bit downcounter reach 0
(in other words, when C/T 0 reaches end-of-count),
using the in te rrup t reguest signal from C/T 0. I f
the 0E b it in C/T 0 is set, the C/T I/O signal
associated with C/T 0 goes high whenever the lower
ha lf o f the 32-bit down-counter holds a 0 (in
other Words, when C/T 0 's downcounter holds a 0).

S im ilarly , the Command/Status reg ister in the more
s ign ifican t counter/timer (C/T 1) contains the
control and status b its for the linked 32-bit
counter/timer. However, the status b its in the
less s ig n ifica n t counter/timer (C/T 0) hold va lid
status fo r the lower-half of the 32-bit
counter/timer (that is , the status of C/T 0
i t s e l f) .

9 .4 .6 Counter/Timer Sequence o f Events

Before sta rting a counting or timing seguence, the
counter/timer must be configured for the par­
t ic u la r application by loading i t s Configuration
reg is ter. Next, the s ta rting value for the
downcounter is specified by loading the Time
Constant reg is ter; in i t ia l values ranging from 0
to 65535 can be specified for the downcounter.
Lastly, the enable (EN) b it in the Command/Status
reg ister is set to 1 to enable counter/timer
operation.

While the EN b it is cleared to 0, the counter/
timer cannot be triggered, in te rrup t reguests from
the counter/timer cannot be generated, and the
downcounter holds the value in the Time Constant
reg is ter. However, clearing the EN b it does not
clear any pending in te rrup t reguests—i t only
prevents new in te rrup t reguests from being
generated.

Once the EN b it is set to 1, the countdown
seguence beqins when the counter/timer is
triggered, causing the contents o f the Time
Constant reg ister to be loaded in to the down
counter. The downcounter is loaded on the ris ing
edge of the external trigge r input (i f an external
trigger was specified in the Configuration
reg ister) or by w riting a 1 in to the TG b it of the
Command/Status reg is ter. The EN and TG b its can
both be set to 1 during the same write operation
to the Command/Status reg ister to both enable and
trigger a counter/timer (assuming that the TG b i t
was a zero previously, so that a low-to-high

9-7

Table 9-3. Configuration and Command/Status Registers for Linked CounterfTimers

Bit Active/lgnored Comments

C /T 1 Configuration Register '
C/3 Active Specifies continuous or single-cycle mode for 32-bit counter/timer.
RE Active Specifies retriggerable or nonretriggerable mode for 32-bit counter/timer..
IE Active interrupt enable for 32-bit counter/timer..

• CTC Ignored
EO Active / ■Enable output for 32-bit counter/timer; C/T 1 ’s output pin is used.
C/T 1 Active Specifies counter or timer mode for 32-bit counter/timer.
G Active Enable gate input for 32-bit counter/timer; C/T 1 ’s input pin is used.
T Active Enable trigger input for 32-bit counter/timer; C/T 1 ’s input pin is used.

C/T 0 Configuration Register

C/3 Ignored
RE Ignored
IE Active Interrupt enable for lower half of 32-bit counter/timer.
CTC Active Set to 1 to link counter/timers.
EO Active Enable output for lower half of 32-bit counter/timer (C/T 0 only).
C/T Ignored
G Ignored
T Ignored

C/T 1 Command/Status Register

EN Active Enable control for 32-bit counter/timer.
GT Active Software gate for 32-bit counter/timer.
TG Active Software trigger for 32-bit counter/timer.
CIP Active Count-in-Progress status bit for 32-bit counter/timer.
CC Active End-of-Count Has Been Reached status bit for 32-bit counter/timer.
COR Active Count Overrun status bit for 32-bit counter/timer.

C/T 0 Command/Status Register

EN Ignored
GT Ignored
TG Ignored
CIP Active Count-in-Progress status bit for lower half of 32-bit counter/timer.
CC Active End-of-Count Has Been Reached status bit for lower half of 32-bit

counter/timer.
COR Active Count Overrun status bit for lower half of 32-bit counter/timer.

trans ition on the triqqer is detected). The
triqqer condition is a log ica l OR o f the external
triqqer input (i f specified) and the TG b i t .

Once triqqered, the rate at which the downcounter
counts is determined by the mode of the counter/
timer. In the timer mode, the downcounter is
clocked in te rna lly by a siqnal that is one-fourth
the frequency of the CPU clock (one-eighth the
frequency o f the external clock source). In the
counter mode, the downcounter is clocked by a
ris ing edge on the count input signal (th is edge
is in te rna lly synchronized with the scaled CPU
clock).

In counter mode, the f i r s t low-to-high trans ition
on the count input should occur a minimum of four
in te rna l CPU clock cycles a fte r the trigger
event. Count inputs occurring w ith in four CPU
clock cycles of the trigge r may or may not be
recognized by the downcounter.

Once the downcounter is loaded, the countdown
sequence continues towards the terminal count
condition as long as the counter/timer's gate
input is high. The gate input to the counter/
timer is the logica l AND of the external gate
input (i f an external gate was specified in the
Configuration reg ister) and the GT b it in the

9-8

Command/Status reg is ter. I f the gate input goe3
low, the countdown ha lts , and then resumes when
the gate input goes high again. The gate function
does not affect the trigge r function.

The reaction to triggers during the countdown
operation depends on the state o f the RE b it in
the Configuration reg is ter. I f RE is a 0,
retriggers are ignored and the countdown sequence
continues normally. I f RE is a 1, each occurrence
of a trigge r condition causes the downcounter to
be reloaded from the Time Constant reg ister and
the countdown sequence s tarts over again.

The current state of the downcounter can be
determined by po lling the status b its in the
Command/Status reg is ter and by reading the current
count from the Count-Time reg is ter. Reading these
registers does not a ffect the current countdown
sequence.

The state o f the C/S" b it in the Configuration
reg ister controls the operation o f the counter/
timer upon reaching terminal count. I f the C/5*
b it is a 1, specifying the continuous mode of
operation, the downcounter is reloaded from the
Time Constant reg ister on the next count input
a fte r reaching terminal count, and a new countdown
sequence begins. The Time Constant reg ister can
be programmably altered during counter/timer
operation without affecting the current countdown
sequence. I f the C/!T b it is - 0, specifying
single-cycle operation, the downcounter ha lts upon
reaching terminal count u n t il the next occurrence
of a trigg e r condition reloads the downcounter.

I f the IE b it in the Configuration reg ister is a
1, an in te rrup t request is generated upon reaching
the terminal count. I f a counter/timer output
signal is specified in the IPA f ie ld of the
Configuration reg is ter, reaching terminal count
causes a low-to-high trans ition on the output
signal; th is signal then remains high u n til the
downcounter is reloaded with a non-zero value due
to a trigger condition or disabling of the
counter/timer with a non-zero value in the Time
Constant reg is ter. Note that the counter/timer
output line can be forced high by disabling the
counter/timer with a l l zeros loaded in to the Time
Constant reg ister.

9 .5 DMA CHANNELS

The Z280 MPU has four on-chip Direct Memory Access
(DMA) transfer contro llers for high-bandwidth
data transmissions w ith in a Z280-based system.
Each DMA channel is capable of contro lling high
speed memory-to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
data transfers.

A il four DMA channels, referred to as DMAO, DMA1,
DMA2, and DMA3, are capable of contro lling
"flowthrough" type data transfers, wherein data is
temporarily stored in the DMA device between
reading from the source and w riting to the
destination. Two of the channels, DMAO and DMA1,
also support "flyby" mode data transfers, wherein
the data is read from the source and written to
the destination during a single bus transaction.
Otherwise, the four DMA contro llers are iden tica l,
although they have d iffe ren t p r io r it ie s with
respect to in te rrup t and bus requests.

Two external signals provide the interface between
the DMA channels and external memory or peripheral
devices. The READY (RDY) input is used by an
external device to request a c tiv ity by a DMA
channel. The DMA STR08E (DMABT8) output is used
to signal the I/O port when a flyby transaction is
in progress; DmASTB is available only for DMAO
and DMA1.

Two 24-bit addresses are generated by the DMA for
each flowthrough transaction, and one 24-bit
address for each flyby transaction. These
addresses can l̂ e physical memory addresses or I/O
port addresses. The addresses are automatically
generated for each transaction, and can be fixed,
incrementing, or decrementing. Two readable
registers, the Source Address reg is ter and
Destination Address reg is ter, hold the current
address of the source and destination ports.

During a DMA-controlled transaction, the DMA
channel assumes control o f the system's address
and data buses. The on-chip DMA channels behave
as i f they were external bus requestors with
respect to acquiring, using, and relinquishing the
bus. The DMA channels are arranged in a p r io r ity
daisy chain with the external Bus Request input
signal being the "next lowest bus requestor" on
the chain. Data can be transferred as bytes or
words, using the same memory and I/O timing as the
CPU for bus transactions (as determined by the
contents o f the Bus Timing and In it ia liz a t io n
re g is te r)•

Two DMA devices can be programmably linked, where
one DMA channel is used to program the second DMA
channel. DMA3 can be linked to DMA1 and DMA2 can
be linked to DMAO in th is manner. DMAO can also
be programmably linked to the on-chip UART's
receiver, and DMA1 can be linked to the on-chip
UART's transm itter.

The DMA Master Control reg ister specifies the
general configuration of a l l four DMA channels,
including the linking o f DMA channels to the
UART. Each DMA channel has its own Transaction
Descriptor reg ister that determines the operating

9-9

modes for that channel, Source Address and
Destination Address registers that hold the
addresses fo r the DMA transfers, and a Count
reg ister that controls the number of transfers to
be performed. A ll DMA registers are accessed via
1/0 instructions.

9.5 .1 Types o f DMA Operations

The Z280 W’U's on-chip DMA channels are capable of
two basic types of operations: flowthrough mode
data transactions and flyby mode data
transactions.

A ll four on-chip DMA channels support flowthrough
mode data transactions. In flowthrough mode, each
DMA-controlled data transfer involves two bus
operations: a read cycle to obtain the data from
the source and a write cycle to transfer the data
to the destination. The data is temporarily
stored in the DMA device between the read and
w rite operations. Flowthrough mode transactions
use the same address, data, and control signals as
CPU-initiated transactions and, therefore, require
no additional external logic in a Z280-based
system. Memory-to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
transfers are possible using flowthrough mode.

Flyby mode data transactions are supported only by
DMAO and DMA1. In a flyby mode transaction, the
data is read from the source and w ritten to the
destination in a single bus operation. There are
two types o f flyby transactions: memory-to-
peripheral and peripheral-to-memory. For a
memory-to-peripheral transaction, the DMA channel
generates a memory read bus cycle and n o tifie s the
I/O devifce that a flyby transaction is in progress
by activating the ftMASTS output. The data must be
w ritten to the I/O device during the memory read
operation. For a peripheral-to-memory flyby
transaction, the DMA channel generates a memory
write bus cycle while activating the DMASTS
output; the data must be read from the I/O device
during the memory w rite transaction. In other
words, during flyby mode transactions, the DMA
channel generates the bus signals needed to
control the memory access, and ftMAsTS is used to
no tify the peripheral device when to read data
from the bus (fo r memory-to-peripheral transfers)
or when to put data onto the bus (fo r
peripheral-to-memory transfers.) Thus, flyby mode
transactions require additional external logic to
activate the appropriate peripheral device when
DMASYS is active. However, flyby mode
transactions are faster than flowthrough mode
transactions, since only one bus cycle is needed
to complete a data transfer.

9 .5 .2 DMA Transfer Modes

When transferring data under DMA control* (with
e ither flowthrough or flyby transactions), one of
three transfer modes can be selected: single
transaction, burst, or continuous mode. Once DMA
a c tiv ity has been in it ia te d , the transfer mode
determines how many DMA-controlled data transfers
are to occur before the DMA channel relinquishes
the bus to the CPU or another DMA channel.

In the single transaction mode, the DMA con tro lle r
transfers only one byte or word of data at a
time. Control of the system bus is returned to
the CPU between each DMA transfer; the DMA must
make a new request for the bus before performing
the next data transfer.

In the burst mode, once the DMA channel gains
control of the bus, i t continues to transfer data
u n til the RDY input goes inactive. When the RDY
line becomes inactive, the DMA releases £he system
bus; bus control then returns back to the CPU or
to the next low er-p rio rity DMA channel with a bus
request pending.

In the continuous mode, the DMA channel retains
control o f the system bus u n t il the entire block
of data has been transferred. I f the RftV line
goes inactive before the entire data block is
transferred, the DMA simply waits u n til RftV
becomes active again, without releasing the bus.
This mode is the fastest mode since i t has the
least response-time overhead when the RftY line
momentarily goes inactive and returns active
again. However, th is mode does not allow any CPU
a c tiv ity for the duration of the transfer. Figure
9-8 summarizes the DMA transfer modes*

In any transfer mode, once a DMA-controlled data
transfer begins, that transaction is completed in
an orderly fashion, regardless of the state of the
RDY input.

DMAO and DMA1 include a software RbY signal in the
DMA Master Control reg ister. The RftY input to
these DMA channels is the log ica l OR o f the RftY
pin and the software-controlled RbY signal.

A DMA channel can be programmed to perform data
transfers on a byte (8- b i t) , word (16 -b it), or
long word (32-b it) basis. I f a DMA's port address
is a memory address that is auto-incremented or
auto-decremented a fte r each transfer, the size of
the data transfer determines whether the memory
address is incremented or decremented by a factor
of 1, 2, or 4. For word and long word transfers
to or from memory locations, the memory address
must be even-valued (that is , the least
s ign ifican t b it o f the memory address must be 0).

9-10

'enable]

Figure 9-8a. Single Transaction Mode Figure 9-8b. Burst Mode

Figure 9-8. Modes of Operation

Figure 9-8c. Continuous Mode

Transfers o f unaligned data on 16-bit buses can be
accomplished via byte transfers only. Long word
transfers are used in applications where the Z280
MPU is acting as a DMA con tro lle r fo r a system
with a 32-bit bus, such as a Z80,000-based
system. During long word transactions, the Z280
MPU's DMA channel provides only 24 b its o f the
address; the upper 8 b its of the 32-bit address
have to be generated with external log ic . Long
word transfers are supported only in the flyby
mode with the on-chip cache programmdbly disabled.

9 .5 .3 End-of-Process

An enable b i t in the DMA Master Control register
allows the Interrupt A input to be used as an
end-of-process (COP) input during DMA trans­
actions. When enabled, transfers by DMA channels
can be prematurely terminated by a low on the CoP
(In terrupt A) line . Recognition of the COP" signal
is not affected by the state of the Interrupt
Request Enable b i t for Interrupt A in the CPU's
Master Status reg is ter.

I f the COP" signal goes active during the read
portion of a flowthrough transaction, the DMA
a c tiv ity is aborted before the write portion of
that transaction. I f COP" becomes active during
the write portion of a flowthrough transaction or
during, a flyby transaction, that transfer is
completed before stopping the DMA operation.

When an active CDF signal terminates a DMA
operation, the CDF Signaled (EPS) ̂ status b i t in
that channel's Transaction Descriptor reg ister is
automatically set to 1 and the Enable b it in that
same reg ister is cleared to 0. I f that channel's
Interrupt Enable b it is set to 1, an in te rrup t
request to the CPU is generated.

The CDF signal is level-sensitive and shared by
a l l four on-chip DMA channels. Thus, i f an active
CDF signal terminates the a c tiv ity o f one DMA
channel and another DMA channel immediately
requests the bus, the second DMA's a c tiv ity is
terminated before any transactions can be
generated i f CDF is s t i l l active. In other words,
the second DMA channel also recognizes the CDF
signal, and so on. Therefore, in order for the
currently active DMA channel to be the only
channel whose a c tiv ity is terminated, CDF should
be asserted for only one bus clock cycle in
systems where the bus clock frequency is equal to
or one-half o f the processor clock frequency; CDF
should be asserted for one-half of a bus clock
cycle in systems where the bus clock frequency is
one-fourth o f the processor clock frequency.

I f the end-of-process capab ility is enabled, a
single input to the Z280 MPU can act as both the
Interrupt A and the CDF signal; i t acts as the
Interrupt A Request line when the CPU controls the
bus and as the EbP line when a DMA channel
controls the bus. I f an CDF signal terminates a

9-11

DMA operation, and that signal is s t i l l asserted
when the CPU regains control of the bus, then the
signal is interpreted as an in te rrup t request.
Thus, a single signal can be used to stop DMA
a c tiv ity and generate an in te rrup t, i f so
desired. Note that the in te rrup t request
generated by the DMA channel and the in te rrup t
request generated by an active signal on the
Interrupt A line are d iffe re n t in te rrup t requests,
each with i t s own p r io r ity and i t s own enabling
b it in the CPU's Master Status reg is ter.

9 .5 .4 P rio rity Resolution

P rio r it iz a tio n of the four on-chip DMA channels is
implemented via an in terna l "service request"
la tch. A DMA channel generates a service request,
indicating that the channel needs to gain control
of the bus, i f that channel's Enable b it in the
Transaction Descriptor reg ister is set to 1 and an
active toV signal is asserted. This service
request signal is latched in the service request
latch only i f a l l preceding service requests have
already been serviced (that is , there are no
service requests active in the la tch). Once a
service request is latched, the service request
latch is "closed" to a l l other service requests
u n t il the current requests are serviced; the
latched requests are serviced in p r io r ity order,
where DMA channel 0 has highest p r io r ity and DMA
channel 3 has lowest p r io r ity . When a l l latched
service requests have been serviced, the latch is
"opened" so that new service requests can be
latched.

This service request mechanism provides for
non-preemptive p r io r it iz a tio n o f DMA a c t iv ity .
For example, i f DMA channel 1 requires servicing
while the other channels are quiescent (that is ,
not currently con tro lling the bus or making a
service request), channel 1's service request is
latched and the service request latch is closed.
Thus, no other channel can preempt channel 1's
a c tiv ity . I f channels 0 and 2 activate service
requests while channel 1 is being serviced, both
those requests w i l l be latched a fte r channel 1's
a c tiv ity is completed, and channel 0 w i l l be
serviced next, followed by channel 2. No new
service requests are latched u n t il both channels
0 and 2 have been serviced, and so on.

A ll*service requests from the on-chip DMA channels
have p r io r ity over bus requests made via the
BUSREq input by external DMA con tro llers.

9 .5 .5 DMA Linking

The Z280 MPU's on-chip DMA devices can be linked
together to provide for DMA transfers to
non-contiguous memory locations. In a linked
configuration, one channel, called the master DMA,
controls the actual data transfers to the memory
and/or peripheral devices; the second channel,
called the linked DMA, is used to load the master
DMA's control registers from memory when ‘ the
master DMA completes an operation. The master DMA
signals the linked DMA when a transaction is
completed via an in terna l "ready" input to the
linked DMA. The linked DMA then in it ia te s the
trahsfers that load the master DMA's control
registers from memory, allowing the master DMA to
perform m ultiple data transfer operations without
any CPU intervention.

Control b its in the DMA Master Control reg ister
allow DMA3 to be linked to DMA1, with DMA1 the
master DMA and DMA3 the linked DMA, and DMA2 to be
linked to DMAO, with DMAO the master DMA and DMA2
the linked DMA.

When the linked DMA loads the master DMA's
reg isters, the registers are written in the
following order:

a Destination Address reg ister (least s ign ifican t
word)

• Destination Address reg ister (most s ign ifican t
word)

a Source Address reg ister (least s ign ifican t
word)

a Source Address reg ister (most s ign ifican t
word)

a Count reg ister

^ Transaction Descriptor req ister

After the six words have been w ritten to the
master DMA, the master DMA deasserts the ready
3iqnal to the linked DMA and beqins' the new
transfer operation. For Z-8US configurations of
the Z280 MPU, the linked DMA uses six word
transactions on the bus to proqram the master DMA;
for Z80 Bus configurations, the linked DMA uses
twelve byte transactions to proqram the master
DMA, with the least s ign ifican t byte o f each word
being transferred f i r s t .

9-12

Control b its in the DMA Master Control req ister
also allow DMAO to be proqrammably linked to the
on-chip UART' s receiver and DMA1 to be linked to
the UART's transm itter. I f so linked, an in te rna l
"ready" signal to DMAO is automatically .generated
when the UART's receive buffer is f u l l .
S im ilarly , an in terna l "ready" signal to DMA1 is
automatically generated when the UARt's transmit
buffer is empty. The external ROY inputs are
ignored while in th is configuration.

9 .5 .6 DMA Registers

DMA registers consist o f a DMA Master Control
req ister that specifies the qeneral configuration
of a l l four channels, and a Transaction Descriptor
reg is ter, Source Address req is ter, Destination
Address req is te r, and Count reg ister fo r each DMA
channel. A ll DMA reqisters are accessed usinq
word I/O instructions.

f

9 .5 .6 .1 DM6 Master Control Register

The 16-bit DMA Master Control reg is ter is i l lu s ­
trated in Figure 9-9. The b i t fie lds w ith in th is
req ister are described below.

15 o

E 1 1 1 0 0 0 0 1 SRI SRO EOP|D3L D2L | D1T | DOR |

Figure 9-9. DMA Master Control Register

DMAO to Receiver Link (DDR). While th is b it is
set to 1, DMAO is linked to the on-chip UART*s
receiver.

DMA1 to Transm itter Link (D1T). While th is b it is
set to 1, DMA1 is linked to the on-chip UART's
transm itter.

DNA2 Link (D2L). While th is b it is set to 1, DMA2
is linked to DMAO.

0MA3 Link (D3L). While th is b it is set to 1, DMA3
is linked to DMA1.

End-of-Process (EOP). While th is b it is set to 1,
the Interrupt A input acts as an End-of-Process
input fo r the active DMA channel during DMA
operations.

Software Ready fo r DMAO (SRO). While th is b it is
set to 1, DMAO requests use of the system bus i f
enabled.

Software Ready fo r DMA1 (S R I). While th is b it is
set to 1, DMA1 requests use o f the system bus i f
enabled.

The DMA Master Control reg ister is cleared to a l l
zeros by a reset, unless bootstrap mode is enabled
during the reset operation (see sections 3.2.1 and
9.7). B its 7 through 15 of th is reg ister are not
used.

9 .5 .6 .2 DMA Transaction Descriptor Register

Each DMA channel has i t s own 16-bit Transaction
Descriptor reg is ter. The Transaction Descriptor
reg ister (Figure 9-10) describes the type of DMA
transfer to be performed and contains control and
status information.

15__________________________ __ 0

P I | « *P | IE | «T | BHP | TYPE | TC | PAP | ePs |

Figure R»10. Transaction Descriptor Register

End-of-Process Signaled (EPS). This status b it is
set to 1 automatically when an active End-of-
Process signal prematurely terminates a DMA
transfer. This b it can be set to 1 or cleared to
0 under software contro l.

Destination Address Descriptor (DAD). This 3-b it
control f ie ld determines the type of location
(rtiemory or I/O) to be accessed as the destination
port during DMA transfers, and whether the desti­
nation address is to be incremented,, decremented,
or le f t unchanged between transfers, as shown in
Table 9-4. When memory addresses are auto-
incremented or auto-decremented, the incrementing
or decrementing value is determined by the size of
the data transfer, as specified in the ST f ie ld .
I/O port addresses are always auto-incremented and
auto-decremented by 1.

Table 9*4. Encoding off DAD and SAD Fields In DMA
Transaction Descriptor Register

Encoding Address Modification Operation

000 Auto-increment memory location
001 Auto-decrement memory location
010 Memory address unmodified by transaction
011 , Reserved
100 Autoincrement I/O location
101 Auto-decrement I/O location
110 110 address unmodified by transaction
111 Reserved

Transfer Complete (TC). This status b i t is set to
1 automatically when the Count reg ister has
reached zero. This b it can be set to 1 or cleared
to 0 under software contro l.

9-13

Transaction Type (Type). This 2 -b it control f ie ld
specifies the type of DMA operation to be
performedj, as shown in Table 9-5.

Table 9-5. Encoding of Type Field in
Transaction Descriptor Register

Encoding DMA Opa ration

00 Flowthrough
01 Reserved
10 Flyby write (peripheral-to-memory)
11 Flyby read (hnemory-to-peripheral)

Bus Request Protocol (BRP). This 2 -b it control
f ie ld determines the transfer mode for the DMA
operation, as shown in Table 9-6.

Table 9-6. Encoding of BRP Field In
Transaction Descriptor Register

Encoding DMA Transfer Mode

00 Single transaction
01 Burst
10 Continuous
11 Reserved

Size o f Transfer (S T). This 2 -b it control f ie ld
specifies the size of the en tity to be transferred
during each DMA-controlled transaction, as shown
in Table 9-7. I f auto-increment or auto-decrement
of a source or destination memory address is
specified in the SAD or DAD fie ld s , then the state
of th is f ie ld determines the size of the increment
or decrement operation.

Table 9-7. Encoding of ST Field in
Transaction Descriptor Register

Size of Number to Increment
Encoding Transfer or Decrement By

00 Byte 1
01 Word 2
10 Long word 4
11 Reserved

In terrup t Enable (IE). While th is b it is set to
1, the DMA channel generates an in terrupt' request
to the CPU either when the Count reg ister goes to
zero, indicating the completion of a DMA
operation, or when an End-of-Process signal
prematurely terminates a DMA operation. While
th is b it is cleared to 0, no in te rrup t request is
generated.

Source Address Descriptor (SAD). This 3 -b it
control f ie ld determines the type of location
(memory*or 1/0) to be accessed as the source port
during DMA transfers, and whether the source
address is to be incremented, decremented, or le f t
unchanged between transfers, as shown in Table
9-4. .

DMA Enable (EN). While th is b i t is set to 1, the
DMA channel is enabled; while enabled, the DMA can
request control o f the system bus and, upon
becoming bus master, in it ia te transactions on the
bus. While th is b it is a 0, the DMA channel is
disabled and cannot request control of the bus.
The DMA registers can be accessed regardless of
the state o f th is b i t .

For DMAO, a reset loads a 0100 ̂ in to the Trans­
action Descriptor reg is ter. For the remaining
three channels, the EN, IE, TC, and EPS b its are
a l l cleared to 0 by a reset, and the remaining
fie lds are unaffected.

9 .5 .6 .3 Count Register

Each channel has a 16-bit Count reg ister that is
programmed to contain the number of DMA transfers
to be performed. When the contents o f the Count
reg ister reach zero (terminal count), further
requests on the RbV line are ignored, and, i f the
IE b it in the Transaction Descriptor reg ister is
set to 1, an in terrupt request is generated.

A reset loads a 0100 ̂ in to DMAO's Count
reg is ter; the other channels' Count registers are
unaffected by a reset.

9 .5 .6 .4 Source Address and Destination Address
Registers

The 24-bit Source Address reg ister and Destination
Address reg ister hold the port addresses used
during DMA transfers. These are physical
addresses that are not translated by the MMU. In
flyby mode, only one of these registers is used to
supply the address for the transaction, as
determined by the Type fie ld in the Transaction
Descriptor reg ister. The contents of these
registers can be automatically incremented or
decremented by each DMA transaction, as determined
by the SAD and DAD fie ld in the Transaction
Descriptor reg ister.

The entire 24-bit Source Address or Destination
Address reg is ter is read and written via two word

9-14

accesses to the reg is ter. Twelve, b its o f the
address are accessed by each word I/O operation;
the format used when accessing these registers is
shown in Figure 9-11.

16 _______________________ or~^nh.............
16 0

1 1 1 1 I

Figure 9-11. Source and Destination
Address Registers Format

DMAO's Destination Address reg ister is cleared to
0 by a reset; a l l other Source and Destination
Address registers are unaffected by a reset.

A ll DMA registers are located in I/O page FFH.
The DMA Master Control reg ister is accessed at I/O
port address FFxxIF. Table 9-8 l is ts the I/O port
addresses for the other DMA registers. A ll DMA
registers can be read or w ritten using word I/O
instructions.

Table 9-8. I/O Addresses of DMA Registers

DMA Channel
Register DMAO DMA1 DMA2 DMA3

Destination
Address
(bits 0-11)

FFxxOO FFxx08 FFxxlO FFxx18

Destination
Address
(bits 12-23)

FFxxOI FFxx09 FFxx11 FFxx19

Source Address
(bits 0-11)

FFxx02 FFxxOA FFxx12 FFxxIA

Source Address
(bits 12-23)

FFxx03 FFxxOB FFxx13 FFxxlB

Count FFxx04 FFxxOC FFxx14 FFxxIC

Transaction FFxx05 FFxxOD FFxx15 FFxxlD
Descriptor

All addresses are in hexadecimal,
"x” means “don’t care".

No checking is performed by the hardware to deter­
mine i f an inva lid configuration is specified in
the DMA registers, such as specifying word trans­
actions on 8 -b it data bus configuration of the
Z280 MPU; in such cases, DMA behavior is
unpredictable.

9 .5 .7 DMA Sequence o f Events

This section describes a typ ica l sequence of
events when a DMA channel is used in flowthrough
or flyby mode to control data transfers.

Before a DMA channel can begin operation, that DMA
channel must be configured for the particu lar
application by loading its Destination Address,
Source Address, Count, and Transaction Descriptor
reg isters. DMA operations cannot take place while
the EN b it in the Transaction Descriptor register
is cleared to 0. Thus, the EN b it should be
cleared to zero while configuring the DMA channel,
and set to 1 as the last step in the configuration
process; the EN b it can be set at the same time
that the other b it fie lds in the Transaction
Descriptor reg ister are specified.

Once the EN b it is set to 1, the DMA channel
requests use of the system bus only a fte r an
active RDY signal is received. The ftbY signal is
sampled by the DMA on the ris ing edge of each
processor clock cycle. For DMAO and DMA1, the RBY"
signal is the logica l OR o f the external RbY input
and the software IW b it in the DMA Master Control
reg ister.

When the system bus is available for DMA
transfers, the highest p r io r ity DMA channel with a
request pending becomes the bus master. The
p r io r ity o f the on-chip DMA channels from highest
to lowest is DMAO, DMA1, DMA2, and DMA3. The
external Bus Request input has the next lowest
p r io r ity a fte r the on-chip DMA channels.

The number of date transfers performed by a DMA
that has gained control o f the bus is determined
by the current transfer mode (single transaction,
burst, or continuous) and the contents o f the
Count reg is te r. A DMA channel in single trans­
action mode relinquishes the bus a fte r a single
data transfer; a DMA channel in burst mode
relinquishes the bus when RbY is deasserted or
when terminal count is reached; a DMA channel in
continuous mode relinquishes the bus when the
terminal count is reached. Regardless of the
transfer mode, a DMA channel w i l l relinquish the
bus i f an EbP is signalled or the terminal count
i3 reached.

I f the destination for a DMA-controlled data
transfer is a memory location that corresponds to
an entry in the on-chip memory (in e ither the
cache or fixed-address mode), the on-chip memory
is updated to re fle c t the new contents of that
memory location.

9-15

For each DMA-controlled data transfer on the bus,
that DMA's Count reg ister is decremented by 1,
regardless o.f the size of the data transferred.
The Destination Address and Source Address
registers might also be incremented or decre­
mented, as determined by the DAD, SAD, and ST
fie lds in the Transaction Descriptor reg is ter.
When a DMA operation reaches completion, either by
assertion of an EOF signal or by reaching terminal
count (a count o f 0) in the Count reg is ter, the EN
b it in the Transaction Descriptor reg ister is
automatically cleared to 0. I f the IE b it is set
to 1, an in te rrup t request to the CPU is
generated. I f the DMA operation terminated due to
an active EdP signal, the EPS status b it is set to
1} i f the DMA operation terminated due to reaching
terminal count, the TC status b it is set to 1.

9.5.8 DMA Programming: Linked DMAs

When two DMA channels are linked together, the
master DMA's registers are w ritten via
memory-to-peripheral data transfers in it ia te d by
the linked DMA. Thus, to begin DMA operations, the
linked DMA must be programmed to load the master
DMA. While the linked DMA is being configured,
the master DMA must be prohibited from asserting a
RbY signal to the linked DMA. The in terna l ROY
signal from the master DMA to the linked DMA is
controlled by the TC status b it of the master DMA;
therefore, before configuring the linked DMA, the
TC b it o f the master DMA's Transaction Descriptor
reg ister should be w ritten with a 0. Then, the
linked DMA is configured by w riting to its
reg isters. F ina lly , the TC b it in the master DMA
should be set to 1; th is causes the in terna l RbY
signal to the linked DMA to go active, which in
turn causes the linked DMA to request the bus and,
upon acknowledgement pf that request, in it ia te s
the transactions that program the master DMA.

The linked DMA must be configured for flowthrough-
type data transfers. The transfer size must match
the size o f the external data bus (that is , byte
for Z80 bus configurations and word for Z-BUS
configurations). The Source Address reg ister is
loaded with the s ta rting address of the memory
block that holds the data to be written to the
master DMA's reg isters; fo r the Z-BUS, th is
s tarting address must be even-valued (A0=0). The
SAD f ie ld o f the Transaction Descriptor reg ister
should specify an auto-increment or auto-decrement
o f the memory address. The Destination Address
reg ister must be set to FFxx00^ when DMA2 is the
linked DMA, or FFxx08H when DMA3 is the linked
DMA ("x" means don't care). The DAD f ie ld in the
linked DMA's Transaction Descriptor register

should be Set to 100 ̂ (auto-increment 1/0
address). Burst mode transactions must be
specified. The contents o f the Count reg ister
vary depending on the number of times that the
linked DMA is required to reconfigure the master
DMA.

When the master DMA has completed a transaction
(terminal count is reached), an in terna l RbY
signal to the linked DMA is activated. I f the
linked DMA is enabled, the linked DMA w i l l
generate the transactions that program the master
DMA's reg isters. (The linked DMA's external RbY
input is ignored when DMA link ing is specified.)

When the linked DMA loads the master DMA's
reg isters, the registers are written in the
following order:

• Destination Address reg ister (least s ign ifican t
word)

a Destination Address reg ister (most s ign ifican t
word)

a Source Address reg ister (least s ign ifican t
word)

a Source Address reg ister (most s ign ifican t word)

a Count reg ister

a Transaction Descriptor reg ister

After the s ix words have been written to the
master DMA, the master DMA deasserts the ready
signal to the linked DMA and begins the new
transfer operation. For Z-BUS configurations %of
the Z280 MPU, the linked DMA uses six word
transactions on the bus to program the master DMA;
for Z80 Bus configurations, the linked DMA uses
twelve byte transactions to program the master
DMA, with the least s ign ifican t byte of each word
being transferred f i r s t .

Both the master and linked DMAs can be programmed
to generate an in te rrup t request to signal the end
o f DMA a c tiv ity . I f the IE b it o f the master DMA
is set, an in te rrup t request is generated when the
master DMA reaches terminal count and the linked
DMA's TC b it is set (that is , when the last block
has been transferred), or i f EOF is asserted. I f
the IE b it in the linked DMA is set, an in te rrup t
request is generated when the linked DMA reaches
terminal count (that is , when the last block
transfer has been programmed in to the master DMA),
or i f EOF is asserted.

9-16

9 .5 .9 DMA Programming: DMAs Linked to UART

The DOR and DU b its o f the DMA Master Control
reg ister specify whether DMAO is linked to the
UART receiver and DMA1 is linked to the UART
transm itter, respectively.

When DMAO is linked to the UART receiver, the
state of the Source Address reg ister and the SAD
f ie ld in the Transaction Descriptor reg ister do
not a ffect DMA operation. The Destination Address
reg ister is programmed with the sta rting address
of the memory area or the address of the I/O
device that w i l l be used to store the received
data; i f the destination port is a memory block,
the DAD f ie ld should specify an auto-increment or
auto-decrement o f the memory address.
Flowthrouqh-type transactions and the byte
transfer size ^mist be specified. Single, burst,
or continuous mode operation can be used.

When DMA1 is linked to the UART transm itter, the
Source Address rbq ister is programmed with the
s tartinq address o f the memory area or the address
of the I/O device that holds the data to be
transmitted; i f the source is a memory area, the
SAD fie ld should specify an auto-increment or
auto-decrement of the memory address. The
Destination Address req ister must be set to
x x x x 18h , and the DAD f ie ld to a 11 Oh-
Flowthrouqh type transactions and the byte
transfer size must be specified. Sinqle, burst,
or continuous mode operation can be used.

9>6 UART

errors. Transmission and reception are performed
independently.

The UART uses the same clock frequency fo r both the
transm itter and the receiver. The UART's clock input
can be generated exte rna lly or in te rn a lly . For
exte rn a lly generated clocks, Counter/Timer 1 's input
lin e is used as the source of the UART's clock in
addition to being an input to the counter/tim er. The
maximtin external clock frequency is the CPU clock
divided by 4 . A lte rn ate ly , the UART's clock can be
provided by the output pulse from Counter/Timer 1,,
allowing the in ternal processor clock to be used for
b it ra te generation. The UART's clock input is
further scaled by a facto r of 1, 16, 32, or 64 for;
clocking the transm itter and receiver.

The UART can be used in an in terrupt-driven or
polled environment. I f enabled, separate transmit
and receive in te rrup t requests are generated by
the UART. Transmit in terrupts occur when the
transm itte r's data buffer is emptied, and receive
in terrupts occur when an en tire character is
received or an error is detected. In polled
environments, status b its in UART registers can be
read to determine i f the transmit buffer is empty
or receive buffer is f u l l . As described in
section 9.5.9, DMA channel 0 can be linked to the
receiver and DMA channel 1 to the transm itter to
provide fo r DMA-controlled transfers between the
UART and memory.

The UART uses two external pins, Transmit (Tx) and
Receive (Rx). Data that is to be transmitted is
placed s e ria lly on the Transmit pin and data that
is to be received is read from the Receive pin.

The on-chip universal asynchronous receiver/
transm itter (UART) provides the Z280 MPU with
se ria l I/O capab ility . The fu ll-duplex UART
transmits and receives seria l data usinq any
common asynchronous data communication protocol.

Fiqure 9-12 il lu s tra te s the qeneral format fur an
asynchronous transmission usinq the Z280 MPU's
UART. Characters can contain five , s ix , seven, or
eight b its , plus an optional even or odd parity
b i t . The transm itter can supply one or two stop
b its per character. Break outputs can be produced
by the transm itter at any time under proqram
contro l; the receiver can detect breaks as well
as pa rity errors, framinq errors, and overrun

START—| RARITY—| START—| PARITY —|

MARKING LINE | | DM* j | 1 | | DATA | | ' |

STOP—I STOP—I

Figure 9-12. General Format for an
Asynchronous Transmission

The UART contains five req i3te rs. UART operation
is controlled by three reg isters: the UART
Configuration req is te r, which contains controls
fo r both the transm itter and receiver, the
Transmitter Control/Status reg is ter, and the
Receiver Control/Status req is ter. Received data
is read from the Receive Data req is ter, and data
to be transmitted is w ritten to the Transmit Data
req ister.

9.6 .1 Transm itter Operation

Transmit operations are performed only when the
Transmitter* Enable b it in the Transmitter
Control/Status reg ister is set to 1. In order to
transmit data, the data character is w ritten to
the Transmit Data req is ter. The UART automati­
ca lly adds the s ta rt b i t , the programmed parity-
b it (i f so specified), and the programmed number
of stop b its to the data character to be trans­
mitted. The number of b its per character, the
number of stop b i t3 per character, and the type ofr

9-17

p a rity (even, odd, or none) is determined by the
contents of the UART Configuration req is ter. When
the transmit character size is five , s ix , or seven
b its , the unused most s ign ifican t b its in the
Transmit Data reg ister are ignored by the UART.

Serial data is shifted out of the transm itter on
the Tx pin at a rate egual to 1, 1/16th, 1/32nd,
or 1/64th of the clock signal supplied to the
UART, as determined by the contents of the UART
Configuration reg is ter. Serial data is shifted on
the fa ll in g edge of the clock input.

The Tx output line is held high (marking) when the
transm itter has no data to 3end or is disabled.
I f transmit in terrupts are enabled, an in terrupt
reguest is generated when the Transmit Data
reg ister is emptied. Under program contro l, break
conditions can be generated, wherein the Tx line
is held low (spacing) u n t il the break command is
cleared.

9 .6 .2 Receiver Operation

Receive operations are performed only when the
Receiver Enable b i t in the Receiver Control/Status
reg ister is set to 1. A low (spacing) condition
on the Receive input line indicates a s ta rt b i t ;
i f the low persists fo r at least one-half of a b it
time, the s ta rt b i t is assumed to be va lid and the
data input is sampled at m id-bit times u n t il the
entire character is assembled. Thus, reception is
protected from transients on the input line by
checking fo r a va lid s ta rt b i t one-half b i t time
a fte r detecting a high-to-low trans ition on the
Receive input; i f the low does not persist (as
with a trans ien t), the character assembly process
is not started. I f the b i t time is one clock
period (the x1 clock mode), b it synchronization
must be accomplished externally; received data is
sampled on the ris ing edge of the clock.

Received characters are read from the Receive Data
reg is ter. I f pa rity is enabled, the parity b it is
assembled as part o f the character for character
lengths other than eight b its . I f the resu lting
character is s t i l l less than eight b its , 1 's are
appended in the unused high-order b i t positions.
For example, Figure 9-13 illu s tra te s how the
character is assembled in the Receive Data
req is ter when receiving 5 -b it characters with
pa rity .

For each character assembled by the receiver,
e rror flags in the Receiver Control/Status
reg ister indicate i f an error condition was
detected. These flags are loaded when the
character assembly process is completed—that is ,
when the character is loaded in to the Receive Data
reg ister from the rece iver's s h ift reg is ter. The
receiver checks for parity errors, framing errors,
and overrun errors for each received character.

A pa rity error occurs when the pa rity b i t of the
received character does not match the programmed
pa rity , as determined by the contents of the UART
Configuration reg is ter.

t
A framing error occurs i f a character is assembled
without any stop b its (that is , i f a low level is
detected for the stop b i t) . A b u ilt - in checking
process prevents a framing error from being
interpreted as a new s ta rt b i t ; detection of a
framing error results in the addition of one-half
of a b it time to the point at which the search for
a new s ta rt b i t is begun.

An overrun error occurs i f a new character is
assembled and loaded in to the Receive Data
req ister before the previous character has been
read from that req is ter. Since the receiver is
buffered by the Receive Data reg ister in addition
to the receiver s h ift reg is ter, ample time is
available fo r responding to a receiver in te rrup t
and accepting a received character before the next
character is assembled by the receiver.

9 .6 .3 UART Registers

UART operation is controlled by three 8- b it
reg isters: the UART Configuration req is ter,
Transmitter Control/Status req is ter, and Receiver
Control/Status reg is te r. Data to be transmitted
is w ritten to an 8-b i t Transmit Data req is ter, and
received data is read from an 8- b i t Receive Data
req is ter. A ll UART registers are accessed usinq
byte I/O instructions.

9 .6 .3 .1 UART Configuration Reqister

The 8- b i t UART Configuration req ister (Figure
9-14) contains control information for both the
receiver and transm itter. The control f ie ld s
w ith in th is reg ister are described below.

0
| 1 I 1 | p | d . | d , Da Di D# r~ ” t : r r ' \ 77!cs CR

Figure 9*13. Byte Assembled by Receiver
for 5-bit Character with Parity Figure 9-14. UART Configuration Register

9-18

Loop Back Enable (LB). When set to 1, the UART is
in local loopback mode; in th is mode, the in terna l
transmit data line is tied to the in terna l
receiver input line and the external receiver
input pin is iqnored. Thus, a l l transmitted data
is automatically received. When th is b it is
cleared to 0 , the transm itter and receiver operate
independently.

Clock Rate (CR). This 2 -b it f ie ld determines the
m u ltip lie r between the UART clock and data rates
(that is , the number of clocks per b it time), as
specified in Table 9-9. The same data rate is
used by both the transm itter and receiver. I f the
X1 clock rate is selected, b i t synchronization
must be accomplished externally. In the X1 mode,
the transm itter sends data on the fa ll in g edge of
the clock and the receiver samples data on the
ris ing edge of the clock.

Table 9-10. I f th is f ie ld is chanqed while a
character is beinq transmitted or received, the
resu lts are unpredictable.

, Table 9-10. BC Field of UART Control Register

BC Field Bits per Character

00 5
01 6
10 7

v 11 8

A reset clears the UART Configuration req ister to
a l l zeros, unless bootstrap mode is selected (see
section 9.7).

9 .6 .3 .2 Transm itter Control/Status Register

Table 9-9. CR Field off UART
Configuration Register

CR Field UART Clock Rate

00 X1
01 X16
10 X32
11 X64

The 8- b i t Transmitter Control/Status req is ter,
shown in Fiqure 9-15, specifies the operation of
the UART transm itter, as described below.

| EN | IE | 0 SB |bRk |f Bc |vAL l T |

Figure 9-15. Transmitter Control/Status Register

Clock Select (CS). The state o f th is b it
specifies the clock input for the UART. When th is
b i t is set to 1, counter/timer 1*s output pulse
supplies the UART clock. When th is b it is cleared
to 0, counter/timer 1 's clock input pin provides
the UART clock signal, thus allowinq the use o f an
externally-qenerated clock. The content o f the
IPA f ie ld o f C/T 1's Configuration req ister does
not a ffec t these UART clocking modes.

Transm itter Buffer Empty (BE). This status b it is
automatically set to 1 whenever the Transmit Data
req ister becomes empty and cleared to 0 whenever a
character is loaded in to the Transmit Data
req is ter. The BE b i t is controlled by the UART
c irc u itry ; i t can be read via an I/O read but is
unaffected by an I/O w rite to th is reg is ter. A
reset loads a 1 in to th is b i t .

P arity (P). When set to 1, an additional b it
position (in addition to the number of b its per
character specified in the BC f ie ld) is added to
each transmitted character and expected in each
received character; th is additional b it is the
pa rity b it . ’ Parity b its in received characters
are assembled as part o f the character fo r
character lengths of less than 8 b its .

P arity Even/bdd (E /0). I f pa rity is specified (P
= 1) , th is b it determines whether an odd or even
pa rity b i t is added to transmitted characters and
whether odd or even pa rity is checked for in
received characters. E/0 = 1 specifies even
parity and E/0 = 0 specifies odd' pa rity . I f P =
0, then th is b it is ignored.

B its per Character (B /C). This 2 -b it f ie ld
determines the number o f b its per character in
both the transm itter and receiver, as specified in

Value (VAL). This b it determines the value o f the
b its transmitted by the UART when the FRC b it is
set to 1 and "dummy” characters are loaded in to
the Transmit Data req is te r. When the VAL b it is
set to 1, a mark character (a l l 1s) is
transmitted; when the VAL b it is cleared to 0, a
break character (a l l 0s) is transmitted.

Force Character (FRC). When th is b it is set to 1,
w ritinq a character to the Transmit Data reg ister
causes the transm itter output to be held hiqh or
low (depending on the state o f the VAL b it) for
the lenqth o f time required to transmit the
character. Note that characters w ritten to the
Transmit Data reg ister are not themselves trans­
mitted while FRC is set to 1. When FRC is cleared
to 0, the transm itter operates normally, sendinq
characters that are w ritten to the Transmit Data
req ister.

9-19

Send Break (BRK). When th is b it is set to 1, the
transm itter is forced in to the spacinq condition,
wherein the transmit data output is forced to 0 .
When th is b i t is cleared to 0, normal transm itter
operation resumes.

Stop B its (SB). The state of th is b i t determines
the number of stop b its appended to each character
by the transm itter. Settinq th is b it to 1
specifies two stop b its per character; clearinq
th is b it to 0 specifies one stop b i t per
character.

Transm itter In terrup t Enable (IE). When th is b it
is set to 1, an in te rrup t request is generated
whenever the Transmit Data req ister is emptied.
When th is b it is cleared to 0, no tranmsit in te r­
rupts are qenerated.

Transm itter Enable (EN). When th is b it is cleared
to 0, the transm itter is disabled and the
transm itter output line is held hiqh (markinq).
When th is b it is set to 1, the transm itter is
enabled and operates as specified by the UART
Confiquration reg ister and the Transmitter
Control/Status req is ter. I f th is b i t is cleared
while a character is in the process o f beinq
transmitted, transmission of that character is
completed.

A reset sets the Transmitter Control/Status
req ister to a 01^.. B it 5 of th is req ister is
not used.

P arity Error (PE). When pa rity is enabled (P = 1
in the UART Configuration reg ister) th is b it is
automatically set to 1 i f a character is received
without the specified pa rity . This b it is
latched; once set, i t remains set u n t il cleared
via software.

Receiver Overrun Error (0VE). This b i t is
automatically set to 1 i f a new character is
assembled and loaded in to the Receive Data
reg ister before the previous character has been
read from that reg is ter. Only the most recently
received character is flagged with th is erro r, but
once th is character is read, the 0VE b i t remains
latched u n t il cleared via software.

Receiver Character Available (CA). This b it is
automatically set to 1 when a received character
is available in the Receive Data reg ister and
automatically cleared to 0 when the Receive Data
reg ister is read. This b it is controlled by UART
c irc u itry ; i t can be read via an 1/0 read but
cannot be altered by an 1/0 w rite to th is
reg is ter.

Receiver In terrupt Enable (IE). When th is b it is
set to 1 , an in terrupt request is generated
whenever the receiver has a character available in
the Receive Data reg ister or when a receiver error
is detected.

Receiver Enable (EN). When set to 1, receiver
operation is enabled. This b it should be set
a fter programming the UART Configuration reg is ter.

9 .6 .3 .3 Receiver Control/Status Register

The 8- b i t Receiver Control/Status reg is ter, shown
in Figure 9-16, specifies the operation of the
UART receiver, as described below.

7____________ ____________ 0

E IE | 0 C A | FE PE ±3

The Receiver Control/Status reg ister is cleared
to a l l zeros by a reset, unless bootstrap mode is
selected (see section 9.7). B it 5 o f th is
reg ister is not used.

A ll UART registers are in 1/0 page FE and are
accessed via byte 1/0 instructions. Table 9-11
lis ts the 1/0 port addresses for the UART
registers.

Figure 9-16. Receiver Control/Status Register

Receiver Error (ERR). This b it is the logica l OR
of the PE, 0VE, and FE b its .

Framing Error (FE). This b i t is automatically set
to 1 i f the receiver detects a framing error when
assembling the received character. Detection of a
framing error adds an additional one-half b i t time
to the character to ensure that the framing error
is not interpreted as a new s ta rt b i t . This b it
is not latched; once set, i t remains set only
u n t il a new character is assembled and shifted
in to the Receive Data reg ister.

Table 9-TI. I/O Addresses of UART Registers

I/O Port
Register Address

UART Configuration Register FExx10
Transmitter Control/Status Register FExx12
Receiver Control/Status Register FExx14
Receive Data Register FExx16
Transmit Data Register FExx18

All addresses are in hexadecimal.
“x” means “don’t care”.

9-20

9 .6 .4 UART Operation

Operation o f the UART's transm itter and receiver
are enabled by the Transmitter Enable and Receiver
Enable control b its in the ir respective
contro l/status reg isters. Before enabling the
UART by setting one o f those b its , the UART's
configuration must be determined by programming
the UART Configuration reg is te r. I f the UART
Configuration reg ister is to be altered during
system operation, the transm itter and receiver
should be disabled before w riting to the
Configuration reg is te r, and then re-enabled
afterwards.

Once enabled, the UART can be used in an
in terrupt-driven or polled environment. Separate
transmit and receive in terrupts are controlled by
the in te rrup t enable b its in the contro l/status
reg is ters. Receive in terrupts are generated
whenever a new character is available in the
Receive Data reg ister or when an error is
detected. Transmit in terrupts are generated
whenever the Transmit Data reg ister is emptied.

For polled environments, the Character Available
b it in the Receiver Control/Status reg ister must
be monitored to determine when a character is to
be read from the Receive Data reg is te r; th is b it
is automatically cleared when the received data ̂ is
read. For transm itting characters, the Transmit
Buffer Empty flag should be checked before w riting
to the Transmit Data reg ister to prevent the
overwriting o f transmitted data.

The error flags in the Receiver Control/Status
reg ister are loaded at the same time that the
received data character is moved from the
receiver ' 8 s h if t reg ister to the Receive Data
reg is ter. Since the pa rity and receiver overrun
error flags are latched, the error status re flec ts
any errors in the current character in the Receive
Data reg ister plus any parity or overrun errors
that have been detected since the la s t w rite to
the Receiver Control/Status reg is ter. To maintain
correspondence between the state o f the error
flags and the data in the Receive Data reg ister,
the flags in the Receiver Control/Status reg ister
should be read before the data.

Once the transm itter has been enabled, there are
two ways to produce a break output on the transmit
data lin e . Setting the BRK b it in the Transmitter
Control/Status reg ister forces a break condition
on the transmit data output u n t il that b it is
cleared. A lte rnative ly , setting the FRC b it to 1

and clearing the VAL b it to 0 causes a break
condition on the transmit data output each time a
character is loaded in to the Transmit Data
reg is ter; th is break output persists fo r the same
amount o f time that i t would have taken to
transmit the data w ritten to the Transmit Data
reg ister had the FRC b it been 0. Note that the
characters w ritten to the Transmit Data reg ister
while the FRC b i t is set to 1 are not actually
transmitted.

9 .7 UART BOOTSTRAPPING OPTION

The on-chip UART and DMA Channel 0 can be used to
automatically in it ia l iz e the Z280 MPU's memory
with values received by the UART following a
reset. This system bootstrapping capab ility
permits ROMless system configurations, where
memory is in it ia liz e d using a se ria l lin k p rio r to
the f i r s t Z280 MPU instruction fetch a fte r the
reset•

As' described in Section 3.2.1 and Chapter 11,
bootstrap mode is selected by driv ing WAIT low and
AD6 high while EKTT is asserted. The appropriate
UART and DMA registers are automatically
programmed as shown in Table 9-12 as a resu lt o f
selecting bootstrap mode. The UART is in it ia l iz e d
to receive data in 8- b i t characters with odd
pa rity , an external clock source, and a x16 clock
rate. DMA Channel 0 is in it ia l iz e d with the lin k
to the UART receiver and end-of-proces8 capab ility
enabled, and set up fo r flowthrough byte transfers
in continuous mode. The destination address
starts at memory location 0 , with an autoincrement
a fte r each transfer, and a transfer count of 236
(100h).

Table 9-12. Reset Value of UART and DMA
Registers When Bootstrap Mode Is Selected

In itial Hex
Register Value

UART Registers

UART Configuration register E2
Receiver Control/Status register 80

DMA Registers

DMA Master Control register 0011
Channel 0 Transaction Descriptor register 8100
Channel 0 Destination Address register 000000
Channel 0 Source Address register Undefined
Channel 0 Count register 0100

9-21

I f bootstrap mode is specified, the Z280 CPU
automatically enters an id le state when RtSET is
deasserted. A minimum of 15 processor clock
cycles must elapse a fte r RESET is deasserted
before tranmission of data to the UART receiver
begins. DMA Channel 0 is then used to transfer
characters received by the UART in to memory. The
data received is placed in memory s tarting at

physical address 0. I f an error is detected by
the UART receiver, the Transmit Output (Tx) line
is driven low; external c irc u itry can use th is
signal to res ta rt the in it ia l iz a t io n procedure, i f
so desired. A fter 256 bytes of data have been
received and transferred to memory, the Z280 CPU
automatically begins execution with an instruction
fetch from memory location 0 .

9-22

Chapter 10.
Multiprocessor Configurations

10.1 INTRODUCTION

The Z280 MPU architecture provides support for
four types o f multiprocessor configurations

(Figure 10-1): slave processors, t ig h t ly coupled
m ultip le CPUs, loosely coupled multiple CPUs, and
coprocessors.

a) SLAVE PROCESSOR b) TIGHTLY COUPLED c) LOOSELY COUPLED d) COPROCESSOR
MULTIPLE CPU MULTIPLE CPU

Figure 10-1. Multiprocessor Configurations

10.2 SLAVE PROCESSORS

Slave processors, such as the Z8016 DMA Transfer
Controller or other DMA devices, perform dedicated
functions asynchronously to the CPU. The CPU and
slave processors share a local bus, where the CPU
is the default bus master. In order for a slave
processor to use the bus, i t must request control
o f the bus from the CPU and receive an
acknowledgement o f that request.

Two Z280 MPU signals are provided for supporting
slave processors: BUSREQ and BUSACK. A bus
request is in it ia te d by pu lling the BUSREQ input
low. Several bus requestors may be wire-ORed to
the BUSREQ pin; p r io r it ie s are resolved external
to the MPU, usually by a p r io r ity daisy chain.
The external BUSREQ signal generates an in te rna l,
synchronous BUSREQ. I f th is signal is active at
the beginning o f any bus cycle, the Z280 MPU w ill
relinquish the bus at the end o f that bus

cycle (with the exception o f the TSET instruction ,
where the read-modify-write cycle is atomic). The
MPU suspends execution o f the current instruction
and gives up control o f the bus by 3-stating a l l
address, address/data, bus tim ing, and bus status
output pins. The BUSACK output is then asserted,
signaling that the bus request has been accepted
and the bus is free fo r use by the slave
processor. The Z280 MPU remains in the bus
disconnect state u n til BUSREQ is deasserted.

The BUSREQ input is sampled during each processor
clock period by the external bus interface log ic
o f the Z280 MPU. I f BUSREQ is sampled active low
while the Z280 MPU is involved in an in terna l
operation, the external bus is relinquished to the
bus requestor immediately. Internal processing
can continue u n t il a transaction involving the
external bus • is required; the MPU then suspends
a c tiv ity u n t il regaining control o f the bus. I f
BUSREQ is sampled active during a CPU-generated

10-1

10.3.1 The Local Address Registertransaction on the external bus, the bus is not
relinquished nor CPU a c tiv ity suspended u n til the
current transaction is completed.

The Z280 MPU regains control o f the bus after
BUSREQ rises, continuing execution from the point
at which i t was suspended. Any bus requestor
desiring control o f the bus must wait at least two
bus cycles a fte r BUSREQ has risen before asserting
BUSREQ again.

In the case o f simultaneous bus requests from
m ultiple sources, the on-chip DMA channels have
higher p r io r ity than external slave processors in
Z280 MPU systems. A fter reset, the Z280 MPU
acknowledges an active BUSREQ signal before
performing any transactions.

10.3 TIGHTLY COUPLED MULTIPLE PROCESSORS

Tightly coupled multiple CPUs execute independent
instruction streams from th e ir own (lo c a l)< memory
locations and communicate through shared memory
locations on a common (global) bus. Each CPU is
the default master o f i t s local bus, but the
global bus master is chosen by an external
a rb ite r.

The Z280 MPU's multiprocessor mode o f operation
supports t ig h t ly coupled m ultiple CPU
configurations. This mode is also useful when
configuring the Z280 MPU as an I/O processor in a
d istribu ted processing system. Multiprocessor
mode is selected by setting the Multiprocessor
Configuration Enable (MP) b it in the Z280 CPU's
Bus Timing and In it ia liz a t io n reg ister (see
Section 3.2.1). While in the multiprocessor mode,
the Z280 MPU is able to support both a local bus
and a global bus. The Z280 CPU is the default bus
master o f the local bus, but must make a request
and receive an acknowledgement before performing
transactions on the global bus. Only memory
transactions can be performed on the global bus;
I/O transactions always use the local bus. The
range o f memory addresses dedicated to the global
and local buses is determined by the contents o f
the CPU's Local Address reg ister.

While in the multiprocessor mode, Counter/Timer%
0's I/O and IN pins are used as global bus request
(GREQ) and global bus acknowledge (GACK) signals,
respectively. GREQ is a three-state output; an
active low signal on th is lin e requests use o f the
global bus. An active low level on the GACK input
acknowledges a global bus request.

During each memory transaction while in m ulti­
processor mode, the Z280 CPU uses the Local
Address reg ister to determine i f that transaction
is to occur on the local or global bus. The Local
Address reg ister includes a 4 -b it Base fie ld and a
4 -b it Match Enable fie ld (Figure 10-2). For each
bus transaction, the four most-significant b its o f
the physical address (address b its A20 through
A23) are compared with the 4 -b it Base f ie ld ; the
Match Enable f ie ld specifies which b its are going
to, be used during th is comparison. I f a l l the
corresponding address b its match the Base fie ld in
the b it positions specified by the Match Enable
f ie ld , then the bus transaction can proceed on the
local bus without requesting the global bus. I f
there is a mismatch in at least one specified b it
position, then the global bus is requested and the
bus transaction does not proceed u n t il the global
bus acknowledge signal is asserted. (See section
3.2.3.)

7 0
Figure 10-2. Local Address Register

10.3«2 Bus Request Protocols

While in the multiprocessor mode, the BUSREQ and
BUSACK signals control use of the local bus in the
Same manner as described in section 10.2. When a
local bus request is granted, as indicated by an
active BUSACK signal, the CPU places a l l output
signals, including GREQ, in the high-impedance
state.

When in control o f i t s local bus, a Z280 CPU can
in it ia te transactions with devices on the global
bus that are shared with other CPUs. At any one
time, only one CPU can control transactions on the
global bus. Control o f the global bus is
arbitrated by external c irc u itry . Before
in it ia t in g a transaction on the global bus, the
CPU requests control o f the global bus from the
external a rb ite r c irc u itry by asserting GREQ and
waiting fo r an active GACK in response. (The
timing diagrams for global bus requests are shown
in Figures 12—15 and 13-19.) The GACK input is
asynchronous to the CPU clock; the Z280 CPU
synchronizes GACK in te rna lly . Once GACK is
asserted, the CPU performs the transaction on the
global bus. The CPU then deasserts GREQ and waits

10-2

for the a rb ite r c irc u it to deassert GACK. The CPU
always relinquishes the global bus by deasserting
GREQ a fte r each global transaction is completed,
except during execution o f a Test and Set (TSET)
instruction (both the data read and write are
completed before relinquishing the global bus) or

during a burst-mode memory transfer (the entire
sequence o f burst-mode memory reads is completed
before relinquishing the global bus).

A state diagram o f the bus request protocol is
shown in Figure 10-3.

ERROR

NOTES: Interface signals are High (H), Low (L), High or Low (2ST), or 3-stated (3ST).

NEED_GBUS is an active High signal internal to the CPU.

A
B

t

D
E

F

Q

H

________Transition Legend_____________
A local bus request occurs.
The global bus arbiter grants control of the
global bus when no global bus request is
pending. This is an error. The CPU remains in
State 0.
The CPU requests the global bus in response
to the internally generated signal
NEED_GBUS.
The local bus master relinquishes the bus.
The global bus arbiter grants the global bus
to the CPU while no local bus request is
pehding.
The global bus arbiter grants the global bus
to the CPU while a local bus request is pend­
ing. The local bus request has preempted the
CPU.
The global bus arbiter reclaims the global
bus before the CPU relinquishes the global
bus. This is an error. The CPU Is response to
this error is undefined.
The CPU relinquishes control of the global
bus when it no longer needs the global bus
or in response to a local bus request.
The global bus arbiter reclaims the global
bus.

State 1

State 2

State 3

State 4

State Legend

The CPU controls the local bus and is
neither requesting nor controlling the
global bus.
The CPU can perform transactions on
the local bus.
The CPU has granted the local bus.
The CPU cannot perform transactions.
The CPU controls the local bus and is
requesting the global bus.
The CPU cannot perform transactions.
The CPU controls the local and global
buses.
The CPU can perform transactions on
the global bus.
The CPU controls the local bus and is
relinquishing control of the global bus.
The CPU cannot perform transactions.

Figure 10*3. State Diagram for CPU Bus Request Protocol

10-3

While a Z280 CPU is asserting GREQ and waiting for
an active GACK, i f BUSREQ is asserted before GACK,
the CPU releases the global bus request a fte r
GACK is asserted without performing any
transactions.

The on-chip DMA channels may also in it ia te
transactions on the global bus. During each
DMA-controlled transaction, memory addresses
generated by a DMA channel are compared to the
contents of the Local Address reg ister to
determine i f the global bus is to be requested, in
the same manner as CPU-controlled bus
transactions.

I f the automatic memory refresh mechanism is
enabled, refresh cycles are inh ib ited while e ither
the CPU or a DMA channel has requested the global
bus but not yet received the global bus
acknowledge. No refresh transactions are ever
performed on the global bus.

10.3.3 Examples o f the Use o f the Global Bus
.\

The Z280 MPU's multiprocessor mode o f operation
fa c il ita te s the development o f t ig h t ly coupled
multiprocessor systems and systems using the Z280
MPU as a front-end I/O processor.

Figure 10-4 is a block diagram il lu s tra t in g the
use of m ultip le Z280 MPUs as tightly-coupled
processors. Access to the global memory via the
global bus is controlled by a centralized bus
a rb itra tion c irc u it . The GACK c irc u it controls
the buffers that connect or iso late the global bus
from each MPU's local bus. Each Z280 MPU can
access i t s local memory independent o f the other
MPU's a c t iv ity . Only one MPU at a time can access
the shared global memory. Note that memory-mapped
I/O devices could also be shared using the global
bus.

Figure 104. Tightly Coupled Processors with Shared Global Memory

Figure 10-5 shows a t ig h t ly coupled multiple Z280
MPU system without a global memory, where each
processor can d ire c tly access the local memory o f
the other processor. For th is system, p r io r ity
resolution logic would control both the local and
global bus requests. A global bus request from

one processor is used to generate a local bus
request to the other processor. When one
processor generates a global bus request, an
active GACK signal is not returned to that
processor u n t il the other processor's local bus is
available, as indicated by BUSACK.

10-4

Figure 10-5. Tightly Coupled Processors without Global Memory

Although both Figure 10-4 and 10-5 show only two
t ig h t ly coupled processors, more processors could
be added to these systems in a s im ila r manner.

Figure 10-6 illu s tra te s the use o f a Z280 MPU as
an I/O processor in a Z8000-based system. The

Z280 MPU's GREQ signal is used as the bus request
signal to the Z8000 CPU; the Z8000 CPU's BUSACK
signal is input d ire c tly to the Z280 MPU's GACK,
as well as con tro lling the buffers that normally
iso late the Z280 MPU's local bus from the Z8000
CPU's bus.

Figure 1045. Z280 MPU as an I/O Processor

10-5

10.4 LOOSELY COUPLED MULTIPLE CPUS

Loosely coupled multiple CPUs generally
communicate through a m ultip le-port peripheral,
such as the Z8038 FIO (FIFO,buffer I/O u n it) . The
Z280 MPU's I/O and in terrupt fa c i l i t ie s and the
on-chip DMA channels support loosely coupled
multiprocessing with the Z280 MPU.

10.5 COPROCESSORS AND THE EXTENDED PROCESSING
ARCHITECTURE

The Zilog Extended Processing Architecture (EPA)
provides a f le x ib le and modular approach to
expanding the capab ilities o f the Z280 MPU through
the use o f coprocessors called Extended Processing
Units (EPUs). The Extended Processing Architec­
ture is available on the Z-BUS configurations
o f the Z280 MPU, but not the Z80 Bus
configurations. Up to four EPUs can be connected
to a single Z280 MPU.

An Extended Processing Unit is a coprocessor that

can be used to execute complex, time-consuming
tasks in order to unburden the CPU. EPUs connect
d ire c tly to the Z-BUS; no extra external logic is
required to interface an EPU to a Z280-based
system (Figure 10-7). As the Z280 CPU fetches and
executes instructions, the EPU continuously
monitors the instruction stream on the bus. A
special group o f instructions, called extended
instructions, are processed by EPUs. When the
Z280 CPU encounters an extended instruction , i t
performs any specified data transactions, but
otherwise assumes that the instruction w i l l be
recognized and handled by an EPU. (In systems
without EPUs, extended instructions can be used to
generate a trap condition.) Thus, when EPUs are
added to a system, the instruction set is expanded
to include the extended instructions applicable to
those EPUs, thereby boosting the processing power
o f the whole system. The Z280 CPU and EPUs work
together lik e a single central processor; a
system with EPUs can be thought o f as a system
whose central processor consists o f 1 + N separate
devices, where N is the number o f EPUs in the
system. Lr-

MEMORY

Figure 10-7. EPU Connection in Z280 MPU System

The underlying philosophy o f the Extended
Processing Architecture is that the CPU is an
instruction processor; that is , the CPU fetches
an instruction , fetches data associated with that
instruction , performs the specified operation, and
stores the resu lt. Extending the number o f
operations that can be performed does not affect
the instruction fetch and address calculation
portion o f the CPU a c tiv ity . The extended
instructions explo it th is feature. The CPU is
responsible fo r fetching instructions, performing
address calculations, and generating the timing
signals for bus transactions; however, the actual
data manipulation for extended instructions is
handled by an EPUi Both the CPU and EPUs are,
therefore, controlled via a single instruction
stream, elim inating many s ign ificant system
software and bus contention problems that can
occur with other multiprocessing configurations.

10.5.1 Extended Instructions

Extended Processing Units connect d irec tly to the
Z-BUS and continuously monitor the instruction
stream. When the template portion o f an extended
instruction is fetched from memory, the
appropriate EPU w i l l detect that the instruction
is meant for i t and respond to the instruction .
The CPU is always responsible for fetching
instructions and delivering operands to the EPUs.
The EPUs recognize the extended instruction
templates and execute them, using data supplied
with the template and/or data already within
internal EPU registers.

There are four types o f extended instructions in
the Z280 instruction set: data transfers from
memory to an EPU, data transfers from an EPU to
memory, data transfers from an EPU to the CPU's

10-6

accumulator reg is ter, and EPU in terna l
operations. Twenty-two instruction opcodes are
used to implement these operations. Each extended
instruction opcode includes two parts: a two- or
four-byte instruction opcode used by the Z280 CPU
to determine it s a c tiv ity and the address o f the
memory operand, and a four-byte instruction
"template" that specifies the EPU a c t iv ity . Six
operand addressing modes are supported by the
instructions that specify transfers between EPU
registers and main memory: Direct Address,
Ind irect Register, Indexed, Stack Pointer
Relative, Program Counter Relative, and Base
Index. (See section 5.4.10 fo r a description o f
the extended ins tructions.)

In addition to the hardware-implemented
capab ilities o f the EPA, there is an extended
instruction trap mechanism that permits software
simulation o f EPU functions. The state o f the EPU
Enable b it in the CPU's Trap Control reg ister
indicates whether EPUs are present in the system
(see section 3.3.5). I f the EPU Enable b it is
cleared to 0, indicating that there are not EPUs
in the system, the CPU w i l l execute an Extended
Instruction trap i f an extended instruction is
encountered in the instruction stream. The
service routine for th is trap could perform a
software simulation o f an EPU's functions. This
trap mechanism fa c ilita te s the design o f systems
in which EPUs are not present but may be added
la te r. I n i t ia l ly , the "extended" function is

executed as the Extended Instruction trap service
routine; ttfwn EPUs are added to the system, the
trap routine is eliminated and the EPU Enable b it
is set to 1. This change would be transparent to
applications programs. (The Extended Instruction
trap is described in section 6.3 .1 .)

1 0 .5 .2 Extended In stru c tio n Execution Sequence

The CPU and EPU instruction execution sequence is
diagrammed in Figure 10-8. When the CPU fetches
an extended ins truction , the EPU Enable b it in the
Trap Control reg ister is examined. I f the EPU
Enable b it is a 0, an Extended Instruction trap is
executed. I f the EPU Enable b it is a 1,
indicating that there is an EPU in the system,
then the CPU fetches the four-byte instruction
template from memory. The fetching o f the
template is indicated by the ST3-ST0 status lines
from the CPU. EPUs must continuously monitor the
address/data bus and ST3-ST0 status lines fo r i t s
templates. A 2 -b it id en tifica tio n f ie ld in the
template can select one o f up to four EPUs for
execution o f a given extended ins truction . I f the
extended instruction ca lls for the transfer o f
data between the CPU and EPU or between the EPU
and memory, the CPU generates the appropriate bus
transaction cycles. These transactions are
iden tified by unique encodings o f the ST3-STQ
status lines . The EPU monitors the status and

Figure 104. CPU-EPU Instruction Execution Sequence

10-7

timing signals output by the CPU to determine when
to partic ipate in the data transaction; the EPU
supplies or captures the data when DS is active.
For transactions between an EPU and memory, the
CPU 3-states it s address/data lines while OS is
active so that the EPU or memory can supply the
data. (See section 13.5.5 for a description o f the
bus transaction tim ing.)

The number and type o f bus cycles required to
fetch the extendedVinstruction template depends on
whether the template is aligned on an even address

boundary. The four-byte long template can be
fetched with two word transactions i f the template
begins on an even memory address or with one byte
and two word transactions i f the template begins
at an odd memory address, as described in Table
10-1. (In the case o f an odd s tarting address for
the template, the EPU captures only the upper byte
from the bus during the second word transaction.)
The template is always fetched from memory using
the CPU's external bus interface, regardless o f
the current state o f the on-chip cache memory.

Table 10-1. Bus Transactions Involved in Fetch of Extended Instruction Template

Address at Address
Template Start Bus Cycle from Z280 Byte/Word ST3-S T0

Even 1 n Word 1101
2 n+2 Word 1100

Odd 1 ' n Byte 1101
2 n+1 Word 1100
3 n +3 Word 1100

I f the extended instruction specifies an in terna l
EPU operation, the Z280 CPU can proceed to fetch
and execute subsequent instructions. Thus, the
CPU and EPUs may be processing in pa ra lle l. The
PAUSE signal is used to synchronize CPU-EPU
a c tiv ity in the case o f overlapping extended
instructions. I f the CPU fetches another extended
instruction template intended for an EPU that is
s t i l l executing a previous instruction , the EPU
activates the PAOSE input to the CPU to ha lt
further CPU a c tiv ity u n t il the EPU can fin ish the
o rig ina l operation. While PAUSE is asserted, a l l
CPU a c tiv ity is suspended except responses to
refresh requests, bus requests, and resets.

CPU a c tiv ity following the fetch o f the extended
instruction template is governed by the type o f
extended instruction being processed. In the case
o f an EPU in terna l operation, no further bus
transactions are required by the extended
ins truction , so the CPU w i l l proceed to fetch the
next ins truction . However, the CPU w il l s t i l l
honor an active PAUSE input and suspend execution
u n t il PAUSE is released.

In the case o f an EPU-to-CPU transfer instruction ,
the next non-refresh transaction following the
fetch o f the template (and a fte r an active PAUSE
signal is deasserted) w i ll be the EPU-to-CPU bus
transaction. EPU-to-CPU bus transactions are

iden tified by a 1110 status code on the STj-STg
status lines and are word transactions. The
address emitted by the CPU during th is cycle is
the memory address o f the previous transaction
(that is , the address used during the las t fetch
o f the instruction template).

In the case o f EPU-to-memory or memory-to-EPU
transfe r instructions, the next one to sixteen
non-refresh transactions following the fetch o f
the template (and a fte r an active PAUSE signal is
deasserted) w i l l be the appropriate data transfer
cycles. Up to 16 bytes o f data may be transferred
as the resu lt o f a single extended instruction ;
the number of data transfers to be performed is
encoded in the instruction template. The 1010
status code on the ST3-STQ status lines id en tifie s
bus cycles that transfer data between an EPU and
memory. The EPU must supply the data for write
operations or capture the data for read operations
during each transaction, ju s t as i f i t were part
o f the CPU. The number and type o f transactions
generated also depends on whether the s tarting
memory address o f the data block to be moved is an
even-valued address, as defined in Table 10-2.
The case where only one byte is transferred is
degenerate and shown separately in Table 10-2 for
c la r ity . These transfers are always performed on
the Z280 MPU's external bus, regardless o f the
current state o f the on-chip cache memory.

10-8

Table 10-2. Sequence of Transactions for Data Transfers between an EPU and Memory

Starting Memory
Address

Number of
Bytes (n)

Byte/Word Status of
Transfers

Type of
Addresses

Total Number of
Transactions

Even Even word, word....word All even n/2

Even Odd word, word,...,word, byte All even . (n+1)/2

Even One byte Even 1

Odd Even byte, word,...,word, byte First odd,
others even

(n+2)/2

Odd Odd byte, word....word, word First odd,
others even

(n +1)/2.

Odd One byte Odd 1

10-9

Chapter 11.
Reset

Hardware resets are asserted by an active RESET
input and place the Z280 MPU in a known state.
Optionally, the Bus Timing and In it ia liz a t io n reg­
is te r can be in it ia liz e d to a system specifiable
value during a reset. The RESET input is
in te rna lly synchronized to the clock and then
sampled at the end o f every processor clock
cycle. When an active RESET line is detected, the
current bus transaction is allowed to be completed
before s ta rting the reset process. A reset
overrides a l l other operations, including
in te rrup ts , traps, and bus requests. A hardware
reset must be used to in it ia l iz e the Z280 MPU as
part o f the power-up sequence.

The RESET input must be asserted fo r a minimum o f
128 processor clock cycles. Within th is time the
Z280 MPU lines assume th e ir reset values: the
address and address/data lines are 3-stated and
a l l control lines are forced High. While RESET is
asserted, the clock output line (CLK) is the proc­
essor clock frequency divided by four.

When RESET is sampled high (deasserted), the s tate of the
WATT input is sampled. I f WAIT is asserted, the contents
of the ADq>AD7 lines are sampled on the fa llin g edge of
the processor clock and loaded in to the Bus Timing and
In it ia l iz a t io n reg is te r; i f th is method of in it ia l iz a t io n
is chosen, AD7 must be a 1 and AD4 must be a 0 when the
bus is sampled, and the s tate of the AD ̂ lin e determines
whether the bootstrap mode option is selected. WAIT must
be asserted fo r a t least two processor clock cycles a fte r
RESET is deasserted in order fo r the Bus Timing and
In it ia l iz a t io n reg is te r, thereby specifying a bus clock
frequency of one-half the processor clock, no automatic
wait states when accessing the lower 8M bytes of memory,
and disabling the multiprocessor mode of operation.

Table 11-1 delineates the effect o f a reset on
other CPU reg isters. A reset places the CPU in

in te rrup t mode 0; thus, the IM f ie ld in the
Interrupt Status reg ister w i l l be a 0. The
In terrupt Vector Enable b its in the Interrupt
Status reg ister also are cleared to 0 by a reset,
and the Interrupt Pending b its w i l l re fle c t the
current status o f the in te rrup t requests. A ll
other CPU and MMU registers, including the
remaining registers in the CPU reg ister f i le , the
MMU page descriptor reg isters, and the
Interrupt/Trap Vector Table Pointer are unaffected
by a reset.

The e ffect o f a reset on the on-chip peripherals'
programmable registers is shown in Table 11-2.
The on-chip counter/timers are always disabled by
a reset. The on-chip DMA channels and UART are
also disabled by a reset, unless bootstrap mode is
selected (see Section 9.7). The counter/timers'
Time Constant and Count-Time registers are
unaffected by a reset. The DMA channels'
Destination Address, Source Address, and Count
registers also are unaffected by a reset, except
for DMA Channel 0 's Destination Address and Count
reg isters.

In a multiprocessing system employing m ultiple
Z280 MPUs with a shared bus, the in terna l
processor clocks for the Z280 MPUs need to be
synchronized. The processor clock is generated by
d ivid ing the XTAL1 input by two. The fa ll in g edge
o f RESET is used in te rna lly to synchronize the
prqcessor clock, and can be used to synchronize
processor clocks in a multiprocessing system. I f
a l l the Z280 MPUs in the system have identica l
XTAL1 and RESET input signals, th e ir in terna l
processor clocks w i l l be in it ia l iz e d in the same
manner by a reset.

I f an active bus request is detected on the ris ing
edge of RESET, the Z280 MPU grants the bus before

' fetching the f i r s t instruction from location 0.
Thus, an external DMA device can in i t ia l iz e RAM
memory before execution begins. I f bus request is
not asserted, the CPU begins execution with a
fetch from location 0 unless bootstrap mode is in
e ffec t.

11-1

Table 11-1. Effect of a Reset on Z280 MPU and MMU Registers

Register
Value Loaded on Reset

(Hexadecimal) Comments

Program Counter 0000

System Stack Pointer 0000

I 00

R 00

Master Status 0000 System mode, Single-Step disabled, Breakpoint-on-Halt
disabled
All maskable interrupts disabled

Bus Timing and Control 30 No automatic wait states for I/O, upper 8M bytes of
memory, or interrupt acknowledges

Bus Timing and Initialization 80 CLK output 2 x processor clock period, no automatic wait
states for lower 8M bytes of memory, bootstrap mode
disabled

I/O Page 00 I/O Page 0 in use

Cache Control 20 Cache enabled for instructions
All valid bits cleared to 0
Burst mode disabled

Trap Control 00 EPA trap disabled, I/O not privileged

System Stack Limit 0000 System Stack Overflow Warning trap disabled

Local Address 00 All memory transactions are made to local bus

Interrupt Status OOxx Interrupt mode 0, nonvectored interrupts, current state of
interrupt requests (indicated by xx)

Interrupt/Trap Vector Table Pointer Unaffected

CPU Registers AF, BC, DE, HL, IX, IY,
AF#, BC', DE', HL'

I
Unaffected

User Stack Pointer Unaffected

MMU Master Control 0000 MMU disabled

MMU Page Descriptor Register, Page
Descriptor Register Pointer Unaffected

11-2

Table 11-2. Effect of a Reset on Z280 On-Chip Peripheral Registers

Value Loaded on Reset
Register (Hexadecimal) Comments

Refresh 88 Refresh enabled, rate = 32

Counter/Timers:
Configuration 00 Timer mode, single-cycle mode
Command/Status 00 Timer disabled

DMA Channels:
Master Control 0000* No DMA linking, EOP disabled, Software Ready disabled
DMAO Transaction Descriptor 0100* DMAO disabled, continuous mode
DM A1/2/3 Transaction Descriptor - EN, IE, TC, and EPS fields cleared, other fields unaffected

DMAO Destination Address 000000
DMAO Count 0100

UART:
Configuration 00* 5 bits/character, parity disabled, external clock, x 1 clock

rate, loop back disabled
Transmitter Control/Status 01 Transmitter disabled, transmit buffer empty
Receiver Control/Status 00* Receiver disabled

* Unless bootstrap mode is selected.

11-3

Chapter 12.
Z280 Bus External Interface

12.1 INTRODUCTION

The Z280 MPU is typ ica lly only one component in a
system that may include memory, peripherals, slave
processors, coprocessors, and other CPUs, a l l
connected via a system bus. Two d iffe ren t
component-interconnect bus schemes are available
with the Z280 MPU: the Z80 Bus and the Z-BUS.

This chapter describes the external manifestations
(that is , the a c tiv ity on the pins) that resu lt
from CPU or on-chip peripheral a c tiv ity for the
Z80 Bus configurations of the Z280 MPU. (The
Z-BUS external interface is described in Chapter
13.) Since the pins are connected to the system
bus, most o f th is discussion w i l l center on the
bus and bus operations.

The condition o f the OPT signal pin determines the
configuration of the bus interface fo r the Z280
MPU; the Z80 Bus configuration is selected by
applying a log ica l 0 (ground) level on the OPT
pin.

The Z80 Bus on the Z280 MPU includes a 24-bit
address bus, 8 -b it data bus, and associated status
and control signals. The data bus is multiplexed
with the low-order 8 b its of the address bus.
Figure 12-1a shows the pin functions fo r the
Z80 Bus configuration of the Z280 MPU. The
Z80 bus described here is compatible with Z ilog 's
Z8400 and Z8300 fam ilies o f peripheral devices.

* * * * * * * * * * * * * * * * ^ * * * * * * * * * * 4 ^ r* &

Figure 12-1b. Pin Assignments

Figure 12-1. Z80 Bus Configuration (input OPT tied to GND)

12-1

12.2 BUS OPERATIONS 12.3 PIN DESCRIPTIONS

Two kinds of operations can occur on the Z80 Bus:
transactions and requests. At any given time only
one device (e ither the CPU or a bus requestor such
as a DMA channel) can be in control of the bus;
th is device is called the bus master. Trans­
actions are always in it ia te d by the bus master and
are responded to by some other device on the bus.
Only one transaction can proceed a t a time.
Requests can be in it ia te d by a device that does
not have control of the bus.

Seven types of transactions can occur on the
Z80 Bus, as described below:

Memory tr a n s a c tio n . CPU- or DMA-controlled
transfer o f data to or from a memory location*

RETI tr a n s a c tio n . CPU-initiated transaction used
in conjunction with the in te rrup t logic o f Z8400
family peripherals.

H alt tr a n s a c tio n . Transaction indicating that the
CPU is entering the Halt state due to the
execution of a HALT instruction or a fa ta l
sequence of traps.

R e fre sh . Transaction that refreshes dynamic
memory; refresh transactions do not involve a
transfer of data.

I/O tr a n s a c tio n . CPU- or DMA-controlled transfer
of data to or from a peripheral device.

In terru p t Acknowledge. CPU-controlled transaction
used to acknowledge an in te rrup t and read data
from the in terrupting device.

DMA Flyby t r a n sa ctio n . A DMA-controlled trans­
action that transfers data between a memory
location and a peripheral device.

Two types of requests can occur on the Z80 Bus, as
described below:

In terru p t req u est. A request in it ia te d by a
peripheral device to gain the attention of the
CPU.

Bus re q u e st. A request by an external device
(typ ica lly a DMA channel) to gain control of the
bus in order to in it ia te transactions.

A request is answered by the CPU according to its
type: for in te rrup t requests, an in te rrup t
acknowledge sequence is generated; for bus
requests, the CPU relinquishes the bus and
activates an acknowledge signal.

The pin functions for the Z80 Bus configuration
of the Z280 MPIJ are illu s tra te d in Figure
12-1 a. The pin assignments are shown in Figure
12-1b. A functional description of each pin is
given below:

Aa-A23. A d d r e s s (output, active High, 3-state). These
address lines carry I/O addresses and memory addresses
during bus transactions.
AD0 -AD7 . A d d r e s s / D a t a (bidirectional, active High, 3-state).
These eight multiplexed Data and Address lines carry I/O
addresses, memory addresses, and data during bus
transactions. <

s§. A d d r e s s S t r o b e (output, active Low, 3-state). The rising
edge of AS indicates the beginning of a transaction and
shows that the address is valid.
BUSACK. B u s A c k n o w l e d g e (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

bUSreq. B u s R e q u e s t (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is tfying to obtain control of the bus.
CLK. C l o c k O u t p u t (output). The frequency of the processor
timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. The
processor clock is further divided by one, two, or four (as
programmed) and then output on this line.
CTIN. C o u n t e r / T i m e r I n p u t (input, active High). These lines
receive signals from external devices for the counter/timers.
CTIO. C o u n t e r / T i m e r I / O (bidirectional, active High,
3-state). These I/O lines transfer signals between the
counter/timers and external devices.
DMA&TB. D M A F l y b y S t r o b e (output, active Low). These
lines select peripheral devices for flyby transfers.
EOP. E n d o f P r o c e s s (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
is active, EOP is ignored.

GACK. G l o b a l A c k n o w l e d g e (input, active Low). A Low on
this line indicates the CPU has been granted control of a
global bus.

GREQ. G l o b a l R e q u e s t (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.
GND. G r o u n d . Ground reference.

HALT. H a l t (output, active Low, 3-state). This signal indicates
that the CPU is in the Halt state and is awaiting an interrupt
before operation can resume.

12-2

IE. Input Enable (output, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the MPU.
IRT. M askab le Interrupts (input, active Low). A Low on these
lines requests an interrupt.
ICRS. Input/O utput R equest (output, active Low, 3-state).
This signal indicates that ADo*AD7 and of the
address bus holda valid I/O address for an I/O read or write
operation. An 15R5 signal is also generated with an
M1 signal when an interrupt is being acknowledged, to
indicate that an interrupt response vector can be placed on
the data bus.
H i. M achine Cycle O ne (output, active Low, 3-state). This
signal indicates that the current transaction is the opcode
fetch cycle of a RETI instruction execution. M1 also occurs
with IORQ to indicate an interrupt acknowledge cycle.
M REb. M em ory R equest (output, active Low, 3-state). This
signal indicates that the address bus holds a valid address
for a memory read or write operation.
R H I. Nonm askab le Interrupt (input, failing-edge activated).
A High-to-Low transition on this line requests a nonmaskable
interrupt.
5E. O utput Enable (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.
OPT. Bus Option (input). This signal establishes the bus
option during reset.

OPT Bus Interface

0 Z80 Bus, 8-bit
1 Z-BUS, 16-bit

PAU&E. M P U Pause (input, active Low). While this line is
Low the MPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

HD. R ead (output, active Low, 3-state). This signal indicates
that the CPU or DMA peripheral is reading data from
memory or an I/O device.
Rt)Y. D M A R ead y (input, active Low). These lines are
monitored by the DMAs to determine when a peripheral
device associated with a DMA port is ready for a read or
write operation. When a DMA port is enabled to operate, its
Ready line indirectly controls DMA activity; the manner in
which DMA activity is controlled by the line varies with the
operating mode (single-transaction, burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.
RFSH. Refresh (output, active Low, 3-state). This signal
indicates that the lower ten bits of the Address bus contain a
refresh address for dynamic memories and the current
KSRK5 signal should be used to perform a refresh to all
dynamic memories.
RxD. UART Receive (input, active High). This line receives
serial data at standard TTL levels.
TVD. UART Transmit (output, active High). This line transmits
serial data at standard TTL levels.
WAIT. Wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.
WE. Write (output, active Low, 3-state). This signal indicates
that the bus holds valid data to be stored at the addressed
memory or I/O location.
XTALI. Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip oscillator.

XTALO. Crystal O u tpu t (time-base output). Connects a
parallel-resonant crystal to the on-chip oscillator.
+ 5V. Power Supply Voltage. (+5 nominal).

12-3

12.4 BUS CONFIGURATION AND TIMING

Four Z280 CPU control registers specify certain
characteristics of the Z280 MPU's external
in terface and determine bus tim ing: the Bus
Timing and In it ia liz a t io n reg is ter, Bus Timing and
Control reg is ter, Local Address reg is ter, and
Cache Control reg ister.

Bus timing is determined by the frequency of the
Z280 MPU's external clock source or crysta l and
the contents o f the Bus Timing and In it ia liz a t io n
reg is ter, which receives i t s in i t ia l values as
part o f the reset process (see section 3,2.1).
The frequency of the processor clock is one-half
o f the frequency of the external clock source or
crys ta l. The processor clock can be further
divided by a factor o f 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling f ie ld in the Bus Timing and
In it ia liz a t io n reg is ter. The bus timing clock is
output by the MPU as the CLK signal. In the
logical timing diagrams that follow, signal
transitions on the bus are shown in re la tion to
the bus clock, CLK.

The number of automatic wait states included in a
given transaction is determined by the contents of
the Bus Timing and In it ia liz a t io n and Bus Timing
and Control reg isters. The physical memory
address space is divided in to two sections based
on the most s ign ifican t physical address b i t ,
A23 . Up to. three automatic wait states can be
added to transactions to the lower ha lf o f memory
(addresses where A23 = 0); s im ila rly , up to three
automatic wait states can be added to transactions
to the upper h a lf o f memory (A23 = 1), to a l l I/O
transactions, and to in te rrup t acknowledge
transactions.

The state of the Multiprocessor Configuration
Enable b it in the Bus Timing and In it ia liz a tio n
reg ister and the contents of the Local Address
reg ister determine which memory transactions
require use of a global bus, as described in
section 10.3. The contents o f the Cache Control
reg ister and the state of the address tags and
va lid b its in the cache memory determine which
transactions employ the cache memory and which
transactions use the external bus interface, as
described in Chapter 8 .

12.3 TRANSACTIONS

At any given time, one device (e ither the CPU or a
bus requester) has control of the bus and is known
as the bus master. A transaction is in it ia te d by
the bus master and is responded to by some other
device on the bus. Information transfers (both
instructions and data) to and from the Z280 MPU
are accomplished through the use of transactions.
A ll transactions s ta rt when Address Strobe (fiS) is
driven low and then raised high.

I f the transaction requires an address, the
address is va lid on the ris ing edge of AS. AS can
be used to latch Z280 MPU addresses to de­
multiplex the Z280 Address/Data lines. I f an
address is generated, the Output Enable (0E) line
is activated coincident with AS assertion.

The Read (RD) and Write (WR) lines are used to
time the data transfers. For transactions that do
not involve the transfer o f data (Refresh and
Halt transactions), neither RD nor WR is
activated. For write operations, a low on WR
indicates that va lid data from the bus master is
on the AD lines. The Output Enable line continues
to be asserted u n t il WR is deasserted. For read
operations, the bus master drives the RD line low
when the addressed device is to put i t s data on
the bus. Coincident with the assertion o f RD, the
AD lines are 3 stated by the bus master and 0E is
deasserted; Input Enable (IE) is asserted one-half
clock cycle la te r. The bus master samples the
data on the fa llin g clock edge jus t before
deasserting RD and IE. The ris ing edge of RD or
WR marks the end of the transaction.

The Z280 MPU's WAIT input provides a mechanism
whereby the timing of a pa rticu la r transaction can
be extended to accommodate a memory or peripheral
device with a long access time. The WAIT line is
sampled on the fa llin g clock edge when data is to
be sampled (i.e . ju s t before RD or WR rises)
during a transaction. I f the WAIT line is low,
another bus clock cycle is added to the
transaction before data is sampled (RD or WR
rises). In th is added cycle, and a l l subsequent
cycles added due to WAIT being low, the WAIT line
is sampled on the fa ll in g edge of the clock and,
i f i t is low, another cycle is added to the
transaction before data is sampled. In th is way,
the transaction can be extended by external logic
to an arb itra ry length, in increments of one bus
clock cycle.

12-4

The WATT input is synchronous, and must meet the
specified setup and hold times in order for the
Z280 MPU to function correctly. This requires
asynchronously generated WAIT signals to be
synchronized to the CLK output before they are
input in to the Z280 hff’U. Automatic wait states
can also be generated by programming the Bus
Timing and Control reg ister and Bus Timing and
In it ia liz a t io n reg is ter; these are inserted in
the transaction before the external WAIT signal is
sampled.

1 2.5.1 Memory Transactions

Memory transactions move instructions or data to
or from memory when a bus master makes a memory
access. Thus, they are generated during program
execution to fetch instructions from memory and to
fetch and store memory data. They are also
generated to store old program status and fetch
new program status during in te rrup t and trap
handling, and to transfer information during DMA-
controlled memory accesses. A memory transaction
is three bus cycles long unless extended with
hardware- and/or software-generated wait states,
as explained previously.

Memory transaction timing is illu s tra te d in
Figures 12-2 and 12-3. During the f i r s t bus cycle,

AS is asserted to indicate the beginning of a
transaction; Output Enable (OE) is also asserted
at th is time. The MREQ signal goes active during
the second ha lf of th is bus cycle, which indicates
a memory transaction. For a Read operation
(Figure 12-2), RD is activated during the f i r s t
ha lf o f the second bus cycle, a fte r the bus master
has 3-stated the AD lines; OE is deasserted at
the beginning o f the second cycle and Input Enable
(IE) is asserted during the second ha lf of the
second cycle. The bus master samples the in fo r­
mation returned from memory on the Address/Data
bus on the fa ll in g edge of the clock during the
th ird bus cycle; a fte r the data is sampled, RD,
MREQ, and IE are deasserted. For a Write oper­
ation (Figure 12-3), the WR line is asserted
during the second ha lf o f the second cycle, a fte r
the bus master has placed the data to be written
on the AD lines, and OE stays active throughout
the transaction.

The WAIT input is also sampled on the fa ll in g edge
of the clock durinq the th ird clock cycle; i f
WAIT is low, another bus clock cycle is added
before samplinq the data. Wait states can also be
added throuqh programming o f the Bus Timing and
In it ia liz a t io n req ister and Bus Timinq and Control
req is ter. For example, Fiqures 12-4, 12-5, and
12-6 il lu s tra te memory transactions with one wait
state.

12-5

Figure 12-4. Memory Read Timing with One External Wait State

12-6

CLK

Figure 12-5. Memory Write Timing with One External Wait State

Figure 12-6. Memory Read Timing with One Internal Wait State

12-8

12.5.2 RETI Transactions

RETI transactions (Figure 12-7) are s im ila r to
memory read transactions with two exceptions: M1
is asserted throughout each read transaction,
fa ll in g early in the f i r s t bus cycle, and MREQ,
M1, RD, and IE are deasserted on the ris in g edge
o f the clock following the th ird cycle. Each of
the read transactions is followed by a minimum of
three bus cycles of in a c tiv ity . These trans­
actions are invoked whenever an REfl instruction
is encountered in the instruction stream; they
are used to re-fetch the instruction from external
memory so that in te rrup t logic w ith in Z8400 family
peripherals that monitor the bus fo r th is
ins truction w i l l function correctly .

f2»5.3 H alt and Refresh Transactions

There are two types of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are s im ilar to memory
transactions, except that RD and WR remain high,
the WAIT input is not sampled, and no data is
transferred.

Halt transactions (Figure 12-8) are iden tica l to
memory read transactions except that HALT is
asserted throughout the transaction, fa llin g
during the second ha lf of the f i r s t bus cycle, and
remains asserted a fte r the transaction is
completed. This transaction is invoked when a
HALT in s tru c tio n . is executed or a fa ta l seguence
of traps occurs. For Halt transactions generated
by the HALT ins truction , once the Halt transaction
is completed, a l l subseguent CPU a c tiv ity is
suspended u n t il an active in te rrup t reguest or
reset is detected. After Halt transactions
generated due to a fa ta l condition, a l l CPU
a c tiv ity is suspended u n t il an active reset is
detected (see section 6 . 6) . The HALT line remains
asserted u n t il the in te rrup t reguest is
acknowledged or the reset is received. Refresh
transactions or DMA transfers may occur while HALT
is asserted; also, the bus can be granted. The
address put out during the address phase o f the
Halt transaction is the address of the Halt
instruction or the instruction that in it ia te d the
fa ta l seguence o f traps.

\

Figure 12-8. Halt Timing

12-9

A memory refresh transaction (Figure 12-9) is
generated by the Z280 MPU refresh mechanism and
can occur immediately a fte r the f in a l clock cycle
of any other transaction. The memory refresh
counter' 8 10-bit address is output on ADQ-AD7 , Ag,
and A9 when AS is asserted; the remaining address
lines are undefined. The RFSH line is activated
concurrent with MREQ. This transaction can be
used to generate refreshes fo r dynamic RAMs.
Refreshes may occur while the CPU is in the Halt
state.

12.5.4 I/O Transactions

I/O transactions move data to or from peripherals
and are generated during the execution of I/O
instructions or during DMA-controlled transfers.
.1/0 transactions to devices in I/O pages FE ̂ and
F F d o not generate external bus transactions.

Figures 12-10 and 12-11 il lu s tra te I/O transaction
tim ing. I/O transactions are four clock cycles
long at a minimum, and, lik e memory transactions,
may be lengthened by the addition of wait cycles.
I/O transaction timing is s im ilar to memory
transaction timing with one automatic wait state.

The IORQ lin e indicates that an I/O transaction is
taking place. The 1/0 address is found on ADQ-AD7
and Ag-A23 when AS rises. For read operations, RD
and IE are asserted during the second clock cycle,
and input data from the peripheral is sampled by
the bus master during the fourth cycle (unless
additional wait states are inserted in the
transaction). For write operations, WR is
asserted during the second cycle with 0E remaining
asserted; output data to the peripheral is placed
on the bus at th is time.

10 tea significant Mts art Refresh address, tha rest are undsflnsd.

Figure 12-9. Memory Refresh Timing

12-10

Figure 12-10. I/O Read Timing

Figure 12-11. I/O Write Timing

12.5.5 In terrup t Acknowledge Transactions

Interrupt acknowledge transactions acknowledge an
in te rrup t and read information from the device
that generated the in te rrup t. These transactions
are generated automatically by the CPU when an
in te rrup t request is detected.

Interrupt acknowledge transactions are five cycles
long at a minimum, with two automatic wait cycles
(Figure 12-12). The wait cycles are used to give
the in te rrup t p r io r ity daisy chain (or other
p r io r ity resolution devices) time to se ttle before
the id e n tif ie r or vector is read. Additional
automatic wait states can be generated by
programming the Bus Timing and Control reg ister.

The in te rrup t acknowledge transaction is indicated
by an M1 assertion without MREQ during the f i r s t
cycle. The AD̂ and AD2 address lines indicate the
type of in te rrup t being acknowledged when AS is
asserted (see Table 6-4); the remaining address
lines are undefined. The IORQ signal becomes
active during the th ird cycle to indicate that the
in te rrup ting device can place an 8 -b it id e n tifie r
or vector on the bus. I t is captured from the AD
lines on the fa ll in g clock edge before IORQ is
raised high.

There are two places where the WAIT line is
sampled and, thus, where wait states can be
inserted by external c irc u itry . The f i r s t , during
T2, serves to delay the fa llin g edge o f IORQ to

Figure 12-12. Interrupt Acknowledge Sequence

12-12

allow the daisy chain a longer time to se ttle ;
the second, during T3, serves to delay the point
at which the id e n tif ie r or vector is read.
Software-generated wait states can also be added
at e ither time via programming of the DC and I/O
fie ld s in the Bus Timing and Control reg is ter. As
always, software-generated wait states are
inserted in to the transaction before the external
WAIT signal is sampled.

12.5 .6 DMA Flyby Transactions

On-chip DMA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external DMA contro llers in Z280
MPU systems may also have th is capab ility . The
timing of flyby transactions is iden tica l to
memory transaction tim ing, with the exception that
the DMA Flyby Strobe (DMASTB) signal is activated;
the DMASTB signal is used to select the p a r t ic i­
pating I/O device that must capture or supply the
data during the memory access transaction.

Flyby transactions controlled by the on-chip DMA
channels always include one automatic wait state
(Figures 12-13 and 12-14). As with a l l memory

transactions, other hardware- and software-
generated wait states can be added to the trans­
action. The external WAIT signal is sampled at
two d iffe ren t times: during the automatic wait
state and during T3.

For flyby transactions that read from memory and
w rite to a peripheral (Figure 12-13), DMASTB
is asserted during the automatic wait state and
any subsequent wait states added by an active WAIT
signal sampled during the automatic wait state.
Thus, i f the WAIT input is asserted during the
automatic wait state, the additional wait states
extend the width of the DMASTB pulse. Wait states
added via the assertion of WAIT during T3 (a fte r
DMASTB is deasserted) stretch the RD signal
without a ffecting DMASTB.

For flyby transactions that read from a peripheral
and write to memory (Figure 12-14), DMASTB is
asserted at the beginning o f T2 and remains
asserted u n t il the second h a lf of T3. The
signal is asserted only during the automatic wait
state and any subsequent wait states added by
sampling WAIT during the automatic wait state.
Wait states added via the assertion of WAIT during
T3 stretch the DMASTB signal without affecting WR.

12-13

Figure 12-14. On-Chip DMA Channel Flyby Memory Write Transaction

12.6 REQUESTS

The Z280 MPU supports three types of request
signals: in te rrup t requests, local bus requests,
and global bus requests. A request is answered
according to its type. Interrupt requests are
generated by peripheral devices; the Z280 MPU
responds with an Interrupt Acknowledge trans­
action. Local bus requests are in it ia te d by an
external potentia l bus master; the Z280 MPU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the Z280 CPU or an
on-chip DMA channel to access a global bus; the
Z280 MPU receives a Global Bus Acknowledge signal
in response to the request.

12.6.1 In terru p t Requests

The Z280 CPU supports two types of in terrupts,
maskable INT and nonmaskable (NMI). The in terrupt
request line from a device capable of generating
in terrupts can be tied to the 7.280 MPU’ s INT or

NMI inputs; several devices can be connected to
one in te rrup t request input, with in terrupt
p r io r it ie s established via external logic or a
p r io r ity daisy chain. However, a l l Z8400 family
peripherals in a Z280-based system w i l l respond to
the RETI transaction. Therefore, e ither a l l Z8400
family peripherals should use the same in terrupt
request line or, a lte rna tive ly , no nesting of
in terrupts should be allowed among the Z8400
peripherals using d iffe ren t in te rrup t request
lines.

Nonmaskable in terrupt requests are edge-triggered,
but maskable in terrupts are level-triggered. Any
high-to-low trans ition on the NMI input is
asynchronously edge-detected, and an in terna l NMt
latch is set. At the beginning of the las t clock
cycle during execution of an instruction , the
maskable in terrupt inputs are sampled along with
the state of the in terna l NMI latch. I f an
in te rrup t is detected, and that in terrupt is
enabled in the Master Status reg ister, in terrupt
processing proceeds in accordance with the current
in te rrup t mode, as described in Chapter 6.

12-14

12.6.2 Local Bus Requests

To generate transactions on the bus, a potentia l
bus master (such as a DMA con tro lle r) must gain
control of the bus by making a bus request. A bus
request is in it ia te d by pu lling BUSREQ low; the
Z280 MPU responds by 3-stating i t s address, data,
bus contro l, and bus status outputs and asserting
an active BUSACK, as described in section 10.2.
The CPU regains control o f the bus a fte r BUSREQ
rises. The on-chip DMA channels have higher
p r io r ity than external devices requesting the bus
via BUSREQ.

12.6.3 Global Bus Requests

I f the multiprocessor mode is specified in the Bus
Timing and In it ia liz a t io n reg is te r, then the
contents o f the Local Address reg ister determine
the range of memory addresses dedicated to the

shared global bus. Before accessing an address on
the global bus, the Z280 MPU must issue a Global
Bus Request (GREQ) and receive an active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 12-15 il lu s tra te s the timing of the global
bus request/acknowledge sequence. When the Z280
MPU needs to access a location on the global bus,
GREQ is asserted in order to request use of the
global bus. GACK is then sampled on each
successive ris ing edge of the clock; when GACK
becomes active (and i f BUSREQ is not asserted),
the memory transaction proceeds as described in
section 12.5.1. GREQ is deasserted in the bus
clock cycle immediately following the end of the
memory transaction (except when executing the Test
and Set ins truction , where both the memory read
and w rite operations are executed before
deasserting GREQ).

' CLK I I_Ir u r ~ i _ j rL ._L_,J___I___I___I
" • " s s x 7 , — x

AS a_r
* £ -

Hl<SH

BUSREQ ^ / \
GREQ V/
GACK \

Figure 12-15. Multiprocessor Mode Timing

12-15

Chapter 13.
Z-BUS External Interface

13.1 INTRODUCTION

The Z280 MPU is typ ica lly only one component in a
system that may include memory, peripherals, slave
processors, coprocessors, and other CPUs, a l l
connected via a system bus. Two d iffe ren t
component-interconnect bus schemes are available
with the Z280 MPU: the Z80 Bus and the Z-BUS.

This chapter describes the external manifestations
(that is , the a c tiv ity on the pins) that resu lt
from CPU or on-chip peripheral a c tiv ity for the
Z-BUS configurations of the Z280 MPU. (The
Z80 8us external interface is described in Chapter
12.) Since the pins are connected to the system
bus, most o f th is discussion w i l l center on the
bus and bus operations.

The condition o f the OPT pin determines the
configuration of the bus interface fo r the Z280
MPUj the Z-BUS configuration is selected either by

applying a log ica l 1 (Vcc) level on the OPT pin
or by leaving the OPT pin disconnected.

The Z-BUS on the Z280 MPU includes a 24-bit
address bus, 16-bit data bus, and associated
status and control signals. The data bus is
multiplexed with the low-order 16 b its o f the
address bus. The Z-BUS configuration o f the Z280
MPU supports the use of Extended Processing Units
and burst-mode memories. Figure 13-1 shows the
pin functions and pin assignments fo r the Z-BUS
configuration of the Z280 MPU. The Z-BUS
described here is compatible with Z ilog 's Z8000
family o f peripheral devices. Other Z-BUS
compatible components include the Z8000 family o f
CPUs. Refer to Z ilog 's Component Data Book fo r a
complete description o f the Z-BUS Component
Interconnect convention.

V* »-* ̂ W '

Figure 13*1b. Pin AssignmentsFigure 13-1a. Pin Functions

Figure 13-1. Z-BUS Configuration (input OPT tied to + 5V or not connected)

ir
 K

S
ig

g
m

if
fi

fM

13.2 BUS OPERATIONS

Two kinds of operations can occur on the Z-BUS:
transactions and requests. At any given time only
one device (e ither the CPU or a bus requestor such
as a DMA channel) can be in control o f the bus;
th is device is called the bus master. Trans­
actions are always in it ia te d by the bus master and
are responded to by some other device on the bus.
Only one transaction can proceed at a time.
Requests can be in it ia te d by a device that does
not have control o f the bus.

Seven types o f transactions can occur on the
Z-BUS, as described below:

Memory transaction. CPU- or DMA-controlled
transfer o f data to or from a memory location.

H alt transaction. Transaction indicating that
the CPU is entering the Halt state due to
execution o f a HALT instruction or a fa ta l
sequence of traps.

Refresh. Transaction that refreshes dynamic
memory; refresh transactions do not involve a
transfer o f data.

I/d transaction. CPU- or DMA-controlled transfer
o f data to or from a peripheral device.

In terrup t Acknowledge. CPU-controlled
transaction used to acknowledge an in te rrup t and
read data from the in terrupting device.

EPU transaction. A transfer o f data from an
Extended Processing Unit (EPU) to the CPU.

DMA Flyby transaction. A DMA-controlled
transaction that transfers data between a memory
location and a peripheral device.

Two types of requests can occur on the Z-BUS, as
described below:

In terrupt request. A request in it ia te d by a
peripheral device to gain the attention of the
CPU.

Bus request. A request by an external device
(typ ica lly a DMA channel) to gain control of the
bus in order to in it ia te transactions.

A request is answered by the CPU according to i t s
type: for in te rrup t requests, an in terrupt
acknowledge sequence is generated; for bus
requests, the CPU relinquishes the bus and
activates an acknowledge signal.

13.3 PIN DESCRIPTIONS

The pin functions and assignments fo r the Z-BUS
configuration of the Z280 MPIJ are illu s tra te d in
Figure 13-1. A functional description of each pin
is given below:

A16-A23. A d d r e s s (output, active High, 3-state). These
address lines carry I/O addresses and memory addresses
during bus transactions.
AD0-AD15. A d d r e s s / D a t a (bidirectional, active High,
3-state). These 16 multiplexed address and data lines carry
I/O addresses, memory addresses, and data during bus
transactions.
AS. A d d r e s s S t r o b e (output, active Low, 3-state). The rising
edge of Address Strobe indicates the beginninĝ of a
transaction and shows that the address, status, R/W, and
B/W signals are valid.

BUSACK. B u s A c k n o w l e d g e (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.
lUSREQ. B u s R e q u e s t (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is trying to obtain control of the bus.
B/W. B y t e / W o r d (output, Low = Word, 3-state). This signal
indicates whether a byte or a word of data is to be
transmitted during a transaction.
CLK. C l o c k O u t p u t (o u t p u t) . The frequency of the processor
timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. Tlpe
processor clock is further divided by one, two, or four (as
programmed), and then output on this line.

CTIN. C o u n t e r / T i m e r I n p u t (input, active High). These lines
receive signals from external devices for the counter/timers.
CTIO. C o u n t e r / T i m e r I / O (bidirectional, active High,
3-state). These I/O lines transfer signals between the
counter/timers and external devices.
DMASTB. D M A F ly b y S t r o b e (output, active Low). These
lines select peripheral devices for DMA flyby transfers.
DS. D a t a S t r o b e (output, active Low, 3-state). This signal
provides timing for data movement to or from the bus
master.

EOP. E n d o f P r o c e s s (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
is active, EOP is ignored.
GACK. G l o b a l A c k n o w l e d g e (input, active Low). A Low on
this line indicates the CPU has been granted control of a
global bus.

13-2

GREQ. g l o b a l R e q u e s t (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.
IE. I n p u t E n a b l e (output, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the CPU.
INT. M a s k a b l e I n t e r r u p t s (input, active Low). A Low on these
lines requests an interrupt.
NM I. N o n m a s k a b l e I n t e r r u p t input, falling-edge activated).
A High-to Low transition on this line requests a nonmaskable
interrupt.
OE. O u t p u t E n a b l e (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.'
OPT. B u s O p t i o n (input). This signal establishes the bus
option during reset as follows:

OPT Bus Interface
0 Z80-Bus, 8-bit
1 Z-BUS, 16-bit

PAUSE. C P U P a u s e (input, active Low). While this line is Low
the CPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

RDY. D M A R e a d y (input, active Low). These lines are
monitored by the DMA channels to determine when a
peripheral device associated with a DMA channel is ready
for a read or write operation. When a DMA channel is

enabled to operate, its Ready line indirectly controls DMA
activity; the manner in which DMA activity is controlled by
the line varies with the operating mode (single-transaction,
burst, or continuous).
RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.
R/W. R e a d / W r i t e (output, Low = Write, 3-state). This signal
determines the direction of data transfer for memory, I/O, or
EPU transfer transactions.
Rxb. U A R T R e c e i v e (input, active High). This line receives
serial data at standard TTL levels.
ST0-ST3. S t a t u s (output, active High, 3-state). These four
lines indicate the type of transaction occurring on the bus
and give additional information about the transaction.
TXD. U A R T T r a n s m i t (output, active High). This line transmits
serial data at standard TTL levels.
WAIT. W a it (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.
XTALI. C l o c k / C r y s t a l I n p u t (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip clock oscillator.

XTALO. C r y s t a l O u t p u t (time-base output). Connects a
parallel-resonant crystal to the on-chip clock oscillator.
+ 5V. P o w e r S u p p l y V o l t a g e . (+5 nominal).

GND. G r o u n d . Ground reference.

13-3

13.4 BUS CONFIGURATION AND TIMING 13.5 TRANSACTIONS

Four Z280 CPU control registers specify certain
characteristics o f the Z280 MPU's external
interface and determine bus tim ing: the Bus
Timing and In it ia liz a t io n reg is ter, Bus Timing and
Control reg is ter, Local Address reg is ter, and
Cache Control reg is ter.

Bus timing is determined by the frequency of the
Z280 MPU's external clock source or crysta l and
the contents o f the Bus Timing and In it ia liz a t io n
reg is ter, which receives its in i t ia l values as
part o f the reset process (see section 3.2.1).

The frequency of the processor clock is one-half
of the frequency of the external clock source or
crys ta l. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling f ie ld in the Bus Timing and
In it ia liz a t io n reg is ter. The bus timing clock is
output by the WU as the CLK signal. In the
log ica l timing diagrams that follow, signal
transitions on the bus are shown in re la tion to
the bus clock, CLK.

The number o f automatic wait states included in a
given transaction is determined by the contents o f
the Bus Timing and In it ia liz a t io n and Bus Timing
and Control reg isters. The physical memory
address space is divided in to two sections based
on the most s ign ifican t physical address b i t ,
A£3« Up to three automatic wait states can be
added to transactions to the lower h a lf of memory
(addresses where A23 = 0); s im ila rly , up to three
automatic wait states can be added to transactions
to the upper ha lf of memory (A23 = 1)» 'to a l l I/O
transactions, and to in te rrup t acknowledge
transactions.

The state o f the Multiprocessor Configuration
Enable b it in the Bus Timing and In it ia liz a t io n
reg ister and the contents of the Local Address
reg ister determine which memory transactions
require use of a global bus, as described in
section 10.3. The contents of the Cache Control
reg ister and the state o f the address tags and
va lid b its in the cache memory determine which
transactions employ the cache memory and which
transactions use the external bus in terface, as
described in Chapter 8 .

At any given time, one device (e ither the CPU or a
bus requester) has control of the bus and is known
as the bus master. A transaction is in it ia te d by
the bus master and is responded to by some other
device on the bus. Information transfers (both
instructions and data) to and from the Z280 MPU
are accomplished through the use of transactions.
A ll transactions s ta rt when Address Strobe (AS) is
driven low and then raised high.

On the r is in g edge 6f S5*, the bus status signals
(ST0-ST3> R/W, and B/W) are va lid . The STq-STj
status lines indicate the type of transaction
being performed (Table 13-1). Typically, these
signals are decoded and used to enable the
appropriate buffers, drivers, and chip select
logic necessary for proper completion of the data
transfer.

Table 13-1. ST Status Line Decode

Status Lines
3««0 lyp e of Transaction

0000 Reserved
0001 Refresh
0010 I/O transaction
0011 Halt
0100 Interrupt acknowledge line A
0101* NMI acknowledge
0110 Interrupt acknowledge line B
0111 Interrupt acknowledge line C
1000 Transfer between CPU and memory, cacheable
1001 Transfer between CPU and memory,

non-cacheable
1010 Data transfer between EPU and memory
1011 Reserved
1100 EPU Instruction fetch, template, subsequent

words.
1101 EPU Instruction fetch, template, first word
1110 Data transfer between EPU and CPU
1111 Test and Set (data transfers)

[f the transaction requires an address, the
address is va lid on the ris ing edge o f AS. Thus,
AS can be used to latch Z280 NPU addresses to
de-multiplex the Address/Data lines. No address
is required for EPU-CP(J or Interrupt Acknowledge
transactions; the contents of the A and AD lines
are undefined while AS is asserted during these
transactions. I f an address is generated for a
transaction, the Output Enable (0E) signal is
activated coincident with AS assertion.

13-4

The Z-BUS MPUs use Data Strobe (DS) to time the
transfer of data. For transactions that do not
involve the transfer o f data (Refresh and Halt
transactions), DS is not activated. During write
operations (R/W = low), a low on DS indicates that
va lid data from the bu8 master is on the
Address/Data lines . The Output Enable line
continues to be asserted u n til DS is deasserted.
For Read Operations (R/W = high), the bus master
drives DS low when the addressed device is to put
i t s data on the bus. Coincident with the
assertion of DS during a read operation, the AD
lines are 3-stated by the bus master, QE is
deasserted, and Input Enable (IE) is asserted.
The bus master samples the data on the fa ll in g
clock edge ju s t before deasserting DS and IE.

The Z280 MPU's WAIT input provides a mechanism
whereby the timinq of a pa rticu la r transaction can
be extended to accommodate a memory or peripheral
device with a lonq access time. The WAIT line is
sampled on the fa ll in q clock edge when data is to
be sampled (i.e . ju s t before DS rises) durinq a
transaction. I f the WAIT line is low, another bus
clock cycle is added to the transaction before
data is sampled and DS rises. In th is added
cycle, and a l l subsequent cycles added due to WAIT
beinq low, the WAIT line is sampled on the fa ll in q
edge o f the clock and, i f i t is low, another cycle
is added to the transaction. In th is way, the
transaction can be extended by external loqic to
an arb itra ry lenqth, in increments of one bus
clock cycle.

The WAiY input is synchronous, and must meet the
specified setup and hold times in order for the
Z280 MPU to function correctly. This requires
asynchronously-generated WRIT signals to be
synchronized to the CLK output before they are
input in to the Z280 MPU. Automatic wait states
can also be generated by programming the Bus
Timing and Control reg ister and Bus Timing and
In it ia liz a t io n reg is ter; these are inserted in
the transaction before the external WRIT signal is
sampled.

13.5.1 Memory Transactions

Memory transactions move instructions or data to
or from memory when a bus master makes a memory
access. Thus, they are qenerated during program
execution to fetch instructions from memory and to
fetch and store memory data. They are also
qenerated to store old proqram status and fetch
new proqram status durinq in te rrup t and trap
handling, and to transfer information during DMA-
controlled memory accesses. A memory transaction
is three bus cycles lonq unless extended with
hardware- and/or software-generated wait states,
as explained previously.

Durinq memory transactions, the STj-STg status
lines indicate that a memory transaction is
occurring and provide the following information:

• Whether the memory access is cacheable (ST3-STQ
= 1000) or noncacheable (STj-STg = 1001).

a Whether the memory access is a fetch of an
extended in s tru c tion 's template intended for an
EPU (ST3-ST0 “ 1100 or 1101).

a Whether the data is supplied or captured by an
Extended Processor Unit while executing an
extended instruction (S^-STg = 1010) .

a Whether the memory access is part of an atomic
read-modify-write operation during the
execution o f a Test and Set instruction
(ST3-ST0 = 1111).

A memory read is distinguished from a memory w rite
via the R/W signal.

13.5.1 .1 Byte/Wbrd Organization

The byte is the basic addressable memory element
in Z280 MPU systems. However, although memory is
addressed as bytes, the Z-BUS configuration of the
Z280 MPU has a 16-bit data path, and memory trans­
actions can be byte or word transfers. Each
16-bit word in memory is made up o f two 8- b i t
bytes, where the least-s ign ifican t byte proceeds
the most-significant byte o f the word, as in the
Z80 CPU architecture. For example, the word at
memory location 5000 ̂ has i t s low-order byte at
location 5000 ̂ and i t s high-order byte at
location 5001

Bytes transferred to or from odd memory locations
(address b it 0 = 1) are always transmitted on
lines ADg-ADy• Bytes transferred to or from even
memory locations (address b it 0 = 0) are always
transmitted on lines ADg-AD^. For byte reads B/W
= high, R/W = high), the CPU or on-chip DMA
channel uses only the byte whose address i t put
out on the bus. In other words, fo r a byte read
with an odd address, the CPU or DMA channel w i l l
only read the lower ha lf o f the bus; fo r a byte
read with an even address, the CPU or DMA channel
w i l l only read the upper ha lf of the bus. For
byte writes (B/W = high, R/W = low), the CPU or
on-chip DMA channel (flowthrough mode) places the
byte to be w ritten on both halves o f the bus, and
the proper byte must be selected in the memory
control logic by testing address b it 0.

For word transfers (B/W = low), a l l 16 b its are
captured by the CPU or DMA channnel during reads
(R/W = high) or stored by the memory during writes

13-3

(R/W s low). The most-significant byte of the
word is transferred or, ADQ-AD7 and least-
s ign ifican t byte on ADq-AD^; thus, the bytes of
data w i l l appear swapped on the bus, with the most
s ign ifican t byte on the lower ha lf o f the bus and
the least s ign ifican t byte on the upper ha lf of
the bus. Word transfers always use even-valued
addresses (address b it 0 = 0) and resu lt in an
access to the byte at the even address and the
next consecutive byte at the foliowinq odd
address. For example, a word access to location
5000 ̂ would access the byte at location 5000H
(transferred on ADg-AO^) and the byte at location
5001 (transferred on ADQ-AD7) .

Instruction fetches are always executed as word
transactions. However, instruction opcodes need
not be aligned on even-address boundaries; the
CPU w i l l use only one byte of the fetched word i f
appropriate.

Data accesses may be byte or word accesses. Data
words aliqned at even-address memory boundaries
are accessed via one word transaction. Data words
on odd-address boundaries are accessed via two
consecutive byte transactions.

13 .5 .1 .2 Memory Transaction Tininq

Memory transaction timinq i 3 il lu s tra te d in
Fiqures 13-2 and 13-3. Durinq the f i r s t bus cycle,
AS is asserted to indicate the beqinninq of a
transaction; Output Enable (0E) is also asserted
at th is time. A ll address and status information
is guaranteed va lid on the ris in q edqe of AS. The
ST0-ST3 status lines indicate that a memory trans­
action is occurrinq. For a read operation (Fiqure
13-2), DS is activated durinq the f i r s t h a lf of
the second bus cycle, a fte r the bus master has
3- 3tated the AD lines; 0E is deasserted at the
beqinninq of the second cycle and Input Enable
(IE) i 3 asserted durinq the second ha lf of the
second cycle. The bus master samples the
information returned from memory on the Address/
Data bus on the fa llin q edqe of the clock durinq
the th ird bus cycle; a fte r the data i .3 sampled,
DS and IE are deasserted. For a write operation
(Fiqure 13-3), DS is asserted during the second
ha lf of the second cycle, a fte r the bus master has
placed the data to be w ritten on the AD lines , and
0E stays active throughout the transaction.

CLK

A D0~ AD 15

Ai«-A23

AS

STATUS
S/W

R/W = 1

DS

Watt

51

Figure 13-2. Memory Read Timing

13-6

ADo-ADis *

r — Ti— * f — T»— 1 - — T*— ^
r u 1 1____ 11 1 1r

11________J 1__________!
— ■/ ADDRESS Y DATA VALID X

Ai «-A23 3 C

STATUS

R/Wsrx STATUS VALID

\ f

7 T

X

A
HIGH

Figure 13-3. Memory Write Timing

cue

a d o - a d i s

A1S-A23

M W :

_X_______ “ ________ J

STATUS VALID
_________________________;

\
\ r

- T

7 T

Figure 13-4. Memory Read Timing with External Wait Cycle

l -------- T ,------------- ► [- -------- — T2------------- ---------------------TW- --------------T3-------------*»|

c u e I | ____ ____ ____ r1i i1 . 1 11
A D o - A D i t ' - / ADDRESS X DATA VALID X

A ia -A a a X________________
AiDDRESS X

AI

STATUS
_ B/W

RiW « O rx
o f

STATUS VALID

\
7 ~ \

X

A
11 HI iH

Figure 13-5. Memory Write Timing with External Wait Cycle

Figure 13-6. Memory Read Timing with Internal Wait Cycle

The WAIT input is also sampled on the fa ll in q edqe
of the clock durinq the th ird clock cycle; i f
WAIT is low, another bus clock cycle is added
before samplinq the data. Wait states can also be
added throuqh proqramminq o f the Bus Timing and
In it ia liz a t io n reg ister and Bus Timing and Control
reg is ter. For example, Figures 13-4, 13-5, and
13-6 il lu s tra te memory transactions with one wait
state.

1 3 .5 .1 .3 Burst Memory Transactions

The Z-BUS configuration of the Z280 MPU supports a
special kind of memory transaction called a "burst
memory transaction" for use in systems employing
burst-mode memory devices. Control b its in the
Cache Control reg ister indicate whether portions
of the memory system can support burst
transactions; burst mode can be specified for
either the upper ha lf of memory (A23 = 1)> the
lower ha lf o f memory (A23 = 0) , or both.

Burst memory transactions are used only during
instruction fetches to "prefetch" instructions
in to the on-chip cache. In a burst memory read,
four consecutive words of memory are read. I f a
byte is to be read from a portion of external

memory that supports burst transactions, and that
read operation is cacheable, the CPU reads the
four words that contain the desired byte of the
instruction with a single burst transaction. The
address of the f i r s t word read during a burst
transaction has zeros in the three least
s ign ifican t b its . The CPU reads a tojtal o f eight
bytes via four word transfers, where the las t byte
read has a l l ones in the three least s ign ifican t
b its o f i ts address. This e ffec tive ly increases
the bus bandwidth by prefetching a cache block on
a cache miss. . Burst transactions are not used
when fetching templates in extended instructions.

The timing o f a burst transaction is illu s tra te d
in Figure 13-7. During burst transactions, four
Data Strobes are generated with a single Address
Strobe. Timing for the f i r s t data transfer is
iden tica l to that for a single memory read,
including the insertion o f automatic wait states.

This f i r s t transfer is immediately followed by
three more transfers in the next three bus clock
cycles. The WAIT input is sampled during each
transfer and any resu lting wait states, thereby
allowing wait states to be added before any of the
transfers. However, automatic wait states are
added only before the f i r s t transfer.

13-9

13 .5 .1 .4 Test and Set Memory Transactions 13.5.2 H alt and Refresh Transactions

The Test and Set (TSET) instruction provides a
locking mechanism that can be used to synchronize
software processes in a multitasking or m ulti­
processor system where exclusive access to certain
resources is required. TSET tests and sets
semaphores that control access to shared
resources. Execution of TSET involves a memory
read followed immediately by a memory w rite ; the
memory read followed by the memory write is one
in d iv is ib le operation. The testing and setting of
a semaphore requires the semaphore to be read from
memory, modified, then w ritten back in to the same
memory location. During the f i r s t of these two
memory operations, the "1111" status code is
placed on the STj -S T q status lines. This is
pa rticu la rly useful in a multiple microprocessor
environment with semaphores in a shared memory
area. The Test and Set status code can be used to
control external c irc u itry that precludes memory
access by another processor during the Test and
Set semaphore operation. Furthermore, the BUSREQ
input is disabled during a Test and Set operation
to ensure that the semaphore is tested and set
without any intervening accesses.

There are two kinds of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are s im ilar to memory
transactions, except that DS remains high, the
WAIT input is not sampled, and no data is
transferred.

The Halt transaction (Figure 13-8) is generated
when a HALT instruction is encountered or a fa ta l
sequence of traps occurs. The "0011" status code
on the ST3-STQ lines id en tifie s the Halt
transaction. For Halt transactions generated by
the HALT instruction , once the Halt transaction is
executed, a l l subsequent CPU a c tiv ity is suspended
u n t il an active in te rrup t request or reset is
detected. After Halt transactions generated due
to a fa ta l condition, a l l CPU a c tiv ity is
suspended u n t il an active reset is detected (see
section 6.6) . However, Refresh transactions or
DMA transfers may occur while the CPU is in the
Halt state; also, the bus can be granted. The
address emitted during the address phase of the
Halt transaction is the address of the Halt
instruction or the instruction that in it ia te d the
fa ta l sequence of traps.

Figure 13-8. Halt Timing

13-10

A memory refresh transaction (Figure 13-9) is
generated by the Z280 MPU refresh mechanism and
can occur immediately a fte r the f in a l clock cycle
of any other transaction. The memory refresh
counter's 10-bit address is emitted on ADQ-AD9
when AS is asserted; the contents of the
remaining address lines are undefined. The "0001"
status code on the ST3-ST0 lines id e n tifie s the
Refresh transaction. This transaction can be used
to generate refreshes for dynamic RAMs. Refreshes
may occur while the CPU is in the Halt state.

13.5.3 1/0 Transactions

1/0 Transactions move data to or from peripherals
and are generated during the execution o f 1/0
instructions or during DMA-controlled transfers.
1/0 transactions to devices in 1/0 pages FE ̂ and
FFfl do not generate external bus transactions.

Figures 13-10 and 13—11 il lu s tra te 1/0 transaction
tim ing. 1/0 transactions are four clock cycles
long at a minimum, and, lik e memory transactions,
may be lengthened by the addition o f wait cycles.
1/0 transaction timing is s im ila r to memory

transaction timing with one automatic wait state.
The "0010" status code on the ST3-ST0 lin e 3
indicates that an 1/0 transaction is taking place,
and the R/W line indicates the direction of the
data transfe r. The 1/0 address is found on
ADq-AD^ and/A16-A23 when AS rises. For read
operations, 5s and IE are asserted during the
second clock cycle, and input data from the
peripheral is sampled by the bus master during the
fourth cycle (unless additional wait states are
inserted in the transaction). Note that 5S fa lls
near the middle of T2 fo r 1/0 read transactions
(as opposed to the beginning of T2 fo r memory
reads); th is provides peripheral control logic
with additional time for address decoding. 1 For
w rite operations, DS is asserted during the second
cycle with 0E remaining asserted; output data to
the peripheral is placed on the bus at th is time.

For byte 1/0 operations (B/W = high), the byte of
data is always transferred on the AD0-AD7 bus
lines, regardless of the address of the peripheral
device. For word 1/0 operations, the - most
s ign ifican t byte o f data is transferred on ADg-ADy
and the least s ign ifican t ,byte on ADq-AD^* as
with word memory transactions.

CLK

L T - i 1
r Ti h r 1 ^ '3 9

1___ 11 1___ 1___

A D o -A D is -------
.........Lv

- j

A ie -A 23 Y undefined Y

AS

B/W = O ^ STATUS VALID ^

DS HIGH

O l A ______ /
11

V _ __________ /

*10 laast-signifleant bits art Refresh address.

Figure 13-9. Memory Refresh Timing

13-11

cue

Figure 13-10. I/O Read Timing

Figure 13-11. I/O Write Timing

13-12

13.3.4 In terrup t Acknowledge Transactions

In terrupt Acknowledge transactions acknowledge an
in te rrup t and read an id e n tif ie r from the device
that generated the in te rrup t. These transactions
are generated automatically by the CPU when an
in te rrup t request is detected. ,

In terrupt Acknowledge transactions are five cycles
long at a mimimum, with two automatic wait cycles
(Figure 13-12). The wait cycles are used to give
the in te rrup t p r io r ity daisy chain (or other
p r io r ity resolution devices) time to se ttle before
the id e n tif ie r is read. Additional automatic wait
states can be generated by programming the Bus
Timing and Control reg is ter.

The ST3-ST0 status lines indicate the type of
in te rrup t being acknowledged. No address is
generated, so the contents o f the address bus are

undefined when AS is asserted. The R/W line
indicates read (high), and the 8/W lin e indicates
word (low). The id e n tif ie r is sampled by the CPU
on the AD lines at the fa ll in g clock edge before
DS is raised high.

There are two places where the WAIT line is
sampled and, thus, where wait states can be
inserted by external c irc u itry . The f i r s t , during
T2, serves to delay the fa ll in g edge of DS to
allow the daisy chain a longer time to s e ttle ;
the second, during T3, serves to delay the point
at which the id e n tif ie r is read. Software-
generated wait states can also be added at e ither
time via programming o f the DC and I/O fie ld s in
the Bus Timing and Control reg is ter. As always,
software-generated wait states are inserted in to
the transaction before the external WAIT signal is
sampled•

Figure 13*12. Interrupt Acknowledge Timing

13-13

13.5.3 Extended Processing Unit (EPU)
Transactions

Z280 MPUs in the Z-BUS configuration can operate
in conjunction with one or more Extended
Processing Units (EPUs). Functioning as a
coprocessor, the EPU monitors the status and
timing signals output by the CPU so that i t knows
when to partic ipate in a transaction. The Z280 MPU
provides the address, status, and timing signals
while the EPU supplies or captures data. Each of
the four possible types of transactions that
require EPU pa rtic ipa tion are signalled by the
Z280 MPU ST3-Sr0 outputs. CPU and EPU in teraction
is fu lly described in section 10.5.

13.5.5.1 EPU Instruction Fetch

When the Z280 CPU encounters an extended
ins truction , the state o f the EPU Enable b it in
the Trap Control reg ister is examined. I f the EPU
Enable b i t is zero, the Z280 generates an
Extended Instruction trap. I f the EPU Enable b it
is set to 1, then the four-byte EPU template is

fetched from memory using memory transactions and
captured by both the CPU and EPU. The "HOI’'
status code on the 5T3-STQ lines indicates when
the f i r s t word of the template is fetched, and the
" 1100" status code indicates fetches of the
subsequent template word or words, depending on
the alignment. The CPU fetches the template from
external memory using two word transactions i f the
template is aligned (that is , s tarts on an even
address) or a byte transaction followed by two
word transactions i f the template is unaligned.
The opcode and addressing mode portion o f the
extended instruction may be executed from cache,
but the template w i l l always be fetched from
external memory.

In a m ultip le EPU system, the EPU that is to
partic ipate in the execution o f an extended
ins truction is selected im p lic it ly by an
id e n tifica tio n code in the instruction template.
Thus, there is no indication on the bus as to
which EPU is cooperating with the CPU at any given
time.

CLK

Tl J L Ti
r - 2

I__Ii i__ L
ADo-ADis 1

A 1 6 -A 2 3

urn .

w a it

X *ddress X

Y STATUS VALID Y

\ /

/
\ y

Figure 13-13. Memory to EPU Timing

13-14

13.5.5.2 Memory-EPU Transactions

I f an extended instruction involves a read or
w rite to memory, then the transfers o f data
between memory and the EPU are the next
non-refresh transactions performed by the CPU
following the fetch of the template. The timing
of memory-EPU data transfers is shown in Figures
13-13 and 13-14. The EPU must supply the data
during write operations (R/W = low) or capture the
data during read operations (R/W = high), ju s t as
i f i t were part o f the CPU. In both cases, the
CPU 3-states i t s AD lines while data is being
transferred (DS = low). EPU reads from memory are
three cycles long unless extended by wait states.
EPU writes to memory are s ix cycles long unless
extended by wait states.

1 3 .5 .5 .3 EPU-CPU Transactions

I f an extended instruction involves a transfer
from the EPU to the Z280 CPU, the next non-refresh
transaction following the fetch o f the template is
the EPU-to-CPU data transfer (Figure 13-15).

EPU-to-CPU transactions have the same form as I/O
read transactions and thus are four clock

cycles long, unless extended by wait states.
Although AS is asserted, no address is generated
and the contents o f the address bus are
undefined. The "1110" status code on the ST3-STQ
lines indicate an EPU-to-CPU transaction.

13 .5 .5 .4 PAUSE Timing

The PAUSE signal is used to synchronize CPU-EPU
a c tiv ity in the case of overlapping extended
instructions. The CPU samples the PAUSE signal
w ithin one bus clock period of the completion of
the fetch of an extended in s tru c tion 's template
(Figure 13-16). I f PAUSE is active when sampled,
the CPU enters an id le state wherein a l l CPU
a c tiv ity is suspended. While in th is id le state,
the CPU samples the PAUSE input each processor
clock cycle u n t il PAUSE is deasserted. The CPU
then resumes operation at the point at which i t
was suspended, either by executing the data
transactions associated with the extended
instruction (in the case of an extended
instruction specifying an EPU-memory or CPU-EPU
data transfer) or by s ta rting the fetch o f the
next instruction (in the case of an extended
instruction specifying an in terna l EPU operation).

Figure 13-14. EPU Write to Memory

1.3-15

I
I

_ n _ r n _ f
AS w
DS

PAUSE

1
I
I
I
T
i
I
I

\
FETCH OF

LAST WORD
OF TEMPLATE

I
I

NEXT BUS
TRANSACTION

Figure 13-16. PAUSE Timing

13-16

13.5.6 DMA Flyby Transactions

On-chip DMA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external DMA contro llers in Z280
MPU systems (such as the Z8016 DTC) may also have
t h i9 capab ility . The timing of flyby transactions
is s im ilar to memory transaction tim ing, with the
exception that the DMA Strobe (DMASTB) signal is
activated; the DMASTB signal is used to select
the partic ipa ting I/O device that must capture or
supply the data during the memory access.

Flyby transactions controlled by the on-chip DMA
channels always include one automatic wait state
(Figures 13-17 end 13-18). As with a l l memory
transactions, other hardware- and software-
generated wait states can be aclded to the
transaction. The external WAIT signal is sampled
at two d iffe re n t times: during the automatic wait
state and during T3.

Figure 13*17. On-Chip DMA Channel Flyby Memory Read Transaction

13-17

For Flyby transactions that read from memory and
write to a peripheral (Figure 13-17), DMAST8 is
asserted during the automatic wait state and any
subsequent wait states due to an active WAIT
signal. Thus, i f the WAIT input is asserted
during the automatic wait state, the additional
wait states extend the width of the OMASTB pulse.
Wait states added via the assertion of WAIT during
T3 (a fte r OMASTB is deasserted) stretch the E!T
signal without affecting OMASTB.

For flyby transactions that read from a peripheral
and write to memory (Figure 13-18), DMASTB is
asserted at the beginning of T2 and remains
asserted u n til the second ha lf o f T3. The DS
signal is asserted only during the automatic wait
state. Wait states added via the assertion of
WAIT stretch the DMASTB signal without affecting
OS.

Figure 13-18. On-Chip DMA Channel Flyby Memory Write Transaction

1 3 .6 REQUESTS

The Z280 MPU supports three types of request
signals; in te rrup t requests, local bus requests,
and global bus requests. A request is answered
according to i t s type. Interrupt requests are
generated by peripheral devices; the Z280 MPU
responds with an Interrupt Acknowledge
transaction. Local bus requests are in it ia te d by

an external potentia l bus master; the Z280 MPU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the Z280 CPU or an
on-chip DMA channel to access a global bus; the
Z280 MPU receives a Global Bus Acknowledge signal
in response to the request.

13-18

13.6.1 In terrup t Requests

The Z280 CPU supports two types o f in te rrup ts,
maskable and nonmaskable (NMI). The in te rrup t
request line from a device capable o f generating
in terrupts can be tied to the Z280 MPU's NMI or
maskable in te rrup t request inputs; several
devices can be connected to one in te rrup t request
input, with in te rrup t p r io r it ie s established via
external logic or a p r io r ity daisy chain.

Nonmaskable in te rrup t requests are edge-triggered,
but maskable in te rrup ts are level-triggered. Any
high-to-low trans ition on the NMI input is
asynchronously edge-detected, and an in terna l NMI
latch is set. At the beginning o f the las t clock
cycle during execution of an ins truction , the
maskable in te rrup t inputs are sampled along with
the state o f the in terna l NMI la tch. I f an 1
in te rrup t is detected, and that in te rrup t is
enabled in the Master Status reg is ter, in te rrup t
processing proceeds in accordance with the current
in te rrup t mode, as described in Chapter 6 .

13.6.2 Local Bus Requests

To generate transactions on the bus, a potentia l
bus master (such as a DMA con tro lle r) must gain
control of the bus by making a bus request. A bus
request is in it ia te d by pu lling BUSREQ low; the
Z280 MPU responds by 3-stating i t s address, data,
bus contro l, and bus status outputs and asaerting

an active BUSACK, as described in section 10.2.
The CPU regains control of the bus a fte r BUSREQ
rises. The on-chip DMA channels have higher
p r io r ity than external devices requesting the bus
via BUSREQ.

13.6.3 Global Bus Requests

I f the multiprocessor mode is specified in the Bus
Timing and In it ia liz a t io n reg ister, then the
contents o f the Local Address reg ister determine
the range of memory addresses dedicated to the
shared global bus. Before accessing an address on
the global bus, the Z280 MPU must issue a Global
Bus Request (GREQ) and receive an active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 13-19 il lu s tra te s the timing o f the global
bus request/acknowledge sequence. When the Z280
MPU needs to access a location on the global bus,
GREQ is asserted in order to request use o f the
global bus. GACK is then sampled on each
successive ris ing edge of the clock; when GACK
becomes active (and i f BUSREQ is not asserted),
the memory transaction proceeds as described in
section 13.5.1. GREQ is deasserted in the bus
cycle immediately following the end o f the memory
transaction (except when executing' the Test and
Set ins truction , where both the memory read and
write operations are executed before deasserting
GREQ).

13-19

I
i

Appendix A.
Z80/Z280 Compatibility

The Z280 MPU architecture is an upward-compatible
extension o f the Z80 CPU architecture. This
com patib ility extends to the instruction set,
reg ister architecture, in terrupt structure, and
bus structure o f the Z280 MPU and Z80 CPU.

The Z80 CPU' 8 instruction set is a subset o f the
Z280 MPU' 8 instruction set. Thus, the Z280 MPU is
completely binary-compatible with Z80 code.
However, since some Z80 instructions, such as
HALT, are privileged instructions in the Z280 MPU,
complete com patib ility is achieved only when the
Z280 MPU is executing in the system mode. A ll Z80
software w i l l execute successfully on a Z280 MPU
running in system mode, provided that the software
contain8 no timing dependencies, does not modify
i t s e l f , and does not use any o f the Z80's reserved
instruction encodings.

Since the Z280 MPU is binary-code compatible with
the Z80 CPU, the Z280 MPU's general-purpose
reg ister set is the same as the Z80 CPU's, with
the exception o f the Stack Pointer. The Z280 MPU
contains both a System Stack Pointer and a User
Stack Pointer, whereas the Z80 CPU has only one
Stack Pointer reg is te r. In the Z80 CPU, the R
reg ister is used to indicate the next refresh
address; in the Z280 MPU, the R reg ister is not
involved with the refresh log ic and may be used by
the programmer as a general-purpose storage
reg is ter.

The Z280 MPU's in terrupt structure is also an
upward-compatible extension o f the Z80 CPU's. The
Z280 MPU supports a l l three in terrupt modes found
on the Z80 CPU, as well as a fourth in terrupt mode
new to the Z280 MPU.

The Z80 Bus configurations o f the Z280 MPU are
also bus-compatible with the Z80 CPU, generating
the same RD, WR, IORQ, and MREQ bus control and
8tatus signals. However, M1 is asserted during
every instruction fetch and in terrupt acknowledge
cycle in the Z80 CPU; for the Z280 MPU, Ml is
asserted only during the, special RETI bus
transaction and in te rrup t acknowledge cycles. The
Z8400 family o f peripherals interface d irec tly to

both Z80 CPUs and Z80 bus configuration o f the
Z280 MPUs.

Following a reset, the Z280 MPU takes on a
configuration that is fu lly compatible with Z80
code. The Memory Management Unit is disabled,
meaning that the 16-bit log ica l addresses from the
Z280 CPU are routed d ire c tly to the 16
least s ign ifican t address pins on the external
bus. The User/System b it in the Master Status
reg ister specifies system-mode operation, allowing
execution o f privileged instructions and enabling
the System Stack Pointer. The I/O Page register
is cleared to a l l Os and Interrupt Mode 0 is
selected. The Trap Control reg ister is cleared to
a l l zeros, disabling System Stack Overflow Warning
traps and designating that I/O instructions are
not priv ileged. A ll Z80 instructions can be
successfully executed (and may execute from the
on-chip memory that is enabled as an ins truction -
only cache upon reset). The Z280 MPU w i l l remain
in a Z80-compatible configuration as long as Z80
code is executed, since the Load Control
instruction that acts on the Z280 MPU's control
registers is not part o f the Z80 instruction set.

The software routine shown below can be used to
determine i f code is executing on a Z80 CPU or
Z280 MPU. This fa c il ita te s development o f
programs that can execute on either processor, but
contain special routines invoked only when
executing on a Z280 MPU and, therefore, allowing
use o f Z280 MPU features not available on the Z80
CPU. The routine d iffe ren tia tes the Z80 CPU from
the Z280 MPU by executing the instruction with
machine code CB37 .̂ This instruction code is
reserved in the Z80 CPU, and results in lo g ica lly
sh iftin g the A reg ister one b it to the le f t while
sh iftin g a 1 in to the least s ign ifican t b i t . For
the Z280 MPU, CB37̂ is the code for the Te8t and
Set instruction . I f the A reg ister holds a 40 ̂
before executing th is instruction code, the A
reg ister holds an 81 ̂ and the Sign flag is set
to 1 a fte r executing the instruction on a Z80 CPU;
the A reg ister holds an FF ̂ and the Sign flag is
cleared to 0 a fte r executing the instruction on a
Z280 MPU.

A-1

Code to Distinguish Execution on a ZOO CPU and Z280 MPU

; This instruction sequence explo its the difference when executing the CB37̂
; machine code on the Z80 CPU and Z280 MPU, to allow a program to determine which
: processor i t is executing on. This instruction sets the S flag on the Z80 CPU
; and clears the S flag on the Z280 MPU. The A and F registers are used by the

routine.

LO A,40h ; In it ia liz e the operand.
DEFB 0CBh,037h ; This instruction w ill set the S flag on the

; Z80 CPU and clear the S flag on the Z280 MPU,
JP M,Z80 ; Now test the flag and jump.

or
JP P,Z280

Appendix B.
Z280 MPU Instruction Formats

Four formats are used to generate the machine-
language b i t encodings for the Z280 MPU
instructions. Three formats are used for
instructions that are executed solely by the Z280
CPU. (These same three formats are used for Z80
CPU instruction encoding.) A fourth format is
dedicated to instructions that involve Extended
Processing Units (EPUs).

The b it encodings of the Z280 MPU instructions are
partitioned in to bytes. Every ins truction encoding
contains one byte dedicated to specifying the type
of operation to be performed; th is byte is
referred to as the in s tru c tion 's operation code
(opcode). Besides specifying a particu lar
operation, opcodes typ ic a lly include b it encodings
specifying the operand addressing mode for the
instruction and iden tify ing any general-purpose
registers used by the ins truction . Along with the
opcode, instruction encodings may include bytes
that contain an address, displacement, and/or
immediate value used by the ins truction , and
special bytes called "escape codes" that determine
the meaning of the opcode i t s e l f .

By themselves, one byte opcodes would allow the
encoding o f only 256 unigue instructions.
Therefore, special "escape codes" that precede the
opcode in the instruction encoding are used to
expand the number of possible instructions. There
are two types o f escape codes: addressing mode
escape codes and opcode escape codes. Escape
codes are one byte in length.

Three of the instruction formats are
d iffe ren tia ted by the opcode escape value used;
the fourth format is for instructions that include
an EPU template. Format 1 is for instructions
without an opcode escape byte, Format 2 is for
instructions whose opcode escape byte has the
value ED ,̂ and Format 3 i3 for instructions
whose opcode escape byte has the value CB .̂
Instructions that support EPUs use Format 4 and
always have the opcode escape byte with value
Ety| as the f i r s t byte of the instruction

encoding. In Formats 2 and 4, the opcode escape
byte immediately proceeds the opcode byte i t s e l f .

In Format 3, a 1-byte displacement may be between
the opcode escape byte and opcode i t s e l f . Opcode
escape bytes are used to distinguish between two
d iffe re n t instructions with the same opcode byte,
thereby allowing more than 256 unique
instructions. For example, the 01 ̂ opcode, when
alone, specifies a form o f the Load Register Word
ins truction ; when preceded by the CB̂ escape
byte, the opcode 01^ specifies a Rotate Left
C ircular instruction .

Addressing mode escape codes are used to determine
the type of encodinq fo r the addressing mode fie ld
w ith in an in s tru c tion 's opcode, and can be used in
instructions with and without opcode escape
values. An addressing mode escape byte can have
the value D0H or FDh. The addressinq mode
escape byte, i f present, is always the f i r s t byte
of the in s tru c tion 's machine code, and i3 immedi­
ate ly followed by e ither the opcode (Format 1) or
the opcode escape byte (Formats 2 and 3). For
example, the 79 ̂ opcode, when alone, specifies a
Load Accumulator instruction using Register
addressing fo r the source operand; when preceded
by the DD̂ escape byte, the opcode 79 ̂
specifies a Load Accumulator instruction usinq
Base Index addressing for the source operand.

The four instruction formats are shown in Tables
B-1 through B-4. Within each format, several
d iffe re n t configurations are possible, dependinq
on whether the instruction involves addressinq
mode escape bytes, addresses, displacements, or
immediate data. In Tables B-1 through B-4, the
symbol "A.esc" is used to indicate the presence o f
an addressing mode escape byte, "d isp ." is an
abbreviation fo r displacement, "addr." is an
abbreviation for address, and "temp." is an
abbreviation fo r template. Templates in EPU
instructions are four-byte fie ld s that include the
b it encodings that specify EPU operation.

B-1

Table B-1. Format 1 1nstruction Encodings

Example Instruction
Instruction Format Assembly Machine Code (Hex)

opcode LD A,C 79
opcode 2-byte address LD A,(addr) 3A addr(low) addr(high)
opcode 1-byte displacement DJNZaddr 10 disp
opcode immediate LD E,n lEn

A.esc opcode LD A,(HL + IX) DD 79
A.esc opcode 2-byte address LD IX,(addr) DD 2A addr(low) addr(high)
A.esc opcode 1-byte displacement LD A,(IX + d) DD 7E disp
A.esc opcode 2-byte displacement LD A,(IX + dd) FD 79 d(low) d(high)
A.esc opcode immediate LD IX.nn DD 21 n(low) n(high)
A.esc opcode 2-byte address immediate LD (addr),n DD 3E addr(low) addr(high) n
A.esc opcode 1-byte displacement immediate LD (IY + d),n FD 36 dn
A.esc opcode 2-byte displacement immediate LD<addr>,n FD 06 disp(low) disp(high) n

Table B-2. Format 2 Instruction Encodings

Example Instruction
Instruction Format Assembly Machine Code (Hex)

ED opcode MULTA.B ED CO
ED opcode immediate SC nn ED 71 n(low) n(high)
ED opcode 2-byte address LD BC.(addr) ED 4B addr(low) addr(high)
ED opcode 2-byte displacement LD (HL + dd),A ED 3B d(low) d(high)

A.esc ED opcode MULTA.IY FD ED E8
A.esc| ED opcode 2-byte address MULT A,(addr) DD ED F8 addr(low) addr(high)
A.esc ED opcode 1 -byte displacement MULT A,(IY + d) FD ED F8 d
A.esc ED opcode 2-byte displacement LD IX,(IY + dd) DD ED 34 d(low) d(high)
A.esc ED opcode 2-byte immediate MULTUW HL.nn FD ED F3 n(low) n(high)

Table B-3. Format 3 Instruction Encodings

Instruction Format
Example Instruction

Assembly Machine Code (Hex)

A.esc
CB opcode
CB 1-byte displacement opcode

RLC(HL) CB06
RCL (IX + d) DD CB d 06

Table B-4. Format 4 Instruction Encodings

Instruction Format
Example Instruction

Assembly Machine Code (Hex)

ED opcode
ED opcode
ED opcode

4-byte template
2-byte displacement 4-byte template
2-byte address 4-byte template

EPU«- (HL) ED A6 tempi temp2 temp3 temp4
EPU <- (HL + dd) ED BC d(low) d(high) tempi temp2 temp3 temp4
EPU <- (addr) ED A7 addr(low) addr(high) tempi temp2 temp3 temp4

B-2

Appendix C.
Instructions in Alphabetic Order

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
ADC A,(HL) 8E ADD A.D 82
ADC A,(HL+IX) DD89 ADD A,E 83
ADC A,(HL+IY) DD8A ADD A,H 84
ADC A,(HL+1122H) FD8B2211 ADD A,IXH DD84
ADC A,(IX+IY) DD8B ADD A.IXL DD85
ADC A,(IX+55H) DD8E55 ADD A,IYH FD84
ADC A,(IX+1122H) FD892211 ADD A,IYL FD85
ADC A,(IY+55H) FD8E55 ADD A,L 85
ADC A,(IY+1122H) FD8A2211 ADD A.66H C666
ADC A,(PC+1122H) FD882211 ADD HL,A ED6D
ADC A,(SP+1122H) DD882211 ADD HL,BC 09
ADC A,(3344H) DD8F4433 ADD HL,DE 19
ADC A,A 8F ADD HL,HL 29
ADC A,B 88 ADD HL.SP 39
ADC A,C 89 ADD IX,A DDED6D
ADC A.D 8A ADD IX.BC DD09
ADC A.E 8B ADD IX,DE DD19
ADC A,H 8C ADD IX,IX DD29
ADC A.IXH DD8C ADD IX,SP DD39
ADC A.IXL DD8D ADD IY,A FDED6D
ADC A.IYH FD8C ADD IY,BC FD09
ADC A.IYL FD8D ADD IY,DE FD19
ADC A,L 8D ADD IY,IY FD29
ADC A.66H CE66 ADD IY,SP FD39
ADC HL.BC ED4A ADDW HL,(HL) DDEDC6
ADC HL.DE ED5A ADDW HL;(IX+1122H) FDEDC622li
ADC HL.HL ED6A ADDW HL,(IY+1122H) FDEDD62211
ADC HL.SP ED7A ADDW HL,(PC+1122H) DDEDF62211
ADC IX, BC DDED4A ADDW HL,(3344H) DDEDD64433
ADC IX,DE DDED5A ADDW HL.BC EDC6
ADC IX,IX DDED6A ADDW HL.DE EDD6
ADC IX,SP DDED7A ADDW HL,HL EDE6
ADC IY.BC FDED4A ADDW HL,IX DDEDE6
ADC IY.DE FDED5A ADDW HL.IY FDEDE6
ADC IY.IY FDED6A ADDW HL,SP EDF6
ADC IY.SP FDED7A ADDW HL.3344H

A,(HL)
FDEDF64433

ADD a,(hl) 86 AND A6
ADD A,(HL+IX) DD81 AND A,(HL+IX) DDA1
ADD A,(HL+IY) DD82 AND A,(HL+IY) DDA2
ADD A,(HL+1122H) FD832211 AND AI(HL+1122H) FDA32211
ADD A.(IX+IY) DD83 AND A,(IX+IY) DDA3
ADD A,(IX+55H) DD8655 AND A,(IX+55H) DDA655
ADD A,(IX+1122H) FD812211 AND A,(IX+1122H) FDA12211
ADD A,(IY+55H) FD8655 AND A,(IY+55H) FDA655
ADD A,(IY+1122H) FD822211 AND A,(IY+1122H) FDA22211
ADD A,(PC+1122H) FD802211 AND A,(PC+1122H) FDA02211
ADD A,(SP+1122H) DD802211 AND A,(SP+1122H) DDA02211
ADD A,(3344H) DD874433 AND A,(3344H) DDA74433
ADD A,A 87 AND A,A A7
ADD A.B 80 AND A,B AO
ADD A,C 81 AND A,C A1 C-1

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
AND A,D A2 BIT 5,(IX+55H) DDCB556E
AND A,E A3 BIT 5,(IY+55H) FDCB556E
AND A,H A4 BIT 5,A CB6F
AND A.IXH DDA4 BIT 5,B CB68
AND A.IXL DDA5 BIT 5,C CB69
AND A.IYH FDA4 BIT 5.D CB6A
AND A.IYL / FDA5 BIT 5,E CB6B
AND A,L A5 BIT 5,H CB6C
AND A.66H E666 BIT 5.L CB6D
BIT O.(HL) CB46 BIT 6|(HL) CB76 ,
BIT 0,(IX+55H) DDCB5546 BIT 6,(IX+55H) DDCB5576
BIT 0,(IY+5SH) FDCB5546 BIT 6,(IY+55H) FDCB5576
BIT 0,A CB47 BIT 6,A CB77
BIT 0|B CB40 BIT 6,B CB70 ,

BIT O.C CB41 BIT 6|C CB71
BIT O.D CB42 BIT 6,D CB72
BIT 0,E CB43 BIT 6.E CB73
BIT 0,H CB44 BIT 6,H CB74
BIT 0,L CB45 BIT «.L CB75
BIT l.(HL) CB4E BIT 7,(HL) CB7E
BIT 1,(IX+55H) DDCB554E BIT 7,(IX+55H) DDCB557E
BIT 1,(IY+55H) FDCB554E BIT 7,(IY+55H) FDCB557E
BIT 1.A CB4F BIT 7.A CB7F
BIT , 1.B CB48 BIT 7.B CB78
BIT i,c CB49 BIT 7,C CB79
BIT 1.D CB4A BIT 7.D CB7A
BIT 1.E CB4B BIT 7|E . CB7B
BIT l.H CB4C BIT 7|H CB7C
BIT U CB4D BIT 7,L CB7D
BIT 2,(HL) CB56 CALL (HL) DDCD
BIT 2,(IX+55H) DDCB5556 CALL (PC+1122H) FDCD2211
BIT 2,(IY+55H) FDCB5556 CALL C,(HL) DDDC
BIT 2,A CB57 CALL C,(PC+U22H) FDDC2211
BIT 2,B CB50 CALL C.3344H DC4433
BIT 2,C CB51 CALL M,(HL) DDFC
BIT 2,D CB52 CALL M,(PC+1122H) FDFC2211
BIT 2,E CB53 CALL M.3344H FC4433
BIT 2.H CB54 CALL NC,(HL) DDD4
BIT 2,L CB55 CALL NC,(PC+1122H) FDD42211
BIT 3,(HL) CB5E CALL NC.3344H D44433
BIT 3,(IX+55H) DDCB555E CALL NZ,(HL) DDC4
BIT 3.0Y+55H) FDCB555E CALL NZ,(PC+1122H) FDC42211
BIT 3,A CB5F CALL NZ.3344H C44433
BIT 3.B CB58 CALL P.(HL) DDF4
BIT 3>C CB59 CALL P,(PC+1122H) FDF42211
BIT 3,D CB5A CALL P.3344H F44433
BIT 3.E CB5B CALL PE,(HL) DDEC
BIT 3|H CB5C CALL PE,(PC+1122H) FDEC2211
BIT 3,L CB5D CALL PE.3344H EC4433
BIT 4,(HL) CB66 CALL PO.(HL) DDE4
BIT 4,(IX+55H) DDCB5566 CALL PO,(PC+1122H) FDE422U
BIT 4,(IY+55H) FDCB5566 CALL P0.3344H E44433
BIT 4,A CB67 CALL Z,(HL) DDCC
BIT 4.B CB60 CALL Z,(PC+1122H) FDCC2211
BIT 4|C CB61 CALL Z.3344H CC4433
BIT 4,D CB62 CALL 3344H CD4433
BIT 4,E CB63 CCF 3F
BIT 4,H CB64 CP A,(HL) BE
BIT 4,L CB65 CP A,(HL+IX) DDB9
BIT 5,(HL) CB6E CP A,(HL+IY) DDBA

C-2

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
CP A,(HL+U22H) FDBB2211 DEC IX DD2B
CP A,(IX+IY) DDBB DEC IXH DD25
CP A,(IX+55H) DDBE55 DEC IXL DD2D
CP A,(IX+1122H) FDB92211 DEC IY FD2B
CP A,(IY+55H) FDBE55 DEC IYH FD25
CP A,(IY+1122H) FDBA2211 DEC IYL FD2D
CP A,(PC+1122H) FDB82211 DEC L 2D
CP A,(SP+1122H) DDB82211 DEC SP 3B
CP A,(3344H) DDBF4433 DECW (HL) DDOB
CP A,A BF DECW (IX+1122H) FD0B2211
CP A,B B8 DECW (IY+1122H) FD1B2211
CP A|C B9 DECW (PC+1122H) DD3B22U
CP A,D BA DECW (3344H) DD1B4433
CP A,E BB DECW BC OB
CP A,H BC DECW DE IB
CP A,IXH DDBC DECW HL 2B
CP A.IXL DDBD DECW IX DD2B
CP A,IYH FDBC DECW IY FD2B
CP A.IYL FDBD DECW SP 3B
CP A,L BD Dl F3
CP A,66H FE66 Dl 66H ED7766
CPD EDA9 DIV HL.(HL) EDF4
CPDR EDB9 DIV HL,(HL+IX) DDEDCC
CPI EDA1 DIV HL,(HL+IY) DDEDD4
CPIR EDB1 DIV HL,(HL+1122H) FDEDDC2211
CPL 2F DIV HL,(IX+IY) DDEDDC
CPW HL,(HL) DDEDC7 DIV HL,(IX+55H) DDEDF455
CPW HL,(IX+1122H) FDEDC72211 DIV HL,(IX+1122H) FDEDCC2211
CPW HL,(IY+1122H) FDEDD72211 DIV HL,(IY+55H) FDEDF455
CPW HL,(PC+1122H) DDEDF72211 DIV HL,(IY+1122H) FDEDD42211
CPW HL,(3344H) DDEDD74433 DIV HL,(PC+1122H) FDEDC42211
CPW HL.BC EDC7 DIV HL,(SP+1122H) DDEDC42211
CPW HL.DE EDD7 DIV HL,(3344H) DDEDFC4433
CPW HL.HL EDE7 DIV HL,A EDFC
CPW HL.IX DDEDE7 DIV HL.B EDC4
CPW HL.IY FDEDE7 DIV HL,C EDCC
CPW HL.SP EDF7 DIV HL,D EDD4
CPW HL.3344H FDEDF74433 DIV HL,E EDDC
DAA 27 DIV HL,H EDE4
DEC (HL) 35 DIV HL.IXH DDEDE4
DEC (HL+IX) DDOD DIV HL.IXL DDEDEC
DEC (HL+IY) DD15 DIV HL.IYH FDEDE4
DEC (HL+1122H) FD1D2211 DIV HL.IYL FDEDEC
DEC (IX+IY) DD1D DIV HL,L EDEC
DEC (IX+55H) DD3555 DIV HL.66H FDEDFC66
DEC (IX+1122H) FD0D2211 DIVU HL,(HL) EDF5
DEC (IY+55H) FD3555 DIVU HL,(HL+IX) DDEDCD
DEC (IY+1122H) FD152211 DIVU HL,(HL+IY) DDEDD5
DEC (PC+1122H) FD052211 DIVU HL,(HL+1122H) FDEDDD2211
DEC (SP+1122H) DD052211 DIVU HL,(IX+IY) DDEDDD
DEC (3344H) DD3D4433 DIVU HL, (IX+55H) DDEDF555
DEC A 3D DIVU HL,(IX+1122H) FDEDCD2211
DEC B 05 DIVU HL,(IY+55H) FDEDF555
DEC BC OB DIVU HL,(I Y+1122H) FDEDD52211
DEC C 0D DIVU HL,(PC+1122H) FDEDC52211
DEC D 15 DIVU HL,(SP+1122H) DDEDC52211
DEC OE IB DIVU HL,(3344H) DDEDFD4433
DEC E ID DIVU HL,A EDFD
DEC H 25 DIVU HL,B EDC5
DEC HL 2B DIVU HL,C EDCD

C -3

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
DIVU HL.D EDD5 EX A,(PC+1122H) FDED072211
DIVU HL.E EDDD EX A,(SP+1122H) DDED072211
DlVU HL,H EDE5 EX A, 3344H) DDED3F4433
DIVU HL.IXH DDEDE5 EX A.A ED3F
DIVU HL.IXL DDEDED EX A.B ED07
DIVU HL.IYH FDEDE5 EX A.C EDOF
DIVU HL.IYL FDEDED EX A.D ED17
DIVU HL.L EDED EX A.E ED1F
DIVU HL.66H FDEDFD66 EX A.H ED27
DIVUW DEHL,(HL) DDEDCB EX A.IXH DDED27
DIVUW DEHL,(IX+1122H) FDEDCB2211 EX A.IXL DDED2F
DIVUW DEHL,(IY+1122H) FDEDDB2211 EX A.IYH . FDED27
DIVUW DEHL,(PC+1122H) DDEDFB2211 EX A.IYL FDED2F
DIVUW DEHL,(3344H) DDEDDB4433 EX A.L ED2F
DIVUW DEHL.BC EDCB EX AF.AF* 08
DIVUW DEHL.DE EDDB EX DE.HL EB
DIVUW DEHL.HL EDEB EX H.L EDEF
DIVUW DEHL.IX DDEDEB EX IX,HL DDEB
DIVUW DEHL.IY FDEDEB EX IY.HL FDEB
DIVUW DEHL.SP EDFB EXTS A ED64
DIVUW DEHL.3344H FDEDFB4433 EXTS HL ED6C
DIVW DEHL.(HL) DDEDCA EXX D9
DIVW DEHL,(IX+1122H) FDEDCA2211 HALT 76
DIVW DEHL,(IY+1122H) FDEDDA2211 IM o ED46
DIVW DEHL,(PC+1122H) DDEDFA2211 IM 1 ED56
DIVW DEHL,(3344H) DDEDDA4433 IM 2 ED5E
DIVW DEHL.BC EDCA IM 3 ED4E
DIVW DEHL.DE EDDA IN (HL+IX),(C) DDED48
DIVW DEHL.HL EDEA IN (HL+IY).(C) DDED50
DIVW DEHL.IX DDEDEA IN (HL+1122H),(C) FDED582211
DIVW DEHL.IY FDEDEA IN (IX+IY),(C) DDED58
DIVW DEHL.SP EDFA IN (IX+1122H).(C) FDED4822U
DIVW DEHL.3344H FDEDFA4433 IN (IY+1122H),(C) FDED502211
DJNZ 77H 1075 IN (PC+1122H),(C) FDED402211
El FB IN (SP+1122H),(C) DDED402211
El 66H ED7F66 IN (3344H),(C) DDED784433
EPUF ED97 IN A,(C) ED78
EPUI ED9F IN A, 66H) DB66
EPUM (HL) EDA6 IN B,(C) ED40
EPUM (HL+IX) ED8C IN C,(C) ED48
EPUM (HL+IY) ED94 IN D,(C) ED50
EPUM (HL+1122H) EDBC2211 IN E,(C) ED58
EPUM (IX+IY) ED9C IN H.(C) ED60
EPUM (IX+1122H) EDAC2211 IN HL.(C) EDB7
EPUM (IY+1122H) EDB42211 IN IXH,(C) DDED60
EPUM (PC+1122H) EDA42211 IN IXL,(C) DDED68
EPUM (SP+1122H) ED842211 IN IYH,(C) FDED60
EPUM (3344H) EDA74433 IN lYL.(C) FDED68
EX (SP).HL E3 IN L,(C) ED68
EX (SP).IX DDE3 INC (HL) 34
EX (SPJ.IY FDE3 INC (HL+IX) DDOC
EX A.(HL) ED37 INC (HL+IY) DD14
EX A,(HL+IX) DDEDOF INC (HL+1122H) FD1C2211
EX A.(HL+IY) DDED17 INC (IX+IY) DD1C
EX A,(HL+1122H) FDED1F2211 INC (IX+55H) DD3455
EX A,(IX+IY) DDED1F INC (IX+1122H) FD0C2211
EX A,(IX+55H) DDED3755 INC (IY+55H) FD3455
EX A,(IX+1122H) FDED0F2211 INC (IY+1122H) FD142211
EX A,(IY+55H) FDED3755 INC (PC+1122H) FD042211
EX A,(IY+1122H) FDED172211 INC (SP+1122H) DD042211

C-4

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
INC (3344H) DD3C4433 JP PE,(PC+1122H) FDEA2211
INC A 3C JP PE.3344H EA4433
INC B 04 JP PO,(HL) DDE2
INC BC 03 JP PO,(PC+1122H) FDE22211
INC C OC JP P0.3344H E24433
INC D 14 JP Z.(HL) DDCA
INC DE 13 JP Z,(PC+1122H) FDCA2211
INC E 1C JP Z.3344H CA4433
INC H 24 JP 3344H C34433
INC HL 23 JR C,77H 3875
INC IX DD23 JR NC.77H 3075
INC IXH DD24 JR NZ.77H 2075
INC IXL DD2C JR Z.77H 2875
INC IY FD23 JR 77H 1875
INC IYH FD24 LD (BC),A 02
INC IYL FD2C LD (DE),A 12
INC L 2C LD (HL),A 77
INC SP 33 LD (HL),B 70
INCW (HL) DD03 LD (HL),BC ED0E
INCW (IX+1122H) FD032211 LD (HL),C 71
INCW (IY+1122H) FD132211 LD (HL).D 72
INCW (PC+1122H) DD332211 LD (HL),DE ED1E
INCW (3344H) DD134433 LD (HL),E 73
INCW BC 03 LD (HL).H 74
INCW DE 13 LD (HL),HL ED2E
INCW HL 23 LD (HL),L 75
INCW IX DD23 LD (HL).SP ED3E
INCW IY FD23 LD (HL),66H 3666
INCW SP 33 LD (HL+IX),A EDOB
IND EDAA LD (HL+IX),HL EDOD
INDR EDBA LD (HL+IX),IX DDEDOD
INDRW ED9A LD (HL+IX),IY FDEDOD
INDW ED8A LD (HL+IX),66H DD0E66
INI EDA2 LD (HL+IY),A ED13
INIR EDB2 LD (HL+IY),HL ED15
INIRW ED92 LD (HL+IY),IX DDED15
INIW ED82 LD (HL+IY),IY FDED15
INW HL.(C) EDB7 LD (HL+IY),66H DD1666
JAF 77H DD2874 LD (HL+1122H),A ED3B2211
JAR 77H DD2074 LD (HL+1122H),HL ED3D2211
JP (HL) E9 LD (HL+1122H),IX DDED3D2211
JP (IX) DDE9 LD (HL+1122H),IY FDED3D2211
JP (IY) FDE9 LD (HL+1122H),66H FD1E221166
JP (PC+1122H) FDC32211 LD (IX+IY),A ED1B
JP C.(HL) DDDA LD (IX+IY),HL ED1D
JP C,(PC+1122H) FDDA2211 LD (IX+IY),IX DDED1D
JP C.3344H DA4433 LD (IX+IY),IY FDED1D
JP M,(HL) DDFA LD (IX+IY),66H DD1E66
JP M,(PC+1122H) FDFA2211 LD (IX+55H),A DD7755
JP M.3344H FA4433 LD (IX+55H),B DD7055
JP NC.(HL) DDD2 LD (IX+55H),BC DDED0E55
JP NC,(PC+1122H) FDD22211 LD (IX+55H),C DD7155
JP NC.3344H D24433 LD (IX+55H),D DD7255
JP NZ,(HL) DDC2 LD (IX+55H),DE DDED1E55
JP NZ,(PC+1122H) FDC22211 LD (IX+55H),E DD7355
JP NZ.3344H C24433 LD (IX+55H),H DD7455
JP P,(HL) DDF2 LD (IX+55H),HL DDED2E55
JP P,(PC+1122H) FDF22211 LD (IX+55H),L DD7555
JP P.3344H F24433 LD (IX+55H),SP DDED3E55
JP PE,(HL) DDEA LD (IX+55H),66H DD365566

C-5

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
LD (IX+1122H),A ED2B2211 LD A.I ED57
LD (IX+1122H),HL ED2D2211 LD A.IXH DD7C
LD (IX+1122H),IX DDED2D2211 LD A.IXL DD7D
LD (IX+1122H),IY FDED2D2211 LD A.IYH FD7C
LD (IX+1122H),66H FD0E221166 LD A.IYL FD7D
LD (IY+55H),A FD7755 LD A,L 7D
LD (IY+55H),B FD7055 LD A,R ED5F
LD (IY+55H),BC FDED0E55 LD A,66H 3E66
LD (IY+55H),C FD7155 LD b,(hl) 46
LD (IY+55H),D FD7255 LD B,(IX+55H) DD4655
LD (IY+55H),DE FDED1E55 LD B,(IY+55H) FD4655
LD (IY+55H),E FD7355 LD B,A 47
LD (IY+55H),H FD7455 LD B,B 40
LD (IY+55H),HL FDED2E55 LD B.C 41
LD (IY+55H),L FD7555 LD B,D 42
LD (IY+55H),SP FDED3E55 LD B.E 43
LD (IY+55H),66H FD365566 LD B.H 44
LD (IY+1122H),A ED332211 LD B.IXH DD44
LD (IY+1122H),HL ED352211 LD B,IXL DD45
LD (IY+1122H),IX DDED352211 LD B.IYH FD44
LD (IY+1122H),IY FDED352211 LD B.IYL FD45
LD (IY+1122H),66H FD16221166 LD B,L 45
LD (PC+1122H),A ED232211 LD B.66H 0666
LD (PC+1122H),HL ED252211 LD BC,(HL) ED06
LD (PC+1122H),IX DDED252211 LD BC,(IX+55H) DDED0655
LD (PC+1122H),IY FDED252211 LD BC,(IY+55H) FDED0655
LD (PC+1122H),66H FD06221166 LD BC,(3344H) ED4B4433
LD (SP+1122H),A ED032211 LD BC.3344H 014433
LD (SP+1122H),HL ED052211 LD C,(HL) 4E
LD (SP+1122H),IX DDED052211 LD C,(IX+55H) DD4E55
LD (SP+1122H),IY FDED052211 LD C,(IY+55H) FD4E55
LD (SP+1122H),66H DD06221166 LD C|A 4F
LD (3344H),A 324433 LD C,B 48
LD (3344H),BC ED434433 LD c.c 49
LD (3344H),DE ED534433 LD C,D 4A
LD (3344H),HL 224433 LD C.E 4B
LD (3344H),IX DD224433 LD C.H 4C
LD (3344H),IY FD224433 LD C.IXH DD4C
LD (3344H),SP ED734433 LD C.IXL DD4D
LD (3344H),66H DD3E443366 LD C,IYH FD4C
LD A,(BC) OA LD C,IYL FD4D
LD a .(de) 1A LD C,L 4D
LD a ,(hl) 7E LD C,66H 0E66
LD A,(HL+IX) DD79 LD D i (H L) 56
LD A,(HL+IY) DD7A LD D,(IX+55H) DD5655
LD A,(HL+1122H) FD7B2211 LD D,(IY+55H) FD5666
LD A,(IX+IY) DD7B LD D.A 57
LD A,(IX+55H) DD7E55 LD D.B 50
LD A,(IX+1122H) FD792211 LD D,C 51
LD A,(IY+55H) FD7E55 LD D.D 52
LD A,(IY+U22H) FD7A2211 LD D.E 53
LD A,(PC+1122H) FD782211 LD D,H 54
LD A,(SP+1122H) DD782211 LD D.IXH DD54
LD A,(3344H) 3A4433 LD D,IXL DD55
LD A,A 7F LD D.IYH FD54
LD A,B 78 LD D.IYL FD55
LD A.C 79 LD D.L 55
LD A,D 7A LD D.66H 1666
LD A.E 7B LD DE.(HL) ED16
LD A,H 7C LD DE,(IX+55H) DDED1655

C-6

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
LD DE,(IY+55H) FDED1655 LD IXL,A DD6F
LD DE,(3344H) ED5B4433 LD IXL.B DD68
LD DE.3344H 114433 ' LD IXL.C DD69
LD E.(HL) 5E LD IXL.D DD6A
LD E,(IX+55H) DD5E55 LD IXL.E DD6B
LD E,(IY+55H) FD5E55 LD IXL.IXH DD6C
LD E,A 5F LD IXL.IXL DD6D
LD E,B 58 LD IXL.66H DD2E66
LD E.C 59 LD IY,(HL+IX) FDEDOC
LD E.D 5A LD IY,(HL+IY) FDED14
LD E,E 5B LD IY,(HL+1122H) FDED3C2211
LD E,H 5C LD IY,(IX+IY) FDED1C
LD E,IXH DD5C LD IY,(IX+1122H) FDED2C2211
LD E,IXL DD5D LD IY,(IY+1122H) FDED342211
LD EJYH FD5C LD IY,(PC+1122H) FDED242211
LD EJYL FD5D LD IY,(SP+1122H) FDED042211
LD E.L 5D LD IY.3344H FD214433
LD E,66H 1E66 LD IYH,A FD67
LD H,(HL) 66 LD IYH.B FD60
LD H,(IX+55H) DD6655 LD IYH.C FD61
LD H,(IY+55H) FD6655 LD IYH,D FD62
LD H,A 67 LD IYH,E FD63
LD H,B 60 LD IYH.IYH FD64
LD H,C 61 LD IYH.IYL FD65
LD H,D 62 LD IYH.66H FD2666
LD H,E 63 LD IYL,A FD6F
LD H,H 64 LD IYL.B FD68
LD H.L 65 LD IYL.C FD69
LD H,66H 2666 LD IYL,D FD6A
LD HL,(HL) ED26 LD IYL.E FD6B
LD HL,(HL+IX) EDOC LD IYL.IYH FD6C
LD HL,(HL+IY) ED14 LD IYL.IYL FD6D
LD HL,(IX+IY) ED1C LD IYL.66H FD2E66
LD HL,(IX+55H) DDED2655 LD L|(HL) 6E
LD HL,(IX+1122H) ED2C2211 LD L,(IX+55H) DD6E55
LD HL,(IY+55H) FDED2655 LD L,(IY+55H) FD6E55
LD HL,(IY+1122H) ED342211 LD L,A 6F
LD HL,(PC+1122H) ED242211 LD L.B 68
LD HL,(SP+1122H) ED042211 LD L.C 69
LD HL,(3344H) 2A4433 LD L.D 6A
LD HL.3344H 214433 LD L.E 6B
LD I.A ED47 LD L,H 6C
LD IX,(HL+IX) DDEDOC LD L,L 6D
LD IX,(HL+IY) DDED14 LD L.66H 2E66
LD IX,(HL+1122H) DDED3C2211 LD R,A ED4F
LD IX,(IX+IY) DDED1C LD SP,(HL) ED36
LD IX,(IX+1122H) DDED2C2211 LD SP,(IX+55H) DDED3655
LD IX,(IY+1122H) DDED3422U LD SP,(IY+55H) FDED3655
LD IX,(PC+1122H) DDED242211 LD SP,(3344H) ED7B4433
LD IX,(SP+1122H) DDED042211 LD SP.HL F9
LD IX,(3344H) DD2A4433 LD SP.IX DDF9
LD IX.3344H DD214433 LD SP.IY FDF9
LD IXH.A DD67 LD SP.3344H 314433
LD IXH.B DD60 LDA HL,(HL+IX) EDOA
LD IXH.C DD61 LDA HL,(HL+IY) ED12
LD IXH.D DD62 LDA HL,(HL+1122H) ED3A2211
LD IXH.E DD63 LDA HL,(IX+IY) ED1A
LD IXH.IXH DD64 LDA HL,(tX+1122H) ED2A2211
LD IXH.IXL DD65 LDA HL,(IY+1122H) ED322211
LD IXH.66H DD2666 LDA HL,(PC+1122H) ED222211

C-7

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
LDA HL,(SP+1122H) ED022211 LDW (HL+1122H),IX DDED3D2211
LDA HL,(3344H) 214433 LDW (HL+1122H),IY FDED3D2211
LDA IX,(HL+IX) DDEDOA LDW (IX+IY),HL ED1D
LDA IX,(HL+IY) DDED12 LDW (IX+IY),IX DDED1D
LDA IX,(HL+1122H) DDED3A2211 LDW (IX+IY),IY FDED1D
LDA IX,(IX+IY) DDED1A LDW (IX+55H),BC DDED0E55
LDA IX,(IX+1122H) DDED2A2211 LDW (IX+55H),DE DDED1E55
LDA IX,(IY+1122H) DDED322211 LDW (IX+55H),HL DDED2E55
LDA IX,(PC+1122H) DDED222211 LDW (IX+55H),SP DDED3E55
LDA IX,(SP+1122H) DDED022211 LDW (IX+1122H),HL ED2D2211
LDA IX,(3344H) DD214433 LDW (IX+1122H),IX DDED2D2211
LDA IY,(HL+IX) FDEDOA LDW (IX+1122H),IY FDED2D2211
LDA IY,(HL+IY) FDED12 LDW (IY+55H),BC FDED0E55
LDA IY,(HL+1122H) FDED3A2211 LDW (IY+55H),DE FDED1E55
LDA IY,(IX+IY) FDED1A LDW (IY+55H),HL FDED2E55
LDA IY,(IX+1122H) FDED2A2211 LDW (IY+55H),SP FDED3E55
LDA IY,(IY+1122H) FDED322211 LDW (IY+1122H),HL ED3522U
LDA IY,(PC+1122H) FDED222211 LDW (IY+li22H),IX DDED352211
LDA IY,(SP+1122H) FDED022211 LDW (IY+1122H),IY FDED352211
LDA IY,(3344H) FD214433 LDW (PC+1122H),HL ED252211
LDCTL (C),HL ED6E LDW (PC+1122H),IX DDED252211
LDCTL (C),IX DDED6E LDW (PC+1122H),IY FDED252211
LDCTL (C).IY FDED6E LDW (PC+1122H) ,3344H DD3122114433
LDCTL HL,(C) ED66 LDW (SP+1122H),HL ED052211
LDCTL HL.USP ED87 LDW (SP+1122H),IX DDED052211
LDCTL IX,(C) DDED66 LDW (SP+1122H),IY FDED052211
LDCTL IX.USP DDED87 LDW (3344H),BC ED434433
LDCTL IY,(C) FDED66 LDW (3344H),DE ED534433
LDCTL IY.USP FDED87 LDW (3344H),HL 224433
LDCTL USP,HL ED8F LDW (3344H) ,IX DD224433
LDCTL USP,IX DDED8F LDW (3344H) ,IY FD224433
LDCTL USP.IY FDED8F LDW (3344H),SP ED734433
LDD EDA8 LDW (3344H),8899H DD1144339988
LDDR EDB8 LDW BC,(HL) ED06
LDI EDAO LDW BC,(IX+55H) DDED0655
LDIR EDBO LDW BC,(IY+55H) FDED0655
LDUD (HL),A ED8E LDW BC,(3344H) ED4B4433
LDUD (IX+55H),A DDED8E55 LDW BC.3344H 014433
LDUD (IY+55H),A FDED8E55 LDW DE,(HL) ED16
LDUD A,(HL) ED86 LDW DE,(IX+55H) DDED1655
LDUD A,(IX+55H) DDED8655 LDW DE,(IY+55H) FDED1655
LDUD A,(IY+55H) FDED8655 LDW DE,(3344H) ED5B4433
LDUP (HL),A ED9E LDW DE.3344H 114433
LDUP (IX+55H),A DDED9E55 LDW HL,(HL) ED26
LDUP (IY+55H),A FDED9E55 LDW HL,(HL+IX) EDOC
LDUP A,(HL) ED96 LDW HL,(HL+IY) ED14
LDUP A,(IX+55H) DDED9655 LDW HL,(HL+1122H) ED3C2211
LDUP A,(IY+55H) FDED9655 LDW HL,(IX+IY) ED1C
LDW (HL).BC EDOE LDW HL,(IX+55H) DDED2655
LDW (HL),DE ED1E LDW HL,(IX+1122H) ED2C2211
LDW (HL),HL ED2E LDW HL,(IY+55H) FDED2655
LDW (HL).SP ED3E LDW HL,(IY+1122H) ED342211
LDW (HL),3344H DD014433 LDW HL,(PC+1122H) ED242211
LDW (HL+IX),HL EDOD LDW HL,(SP+1122H) ED042211
LDW (HL+IX),IX DDEDOD LDW HL,(3344H) 2A4433
LDW (HL+IX),IY FDEDOD LDW HL.3344H 214433
LDW (HL+IY),HL ED15 LDW IX,(HL+IX) DDEDOC
LDW (HL+IY),IX DDED15 LDW IX,(HL+IY) DDED14
LDW (HL+IYJ.IY FDED15 LDW IX,(HL+1122H) DDED3C2211
LDW (HL+1122H),HL ED3D2211 LDW IX,(IX+IY) DDED1C

C-8

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
LDW IX,(IX+1122H) DDED2C2211 MULTU A,(HL+IY.) DDEDD1
LDW IX,(IY+1122H) DDED342211 MULTU A,(HL+1122H) FDEDD92211
LDW IX,(PC+1122H) DDED242211 MULTU A,(IX+IY) DDEDD9
LDW IX,(SP+1122H) DDED042211 MULTU A,(IX+55H) DDEDF155
LDW IX, (3344H) DD2A4433 MULTU A,(IX+1122H) FDEDC92211
LDW IX.3344H DD214433 MULTU A,(IY+55H) FDEDF155
LDW IY,(HL+IX) FDEDOC MULTU A,(IY+1122H) FDEDD12211
LDW IY,(HL+IY) FDED14 MULTU A,(PC+1122H) FDEDC12211
LDW IY,(HL+1122H) FDED3C2211 MULTU A,(SP+1122H) DDEDC12211
LDW IY,(IX+IY) FDED1C MULTU A,(3344H) DDEDF94433
LDW IY,(IX+1122H) FDED2C2211 MULTU A,A EDF9
LDW IY,(IY+1122H) FDED342211 MULTU A.B EDC1
LDW IY,(PC+1122H) FDED242211 MULTU A|C EDC9
LDW IY,(SP+1122H) FDED042211 MULTU A,D EDD1
LDW IY,(3344H) FD2A4433 MULTU A.E EDD9
LDW IY.3344H FD214433 MULTU A.H EDE1
LDW SP.(HL) ED36 MULTU A.IXH DDEDE1
LDW SP,(IX+55H) DDED3655 MULTU A.IXL DDEDE9
LDW SP,(IY+55H) FDED3655 MULTU A.IYH FDEDE1
M?w SP,(3344H) ED7B4433 MULTU A.IYL FDEDE9
LDW SP.HL F9 MULTU A,L EDE9
LDW SP.IX DDF9 MULTU A.66H FDEDF966
LDW SP.IY FDF9 MULTUW HL,(HL) DDEDC3
LDW SP.3344H 314433 MULTUW HL,(IX+1122H) FDEDC32211
MEPU (HL) EDAE MULTUW HL,(IY+1122H) FDEDD32211
MEPU (HL+IX) ED8D MULTUW HL,(PC+1122H) DDEDF32211
MEPU HL+IY) ED95 MULTUW HL,(3344H) DDEDD34433
MEPU (HL+1122H) EDBD2211 MULTUW HL.BC EDC3
MEPU (IX+IY) ED9D MULTUW HL.DE EDD3
MEPU (IX+1122H) EDAD2211 MULTUW HL,HL EDE3
MEPU (IY+1122H) EDB52211 MULTUW HL.IX DDEDE3
MEPU (PC+1122H) EDA52211 MULTUW HL.IY FDEDE3
MEPU (SP+1122H) ED852211 MULTUW HL.SP EDF3
MEPU (3344H) EDAF4433 MULTUW HL.3344H FDEDF34433
MULT a ,(hl) EDFO MULTW HL,(HL) DDEDC2
MULT A,(HL+IX) DDEDC8 MULTW HL,(IX+1122H) FDEDC22211
MULT A,(HL+IY) DDEDDO MULTW HL,(IY+1122H) FDEDD22211
MULT A,(HL+1122H) FDEDD82211 MULTW HL,(PC+U22H) DDEDF22211
MULT A,(IX+IY) DDEDD8 MULTW HL,(3344H) DDEDD24433
MULT A,(IX+55H) DDEDF055 MULTW HL.BC EDC2
MULT A,(IX+1122H) FDEDC82211 MULTW HL.DE EDD2
MULT A,(IY+55H) FDEDF055 MULTW HL.HL EDE2
MULT A,(IY+1122H) FDEDD02211 MULTW HL.IX DDEDE2
MULT A,(PC+1122H) FDEDC02211 MULTW HL.IY FDEDE2
MULT A,(SP+1122H) DDEDC02211 MULTW HL.SP EDF2
MULT A,(3344H) DDEDF84433 MULTW HL.3344H FDEDF24433
MULT A.A EDF8 NEG A ED44
MULT A.B EDCO NEG HL ED4C
MULT A.C EDC8 NOP 00
MULT A.D, EDDO OR A,(HL) B6
MULT A,E EDD8 OR A,(HL+IX) DDB1
MULT A.H EDEO OR A,(HL+IY) DDB2
MULT A.IXH DDEDEO OR A,(HL+1122H) FDB32211
MULT A.IXL DDEDE8 OR A,(IX+IY) DDB3
MULT A.IYH FDEDEO OR A,(IX+55H) DDB655
MULT A.IYL FDEDE8 OR A,(IX+1122H) FDB12211
MULT A,L EDE8 OR A,(IY+55H) FDB655
MULT A.66H FDEDF866 OR A,(IY+1122H) FDB22211
MULTUA,(HL) EDF1 OR A,(PC+1122H) FDB02211
MULTU A,(HL+IX) DDEDC9 OR A,(SP+1122H) DDB02211

C -9

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
OR A,(3344H) DDB74433 PUSH HL ES
OR A,A B7 PUSH IX DDE5
OR A,B BO PUSH IY FDE5
OR A,C B1 PUSH 3344H FDF54433
OR A.D B2 RES 0,(HL) CB86
OR A,E B3 RES 0,(IX+55H) DDCB5586
OR A,H B4 RES 0,(IY+55H) FDCB5586
OR A,IXH DDB4 RES 0,A CB87
OR A,IXL DDB5 RES 0,B CB80
OR A,IYH FDB4 RES o,c CB81
OR A.IYL FDB5 RES 0,D CB82
OR A.U B5 RES 0,E CB83
OR A.66H F666 RES 0,H CB84
OTDR EDBB RES 0,L CB85
OTDRW ED9B RES 1,(HL) CB8E
OTIR EDB3 RES 1,(IX+55H) DDCB558E
OTIRW ED93 RES 1,(IY+55H) FDCB558E
OUT (C)i(HL+IX) ODED49 RES 1.A CB8F
OUT (C),(HL+IY) DDED51 RES l.B CB88
OUT (C),(HL+1122H) FDED592211 RES i.c CB89
OUT (C),(IX+IY) DDED59 RES 1.D CB8A
OUT (C),(IX+1122H) FDED492211 RES 1.E CB8B
OUT (C),(IY+1122H) FDED512211 RES l.H CB8C
OUT (C),(PC+1122H) FDED412211 RES l.L CB8D
OUT (C),(SP+1122H) DDED412211 RES 2|(HL) CB96
OUT (C),(3344H) DDED794433 RES 2,(IX+55H) DDCB5596
OUT (C),A ED79 RES 2,(IY+55H) FDCB5596
OUT (C).B ED41 RES 2,A CB97
OUT (C).C ED49 RES 2,B CB90
OUT (C).D ED51 RES 2,C CB91
OUT (C),E ED59 RES 2,D CB92
OUT (C),H ED61 RES 2,E CB93
OUT (C),HL EDBF RES 2,H CB94
OUT (C).IXH DDED61 RES 2,L CB95
OUT (C)JXL DDED69 RES 3,(HL) CB9E
OUT (C).IYH FDED61 RES 3,(IX+55H) DDCB559E
OUT (C),IYL FDED69 RES 3,(IY+55H) FDCB559E
OUT (C).L ED69 RES 3,A CB9F
OUT (66H),A D366 RES 3,B CB98
OUTD EDAB RES 3,C CB99
OUTDW ED8B RES 3,D CB9A
OUTI EDA3 RES 3.E CB9B
OUTIW ED83 RES 3.H CB9C
OUTW (C),HL EDBF RES 3jL CB9D
PCACHE ED65 RES 4,(HL) CBA6
POP (HL) DDCi RES 4,(IX+55H) DDCB55A6
POP (PC+1122H) DDF12211 RES 4,(IY+55H) FDCB55A6
POP (3344H) DDD14433 RES 4, A CBA7
POP AF FI RES 4,B CBAO
POP BC Cl RES 4,C CBA1
POP DE D1 RES 4,D SCBA2
POP HL El RES 4.E CBA3
POP IX DDE1 RES 4,H CBA4
POP IY FDE1 RES 4,L CBA5
PUSH (HL) DDC5 RES 5,(HL) CBAE
PUSH (PC+1122H) DDF52211 RES 5,(IX+55H) DDCB55AE
PUSH (3344H) DDD54433 RES 5,(IY+55H) FDCB55AE
PUSH AF F5 RES 5,A CBAF
PUSH BC C5 RES 5,B CBA8
PUSH DE D5 RES 5.C CBA9

C-10

SOURCE CODE OBJECT CODE j SOURCE CODE OBJECT CODE
RES 5,D CBAA RR (IX+55H) DDCB551E
RES 5.E CBAB RR (IY+55H) FDCB551E
RES 5,H CBAC RR A CB1F
RES 5.L CBAD RR B CB18
RES 6|(HL) CBB6 RR C CB19
RES 6,(IX+55H) DDCB55B6 RR D CB1A
RES 6,(IY+55H) FDCB55B6 RR E CB1B
RES 6,A CBB7 RR H CB1C
RES 6,B CBBO RR L CB1D
RES 6,C CBB1 RRA IF
RES 6|D CBB2 RRC (HL) CBOE
RES 6,E CBB3 RRC (IX+55H) DDCB550E
RES 6,H CBB4 RRC (IY+55H) FDCB550E
RES 6,L CBB5 RRC A CBOF
RES 7,(HL) CBBE RRC B CB08

* RES 7,(1X+55H) DDCB55BE RRC C CB09
RES 7,(IY+55H) FDCB55BE RRC D CBOA
RES 7,A CBBF RRC E CBOB
RES r.B CBB8 RRC H CBOC
RES '7,c CBB9 RRC L CBOD
RES 7.D CBBA RRCA OF
RES 7,E CBBB RRD ED67
RES 7.H CBBC RST 00H C7
RES 7,L CBBD RST 08H CF
RET C9 RST 10H D7
RET c D8 RST 18H DF
RET M F8 RST 20H E7
RET NC DO RST 28H EF
RET NZ CO RST 30H F7
RET P FO RST 38H FF
RET PE E8 SBC A,(HL) 9E
RET PO EO SBC A,(HL+IX) DD99
RET Z C8 SBC A,(HL+IY) DD9A
RETI ED4D SBC A,(HL+1122H) FD9B2211
RETJL ED55 SBC A,(IX+IY) DD9B
RETN ED45 SBC A,(IX+55H) DD9E55
RL (HL) CB16 SBC A,(IX+1122H) FD992211
RL (IX+55H) DDCB5516 SBC A,(IY+55H) FD9E55
RL . (IY+55H) FDCB5516 SBC A,(IY+1122H) FD9A2211
RL A CB17 SBC A,(PC+1122H) FD982211
RL B CB10 SBC A,(SP+1122H) DD982211
RL C CB11 SBC A,(3344H) DD9F4433
RL D CB12 SBC A,A 9F
RL E CB13 SBC A,B 98
RL H CB14 SBC A.C 99
RL L CB15 SBC A.D 9A
RLA 17 SBC A.E 9B
RLC (HL) CB06 SBC A,H 9C
RLC (IX+55H) DDCB5506 SBC A,IXH DD9C
RLC . (IY+55H) FDCB5506 SBC A.IXL DD9D
RLC A CB07 SBC A.IYH FD9C
RLC B CBOO SBC A,IYL FD9D
RLC C CB01 SBC A,L 9D
RLC D CB02 SBC A.66H DE66
RLC E CB03 SBC HL,BC ED42
RLC H CB04 SBC hl.de ED52
RLC L CB05 SBC HL.HL ED62
RLCA 07 SBC HL.SP ED72
RLD ED6F SBC IX.BC DDED42
RR (HL) CB1E SBC IX,DE , DDED52

\ C-11

SOURCE CODE
SBC IX, IX
SBC IX,SP
SBC IY,BC
SBC IY.DE
SBC IY,IY
SBC IY.SP
SC 3344H
SCF
SET O.(HL)
SET 0,(IX+55H)
SET 0,(IY+55H)
SET 0.A
SET 0,B
SET o,c
SET 0,D
SET 0.E
SET O.H
SET 0,L
SET l.(HL)
SET 1,(IX+55H)
SET 1,(IY+55H)
SET 1,A
SET 1,B
SET i.c
SET 1.D
SET 1.E
SET 1.H
SET U
SET 2,(HL)
SET 2,(IX+55H)
SET 2,(IY+55H)
SET 2,A
SET 2,B
SET 2,C
SET 2.D
SET 2,E
SET 2,H
SET 2.L
SET 3,(HL)
SET 3,(IX+55H)
SET 3,(IY+55H)
SET 3, A
SET 3,B
SET 3.C
SET 3,D
SET 3,E
SET 3.H
SET 3,U
SET 4,(HL)
SET 4,(IX+55H)
SET 4,(IY+55H)
SET 4,A
SET 4.B
SET 4.C
SET 4,D
SET 4,E
SET 4,H
SET 4,L
SET 5,(HL)
SET 5,(IX+55H)

OBJECT CODE
DDED62
DDED72
FDED42
FDED52
FDED62
FDED72
ED714433
37
CBC6
DDCB55C6
FDCB55C6
CBC7
CBCO
CBC1
CBC2
CBC3
CBC4
CBC5
CBCE
DDCB55CE
FDCB55CE
CBCF
CBC8
CBC9
CBCA
CBCB
CBCC
CBCD
CBD6
DDCB55D6
FDCB55D6
CBD7
CBDO
CBD1
CBD2
CBD3
CBD4
CBD5
CBDE
DDCB55DE
FDCB55DE
CBDF
CBD8
CBD9
CBDA
CBDB
CBDC
CBDD
CBE6
DDCB55E6
FDCB55E6
CBE7
CBEO
CBE1
CBE2
CBE3
CBE4
CBE5
CBEE
DDCB55EE

SOURCE CODE
SET 5,(IY+55H)
SET 5, A
SET 5,B
SET 5.C
SET 5,D
SET 5,E
SET 5,H
SET 5,L
SET 6,(HL)
SET 6,(IX+55H)
SET 6,(IY+55H)
SET 6,A
SET 6,B
SET ®|C
SET 6,D
SET 6,E
SET 6.H
SET 6,L
SET ?,(HL)
SET 7,(IX+55H)
SET 7,(IY+55H)
SET 7,A
SET 7.B
SET 7,C
SET 7.D
SET 7.E
SET 7.H
SET 7,L

(HL)SLA
SLA (IX+55H)
SLA (IY+55H)'
SLA A
SLA B
SLA C
SLA D
SLA E
SLA H
SLA L
SRA (HL)
SRA (IX+55H)
SRA (IY+55H)
SRA A
SRA B
SRA C
SRA D
SRA E
SRA H
SRA L
SRL (HL)
SRL (IX+55H)
SRL (IY+55H)
SRL A
SRL B
SRL C
SRL D
SRL E
SRL H
SRL L
SUB A,(HL)
SUB a,(hl+ ix)

OBJECT CODE
FDCB55EE
CBEF
CBE8
CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCB55F6
FDCB55F6
CBF7
CBFO
CBF1
CBF2
CBF3
CBF4
CBF5
CBFE
DDCB55FE
FDCB55FE
CBFF
CBF8
CBF9
CBFA,
CBFB
CBFC
CBFD
CB26
DDCB5526
FDCB5526
CB27
CB20
CB21
CB22
CB23
CB24
CB25
CB2E
DDCB552E
FDCB552E
CB2F
CB28
CB29
CB2A
CB2B
CB2C
GB2D
CB3E
DDCB553E
FDCB553E
CB3F
CB38
CB39
CB3A
CB3B
CB3C
CB3D
96
DD91C-1 2

SOURCE CODE OBJECT CODE SOURCE CODE OBJECT CODE
SUB A,(HL+IY) DD92 TSET (IX+55H) DDCB5536
SUB A,(HL+1122H) FD932211 TSET (IY+55H) FDCB5536
SUB A,(IX+IY) DD93 TSET A CB37
SUB A,(IX+55H) DD9655 TSET B CB30
SUB A,(IX+1122H) FD912211 TSET C CB31
SUB A,(IY+55H) FD9655 TSET D CB32
SUB A,(IY+1122H) FD922211 TSET E CB33
SUB A,(PC+1122H) FD902211 TSET H CB34
SUB A,(SP+1122H) DD902211 TSET L CB35
SUB A,(3344H) DD974433 TSTI (C) ED70
SUB A,A 97 XOR A.(HL) AE
SUB A,B 90 XOR A,(HL+IX) DDA9
SUB A|C 91 XOR A,(HL+IY) DDAA
SUB A,D 92 XOR A,(HL+1122H) FDAB2211
SUB A,E 93 XOR A.0X+IY) DDAB
SUB A,H 94 XOR A,(IX+55H) DDAE55
SUB A.IXH DD94 XOR A,(IX+1122H) FDA92211
SUB A.IXL DD95 XOR A,(IY+55H) FDAE55
SUB A,IYH FD94 XOR A,(IY+1122H) FDAA2211
SUB A,IYL FD95 XOR A,(PC+1122H) FDA82211
SUB A.L 95 XOR A,(SP+1122H) DDA82211
SUB A,66H D666 XOR A,(3344H) DDAF4433
SUBW HL,(HL) DDEDCE XOR A,A AF
SUBW HL,(IX+1122H) FDEDCE2211 XOR A,B A8
SUBW HL,(IY+1122H) FDEDDE2211 XOR A,C A9
SUBW HL,(PC+1122H) DDEDFE2211 XOR A.D AA
SUBW HL,(3344H) DDEDDE4433 XOR A.E AB
SUBW HL.BC EDCE XOR A,H AC
SUBW HL.DE EDDE XOR A.IXH DDAC
SUBW HL,HL EDEE XOR A,IXL DDAD
SUBW HL.IX DDEDEE XOR A.IYH FDAC
SUBW HL.IY FDEDEE XOR A.IYL FDAD
SUBW HL.SP EDFE XOR A,L AD
SUBW
TSET

HL.3344H
(HL)

FDEDFE4433
CB36

XOR A.66H EE66

C -13

Appendix D.
Instructions in Numeric Order

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
00 NOP 29 ADD HL.HL
014433 LD BC.3344H « 2A4433 LD HL,(3344H)
014433 LDW BC.3344H 2A4433 LDW HL,(3344H)
02 LD (bc),a 2B DEC HL
03 INCW BC 2B DECW HL
03 INC BC 2C INC L
04 INC B 2D DEC L
05 DEC B 2E66 LD L,66H
0666 LD B,66H 2F CPL
07 RLCA 3075 JR NC.77H
08 EX AF.AF 314433 LD SP.3344H
09 ADD HL.BC 314433 LDW SP.3344H
0A LD A,(BC) 324433 LD (3344H),A
0B DEC BC 33 INC SP
0B DECW BC 33 INCW SP
OC INC C 34 INC (HL)
OD DEC C 35 DEC (HL)
0E66 LD C.66H 3666 LD (HL),66H
OF RRCA 37 SCF
1075 DJNZ 77H 3875 JR C.77H
114433 LD DE.3344H 39 ADD HL.SP
114433 LDW DE.3344H 3A4433 LD A,(3344H)
12 LD (de),a 3B DEC SP
13 INC DE 3B DECW SP
13 INCW DE 3C INC A
14 INC D 3D DEC A
15 DEC D 3E66 LD A,66H
1666 LD D,66H 3F CCF
17 RLA 40 LD B,B
1875 JR 77H 41 LD B.C
19 ADD HL,DE 42 LD B.D
1A LD a .(de) 43 LD B.E
IB DEC DE 44 LD B.H
IB DECW DE 45 LD B,L
1C INC E 46 LD B,(HL)
ID DEC E 47 LD B,A
1E66 LD E,66H 48 LD C,B
IF RRA 49 LD c.c
2075 JR NZ,77H 4A LD C.D
214433 LD HL.3344H 4B LD C.E
214433 LDA HL,(3344H) 4C LD C.H
214433 LDW HL.3344H 4D LD C.L
224433 LD (3344H),HL 4E LD Ci(HL)
224433 LDW (3344H),HL 4F LD C,A
23 INCW HL 50 LD D,B
23 INC HL 51 LD D,C
24 INC H 52 LD D,D
25 DEC H 53 LD D,E
2666 LD H.66H 54 LD D,H
27 DAA 55 LD D.L
2875 JR Z,77H 56 LD D.(HL)

D-1

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
57 LD D,A 93 SUB A.E
58 LD E,B 94 SUB A,H
59 LD E,C 95 SUB A,L
5A LD E,D 96 SUB A,(HL)
5B LD E.E 97 SUB A,A
5C LD E,H 98 SBC A.B
5D LD E,L 99 SBC A.C
5E LD E,(HL) 9A SBC A,D
5F LD E.A 9B SBC A,E
60 LD H,B 9C SBC A,H
61 LD H,C 9D SBC A,L
62 LD H.D 9E SBC A,(HL)
63 LD H.E 9F SBC A,A
64 LD H,H AO AND A.B
65 LD H.L A1 AND A,C
66 LD H.(HL) A2 AND A,D
67 LD H,A A3 AND A.E
68 LD L,B A4 AND A,H
69 LD L,C A5 AND A.L
6A LD L,D A6 AND A.(HL)
6B LD L.E A7 AND A,A
6C LD L,H A8 XOR A,B
6D LD L,L A9 XOR A,C
6E LD L,{HL) AA XOR A,D
6F LD L,A AB XOR A.E
70 LD (hl).b AC XOR A,H
71 LD (HL).C AD XOR A.L
72 LD (HL),D AE XOR A.(HL)
73 LD (HL),E AF XOR A,A
74 LD (HL),H BO OR A,B
75 LD (HL),L B1 OR A|C
76 HALT B2 OR A.D
77 LD (HL),A B3 OR A,E
78 LD A,B B4 OR A,H
79 LD A,C B5 OR A,L
7A LD A,D B6 OR A,(HL)
7B LD A,E B7 OR A,A
7C LD A,H B8 CP A.B
7D LD A,L B9 CP A.C
7E LD A,(HL) BA CP A.D
7F LD A,A BB CP A,E
80 ADD A,B BC CP A,H
81 ADD A.C BD CP A.L
82 ADD A,D BE CP A.(HL)
83 ADD A,E BF CP A,A
84 ADD A,H CO RET NZ
85 ADD A.L Cl POP BC
86 ADD A,(HL) C24433 JP NZ.3344H
87 ADD A,A C34433 JP 3344H
88 ADC A.B C44433 CALL NZ.3344H
89 ADC A.C C5 PUSH BC
8A ADC A.D C666 ADD A.66H
8B ADC A,E C7 RST 00H
8C ADC A,H C8 RET Z
8D ADC A,L C9 RET
8E ADC A,(HL) CA4433 JP Z.3344H
8F ADC A,A CBOO RLC B
90 SUB A,B CB01 RLC C
91 SUB A(C CB02 RLC D
92 SUB A.D CB03 RLC E

D-2

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
CB04 RLC H CB40 - BIT O.B
CB05 RLC L CB41 BIT 0,C
CB06 RLC (HL) CB42 BIT 0|D
CB07 RLC A CB43 BIT 0.E
CB08 RRC B CB44 BIT O.H
CB09 RRC C CB45 BIT 0.L
CBOA RRC D CB46 BIT 0,(HL)
CBOB RRC E CB47 BIT OjA
CBOC RRC H CB48 BIT l.B
CBOD RRC L CB49 BIT i.c
CBOE RRC (HL) CB4A BIT 1.D
CBOF RRC A CB4B BIT 1,E
CB10 RL B CB4C BIT 1|H
CB11 RL C CB4D BIT 1,L
CB12 RL D CB4E BIT l.(HL)
CB13 RL E CB4F BIT 1,A
CB14 RL H CB50 BIT 2,B
CB15 RL L CB51 BIT 2.C
CB16 RL (HL) CB52 BIT 2,D
CB17 RL A CB53 BIT 2,E
CB18 RR B CB54 BIT 2>H
CB19 RR C CB55 BIT 2,L
CB1A RR D CB56 BIT 2|(HL)
CB1B RR E CB57 BIT 2,A
CB1C RR H CB58 BIT 3.B
CB1D RR L CB59 BIT 3.C
CB1E RR (HL) CB5A BIT 3.D
CB1F RR A CB5B BIT 3|E
CB20 SLA B CB5C BIT 3.H
CB21 SLA C CB5D BIT 3.L
CB22 SLA D CB5E BIT 3i(HL)
CB23 SLA E CB5F BIT 3,A
CB24 SLA H CB60 BIT 4.B
CB25 SLA L CB61 BIT 4.C
CB26 SLA (HL) CB62 BIT 4.D
CB27 SLA A CB63 BIT 4.E
CB28 SRA B CB64 BIT 4.H
CB29 SRA C CB65 BIT 4.L
CB2A SRA D CB66 BIT 4,(HI)
CB2B SRA E CB67 BIT 4,A
CB2C SRA H CB68 BIT 5.B
CB2D SRA L CB69 BIT 5.C
CB2E SRA (HL) CB6A BIT 5.D
CB2F SRA A CB6B BIT 5,E
CB30 TSET B CB6C BIT 5,H
CB31 TSET C CB6D BIT 5.L
CB32 TSET D CB6E BIT 5,(HL)
CB33 TSET E CB6F BIT 5.A
CB34 TSET H CB70 BIT 6,B
CB35 TSET L CB71 BIT 6.C
CB36 TSET (HL) CB72 BIT 6.D
CB37 TSET A CB73 BIT 6.E
CB38 SRL B CB74 BIT 6,H
CB39 SRL C CB75 BIT 6.L
CB3A SRL D CB76 BIT 6,(HL)
CB3B SRL E CB77 BIT 6,A
CB3C SRL H CB78 BIT 7.B
CB3D SRL L CB79 BIT 7.C
CB3E SRL (HL) CB7A BIT 7,D
CB3F SRL A CB7B BIT 7,E

D -3

OBJECT CODE SOURCE CODE
CB7C BIT 7,H
CB7D BIT 7,L
CB7E BIT 7,(HL)
CB7F BIT 7,A
CB80 RES 0,B
CB81 RES 0,C
CB82 RES 0,D
CB83 RES O.E
CB84 RES 0,H
CB85 RES O.u
CB86 RES O.(HL)
CB87 RES 0,A
CB88 RES 1,B
CB89 RES 1,C
CB8A RES 1,D
CB8B RES l.E
CB8C RES 1|H
CB8D RES l.L
CB8E RES l.(HL)
CB8F RES 1,A
CB90 RES 2|B
CB91 RES 2.C
CB92 RES 2.D
CB93 RES 2.E
CB94 RES 2,H
CB95 RES 2,L
CB96 RES 2,(HL)
CB97 RES 2,A
CB98 RES 3,B
CB99 RES 3,C
CB9A RES 3,D
CB9B RES 3.E
CB9C RES 3|H
CB9D RES 3.L
CB9E RES 3,(HL)
CB9F RES 3,A
CBAO RES 4.B
CBA1 RES 4|C
CBA2 RES 4,D
CBA3 RES 4,E
CBA4 RES 4,H
CBA5 RES 4,L
CBA6 RES 4,(HL)
CBA7 RES 4,A
CBA8 RES 5,B
CBA9 RES 5,C
CBAA RES 5,D
CBAB RES 5,E
CBAC RES 5,H
CBAD RES 5.L
CBAE RES 5,(HL)
CBAF RES 5,A
CBBO RES 6,B
CBB1 RES 6,C
CBB2 RES 6,D
CBB3 RES 6.E

, CBB4 RES 6,H
CBB5 RES 6,L
CBB6 RES 6,(HL)
CBB7 RES 6,A

OBJECT CODE SOURCE CODE
CBB8 RES 7|B
CBB9 RES 7|C
CBBA RES 7|D
CBBB RES 7,E
CBBC RES 7|H
CBBD RES 7,L
CBBE RES 7,(HU)
CBBF RES 7,A
CBCO SET O.B
CBC1 SET 0,c
CBC2 SET 0.D
CBC3 SET 0,E
CBC4 SET 0,H
CBC5 SET O.L
CBC6 SET 0,(HL)
CBC7 SET 0,A
CBC8 SET 1.B
CBC9 SET i.c
CBCA SET l.D
CBCB SET 1.E
CBCC SET 1,H
CBCD SET 1.L
CBCE SET 1,(HL)
CBCF SET 1,A
CBDO SET 2,B
CBD1 SET 2>C
CBD2 SET 2,D
CBD3 SET 2.E
CBD4 SET 2.H
CBD5 SET 2,L
CBD6 SET 2,(HL)
CBD7 SET 2,A
CBD8 SET 3|B
CBD9 SET 3,C
CBDA • SET 3,D
CBDB SET 3|E
CBDC SET 3.H
CBDD SET 3,L
CBDE SET 3 i (H L)

CBDF SET 3,A
CBEO SET 4.B
CBE1 SET 4.C
CBE2 SET 4,D »
CBE3 SET 4.E
CBE4 SET 4,H
CBE5 SET 4,L
CBE6 SET 4,(HL)
CBE7 SET 4,A
CBE8 SET 5,B
CBE9 SET 5.C
CBEA SET 5.D
CBEB SET 5,E
CBEC SET 5,H
CBED SET 5,L
CBEE SET 5,(HL)
CBEF SET 5,A
CBFO SET 6|B
CBF1 SET 6,C
CBF2 SET 6.D
CBF3 SET 6,E

O B JEC T C O D E S O U R C E C O D E O B JEC T C O D E
CBF4 SET 6>H DD2874
CBF5 SET 6,L DD29
CBF6 SET 6»(HL) DD2A4433
CBF7 _ SET 6,A DD2A4433
CBF8 SET 7,B DD2B
CBF9 SET 7,C DD2B
CBFA SET 7,D DD2C
CBFB SET 7,E DD2D
CBFC SET 7,H DD2E66
CBFD SET 7,L DD31221144
CBFE SET 7,(HL) DD332211
CBFF SET 7,A DD3455
CC4433 CALL Z.3344H DD3555
CD4433 CALL 3344H DD365566
CE66 ADC A,66H DD39
CF RST 08H DD3B2211
DO RET NC DD3C4433
D1 POP DE DD3D4433
D24433 JP NC.3344H DD3E443366
D366 O U T (66H),A DD44
D44433 CALL NC.3344H DD45
D5 PUSH DE DD4655
D666 SUB A.66H DD4C
D7 RST 10H DD4D
D8 RET C DD4E55
D9 EXX DD54
DA4433 JP C.3344H DD55
DB66 ' IN A,(66H) DD5655
DC4433 CALL C.3344H DD5C
DD014433 LDW (HL),3344H DD5D
DD03 INCW (HL) DD5E55
DD042211 INC (SP+1122H) DD60
DD052211 DEC (SP+1122H) DD61
DD06221166 LD (SP+1122H),66H DD62
DD09 ADD IX,BC DD63
DDOB DECW (HL) DD64
DDOC INC (H L + IX) DD65
DDOD DEC (H L + IX) DD6655
DD0E66 LD (H L + IX), 66H DD67
DD1144339988 LDW (3344H),8899H DD68
DD134433 INCW (3344H) DD69
DD14 INC (H L + IY) DD6A
DD15 DEC (H L + IY) DD6B
DD1666 LD (H L + IY) ,66H DD6C
DD19 ADD IX.DE DD6D
DD1B4433 DECW (3344H) DD6E55
DD1C INC (IX + IY) DD6F
DD1D DEC (IX + IY) DD7055
DD1E66 LD (IX + IY),66H DD7155
DD2074 JAR 77H DD7255
DD214433 i LD IX.3344H DD7355
DD214433 LDA IX,(3344H) DD7455
DD214433 LDW IX.3344H DD7555
DD224433 LD (3344H),IX DD7755
DD224433 LDW (3344H) ,IX DD782211
DD23 INC IX DD79
DD23 INCW IX DD7A
DD24 INC IXH DD7B
DD25 DEC IXH DD7C
DD2666 LD IXH.66H DD7D

S O U R C E C O D E
JAF 77H
ADD IX ,IX
LD IX ,(3344^1)
LDW IX,(3344H)
DEC IX
DECW IX
INC IXL
DEC IXL
LD IXL.66H
LDW (PC+1122H),3344H
INCW (PC+1122H)
INC (IX +55H)
DEC (IX +55H)
LD (IX+55H),66H
ADD IX,SP
DECW (PC+1122H)
INC (3344H)
DEC (3344H)
LD (3344H),66H
LD B.IXH
LD B.IXL
LD B ,(IX +55H)
LD C.IXH
LD C;IXL
LD C ,(IX +55H)
LD D,IXH
LD D.IXL
LD D ,(IX +55H)
LD E,IXH
LD E.IXL
LD E ,(IX +55H)
LD IXH.B
LD IXH.C
LD IXH.D
LD IXH.E
LD IXH ,IXH
LD IXH,IXL
LD H ,(IX +55H)
LD IXH,A
LD IXL,B
LD IXL.C
LD IXL.D
LD IXL,E
LD IXL,IXH
LD IXL,IXL
LD L ,(IX +55H)
LD IXL,A
LD (IX +55H),B
LD (IX+55HJ.C
LD (IX + 55H),D
LD (IX +55H),E
LD (IX+55HJ.H
LD (IX+55HJ.L
LD (IX +55H),A
LD A ,(SP+1122H)
LD A ,(H L + IX)
LD A ,(H L + IY)
LD A ,(IX + IY)
LD A,IXH
LD A,IXL

D-5

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
DD7E55 LD A,(IX+55H) , DDBB CP A,(IX+IY)
DD802211 ADD A,(SP+1122H) DDBC CP A.IXH
DD81 ADD A,(HL+IX) DDBD CP A.IXL
DD82 ADD A,(HL+IY) DDBE55 CP A,(IX+55H)
DD83 ADD A.(IX-MY) DDBF4433 CP A,(3344H)
DD84 ADD A.IXH DDC1 POP (HL)
DD85 ADD A,IXL DDC2 JP NZ.(HL)
DD8655 ADD A,(IX+55H) DDC4 CALL NZ.(HL)
DD874433 ADD A,(3344H) DDC5 PUSH (HL)
DD882211 ADC A,(SP+1122H) DDCA JP Z.(HL)
DD89 ADC A,(HL+IX) DDCB5506 RLC (IX+55H)
DD8A ADC A,(HL+IY) DDCB550E RRC (IX+55H)
DD8B ADC A,(IX+IY) DDCB5516 RL (IX+55H)
DD8C ADC A.IXH DDCB551E RR (IX+55H)
DD8D ADC A.IXL DDCB5526 SLA (IX+55H)
DD8E55 ADC A,(IX+55H) DDCB552E SRA (IX+55H)
DD8F4433 ADC A,(3344H) DDCB5536 TSET (IX+55H)
DD90221.1 SUB A,(SP+1122H) DDCB553E SRL (IX+55H)
DD91 SUB A,(HL+IX) DDCB5546 BIT 0,(IX+55H)
DD92 SUB A,(HL+IY) DDCB554E BIT 1,(IX+55H)
DD93 SUB A,(IX+IY) DDCB5556 BIT 2,(IX+55H)
DD94 SUB A.IXH DDCB555E BIT 3,(IX+55H)
DD95 SUB A.IXt DDCB5566 BIT 4,(IX+55H)
DD9655 SUB A,(IX+55H) DDCB556E IT 5,(IX+55H)
DD974433 SUB A,(3344H) DDCB5576 BIT 6,(IX+55H)
DD982211 SBC A,(SP+1122H) DDCB557E BIT 7,(IX+55H)
DD99 SBC A,(HL+IX) DDCB5586 RES 0,(IX+55H)
DD9A SBC A,(HL+IY) DDCB558E RES l.(IX+55H)
DD9B SBC A,(IX+IY) DDCB5596 RES 2,(IX+55H)
DD9C SBC A.IXH DDCB559E RES 3,(IX+55H)
DD9D SBC A.IXL DDCB55A6 RES 4,(IX+55H)
DD9E55 SBC A,(IX+55H) DDCB55AE RES 5,(IX+55H)
DD9F4433 SBC A,(3344H) DDCB55B6 RES 6,(IX+55H)
DDA02211 AND A,(SP+1122H) DDCB55BE RES 7,(IX+55H)
DDA1 AND A,(HL+IX) DDCB55C6 SET 0,(IX+55H)
DDA2 AND A.(HL+IY) DDCB55CE SET 1,(IX+55H)
DDA3 AND A,(IX+IY) DDCB55D6 SET 2,(IX+55H)
DDA4 AND A.IXH DDCB55DE SET 3,(IX+55H)
DDA5 AND A.IXL DDCB55E6 SET 4,(IX+55H)
DDA655 AND A,(IX+55H) DDCB55EE SET 5,(IX+55H)
DDA74433 AND A, (3344H) DDCB55F6 SET 6,(IX+55H)
DDA82211 XOR A.(SP+1122H) DDCB55FE SET 7,(IX+55H)
DDA9 XOR A,(HL+IX) DDCC CALL Z,(HL)
DDAA XOR A,(HL+IY) DDCD CALL (HL)
DDAB XOR A,(IX+IY) DDD14433 POP (3344H)
DDAC XOR A.IXH DDD2 JP NC.(HL)
DDAD XOR A.IXL DDD4 CALL NC.(HL)
DDAE55 XOR A,(IX+55H) DDD54433 PUSH (3344H)
DDAF4433 XOR A,(3344H) DDDA JP C.(HL)
DDB02211 OR A,(SP+1122H) DDDC CALL C.(HL)
DDB1 OR A,(HL+IX) DDE1 POP IX
DDB2 OR A.(HL+IY) DDE2 JP PO.(HL)
DDB3 OR A,(IX+IY) DDE3 EX (SP).IX
DDB4 OR A.IXH DDE4 CALL PO.(HL)
DDB5 OR A.IXL DDE5 PUSH IX
DDB655 OR A,(IX+55H) DDE9 JP (IX)
DDB74433 OR A,(3344H) . DDEA JP PE,(HL)
DDB82211 CP A,(SP+1122H) DDEB EX IX,HL
DDB9 CP A,(HL+IX) DDEC CALL PE,(HL)
DDBA CP A,(HL+IY) DDED022211 LDA IX,(SP+U22H)

D-6

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
DDED042211 LD IX,(SP+1122H) DDED3E55 LD (IX+55H),SP
DDED042211 LDW IX,(SP+1122H) DDED3E55 LDW (IX+55H),SP
DDED052211 LD (SP+1122H),IX DDED3F4433 EX A,(3344H)
DDED052211 LDW (SP+1122H),IX DDED402211 IN (SP+1122H),(C)
DDED0655 LD BC,(IX+55H) DDED412211 OUT (C),(SP+1122H)
DDED0655 LDW BC,(IX+55H) DDED42 SBC IX, BC
DDED072211 EX A,(SP+U22H) DDED48 IN (HL+IX),(C)
DDEDOA LDA IX,(HL+IX) DDED49 OUT (C),(HL+IX)
DDEDOC LD IX,(HL+IX) DDED4A ADC IX.BC
DDEDOC LDW IX,(HL+IX) DDED50 IN (HL+IY),(C)
DDEDOD LD (HL+IX),IX DDED51 OUT (C),(HL+IY)
DDEDOD LDW (HL+IX),IX DDED52 SBC IX.DE
DDED0E55 LD (IX+55H),BC DDED58 IN (IX+IY),(C)
DDED0E55 LDW (IX+55H),BC DDED59 OUT (C),(IX+IY)
DDEDOF EX A,(HL+IX) DDED5A ADC IX,DE
DDED12 LDA IX,(HL+IY) DDED60 IN IXH,(C)
DDED14 LD IX,(HL+IY) DDED61 OUT (C),IXH
DDED14 LDW IX.(HU-IY) DDED62 SBC IX,IX
DDED15 LD (HL+IY),IX DDED66 LDCTL IX, (C)
DDED15 LDW (HL+IY),IX DDED68 IN IXL,(C)
DDED1655 LD DE,(IX+55H) DDED69 OUT (C),IXL
DDED1655 LDW DE,(IX+55H) DDED6A ADC IX,IX
DDED17 EX A,(HL+IY) DDED6D ADD IX,A
DDED1A LDA IX,(IX+IY) DDED6E LDCTL (C),IX
DDED1C LD IX,(IX+IY) DDED72 SBC IX.SP
DDED1C LDW IX,(IX+IY) DDED784433 IN (3344H),(C)
DDEDID LD (IX+IYJ.IX DDED794433 OUT (C),(3344H)
DDED1D LDW (IX+IY),IX DDED7A ADC IX,SP
DDED1E55 LD (IX+55H),DE DDED8655 LDUD A,(IX+55H)
DDED1E55 LDW (IX+55H),DE DDED87 LDCTL IX.USP
DDED1F EX A,(IX+IY) DDED8E55 LDUD (IX+55H),A
DDED222211 LDA IX,(PC+1122H) DDED8F LDCTL USP.IX
DDED242211 LD IX,(PC+1122H) DDED9655 LDUP A,(IX+55H)
DDED242211 LDW IX,(PC+1122H) DDED9E55 LDUP (IX+55H),A
DDED252211 LD (PC+1122H),IX DDEDC02211 MULT A,(SP+1122H)
DDED252211 LDW (PC+1122H),IX DDEDC12211 MULTU A,(SP+1122H)
DDED2655 LD HL,(IX+55H) DDEDC2 MULTW HL,(HL)
DDED2655 LDW HL,(IX+55H) DDEDC3 MULTUW HL,(HL)
DDED27 EX A.IXH DDEDC42211 DIV HL,(SP+1122H)
DDED2A2211 LDA IX,(IX+1122H) DDEDC52211 DIVU HL,(SP+1122H)
DDED2C2211 LD IX,(IX+1122H) DDEDC6 ADDW HL.(HL)
DDED2C2211 LDW IX,(IX+1122H) DDEDC7 CPW HL.(HL)
DDED2D2211 LD (IX+U22H),IX DDEDC8 MULT A,(HL+IX)
DDED2D2211 LDW (IX+1122H),IX DDEDC9 MULTU A,(HL+IX)
DDED2E55 LD (IX+55H),HL DDEDCA DIVW DEHL.(HL)
DDED2E55 LDW (IX+55H),HL DDEDCB DIVUW DEHL.(HL)
DDED2F EX A.IXL DDEDCC DIV HL,(HL+IX)
DDED322211 LDA IX,(IY+1122H) DDEDCD DIVU HL,(HL+IX)
DDED342211 LD IX,(IY+1122H) DDEDCE SUBW HL,(HL)
DDED342211 LDW IX,(IY+1122H) DDEDDO MULT A,(HL+IY)
DDED352211 LD (IY+1122H),IX DDEDD1 MULTU A,(HL+IY)
DDED352211 LDW (IY+1122H),1X DDEDD24433 MULTW HL,(3344H)
DDED3655 LD SP,(IX+55H) DDEDD34433 MULTUW HL,(3344H)
DDED3655 LDW SP,(IX+55H) DDEDD4 DIV HL,{HL+IY)
DDED3755 EX A,(IX+55H) DDEDD5 DIVU HL,(HL+IY)
DDED3A2211 LDA IX,(HL+1122H) DDEDD64433 ADDW HL,(3344H)
DDED3C2211 LD IX,(HL+1122H) DDEDD74433 CPW HL,(3344H)
DDED3C2211 LDW IX,(HL+1122H) DDEDD8 MULT A,(IX+IY)
DDED3D2211 LD (HL+1122H),IX DDEDD9 MULTU A,(IX+IY)
DDED3D2211 LDW (HL+1122H),IX DDEDDA4433 DIVW DEHL,(3344H)

D-7

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
DDEDDB4433 DIVUW DEHL,(3344H) ED042211 LDW HL,(SP+1122H)
DDEDDC DIV HL,(IX+IY) ED052211 LD (SP+U22H),HL
DDEDDD DIVU HL,(IX+IY) ED052211 LDW (SP+1122H),HL
DDEDDE4433 SUBW HL,(3344H) ED06 LD BC.(HL)
DDEDEO MULT A.IXH ED06 LDW BC.(HL)
DDEDE1 MULTU A.IXH ED07 EX A.B
DDEDE2 MULTW HL,IX EDOA LDA HL,(HL+IX)
DDEDE3 MULTUW HL.IX EDOB LD (HL+IX),A
DDEDE4 DIV HL,IXH EDOC LD HL,(HL+IX)
DDEDE5 DIVU HL,IXH EDOC LDW HL,(HL+IX)
DDEDE6 ADDW HL,IX EDOD LD (HL+IX),HL
DDEDE7 CPW HL.IX EDOD LDW (HL+IX),HL
DDEDE8 MULT A,IXL EDOE LD (HL).BC
DDEDE9 MULTU A,IXL EDOE LDW (HL),BC
DDEDEA DIVW DEHL.IX EDOF EX A,C
DDEDEB DIVUW DEHLJX ED12 LDA Hl,(HL+IY)
DDEDEC DIV HL,IXL ED13 LD (HL+IY),A
DDEDED DIVU HL.IXL ED14 LD HL,(HL+IY)
DDEDEE SUBW HL.IX ED14 LDW HL,(HU+IY)
DDEDF055 MULT A,(IX+55H) ED15 LD (HL+IY),HL
DDEDF155 MULTU A,(IX+55H) ED15 LDW (HL+IY),HL
DDEDF22211 MULTW HL,(PC+1122H) ED16 LD de,(hl)
DDEDF32211 MULTUW HL,(PC+1122H) ED16 LDW DE,(HL)
DDEDF455 DIV HL,(IX+55H) ED17 EX A.D
DDEDF555 DIVU HL,(IX+55H) ED1A LDA HL,(IX+IY)
DDEDF62211 ADDW HL,(PC+1122H) ED1B LD (IX+IY),A
DDEDF72211 CPW HL,(PC+1122H) ED1C LD HL,(IX+IY)
DDEDF84433 MULT A,(3344H) ED1C LDW HL.jlX+IY)
DDEDF94433 MULTU A,(3344H) ED1D LD (IX+IY),HL
DDEDFA2211 DIVW DEHL,(PC+1122H) ED1D LDW (IX+IY),HL
DDEDFB2211 DIVUW DEHL,(PC+1122H) ED1E LD (HL),DE
DDEDFC4433 DIV HL,(3344H) ED1E LDW (HL),DE
DDEDFD4433 DIVU HL.(3344H) EDIF EX A,E
DDEDFE2211 SUBW HL,(PC+1122H) ED222211 LDA HL,(PC+1122H)
DDF12211 POP (PC+1122H) ED232211 LD (PC+1122H),A
DDF2 JP P.(HL) ED242211 LD HL,(PC+li22H)
DDF4 CALL P,(HL) ED242211 LDW HL,(PC+1122H)
DDF52211 PUSH (PC+1122H) ED252211 LD (PC+1122H),HL
DDF9 LDW SP,IX ED252211 LDW (PC+1122H),HL
DDF9 LD SP.IX ED26 LD HL,(HL)
DDFA JP M.(HL) ED26 LDW HL,(HL)
DDFC CALL m ,(hl) ED27 EX A,H
DE66 SBC A.66H ED2A2211 LDA HL,(IX+1122H)
DF RST 18H ED2B2211 LD (IX+1122H),A
EO RET PO ED2C2211 LD HL,(IX+1122H)
El POP HL ED2C2211 LDW HL,(IX+1122H)
E24433 JP P0.3344H ED2D2211 LD (IX+1122H),HL
E3 EX (SP),HL ED2D2211 LDW (IX+1122H),HL
E44433 CALL P0.3344H ED2E LD (HL),HL
E5 PUSH HL ED2E LDW (HL),HL
E666 AND A.66H ED2F EX A.L
E7 RST 20H ED322211 LDA HL,(IY+1122H)
E8 RET PE ED332211 LD (IY+1122H),A
E9 JP (HL) ED342211 LD HL,(IY+1122H)
EA4433 JP PE.3344H ED342211 LDW HL,(IY+1122H)
EB EX DE.HL ED352211 LD (IY+1122H),HL
EC4433 CALL PE.3344H ED352211 LDW (IY+1122H),HL
ED022211 LDA HL,(SP+1122H) ED36 LD SP.(HL)
ED032211 LD (SP+1122HJ.A ED36 LDW SP,(HL)
ED042211 LD HL,(SP+1122H) ED37 EX A,(HL)

D-8

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
ED3A2211 LDA HL,(HL+1122H) ED7766 Dl 66H
ED3B2211 LD (HL+U22H),A ED78 IN A.(C)
ED3C2211 LDW HL,(HL+1122H) ED79 OUT (C).A
ED3D2211 LD (HL+1122H),HL ED7A ADC HL.SP
ED3D2211 LDW (HL+1122H),HL ED7B4433 LD SP,(3344H)
ED3E LD (HL),SP ED7B4433 LDW SP,(3344H)
ED3E LDW (HLJ.SP ED7F66 El 66H
ED3.F EX A, A

B. (C)
ED82 INIW

ED40 IN ED83 OUTIW
ED41 OUT (C).B ED842211 EPUM (SP+1122H)
ED42 SBC HL.BC ED852211 MEPU (SP+1122H)
ED434433 LD (3344H),BC ED86 LDUD a .(hl)
ED434433 LDW (3344HJ.BC ED87 LDCTL HL,USP
ED44 NEG A ED8A INDW
ED45 RETN ED8B OUTDW
ED46 IM 0 ED8C EPUM (HL+IX)
ED47 LD l,A ED8D MEPU (HL+IX)
ED48 IN C.(C) ED8E LDUD (hl),a
ED49 OUT (C).c ED8F LDCTL USP.HL
ED4A ADC HL.BC ED92 INIRW
ED4B4433 LD BC,(3344H) ED93 OTIRW
ED4B4433 LDW BC,(3344H) ED94 EPUM (HL+IY)
ED4C NEG HL ED95 MEPU (HL+IY)
ED4D RETI ED96 LDUP a .(hl)
ED4E IM 3 ED97 EPUF
ED4F LD R,A ED9A INDRW
ED50 IN D,(C) ED9B OTDRW
ED51 OUT (C),D ED9C EPUM (IX+IY)
ED52 SBC HL.DE ED9D MEPU (IX+IY)
ED534433 LD (3344H),DE ED9E LDUP (hl).a
ED534433 LDW (3344HJ.DE ED9F EPUI
ED55 RETIL EDAO LDI
ED56 IM 1 EDA1 CPI
ED57 LD A,l

E.(C)
EDA2 INI

ED58 IN EDA3 OUTI
ED59 OUT (C),E EDA42211 EPUM (PC+1122H)
ED5A ADC HL.DE EDA52211 MEPU (PC+1122H)
ED5B4433 LD DE,(3344H) EDA6 EPUM (HL)
ED5B4433 LDW DE,(3344H) EDA74433 EPUM (3344H)
ED5E IM 2 EDA8 LDD
ED5F LD A.R EDA9 CPD
ED60 IN H,(C) EDAA IND
ED61 OUT (C).H EDAB OUTD
ED62 SBC HL.HL EDAC2211 EPUM (IX+1122H)
ED64 EXTS A EDAD2211 MEPU (IX+1122H)
ED65 PCACHE EDAE MEPU (HL)
ED66 LDCTL HL.(C) EDAF4433 MEPU (3344H)
ED67 RRD EDBO LDIR
ED68 IN L.(C) EDB1 CPIR
ED69 OUT (C),L EDB2 INIR
ED6A ADC HL.HL EDB3 OTIR
ED6C EXTS HL EDB42211 EPUM (IY+1122H)
ED6D ADD HL,A EDB52211 MEPU (IY+1122H)
ED6E LDCTL (C),HL EDB7 IN HL.(C)
ED6F RLD EDB7 INW HL.(C)
ED70 TSTI (C) EDB8 LDDR
ED714433 SC 3344H EDB9 CPDR
ED72 SBC HL.SP EDBA INDR
ED734433 LD (3344HJ.SP EDBB OTDR
ED734433 LDW (3344HJ.SP EDBC2211 EPUM (HL+1122H)

D -9

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
EDBD2211 MEPU (HL+1122H) EDFB DIVUW DEHL.SP
EDBF OUT (C),HL EDFC DIV HL,A
EDBF OUTW (C),HL EDFD DIVU HL,A
EDCO MULT A.B EDFE SUBW HL.SP
EDC1 MULTUA.B EE66 XOR A.66H
EDC2 MULTW HL.BC EF RST 28H
EDC3 MULTUW HL,BC FO RET P
EDC4 DIV HL,B FI POP AF
EDC5 DIVU HL,B F24433 JP P.3344H
EDC6 ADDW HL.BC F3 Dl
EDC7 CPW HL.BC F44433 CALL P.3344H
EDC8 MULT A.C F5 PUSH AF
EDC9 MULTUA.C F666 OR A.66H
EDCA DIVW DEHL.BC F7 RST 30H
EDCB DIVUW DEHL.BC F8 RET M
EDCC DIV HL.C F9 LDW SP.HL
EDCD DIVU HL.C F9 LD SP.HL
EDCE SUBW HL.BC FA4433 JP M.3344H
EDDO MULT A.D FB El
EDD1 MULTUA.D FC4433 CALL M.3344H
EDD2 MULTW HL.DE FD032211 INCW (IX+1122H)
EDD3 MULTUW HL.DE FD042211 INC (PC+1122H)
EDD4 DIV HL,D FD052211 DEC (PC+1122H)
EDD5 DIVU HL,D FD06221166 LD (PC+1122H),66H
EDD6 ADDW HL.DE FD09 ADD IY.BC
EDD7 CPW HL.DE FD0B2211 DECW (IX+1122H)
EDD8 MULT A.E FD0C2211 INC (IX+1122H)
EDD9 MULTUA.E FD0D2211 DEC (IX+1122H)
EDDA DIVW DEHL.DE FD0E221166 LD (IX+1122H),66H
EDDB DIVUW DEHL.DE FD132211 INCW (IY+1122H)
EDDC DIV HL,E FD142211 INC (IY+1122H)
EDDD DIVU HL,E FD152211 DEC (IY+1122H)
EDDE SUBW HL.DE FD16221166 LD (IY+1122H),66H
EDEO MULT A.H FD19 ADD IY.DE
EDE1 MULTUA.H FD1B2211 DECW (IY+1122H)
EDE2 MULTW HL.HL FD1C2211 INC (HL+1122H)
EDE3 MULTUW HL.HL FD1D2211 DEC (HL+1122H)
EDE4 DIV HL,H FD1E221166 LD (HL+1122HJ.66H
EDE5 DIVU HL,H FD214433 LD IY.3344H
EDE6 ADDW HL.HL FD214433 LDA IY,(3344H)
EDE7 CPW HL.HL FD214433 LDW IY.3344H
EDE8 MULT A.L FD224433 LD (3344HJ.IY
EDE9 MULTUA.L FD224433 LDW (3344HJ.IY
EDEA DIVW DEHL.HL FD23 INC IY
EDEB DIVUW DEHL.HL FD23 INCW IY
EDEC DIV HL,L FD24 INC IYH
EDED DIVU HL,L FD25 DEC IYH
EDEE SUBW HL.HL FD2666 LD IYH.66H
EDEF EX H.L FD29 ADD IY.IY
EDFO MULT A,(HL) FD2A4433 LDW IY.(3344H)
EDF1 MULTUA.(HL) FD2B DEC IY
EDF2 MULTW HL.SP FD2B DECW IY
EDF3 MULTUW HL.SP FD2C INC IYL
EDF4 DIV HL.(HL) FD2D DEC IYL
EDF5 DIVU HL.(HL) FD2E66 LD IYL.66H
EDF6 ADDW HL.SP FD3455 INC (IY+55H)
EDF7 CPW HL.SP FD3555 DEC (IY+55H)
EDF8 MULT A,A FD365566 LD (IY+55HJ.66H
EDF9 MULTUA.A FD39 ADD IY.SP
EDFA DIVW DEHL.SP FD44 LD B.IYH

P-10

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
FD45 LD B.IYL FD9S SUB A.IYL
FD4655 LD B,(IY+55H) FD9655 SUB A,(IY+55H)
FD4C LD C.IYH FD982211 SBC A,(PC+1122H)
FD4D LD C.IYL FD992211 SBC A,(IX+1122H)
FD4E55 LD C,(IY+55H) FD9A2211 SBC A,(IY+1122H)
FD54 LD D.IYH FD9B2211 SBC A.(HL+il22H)
FD55 LD D.IYL FD9C SBC A.IYH
FD5666 LD D,(IY+55H) FD9D SBC A.IYL
FD5C LD E.IYH FD9E55 SBC A,(IY+55H)
FD5D LD E.IYL FDA02211 AND A,(PC+1122H)
FD5E55 LD E,(IY+55H) FDA12211 AND A,(IX+1122H)
FD60 LD IYH.B FDA22211 AND A,(IY+1122H)
FD61 LD IYH.C FDA32211 AND A,(HL+1122H)
FD62 LD IYH.D FDA4 AND A.IYH
FD63 LD IYH.E FDA5 AND A.IYL
FD64 LD IYH.IYH FDA655 AND A,(IY+55H)
FD65 LD IYH.IYL FDA82211 XOR A,(PC+1122H)
FD6655 LD H,(IY+55H) FDA92211 XOR A,(IX+1122H)
FD67 LD IYH,A FDAA2211 XOR A,(IY+1122H)
FD68 LD IYL,B FDAB2211 XOR A,(HL+1122H)
FD69 LD IYL,C FDAC XOR A.IYH
FD6A LD IYL,D FDAD XOR A.IYL
FD6B LD IYL.E FDAE55 XOR A,(IY+55H)
FD6C LD IYL.IYH FDB02211 OR A,(PC+1122H)
FD6D LD IYL.IYL FDB12211 OR A,(IX+1122H)
FD6E55 LD L,(IY+55H) FDB22211 OR A,(1Y+1122H)
FD6F LD IYL.A FDB32211 OR A,(HL+1122H)
FD7055 LD (IY+55H),B FDB4 OR A.IYH
FD7155 LD (IY+55H),C FDB5 OR A.IYL
FD7255 LD (IY+55H),D FDB655 OR A,(IY+55H)
FD7355 LD (IY+55H),E FDB82211 CP A,(PC+1122H)
FD7455 LD (IY+55H),H FDB92211 CP A,(IX+1122H)
FD7555 LD (IY+55H),L FDBA2211 CP A,(IY+1122H)
FD7755 LD (IY+55H),A FDBB2211 CP A,(HL+1122H)
FD782211 LD A,(PC+1122H) FDBC CP A.IYH
FD792211 LD A,(IX+1122H) FDBD CP A.IYL
FD7A2211 LD A,(IY+1122H) FDBE55 CP A,(IY+5SH)
FD7B2211 LD A,(HL+1122H) FDC22211 JP NZ,(PC+1122H)
FD7C LD A.IYH FDC32211 JP (PC+1122H)
FD7D LD A.IYL FDC42211 CALL NZ,(PC+1122H)
FD7E55 LD A,(IY+55H) FDCA2211 JP Z,(PC+1122H)
FD802211 ADD A,(PC+1122H) FDCB5506 RLC (IY+55H)
FD812211 ADD A,(IX+1122H) FDCB550E RRC (IY+55H)
FD822211 ADD A,(IY+1122H) FDCB5516 RL (IY+55H)
FD832211 ADD A,(HL+1122H) FDCB551E RR (IY+55H)
FD84 ADD A.IYH FDCB5526 SLA (IY+55H)
FD85 ADD A.IYL FDCB552E SRA (IY+55H)
FD8655 ADD A,(IY+55H) FDCB5536 TSET (IY+55H)
FD882211 ADC A,(PC+1122H) FDCB553E SRL (IY+55H)
FD892211 ADC A,(IX+1122H) FDCB5546 BIT 0,(IY+55H)
FD8A2211 ADC A,(IY+1122H) FDCB554E BIT 1,(IY+55H)
FD8B2211 ADC A,(HL+1122H) FDCB5556 BIT 2,(IY+55H)
FD8C ADC A.IYH FDCB555E BIT 3,(IY+55H)
FD8D ADC A.IYL FDCB5566 BIT 4,(IY+55H)
FD8E55 ADC A,(IY+55H) FDCB556E BIT 5,(IY+55H)
FD902211 SUB A,(PC+1122H) FDCB5576 BIT 6,(IY+55H)
FD912211 SUB A,(IX+1122H) FDCB557E BIT 7,(IY+55H)
FD922211 SUB A,(IY+1122H) FDCB5586 RES 0,(IY+55H)
FD932211 SUB A,(HL+1122H) FDCB558E RES 1,(IY+55H)
FD94 SUB A.IYH FDCB5596 RES 2,(IY+55H)

D-11

OBJECT CODE SOURCE CODE
FDCB559E RES 3,(IY+55H)
FDCB55A6 RES 4,(IY+55H)
FDCB55AE RES 5,(IY+55H)
FDCB55B6 RES 6,(IY+55H)
FDCB55BE RES 7,(IY+55H)
FDCB55C6 SET 0,(IY+55H)
FDCB55CE SET 1,(IY+55H)
FDCB55D6 SET 2,(IY+55H)
FDCB55DE SET 3,(IY+55H)
FDCB55E6 SET 4,(IY+55H)
FDCB55EE SET 5,(IY+55H)
FDCB55F6 SET 6,(IY+55H)
FDCB55FE SET 7,(IY+55H)
FDCC2211 CALL Z,(PC+1122H)
FDCD2211 CALL (PC+1122H)
FDD22211 JP NC,(PC+1122H)
FDD42211 CALL NC,(PC+1122H)
FDDA2211 JP C,(PC+1122H)
FDDC2211 CALL C,(PC+1122H)
FDE1 POP IY
FDE22211 JP PO,(PC+1122H)
FDE3 EX (SP),IY
FDE42211 , CALL PO,(PC+1122H)
FDE5 PUSH IY
FDE9 JP (IY)
FDEA2211 JP PE,(PC+1122H)
FDEB EX IY,HL
FDEC2211 CALL PE,(PC+1122H)
FDED022211 LDA IY,(SP+1122H)
FDED042211 LD IY,(SP+1122H)
FDED042211 LDW IY,(SP+1122H)
FDED052211 LD (SP+1122H),IY
FDED052211 LDW (SP+1122H),IY
FDED0655 LD BC,(IY+55H)
FDED0655 LDW BC,(IY+55H)
FDED072211 EX A,(PC+il22H)
FDEDOA LDA IY,(HL+IX)
FDEDOC LD IY,(HL+IX)
FDEDOC LDW IY,(HL+IX)
FDEDOD LD (HL+IX),IY
FDEDOD LDW (HL+IX),IY
FDED0E55 LD (IY+55H),BC
FDEDOE55 LDW (IY+55H),BC
FDEDOF2211 EX A,(IX+1122H)
FDED12 LDA IY,(HL+IY)
FDED14 LD IY,(HL+IY)
FDED14 LDW IY,(HL+IY)
FDED15 LD (HL+IY),IY
FDED15 LDW (HL+IY),IY
FDED1655 LD DE,(IY+55H)
FDED1655 LDW DE,(IY+55H)
FDED172211 EX A,(IY+1122H)
FDED1A LDA IY,(IX+IY)
FDED1C LD IY,(IX+IY)
FDED1C LDW IY,(IX+IY)
FDED1D LD (IX+IY),IY
FDED1D LDW (IX+IY),IY
FDED1E55 LD (IY+55H),DE
FDED1E55 LDW (IY+55H),DE
FDED1F2211 EX A,(HL+1122H)

OBJECT CODE SOURCE CODE
FDED222211 LDA IY,(PC+1122H)
FDED242211 LD IY,(PC+1122H)
FDED242211 LDW IY,(PC+1122H)
FDED252211 LD (PC+1122H),IY
FDED252211 LDW (PC+1122H),IY
FDED2655 LD HL,(IY+55H)
FDED2655 LDW HL,(IY+55H)
FDED27 EX A,IYH
FDED2A2211 LDA IY,(IX+1122H)
FDED2C2211 LD IY,(IX+1122H)
FDED2C2211 LDW IY,(IX+1122H)
FDED2D2211 LD (IX+1122H),IY
FDED2D2211 LDW (IX+il22H),IY
FDED2E55 LD (IY+55H),HL
FDED2E55’ LDW (IY+55H),HL
FDED2F EX A.IYL
FDED322211 LDA IY,(IY+1122H)
FDED342211 LD IY,(IY+1122H)
FDED342211 LDW IY,(IY+1122H)
FDED352211 LD (IY+1122H),IY
FDED352211 LDW (IY+1122H),IY
FDED3655 LD SP,(IY+55H)
FDED3655 LDW SP,(IY+55H)
FDED3755 EX A,(IY+55H)
FDED3A2211 LDA IY,(HL+1122H)
FDED3C2211 LD IY,(HL+1122H)
FDED3C2211 LDW IY,(HL+il22H)
FDED3D2211 LD (HL+1122H),IY
FDED3D2211 LDW (HL+1122H),IY
FDED3E55 LD (IY+55H),SP
FDED3E55 LDW (IY+55H),SP
FDED402211 IN (PC+1122H),(C)
FDED412211 OUT (C),(PC+1122H)
FDED42 SBC IY.BC
FDED482211 IN (IX+1122H),(C)
FDED492211 OUT (C),(IX+1122H)
FDED4A ADC IY,BC
FDED502211 IN (IY+1122H),(C)
FDED512211 OUT (C),(IY+1122H)
FDED52 SBC IY.DE
FDED582211 IN (HL+1122H),(C)
FDED592211 OUT (C),(HL+1122H)
FDED5A ADC IY.DE
FDED60 IN IYH,(C)
FDED61 OUT (C).IYH
FDED62 SBC IY,IY
FDED66 LDCTL IY,(C)
FDED68 IN IYL,(C)
FDED69 OUT (C).IYL
FDED6A ADC IY.IY
FDED6D ADD IY,A
FDED6E LDCTL (C),IY
FDED72 SBC lY.SP
FDED7A ADC IY,SP
FDED8655 LDUD A,(IY+55H)
FDED87 LDCTL IY.USP
FDED8E55 LDUD (IY+55H),A
FDED8F LDCTL USP,IY
FDED9655 LDUP A,(IY+55H)
FDED9E55 LDUP (IY+55H),A

D-12

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
FDEDC02211 MULT A,(PC+1122H) FDEDE5 DIVU HL.IYH
FDEDC12211 MULTU A,(PC+1122H) FDEDE6 ADDW HL.IY
FDEDC22211 MULTW HL,(IX+1122H) FDEDE7 CPW HL.IY
FDEDC32211 MULTUW HL,(IX+1122H) FDEDE8 MULT A.IYL
FDEDC42211 DIV HL,(PC+1122H) FDEDE9 MULTU A.IYL
FDEDC52211 DIVU HL,(PC+1122H) FDEDEA DIVW DEHL.IY
FDEDC62211 AD DW HL,(IX+1122H) FDEDEB DIVUW DEHL.IY
FDEDC72211 CPW HL,(IX+1122H) FDEDEC DIV HL.IYL
FDEDC82211 MULT A,(IX+1122H) FDEDED DIVU HL.IYL
FDEDC92211 MULTU A,(IX+1122H) FDEDEE SUBW HL.IY
FDEDCA2211 DIVW DEHL,(IX+1122H) FDEDF055 MULT A,(IY+55H)
FDEDCB2211 DIVUW DEHL,(IX+1122H) FDEDF155 MULTU A,(IY+55H)
FDEDCC2211 DIV HL,(IX+1122H) FDEDF24433 MULTW HLI3344H
FDEDCD2211 DIVU HL,(IX+1122H) FDEDF34433 MULTUW HL.3344H
FDEDCE2211 SUBW HL,(IX+1122H) FDEDF455 DIV HL,(IY+55H)
FDEDD02211 MULT A,(IY+1122H) FDEDF555 DIVU HL,(IY+55H)
FDEDD12211 MULTU A,(IY+1122H) FDEDF64433 ADDW HL.3344H
FDEDD22211 MULTW HL,(IY+1122H) FDEDF74433 CPW HL.3344H
FDEDD322U MULTUW HL,(IY+1122H) FDEDF866 MULT A.66H
FDEDD42211 DIV HL,(IY+1122H) FDEDF966 MULTU A.66H
FDEDD52211 DIVU HL,(IY+1122H) FDEDFA4433 DIVW DEHL.3344H
FDEDD62211 ADDW HL,(IY+1122H) FDEDFB4433 DIVUW DEHL.3344H
FDEDD72211 CPW HL,(IY+1122H) FDEDFC66 DIV HL.66H
FDEDD82211 MULT A,(HL+1122H) FDEDFD66 DIVU HL.66H
FDEDD92211 MULTU A,(HL+1122H) FDEDFE4433 SUBW HL.3344H
FDEDDA2211 DIVW DEHL,(IY+1122H) FDF22211 JP P,(PC+1122H)

FDEDDB2211 DIVUW DEHL,(IY+U22H) FDF42211 CALL P.(PC+1122H)
FDEDDC2211 DIV HL,(HL+1122H) FDF54433 PUSH 3344H
FDEDDD2211 DIVU HL,(HL+1122H) FDF9 LD SP.IY
FDEDDE2211 SUBW HL,(IY+1122H) FDF9 LDW SP.IY
FDEDEO MULT A,IYH FDFA2211 JP M.(PC+1122H)
FDEDE1 MULTUA.IYH FDFC2211 CALL M,(PC+1122H)
FDEDE2 MULTW HL.IY FE66 CP A.66H
FDEDE3 MULTUW HL,IY FF RST 38H
FDEDE4 DIV HL.IYH

D-13

Appendix E.
Instruction Timing

The Z280 CPU processes instructions using a three-
stage pipeline consisting of an instruction
prefetch u n it, an instruction decoder, and an
instruction execution u n it. Each section of the
pipeline operates autonomously, communicating with
the other stages of the pipeline v ia handshakes
and local buses. The pipelined architecture of
the Z280 MPU greatly increases program throughput;
as one instruction is being executed, the next
instruction can be decoded, and the instruction
a fte r that can be fetched.

The autonomous operation of the three stages in
the Z280 CPU instruction pipeline makes i t
d i f f ic u l t to calculate exact instruction execution
time?. Furthermore, execution times are affected
by cache a c tiv ity ; the current cache contents
determine the number o f external memory
transactions made during the fetch and execution
of a given ins truction . In th is appendix, three
types of tables are provided for calculation of
instruction timinqs: instruction execution tim inq,
instruction fetch and decode tim inq, and bus
transaction tim ing. A ll tables l i s t execution and
transaction timings in terms of CPU clock cycles.

Tables E-1, £-2, and E-3 show the execution times
for a l l instructions and in te rrup t and trap
processing. Table E-1 l is ts the execution times
for a l l CPU-executed instructions, with the
instructions lis te d by functional group. Table
E-2 l is ts the execution times for the extended
instructions. Table E-3 shows execution times for
in te rrup t and trap events. These tables assume
that the instruction has been fetched, decoded,
and is ready for execution, and that the bus is
id le when the execution un it makes a request fo r a
transaction. Thus, the execution times shown in
these tables represent the maximum execution rate
o f the machine. The actual execution rate w i l l be
somewhat lower than th is maximum for two reasons:
(1) the execution un it must compete with the
prefetch un it for use of the external bus, and (2)
some instructions may take longer to prefetch and
decode than the previous instruction w i l l take to
execute.

Furthermore, the a c tiv ity of the execution un it
can affect the prefetch un it when certain
instructions are executed. In Tables E-1 and E-2,
an "F" on the right-hand side of the table
indicates that the pipeline is flushed when that
instruction is executed; the pipeline is also
flushed durinq a l l in te rrup t and trap processing.

In these cases, the next instruction must be
completely fetched and decoded before the
execution un it can proceed. The execution times
in these tables do not include the time necessary
to fetch and decode the next instruction i f the
pipeline is flushed.

In Tables E-1 through E-3, execution times are
given as the number o f absolute CPU clock cycles
plus the number and type of bus transactions. Bus
transaction timings are shown separately in Tables
E-5 through E-10.

Table E-4 contains the ins truction fetch and
decode tim ing, and Tables E-5 through E-10 show
bus transaction timings. The CPU clock is divided
by a factor o f 1, 2, or 4 to form the bus clock;
thus, bus transaction timing depends on the
relationship between the CPU clock and bus clock.
A ll three types of bus timing are shown in the
tables. Furthermore, because of the d iffe ren t
phase relationships between the request fo r a
transaction and the bus clock, a variable number
o f cycles is included in parentheses in Tables E-4
through E-10; the average would be h a lf o f the sum
of the minimum and maximum numbers lis te d in the
parentheses. The notation "w" in these tables
refers to the number of wait states added to the
transaction (e ither by assertinq the WAIT input or
by programming the appropriate CPU control
registers) in addition to any automatically
inserted wait states. Again, the numbers in these
tables assume that the bus is id le when the
transaction request is made.

E-1

Table E-1. Instruction Execution Times

Instruction Addressing Modes Execution Time

8-BIT LOAD GROUP

EXA,src src = R,RX,IR,DA,X,SX
RA.SR.BX

R,FIX:4
IR,DAtX,SX,RA,SR,BX: 5 + rd(src) + wr(src)

EXH.L 4

LD dst.src dst = A
src = R,RX,IM,IR,DA,X

SX.RA.SR.BX
(BC).(DE)

R,RX: 2
IR,DA,X,SX,RA,SR,BX: 3 + rd(src)
(BC),(DE): 3 + rcKIR)

or
dst = R,RX,IR,DA,X

SX,RA,SR,BX
(BC).(DE)

src=A

R.RX.IM: 2
iR,DA,X,SX,RA,SR,BX: 3 + wr(dst)
(BC),(DE): 3 + wr(IR)

LD dst.src dst = R
src = R,RX,IM,IR.SX

R.RX.IM: 2
IR.SX: 3 + rd(src)

or
dst = R,RX,IR.SX
src = R

R,RX: 2
IR.SX: 3 + wr(dst)

LD dst.n dst = R,RX,IR,DA,X,
SX,RA,SR,BX

R,RX: 2
!R,DA,X,SX,RA,SR,BX: 3 + wr(dst)

LDUD dst.src dst = A
src = IR,SXinuser

3 + rd(src)

or
dst = IR.SX In user
src = A

3 + wr(dst)

LDUP dst.src dst=A
src = IR.SX in user

3 + rd(src)

or
dst = IR.SX in user
src = A

3 + wr(dst)

See Table E-1 Note on page E-10.

£-2

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Motion Execution Tims

16-BIT LOAD GROUP

EXsrc.HL src = DE.IX.IY 5

EX (SP),dst dst=HL,IX,IY 5 + rd(IR) + wr(IR)

EXAF.AF' 2

EXX 2

LD[W]dst,src dst = HL.IX.IY IM: 2
src = IM,DA,X,RA,SR.BX DA.X.RA.SR.BX: 3 + rd(src)

or

dst = DA,X,RA,SR.BX
src = HL,IX,IY

3 + wr(dst)

LD[W] dst.src dst = BC.DE.HL.SP IM: 2
src = IM,IR,DA,SX IR.DA.SX: 3 + rd(src)

or

dst = IR.DA.SX
src = BC.DE.HL.SP

3 + wr(dst)

LD[W] dst.nn dst = RR,IR,DA,RA RR:2
IR.DA.RA: 3 + wr(dst)

LD[W]dst,nn dst = RR 2

LD[W] dst.src dst = SP HL.IX.IY.IM: 2
src = HL,IX,IY,IM,IR,DA,SX IR.DA.SX: 3 + rd(src)

or

dst = IR.DA.SX
src = SP

3 + wr(dst)

LDA dst.src dst = HL.IX.IY DA: 2
src = DA,X,RA,SR,BX X.RA.SR: 5

BX:6

POPdst dst = RR,IR,DA,RA RR: 9 + rd(IR)
IR.DA.RA: 9 + rd(IR) + wr(dst)

PUSH src src = RR,IM,IR,DA,RA RR.IM: 8 + wr(IR)
IR.DA.RA: 9 + rd(src) + wr(IR)

See Table E-1 Note on page E-10.

E-3

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

BLOCK TRANSFER AND SEARCH GROUP

CPD 8 + rd(IR)

CPDR 8 + rd(IR), each Iteration

CPI 8 + rd(IR)

CPIR 8 + rcKIR), each Iteration

LDD 9 + rd(IR) + wr(IR)

LDDR 9 + rd(IR) + wr(IR), each Iteration

LDI 9 + rd(IR) + wr(IR)

LDIR 9 + rd(IR) + wr(IR), each iteration

8-BIT ARITHMETIC AND LOGIC GROUP

ADC [A,]src src = R,RX,IM,IR,DA, R,RX,IM:2
X,SX,RA,SR,BX !R,DA,X,SX,RA,SR,BX:3 + rd(src)

ADD [A,]src src = R,RX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

AND [A,]src src = R,RX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

CP [A,]src src = R,RX,IM,IR,DA, R,RX,IM: 2
X,SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

CPL [A] 2

DAA[A] 3

DECdst dst = R,RX,IR,DA,X, R,RX: 3
SX,RA,SR,BX IR,DA,X,SX,RA,SR,BX: 4 + rd(dst) + wr(dst)

DIV[HL,]src src = R,RX,IM,DA,X, R,RX,IM: 46
SX,RA,SR,BX 4 if divide by zero

20 if overflow
DA,X,SX.RA.SR.BX: 47 + rd(src)

5 + rd(src) if divide by zero
21 + rd(src) if overflow

DIVU [HL,]src src = R,RX,IM,DA,X, R.RX.IM: 34
SX.RA.SR.BX 4 if divide by zero

13 if overflow
DA.X,SX.RA.SR.BX: 35 + rd(src)

5 + rd(src) if divide by zero
14 + rd(src) if overflow

EXTS [A] 4

INC dst dst=R,RX,IR,DA,X, R.RX: 3
SX.RA.SR.BX IR,DA,X,SX.RA.SR.BX: 4 + rd(dst) + wr(dst)

MULT [A,]src src = R,RX)IM,IR,DA, R.RX.IM: 17*
X,SX.RA.SR.BX IR.DA.X.SX.RA.SR.BX: 18 + rd(src)*

*add 1 if src < 0

See Table E-1 Note on page E-10.

E-4

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

8-BIT ARITHMETIC AND LOGIC GROUP (Continued)

MULTU [A,]src src = R,RX,IM1IR,DA,
X,SX,RA,SR,BX

R,RX,IM: 17
IR,DA,X,SX,RA)SR,BX: 18 + rd(src)

NEG [AJ 3

OR [A.jsrc . src = R.RX.IM.IR.DA,
X.SX.RA.SR.BX

R.RX.IM: 2
IR,DA,X.SX.RA.SR.BX: 3 + rd(src)

SBC [A.jsrc src = R,RX,IM,IR,DA,
X.SX.RA.SR.BX

R,RX,IM: 2
IR,DA,X.SX.RA.SR.BX: 3 + rd(src)

SUB [A.jsrc src = R,RX,IM1IR,DA,
X,SX,RA,SR,BX

R.RX.IM: 2
IR.DA.X.SX.RA.SR.BX: 3 + rd(src)

XOR [A,]src src = R.RX.IM.IR.DA,
X.SX.RA.SR.BX

R.RX.IM: 2
IR,DA,X.SX.RA.SR.BX: 3 + rd(src)

16-BIT ARITHMETIC AND LOGIC GROUP

ADC dst,src dst = HL
src = BC,DE,HL,SP

3

or

* ' dst = IX
src = BC,DE,IX,SP

3

or

dst = IY
src = BC,DE,IY,SP

3

ADD dst,src dst = HL
src = BC,DE,HL,SP

3

or

dst = IX
src+BC,DE,IX,SP

3

or

dst = IY
src = BC,DE,IY,SP

3

ADD dst,A dst= HL,IX,IY 3

ADDW [HL,]src src = RR,IM,DAfX,RA RR.IM: 3
DA.X.RA: 3 + rd(src)

CPW[HL,]src src = RR.IM,DA,X,RA RR,IM: 3
DA.X.RA: 3 + rd(src)

DECWdst dst = RR,IR,DA,X,RA RR: 3
IR,DA,X,RA: 4 + rd(dst) + wr(dst)

DEC[W] dst dst = RR 3

DIVUW [DEHL,]src

See Table E-1 Note

src = RR,IM,DA,X,RA

on page E-10.

RR.IM: 51
4 if divide by zero
13 if overflow

DA,X,RA: 52 + rd(src)
5 + rd(src) if divide by zero
14 + rd(src) if overflow

E-5

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

16-BIT ARITHMETIC AND LOGIC GROUP (Continued)

DIVW [DEHLJsrc src^RR.IM.DA.X.RA RR.IM: 63
4 if divide by zero
20 if overflow

DA.X.RA: 64 + rd(src)
5 + rd(src) if divide by zero
21 + rd(src) if overflow

EXTS HL 4

INCW dst dst = RR,IR,DA,X,RA RR: 3 x
IR.DA.X.RA: 4 + rd(dst) + wr(dst)

INC[W] dst dst = RR 3

MULTUW [HLJsrc src = RR,IM,DA,X,RA RR,IM: 24*
DA,X,RA: 25 + rd(src)*

*add 1 if src < 0

MULTW [HL.Jsrc src = RR.IM,DA,X,RA RR.IM: 24
DA,X,RA: 25 + rd(src)

NEG HL 3

SBC dst,src dst = HL
src = BC,DE,HL,SP

3 ‘ ' - •

or

dst = IX
src = BC,DE,IX,SP

3

or

dst = IY
src-BC.DEJYSP

3

SUBW [HL.Jsrc src = RR,IMlDAIXtRA RR,IM: 3
DA,X,RA: 3 + rd(src)

See Table E-1 Note on page E-10.

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

BIT MANIPULATION, ROTATE AND SHIFT GROUP

BIT b.dst dst = R.IR.SX R: 2
IR.SX: 3 + rd(dst)

RES b,dst dst = R.IR.SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RLdst dst = R,IR,SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RLA 2

RLCdst dst = R.IR.SX R: 2
IR.SX: 4 + rd(dst) +wr(dst)

RLCA 2

RLD 5 + rd(IR) + wr(IR)

RRdst dst = R,IR,SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RRA 2

RRC dst dst = R.IR.SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RRCA 2

RRD 5 + rd(IR) + wr(IR)

SET b,dst dst = R,IR,SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

SLA dst dst = R,IR,SX R:2
IR.SX: 4 + rd(dst) + wr(dst)

SRAdst dst = R,IR,SX R: 2
IR.SX: 4 + rd(dst) -l- wr(dst)

SRLdst dst = R,IR,SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

TSETdst dst = R.IR.SX R: 3
IR.SX: 1 + rd(dst) + wr(dst)

See Table E-1 Note on page E-10.

E-7

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

PROGRAM CONTROL GROUP

CALL cc.dst dst = IR.DA.RA cc not true: 3
IR.DA: 11 + wr(IR) F*
RA: 12 + wr(IR) F

CALLdst dst = IR,DA,RA IR.DA: 11 + wr(IR) F
RA: 12 + wr(IR) F

CCF 2

DJNZdst Q
.

CO II 5 B is zero: 6
B is non-zero: 7 F

JAFdst C
l

CO II 5 AF'notinuse:3
AF'in use: 4 F

JARdst dst = RA Alternate file not in use: 3 .

Alternate file in use: 4 F

JP cc.dst dst = IR,DA,RA cc not true: 3
cc true: 4 F

JPdst dst = IR,DA,RA 4 F

JR cc.dst dst = RA cc not true: 3
cc true: 4 F

JRdst dst = RA 4 F

RET 9 + rd(IR) F

RET cc cc not true: 3
cc true: 9 + rd(IR) F

RSTdst dst = DA 9 + wr(IR) F

SCnn 1 + System Call Trap

SCF 2

* “F” indicates that the pipeline is flushed when that instruction is executed.
See Table E-1 Note on page E-10.

E-8

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing ModesivivWww Execution Time

INPUT/OUTPUT INSTRUCTION GROUP

IN dst,(C) dst = R,RX,DA,X,RA,SR>BX R,RX: 3 + in()
DA,X,RA,SR,BX: 4 + ln() + wr(dst)

IN A,(n) 5 +in()

IN[W] HL,(C) 3 + ln()

IND 8 +in() +wr(IR)

INDW 8 + ln() + wr(IR)

INDR 8 + in() + wr(IR), each iteration

INDRW 8 + in() + wr(IR), each iteration

INI 8 + in() + wr(IR)

INIW 8 +in() + wr(IR)

INIR 8 + in() + wr(IR), each iteration

INIRW 8 + in() + wr(IR), each iteration

OUT (C),src src = R,RX,DA,X,RA,SR,BX R,RX: 3 + out()
' DA.X.RA.SR.BX: 3 + rd(src) + out()

OUT (n),A 5 + out()

OUT[W](C),HL 3 + out()

OUTD 8 + rd(IR) + out()

OUTDW 8 + rd(IR) + out()

OTDR 8 + rd(IR) + out(), each iteration

OTDRW 8 + rd(IR) + out(), each iteration

OUTI 8 + rd(IR) + out()

OUTIW 8 + rd(IR) + out()

OTIR 8 + rd(IR) + out(), each iteration

OTIRW 8 + rd(IR) + out(), each iteration

TSTI (C) 3 + in()

See Table E-1 Note on page E-10.

E-9

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

CPU CONTROL GROUP

Di mask mask = Hex value 3 + out(l)

El mask mask = Hex value 3 + out(l)

HALT 11 + rd(halt) minimum

IMp p = 0,1,2,3 3

LD dst.src dst = A
src = l,R

2

LD dst.src dst = l,R
src = A

2

LDCTL dst.src dst = (C),USP (C): 4 + out(i) F*
src = HL,IX,IY USP: 2

or

dst = HL,IX,IY (C): 3 + in(l)
src = (C),USP USP: 2

NOP 2

PCACHE 2 F

RETI Z-BUS: 8 + rd(IR) F
Z80:8 + rd(reti) + rd(IR) F

RETIL 14 + 2*rd(IR) + out(l) F

RETN 7 + rd(IR) F

* “F" indicates that the pipeline is flushed when that instruction is executed.

NOTES:

1. This table assumes that the instruction has been fetched, decoded, and is ready for execution. The execution time for instructions
that cause the pipeline to be flushed do not include the time necessary to fetch and decode the following instruction.

2. This table assumes that the PAUSE input is inactive. If PAUSE is active, the execution unit will wait before beginning the next
instruction.

3. The bus is assumed to be idle when the execution unit makes a request for a transaction.
4. This table assumes that no exceptions occur during instruction execution except where indicated.

E-10

Table E-2. Extended Instmction Execution Times

Instruction Addressing Modes Execution Time

EXTENDED INSTRUCTION GROUP TEMPLATE FETCH (EPU ENABLE BIT SET T 0 1)

Aligned template 7 + epu(ifl) + epu(ifn) + out(l)

Unaligned template 7 + epu(ifl) + 2*epu(ifn) + out(l)

EXTENDED INSTRUCTION GROUP

EPU I (Internal Operation) 4 + p , F*

EPUF (CPU*-EPU) 6 + p + epu(cpu) F

MEPU dst (Memory*-EPU) dst = IR,DA,X,RA,SR,BX 5 + p + k*[3 + epu(wr)] F

EPUM src (EPU*-Memory) src = IR.DA.X.RA.SR.BX 5 + p + k*[3 + epu(rd)] F

* “F” indicates that the pipeline is flushed when that instruction is executed.

NOTES:
1. Additional cycles are necessary for address computation in the case of EPU-to-Memory and Memory*to-EPU instructions, as shown

below

IR.DA no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

2. The notation "p" in the table is the number of pause cycles added to the bus cycle. '' *
3. The notation "k” in the table is a function of n, the number of byte's to be transferred that is specified in the template, and the address

of the source or destination as shown below.

n is odd k = (n + 1)/2
n is even and aligned k = n/2
n is even and uhaligned k = (n = 2)12

4. See “Notes” from Table E-1.

E-11

Table E-3. Interrupt, TTap, and Special Condition Execution Times

Type Execution Time

INTERRUPTS

NMI in Modes 0,1,2 13 + iack(nmi012) + in(l) + out(l) + wr(IR)

ModeO 9 + out(l) + [iack(m0) for each byte of opcode]

Mode 1 13 + iack(m1) + in(l) + wr(IR) + out(l)

Mode 2 16 + iack(m2) + in(l) + wr(IR) + rd(IR) + out(l)

Mode 3 Nonvectored 28 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

Mode 3 Vectored 31 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

On-Chip (Mode 3) 28 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

TRAPS

Single-Step 26 + in(l) +2*wr(iR) + 2*rd(IR) + out(l)

Breakpoint-on-Halt 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Division Exception 25 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Stack Overflow Warning 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Access Violation 25 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

System Call 30 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

Privileged Instruction 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

EPU Memory 38 + in(l) +4*wr(iR) + 2*rd(IR) + out(l)

Memory*-EPU 38 + in(l) +4*wr(IR) + 2*rd(IR) + out(i)

A*-EPU 31 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

EPU Internal Operation 31 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

MISCELLANEOUS

FATAL 15 + out(l) + rd(halt) minimum

RESET 3 + rd(reset) + out(l) minimum •

EPU Data Page Fault 1 + epu(ifl) and then Access Violation trap

NOTES:

1. Additional cycles are necessary for address computation in the case of EPU-to-Memory and Memory-to-EPU traps, as shown
below.

IR,DA no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

2. The pipeline is flushed at the end of any interrupt or trap sequence.

E-12

Table E-4. Instruction Fetch and Decode Timing

Condition 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

First byte, cache 4 4 4

First byte, external 9 + w 12 + 2w + (0-1) 17 + 4w + (0-3)

First byte, burst 12 + w 18 + 2w + (0-1) 29 + 4w + (0-3)

Subsequent byte, cache 1 1 1

Subsequent byte, external 5 + w 8 + 2w + (0-1) 13 + 4w + (0-3)

Subsequent byte, burst 8 + w 14 + 2w + (0-1) 25 + 4w + (0-3)

NOTES:

1. The term “first” means the first byte fetched following a flushed pipeline. All other bytes are “subsequent”. With a full pipeline, only
the execution times are necessary.

2. With a 16-bit external bus, the prefetch unit tries to fetch words from external memory though bytes are transferred to the pipeline.
Bytes other than the one requested are placed in cache.

3. A burst transfer transfers a four-word block starting with the word with the three least significant bits being zero. The appropriate byte
is transferred to the decoder as it is written to the cache. The execution unit of the pipeline can begin execution prior to the burst
transaction completion if the necessary bytes are fetched during the early part of the burst transaction.

4. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

5. The notation “w” in the transaction tables is the number of WAIT states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for IAD transactions) should not be
included.

6. Examples of instruction fetch/decode time (assuming flushed pipeline and 1 x bus timing):
a) Two-byte instruction in cache
b) Two-byte instruction both bytes not in cache
c) Two-byte instruction, first byte in cache, second not in cache
d) Four-byte instruction in cache
e) Four-byte instruction not in cache, no burst, not cacheable
f) Four-byte instruction not in cache, burst, cacheable
g) Six-byte instruction, burst, first two bytes in cache

[4 + 1] processor cycles
[(9 + w) + (5 + w)]
[4 + (5 + w)]
[4 + 1 +1 +1] processor cycles
[9 + w + 3 * (5 + w)] processor cycles
[12 + w + 1 + 1 + 1]
[4 + 1 + (8 + w) + 1 + 1 + 1]

E-13

Table E-5. Data Read Timing — rd(src), rd(dst), and rd(IR)

Condition 1x Bus Timing 2x Bus Timing 4 x Bus Timing

Byte Hit 5 5 5

Byte Miss 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

Aligned Word Hit 5 5 5

Aligned Word Miss 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

Unaligned Word Hit Hit 9 9 9

Unaligned Word Miss Hit 12 + w 15 + 2w + (0-1) 20 + 4w + (0-3)

Unaligned Word Hit Miss 12 + w 15 + 2w + (0-1) 20 + 4w + (0-3)

Unaligned Word Miss Miss 15 + w 21 + 2w + (0-2) 31 + 4w + (0-6)

TSET (cache) 8 + w 11 + 2w + (0-1) 16 + 4w + (0—3)

TSET (fixed memory) 6 6 6

Page Fault 4 + Access Violation trap 4 + Access Violation trap 4 + Access Violation trap

NOTES:

1. Additional cycles are necessary for address computation, as shown below.

IR,DA no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

2. A word is aligned if the address is even and the transfer is over a 16-bit bus. It is otherwise unaligned.
3. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

be half of the sum of the minimum and maximum numbers in parentheses.
4. The notation “w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

Table E-6. Data Write Timing — wr(src), wr(dst), and wr(IR)

Condition 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

Byte 5 5 5

Aligned Word 5 5 5

Unaligned Word 9 + w 12 + 2w + (0-1) 17 + 4w + (0-3)

Page Fault 4 + Access Violation trap 4 + Access Violation trap 4 + Access Violation trap

NOTES:

1. Additional cycles are necessary for address computation, as shown below.

IR.DA no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

2. A word is aligned if the address is even and the transfer is over a 16-bit bus. It is otherwise unaligned.
3. The pipeline is flushed whenever a byte being written is valid in the cache.
4. In the unaligned word case where the first byte is valid in cache, the execution time is 10 cycles with zero or one wait states and

9 + w cycles for two or more wait states.
5. The number in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

' be half of the sum of the minimum and maximum numbers in parentheses.
6. The notation "w" in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

E-14

Table E-7. I/O Read and Write Timing

TVpe 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

in(l) 5 5 5

in() 9 + w 13 + 2w + (0-1) 20 + 4w + (0-3)

wr(l) 5 5 5

wr() 5 5 5

NOTES:

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

2. The notation "w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

3. in(l) and wr(l) are performed internally within the Z280 MPU.

Table E-8. EPU Read and Write Timing

Type 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

epu(ifl) 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

epu(ifn) 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

epu(cpu) 9 + w 13 + 2w + (0-1) 20 + 4w + (0-3)

epu(wr) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

epu(rd) 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

NOTES:

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

2. The notation “w" in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

Table E-9. Interrupt Acknowledge Timing

TVpe 1 x Bus Timing 2 x Bus Timing 4 x E$us Timing

iack(nmi012) 4 4 4

iack(mO) 8 + w 13 + 2w + (0—1) 22 + 4w + (0-3)

iack(m1) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

iack(m2) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

iaek(m3) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

NOTES:

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

2. The notation “w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

3. iack(nmi012) is for NMI in modes 0, 1, and 2.
iack(mO) is for mode 0 interrupts.

E -1 5

Table E-10. Miscellaneous Transaction Timing

Type 1x Bus Timing 2 x Bus Timing 4 x Bus Timing

HALT Transaction 5 5 5

RESET Transaction 6 6 6

RETI Transaction 21 + w 31 + 2w +(0-2) 49 + 4w + (0-6)

NOTES:

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

2. The notation “w” in the transaction tables is the number of WAIT states added to the bus cycle in addition to any automatically
inserted WAIT states. This includes any WAITS added under program control.

E-16

Appendix F.
Compatible Peripheral Families

The Z280 MPU supports two d iffe ren t types of bus
in terface: the Z80-Bus and the Z-BUS. Families
of peripheral devices are available for both types
of component interconnect buses.

The Z80 Bus configurations o f the Z280 MPU have
two compatible peripheral fam ilies: the Z8400 and
Z8000/Z8500 peripheral fam ilies (Tables F-1 and
F-2). The Z8400 family o f devices were o rig in a lly
designed to support the Z80-Bus. The Z8000 series
of peripherals are designed for systems employing
multiplexed address/data buses, and are also
easily interfaced to Z80-Bus Z8000 MPU systems.
The Z8500 peripheral family is iden tica l to the

Table F-1 Z8400 Peripheral Family

Part Number IVi n nAilInnDescription

Z8410 DMA Direct Memory Access Controller
Z8420 PIO Parallel Input/Output Controller
Z8430 CTC Counter/Timer Circuit
Z8440/1/2 SIO Serial Input/Output Controller
Z8470 DART Dual Asynchronous

Receiver/Ttansmitter

Table F-2. Z8000/Z8500 Peripheral Family

Part Number Description

Z8016/Z8516 D7C Direct Memory Access Transfer Controller
Z8030/Z8530 SGC Serial Communications Controller
Z8036/Z8536 CIO Counter/Timer and Parallel I/O Unit
Z8038 Z-FIO FIFO Input/Output Interface Unit
Z8060 Z-FIFO Buffer Unit and Z-FIO Expander
Z8065 BEP Burst Error Processor
Z8068 Z-DCP Data Ciphering Processor
Z8090/Z8590 UPC Universal Peripheral Controller

(ROM-based)
Z8094/Z8594 UPC Universal Peripheral Controller

(RAM-based)

Z8000 fam ily, except the devices are configured to
interface to non-multiplexed buses: the Z8500
series devices can be used in Z280 MPU systems
where the address/data bus is de-multiplexed
external to the processor.

The Z-BUS versions of the Z280 MPU are supported
by the Z8000/Z8500 peripheral family (Table F-2).
These devices interface d ire c tly to the Z-BUS.

Refer to the Zilog Components Data Book, fo r
further information regarding these peripheral
fam ilies.

F-1

Glossary

access protection: A function of memory manage­
ment that controls read, w rite , and execute access
to memory locations, protecting proprietary or
operating system memory areas from tampering by
unauthorized users.

access protection v io la tio n : An incorrect or fo r­
bidden attempt to access a memory location; for
example, an attempt to w rite to a read-only page.
An access v io la tion causes the CPU to abort the
current instruction and generate an Access
V io lation trap.

acctnulator: A reg ister w ith in a central
processing un it (CPU) that can hold the resu lt o f
an arithmetic or log ica l operation.

address space: A set o f addresses that are
accessed in a s im ila r manner. The Z280 MPU
contains four types o f address spaces: CPU
reg is ter, CPU control reg is ter, memory, and I/O.
The memory space can be divided in to four separate
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data.

addres8inq mode: The way in which the location of
an operand is specified. There are nine addressing
modes in the Z280 MPU: Register, Immediate,
Register Ind irect, Direct Address, Indexed, Short
Index, Base Index, Relative Address, and Stack
Pointer Relative.

address tag: The portion o f certain associative
memories that is compared against a referenced
address to determine whether the matching value is
found. The address tag for a cache block is the
physical memory address.

address translation : The process o f mapping log­
ic a l addresses in to physical addresses.

aligned address: An address that is a multiple of
an operand's size in bytes. Aligned word
addresses are a m ultiple of two.

associative memory: A memory in which data is
accessed by specifying a value rather than a
location. The cache is an associative memory.

autodecrement: The operation of decrementing an
address in a reg ister by the operand's size in
bytes. The decrement amount is one fo r byte
operands, two for word operands.

autoincrement: The operation o f incrementing an
address in a reg ister by the operand's size in
bytes. The increment amount is one for byte
operands, two for word operands.

base address: The address used, alonq with an
index and/or displacement value, to calculate the
e ffective address of an operand. The base address
is located in a reg is te r, the Program Counter, or
the ins truction .

Bass Index (BX) addressinq node: In th is mode,
the contents o f the base reg ister and index regis­
te r are added to obtain the e ffec tive address.

burst transaction: The transfer of several con­
secutive items o f data in one memory transaction.

bus master: The device in control o f the bus.

bus request: A request for control o f the bus
in it ia te d by a device other than the bus master.

byte: A data item containing eight contiguous
b its . A byte is the basic data un it for
addressing memory and peripherals.

cache: An on-chip buffer that automatically
stores copies of recently used memory locations
(both instructions and data), allowing fast access
for memory fetches.

Central Processing Unit (CPU): The primary
functioning un it of a computer, consisting o f an
ALU, control logic for decoding and executing
instructions and con tro lling program flow, and
registers.

coprocessor: A processor that works synchronously
with the CPU to execute a single instruction
stream using the Extended Processing Architecture
(EPA).

destination: The reg is ter, memory location, or
device to which data are to be transferred.

G-1

Glossary

D irect Address (DA) addressing mode: In th is
mode, the effective address is contained in the
ins truction .

displacem ent: A constant value located in the
instruction that is used for calculating the
e ffective address of an operand.

e ffe c tiv e address: The log ica l memory address of
an operand, calculated by adding the base address,
an optional index value, and an optional
displacement.

EPU in te rn a l operation: An EPU-handled operation
that controls EPU operations but does not transfer
data.

exception: A condition or event that a lte rs the
usual flow o f instruction processing. The Z280
MPU supports three types o f exception: reset,
in te rrup ts , and traps.

Extended Processing Architecture (EPA): A CPU
fa c i l i ty that allows the operations defined in the
architecture to be extended by hardware or
software. I f enabled, the CPU transfers EPA
instructions to an Extended Processing Unit (EPU)
for execution; i f disabled, the CPU traps EPA
instructions for software emulation.

Extended Processing U nit (EPU): An external
device, that handles Extended Processing
Architecture instructions (such as floa ting -po in t
arithm etic).

flowthrough transaction: A DMA-initiated data
transfer consisting o f separate read and write
transactions. Data is temporarily stored in the
DMA channel between the read and w rite
transactions.

flyby transaction: A transaction controlled by
the bus master, but in which another device
transfers data to the responding device.

frame: A block o f physical memory used by the
memory management mechanism to map log ica l memory
pages.

global bus: A bus shared by t ig h t ly coupled,
multiple CPUs; the bus master is chosen by an
external a rb ite r device.

h it: A h it occurs when a associative memory is
searched for a value and a match is found.

id e n tifie r word: A 16-bit code Saved on the
system stack during exception processing that
provides information about the cause of the
exception.

Immediate (IM) addressing mode: In th is mode, the
operand i3 contained in the instruction .

index: A value located in a reg ister used for
calculating the effective address of an operand.
The index value usually specifies the calculated
o ffse t o f an operand from the orgin of an array or
other data structure.

Indexed (X) addressing mode: In th is mode, the
contents o f an index reg ister are added to a base
address contained in the instruction to obtain the
effective address.

Ind irect Register (IR) addressing mode: In th is
mode, the e ffective address is contained in a
reg is ter.

in te rru p t: An asynchronous exception that occurs
when an NMI or INT line is activated, usually when
a peripheral device needs attention.

least recently used (LRU): The CPU records the
order of use fo r cache blocks. When a tag miss
occurs, the CPU replaces the least recently used
block.

local bus: The bus controlled by the CPU and
shared with slave processors.

log ical address: The address manipulated by the
program. The memory management mechanism
translates log ica l addresses to physical
addresses.

loosely coupled CPUs: CPUs that execute
independent instruction streams and communicate
through a m ulti-ported peripheral, such as a Z8038
FIO I/O in terface u n it.

Master Status reg is ter: A 16-bit CPU control
reg ister that contains status information
describing the current operating states o f the
CPU.

memor y management: The process of translating
log ica l addresses in to physical addresses, plus
certain protection functions. In the Z280 MPU,
memory management is integrated in to the chip.

memory-mapped I/O : An I/O device accessed in the
memory address space.

miss: A miss occurs when an associative memory is
searched for a value and no match is found.

nonmaskable in te rru p t: The highest p r io r ity
in te rrup t; cannot be disabled.

G-2

Glossary

page: A logica l memory un it mapped by the memory
management mechanism to a physical memory frame.

paged translation : A method o f address
translation in which the log ica l and physical
address spaces are divided in to fixed, equal-sized
un its called pages and frames, respectively.
During address transla tion , a log ica l page is
mapped to an a rb itra ry physical frame.

physical address: The 24-bit address required for
accessing memory and peripherals, obtained by the
CPU's address translation hardware.

p ipeline: A computer design technique in which an
ins truction is executed in a seguence of stages by
d iffe re n t functional un its . The functional units
can be operating on several d iffe ren t instructions
simultaneously, s im ilia r to an automobile assembly
lin e .

prefetchinq: A b ility of the CPU to fetch an
instruction or operand before the previous
instructions have been completed.

privileged instruction: An instruction that
performs I/O operations, accesses control
reg isters, or performs some other operating system
function. Privileged instructions execute in
system mode only.

Program Counter (PC): One o f the two Program
Status reg isters; i t contains the address o f the
current ins truction .

Program Status reg isters: The two registers
(Program Counter and Master Status reg ister) that
contain the Program Status. The Program Status is
automatically saved during exception processing.

protection : See access protection.

read access: The type of memory access used by
the CPU for fetching data operands other than
those specified by Immediate addressing mode.

refresh: To restore information that fades away
i f le f t alone. For example, dynamic memories must
be refreshed period ica lly in order to re ta in th e ir
contents.

Register (R) addressing node: In th is mode, the
operand is in a general-purpose reg is ter.

R elative Address (RA) addressing node: In th is
mode, the displacement in the instruction is added
to the contents o f the Program Counter to obtain
the e ffective address.

relocation: The process o f mapping a logica l
address to a d iffe ren t physical address, so that
m ultip le processes can use the same logica l
address for d is tin c t physical memory locations.

request: A signal or message used by a device to
indicate the need for some action or resource.

reset: A CPU operating state or exception that
results when a reset request is signaled on the
RESET line .

responder: The device to which bus transactions
transfer data.

se lf mod ify ing program: A program that stores to
a location from which a subsequent instruction is
fetched.

semaphore : A storage location used as a Boolean
variable to synchronize the use o f resources among
m ultip le programming tasks. A semaphore ensures
that a shared resource is allocated to only one
task at any given time.

service routine: Program code that is executed in
response to an in te rrup t or trap.

Short Index addressing mode: In th is mode, the
contents o f the IX or IY req ister are added to an
8 -b it displacement corftained in the instruction to
obtain the e ffec tive address of the operand.

slave processor: A processor, such as a Direct
Memory Access transfer con tro lle r, that performs
dedicated functions asynchronously to the CPU.

source: The req is te r, memory location, or device
from which data are being read.

sp atia l lo c a lity : The characteristic o f program
behavior whereby consecutive memory references
often apply to closely located addresses.

stack: An area o f memory used fo r temporary
storaqe and subroutine linkages. A stack uses the
f i r s t - in , last-out method for storing and
re triev ing data; the last data w ritten onto the
stack w i l l be the f i r s t data read from the stack.

Stack Pointer (SP): A reg ister indicating the top
(lowest address) o f the processor stack used by
Call and Return instructions fo r linking
procedures. User and system modes o f operation
use separate Stack Pointers, the User Stack
Pointer (USP) and System Stack Pointer (SSP).

G-3

Glossary

system modes A CPU mode of operation, used for
operatinq system functions. In th is mode, the CPU
can execute privileged (and a l l other)
instructions.

System Stack Pointer (SSP)s The Stack Pointer
used while the CPU is in system mode. User mode
programs cannot access the SSP.

tag h its On a memory reference, a tag h i t occurs
when the cache address tags are searched for the
referenced address and a match is found.

tag miss: On a memory reference, a tag miss
occurs when the cache address tags are searched
for the referenced address and no match is found.

temporal lo c a lity : The characteristic of program
behavior whereby memory references often apply to
a location that has been referred to recently.

tig h tly coupled CPUs: CPUs that execute
independent instruction streams and communicate
through shared memory on a common (qlobal) bus.

transaction: A basic bus operation involving the
transfer of one byte or word of data between the
CPU and a memory or peripheral device.

trap : An exception that occurs when certain
conditions, such as an ' access protection
v io la tion , are detected during execution of an
instruction .

unaligned address: An address that is not a
multiple of an operand's size in bytes. Odd
addresses are unaligned for words.

user mode: A CPU mode of operation, generally
used for application programs. In th is mode, the
CPU cannot execute privileged instructions or
access protected memory locations.

User Stack Pointer (USP): The Stack Pointer used
while the CPU is in user mode. System mode
programs can access the USP with the Load Control
ins truction .

vectored in terru p t: A in te rrup t that uses the
low-order byte of the id e n tif ie r word as a vector
to an in te rrup t service routine; can be disabled.

v irtu a l memory: A memory management technique in
which the system's logica l memory address space is
not necessarily the same as, and can be much
larger than, the available physical memofcy.

w ait s ta te : A clock period that is added to a
memory or I/O transaction due to an active WAIT
signal. Wait states are used to prolong memory
and I/O transactions to devices with long access
times.

word: A data item containing sixteen contiguous
bits.*

w rite access: The type of memory access used by
the CPU for storing data operands.

G-4

Index

-A -
Access v i o l a t i o n , 1 :4 , 7:5 -
Access v i o l a t i o n t r a p , 1 :3 , 5 : 3 ,4 , 6 : 4 , 5 , 7 : 1 , 2 , 7
Add /Sub t rac t f l a g , 5:1
Address spaces, 1 : 2 ,6 , 4 : 1 ,6

CPU c o n t r o l r e g i s t e r space, 1 :2 , 2 : 1 , 2 , 4 : 2 , 6
CPU r e g i s t e r space, 1 :2 , 2 :1>2, 4 :6
I /O address space, 1 :2 , 2 : 1 , 4 , 4 : 2 ,6
Memory address space, 1 :2 , 2 : 1 , 3 , 4 :1 -6

Address t r a n s l a t i o n , 2 :3 , 7 :1 -6
w i th p rogram/data s e p a r a t i o n , 7 : 1 , 2 , 4
w i t h ou t p rogram/data s e p a r a t i o n , 7 : 2 ,3

Addressing modes, 1 :3 , 4 : 1 - 6 , 5 : 1 , 6 , 1 0 , 7 : 2 ,5
Base Index (BX) , 1 :6 , 4 : 1 , 5 , 6 , 5 : 6 ,1 0 , 10 :7 , B:1
D i r e c t Address (DA), 1 :3 , 2 :4 , 4 : 1 , 2 , 5 :6 -1 0 , 10:7
Immediate (IM) , 1 :3 , 4:1
Indexed (X) , 1 : 3 ,6 , 4 : 1 , 3 , 6 , 5 : 6 ,1 0 , 10:7
I n d i r e c t Reg i s te r (I R) , 1 : 3 ,6 , 2 :4 , 4 : 1 , 2 , 5 : 4 , 6 - 8 , 1 0 , 10:7
Program Counter R e la t i v e (RA), 1 :3 , 4 : 1 , 4 , 5 : 6 , 8 , 1 0 , 7 : 2 , 5 , 10:7
Reg i s te r (R, RX), 1 :3 , 4:1 v
Shor t Index CSX), 1 :3 , 4 : 1 , 3 , 6 , 5 : 4 , 6 , 7
Stack Po in te r R e la t i v e (SR), 1 : 3 ,6 , 4 : 1 , 5 , 5 : 6 ,1 0 , 10:7

-B-
Base Index (BX) add ress ing mode, 1 : 3 ,6 4 : 1 , 5 , 6 , 5 : 6 , 10 , 10:7 B:1
B i t m a n ip u la t i o n , r o t a t e and s h i f t i n s t r u c t i o n s , 1 :3 , 5 : 1 ,7
Block move p o r t , 7:6
Block t r a n s f e r and search i n s t r u c t i o n s , 1 :3 , 4 :6 , 5 :1 -5
Boo ts t ra p mode, 3 :2 , 9 :20 -22 , 11:1
B r e a k p o in t - o n - H a l t t r a p , 1 :3 , 3 :4 , 5 : 3 , 4 , 6 :4 -6
Burst mode, 3 : 3 ,4 , 8 :2 , 9 :1 0 , 15 -1 7 , 10 :3, 12 :3, 1 3 : 1 , 3 , 9 , E:13
Bus c o n f i g u r a t i o n and t i m i n g

I-BUS, 1:1, 9 : 1 2 , 16 , 12 :1, 13:4
Z80 Bus, 1 :1 , 9 : 1 2 , 16 , 1 2 : 1 , 2 , 4 , A:1

Bus r e q ue s t , 1 :4 , 9 : 9 , 1 0 , 10 : 1 - 5 , 8 , 11:1, 12 :2-3
Bus request p r o t o c o I s , 10 :2 ,3
Bus Timing and C o n t ro l r e g i s t e r , 2 :2 , 3 : 1 -3 , 1 2 : 4 , 5 , 1 2 , 1 3 , 1 3 : 4 , 5 , 9 , 1 3
Bus Timing and I n i t i a l i z a t i o n r e g i s t e r , 2 :2 , 3 :1 , 9 : 1 , 9 , 10:2, 11 : 1 ,2 ,

12 :2 -5 ,1 5 , 1 3 : 2 , 4 , 5 , 9 , 1 9
Byte/Word r e g i s t e r s , 2:1

-C-

Cache Co n t r o l r e g i s t e r , 2 :2 , 3 : 1 , 3 , 4 , 8 : 1 - 4 , 12r4, 13 :4 ,9
Cache, 1 : 4 -6 , 3 : 3 , 4 , 6 :9 , 7 : 1 , 2 , 8 :1 -4 9 : 1 , 1 5 , 10:8, 12 :4, 13 : 4 , 9 , 1 4 , A:1, E : 1 , 13-14

F ixed -Add ress mode, 8:4
Memory mode, 3 : 3 , 4 , 8 :1 -3
O rg a n i z a t i o n , 3 : 3 , 4 , 8:1

Car ry f l a g , 5 : 1 - 3 , 7 , 8
Clock o s c i l l a t o r , 1 : 1 , 2 , 5 , 9 : 1 ,2
Co nd i t i on codes, 5 :1 -3
Cont inuous mode, 9 : 1 0 , 1 5 , 1 7 , 2 1 , 12 :3, 13:3

1-1

Coprocessors , 1 0 : 1 , 6 , 12:1, 13:14
and Extended Process ing A r c h i t e c t u r e , 10:6

Count r e g i s t e r , 9 : 9 ,1 2 - 1 6 , 11:1
Count-Time r e g i s t e r , 9 : 2 - 6 , 11 :1,3
Coun te r /T imer r e g i s t e r s , 6 :9 ,1 0 9 : 4 ,4

Counter /T imer Command/Status r e g i s t e r , 9 : 2 , 3 , 5 - 9
Coun te r /T imer C o n f i g u r a t i o n r e g i s t e r , 9 : 2 - 5 , 7 - 9 , 1 9
Count-Time r e g i s t e r , 9 : 2 - 6 , 11 :1,3
I /O addresses o f , 9 :7
Time Constant r e g i s t e r , 9 : 2 , 4 - 7 , 9 , 11:1

Coun te r /T imers , 1 : 4 ,5 , 9 : 1 - 9 , 1 7 , 1 9 , 10 :2 , 11 :1 ,3 , 12 :3, 13:2
Gates and t r i g g e r s , 9 : 2 -9
L i n k in g c o u n t e r / t i m e r s , 9 : 5 ,7
Opera t ing modes, 9 :3 -5
Sequence o f eve n ts , 9 :7 ,8
Termina l count c o n d i t i o n , 9 : 3 - 5 , 8 , 9 , 1 5 , 1 6

Count-Time r e g i s t e r , 9 :2 -6
CPU c o n t r o l i n s t r u c t i o n s , 5 : 1 ,9 ,1 0
CPU c o n t r o l r e g i s t e r space, 1 :2 , 2 : 1 ,2
CPU Co n t ro l r e g i s t e r s , 3 : 1 - 6 , 6:1
CPU r e g i s t e r f i l e , 2 : 1 ,2

Byte/Word r e g i s t e r s , 2 :1 ,2
F lag and accumula tor r e g i s t e r s , 2 : 1 ,2
Index r e g i s t e r s , 2:2
I n t e r r u p t r e g i s t e r , 2:2
Program Coun te r , 2 : 1 ,2
Refresh r e g i s t e r , 2 : 1 ,2
Stack P o i n t e r s , 2 :1 ,2

CPU r e g i s t e r space, 1 :2 , 2 : 1 ,2

- 0 -

Daisy cha in t i m i n g , 3 : 2 , 3 , 8:3
Oata t ype s , 1 : 2 ,6 , 2 :4 , 4 :6
D e s c r i p t o r Se lec t p o r t , 7:6
D e s t i n a t i o n Address r e g i s t e r , 9 : 9 , 1 0 , 1 2 - 1 4 , 1 6 , 1 7 , 11:1
D i r e c t Address (DA) address ing mode, 1 :3 , 2 :4 , 4 : 1 , 2 , 5 : 6 - 8 , 1 0 , 10:7
D i v i s i o n Excep t i on t r a p , 1 :3 , 3 :4 , 5 :3 , 6 : 4 ,5
DMA channe ls , 1 : 1 , 4 , 5 , 3 :2 , 7 :1 , 8 :2 , 9 : 1 , 9 - 1 7 , 2 1 , 1 0 : 2 , 4 , 6 , 11 :1 ,3 ,
12 : 2 , 3 , 1 3 - 1 5 , 1 3 : 4 , 5 , 1 7 ,1 8 , 1 9

DMA l i n k i n g , 9 : 9 ,1 2 , 1 3
DMA programming, DMAs l i n k e d to UART, 9 : 9 ,1 3 , 1 7 ,2 1 , 2 2
DMA programming, l i n k e d DMAs, 9 : 9 ,1 3 , 1 6
DMA r e g i s t e r s , 9 : 1 2 , 13 ,1 5 , 16 ,2 1
DMA sequence o f eve n ts , 9 :15,16
DMA t r a n s f e r mode, 9:10,11
E n d - o f - p r o c e s s , 9 : 1 1 - 1 6 ,2 1 , 13:2
P r i o r i t y r e s o l u t i o n , 9:12
Types o f DMA o p e r a t i o n s , 9:10

DMA Flowthrough t r a n s a c t i o n , 9 : 9 - 1 1 , 1 5 - 1 7 ,2 1 , 13 :5 ,17
DMA F l yby t r a n s a c t i o n , 9 : 9 -1 1 , 1 4 , 1 5 12 :2 ,13 , 13:2
DMA modes o f o p e r a t i o n , 9 : 1 0 , 1 1 , 1 4 , 12 :3, 13:3

b u r s t mode, 9 : 1 0 , 15 - 1 7 , 12 :3, 13 :3 , 9 , E:13
con t i nuous mode, 9 : 1 0 , 1 5 , 1 7 , 2 1 , 12 :3, 13:3
s i n g l e t r a n s a c t i o n mode,. 9 :1 0 , 17 , 12 :3, 13:3

DMA r e g i s t e r s , 9 : 1 2 , 13 ,1 5 , 16 ,2 1
Count r e g i s t e r , 9 : 1 0 , 1 2 , 1 3 , 1 4 ,1 6 , 11 :1,3
D e s t i n a t i o n Address r e g i s t e r , 9 : 9 , 1 0 , 1 2 , 1 3 , 1 5 - 1 7 , 11 :1 ,3
DMA Master C o n t ro l r e g i s t e r , 9 : 9 -1 3 , 1 5 , 1 7
DMA T ransa c t i on D e s c r i p t o r r e g i s t e r , 9 :9 ,1 1 - 17
Source Address r e g i s t e r , 9 :9 ,1 0 , 1 2 - 1 7 , 11:1

1-2

-E-

End -o f -P rocess , 9 : 1 1 - 1 6 ,2 1 , 12:3, 13:2
Excep t i on c o n d i t i o n s , 1 :3 , 5 : 3 ,4 , 6:1

i n t e r r u p t s , 1 : 3 , 5 , 6 , 2 :2 , 3 : 4 , 5 , 5 : 3 , 9 , 1 0 , 6 : 1 - 4 , 6 - 1 1 , 7:1
r e s e ts , 1 :3, 3 : 1 -6 , 6 :1 ,3 ,1 1
t r a p s , 1 : 3 -5 , 2 :2 , 3 : 4 , 5 , 5 : 3 , 4 , 9 , 1 0 , 6 : 1 , 4 - 1 1 , 7:1

Extended i n s t r u c t i o n s , 1 :4, 3 :5 , 5 : 1 , 3 , 1 0 , 6 :4 , 8 : 2 , 3 , 10 :6 -9 , 13 :5 ,9 ,1 4 ,1 5
execu t i on sequence, 10:7

Extended I n s t r u c t i o n t r a p , 1 :3 , 3 :5 , 5 : 3 ,1 0 , 6 :4 , 10 :7, 13:14
Extended Process ing Un i t s (EPUs), 1 :4 , 2 :3 , 3 : 5 , 6 , 4 :6 , 5 : 3 ,1 0 , 6 :4 , 8 : 3 ,4 ,

10 :6 -9 , 13 :14,15 , B:1
EPU t r a n s a c t i o n , 13 :2 -4 ,14

- F -
Fixed Address mode, 9:15
Flag r e g i s t e r , 1 :2 , 2 : 1 , 2 , 5:2
F lowthrough mode, 9 : 9 -1 1 , 1 5 - 1 7 , 13:5
F l yby mode, 9 : 9 - 1 1 , 1 4 , 1 5 , 12 :2 ,13 , 13 :2 ,17 ,18
Framing e r r o r , 9 :18 ,20

-H-
H a l f - C a f r y f l a g , 5:2

- I -

Immediate (IM) add ress ing mode, 1 :3 , 4 :1 ,
I ndex r e g i s t e r s , 2 : 1 ,2
Indexed (X) address ing mode, 1 : 3 ,6 , 4 : 1 , 3 , 6 , 5 : 6 , 7 , 1 0 , 10:7
I n d i r e c t Reg i s te r (IR) address ing mode, 1 : 3 ,6 , 2 :4 , 4 : 1 , 2 , 5 : 4 , 6 - 8 , 1 0 , 10:7
I n p u t /O u t p u t i n s t r u c t i o n group, 1 :3 , 5 : 1 ,9
I n s t r u c t i o n a b o r t s , 7 :7
I n s t r u c t i o n Ex ecu t i on , 5 : 3 ,4

and ex c e p t i o n s , 5:3
and i n t e r r u p t s , 5 : 3 ,4
and t r a p s , 5 : 3 ,4

I n s t r u c t i o n s e t , 1 : 3 ,6 , 5:12-172
b i n a r y encod ing, 5:10,11
f u n c t i o n a l g roups, 5:4

Block T rans fe r and Search group, 1 :3 , 4 :6 , 5 :1 -5
CPU Co n t r o l group, 5 : 1 ,9 ,1 0
Extended I n s t r u c t i o n group, 5 : 1 ,1 0 , 1 0 :6 ,7 , 1 3 : 5 , 9 , 14 ,1 5
In p u t /O u t p u t group , 1 :3 , 5 : 1 ,9
Program Co n t ro l group, 5 : 1 , 7 , 8
Ro ta te , S h i f t , and B i t M an ip u l a t i o n group, 1 :3 , 5 : 1 ,7
8- b i t A r i t h m e t i c and L o g i c a l group, ' \ : 3, 5 : 1 ,6
8- b i t Load group, 5 :1 ,4
1 6 - b i t A r i t h m e t i c Group, 1 :3 , 5 : 1 , 6 , 7
1 6 - b i t Load and Exchange group, 5 :1 ,5

n o t a t i o n , 5:10,11
I n t e r r u p t Acknowledge, 2 :2 , 3 :2 , 6 : 2 , 3 , 6 - 8 , 1 2 : 2 , 3 , 1 2 ,1 4 , 1 3 : 2 - 4 , 1 3 , 1 8 , A:1
I n t e r r u p t and Trap h a n d l i n g , 1 : 2 ,5
I n t e r r u p t Mask r e g i s t e r , 5:10
I n t e r r u p t Modes, 3 : 4 ,5 , 6 : 1 , 4 , 6 , 8 , 9 , A:1

0: 3 :5 , 5:10, 6 : 1 - 3 , 7 - 9 , 11 :1, 12:14, 13:19, A:1
1: 5 :10, 6 : 1 - 3 , 7 - 9
2: 2 .2 , 5:10, 6 : 2 , 3 , 7 - 9 , 7.2
3: 3 : 4 , 5 , 5 : 3 , 9 , 1 0 , 6 : 1 , 3 , 4 , 7 - 1 0 , 7 :1 , 9:1

1-3

I n t e r r u p t reque s t , 3 : 4 , 5 , 5 :3 , 6 : 1 - 3 , 6 , 7 , 9 8 :3 , 9 : 1 - 5 , 7 , 1 1 , 1 2 , 1 4 , 1 6 - 1 8 , 2 0 ,
1 2 : 2 , 3 , 9 , 1 2 , 1 4 , 13 :2 ,1 0 , 1 3 , 19
I n t e r r u p t r e g i s t e r , 2:2
I n t e r r u p t Shadow r e g i s t e r , 6 :3 ,9
I n t e r r u p t S tatus r e g i s t e r , 2 :2 , 3 : 4 , 5 , 6 : 2 , 8 - 1 0 , 11:1
I n t e r r u p t / T r a p Vector Table, 6 : 3 , 4 , 7 - 9 , 7:1
I n t e r r u p t / T r a p Vector Table P o i n t e r , 2 :2 , 3 : 4 , 5 , 6 : 3 , 4 , 1 1 , 7 :1 , 11 :1 ,2
I n t e r r u p t s , 1 : 3 , 5 , 6 , 2 :3 , 3 : 4 ,5 , 5 : 3 , 9 , 1 0 , 6 : 1 - 4 , 6 - 1 1 , 7 :1 , 9 :1 , 11 :1 ,2 ,
12 :5 , 12 , 14 , 1 3 : 3 , 5 , 1 9 , E : 1 , 12-13

maskable, 3 :4 , 6 : 1 - 3 , 7 - 9 , 12 :3 ,14 , 13 :3,19
nonmaskable, 5 . 4 .9 , 6 : 2 , 3 , 7 - 9 , 12 :3 ,14 , 13 :3 ,19

I n v a l i d a t i o n p o r t , 7:6
I /O

address space, 1 :2 , 2 : 1 , 4 , 4 : 2 , 6 , 9:1
Page r e g i s t e r , 2 : 2 , 4 , 3 : 4 ,5 , A:1
t r a n s a c t i o n , 3 : 2 , 5 , 9 :1 , 10 :2 , 1 2 : 2 , 4 , 1 0 , 1 3 :2 ,3 , E :9,16

x - L -
Local Address r e g i s t e r , 2 :2 , 3 : 1 , 3 , 10 :2 , 4 , 12 :10,15 , 13:4,19
Loose ly coupled m u l t i p l e CPUs, 10 :1 ,6

-M-
Master S ta tus r e g i s t e r (MSR) , 2 : 2 , 3 , 3 : 4 , 5 , 4 : 5 , 5 : 2 ,4 , 6 : 1 -1 1 , 7 :7 , 9 : 4 ,1 2 ,

12:14, 13:19, A;1
Memory Access V i o l a t i o n t r a p 1 :3 , 5 : 3 ,4 , 6 : 4 , 5 , 7 : 1 , 2 , 7
Memory Address space, 1 :2 , 2 :1 -4

System, 2:3
User , 2:3

Memory management, 1 : 1 , 3 , 4 , 7:1
Memory t r a n s a c t i o n , 1 2 : 2 , 5 , 1 0 ,1 3 , 13 :2 - 11 ,1 4 , 17 ,1 9
MMU, 1 : 2 , 4 , 5 , 2 :3 , 4 : 1 , 5 :9 , 6 : 2 , 5 , 8 , 1 1 , 7 : 1 , 2 , 5 - 7 , 8 :2 , 9 : 1 ,1 4 , 11 :1 ,2 , A:1

A r c h i t e c t u r e , 7 :1 ,2
Co n t r o l r e g i s t e r s , 7 : 1 , 5 , 6

MMU Master C o n t r o l r e g i s t e r , 7 : 1 , 3 , 5 , 7
Page D e s c r i p t o r r e g i s t e r , 2 :3 , 6 :5 , 7 : 1 —7, 8:2 , 11:1,2
Page D e s c r i p t o r Re g i s te r P o i n t e r , 7 : 5 ,6

M u l t i p r o c e s s o r
c o n f i g u r a t i o n s , 1 :4 , 3:1
mode, 1 :4, 3 : 1 ,3 , 10 :2 ,4 , 11:1, 12:15, 13:19

- 0 -

Overrun e r r o r , 9 :18 ,20,21

-P-
Page D e s c r i p t o r r e g i s t e r , 2 :3 , 6 :5 , 7 : 1 -7 , 8:2
Page D e s c r i p t o r Re g i s te r P o i n t e r , 7 :5 ,6
Page Fau l t t r a p , 3 :4 , 5:4
P a r i t y e r r o r , 9 :18 ,20 ,21
P a r i t y / O v e r f l o w f l a g , 5 : 2 ,3 , 9:21
P e r i p h e r a l f a m i l i e s , 1 :1 , F:1
Pin d e s c r i p t i o n s ,

Z-BUS, 13:1-3
Z80 BUS, 12:1-3

P r i v i l e g e d i n s t r u c t i o n s , 3 : 4 -6 , 5 : 3 , 4 , 1 0 , 6 : 4 , 5 , A:1
P r i v i l e g e d I n s t r u c t i o n t r a p , 1 :3 , 3 : 4 ,5 , 5 :4 , 6 :4 ,5
Processor f l a g s , 5 : 1 , 7 , 9 , 6:5

Add /Sub t rac t f l a g , 5:1

1-4

Carry f l a g , 5 :1,7' , 8
H a l f - C a r r y f l a g , 5:2
P a r i t y - O v e r f l o w f l a g , 5:2
Sign f l a g , 5:2
Zero f l a g , 5:2

Program Co n t ro l i n s t r u c t i o n s , 5 : 1 , 7 , 8
Program Coun te r , 2 : 1 , 2 , 3 : 4 , 5 , 5 : 7 , 8 , 1 0 , 6 : 2 - 4 , 7 - 1 1 , 7 :7 , 10:7
Program Counter R e la t i v e (RA) address ing mode, 1 :3 , 4 : 1 , 4 , 5 : 6 - 8 , 1 0 , 7 : 2 ,5 , 10:7

-R-
Reason code, 6 : 3 , 8 , 9
Ref resh, 1 : 2 , 4 , 5 , 10:4, 1 2 : 2 - 4 , 9 , 1 0 , 1 3 : 2 , 4 , 1 0 , A:1
Refresh c o n t r o l l e r , 9 : 1 , 2 ' ■ .
Refresh Rate r e g i s t e r , 1 :4 , 9 :1 ,2
Refresh r e g i s t e r , 2 : 1 , 2 , A:1
Reg is te r (R,s RX) add ress ing mode, 1 :3 , 4 : 1 , B:1
Reset , 1 :3 , 3 : 1 , 3 - 6 , 5 :10, 6 : 1 , 3 , 1 1 , 7 :5 , 11 :1, 1 2 : 1 , 3 , 4 , 9 , 1 3 : 3 , 4 , 1 0 , A:1
RET1 t r a n s a c t i o n , 5 : 9 ,1 0 , 6 : 3 , 9 , 8 : 2 - 4 , 1 2 : 2 , 9 , 1 4 , E:10
Ro ta te , S h i f t , and B i t M a n ip u l a t i o n i n s t r u c t i o n s , 1 :3, 5 :1 ,7

-S-
Shor t Index (SX) add ress ing mode, 1 :3 , 4 : 1 , 3 , 6 , 5 : 4 , 6 , 7 ,
Sign f l a g , 5 : 2 ,3
S in g l e - S t ep t r a p , 1 :3 , 3 :4 , 5 : 3 , 4 , 6 : 4 - 6 , 8 x.
S ing l e t r a n s a c t i o n mode, 9 : 1 0 , 17 , 12 :3, 13:3
Slave p ro cesso rs , 1 0 : 1 , 2 , 12:1
Source Address r e g i s t e r , 9 : 9 ,1 0 , 1 2 - 1 7 , 11:1
Stack L i m i t r e g i s t e r , 6:5
Stack P o i n t e r r e g i s t e r s , 1 :2 , 2 : 1 , 2 , 3 :4 , 5 : 3 , 4 , 6 :5 , A:1

System, 2 :2 , A:1 1
User, 2 :2 , A : 1

Stack Po i n t e r R e l a t i v e (SR) address ing mode, 1 : 3 ,6 , 4 : 1 , 5 , 6 , 5 : 6 ,1 0 , 10:7
System C a l l t r a p , 1 :3 , 5 :4 , 6 : 4 ,5
System C o n f i g u r a t i o n r e g i s t e r s , 3:1

Bus Timing and Co n t r o l r e g i s t e r , 3 : 1 ,3
Bus Timing and I n i t i a l i z a t i o n r e g i s t e r , 3:1
Cache Co n t r o l r e g i s t e r , 3 : 1 , 3 , 4
Local Address r e g i s t e r , 3 :1 ,3

System mode, 1 : 2 , 3 , 5 , 6 , 2 : 2 , 3 , 3 : 1 ,4 - 6 5 : 4 , 9 , 6 : 2 , 3 r 5 , 7 ,8 , 7 : 1 , 2 , 5 , A:1
System Stack L i m i t r e g i s t e r , 2 :2 , 3 :4 -6
System Stack Over f low Warning t r a p , 1 :3 , 3 :6 , 5 : 4 ,5 , 6 : 4 ,5
System Stack Po in t e r (SSP), 2 : 1 , 2 , 3 :6 , 4 : 5 , 6 :2 , A:1
System S tatus r e g i s t e r s , 3 : 1 ,4

I n t e r r u p t S ta tus r e g i s t e r , 3 : 4 ,5
I n t e r r u p t / T r a p Vector Table P o i n t e r , 3 : 4 ,5
1/0 Page r e g i s t e r , 3 : 4 ,5
Master S ta tus r e g i s t e r (MSR), 3:4
System Stack L i m i t r e g i s t e r , 2 .2 , 3 :4 -6
Trap Co n t r o l r e g i s t e r , 3 :4 -6

-T -
Termina l count c o n d i t i o n , 9 : 3 - 5 , 8 , 9 , 1 5 , 1 6
T i g h t l y coupled m u l t i p l e p ro cesso rs , 1 0 : 1 , 2 , 4 , 5
Time Constant r e g i s t e r , 9 : 2 , 4 - 7 , 9 , 11:1
Trap Co n t ro l r e g i s t e r , 2 :2 , 3 : 4 -6 , 5 : 9 ,1 0 , 6 : 4 , 5 , 10 :7 , 13 :14, A:1
Traps, 1 :3 -5 , 2 :2 , 3 : 4 , 5 , 5 : 1 , 3 , 4 , 7 - 1 0 , 6 : 1 , 4 - 1 1 , 7 :1 , 10 :6, 11 : 1 , 2 , 12:5,

1 3 :2 ,5 , E : 1,12
Access V i o l a t i o n , 1 :6 , 5 : 3 , 4 , 6 : 4 -6 , 7 : 1 , 2 , 7
B r e a k p o i n t - o n - H a l t , 1 :6 , 3 :4 , 5 : 3 ,4 , 6 : 4 -6
D i v i s i o n Ex cep t i on , 1 :6 , 3 :4 , 5 :3 , 6 : 4 , 5 ,

1-5

Extended I n s t r u c t i o n , 1 :6 , 3 :5 , 5 : 3 , 1 0 , 6 :4 , 10 :6 -9 , 13:14
Page F a u l t , 3 :4, 5 :3 ,4
P r i v i l e g e d I n s t r u c t i o n , 1 :6 , 3 :4 -6 , 5 : 3 , 4 , 6 : 4 ,5
S in g l e - S t e p , 1 :6 , 3 :4 , 5 : 3 ,4 , 6 : 4 - 6 , 8
System C a l l , 1 :6 , 5 : 3 , 4 , 6 : 4 ,5
System Stack Ove r f low Warning, 1 :6 , 3 : 5 ,6 , 5 : 3 -5 , 6 : 4 , 5 , A:1

-U-
UART, 1 : 1 , 4 , 5 , 3 : 1 , 2 , 9 : 1 ,1 7 - 2 2 , 11 :1 ,3 , 12 :3, 13:3

b o o t s t r a p p in g o p t i o n , 3 :2 , 9 :20-22
o p e r a t i o n , 9:21
r e g i s t e r s , 9 : 1 7 , 18 ,2 0

I /O addresses o f , 9:20
Receive Data r e g i s t e r , 9 : 1 7 ,1 8 ,2 0 ,2 1
Receiver C o n t r o l / S t a t u s r e g i s t e r , 9 :1 7 ,1 8 ,2 0 ,2 1
Transmi t Data r e g i s t e r , 9:17-21
T r a n s m i t t e r C o n t r o1 /S ta tu s r e g i s t e r , 9:17-21
UART C o n f i g u r a t i o n r e g i s t e r , 9 :18 ,19 ,21

r e c e i v e r o p e r a t i o n , 9 : 1 8 , 2 0 , 12:3, 13:3
t r a n s m i t t e r o p e r a t i o n , 9 :17 -20 , 12:3, 13:3

User mode, 1 : 2 , 5 , 6 , 2 : 2 , 3 , 3 : 4 , 5 , 5 :4 , 6 : 3 - 5 , 7 : 1 , 2 , 5
User Stack Po in t e r (USP), 2 : 1 , 2 , 4 :5 , 5 :9 , A:1

-Z -

Z-BUS, 1 :1 , 9 : 2 , 1 2 , 1 6 , 10:6, 12 :1, 13 :1 -19 , F:1
bus c o n f i g u r a t i o n and t i m i n g , 9 : 1 2 , 16 , 12 :1, 13:4
bus o p e r a t i o n , 13:2
e x t e r n a l i n t e r f a c e , 12:1
p in d e s c r i p t i o n s , 13 :1-3
r e q ue s t s , 13 :2 ,18

g l o b a l , 13 :18,19
i n t e r r u p t , 13 :2 , 18 , 19
l o c a l , 13 :18,19

t r a n s a c t i o n s , 1 3 : 2 - 5 , 9 - 1 6
DMA f l y b y , 13 :2 ,17
Extended P rocess ing Un i t (EPU), 10:6, 13 :2 -4 ,1 4
H a l t , 13 :2 , 4 , 1 0
1 /0 , 13 :2 ,3 , 11
I n t e r r u p t Acknowledge, 13 :2 - 4 ,1 8
Memory, 1 3 : 2 - 1 1 ,1 4 , 1 8 ,1 9
Re f resh , 1 3 : 2 , 4 , 1 0

Z80 Bus, 1 :1 , 9 : 2 , 1 2 , 1 6 , 10 :6 , 12:15, 13 :1 , F:1
bus c o n f i g u r a t i o n and t i m i n g , 9 : 1 2 , 1 6 , 12 :4 , A:1
bus o p e r a t i o n , 12:2
e x t e r n a l i n t e r f a c e , 12:1
p i n d e s c r i p t i o n s , 12 :1-3
r e q u e s t s , 12 :2 ,14

g l o b a l , 12 :14,15
i n t e r r u p t , 12 :2 ,14
l o c a l , 1 2 : 1 4 , 1 5

t r a n s a c t i o n s , 1 2 : 2 , 4 , 5 , 9 , 1 0 , 1 2 , 1 5
DMA f l y b y , 12 :2 ,13
H a l t , 1 2 : 2 , 9 , 1 0
1/ 0 , 1 2 : 2 , 1 0
I n t e r r u p t Acknowledge, 12 :2 , 12 , 14
Memory, 1 2 : 2 , 5 , 1 0 , 1 3
Re f resh , 1 2 : 2 , 9 , 1 0
RETI, 12 : 2 , 9 , 1 4

Zero f l a g , 5 : 2 ,3 *

1-6

NOTES

NOTES

Zilog READER COMMENTS

Your comments concerning this publication are important to us.
Please take the time to complete this questionnaire and return it to
Zilog.

Title of Publication: _______________

Document Number _______________

Your Hardware Model and Memory Size:

Describe your likes/dislikes concerning this document

Technical Information:

Supporting Diagrams:

Ease of Use:

Your Name: ___________

Company and Address:__

Your Position/Department:
03—8224—01

J tt/f

ZILOG D O M ESTIC SALES OFFICES
AND TECHNICAL CENTERS

CALIFORNIA
Agoura...818-707-2160
Campbell...
Costa Mesa....................................

...........408-370-8016

...........714-261-1281

COLORADO
Boulder303-494-2905

FLORIDA
Largo...813-585-2533

GEORGIA
Atlanta...404-451-8425

ILLINOIS
5 c n a u m D u rg ...

MASSACHUSETTS
B u r lin g to n617-273-4222

MINNESOTA
Edina...612-831-7611

NEW JERSEY
Hashrour.k Heights 201-288-3737
Mt L a u r e l609-778-8070

OHIO
S e v e n H i l ls216-447-1480

TEXAS
Richardson.. 214-231-9090

IN TE R N A TIO N A L SALES OFFICES

CANADA
Toronto..416-673-0634

GERMANY
Munich..49-89-612-6046

JAPAN
Tokyo..81-3-587-0528

HONG KONG
Kowloon... 852-3 -723-8979

R.O.C.
Taiwan..886-2 -731-2420

UNITED KINGDOM
Maidenhead... 44-628-39200

Z280 is a trademark of Zilog, Inc.
Z80, Z8000 and Z —BUS are registered trademarks of Zilog, Inc.

01987 by Zilog, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior written permission of Zilog.

The information contained herein is subject to change without
notice. Zilog assumes no responsibility for the use of any
circuitry other than circuitry embodied in a Zilog product. No
other circuit patent licenses are implied.

All specifications (parameters) are subject to change without
notice. The applicable Zilog test documentation will specify
which parameters are tested.

Zilog, Inc. 210 Hacienda Ave., Campbell, California 95008-6609
Telephone (408)370-8000 TWX 910-338-7621

03- 8224-02 Printed in USA

	TOP
	Table of Contents
	LIST OF ILLUSTRATIONS AND TABLES

	Chapter 1. Architectural Overview
	1.1 INTRODUCTION
	1.2 MPU ARCHITECTURAL FEATURES
	1.2.1 System and User Modes
	1.2.2 Address Spaces
	1.2.3 Data Types
	1.2.4 Addressing Modes
	1.2.5 Instruction Set
	1.2.6 Exception Conditions
	1.2.7 Memory Management
	1.2.8 Cache Memory
	1.2.9 Refresh
	1.2.10 On-Chip Peripherals
	1.2.11 Multiprocessor Mode
	1.2.12 Extended Instruction Facility

	1.3 BENEFITS OF THE ARCHITECTURE
	1.3.1 High Throughput
	1.3.2 Integration of Systeai Functions
	1.3.3 Operating System Support
	1.3.4 Code Density
	1.3.5 Compiler Efficiency

	1.4 SUMMARY

	Chapter 2. Address Spaces
	2.1 INTRODUCTION
	2.2 CPU REGISTER SPACE
	2.3 CPU CONTROL REGISTER SPACE
	2.4 MEMORY ADDRESS SPACES
	2.5 I/O ADDRESS SPACE

	Chapter 3. CPU Control Registers
	3.1 INTRODUCTION
	3.2 SYSTEM CONFIGURATION REGISTERS
	3.2.1 Bus Timing and Initialization Register
	3.2.2 Bus Timing and Control Register
	3.2.3 Local Address Register
	3.2.4 Cache Control Register

	3.3 SYSTEM STATUS REGISTERS
	3.3.1 Master Status Register
	3.3.2 Interrupt Status Register
	3.3.3 Interrupt/Trap Vector Table Pointer
	3.3.4 I/O Page Register
	3.3.5 Trap Control Register
	3.3.6 System Stack Limit Register

	Chapter 4.Addressing Modes and Data Types
	4.1 INTRODUCTION
	4.2 ADDRESSING MODE DESCRIPTIONS
	4.2.1 Register (R9 RX)
	4.2.2 Immediate (IN)
	4.2.3 Indirect Register (IR)
	4.2.4 Direct Address (DA)
	4.2.5 Indexed (X)
	4.2.6 Short Index (SX)
	4.2.7 Program Counter (PC) Relative Address (RA)
	4.2.8 Stack Pointer Relative (SR)
	4.2.9 Base Index (BX)

	4.3 DATA TYPES

	Chapter 5. Instruction Set
	5.1 INTRODUCTION
	5.2 PROCESSORR FLAGS
	5.2.1 Carry Flag (C)
	5.2.2 Add/Subtract Flag (N)
	5.2.3 Parity/Overflow Flag (PA)
	5.2.4 Half-Carry Flag (H)
	5.2.5 Zero Flag (Z)
	5.2.6 Sign Flag (S)
	5.2.7 Condition Codes

	5.3 INSTRUCTION EXECUTION AND EXCEPTIONS
	5.3.1 Instruction Execution and Interrupts
	5.3.2 Instruction Execution and Traps

	5.4 INSTRUCTION SET FUNCTIONAL GROUPS
	5.4.1 8-Bit Load Group
	5.4.2 16-Bit Load and Exchange Group
	5.4.3 Block Transfer and Search Group
	5.4.4 8-Bit Arithmetic and Logic Group
	5.4.5 16-Bit Arithmetic Operations
	5.4.6 Bit Manipulation, Rotate and Shift Group
	5.4.7 Progran Control Group
	5.4.8 Input/Output Instruction Group
	5.4.9 CPU Control Group
	5.4.10 Extended Instruction Group

	5.5 NOTATION AND BINARY ENCODING
	ADC Add with Carry (Byte)
	ADC Add With Carry (Word)
	ADD Add Accumulator to Addressing Registe
	ADD Add (Byte)
	ADD Add (Word)
	ADDW Add Word
	AND AND
	BIT Bit Test
	CALL Call
	CCF Complement Carry Flag
	CP Compare (Byte)
	CPD Compare and Decrement
	CPDR Compare, Decrement and Repeat
	CPI Compare and Increment
	CPIR Compare, Increment and Repeat
	CPL Complement Accumulator
	CPW Compare (Word)
	DAA Decimal Adjust Accumulator
	DEC Decrement (Byte)
	DEC[W] Decrement (Word)
	DI Disable Interrupt
	DIV Divide (Byte)
	DIVU Divide Unsigned (Byte)
	DIVUW Divide Unsigned (Word)
	DIVW Divide (Word)
	DJNZ Decrement and Jump if Non-Zero
	El Enable Interrupt
	EX Exchange Accumulator/Flag with Alternate Bank
	EX Exchange Addressing Register with Top of Stack
	EX Exchange H and L
	EX Exchange HL with Addressing Register
	EX Exchange with Accumulator
	EXTS Extend Sign (Byte)
	EXTS Extend Sign (Word)
	EXX Exchange Byte/Word Registers with Alternate Bank
	HALT HALT
	IM Interrupt Mode Select
	IN Input
	IN Input Accumulator
	INC Increment (Byte)
	INC[W] Increment (Word)
	IND Input and Decrement (Byte, Word)
	INDR Input, Decrement and Repeat (Byte, Word)
	INI Input and Increment (Byte, Word)
	INIR Input, Increment and Repeat
	IN[W] Input HL
	JAF Jump On Auxiliary Accumulator/Flag
	JAR Jump On Auxiliary Register File In Use
	JP Jump
	JR Jump Relative
	LD Load Accumulator
	LD Load from Accumulator
	LD Load from I or R Register
	LD Load Immediate (Byte)
	LD Load Register (Byte)
	LD Load to I or R Register
	LDA Load Address
	LDCTL Load Control
	LDD Load and Decrement
	LDDR Load, Decrement and Repeat
	LDI Load and Increment
	LDIR Load, Increment and Repeat
	LDUD Load in User Data Space (Byte)
	LDUP Load in User Program Space (Byte)
	LDW Load Immediate Word
	LD[W] Load Addressing Register
	LD[W] Load Register Word
	LD[W] Load Stack Pointer
	MULT Multiply (Byte)
	MULTU Multiply Unsigned (Byte)
	MULTUW Multiply Unsigned (Word)
	MULTW Multiply (Word)
	NEG Negate Accumulator
	NEG Negate HL
	NOP No Operation
	OR
	OTDR Output, Decrement and Repeat (Byte, Word)
	OTIR Output, Increment and Repeat (Byte, Word)
	OUT Output
	OUT Output Accumulator
	OUTD Output and Decrement (Byte, Word)
	OUTI Output and Increment (Byte, Word)
	OUT[W] Output HL
	PCACHE Purge Cache
	POP POP
	PUSH Push
	RES Reset Bit
	RET Return
	RETI Return from Interrupt
	RETIL Return from Interrupt Long
	RETN Return from Nonmaskable Interrupt
	RL Rotate Left
	RLA Rotate Left Accumulator
	RLC Rotate Left Circular
	RLCA Rotate Left Circular (Accumulator)
	RLD Rotate Left Digit
	RR Rotate Right
	RRA Rotate Right (Accumulator)
	RRC Rotate Right Circular
	RRCA Rotate Right Circular (Accumulator)
	RRD Rotate Right Digit
	RST Restart
	SBC Subtract with Carry (Byte)
	SBC Subtract with Carry (Word)
	SC System Call
	SCF Set Carry Flag
	SET Set Bit
	SLA Shift Left Arithmetic
	SRA Shift Right Arithmetic
	SRL Shift Right Logical
	SUB Subtract
	SUBW Subtract (Word)
	TSET Test and Set
	TSTI Test Input
	XOR Exclusive OR
	EXTENDED INSTRUCTION EPU Internal Operation
	EXTENDED INSTRUCTION Load Accumulator from EPU
	EXTENDED INSTRUCTION Load EPU from Memory
	EXTENDED INSTRUCTION Load Memory from EPU

	Chapter 6. Interrupts and Traps
	6.1 INTRODUCTION
	6.2 INTERRUPTS
	6.2.1 Interrupt Mode 0
	6.2.2 Interrupt Mode 1
	6.2.3 Interrupt Mode 2
	6.2.4 Interrupt Mode 3

	6.3 TRAPS
	6 .4 INTERRUPT AND TRAP HAIDLING
	6.3.1 Extended Instruction Trap
	6.3.2 Privileged Instruction Trap
	6.3.3 System Call Trap
	6.3.4 Access Violation Trap
	6.3.5 System Stack Overflow Warning Trap
	6.3.6 Division Exception Trap
	6.3.7 Single-Step Trap.
	6.3.8 Breakpoint-on-Halt Trap

	6.4 INTERRUPT AND TRAP HANDLING
	6.4.1 Interrupt Acknowledge
	6.4.2 Status Saving
	6.4.3 Loading New Program Status
	6.4.4 Executing the Service Routine
	6.4.5 Returning from a Service Routine

	6.5 INTERRUPT/TRAP VECTOR TABLE
	6.6 THE FATAL CONDITION

	Chapter 7. Memory Management Unit
	7.1 INTRODUCTION
	7.2 MMU ARCHITECTURE
	7.3 PAGE DESCRIPTOR REGISTERS
	7.4 ADDRESS TRANSLATION
	7.4.1 Address Translation Without Program/Data
	7.4.2 Address Translation With Program/Data Separation

	7.5 MMU CONTROL REGISTERS
	7.6 ACCESSING PAGE DESCRIPTOR REGISTERS
	7.6.1 Descriptor Select Port
	7.6.2 Block Move Port
	7.6.3 Invalidation Port

	7.7 1 INSTRUCTION ABORTS

	Chapter 8. On-Chip Memory
	8.1 INTRODUCTION
	8.2 CACHE MMORY MODE
	8.3 FIXED-ADDRESS MODE

	Chapter 9. On-Chip Peripherals
	9.1 INTRODUCTION
	9.2 CLOCK OSCILLATOR
	9.3 REFRESH CONTROLLER
	9.4 COUNTER/TIMERS
	9.4.1 Counter/Tinter Operating Modes
	9.4.2 Gates and Triqqers
	9.4.3 Terminal Count Condition
	9.4.4 Counter/Timer Registers
	9.4.4.1 Counter/Timer Configuration Register
	9.4.4.2 Counter/Timer Command/Status Register
	9.4.4.3 Time Constant and Count-Time Registers

	9.4.5 Linking Counter/Timers
	9.4.6 Counter/Timer Sequence of Events

	9.5 DMA CHANNELS
	9.5.1 Types of DMA Operations
	9.5.2 DMA Transfer Modes
	9.5.3 End-of-Process
	9.5.4 Priority Resolution
	9.5.5 DMA Linking
	9.5.6 DMA Registers
	9.5.6.1 DMA Master Control Reqister
	9.5.6.2 DMA Transaction Descriptor Register
	9.5.6.3 Count Register
	9.5.6.4 Source Address and Destination Address Registers

	9,5.7 DMA Sequence of Events
	
	

	9.6 UART
	9.6.1 Transmitter Operation
	9.6.2 Receiver Operation
	9.6.3 UART Registers
	9.6.3.1 UART Configuration Reqister
	9.6.3.2 Transmitter Control/Status Register
	9.6.3.3 Receiver Control/Status Register

	9.6.4 UART Operation

	9.7 UART BOOTSTRAPPING OPTION

	Chapter 10. Multiprocessor Configurations
	10.1 INTRODUCTION
	10.2 SLAVE PROCESSORS
	10.3 TIGHTLY COUPLED MULTIPLE PRROCESSORS
	10.3.1 The Local Address Register
	10.3.2 Bus Request Protocols
	10.3.3 Examples of the Use of the Global Bus

	10.4 LOOSELY COUPLED MULTIPLE CPUS
	10.5 COPROCESSORS AND THE EXTENDED PROCESSING ARCHITECTURE
	10.5.1 Extended Instructions
	10.5.2 Extended Instruction Execution Sequence

	Chapter 11. Reset
	Chapter 12. Z280 Bus External Interface
	12.1 INTRODUCTION
	12.2 BUS OPERATIONS
	12.3 PIN DESCRIPTIONS
	12.4 BUS CONFIGURATION AND TIMING
	12.5 TRANSACTIONS
	12.5.1 Memory Transactions
	12.5.2 RETI Transactions
	12.5.3 Halt and Refresh Transactions
	12.5.4 I/O Transactions
	12.5.5 Interrupt Acknowledge Transactions
	12.5.6 DMA Flyby Transactions

	12.6 REQUESTS
	12.6.1 Interrupt Requests
	12.6.2 Local Bus Requests
	12.6.3 Global Bus Requests

	Chapter 13. Z-BUS External Interface
	13.1 INTRODUCTION
	13.2 BUS OPERATIONS
	13.3 PIN DESCRIPTIONS
	13.4 BUS CONFIGURATION AND TIMING
	13.5 TRANSACTIONS
	13.5.1 Memory Transactions
	13.5.1.1 Byte/Word Organization
	13.5.1.2 Memory Transaction Timing
	13.5.1.3 Burst Memory Transactions
	13.5.1.4 Test and Set Memory Transactions

	13.5.2 Halt and Refresh Transactions
	13.5.3 I/O Transactions
	13.5.4 Interrupt Acknowledge Transactions
	13.5.5 Extended Processing Unit (EPU)Transactions
	13.5.5.1 EPU Instruction Fetch
	13.5.5.2 Memory-EPU Transactions
	1 3.5.5.3 EPU-CPU Transactions
	13.5.5.4 PAUSE Timing

	13.5.6 DMA Flyby Transactions

	13.6 REQUESTS
	13.6.1 Interrupt Requests
	13.6.2 Local Bus Requests
	13.6.3 Global Bus Requests

	Appendix A. Z80/Z280 Compatibility
	Appendix B. Z280 MPU Instruction Formats
	Appendix C. Instructions in Alphabetic Order
	Appendix D. Instructions in Numeric Order
	Appendix E. Instruction Timing
	Appendix F. Compatible Peripheral Families
	Glossary
	Index
	Bottom

